The Busy Coder's Guide to Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Sep 2008: Version 1.2 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!........ccoovveeeeiiiiiiiiiiiiiiniiinnerccciininninsseeececeesnnnssnees xiii
g <] N XV
Welcome to the BOOK!.......ccoruiiiiiiiiiirieiiricee ettt XV
Prer@qUISILES. ... coueiuietiiiieeieree ettt sttt ettt et s e st e e e XV
WaATESCTIPLION. ...ttt sttt ettt sa e sa bt eeanees XVi
BOOK BUZ BOUNLY ..ottt sttt ettt ettt st xvii
SOUICE COAE LICEISE.eueriveuiniiteiiicitcrtee ettt ettt ettt sttt ettt xviii
Creative Commons and the Four-to-Free (42F) Guarantee..............cccccooevevverivrerrerennnnen. xviii
ACKNOWIEAGEMENTS......coviieiiiiieiiieieieere ettt ettt ettt xviii
The Big PICHUTE.....cciiiiieiiiiiitiiiiettcieete ettt saet e s st e e s s ass e s ss s sasaesssssnnaeses 1
What Androids Are Made Of............ccoouiieirieiireeese ettt e e e s sse e ene 3
ACHIVIEIES. ..ttt ettt a ettt et s b s bt sb et et e st e e et e e 3

CONLENE PrOVIAETS.....c.viiieiiiieiieeeieetesteete ettt ettt ettt esbesbesseesbaeenseesnsaesnnes 4

IEOIIES. ..ttt st sttt ettt e e e e e s nraeas 4

SEIVICES. e . vevreteeteesteeiteesteeteete et e s st e se e beesseesseassessseassesseasssessaassaanseessanssesssenssesseanssesseanseens 4

StUff At YOUT DISPOSAL....ucuiiiiiiiieiiiiieiesie ettt sttt be e 5
SEOTAEE. ..ttt ettt ettt ettt sttt et et bbbttt a e e 5
INEEWOTK.. vttt ettt ettt te et be st et esaesessessesesesassessesessansesessessesensensenns 5
IMUTEIMEAIA. ..ottt ettt te e se st e e ese s enesse s enesseneenes 5

P Sttt ettt ettt et naa e e b e e 5

PhOne SEIVICES......ooovviiiiciiiicicec ettt e et 6

Project StIUCEUTE......ccciviiiiiiiiiiiiiiiiiiinienniee e e s s s s e aab e s e s asaesennnes 7
ROOE COMLENLS....c.ueiciiiiiiiiecieete e eteete st e st esteeste e teeaeestessaessaessaessaesseessaesseessesssesssesseesseenssseens 7

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The SWeat Off YOUT BIOW.......ooouiiiiciiieiieieceecetecte ettt ettt et aseseesnaesreesaeesaesssneeessnnes 8

And Now, The Rest of the StOry........ccoveviririeiininieirrec et 8
What YOU Gt OUL Of Ttu.c..ieeuiriiieiiieieieieeieeee ettt ettt sttt 9
Inside the Manifest..........coovuiinniiiiiiiiiiiinniiiniiiieieie e sssseessssessnns 1
In The Beginning, There Was the Root, And It Was Good.........ccccccceueueuecueiecrcnneennenenn 1
Permissions, Instrumentations, and Applications (Oh, My!)......ccccoceeuieiieneeinneenns 12
Your Application Does Something, Right?.........cccccouveiinniiiinneinccnneececreeeeens 13
Creating a Skeleton Application..........coovvueeiiiiiniiiiiiiiiiiiniieere s 17
Begin at the Be@inming.........ccccovueueiririeiniriiectee ettt 17

TRE ACHIVILY ettt ettt ettt sttt ettt ettt et 18
Dissecting the ACHIVITY......cccoueuerirriereiniieierteccntnee ettt ettt enene 19
Building and RUNning the ACtiVItY.........cocecererirerieirienrene ettt 21
Using XML-Based Layouts.......cccueiiiuiiiniiiiniiinnniiiiiiciiecniecenccessnesssssssssssssssesessssenns 25
What Is an XML-Based LayOut?.........ccceeueeririerereninieriinieieienesieseeseeresesessesesesesseseessessensenees 25
Why Use XML-Based LayOuts?..........cceveeririeuirieieenieirienieesieteee sttt sttt e s snnesaee e 26

OK, So What Does It LOOK LIK@?...........coouiieriiiieieeeeeeee ettt 27
What's With the @ SIgNST.....coueveiririeiiiririeiireieeeee ettt 28
And We Attach These to the Java...HOW?.........cooovveiiiiiieececeeeeeteeteee et 28
The ReSt Of the SEOTY.....coueiiiiiie ettt 29
Employing Basic Widgets.........ccovvuriiiiimiiiiiiiiiiiiiiiieciineeccnnnec e cssnnneees 33
ASSIGNING LADEIS.......viiiieiiiieiccie ettt bbb 33
Button, Button, Who's GOt the BUttON?..........ccuiiiiiieeieceeeeeeeeeee ettt e e 34
Fleeting IMQAZES.....c.ccvuruereriririeiirieicinieicie ettt ettt ettt sne s 35
Fields of Green. Or Other COLOTS.........couvueueiririeriirieieiirieie ettt ettt 36

Just Another BoX t0 CheCkK......co.cuiviririeuiiinieieiiriectreee ettt 39
Turn the RAdio Up...c.cccoiieiiniieiricciccre ettt ettt st st 42

Tt'S QUILE @ VIBW...ovieeieiieietieieeieeeteeet ettt ettt te et et e st e et e sbeeseeseesaessessessessessseseesseessaean 44
USELUL PIOPETITIES.cueieieiiniieieiiirieetstete ettt ettt ettt b s ebeeseen 44

USefUl MEtROMS. .c.cveuiuiiieiiiieieiirie ettt s 44
Working with CONtainers.........cccoivveiiiiiiiuiiiiiinitiiniieeneee e sssaeresssss s s sanes 47
Thinking LINEAarly........cccovieueoiniiieiiiniiiirniccirec ettt ettt esae e sne 48
Concepts and PrOPErties.........ccuvueviririeiriirieinieieierteteiesteieste ettt sa e sae s 48
EXQIMIPLE. ..ttt ettt 51

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Concepts and Properties.........c.coveueerruerirrieierinnierertnieietreseesees et seenees 56
EXQIMIPLE....einiiiiiietee ettt ettt ettt eae st 59
TabULA RASA.....ciiueiiiiciciiicc ettt 62
Concepts and PrOPErties...........cccoeeeeeririririrereririeeeeeesieeteteeesete et ee 62
EXQIMPLE..c.tiiiiiiciic ettt ettt 65
SCIOIIWOTK ...ttt ettt ettt e 66
Using Selection Widgets...........cevvvvueiiiiiiiiiiiiiniiiiniieccnnnecneneccsesenes 71
Adapting to the CIrCUMSLANCES........c.c.ooveuiiiriririiriirieie s e e sesaene e 71
USING AITAYAAAPEETveuiririereiieieeeteeeieene ettt sttt s bttt be e naese e 72
Other KeY AdQpPLers........cceueieuirieietinieiieienieiesie ettt ste et sae ettt ebe e eebeneesreeaeend 73
Lists of Naughty and NICE........cceeueiririeiiirieiecieieersiees ettt ettt 74
SPIN CONETIOL....iiiiieeeeee ettt 76
Grid Your Lions (Or Something Like That...)....cccovruririririririeeieeieieieieeeieieieeieeee e 80
Fields: Now With 35% Less TYPINgG......ccccvrieirmeieinneetrnecineecieteee ettt 84
Galleries, Give OF TaKe The ATt.......ccuoiiiiiiiiieieceeieceeee ettt 88
Getting Fancy With LiStS......cccuiiiiiiiiiiniiiiiiiiinicieccnc e sansseee e 89
Getting To First Base.......ccccvioiiirieiiiicinceecee ettt 89
A Dynamic Presentation.......c.cocieierieiiieieicieses ettt ettt e 92
A Sidebar About INflatioN.........c.ccueieririeieiiieicieieeiee ettt sb et eae e 94
And Now, Back TO OUT SEOTY.....c.eririeuiiririeiiirieieieniietettntei ettt ettt 94
Better. StrONEET. FaSter......cccoviirieiiiirieincete ettt s 95
USING CONVETEVIEW......cceiuiiiiiiiiiiiictiteicttct ettt sn s s 96
Using the Holder Pattern.......c..ccoevieireniriinieiniiieenieteteteesiet ettt 98
IMAKING @ LESE. vttt ettt ettt ettt sttt b ettt sttt b et et tens 101
<. ANd Checking Tt TWICE.....cc.eveuiririeiiiririceirte ettt et s 107
Employing Fancy Widgets and Containers......c..oocceeervinureeniinuecenninneecnnnneeeesnnnnnneeeeees 115
Pick and CROOSE......c.couiriiiiriiieiiieetee ettt et e 115
Time Keeps FIowing LiKe @ RIVET........c.cccvtrueuiriririeenirieieeieieetrie ettt 120
MaAKING PrOZIeSs......cevirveviuirieieiiririeieentnieie sttt sttt sttt s et 121
Putting It On MY Tab...c..c.cciriincciectcc ettt 122
THE PIECES..c.cuiteteietee ettt sttt sttt st sttt s st e b 123

