The Busy Coder’s Guide to

Android

Development

The Busy Coder's Guide to Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Nov 2008: Version 1.4 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!..........cccceeeeiiiiiieeeiniiiiiinnnecennncsssnneennes XV
Preface... i ceeieiieiicneeeeeercceeee e sennee e s e s s ssnase s s s s s s sssssssssnenaaans xvii
Welcome to the BoOK!.......c.coevieiiininienieieincsesieeteesene et xvii
PrereqUISItS.cocuieiieiieieeteetee ettt et e xvii
Ware@SCIIPLION. c.eeeuvieieeiieieeieesieenieeseee sttt esieesaee st st e saeesaeesmeeesmeeeesareeenn xviil
BOOK BUG BOUNLY...c..coiiiriiiieieiieieeteeeeet ettt Xix
SoUTCe COde LICONSE......ccuveiereeeeeierieeeeieste et tete st saesee et e sae e seeenes XX
Creative Commons and the Four-to-Free (42F) Guarantee.................... XX
AcCKNOWIEdGMENLS.....c.eoviieieiriirienieietetetee ettt xxi
The Big Picture.......coovuiiiiiiiiiiiiiiiiniineiinineecnnnecnnneeessnnecsssseeessssnnene 1
What Androids Are Made Ofi........cccoceviiririenienireeeeeseeeeeesee e 3
ACEIVITI®S. . ettt ettt st s st s te s s st e e e e s s abaeeesesnans 3
CoNteNnt PrOVIAETS.......ccvieiieieeieeiecieeteeie ettt e eaee e 4

=S oS 4

] o< 4

Stuff At Your DiSposal........cceeeeircieninieiereseceeieseecetete et 5
SEOTAEE. ..ttt ettt ettt et st s 5
INEEWOTK. ..ttt ettt et sae s et eesse e 5
MUIEMEIA. ettt 5

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PRONE SEIVICES....c.eruiiiiirieiriereerte ettt 6
Project StIUCtUTe.......uueeiiiiiiiiiiiiiittcccenneeeerrreereeee s eaa s eaanes 7
ROOt CONLENLES.....oeiieiiieieeiiieeciieeeectee e e re e e re e e e e e e searaee e eaesassaaeaeaeeeas 7
The Sweat Off YOUT BIOW...c..ocuiiiiriiieieieieieeeecnee et 8
And Now, The Rest of the Story......c.cecevevievrinineneieeeeecee 8
What You Get Out Of Tt...cc.oeieieriirieeeeierereeeeieeeeteresee e 9
Inside the Manifest..........cccceeiiiiiiiieiiiiiiiiiiiieeeciinnieere e 11
In The Beginning, There Was the Root, And It Was Good...................... 1
Permissions, Instrumentations, and Applications (Oh, My!).................. 12
Your Application Does Something, Right?..........cccccoovevviiiininininninenen. 13
Creating a Skeleton Application.........ccoevueeeiiiiiiineeciciieeeeeeeeeeeennennnnnn. 17
Begin at the Beginning.........ccccocevereriiiniinenieieneneetereseetee et 17
THE ACHIVIEY ..veruteieeteeteierteetesteste ettt sttt e ste st et tesse e et e sesaeetensessesaneneas 18
Dissecting the ACIVILY....cccceceeviereririenereeteese ettt 19
Building and Running the ACtiVity.......cccceverriererieriienenereeeeeeeeeeeeenn 21
Using XML-Based Layouts........coccceeveueeiiiinneeiniinecinineeeininneesssnecessesnns 25
What Is an XML-Based Layout?.........ccceceevuerenernienenenienienieeneesseeesaens 25
Why Use XML-Based Layouts?.........ccccecererrenenieneenineneenieeiesieseeseeeneees 26
OK, So What Does It LOOK LIK@7?.....cccoiveroriieiiiieeieeeeeeeeeeeeeeeeeeseeeseeeeeeees 27
What's With the @ Signs?.......ccceevinenieiniririeeeeee e 28
And We Attach These to the Java...HOW?.......cccoeevereveereceiciriee e, 28
The Rest Of the StOTy.....ccieiiiririeieieneeee e 29
Employing Basic Widgets.........ccoovvueiiiiruiiiiinniiniineciniinecennnnninnnnnnnnnneee 33
Assigning Labels.......ccooueiiiiiniinieiiireeeee e 33
Button, Button, Who's Got the BUtton?..........cccceovvveeveievieeeeeeeeeeee e 34
Fleeting IMages.ccceoeeueruenieririniinienteteteeseste ettt sttt st 35
iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Fields of Green. Or Other Colors.........cceevirenieninininenieeieneeseeseeee 36

Just Another Box to ChecK.......cccuevieeieeiecieiieeeieieseeeete e 39
Turn the Radio Up....ccceeiecieiieieereceeeeeeetee ettt 42
It'S QUILE @ VIEW..eiiiiieeiieeciieeciee ettt te ettt ete e ete e eveeeetaeeeaabaaee e e earaaaeeean 44
USeful PrOPErties......ccveeierieeieierieeieeieieseeeeiese s eeesre s see s eeeeees 44
Useful Methods......c.coeeieierenieieieseeeeeeeee et e 44
Working with Containers.........ccooceeeiiiiiiiineeciiiniiineeeciiniieeccceeeeeees 47
Thinking Linearly.........ccccoeriiiiinieeeeereeee e 48
Concepts and Properties..........ccuveeeerierereesienenenieesiesseeesieesseeeseeenns 48
EXQIMPIE...cuiiiiiieiiieeiesteses ettt ettt e e e e ne e saseesnreenns 51

All Things Are RelatiVe.........coceveririienienieieieneceeieseeee et 56
Concepts and Properties.........cocuecvecereeeesieneneesienieneeeeseeseseeseessenns 56
EXQMIPLE...cueiiiiiiiiiriiieeree ettt ettt 59
Tabula Rasa.....coueiieiririieee ettt 62
Concepts and Properties.........oceeeceererereenienenientenieneseeseeseseeseenees 62
EXQIMIPLE...cuuiiiiiiiiirieieiee ettt ettt st 65
SCrOIIWOTK ... 66
Using Selection Widgets.........ueceeiiiiiueeeeiiiiiinnneeiinnininneecennnnnieeneeeeennne 71
Adapting to the CirCUmStanCes..........cecueeeererenieneerireneneseeteeeesieseesaeens 71
USING AITaQYAdAPLET....ccoueeuirieierierterieseseestesie sttt eseees 72
Other Key AdQpLers........coeverieirinenienieieenesieniestetee st 73
Lists of Naughty and NiCe........ccoeerieriririrenienieieiresenieteeeesesee e 74
SPIN CONLIOL....iitiriiiiieiririeseetetr ettt sttt st s 76
Grid Your Lions (Or Something Like That...).....ccceevveeirerirenienenrenennn. 8o
Fields: Now With 35% Less Typingl......ccccceeverrecnernecncnecreceneeenes 84
Galleries, Give Or Take The ATt.......oceiiieiicieieiieeeeeeeeeeeeeeee e 88

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists......cuciiviiiiiiiniiinnniiinnnnieinnecnnennnneee 89

Getting To First Base......coceeveerierieniiieieeieneeeeteeeese ettt 89
A Dynamic Presentation......cc..ceeeeeereeneeneeneenieneeneeseenee e e e 92
A Sidebar About INflation..........ccceeeeciererieeciereseeeeceee e 94
And Now, Back To OUT StOTY...c.cceeererenenieineneneeieeie et 94
Better. Stronger. Faster.......coieciriienierieeeeerteeeeeeeseeee e 95
USING CONVETTVIEW.....iiiiiiiiiiiiieeiieiiereereeiteieereere et e e 96
Using the Holder Pattern.........c.ccoeceeeeinenieninninenenieeecccnceeeeeeen 98
MaKing @ LiSt..c.ceoueeeirierierieinienieneteteeee sttt 101
..And Checking [t TWICe......ccceeeruerieriririnereteeeeeere e 107
Employing Fancy Widgets and Containers..........ccccceeveruueeeecesiiinnnnnees 115
Pick and ChOOSE......c.coierieriirieiereeteeesee ettt ae e 15
Time Keeps Flowing Like @ RiVeT........ccceceveririieneneniienenenterienee e 120
MaKing PrOGIess......ccccveruirierienieieinienierieteeeteieseeste ettt s 121
Putting It On My Tab....cccooiviiiiiiinineeeseeee et 122
THE PIECES.....eiiireiiteieeeeeeee ettt s 123
The [diOSYNCIASIES. ..ccuevveveieiriirririetetetee ettt see e ste st e eaeesaeens 123
Wiring It TOZEther......co.oociiviirieiiieieeee e 125
Adding Them Up....cocceviiiirieiecneseeeeteeee sttt 128
Flipping Them Off.........cocooiiiiniieeeeeeeseeteeseet et 131
Other Containers Of NOte.........cccccereeiecieriereeeerie et e e e e reeees 136
APPLYING MENUS....ccivimriiiiitiiiiiteiinieccneec et ssaet e ssssee s anee 139
FIavors Of MENU.....cc.ccvecieriieeieieieetieeesiese et este e aese e e saesseesaeessa e e 139
MenUS Of OPLIONS.....couieririirieieieirerterierteteeeeetesresteste st esseesbeeeessesasesaes 140
MeNUS iN CONEEXL...uueiiiiiieeeeiieeeeiieeeeiieeeeeteeeeerreeesrreeeessreeeesseeseesasesesnnns 142
Taking @ Peek......c.ooveieiiiiiieieeteee e e 143
Yet More INflation.......c.cceeeecierierieieieseeeeiesee et 149
vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Menu XML SEIUCEUTE......oooiiiiiieeiieieeeeee ettt st 149