The TdIOSYINICTASIES.cuvveviiieieiiieiet ettt ettt ettt bbb 123

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WITING Tt TOGELNET......iiiiiiiiicietiee ettt ettt 125

Other Containers Of NOLE........c.ccvurueiririeieiriietrtrete ettt ettt sttt sae 128
APDLYING MENUS....ccuuuiiiiiiiiiiiiiiieiiiiiiitcnninee et essssnee e ssssssressssssseessssssssesssssssesssses 129
FIAVOTS Of MIEIIUL ...ttt ettt ettt s et e e te b essebe s esssbessesesseseeseseas 129
MeEnUS Of OPLIONS......coviviiiieieieieieteieiee ettt ettt 130
IMENIUS T COMEEXE. ettt sttt ettt ettt st sbe bt et et et et e sbe s bt sbeebeent et etenbeseeeneeaas 132
TaKiNg @ PEEK......cueoiiiiiiiccc ettt 133
Embedding the WebKit BIOWSET.........cccccueiiiiiuiiiiiiiniiiiinieecinineccnneee e 111
A Browser, Wit SMall.........ccecieiiieinieiieieirieieeietsietee et et s e e e sse e 141
LOAdING Tt UP..tuiiiiiiriiieiiriciccetctrere ettt ettt bttt sttt 143
Navigating the WaterS..........c.cevriiuiinnieirnieiccnineetrtneect ettt se e 145
Entertaining the CHENL........cccoeriririeiriiieieeetcte ettt ettt eebe e 146
Settings, Preferences, and Options (Oh, My!).....c.cccceviererrnieeerninenicrernenecenneneecnenenene 148
Showing Pop-Up MeSSages.......ccovuetiriinuiiiiiinutiiniinneeeiiinnteesiiseeeessmsseeeeeessseseseseeessees 151
RAISING TOASES......eoveiiiiiieiiieiiree ettt 151
ALCTEN ALETTL ..ttt ettt sttt st sb et b b e e s nae 152
Checking TREM OUL.....c.coeueuiiririeiririeiecteeeere ettt ettt sttt st eae 153
Dealing with Threads..........ccccvvevueiiiiiiuiiiiiiineiiiiieiinieee e eeeeeeeeeeeees 157
Getting Through the Handlers..........cccovueinieenniciincnccenecceeic e 157
IMLESSAES. ... ceveetieiteitenteteet ettt ettt ettt ettt ettt ettt et ae et b et e e e nnaeean 158
RUNNADIES. ...ttt ettt ettt 161
RUNNING IN PLACE. ...ttt ettt ettt et 161
Where, Oh Where Has My Ul Thread GOne?...........cccocevueereieenieenienieeneneeenieesieneee e 162
ANA NOW, THE CAVEALS......uviiieviieeiiectiieeeeeeetee ettt eeee e et e et e eeaeseeaseesnteeeessssnaeseeeeessanns 162
Handling Activity Lifecycle EVents.........cccocovveiiiiiieiiiiiiieteniiiiieecinieneeeseeesseeeseesseenees 165
SChroedinger's ACHIVILY......cocvueveueririereicrerieie ettt ettt ettt bbbt be e sbe e 165
Life, Death, and YOUT ACEIVILY....cccecerteireriririeieieceteieestet ettt 166
onCreate() and ONDESLTOY().....covevererrrrereiririeiirieieeeriereeeesereesee et sebesesesseseessenees 166
onStart(), onRestart(), and ONSLOP().......eveveuereerereeieieeeeeieieieeeeieeeeeeeeeee e seeseea 167
onPause() and ONRESUME()........ccvevivieiiiiiieieieeieeeeeeeeee ettt sve s 167

The Grace Of STALE......c.ccvviueiririciciriect ettt ettt ene e ead 168
USING Preferences........uiiiiiiiiiiiiiiiiiiiiniciiicniccnneccsnecssneesssnecssssesssssesssssesssssns 173
Getting What YOU Want.........cccoeiiiiiiieiieieieieeeieeeieieeieieee e seene 173

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Stating YOUT PreferenCe........cocvuvueiririeuiininieiiirieiecttet ettt ettt 174

And Now, a Word From Our FrameWoOrK...........ccueoiiiiiiiiiiiieeie et 175
Letting Users Have Their Say........cocouieirniiinnicnicciricrneeerereceeeeeeseseeseesne s 176
Adding @ Wee Bit O SEIUCLUTE.c.coueviruirieiiriiieieteeeteteiestet ettt se e st 181
The Kind Of Pop-Ups You LiKe........cccccoiiiiiiiiiiiininiienrrseeeesr e 184
AcCeSSING FIleS.....uuuiiiiiiieiiiiiiiiiiiiiiticiniec ettt ssee st aae s s s nas 189
You And The Horse You Rode IN On.....c.coeieuiriiiniinieinieieieenee et 189
Readin' "M WITTEINcviiieieireee ettt ettt e 193
Working with ReSOUICES........ccciiiiueiiiiiiiiiiiiietiiicetcenete st aere s s 197
The ReSOUICE LINEUP......c.iririeueiririeieiieicitrieeertetcete ettt ettt bttt s 197
SEING TREOTY. ...ttt ettt ettt st 198
PIaiN SEEINES..cveuvevertenieieieeri ettt ettt ettt b et e b et s e b 198
SEFNG FOIMAALS....ceviiiiiiieieceee e st 199
SEYIEA TEXL..e ettt ettt 199
SEYlEd FOTMALS.....covivieiietiieiieieteteie ettt ettt 200

GOt the PICEUTE?.....oeieiieiieieiecieetee ettt ettt ettt et et e b et et e s besaeeseeseessensessensassesssesens 204
XML: The ReESOUICE WAY......ctrireeiiirieieieirieieerteieiestsie ettt ettt st bttt be bt eseenee e seens 207
MiSCEllaneOoUs VAlUES........c.oiueuiriiieeiieieieieee ettt sttt e s s en 209
DIMENSIONS......iiiiiiiiiieiieiiieiteteee ettt re e 210
COLOTS. ..ttt ettt ettt s s s 210
ATTAYS ottt ettt ettt ettt a e sttt a e b et s n e nane 211
Different Strokes for Different FOIKS.........ccccvrueuirnrerinnieeiniiccrec e 212
Managing and Accessing Local Databases...........ccccoevuuieiiiinueeiininueecnninnneecninnnnnnnnennnnn 217
A QUuick SQLILE PIiMeT.....ccveriiriieiieiiiieieieteieiestese sttt et e st tesae e eseeseessessessensessennsas 218
Start at the BEGINMING..........coeueeririiieiiriee ettt sttt 219
Setting the Table........cooeiirireirice ettt 220
MaAKIN' DAta....c.coiriereinieieiiirieietreccte ettt ettt sttt st s bbbt 221
What Goes Around, COmes ATOUNd............ooouiiiiiiiiiiiiiieciee et eeeee ettt e e e e eeeaeaneeas 222
RAW QUETIES. ...ttt st ettt ettt et e st e s 222
RegUIAr QUETIES......ccvveuiiiricieiieicc ettt ettt 223
Building with BUilders..........cocoeoniiieinnieiiincinccc e 224
USING CUTSOTS. .. .eueeuiiiiiitenienieeteeitet ettt este st sttt ettt e saesaesbe e bt et et enesseaensneenne 225
Making Your OWI CUTISOTS........c.urvveeeererirerieeresieeeeeeeseeesesesesesesesesesesesesesesesesessenesseneens 226

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Data, Data, EVEIYWRETE........cooiiiriieieiiicc ettt s 226

Leveraging Java Libraries......ccccoooveeiiiineiiiininneiiniineeeiinineccinieccensseeessssseeeessssneees 229
The OULEr LIMIES.....etiuiieirieieeriesieieste ettt ettt ettt et ettt sae st e st ebe st b stesesnee e 229
ANES QN JATS ettt a ettt s h et e 230
FOLIOWING the SCIIPL....covrveveiririeiiirieieetreie ettt sttt st 231

Communicating via the INternet.......cccoovveiiriiiueeiiiiiieeeiniinieciniieeeenneeeeeeeeeeeeeeeeeeees 237
REST and RelaXation.......c.ccueueeuerieuerieirienieiirieieeesee ettt ettt ettt ettt eb e sttt saeeas 237

HTTP Operations via Apache HttpComponents...........cceeeveervenieerienirereneeneennens 238
Parsing RESPONSES.......cc.coiiiiieiiiieieecerete e s 240
SEULT TO CONSIAET......eeeueeeieieiieteeteeteeeee ettt ettt ettt e re s eaeeteebeennas 242

Creating Intent Filters.......oouiiiiiiniiiiniiiiiiininiiiiniiicinniecneeccsnneeeeeeeeeeeeeeeeeee 247

WHhat's YOUT INEENE?.....ccveoiiiiiiiieiieieieieiesieste ettt ettt e e sae st e bessesaeeseessessensensansessnseenns 248
PIECES Of TNLENLS.cuicveeiieeieeirieieesieiete ettt ettt b e sse s sesbeseeseseessesssesseensennns 248
Intent ROULING......ccooiiiiiiiii e 249

Stating Your INEENE(I0MS)...c.eveveveverei et seenes 250

INATTOW RECEIVETS.......eviiiiiiiiiiiiteiere ettt et sttt 252

The Pause CAVEAL.....c.cevuiueuiirieieiiririeiecrtetet ettt ettt ettt et sttt b ettt b e b b 253

Launching Activities and Sub-AcCtivities.........ccccevvueeiiriineeiiniineeiiniinnneeeniineeeeeeeeeeeens 255
Peers and SUDS......coouiiiiiiiiee ettt et e 256
SEATE "EIM UP.utititiitiieeete ettt ettt sttt b et b et e 256

MAKE AN TNEENIE....veuieteieeiiteieeiieieeieeete et te e teste e tesesessesessessesessassesesseseesanseseenen 257
MaKe the Call......ccoieieieiiieeeeeee ettt ettt e neesee e 257

Finding Available Actions via INtroSpection.............ceevvrueeririnnreeininneecennnnneeeeeeeeenne 263
PICK "EILe.ciiiiieieiecteeete ettt ettt et et e b et e et e b e sseesaeseeneensaesnseesnseenssennns 264
Would You Like to See the MenuU?.........cccceivirirenininieieiininieiinrieieentsereeseeiee s s 268
ASKING ATOUNA.....c.eviiiiiciiiietc ettt ettt ettt 270

Using a Content Provider.........oouuuiiiiiiuiiiininniiiiniieciineeecnieeesnneeeessnseeesssssssses 273
PIECES OF M.ttt ettt ettt sttt ekt b et e et e et et entan 273
Getting @ Handle.........c.cociiiiiiiiccccccecerceeeeee et 274
MaKin' QUETIES.......ocveeeieeieiectieteete ettt ettt e ste st e e e teeteeae e s e aesaessesbesbeeseessessessessensasesseaseesnns 275
Adapting to the CirCUMSIANICES......cccoveveutririereinirieieirteteiteneeieee ettt 277
Doing It By Hand.....c.ccooueiieiiiiriceeetcecetet ettt sttt 278

POSTEION. ...ttt ettt st be et e bt e e et e e s e 279
viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Properties...........ccoviiiiiiiiiiininiii 279

GIVE AN TAKE.....cvineeiieieieieteee ettt ettt ettt te e s st et e se e ene et e ennenneenns 279
Beware of the BLOB......co.ociiiiiiiictnct ettt ettt sttt 281
Building a Content Provider.........ccoouueiiiiuiiiiniiieiiiiniiiinnnecnnneecnsneecssssneeeeeens 283
First, SOmMe DiSSECLION.ccutiiuiiriiiiieieeteeieete ettt st st sbeesbe e b e 283
NeXt, SOME TYPING...c.eeverrerrrinreirienieerieeeeret ettt se e st sae et sae e eae s saeen 284
Step #1: Create @ Provider Class.......c.cooueiveieirieinieieerie ettt 285

Lo @ =Y\ =Y (OO 285

QUETY () entnerereererteee sttt ettt ettt ettt et et e s e s et et e s e s eseseseseseseseseseseneaeaensseasasaensasassenen 286
1o)UY 288

UPAALE(). v evvevevenirieieneieteteesteteses st te et se et e se e et s besenesesesesessesenersesesanesesesenssesenensesens 289

e L= L3 =Y SRS 290
LT g5 1Y T 201

Step #2: SUPPLY @ UL .eveuiirieiiiiicicirieic ettt ettt et s 292
Step #3: Declare the Properties.........coeiveieerieirienieenerene et s 202
Step #4: Update the Manifest.........oceeeriririeuenirieieinirieeirieeeeete ettt 293
Notify-On-Change SUPPOTIt..........cccciiiiririririrriririre st e enens 204
Requesting and Requiring Permissions..........ccccevivueeiininnecinninnneiininnecennnnneeeeseeennes 297
MOLRET, MAY 17, ettt ettt ettt sa e et sae e b 208
Halt! WHo GO0ES TRETEY.......ccuievieiieiieieieieiesieeteeteee ettt st sttt et et essessaesssaesssaennnas 299
Enforcing Permissions via the Manifest...........cccovueeririereinrieenninieennieeeieseeiens 300
Enforcing Permissions EISeWhere............cccovueevininieiinnicinnccccreeesesceeea 301

May I See YOUr DOCUMENLES?.....c.oiuiriiriieiiiieieteiesiere ettt 302
Creating @ SEIVICE.....uuuiiiiiiiiiiiiitiiirrreerrrrre s s s s e s ssssssssnnes 303
SEIVICE WILH ClaSS.....cuiieiiiiirieieiriieietete ettt ettt sttt ettt 304
WHEN TPC ALEACKS ... ettt sae s enesseenne e 306
WIite the ATDL......ouooiiieiiieietee ettt ettt ettt st nae et 306
Implement the INEEIfACe.cceveuiiririeieririeeeree ettt 308
MaAnIfESt DESEINY......c.eoireeriiririeieirteieietee ettt ettt sttt b ettt et ese e neens 309
Lobbing One OVer the FENCe..........cccoveirririeininieicininieitereieentsiereesteieest s eens 309
Where's the Remote? And the Rest of the Code?..........ccooeireniiiinennineeeceeees 31
INVOKING @ SEIVICE.....civvuiiiiiiiiiiiiitiiiictec e 313
BOUNA fOT SUCCESS......eeviieiieiiieeieteieete ettt ettt ettt se e se s sessessesasssenssessanssenns 314