Menu Options and XML........ccoceeerenienierinenenenietenteseesie e eeeseesaees 151
Inflating the MenU.........coeveiiirinineieineneeeeeeeeree et 152

300 o L 155
Love The One You're With.......cccecveeeririeienieeeeeceeeeese e 155
Embedding the WebKit BrowSer..........cccovvueeiiriiiiiieeeciiiiiiinneeceeennnnne. 159
A Browser, Writ Small........cccooceeiierininieeieeeeesee e 159
LoAding It UP..coceieeriiieieieenierietete ettt ettt 161
Navigating the Waters........coccoeveveririnerenieeeeeneeteenee e 163
Entertaining the Clent.........cccoceirininennnineeeeeeeeeee e 164
Settings, Preferences, and Options (Oh, My!).......ccccceevunrerenrevenrerenrennens 166
Showing Pop-Up Messages..........ccceeeeiiiiinuneeciiiniinnnnneeceinisinnnneesssssseeee. 169
RaiSING TOASTS....eeeuiiiiiieiiieeiee ettt st 169
ALCTEI ALETE ..ottt ettt e te e et e et e e erae e e areas 170
Checking Them OUL........ccoeeiirieniniriereneetesiesestesee et esee e s steseesaeens 171
Dealing with Threads..........ccccceeiiiiiiuuiiiiiiiiiiieniiiiniineeccnnneeceeeeeeeeee 175
Getting Through the Handlers..........ccccovevininenienininineneeeceee e, 175
IMIESSAZES. .ccuveerureernteeeiteeetteette et e st et st e e st e et e st e s e s bt e e e e e as 176
RUNNADIES......cvieeieiiiiceeeeeeeee ettt e 179
RUNNing IN PIAcCe.......coiiiiniininiiieeeeeeeteeete et 179
Where, Oh Where Has My Ul Thread Gone?..........cccoeevevereenecnuenenee 180
AN NOW, The CaVEatS....uueeeiiiieiiereieeeieeeiieteeeeeeisiieeeeseeeeeeeesesssssaarnnnnnaa 180
Handling Activity Lifecycle Events.........cccccvvvuiiivinneiininneennnneccninnnn. 183
Schroedinger's ACHIVILY.....cecuvirerierierieieeeiesiestentee e stesee e eeseesaeesaees 183
Life, Death, and Your ACtiVity........cocceverenieniererenenienienteeneneseeseeeeeeaeans 184
onCreate() and ONDESLIOY()....coveeruererreerieerieierieierieteseeseesseeeeseaens 184
onStart(), onRestart(), and oNStOP().....cceevveeererrerrereerereserieriereeneens 185

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

onPause() and onReSUME()........cocvivviiiiiiieiiiieceeeeeee e 185

The Grace of State.......coocveeuevererrerneneeereeee et 186
Using Preferences..........cuuiiiinnieinnniiininiieinnneciiieennnecnneecennne, 191
Getting What YOU Want......c.ccoeveriiiirineneneieieesenesie et 191
Stating Your Preference.........co.coeoevenenenienneneneneececneseee e 192
And Now, a Word From Our FrameworK.........cccceceveveevcrieneenennenneenne. 193
Letting Users Have Their Say.......coccoeveveeninenenenencseieeecneneeeene 194
Adding a Wee Bit O' SLIUCLUTE.......cc.coveieirerierienietetrerieete st 199
The Kind Of Pop-Ups You Like........ccccceecirvieneniniinineeeeceneseecie s 202
AccesSing Files......iiiiiiiiieeiiiiniiieiiiiiieecccineeccne s 207
You And The Horse You Rode In On.......ccoevvevivenieneeiiecieceeceeeeee, 207
Readin' " WIItin' ..ottt 211
Working with Resources...........coouueeiiiiiiinueieiiiniiinnneeccccniiineennnnnnne. 217
The Resource LINEUP......cccceeeiereririenieneeeeieseetetesieee et 217
SEEING THEOTY..c.utiieiieiiieee ettt e s 218
Plain StriNGS....ceoeeeriterieriertetereeeetese sttt st e saee e e s 218

String FOrmMaAts.....coueeiiriiniieieeieeeeteeeee ettt 219

SEYLEA TEXL..euiiiieieeieierieetereeee ettt sttt st e 219

Styled FOImMAtS......ccueciriririerieieieteesesesete ettt 220

GOt the PiCtUT@?......ecieeeeieeeeeee et e et ste e e se e esse e saeeesernaaenes 224
XML: The ReSOUIce Way.......cceceviruirienienieininenienieteesiesie et seeessesaeens 227
Miscellaneous Values..........ccccueeiieiieieeiecieciee et ree e e eane e 229
DIMENSIONS. ..eitteiiieieieeeiteeiteerite et et este st e ste e steesbaesnnreeessesanneas 230

(@0} o) =R 230

ATTAYS..eeueeeuteeterte ettt ste st st s e st saee st e s see s e e saeesbeesmeeesenbeeesneeesnnne 231
Different Strokes for Different FOIKS.........ccceevevievirieceeriereeiecieseeee e 232

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling RoOtation.........cceeiiiiiiiiieeciiiiiiiinnecciinnineeccesseesssssseeeees 237

A Philosophy of DeStruction..........ccceceeererierienieienenenienieneeeeesese e 237

It's All The Same, Just Different..........cceccevereeveererierieereerieecee e 238
Now With More Savings!.........cceceirirenienieiinenenenieteesese st 242

|9 40 300] =Y 1o) o S 244
Managing and Accessing Local Databases.........cccooeueeeeireeereennnnnnnnee. 249
A Quick SQLItE PrimeT.....cccveecieeiieiiecieeeieete e este e eteeveee e reeesvreeeeens 250
Start at the Beginning........cc.ceceeerenienirininenetneeeeseeeeeee e 251
Setting the Table.........ccooiiririni e 252
MaKIN' DAta.....ceceeeecierenieierieseetesiese st see s e et esaeste e e estesseeessaeesseesnseenns 253
What Goes Around, Comes ATOUN.......eeeeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 254
RAW QUETIES.....cccveieiieeiieeiieecte e e e e s e e e e e sreesvaessaeessaeesseeeennanes 254
Regular QUETIES.....cc.coerieriinierteierieetetesee ettt sttt s 255
Building with Builders.........cccoceveiiniininininiceecneeccecceeee 256

USING CUTSOTS. .cuuteitiiiiiienitente ettt ste st et s e e st e sate st e st e st e st esaeenn 257
Making Your OWn CUTSOTS....cc.ceververerienieniereeeeniesieeeeneesseseesseesnns 258

Data, Data, Everywhere........ccccocieviriniiiiniriieetcteeseeteeseeeeeeae 258
Leveraging Java Libraries.........cccccovvnueeiiiiiiiinneecciiniiinnneeccinninnneeeenn. 261
The Outer LIMits......ccoeerieinirienieeireneeeereeneeneeesee et 261
ADNES AN JATS..eccviietieeetieceeeeere et eere et e ceteeeeteeeeteeeetaeeeseeearseeeeeenaseeeaeenn 262
Following the SCript......ccceirierieiirininenieieineserese et 263
Communicating via the Internet.........c.cocceevvveeiiiineeiniinecenisnneeeeeeen. 269
REST and RelaXation.........ccoceeiecierieneeiesiesesceeesie e eeesee e seeseeeseeens 269
HTTP Operations via Apache HttpComponents.......c..ccceecerueuenene. 270
Parsing ReSPONSEs.......c.cocuiiiiriiirierieiiieeeeeeeeeee e 272

StULT TO CONSIAET......vieveeerieeriereeere ettt ettt e etee e e e ennes 274

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Intent Filters..........ccccooviivvnniiiinnniiininneiininneeinnnecinnneeeeeenn 279

What's YOUr INteNt?.......ccoeiiiriinieieiiereresieteteeee ettt 280
Pieces Of INtENLS......cccereeeeciereeeetereeee ettt e e eas 280