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

REQUESLE fOI SEIVICE......cuiiieiiiitiirieie ettt ettt ettt 316

Prometheus UnbOUNA.........c.coeiieirieiiiieie ettt ens 316
Manual TTanSIMISSION.coueutrierteirieirierieertetet ettt ettt ettt ettt ebeseesseesaeenbesasesas 316
Catching the Lob......c.coeiiiieie ettt ettt et e 317
Alerting Users Via Notifications..........ccccevueiviiiiiiiiiiniiiiiiniiiiniecnnccnnnccsnc s 321
TYPES Of PESEEIIINEG. c..vvveueieiiiirieieerietet ettt ettt ettt bttt et et nne 321
Hardware NOtifiCations..........ecuvueieirieieiieieieteiesie ettt ebe e s 322

LCOMIS ettt ettt 322

Seeing Pestering in ACION..........cociiiiiiiiiiieeeeeee e 323
Accessing Location-Based SeIVICeS.......coouvuiiiiiineiiiriinneiiiiinutecininneeesnneeeesssnseeesnees 329
Location Providers: They Know Where You're Hiding..........ccccceeveinnecrnenveniencnncnnenns 330
FINAINg YOUTSEIE.....cooveiiiieieiiieieic ettt et 330

O EhE MOVttt bttt bbbttt ettt et et 332

Are We There Yet? Are We There Yet? Are We There Yet?........cooevveveerenneneeceeennens 333
Testing... TESEING.....ccoveiiirieiieieice e 335
Feed Me!l SEE MOTEL........oouiiieiieiretee ettt 335

Making a Mockery of the SItUAtiON.........cccvueueeririeieininieireeeseeeeeeee e 337
Changing Weather Patterns........c.covueueerinieuirininieenirieiecnieeesceseeeeesesieseseseeseseesaesenens 338
Mapping with MapView and MapACHIVItY......ccoovvuetiriinuiiiininniiinineecnneeecssesssessenes 341
The Bare BOMES.......co.ooueuieiiiiiiicinieetrete ettt ettt ettt sttt st 341
EXercising YOUT COMEIOL.....c.ceoiriiuiiririeienirieieieteiete ettt ettt ettt et sttt 343
/700 o VO PSR, 344

COIEET . ..ttt ettt ettt ettt b e bt s bt e b et et e bbb s bt ebteebeeebeeeaee 345

RUZEEA TOITAIN. ...c.eviteiieieteieeeste ettt ettt ettt st s 346
Layers Upon Layers..........cccocviiiiiiiiiiiiiiciiiiccnceresens s 346
OVETIAY ClaSSES......eriueuiirieieiiirieteitntrteiert sttt ettt sttt bt sa et 347

Drawing the ItemizedOVerlay..........cocccivrrernnieiiinnieirecenrcecneee e 347
Handling SCreen Taps........ccceeceererieerienieenietrienietseesteie et ssetebesseeebessesesbesseesaeese e 349
Handling Telephone Calls...........cccoouiiiuiiiiiiiniiiiiiiiiiicircnie e 351
RepOrt To The Manager.......ccccivrueuerinirieienireeieentreeeet ettt ebe et see s se e e 352

You Make the Calll.......c.ooeiiiiiiiieieeeee ettt st et s e b en 352
Searching with SearchManager..........ccooueeiiviiiiiiiiniiiiniieceene s 357
HUNEING SEASOM......oiiiiiiiiiiieeeeeere et 357

X

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

SEATCH YOUTSEIL......ccuiiieiiieietiiceetee ettt ettt aese b e sesbeesbesneanseens 359

Craft the Search ACHIVILY.......cceoeviriereiririeiirriec ettt b et s 360

Update the Manifest..........cccverieirieririieirieieierie ettt st ee et ebe e 364

Searching for Meaning In RaNAOmMINESS...........ccccevirueueuiirieieininieeeeieeeeieie e 365
Xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates - subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscribers name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license — more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

Some notes for Kindle users:

Xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://wares.commonsware.com/
mailto:enterprise@commonsware.com

« You may wish to drop your font size to level 2 for easier reading

« Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional” means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new - at the time of this writing, there are no shipping Android-powered
devices - but it likely will rapidly grow in importance due to the size and
scope of the Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

If you are interested in programming for Android, you will need at least
basic understanding of how to program in Java. Android programming is
done using Java syntax, plus a class library that resembles a subset of the
Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should quick learn how that
works before attempting to dive into programming for Android.

Xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The book does not cover in any detail how to download or install the
Android development tools, either the Eclipse IDE flavor or the standalone
flavor. The Android Web site covers this quite nicely. The material in the
book should be relevant whether you use the IDE or not. You should
download, install, and test out the Android development tools from the
Android Web site before trying any of the examples listed in this book.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription - the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

Xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/warescription.html
http://code.google.com/android/index.html

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem, and we'll give you a coupon
for a six-month Warescription as a bounty for helping us deliver a better
product. You can use that coupon to get a new Warescription, renew an
existing Warescription, or give the coupon to a friend, colleague, or some
random person you meet on the subway.

By "concrete" problem, we mean things like:

« Typographical errors

« Sample applications that do not work as advertised, in the
environment described in the book

« Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.

We appreciate hearing about "softer” issues as well, such as:

+ Places where you think we are in error, but where we feel our
interpretation is reasonable

« Places where you think we could add sample applications, or expand
upon the existing material

« Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

mailto:bounty@commonsware.com

Source Code License

The source code samples shown in this book are available for download
from the CommonsWare Web site. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers and
the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition, starting
from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on July 1, 2012. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups. In
particular, I would like to thank Romain Guy and hackbod.

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html

Icons used in the sample code were provided by the Nuvola icon set.

xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.icon-king.com/?p=15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART | - Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 1

The Big Picture

Android devices, by and large, will be mobile phones. While the Android
technology is being discussed for use in other areas (e.g., car dashboard
"PCs"), for the most part, you can think of Android as being used on phones.

For developers, this has benefits and drawbacks.

On the plus side, circa 2008, Android-style smartphones are sexy. Offering
Internet services over mobile devices dates back to the mid-1990's and the
Handheld Device Markup Language (HDML). However, only in recent years
have phones capable of Internet access taken off. Now, thanks to trends like
text messaging and to products like Apple's iPhone, phones that can serve as
Internet access devices are rapidly gaining popularity. So, working on
Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones),
which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

+ Screens are small (you won't get comments like, "is that a 24-inch
LCD in your pocket, or...?")

+ Keyboards, if they exist, are small

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

- Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch"
LCDs are not a good mix)

« CPU speed and memory are tight compared to desktops and servers
you may be used to

« You can have any programming language and development
framework you want, so long as it was what the device manufacturer
chose and burned into the phone's silicon

« Andsoon

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones
don't work, which is why the "can you hear me now?" ad campaign from
Verizon Wireless has been popular for the past few years. Similarly, those
same people will get irritated at you if your program "breaks" their phone:

« ..by tying up the CPU such that calls can't be received

+ ..by not working properly with the rest of the phone's OS, such that
your application doesn't quietly fade to the background when a call
comes in or needs to be placed

« ..by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you're used to" limitations on what you can do with your
program.

What Android tries to do is meet you halfway:

+ You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

« You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows - like dialog
boxes - that are needed. From your standpoint, you are your own world,
leveraging features supported by the operating system, but largely ignorant
of any other program that may be running on the computer at the same
time. If you do interact with other programs, it is typically through an API,
such as using JDBC (or frameworks atop it) to communicate with MySQL or
another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a desktop
application.

While it is possible for activities to not have a user interface, most likely your
"headless" code will be packaged in the form of content providers or
services, described below.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android development
model encourages you to make your own data available to other
applications, as well as your own - building a content provider lets you do
that, while maintaining complete control over how your data gets accessed.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to intents, but you can create your
own, to launch other activities, or to let you know when specific situations
arise (e.g., raise such-and-so intent when the user gets within 100 meters of
this-and-such location).