Intent ROULING...c..cooiirieniinieieeiee ettt e 281
Stating Your INtent(10NS)......coueerueereeuerieenirenieesteesteie et 282
NAITOW RECEIVETS......oeiiieiiieieeeeetee ettt e e e e 284
The Pause Caveat.......ccecveeereeienierieeieriereseeeesieseeeeseesseseseesaesseessaesseas 285
Launching Activities and Sub-Activities........ccccccerrrruureeriiiiiinneeccnnnnn. 287
Peers and SUDS.......coccociririeieeeecee e 288
=T A 25 02 0 TSRS 288
Make an INEENL.......cceeerierierereeiee ettt sttt se e e e eas 289

Make the Call.......cocvevirieieieeeeeeeee e 289
Finding Available Actions via Introspection.........cceeeeueeeeeeviisrueeeeeneee 295
8 Tad QR 23 1 o TSROSO ORRSTRSRRRN 296
Would You Like to See the Menu?..........cccccevvieieeieeciencieeieeieeie e, 300
ASKING ATOUNA......cooviriirieiirienteiereeee ettt sae st e e e s beesaeeeas 302
Using a Content Provider............cccovuiiiiieiininneiiniinecininneccniinnnneneee 305
PIeCES Of M.ttt ettt st sttt 305
Getting @ Handle........o.ooueieirinineieieeeeneee et 306
MaKin' QUETIES......ccueeieerieiieteeteete et ereeteeteeresteetesaeseaesseesssessaesnnnnens 307
Adapting to the CirCUmMStANCES........ccceeveevererrererrererreenreereeneeeseeseeeenne 309
Doing It By Hand........cccoeviiiiiiinieieeieteeeseeteeeeetesesese et 310
POSTEION. ..ceiiiieiiieiteete ettt ettt e st be e sbe e s s abea e e e e 311
Getting Properties.........cooeereereenieneerieieeieeieeee ettt 31

Give aNd TaKe.....oiiieiiieieieeeee ettt 311
Beware of the BLOBL......c.coioiiiiieeeeeeteeee ettt 313

X

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider...........ccccoeevivvueeiiiiiiiiiineeciinnisinnneceeeeennnns 315

First, Some DiSSeCtion.......ccceeveereiirrieriiiiieieenieesieeesieesreeeseesseeesieeeeeens 315
Next, SOME TYPING...c.ccerreereirieriereereentereeseeseesee et sreesreee s e sneeens 316
Step #1: Create a Provider Class........cocoeeveeirenenenienieinenenesieeeceeneeenne 317
163 (@ -1 () RO, 317
QUETY () ntveueeeueieietei ettt ettt ettt ettt ettt et se e b e e e s et seneesane 318
INSEIE()vriereirieeieie ettt ettt et e e te e te et e esteenteenteentsentesntesnsesesnns 320
UPAALE().veuvereereeeerietesteteteeee et et e e e e s testeseaeseesessessesseseesassessansansesens 321

e 123 1 =Y SRR 322
GEETYPE() - eeventereieietete ettt ettt ettt ettt eenae 323
Step #2: SUPPLY @ UTlcueiveiiiiieniieeeieiesteereete et 324
Step #3: Declare the Properties...........ccoveveevevienencienieerieeieeeee e 324
Step #4: Update the Manifest........cccoocevirviinenenieneninieeieeeeeeesee e 325
Notify-On-Change SUPPOTt.......cccceevrererenierieininereeeseeie e 326
Requesting and Requiring Permissions........ccoevueeeeiviiiinneeeenniennennne 329
MOther, May [7......cocoiieieiereeeeeeeee ettt sttt 330
Halt! Who GO0ES TRETEY.......coueeeieiecieeeeteceeeee ettt ve e eane e 331
Enforcing Permissions via the Manifest..........ccccoeceveeriierniienneenneen. 332
Enforcing Permissions Elsewhere.........ccccocooevivviniiiniinniinicnninienn. 333
May I See Your Documents?.........ccoeerierienienienienieneenee et eeee e 333
Creating @ SEIVICE......cuuuuuuuiiiiiiiiiiiiiiiitiriccsses e ceeereeasa s s e sanes 335
Service With Class.......ceccvecieriieieieniecieeees et 336
WHhen [PC Attacks!......ceeieiecieriieieteeseeeetesie ettt aesaesene s 337
Write the AIDL.......ooouieieiecieeeeeeee ettt 338
Implement the Interface.........cccoeevevieiineninenenienreeeeeeeee, 339
Manifest DeStINY.......ccceiririerierirererierietertee ettt sttt seeens 340
Lobbing One Over the Fence..........cccceeeevenieririneneneniecesieeieeeeseeneans 341

Xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

INVOKING @ SEIVICE.....uutiiiiiiiiieriiiiiiiettetnenceree e e s s 345
BOUNA fOT SUCCESS.....ueeuieieieeiieieiereeteiere ettt e 346
Request fOr SEIVICE.ccuviriririeieieerereee ettt 348
Prometheus Unbound...........ccceeereririeninieieeseceeeseeteee e 348
Manual TranSmMiSSION.......ccerirreerrereriertereeeestesteseeseessesreeeessesseeeessseens 348
Catching the Lob.....co.ooiiiiirieee e 349

Alerting Users Via Notifications.........ccccvevvvueeeiiiiiiinnneecciniiiinneeecennnn. 353
TyPes Of PESLEIING....c..ccueeruiriiriiieieieeeenertete ettt 353

Hardware Notifications........ccceeeeeriererersienenereesieseseeeese e see e 354
[COMIS .ttt ettt e s et e e s e 354
Seeing Pestering in ACtiON.......cccceeeeereenienienieneneeenee e 355

Accessing Location-Based Services...........ccovvviinneeiiiniiiiiiiiiiiiinnnennnnn 361
Location Providers: They Know Where You're Hiding.........cccccceueeueee 362
FINding YOUTself.......cocooviereriiiiiiieeeeteeeeetee ettt 362
ON the MOVE......ooiiiiiiieiieteeeeteereete ettt sttt s 364
Are We There Yet? Are We There Yet? Are We There Yet?................. 365
TeSting... TESTING. .ccccueeeieeriieeiteeteeete ettt e et e e e s eneeeee s 366

Mapping with MapView and MapActivity.......ccceveervinueeceeiernniiiinnnn. 369
Terms, Not Of ENA@AIIMENE.....ccvvveeeiiiieeieeeeeieeeeeeeeeeeeeeevteeeeeeeeeeeeeeeeeees 369
The Bare BONES.......ccocueeieiiieiieieieeeete ettt et 370
Exercising Your CONtrol..........coceeerierenenienenenterieneneeseeeee e 372

ZIOOMMN.uiiieeeiiieeeeitteeetee e e itee e sttt e s et eesrteeesabeeesenbaee e areaeesnbaeeseannnnes 372
(@S] 013 USSP 374
RUGZEA TOITAIN...c..eieieiieiirieieteteteiete ettt sttt 374
Layers UPOn Layers......c.ccceevierrieriiineienieneeecete e seee e sreesmeeee e 375
OVETIay ClasSes.....c.ceueruerierieirerienienietete ettt st st sreesaeens 375

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Screen Taps......cccoccvererenienienininenenieetsesesie e 378

The Key To It All...cueiiieieieieeee ettt 378
Handling Telephone Calls.........cccocceeiviuieiiiineiiiiieiininneeecceiinininnnnn, 381
Report To The Manager........ccceceeeeueruerierinenienenieteeeieseeneeie e see e seens 382
You Make the Calll........ccooveeieieieeeeee e 382
Searching with SearchManager............cccccevviinneeeiiiiiiinneecccnniinnennnn. 387
HUnNting S€aS0M.....c.uiiieiiiriirienieniereeeertenee ettt 387
Search YOUTSelf........cccooierierieieieeeeeeeee e 389
Craft the Search ACtiVIty......coceveeererereneineeere e 390
Update the Manifest.........ocevererienieninieieneneertese e 394
Searching for Meaning In Randomness...........cccccceevenenenncnenceneeenen. 395
Development TOOIS......cccociiiiiiiiiiiiiiiiinnneneeeeeeeeeetteeeieenneeeeneeseseeennseees 399
Hierarchical Management...........cccecceerenienienineninenenieenese et 399
Delightful Dalvik Debugging Detailed, Demoed...........ccccccceuerurueruennee. 406
LOGEINE....eiiiiiiteeteeeteeette ettt ettt ettt e et e s e ree e e e e 408

File Push and Pull...........ccooviiieieieeeeeeeeeeeeeee e 409
SCIEENSNOLS. ... eivietieteeteeeee ettt e atae e e ra e e eeereeeenres 410
Location UPdAtes........ccueeuererieriereeierienietenienieseetesieseeeessesseseenseens 411
Where Do We Go From Here?.........ccccoevvmriiiiiiiinnnneeinnnicsnnnnneeessssesnnnnns 413
Questions. Sometimes, With ANSWETS.........ccceeorvevreeneeneeniveeeeereeeeneeens 413
Heading to the SOUICE.........ccoviririerieieieereeeeeeesee et 414
Getting YOUTr NeWs FiXu....ccoviiviiiiiiiriiiieeeeeeeeeeeeeeee e 414

Xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates - subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscribers name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license — more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

Some notes for Kindle users:

Xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://wares.commonsware.com/
mailto:enterprise@commonsware.com

« You may wish to drop your font size to level 2 for easier reading

« Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size

XVi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional” means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new - Android-powered devices appeared on the scene first in late 2008 -
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

If you are interested in programming for Android, you will need at least
basic understanding of how to program in Java. Android programming is
done using Java syntax, plus a class library that resembles a subset of the
Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works
before attempting to dive into programming for Android.