Services

Activities, content providers, and intent receivers are all short-lived and can
be shut down at any time. Services, on the other hand, are designed to keep
running, if needed, independent of any activity. You might use a service for
checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of space
on the device itself, for databases or files containing user-entered or
retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the Internet
access at any level you wish, from raw Java sockets all the way up to a built-in
WebKit-based Web browser widget you can embed in your application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the device
to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Big Picture

Phone Services

And, of course, Android devices are typically phones, allowing your software
to initiate calls, send and receive SMS messages, and everything else you
expect from a modern bit of telephony technology.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 2

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android and what it all does to
prepare the actual application that will run on the device or emulator. Here's
a quick primer on the project structure, to help you make sense of it all,
particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via activitycreator), you get
five key items in the project's root directory:

AndroidManifest.xml, which is an XML file describing the application
being built and what components - activities, services, etc. — are
being supplied by that application

build.xml, which is an Ant script for compiling the application and
installing it on the device

bin/, which holds the application once it is compiled

libs/, which holds any third-party Java JARs your application
requires

src/, which holds the Java source code for the application

res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://ant.apache.org/

Project Structure

« assets/, which hold other static files you wish packaged with the
application for deployment onto the device

The Sweat Off Your Brow

When you created the project (e.g., via activitycreator), you supplied the
fully-qualified class name of the "main" activity for the application (e.g.,
com.commonsware.android.SomeDemo). You will then find that your project's
src/ tree already has the namespace directory tree in place, plus a stub
Activity subclass representing your main activity (e.g., src/com/commonsware/
android/SomeDemo.java). You are welcome to modify this file and add others
to the src/ tree as needed to implement your application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you placed
out in the res/ directory tree. You should not modify R. java yourself, letting
the Android tools handle it for you. You will see throughout many of the
samples where we reference things in R.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources” - static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

+ res/drawable/ for images (PNG, JPEG, etc.)
+ res/layout/ for XML-based UI layout specifications

+ res/raw/ for general-purpose files (e.g,. a CSV file of account
information)

+ res/values/ for strings, dimensions, and the like

« res/xml/ for other general-purpose XML files you wish to ship

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Project Structure

We will cover all of these, and more, in later chapters of this book.

What You Get Out Of 1t

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

+ bin/classes/ holds the compiled Java classes

* bin/classes.dex holds the executable created from those compiled
Java classes

« bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

+ bin/yourapp-debug.apk or bin/yourapp-unsigned.apk is the actual
Android application (where yourapp is the name of your application)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of
your resources (resources.arsc), any un-compiled resources (such as what
you put in res/raw/) and the AndroidManifest.xml file. It is also digitally
signed, with the -debug portion of the filename indicating it has been signed
using a debug key that works with the emulator, or -unsigned indicating that
you built your application for release (ant release), but the APK still needs
to be signed using jarsigner and an official key.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 3

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what all is inside your application - the activities, the services, and so on.
You also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should appear
on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require
a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater
detail in the chapters on their associated Android features. For example, the
service element will be described in greater detail in the chapter on creating
services. For now, we just need to understand what the role of the manifest
is and its general overall construction.

In The Beginning, There Was the Root, And It
Was Good

The root of all manifest files is, not surprisingly, a manifest element:

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Inside the Manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., it's manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base”
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
package. For example, if you needed to refer to
com.commonsware.android.Snicklefritz in this manifest shown above, you
could just use .Snicklefritz, since com.commonsware.android is defined as the
application's package.

Permissions, Instrumentations, and Applica-
tions (Oh, My!)

Underneath the manifest element, you will find:

« uses-permission elements, to indicate what permissions your
application will need in order to function properly - see the chapter
on permissions for more details

« permission elements, to declare permissions that activities or
services might require other applications hold in order to use your
application's data or logic - again, more details are forthcoming in
the chapter on permissions

« instrumentation elements, to indicate code that should be invoked
on key system events, such as starting up activities, for the purposes
of logging or monitoring

+ uses-library elements, to hook in optional Android components,
such as mapping services

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Inside the Manifest

« an application element, defining the guts of the application that the
manifest describes

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android">

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

<uses-permission
android:name="android.permission.ACCESS_GPS" />

<uses-permission
android:name="android.permission.ACCESS_ASSISTED_GPS" />

<uses-permission
android:name="android.permission.ACCESS_CELL_ID" />

<application>

</application>
</manifest>

In the preceding example, the manifest has uses-permission elements to
indicate some device capabilities the application will need - in this case,
permissions to allow the application to determine its current location. And,
there is the application element, whose contents will describe the activities,
services, and whatnot that make up the bulk of the application itself.

Your Application Does Something, Right?

The real meat of the manifest file are the children of the application
element.

By default, when you create a new Android project, you get a single activity
element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Inside the Manifest

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an
intent-filter child element describing under what conditions this activity
will be displayed. The stock activity element sets up your activity to appear
in the launcher, so users can choose to run it. As we'll see later in this book,
you can have several activities in one project, if you so choose.

You may also have one or more receiver elements, indicating non-activities
that should be triggered under certain conditions, such as when an SMS
message comes in. These are called intent receivers and are described mid-
way through the book.

You may have one or more provider elements, indicating content providers —
components that supply data to your activities and, with your permission,
other activities in other applications on the device. These wrap up databases
or other data stores into a single API that any application can use. Later,
we'll see how to create content providers and how to use content providers
that you or others create.

Finally, you may have one or more service elements, describing services -
long-running pieces of code that can operate independent of any activity.
The quintessential example is the MP3 player, where you want the music to
keep playing even if the user pops open other activities and the MP3 player's
user interface is "misplaced". Two chapters late in the book cover how to
create and use services.

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART Il - Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 4
Creating a Skeleton Application

Every programming language or environment book starts off with the ever-
popular "Hello, World!" demonstration: just enough of a program to prove
you can build things, not so much that you cannot understand what is going
on. However, the typical "Hello, World!" program has no interactivity (e.g.,
just dumps the words to a console), and so is really boring.

This chapter demonstrates a simple project, but one using Advanced Push-
Button Technology™ and the current time, to show you how a simple
Android activity works.

Begin at the Beginning

To work with anything in Android, you need a project. With ordinary Java, if
you wanted, you could just write a program as a single file, compile it with
javac, and run it with java, without any other support structures. Android is
more complex, but to help keep it manageable, Google has supplied tools to
help create the project. If you are using an Android-enabled IDE, such as
Eclipse with the Android plugin, you can create a project inside of the IDE
(e.g., select File > New > Project, then choose Android > Android
Project).

If you are using tools that are not Android-enabled, you can use the
activitycreator script, found in the tools/ directory in your SDK
installation. Just pass activitycreator the package name of the activity you

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

want to create and a --out switch indicating where the project files should
be generated. For example:

activitycreator --out /path/to/my/project/dir \
com.commonsware.android.Now

You will wind up with a handful of pre-generated files, as described in a
previous chapter.

For the purposes of the samples shown in this book, you can download their
project directories in a ZIP file on the CommonsWare Web site. These
projects are ready for use; you do not need to run activitycreator on those
unpacked samples.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which where your first
activity will go.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn = new Button(this);
btn.setOnClickListener(this);

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

updateTime();
setContentView(btn);
}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}
}

Or, if you download the source files off the Web site, you can just use the Now
project directly.

Dissecting the Activity

Let's examine this piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import any
classes you reference. Most of the Android-specific classes are in the android
package.

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.Activity base class.
In this case, the activity holds a button (btn). Since, for simplicity, we want

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html
http://commonsware.com/Android/

Creating a Skeleton Application

to trap all button clicks just within the activity itself, we also have the
activity class implement onClickListener.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn = new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

The oncreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setonClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();

}

In Swing, a JButton click raises an Actiontvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes
onClick() to be invoked in the onClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());
¥

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the 3Button equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant in the base directory of your project. Then, to run the activity:

« Launch the emulator (e.g., run tools/emulator from your Android
SDK installation)

Ehil & 9:59 PM

Contacts

Figure 1. The Android home screen

- Install the package (e.g, run tools/adb install
/path/to/this/example/bin/Now.apk from your Android SDK
installation)

« View the list of installed applications in the emulator and find the
"Now" application

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

Ml & 9:59 pm

O na &

Alarm Clock APIDemos Browser Calculator

e & @

Camera Contacts Dev Tools Dialer

& W H @

Maps Messaging Music Now

Y

Pictures

Figure 2. The Android application "launcher"

« Open that application

You should see an activity screen akin to:

Ml & 959 pm

Tue Aug 19 21:59:51 GMT+00:00 2008

]
Figure 3. The Now demonstration activity

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Skeleton Application

Clicking the button - in other words, pretty much anywhere on the phone's
screen — will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to the
launcher.

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 5
Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the more
common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn out to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other - and to containers - encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one view. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project, allowing you to access
layouts and widgets within those layouts directly from your Java code, as will
be demonstrated .

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through Java
code. For example, you could use setTypeface() to have a button render its
text in bold, instead of using a property in an XML layout. Since XML
layouts are yet another file for you to keep track of, we need good reasons for
using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits - that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice middle
ground between something that is easy for tool-writers to use and easy for
programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, and Mozilla's XUL all take a similar
approach to that of Android: put layout details in an XML file and put
programming smarts in source files (e.g., Javascript for XUL). Many less-
well-known GUI frameworks, such as ZK, also use XML for view definition.
While "following the herd" is not necessarily the best policy, it does have the
advantage of helping to ease the transition into Android from any other
XML-centered view description language.

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application, converted
into an XML layout file:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button”
android:text=""
android:layout_width="fill parent"
android:layout_height="fill_parent"/>

The class name of the widget - Button - forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

|xm1ns:android="http://schemas.android.com/apk/res/android" |

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to give
it an identifier via the android:id attribute. We will cover this concept in
greater detail .

The remaining attributes are properties of this Button instance:

+ android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

+ android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent”, in this case the entire
screen - these attributes will be covered in greater detail in a later
chapter

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file and
do not need to be referenced in your Java code. For example, a static label
(Textview) frequently only needs to be in the layout file to indicate where it
should appear. These sorts of elements in the XML file do not need to have
the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question. In the XML layout
example in the preceding section, @+id/button is the identifier for the Button
widget.

Android provides a few special android:id values, of the form
@android:id/... — we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for your
view in an XML layout file named main.xml stored in res/layout, all you need
is one statement in your activity's onCreate() callback to use that layout:

setContentView(R.layout.main); |

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

This is the same setContentview() we used earlier, passing it an instance of a
view subclass (in that case, a Button). The Android-built view, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under Rr.1layout, keyed by the base name of the layout
file — main.xml results in R.layout.main.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of view, just
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux). However,
rather than instantiating the Button in our activity's onCreate() callback, we
can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);
btn=(Button)findViewById(R.id.button);

btn.setOnClickListener(this);
updateTime();

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());

}

}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentview(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button instance,
for which we use the findviewById() call. Since we identified our button as
@+id/button, we can reference the button's identifier as R.id.button. Now,
with the Button instance in hand, we can set the callback and set the label as
needed.

The results look the same as with the original Now demo:

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using XML-Based Layouts

& 10:33PMm
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

]
Figure 4. The NowRedux sample activity

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 6
Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a Textview. Like in
most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a Textview instance. More
commonly, though, you will create labels in XML layout files by adding a
Textview element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a resource reference in the
XML instead, as will be described later in this book.

Textview has numerous other properties of relevance for labels, such as:

+ android:typeface to set the typeface to use for the label (e.g,
monospace)

+ android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

+ android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FFeeee for red)

For example, in the Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"
/>

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., activityCreator), gives you:

EHl @ 12:56 PM

Figure 5. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two
chapters. As it turns out, Button is a subclass of Textview, so everything
discussed in the preceding section in terms of formatting the face of the
button still holds.

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Fleeting Images

Android has two widgets to help you embed images in your activities:
Imageview and ImageButton. As the names suggest, they are image-based
analogues to Textview and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources. You can also set the image
content based on a uri from a content provider via setImageURI().

ImageButton, a subclass of Imageview, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Imageview sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent”
android:layout_height="fill_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"
/>

The result, just using the code-generated activity, is simply the image:

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

EBHl @ 12:59 PM

ImageViewDemo

Figure 6. The ImageViewDemo sample application

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor" of most GUI
toolkits. In Android, they are implemented via the Editview widget, which is
a subclass of the Textview used for labels.

Along with the standard Textview properties (e.g., android:textStyle),
Editview has many others that will be useful for you in constructing fields,
including:

+ android:autoText, to control if the field should provide automatic
spelling assistance

+ android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

+ android:digits, to configure the field to accept only certain digits

+ android:singleline, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Beyond those, you can configure fields to use specialized input methods,
such as android:numeric for numeric-only input, android:password for
shrouded password input, and android:phoneNumber for entering in phone
numbers. If you want to create your own input method scheme (e.g., postal
codes, Social Security numbers), you need to create your own
implementation of the InputMethod interface, then configure the field to use
it via android: inputMethod.

For example, from the Field project, here is an XML layout file showing an
EditView:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:singlelLine="false"
/>

Note that android:singleLine is false, so users will be able to enter in several
lines of text.

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.basic;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

EditText fld=(EditText)findViewById(R.id.field);
fld.setText("Licensed under the Apache License, Version 2.0 " +

"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +
"obtain a copy of the License at " +

"http://www.apache.org/licenses/LICENSE-2.0");

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

The result, once built and installed into the emulator, is:

& 1:00pPM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

Figure 7. The FieldDemo sample application

NOTE: Android's emulator only allows one application in the launcher per
unique Java package. Since all the demos in this chapter share the
com.commonsware.android.basic package, if you have the LabelDemo
application installed, you will not see the FieldDemo application in the
launcher. To remove the LabelDemo application - or any application - use
adb shell "rm /data/app/...", where ... is the name of the application's
APK file (e.g., LabelDemo.apk). Then, reinstall the formerly-hidden
application, and it will show up in the launcher.

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in Android
as the AutoCompleteTextview widget, discussed in greater detail later in this
book.

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a checkBox widget to meet this need. It has Textview as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

+ iscChecked() to determine if the checkbox has been checked

+ setChecked() to force the checkbox into a checked or unchecked
state

+ toggle() to toggle the checkbox as if the user checked it
Also, you can register a listener object (in this case, an instance of

onCheckedChangelListener) to be notified when the state of the checkbox
changes.

For example, from the checkBox project, here is a simple checkbox layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo. java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
implements CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangeListener(this);

}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");
¥
else {
cb.setText("This checkbox is: unchecked");
¥
}

}

Note that the activity serves as its own listener for checkbox state changes
since it implements the oOnCheckedChangelListener interface (via
cb.setOnCheckedChangelListener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox to
reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

B & 1:38pPM

CheckBoxDemo

- This checkbox is: unchecked

Figure 8. The CheckBoxDemo sample application, with the checkbox unchecked

A€ 1:33pm

CheckBoxDemo

This checkbox is: checked

Figure 9. The same application, now with the checkbox checked

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like checkBox, RadioButton inherits from CompoundButton, which in turn
inherits from Textview. Hence, all the standard Textview properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a checkBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

« check() to check a specific radio button via its ID (e.g.,
group.check(R.id.rb1))

« clearcCheck() to clear all radio buttons, so none in the group are
checked

+ getCheckedRadioButtonId() to get the ID of the currently-checked
radio button (or -1 if none are checked)

For example, from the RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<RadioButton android:id="@+id/radiol”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Rock" />

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

BH@ 1:39Pm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 10. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked
at the outset. To preset one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from within

your onCreate() callback in your activity.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend view, and as such give
all widgets an array of useful properties and methods beyond those already
described.