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The book does not cover in any detail how to download or install the
Android development tools, either the Eclipse IDE flavor or the standalone
flavor. The Android Web site covers this quite nicely. The material in the
book should be relevant whether you use the IDE or not. You should
download, install, and test out the Android development tools from the
Android Web site before trying any of the examples listed in this book.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription - the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/warescription.html
http://code.google.com/android/index.html

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem, and we'll give you a coupon
for a six-month Warescription as a bounty for helping us deliver a better
product. You can use that coupon to get a new Warescription, renew an
existing Warescription, or give the coupon to a friend, colleague, or some
random person you meet on the subway.

By "concrete” problem, we mean things like:

« Typographical errors

« Sample applications that do not work as advertised, in the
environment described in the book

« Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.

We appreciate hearing about "softer" issues as well, such as:

+ Places where you think we are in error, but where we feel our
interpretation is reasonable

Places where you think we could add sample applications, or expand
upon the existing material

« Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

mailto:bounty@commonsware.com

Source Code License

The source code samples shown in this book are available for download
from the CommonsWare Web site - just choose the tab of the book version
you want, and click on the Source Code link for that tab. All of the Android
projects are licensed under the Apache 2.0 License, in case you have the
desire to reuse any of it.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers and
the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition, starting
from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on October 1, 2012. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

XX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://commonsware.com/Android/

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups. In
particular, I would like to thank Romain Guy, Justin@Google, and hackbod.

Icons used in the sample code were provided by the Nuvola icon set.

xxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.icon-king.com/?p=15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART | - Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 1

The Big Picture

Android devices, by and large, will be mobile phones. While the Android
technology is being discussed for use in other areas (e.g., car dashboard
"PCs"), for the most part, you can think of Android as being used on phones.

For developers, this has benefits and drawbacks.

On the plus side, circa 2008, Android-style smartphones are sexy. Offering
Internet services over mobile devices dates back to the mid-1990's and the
Handheld Device Markup Language (HDML). However, only in recent years
have phones capable of Internet access taken off. Now, thanks to trends like
text messaging and to products like Apple's iPhone, phones that can serve as
Internet access devices are rapidly gaining popularity. So, working on
Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones),
which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

+ Screens are small (you won't get comments like, "is that a 24-inch
LCD in your pocket, or...?")

+ Keyboards, if they exist, are small

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

- Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch”
LCDs are not a good mix)

« CPU speed and memory are tight compared to desktops and servers
you may be used to

« You can have any programming language and development
framework you want, so long as it was what the device manufacturer
chose and burned into the phone's silicon

« Andsoon

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones
don't work, which is why the "can you hear me now?" ad campaign from
Verizon Wireless has been popular for the past few years. Similarly, those
same people will get irritated at you if your program "breaks" their phone:

« ..by tying up the CPU such that calls can't be received

+ ..by not working properly with the rest of the phone's OS, such that
your application doesn't quietly fade to the background when a call
comes in or needs to be placed

« ..by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you're used to" limitations on what you can do with your
program.

What Android tries to do is meet you halfway:

+ You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

« You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows - like dialog
boxes - that are needed. From your standpoint, you are your own world,
leveraging features supported by the operating system, but largely ignorant
of any other program that may be running on the computer at the same
time. If you do interact with other programs, it is typically through an API,
such as using JDBC (or frameworks atop it) to communicate with MySQL or
another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a desktop
application.

While it is possible for activities to not have a user interface, most likely your
"headless” code will be packaged in the form of content providers or
services, described below.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android development
model encourages you to make your own data available to other
applications, as well as your own - building a content provider lets you do
that, while maintaining complete control over how your data gets accessed.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to intents, but you can create your
own, to launch other activities, or to let you know when specific situations
arise (e.g., raise such-and-so intent when the user gets within 100 meters of
this-and-such location).

Services

Activities, content providers, and intent receivers are all short-lived and can
be shut down at any time. Services, on the other hand, are designed to keep
running, if needed, independent of any activity. You might use a service for
checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of space
on the device itself, for databases or files containing user-entered or
retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the Internet
access at any level you wish, from raw Java sockets all the way up to a built-in
WebKit-based Web browser widget you can embed in your application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the device
to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

Phone Services

And, of course, Android devices are typically phones, allowing your software
to initiate calls, send and receive SMS messages, and everything else you

expect from a modern bit of telephony technology.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 2

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android and what it all does to
prepare the actual application that will run on the device or emulator. Here's
a quick primer on the project structure, to help you make sense of it all,
particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via activitycreator), you get
seven key items in the project's root directory:

AndroidManifest.xml, which is an XML file describing the application
being built and what components - activities, services, etc. — are
being supplied by that application

build.xml, which is an Ant script for compiling the application and
installing it on the device

bin/, which holds the application once it is compiled

libs/, which holds any third-party Java JARs your application
requires

src/, which holds the Java source code for the application

res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://ant.apache.org/

Project Structure

« assets/, which hold other static files you wish packaged with the
application for deployment onto the device

The Sweat Off Your Brow

When you created the project (e.g., via activitycreator), you supplied the
fully-qualified class name of the "main" activity for the application (e.g.,
com. commonsware.android.SomeDemo). You will then find that your project's
src/ tree already has the namespace directory tree in place, plus a stub
Activity subclass representing your main activity (e.g., src/com/commonsware/
android/SomeDemo.java). You are welcome to modify this file and add others
to the src/ tree as needed to implement your application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you placed
out in the res/ directory tree. You should not modify R.java yourself, letting
the Android tools handle it for you. You will see throughout many of the
samples where we reference things in R.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources” - static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

+ res/drawable/ for images (PNG, JPEG, etc.)
+ res/layout/ for XML-based UI layout specifications
+ res/menu/ for XML-based menu specifications

« res/raw/ for general-purpose files (e.g,. a CSV file of account
information)

+ res/values/ for strings, dimensions, and the like

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Project Structure

res/xml/ for other general-purpose XML files you wish to ship

We will cover all of these, and more, in later chapters of this book.

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

bin/classes/ holds the compiled Java classes

bin/classes.dex holds the executable created from those compiled
Java classes

bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

bin/yourapp-debug.apk or bin/yourapp-unsigned.apk is the actual
Android application (where yourapp is the name of your application)

The . apk file is a ZIP archive containing the .dex file, the compiled edition of
your resources (resources.arsc), any un-compiled resources (such as what
you put in res/raw/) and the AndroidManifest.xml file. It is also digitally
signed, with the -debug portion of the filename indicating it has been signed
using a debug key that works with the emulator, or -unsigned indicating that
you built your application for release (ant release), but the APK still needs
to be signed using jarsigner and an official key.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 3

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what all is inside your application - the activities, the services, and so on.
You also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should appear
on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require
a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater
detail in the chapters on their associated Android features. For example, the
service element will be described in greater detail in the chapter on creating
services. For now, we just need to understand what the role of the manifest
is and its general overall construction.

In The Beginning, There Was the Root, And It
Was Good

The root of all manifest files is, not surprisingly, a manifest element:

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Inside the Manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., it's manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base”
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

Permissions, Instrumentations, and Applica-
tions (Oh, My!)

Underneath the manifest element, you will find:

« uses-permission elements, to indicate what permissions your
application will need in order to function properly - see the chapter
on permissions for more details

« permission elements, to declare permissions that activities or
services might require other applications hold in order to use your
application's data or logic — again, more details are forthcoming in
the chapter on permissions

« instrumentation elements, to indicate code that should be invoked
on key system events, such as starting up activities, for the purposes
of logging or monitoring

+ uses-library elements, to hook in optional Android components,
such as mapping services

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Inside the Manifest

« anapplication element, defining the guts of the application that the
manifest describes

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android">

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

<uses-permission
android:name="android.permission.ACCESS_GPS" />

<uses-permission
android:name="android.permission.ACCESS_ASSISTED_GPS" />

<uses-permission
android:name="android.permission.ACCESS_CELL_ID" />

<application>

</application>
</manifest>

In the preceding example, the manifest has uses-permission elements to
indicate some device capabilities the application will need - in this case,
permissions to allow the application to determine its current location. And,
there is the application element, whose contents will describe the activities,
services, and whatnot that make up the bulk of the application itself.

Your Application Does Something, Right?

The real meat of the manifest file are the children of the application
element.

By default, when you create a new Android project, you get a single activity
element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Inside the Manifest

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an
intent-filter child element describing under what conditions this activity
will be displayed. The stock activity element sets up your activity to appear
in the launcher, so users can choose to run it. As we'll see later in this book,
you can have several activities in one project, if you so choose.

You may also have one or more receiver elements, indicating non-activities
that should be triggered under certain conditions, such as when an SMS
message comes in. These are called intent receivers and are described mid-
way through the book.

You may have one or more provider elements, indicating content providers —
components that supply data to your activities and, with your permission,
other activities in other applications on the device. These wrap up databases
or other data stores into a single API that any application can use. Later,
we'll see how to create content providers and how to use content providers
that you or others create.

Finally, you may have one or more service elements, describing services —
long-running pieces of code that can operate independent of any activity.
The quintessential example is the MP3 player, where you want the music to
keep playing even if the user pops open other activities and the MP3 player's
user interface is "misplaced". Two chapters later in the book cover how to
create and use services.

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART Il - Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 4
Creating a Skeleton Application

Every programming language or environment book starts off with the ever-
popular "Hello, World!" demonstration: just enough of a program to prove
you can build things, not so much that you cannot understand what is going
on. However, the typical "Hello, World!" program has no interactivity (e.g.,
just dumps the words to a console), and so is really boring.

This chapter demonstrates a simple project, but one using Advanced Push-
Button Technology™ and the current time, to show you how a simple
Android activity works.

Begin at the Beginning

To work with anything in Android, you need a project. With ordinary Java, if
you wanted, you could just write a program as a single file, compile it with
javac, and run it with java, without any other support structures. Android is
more complex, but to help keep it manageable, Google has supplied tools to
help create the project. If you are using an Android-enabled IDE, such as
Eclipse with the Android plugin, you can create a project inside of the IDE
(e.g., select File > New > Project, then choose Android > Android
Project).

If you are using tools that are not Android-enabled, you can use the
activitycreator script, found in the tools/ directory in your SDK
installation. Just pass activitycreator the package name of the activity you

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

want to create and a --out switch indicating where the project files should
be generated. For example:

activitycreator --out /path/to/my/project/dir \
com.commonsware.android.Now

You will wind up with a handful of pre-generated files, as described in a
previous chapter.

For the purposes of the samples shown in this book, you can download their
project directories in a ZIP file on the CommonsWare Web site. These
projects are ready for use; you do not need to run activitycreator on those
unpacked samples.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn = new Button(this);
btn.setOnClickListener(this);

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

updateTime();
setContentView(btn);
}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}
}

Or, if you download the source files off the Web site, you can just use the Now
project directly.

Dissecting the Activity

Let's examine this piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import any
classes you reference. Most of the Android-specific classes are in the android
package.

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.Activity base class.
In this case, the activity holds a button (btn). Since, for simplicity, we want

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html
http://commonsware.com/Android/

Creating a Skeleton Application

to trap all button clicks just within the activity itself, we also have the
activity class implement onClickListener.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn = new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

The oncreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setonClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();

}

In Swing, a JButton click raises an Actiontvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes
onClick() to be invoked in the onClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime () method:

private void updateTime() {
btn.setText(new Date().toString());
¥

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant in the base directory of your project. Then, to run the activity:

« Launch the emulator (e.g., run tools/emulator from your Android
SDK installation)

B M@ 3:49pPm

Figure 1. The Android home screen

- Install the package (e.g, run tools/adb install
/path/to/this/example/bin/Now.apk from your Android SDK
installation)

« View the list of installed applications in the emulator and find the
"Now" application

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

B Bl @ 3:49pPm

__m —_—

Alarm Clock Browser Calculator Camera

s & @ &

Contacts Dev Tools Dialer Maps

@ PR D

Messaging Music Now Pictures

Figure 2. The Android application "launcher”

« Open that application

You should see an activity screen akin to:

Ml & 959 pm

Tue Aug 19 21:59:51 GMT+00:00 2008

]
Figure 3. The Now demonstration activity

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

Clicking the button - in other words, pretty much anywhere on the phone's
screen — will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to the
launcher.

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 5
Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the more
common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other - and to containers - encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one view. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project, allowing you to access
layouts and widgets within those layouts directly from your Java code, as will
be demonstrated .

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through Java
code. For example, you could use setTypeface() to have a button render its
text in bold, instead of using a property in an XML layout. Since XML
layouts are yet another file for you to keep track of, we need good reasons for
using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading the
definition in to support edits - that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice middle
ground between something that is easy for tool-writers to use and easy for
programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, and Mozilla's XUL all take a similar
approach to that of Android: put layout details in an XML file and put
programming smarts in source files (e.g., Javascript for XUL). Many less-
well-known GUI frameworks, such as ZK, also use XML for view definition.
While "following the herd" is not necessarily the best policy, it does have the
advantage of helping to ease the transition into Android from any other
XML-centered view description language.

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application, converted
into an XML layout file:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android”
android:id="@+id/button”
android:text=""
android:layout_width="fill parent"
android:layout_height="fill_parent"/>

The class name of the widget - Button - forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.Mywidget).

The root element needs to declare the Android XML namespace:

|xm1ns:android="http://schemas.android.com/apk/res/android" |

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to give
it an identifier via the android:id attribute. We will cover this concept in
greater detail .

The remaining attributes are properties of this Button instance:

+ android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

+ android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent”, in this case the entire
screen - these attributes will be covered in greater detail in a later
chapter

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file and
do not need to be referenced in your Java code. For example, a static label
(Textview) frequently only needs to be in the layout file to indicate where it
should appear. These sorts of elements in the XML file do not need to have
the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question. In the XML layout
example in the preceding section, @+id/button is the identifier for the Button
widget.

Android provides a few special android:id values, of the form
@android:id/... — we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for your
view in an XML layout file named main.xml stored in res/layout, all you need
is one statement in your activity's onCreate() callback to use that layout:

setContentView(R.layout.main); |

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

This is the same setContentview() we used earlier, passing it an instance of a
view subclass (in that case, a Button). The Android-built view, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under Rr.1layout, keyed by the base name of the layout
file — main.xml results in R.1layout.main.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of view, just
like the Button instance we created in the previous chapter.

The

Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux). However,
rather than instantiating the Button in our activity's onCreate() callback, we
can reference the one from the XML layout:

import
import
import
import
import

public

package com.commonsware.android.layouts;

android.app.Activity;
android.os.Bundle;
android.view.View;
android.widget.Button;
java.util.Date;

class NowRedux extends Activity

implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);
btn=(Button)findViewById(R.id.button);

btn.setOnClickListener(this);
updateTime();

29

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}

}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentview(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button instance,
for which we use the findviewById() call. Since we identified our button as
@+id/button, we can reference the button's identifier as R.id.button. Now,
with the Button instance in hand, we can set the callback and set the label as
needed.

The results look the same as with the original Now demo:

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

& 10:33PMm
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

]
Figure 4. The NowRedux sample activity

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 6
Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a Textview. Like in
most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a Textview instance. More
commonly, though, you will create labels in XML layout files by adding a
Textview element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a resource reference in the
XML instead, as will be described later in this book.

Textview has numerous other properties of relevance for labels, such as:

+ android:typeface to set the typeface to use for the label (e.g.,
monospace)

+ android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

+ android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FFeeee for red)

For example, in the Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"

/>

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., activityCreator), gives you:

EHl @ 12:56 PM

Figure 5. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two chapters.
As it turns out, Button is a subclass of Textview, so everything discussed in
the preceding section in terms of formatting the face of the button still

holds.

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Fleeting Images

Android has two widgets to help you embed images in your activities:
Imageview and ImageButton. As the names suggest, they are image-based
analogues to Textview and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources. You can also set the image
content based on a uri from a content provider via setImageURI().

ImageButton, a subclass of Imageview, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Imageview sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent”
android:layout_height="fill_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"
/>

The result, just using the code-generated activity, is simply the image:

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

BHl @ 12:59 M

ImageViewDemo

Figure 6. The ImageViewDemo sample application

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor" of most GUI
toolkits. In Android, they are implemented via the EditText widget, which is
a subclass of the Textview used for labels.