Useful Properties

Some of the properties on view most likely to be used include:

« Controls the focus sequence:
* android:nextFocusDown
* android:nextFocusLeft
* android:nextFocusRight
* android:nextFocusUp

« android:visibility, which controls whether the widget is initially
visible

+ android:background, which typically provides an RGB color value
(e.g., #eoFFoo for green) to serve as the background for the widget

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if
it is enabled via isEnabled(). One common use pattern for this is to disable
some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Basic Widgets

+ getParent() to find the parent widget or container
« findviewById() to find a child widget with a certain ID

+ getRootView() to get the root of the tree (e.g., what you provided to
the activity via setContentview())

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 7
Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific layouts you like. If you want a form with labels on the left and fields
on the right, you will need a container. If you want OK and Cancel buttons
to be beneath the rest of the form, next to one another, and flush to right
side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with scrollview, a container designed to assist with
implementing scrolling containers. In the next chapter, we will examine
some more esoteric containers.

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model - widgets or child containers
are lined up in a column or row, one after the next. This works similar to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes should
have, such as alignment vis a vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setorientation() on
the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These widgets
have a "natural" size based on their text. Their combined sizes probably do
not exactly match the width of the Android device's screen - particularly
since screens come in various sizes. We then have the issue of what to do
with the remaining space.

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

« You can provide a specific dimension, such as 125px to indicate the
widget should take up exactly 125 pixels

« You can provide wrap_content, which means the widget should fill up
its natural space, unless that is too big, in which case Android can
use word-wrap as needed to make it fit

« You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

Weight

But, what happens if we have two widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and
we want them to take up the remaining space in the column after all other
widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same value for a pair of widgets (e.g., 1), the free space will be split evenly
between them. If you set it to be 1 for one widget and 2 for another widget,
the second widget will use up twice the free space that the first widget does.
And so on.

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Gravity

By default, everything is left- and top-aligned. So, if you create a row of
widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis a vis the screen.

For a column of widgets, common gravity values are left, center_horizontal,
and right for left-aligned, centered, and right-aligned widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

Padding

By default, widgets are tightly packed next to each other. If you want to
increase the whitespace between widgets, you will want to use the
android:padding property (or by calling setPadding() at runtime on the
widget's Java object).

The padding specifies how much space there is between the boundaries of
the widget's "cell" and the actual widget contents. Padding is analogous to
the margins on a word processing document - the page size might be
8.5"x11", but 1" margins would leave the actual text to reside within a 6.5"x9"
area.

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

F — — — — I — — — —
o
QU
Q
Q
[N
>
o
—
]
©

| r 2 |
| paccnger wid get sadeingrignt |
|
|

widget cell

Figure 11. The relationship between a widget, its cell, and the padding values

woyyogdutpped

The android:padding property allows you to set the same padding on all four
sides of the widget, with the widget's contents itself centered within that
padded-out area. If you want the padding to differ on different sides, use
android:paddingLeft, android:paddingRight, android:paddingTop, and
android:paddingBottom.

The value of the padding is a dimension, such as 5px for 5 pixels' worth of
padding.

Example

Let's look at an example (Linear) that shows LinearLayout properties set
both in the XML layout file and at runtime.

Here is the layout:

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>
<RadioGroup android:id="@+id/orientation”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton
android:id="@+id/horizontal"
android:text="horizontal"” />
<RadioButton
android:id="@+id/vertical”
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton
android:id="@+id/left"
android:text="left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is
a subclass of LinearLayout, so our example demonstrates nested boxes as if
they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5px of padding on all sides,
separating it from the other RadioGroup. The width and height are both set to
wrap_content, so the radio buttons will only take up the space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of

three RadioButton widgets. Again, we have 5px of padding on all sides and a

"natural” height (android:layout_height = "wrap_content"). However, we
52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

package com.commonsware.android.containers;

import android.app.Activity;

import android.os.Bundle;

import android.text.TextWatcher;
import android.widget.LinearlLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
implements RadioGroup.OnCheckedChangelListener {
RadioGroup orientation;
RadioGroup gravity;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewById(R.id.orientation);
orientation.setOnCheckedChangeListener(this);
gravity=(RadioGroup)findViewById(R.id.gravity);
gravity.setOnCheckedChangelListener(this);

}

public void onCheckedChanged(RadioGroup group, int checkedId) {
if (group==orientation) {
if (checkedId==R.id.horizontal) {
orientation.setOrientation(LinearLayout.HORIZONTAL);
¥
else {
orientation.setOrientation(LinearLayout.VERTICAL);

}

else if (group==gravity) {
if (checkedId==R.id.left) {
gravity.setGravity() // left

else if (checkedId==R.id.center) {
gravity.setGravity()8 // center_horizontal

}
else if (checkedId==R.id.right) {
gravity.setGravity() // right
¥
}

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

In oncreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state
(setonCheckedChangelListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which
RadioGroup had a state change. If it was the orientation group, we adjust the
orientation based on the user's selection. If it was the gravity group, we
adjust the gravity based on the user's selection.

Here is the result when it is first launched inside the emulator:

BHl® 12:22 Am

LinearLayoutDemo

. horizontal .veltical

@ -
. center
. right

Figure 12, The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical” radio button, the top RadioGroup adjusts to
match:

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

BHl @ 12:22 Am

LinearLayoutDemo

. horizontal
evertical

Q-
. center

. right

Figure 13. The same application, with the vertical radio button selected

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

Bl @ 12:23 Am

LinearLayoutDemo

. horizontal
evertical

@ -t
e center

. right

Figure 14. The same application, with the vertical and center radio buttons
selected

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Bl ® 12:23 Am

LinearLayoutDemo

. horizontal
evertical

T
. center

e right

Figure 15. The same application, with the vertical and right radio buttons
selected

All Things Are Relative

RelativelLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those widgets.

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

+ android:layout_alignParentTop says the widget's top should align
with the top of the container

+ android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

« android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

« android:layout_alignParentRight says the widget's right side should
align with the right side of the container

« android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

+ android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

+ android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address, of the form @+id/. ..

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

2.

Working with Containers

Reference other widgets using the same identifier value without the
plus sign (@id/. . .)

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

android:layout_above indicates that the widget should be placed
above the widget referenced in the property

android:layout_below indicates that the widget should be placed
below the widget referenced in the property

android:layout_toLeftof indicates that the widget should be placed
to the left of the widget referenced in the property

android:layout_toRightof indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the
property

android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

android:layout_alignRight indicates that the widget's right should be
aligned with the right of the widget referenced in the property

android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

The last one is useful for aligning labels and fields so that the text appears
"natural”. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field's box with the top of
the label, which will cause the text of the label to be higher on-screen than
the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRight =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

What makes this even more complicated is the order of evaluation. Android
makes a single pass through your XML layout and computes the size and
position of each widget in sequence. This has a few ramifications:

« You cannot reference a widget that has not been defined in the file
yet

« You must be careful that any wuses of fill_parent in
android:layout_width or android: layout_height do not "eat up" all the
space before subsequent widgets have been defined

Example

With all that in mind, let's examine a typical "form" with a field, a label, plus
a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="5px">
<TextView android:id="@+id/label”
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

android:paddingTop="15px"/>

<EditText
android:id="@+id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignBaseline="@id/label"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_tolLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />

</Relativelayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent"), only as much
height as we need (android:layout_height = "wrap_content"), and have a 5-
pixel pad between the boundaries of the container and its contents
(android:padding = "5px").

Next, we define the label, which is fairly basic, except for its own 16-pixel
padding (android:padding = "16px"). More on that in a moment.