Along with the standard Textview properties (e.g., android:textStyle),
EditText has many others that will be useful for you in constructing fields,
including:

+ android:autoText, to control if the field should provide automatic
spelling assistance

+ android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

+ android:digits, to configure the field to accept only certain digits

+ android:singleline, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Beyond those, you can configure fields to use specialized input methods,
such as android:numeric for numeric-only input, android:password for
shrouded password input, and android:phoneNumber for entering in phone
numbers. If you want to create your own input method scheme (e.g., postal
codes, Social Security numbers), you need to create your own
implementation of the InputMethod interface, then configure the field to use
it via android:inputMethod. You can see an example of this in the appendix
discussing the Tourlt sample application.

For example, from the Field project, here is an XML layout file showing an
EditText:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:singlelLine="false"
/>

Note that android:singlelLine is false, so users will be able to enter in several
lines of text.

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.basic;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);
fld.setText("Licensed under the Apache License, Version 2.0 " +

"(the \"License\"); you may not use this file " +

"except in compliance with the License. You may " +

"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

The result, once built and installed into the emulator, is:

EhHl € 1:00PM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

— |
Figure 7. The FieldDemo sample application

NOTE: Android's emulator only allows one application in the launcher per
unique Java package. Since all the demos in this chapter share the
com. commonsware.android.basic package, you will only see one of these
demos in your emulator's launcher at any one time.

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in Android
as the AutoCompleteTextview widget, discussed in greater detail later in this
book.

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a checkBox widget to meet this need. It has Textview as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

+ isChecked() to determine if the checkbox has been checked

+ setChecked() to force the checkbox into a checked or unchecked
state

+ toggle() to toggle the checkbox as if the user checked it
Also, you can register a listener object (in this case, an instance of

onCheckedChangelListener) to be notified when the state of the checkbox
changes.

For example, from the checkBox project, here is a simple checkbox layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo. java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangeListener(this);

}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");
¥
else {
cb.setText("This checkbox is: unchecked");
¥
}

}

Note that the activity serves as its own listener for checkbox state changes
since it implements the onCheckedChangeListener interface (via
cb.setOnCheckedChangelListener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox to
reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

B & 1:38pPM

CheckBoxDemo

- This checkbox is: unchecked

Figure 8. The CheckBoxDemo sample application, with the checkbox unchecked

A€ 1:33pm

CheckBoxDemo

his checkbox is: checked

Figure 9. The same application, now with the checkbox checked

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like checkBox, RadioButton inherits from CompoundButton, which in turn
inherits from Textview. Hence, all the standard Textview properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a checkBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

« check() to check a specific radio button via its ID (e.g.,
gr‘oup.check(R.id.r'adiol))

« clearcheck() to clear all radio buttons, so none in the group are
checked

+ getCheckedRadioButtonId() to get the ID of the currently-checked

radio button (or -1 if none are checked)

For example, from the RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<RadioButton android:id="@+id/radiol”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Rock" />

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

5 1:39 PM

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 10. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked
at the outset. To pre-set one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from within

your onCreate() callback in your activity.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend view, and as such give
all widgets an array of useful properties and methods beyond those already
described.

Useful Properties

Some of the properties on view most likely to be used include:

« Controls the focus sequence:
* android:nextFocusDown
* android:nextFocusLeft
* android:nextFocusRight
* android:nextFocusUp

+ android:visibility, which controls whether the widget is initially
visible

+ android:background, which typically provides an RGB color value
(e.g., #eoFFeo for green) to serve as the background for the widget

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if
it is enabled via isEnabled(). One common use pattern for this is to disable
some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

« getParent() to find the parent widget or container
« findviewById() to find a child widget with a certain ID

+ getRootview() to get the root of the tree (e.g., what you provided to
the activity via setContentview())

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 7
Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific layouts you like. If you want a form with labels on the left and fields
on the right, you will need a container. If you want OK and Cancel buttons
to be beneath the rest of the form, next to one another, and flush to right
side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with scrollview, a container designed to assist with
implementing scrolling containers. In the next chapter, we will examine
some more esoteric containers.

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model - widgets or child containers
are lined up in a column or row, one after the next. This works similar to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes should
have, such as alignment vis a vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setorientation() on
the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These widgets
have a "natural” size based on their text. Their combined sizes probably do
not exactly match the width of the Android device's screen - particularly
since screens come in various sizes. We then have the issue of what to do
with the remaining space.

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

« You can provide a specific dimension, such as 125px to indicate the
widget should take up exactly 125 pixels

« You can provide wrap_content, which means the widget should fill up
its natural space, unless that is too big, in which case Android can
use word-wrap as needed to make it fit

« You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

Weight

But, what happens if we have two widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and
we want them to take up the remaining space in the column after all other
widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same value for a pair of widgets (e.g., 1), the free space will be split evenly
between them. If you set it to be 1 for one widget and 2 for another widget,
the second widget will use up twice the free space that the first widget does.
And so on.

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Gravity

By default, everything is left- and top-aligned. So, if you create a row of
widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis a vis the screen.

For a column of widgets, common gravity values are left, center_horizontal,
and right for left-aligned, centered, and right-aligned widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

Padding

By default, widgets are tightly packed next to each other. If you want to
increase the whitespace between widgets, you will want to use the
android:padding property (or by calling setPadding() at runtime on the
widget's Java object).

The padding specifies how much space there is between the boundaries of
the widget's "cell" and the actual widget contents. Padding is analogous to
the margins on a word processing document - the page size might be
8.5"x11", but 1" margins would leave the actual text to reside within a 6.5"x9"
area.

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

—_ o -
| |
| r 2 |

I paddingLeft Widget paddingRight I

doj3utpped

woyyogdutpped

idget cell

Figure 11. The relationship between a widget, its cell, and the padding values
The android:padding property allows you to set the same padding on all four
sides of the widget, with the widget's contents itself centered within that
padded-out area. If you want the padding to differ on different sides, use

android:paddinglLeft, android:paddingRight, android:paddingTop, and
android:paddingBottom.

The value of the padding is a dimension, such as 5px for 5 pixels' worth of
padding.

Example

Let's look at an example (Linear) that shows LinearLayout properties set
both in the XML layout file and at runtime.

Here is the layout:

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>
<RadioGroup android:id="@+id/orientation”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton
android:id="@+id/horizontal"
android:text="horizontal"” />
<RadioButton
android:id="@+id/vertical”
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton
android:id="@+id/left"
android:text="left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is
a subclass of LinearLayout, so our example demonstrates nested boxes as if
they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5px of padding on all sides,
separating it from the other RadioGroup. The width and height are both set to
wrap_content, so the radio buttons will only take up the space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of

three RadioButton widgets. Again, we have 5px of padding on all sides and a

"natural” height (android:layout_height = "wrap_content"). However, we
52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

package com.commonsware.android.containers;

import android.app.Activity;

import android.os.Bundle;

import android.view.Gravity;

import android.text.TextWatcher;
import android.widget.LinearlLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
implements RadioGroup.OnCheckedChangeListener {
RadioGroup orientation;
RadioGroup gravity;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangeListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangeListener(this);

}

public void onCheckedChanged(RadioGroup group, int checkedId) {
if (group==orientation) {
if (checkedId==R.id.horizontal) {
orientation.setOrientation(LinearLayout.HORIZONTAL);
¥
else {
orientation.setOrientation(LinearLayout.VERTICAL);

}

else if (group==gravity) {
if (checkedId==R.id.left) {
gravity.setGravity(Gravity.LEFT);

else if (checkedId==R.id.center) {
gravity.setGravity(Gravity.CENTER_HORIZONTAL);

}

else if (checkedId==R.id.right) {
gravity.setGravity(Gravity.RIGHT);

¥

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

In onCreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state
(setonCheckedChangeListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedchanged() (the callback for the listener), we see which RadioGroup
had a state change. If it was the orientation group, we adjust the orientation
based on the user's selection. If it was the gravity group, we adjust the
gravity based on the user's selection.

Here is the result when it is first launched inside the emulator:

B8 12:22 Am

LinearLayoutDemo

. horizontal .vertical

@ -
. center
. right

Figure 12. The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical” radio button, the top RadioGroup adjusts to
match:

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Bl @ 12:22 Am

LinearLayoutDemo

. horizontal
evertical

Q-
. center

. right

Figure 13. The same application, with the vertical radio button selected

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

Bl @ 12:23 Am

LinearLayoutDemo

. horizontal
evertical

@ -t
e center

. right

Figure 14. The same application, with the vertical and center radio buttons
selected

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Bl ® 12:23 AM

LinearLayoutDemo

. horizontal
evertical

Q-
. center

° right

Figure 15. The same application, with the vertical and right radio buttons
selected

All Things Are Relative

RelativelLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those widgets.

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

+ android:layout_alignParentTop says the widget's top should align
with the top of the container

+ android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

« android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

« android:layout_alignParentRight says the widget's right side should
align with the right side of the container

« android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

+ android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

+ android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address, of the form @+id/. ..

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

2.

Working with Containers

Reference other widgets using the same identifier value without the
plus sign (@id/...)

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

android:layout_above indicates that the widget should be placed
above the widget referenced in the property

android:layout_below indicates that the widget should be placed
below the widget referenced in the property

android:layout_toLeftof indicates that the widget should be placed
to the left of the widget referenced in the property

android:layout_toRightof indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the
property

android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

android:layout_alignRight indicates that the widget's right should be
aligned with the right of the widget referenced in the property

android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

The last one is useful for aligning labels and fields so that the text appears
"natural”. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field's box with the top of
the label, which will cause the text of the label to be higher on-screen than
the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRight =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

What makes this even more complicated is the order of evaluation. Android
makes a single pass through your XML layout and computes the size and
position of each widget in sequence. This has a few ramifications:

« You cannot reference a widget that has not been defined in the file
yet

« You must be careful that any wuses of fill_parent in
android:layout_width or android:layout_height do not "eat up" all the
space before subsequent widgets have been defined

Example

With all that in mind, let's examine a typical "form" with a field, a label, plus
a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px">
<TextView android:id="@+id/label”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

android:paddingTop="15px"/>

<EditText
android:id="@+id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignBaseline="@id/label"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_tolLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />

</Relativelayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent"), only as much
height as we need (android:layout_height = "wrap_content"), and have a 5-
pixel pad between the boundaries of the container and its contents
(android:padding = "5px").

Next, we define the label, which is fairly basic, except for its own 15-pixel
padding (android:padding = "15px"). More on that in a moment.

After that, we add in the field. We want the field to be to the right of the
label, have their texts aligned along the baseline, and for the field to take up
the rest of this "row" in the layout. Those are handled by three properties:

* android:layout_toRight = "@id/label™"

* android:layout_alignBaseline = "@id/label”

* android:layout_width = "fill_parent”
If we were to skip the 15-pixel padding on the label, we would find that the
top of the field is clipped off. That's because of the 15-pixel padding on the

container itself. The android:layout_alignBaseline = "@id/label" simply
aligns the baselines of the label and field. The label, by default, has its top

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

aligned with the top of the parent. But the label is shorter than the field
because of the field's box. Since the field is dependent on the label's
position, and the label's position is already defined (because it appeared
first in the XML), the field winds up being too high and has the top of its
box clipped off by the container's padding.

You may find yourself running into these sorts of problems as you try to get
your RelativeLayout to behave the way you want it to.

The solution to this conundrum, used in the XML layout shown above, is to
give the label 15 pixels' worth of padding on the top. This pushes the label
down far enough that the field will not get clipped.

Here are some "solutions” that do not work:

+ You cannot use android:layout_alignParentTop on the field, because
you cannot have two properties that both attempt to set the vertical
position of the field. In this case, android:layout_alignParentTop
conflicts with the later android:layout_alignBaseline = "@id/label"
property, and the last one in wins. So, you either have the top aligned
properly or the baselines aligned properly, but not both.

« You cannot define the field first, then put the label to the left of the
field, because you cannot "forward reference" labeled widgets - you
must define the widget before you can reference it by its ID.

Going back to the example, the OK button is set to be below the field
(android:layout_below = "@id/entry") and have its right side align with the
right side of the field (android:layout_alignRight = "@id/entry"). The
Cancel button is set to be to the left of the OK button
(android:layout_toLeft = "@id/ok") and have its top aligned with the OK
button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

EBHl @ 12:34 AM

RelativeLayoutDemo

-I :‘I‘_:_

Figure 16. The RelativeLayoutDemo sample application

Tabula Rasa
If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout - it allows you to position your widgets in a grid to

your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column e, as columns are
counted starting from o), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the o-
based column the widget belongs to:

<TableRow>
<Button
android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="0K" />
</TableRow>

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain view as a divider (e.g., <view
android:layout_height = "2px" android:background = "#@@@OFF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural" size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, e-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column
- by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be pushed
off the right side of the screen.

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed”, meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which
columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for Relativelayout, with the
addition of a divider line between the label/field and the two buttons
(found in the Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2px"
android:background="4#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</TablelLayout>

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

When compiled against the generated Java code and run on the emulator,
we get:

Gl @ 12:35 AM

TableLayoutDemo

7| :‘Ii_
Cancel m

Figure 17. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

Scrollview is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a Scrollview,
and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a Scrollview used in an XML layout file (from the Scroll
demo):

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TablelLayout
android:layout_width="fill parent"
android:layout_height="fill_parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80px"
android:background="#000000"/>
<TextView android:text="#000000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#440000" />
<TextView android:text="#440000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#884400" />
<TextView android:text="#884400"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffaa88" />
<TextView android:text="#ffaa88"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffffaa" />
<TextView android:text="#ffffaa"
android:paddingleft="4px"

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffffff" />
<TextView android:text="#ffffff"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
</TablelLayout>
</ScrollView>

Without the Scrollview, the table would take up at least 560 pixels (7 rows at
8o pixels each, based on the view declarations). There may be some devices
with screens capable of showing that much information, but many will be
smaller. The Scrollview lets us keep the table as-is, but only present part of
itata time.

On the stock Android emulator, when the activity is first viewed, you see:

Ghifl @B 12:36 AM

ScrollViewDemo

Figure 18. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

the remaining rows. Also note how the right side of the content gets clipped
by the scrollbar - be sure to put some padding on that side or otherwise
ensure your own content does not get clipped in that fashion.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 8

Using Selection Widgets

Back in the chapter on basic widgets, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right”
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic Ul toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what choices
are available in these widgets. Specifically, Android offers a framework of
data adapters that provide a common interface to selection lists ranging
from static arrays to database contents. Selection views - widgets for
presenting lists of choices - are handed an adapter to supply the actual
choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a listbox.

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

This use of Java interfaces is fairly common (e.g., Java/Swing's model
adapters for JTable), and Java is far from the only environment offering this
sort of abstraction (e.g., Flex's XML data-binding framework accepts XML
inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a jList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into 3checkBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
"really"”, "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items);

The ArrayAdapter constructor takes three parameters:

+ The context to use (typically this will be your activity instance)

+ The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

« Theactual array or list of items to show

By default, the ArrayAdapter will invoke tostring() on the objects in the list
and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

into Textview objects. Those Textview widgets, in turn, will be shown the list
or spinner or whatever widget uses this ArrayAdapter.

You can subclass ArrayAdapter and override getview() to "roll your own"
views:

public View getView(int position, View convertView,
ViewGroup parent) {
if (convertView==null) {
convertView=new TextView(this);

}

convertView.setText (buildStringFor(position));

return(convertView);

Here, getview() receives three parameters:

« The index of the item in the array to show in the view

+ An existing view to update with the data for this position (if one
already existed, such as from scrolling - if null, you need to
instantiate your own)

« The widget that will contain this view, if needed for instantiating the
view

In the example shown above, the adapter still returns a Textview, but uses a
different behavior for determining the string that goes in the view. A later
chapter will cover fancier Listviews.

Other Key Adapters

Here are some other adapters in Android that you will likely use, some of
which will be covered in greater detail later in this book:

« CursorAdapter converts a Cursor, typically from a content provider,
into something that can be displayed in a selection view

+ SimpleAdapter converts data found in XML resources

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

« ActivityAdapter and ActivityIconAdapter provide you with the
names or icons of activities that can be invoked upon a particular
intent

Lists of Naughty and Nice

The classic listbox widget in Android is known as Listview. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setonItemSelectedListener() to find out when
the selection has changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not even
need to supply a layout - ListActivity will construct a full-screen list for
you. If you do want to customize the layout, you can, so long as you identify
your ListView as @android:id/list, so ListActivity knows which widget is
the main list for the activity.

For example, here is a layout pulled from the List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical®
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
/>
</LinearLayout>

It is just a list with a label on top to show the current selection.

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

/** Called with the activity is first created. */
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);
}
¥

With ListActivity, you can set the list adapter via setListAdapter() - in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in this

case, updating the label with the text for that position).

The results?

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

EBHl @ 11:26 Pm

ListViewDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 19. The ListViewDemo sample application

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the
center button on the D-pad pops up a selection dialog for the user to choose
an item from. You basically get the ability to select from a list without taking
up all the screen space of a Listview, at the cost of an extra click or screen
tap to make a change.

As with Listview, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the spinner widget. Use
the setDropDownViewResource() method to supply the resource ID of the view
to use.

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

For example, culled from the Spinner sample project, here is an XML layout
for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a Listview. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedListener {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_itenm,

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity
implements the onItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownviewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in view for showing
items in the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

Bl ® 11:36 M

SpinnerDemo

Figure 20. The SpinnerDemo sample application, as initially launched

@ 11:36 PM

consectetyer

Figure 21. The same application, with the spinner drop-down list displayed

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, Gridview gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

+ android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

* android:verticalSpacing and its counterpart
android:horizontalSpacing indicate how much whitespace there
should be between items in the grid.

+ android:columnWidth indicates how many pixels wide each column
should be.

+ android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing - this should be columnwidth to have
the columns take up available space or spacingwidth to have the
whitespace between columns absorb extra space. For example,
suppose the screen is 320 pixels wide, and we have
android:columnWidth set to 100px and android:horizontalSpacing set
to spx. Three columns would use 310 pixels (three columns of 100
pixels and two whitespaces of 5 pixels). With android:stretchMode set
to columnwidth, the three columns will each expand by 3-4 pixels to
use up the remaining 10 pixels. With android:stretchMode set to
spacingWidth, the two whitespaces will each grow by 5 pixels to
consume the remaining 10 pixels.

Otherwise, the Gridview works much like any other selection widget - use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

For example, here is a XML layout from the Grid sample project, showing a
Gridview configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:verticalSpacing="35px"
android:horizontalSpacing="5px"
android:numColumns="auto_fit"
android:columnWidth="100px"
android:stretchMode="columnWidth"
android:gravity="center"
/>
</LinearLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns 1is computed by Android

(android:numColumns = “auto_fit") based on j5-pixel horizontal spacing
(android:horizontalSpacing = "5px"), 100-pixel columns
(android:columnWidth = "1@epx"), with the columns absorbing any "slop"

width left over (android:stretchMode = "columnWidth").

The Java code to configure the Gridview is:

public class GridDemo extends Activity

implements AdapterView.OnItemSelectedListener {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
public void onCreate(Bundle icicle) {

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Gridview g=(GridView) findViewById(R.id.grid);
g.setAdapter(new FunnyLookingAdapter(this,
android.R.layout.simple_list item_1,
items));
g.setOnItemSelectedListener(this);
}

public void onItemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

private class FunnyLookingAdapter extends ArrayAdapter {
Context ctxt;

FunnyLookingAdapter (Context ctxt, int resource,
String[] items) {
super(ctxt, resource, items);

this.ctxt=ctxt;
}

public View getView(int position, View convertView,
ViewGroup parent) {
TextView label=(TextView)convertView;

if (convertView==null) {
convertView=new TextView(ctxt);
label=(TextView)convertView;

¥
label.setText(items[position]);

return(convertView);

Subscribe to updates at http://commonsware.com

For the grid cells, rather than using auto-generated Textview widgets as in
the previous sections, we create our own views, by subclassing ArrayAdapter
and overriding getview(). In this case, we wrap the funny-looking strings in
our own Textview widgets, just to be different. If getview() receives a

82

Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

TextView, we just reset its text; otherwise, we create a new TextView instance
and populate it.

With the 35-pixel vertical spacing from the XML layout
(android:verticalSpacing = "35"), the grid overflows the boundaries of the
emulator's screen:

Gl & 11:43PM

GridDemo

lorem

elit

ligula

all

Figure 22. The GridDemo sample application, as initially launched

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

BHl @ 11:44PMm

GridDemo.

elit morbi
ligula
aliquet

etiam

placerat porttitor
peller e augue

purus

Figure 23. The same application, scrolled to the bottom of the grid

Fields: Now With 35% Less Typing!

The AutocompleteTextview is sort of a hybrid between the EditText (field) and
the spinner. With auto-completion, as the user types, the text is treated as a
prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that, like with Spinner,
folds down from the field. The user can either type out an entry (e.g.,

something not in the list) or choose an entry from the list to be the value of
the field.

AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextview has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextview an adapter containing the list of
candidate values via setAdapter(). However, since the user could type

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

something not in the list, AutoCompleteTextview does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
EditText, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Autocomplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent”
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

public class AutoCompleteDemo extends Activity

implements TextWatcher {

TextView selection;

AutoCompleteTextView edit;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

}
public void

selection

}
public void

// needed
}

public void
// needed

}

}

.setText(edit.getText());

android.R.layout.simple_list_item_1,
items));

onTextChanged(CharSequence s, int start, int before,
int count) {

beforeTextChanged(CharSequence s, int start,
int count, int after) {
for interface, but not used

afterTextChanged(Editable s) {
for interface, but not used

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged() and beforeTextChanged(). In this case, we are only
interested in the former, and we update the selection label to match the
AutoCompleteTextView's current contents.

Here we have the results:

B & 11:47PM

AutoCompleteDemo

Figure 24. The AutoCompleteDemo sample application, as initially launched

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

BHl @ 11:47 PM

AutoCompleteDemo
lor

lor

Figure 25. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

& 11:47 P

AutoCompleteDemo

Figure 26. The same application, after the auto-complete value was selected

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across the
horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the Listview, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the Spinner, the Gallery always shows more than one choice at
atime.

The quintessential example use for the Gallery is image preview - given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or Gridview. In your XML
layout, you have a few properties at your disposal:

+ android:spacing controls the number of pixels between entries in the
list

+ android:spinnerselector controls what is used to indicate a selection
- this can either be a reference to a Drawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

+ android:drawSelectoronTop indicates if the selection bar (or brawable)
should be drawn before (false) or after (true) drawing the selected
child - if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise users
will not be able to read the selection

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 9

Getting Fancy With Lists

The humble Listview is one of the most important widgets in all of Android,
simply because it is used so frequently. Whether choosing a contact to call
or an email message to forward or an ebook to read, Listview widgets are
employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

The material in this chapter is based on the author's posts to the Building
'Droids column on AndroidGuys.com.

Getting To First Base
The classic Android Listview is a plain list of text — solid but uninspiring.
This is because all we have handed to the Listview is a bunch of words in an

array, and told Android to use a simple built-in layout for pouring those
words into a list.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://androidguys.com/
http://androidguys.com/category/building-droids/
http://androidguys.com/category/building-droids/

Getting Fancy With Lists

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of view objects for each row.

For example, suppose you want a Listview whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in the static sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"
>
<ImageView
android:id="@+id/icon"
android:layout_width="22px"
android:paddinglLeft="2px"
android:paddingRight="2px"
android:paddingTop="2px"
android:layout_height="wrap_content
android:src="@drawable/ok"
/>
<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:textSize="44sp"
/>
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your Listview. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

"purus"};

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText (items[position]);

}

}

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.1layout.row) and that the Textview where the word
should go is known as R.id.1label within that custom layout. Remember: to
reference a layout (row.xml), use R.1layout as a prefix on the base name of the
layout XML file (R.layout.row).

The result is a Listview with icons down the left side. In particular, all the
icons are the same:

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

Ml & 5:10pPM

StaticDemo

vlorem
“ipsum
vdolor

~sit
vamet
vconsectetuer
~adipiscing

Figure 27. The StaticDemo application

A Dynamic Presentation

This technique - supplying an alternate layout to use for rows — handles
simple cases very nicely. However, it falls down when you have more
complicated scenarios for your rows, such as:

+ Not every row uses the same layout (e.g., some have one line of text,
others have two)

+ You need to configure the widgets in the rows (e.g., different icons
for different cases)

In those cases, the better option is to create your own subclass of your
desired Adapter, override getview(), and construct your rows yourself. The
getview() method is responsible for returning a view, representing the row
for the supplied position in the adapter data.

For example, let’s rework the above code to use getview(), so we can have
different icons for different rows - in this case, one icon for short words and
one for long words (from the bynamic sample project):

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

public class DynamicDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@Override
public void onCreate(Bundle icicle) {

}

super.onCreate(icicle);
setContentView(R.layout.main);

setListAdapter(new IconicAdapter(this));
selection=(TextView)findViewById(R.id.selection);

public void onListItemClick(ListView parent, View v,

}

int position, long id) {

selection.setText (items[position]);

class IconicAdapter extends ArrayAdapter {

Activity context;

IconicAdapter(Activity context) {
super(context, R.layout.row, items);

this.context=context;

}

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=context.getLayoutInflater();
View row=inflater.inflate(R.layout.row, null);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);

if (items[position].length()>4) {
ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageResource(R.drawable.delete);

}

return(row);

The theory is that we override getview() and return rows based on which
object is being displayed, where the object is indicated by a position index
into the Adapter. However, if you look at the implementation shown above,

Subscribe to updates at http://commonsware.com

93

Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

you will see a reference to a LayoutInflater class...and that concept takes a
little bit of an explanation.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of view objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of the
specified view class, walk the attributes, convert those into property setter
calls, iterate over all child elements, lather, rinse, repeat.

The good news is that the fine folk on the Android team wrapped all that up
into a class called Layoutinflater that we can use ourselves. When it comes
to fancy lists, for example, we will want to inflate views for each row shown
in the list, so we can use the convenient shorthand of the XML layout to
describe what the rows are supposed to look like.

In the sample shown above, we inflate our R.1layout.row layout we created in
the previous section. This gives us a view object back which, in reality, is our
LinearLay