After that, we add in the field. We want the field to be to the right of the
label, have their texts aligned along the baseline, and for the field to take up
the rest of this "row" in the layout. Those are handled by three properties:

* android:layout_toRight = "@id/label”

* android:layout_alignBaseline = "@id/label”

* android:layout_alignBaseline = "@id/label"
If we were to skip the 16-pixel padding on the label, we would find that the
top of the field is clipped off. That's because of the 16-pixel padding on the

container itself. The android:layout_alignBaseline = "@id/label" simply
aligns the baselines of the label and field. The label, by default, has its top

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

aligned with the top of the parent. But the label is shorter than the field
because of the field's box. Since the field is dependent on the label's
position, and the label's position is already defined (because it appeared
first in the XML), the field winds up being too high and has the top of its
box clipped off by the container's padding.

You may find yourself running into these sorts of problems as you try to get
your Relativelayout to behave the way you want it to.

The solution to this conundrum, used in the XML layout shown above, is to
give the label 16 pixels' worth of padding on the top. This pushes the label
down far enough that the field will not get clipped.

Here are some "solutions" that do not work:

+ You cannot use android:layout_alignParentTop on the field, because
you cannot have two properties that both attempt to set the vertical
position of the field. In this case, android:layout_alignParentTop
conflicts with the later android:layout_alignBaseline = "@id/label"
property, and the last one in wins. So, you either have the top aligned
properly or the baselines aligned properly, but not both.

« You cannot define the field first, then put the label to the left of the
field, because you cannot "forward reference" labeled widgets - you
must define the widget before you can reference it by its ID.

Going back to the example, the OK button is set to be below the field
(android:layout_below = "@id/entry") and have its right side align with the
right side of the field (android:layout_alignRight = "@id/entry"). The
Cancel button is set to be to the left of the OK button
(android:layout_toLeft = "@id/ok") and have its top aligned with the OK
button (andr‘oid:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

EBHl @ 12:34 AM

RelativeLayoutDemo

-I :‘I‘_:_

Figure 16. The RelativeLayoutDemo sample application

Tabula Rasa
If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout - it allows you to position your widgets in a grid to

your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column e, as columns are
counted starting from o), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the eo-
based column the widget belongs to:

<TableRow>
<Button
android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="0K" />
</TableRow>

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For
those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain view as a divider (e.g., <view
android:layout_height = "2px" android:background = "#0@00OFF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural” size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, e-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column -
by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be pushed
off the right side of the screen.

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed”, meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which
columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for Relativelayout, with the
addition of a divider line between the label/field and the two buttons
(found in the Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2px"
android:background="4#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel"” />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</TablelLayout>

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

When compiled against the generated Java code and run on the emulator,
we get:

Gl @ 12:35 AM

TableLayoutDemo

7| :‘Ii_
Cancel m

Figure 17. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

Scrollview is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a Scrollview,
and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a scrollview used in an XML layout file (from the Scroll
demo):

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TablelLayout
android:layout_width="fill parent"
android:layout_height="fill_parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80px"
android:background="#000000"/>
<TextView android:text="#000000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#440000" />
<TextView android:text="#440000"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#884400" />
<TextView android:text="#884400"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffaa88" />
<TextView android:text="#ffaa88"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffffaa" />
<TextView android:text="#ffffaa"
android:paddingleft="4px"

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffffff" />
<TextView android:text="#ffffff"
android:paddinglLeft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
</TablelLayout>
</ScrollView>

Without the Scrollview, the table would take up at least 560 pixels (7 rows at
8o pixels each, based on the view declarations). There may be some devices
with screens capable of showing that much information, but many will be
smaller. The scrollview lets us keep the table as-is, but only present part of
itata time.

On the stock Android emulator, when the activity is first viewed, you see:

Ghifl @B 12:36 AM

ScrollViewDemo

Figure 18. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Containers

the remaining rows. Also note how the right side of the content gets clipped
by the scrollbar - be sure to put some padding on that side or otherwise
ensure your own content does not get clipped in that fashion.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 8

Using Selection Widgets

Back in the chapter on basic widgets, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right"
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic Ul toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what choices
are available in these widgets. Specifically, Android offers a framework of
data adapters that provide a common interface to selection lists ranging
from static arrays to database contents. Selection views - widgets for
presenting lists of choices - are handed an adapter to supply the actual
choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a listbox.

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

This use of Java interfaces is fairly common (e.g., Java/Swing's model
adapters for JTable), and Java is far from the only environment offering this
sort of abstraction (e.g., Flex's XML data-binding framework accepts XML
inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a JList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into 3CheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
"really"”, "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items);

The ArrayAdapter constructor takes three parameters:

The context to use (typically this will be your activity instance)

+ The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

« Theactual array or list of items to show
By default, the ArrayAdapter will invoke toString() on the objects in the list

and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

into Textview objects. Those Textview widgets, in turn, will be shown the list
or spinner or whatever widget uses this ArrayAdapter.

You can subclass ArrayAdapter and override getview() to "roll your own"
views:

public View getView(int position, View convertView,
ViewGroup parent) {
if (convertView==null) {
convertView=new TextView(this);

}

convertView.setText (buildStringFor(position));

return(convertView);

Here, getview() receives three parameters:

« The index of the item in the array to show in the view

+ An existing view to update with the data for this position (if one
already existed, such as from scrolling - if null, you need to
instantiate your own)

« The widget that will contain this view, if needed for instantiating the
view

In the example shown above, the adapter still returns a Textview, but uses a
different behavior for determining the string that goes in the view. A later
chapter will cover fancier ListVviews.

Other Key Adapters

Here are some other adapters in Android that you will likely use, some of
which will be covered in greater detail later in this book:

« CursorAdapter converts a Cursor, typically from a content provider,
into something that can be displayed in a selection view

+ SimpleAdapter converts data found in XML resources

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

« ActivityAdapter and ActivityIconAdapter provide you with the
names or icons of activities that can be invoked upon a particular
intent

Lists of Naughty and Nice

The classic listbox widget in Android is known as Listview. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setonItemSelectedListener() to find out when
the selection has changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not even
need to supply a layout - ListActivity will construct a full-screen list for
you. If you do want to customize the layout, you can, so long as you identify
your ListView as @android:id/list, so ListActivity knows which widget is
the main list for the activity.

For example, here is a layout pulled from the List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
/>
</LinearLayout>

It is just a list with a label on top to show the current selection.

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

/** Called with the activity is first created. */
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);
}
¥

With ListActivity, you can set the list adapter via setListAdapter() - in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in this

case, updating the label with the text for that position).

The results?

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

EBHl @ 11:26 Pm

ListViewDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 19. The ListViewDemo sample application

Spin Control

In Android, the spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., IJComboBox in Java/Swing). Pressing the left
and right buttons on the D-pad iterates over children. Pressing the center
button on the D-pad displays, by default, a small list (akin to a Listview)
appears to show a few items at a time, instead of the one-item-at-a-time
perspective the unexpanded Spinner itself provides.

As with Listview, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the Spinner widget. Use
the setDropDownViewResource() method to supply the resource ID of the view
to use.

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

For example, culled from the Spinner sample project, here is an XML layout
for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a Listview. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedListener {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_itenm,

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

public void onItemSelected(AdapterView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView parent) {
selection.setText("");

}

}

Here, we attach the activity itself as the selection listener
(spin.setonItemSelectedListener(this)). This works because the activity
implements the onItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownViewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in view for showing
items in the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

B ® 11:36 M

SpinnerDemo

Figure 20. The SpinnerDemo sample application, as initially launched

@ 11:36 PM

ronsertetar

Figure 21. The same application, with the spinner drop-down list displayed

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, Gridview gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

+ android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

* android:verticalSpacing and its counterpart
android:horizontalSpacing indicate how much whitespace there
should be between items in the grid.

+ android:columnWidth indicates how many pixels wide each column
should be.

+ android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing - this should be columnwidth to have
the columns take up available space or spacingWidth to have the
whitespace between columns absorb extra space. For example,
suppose the screen is 320 pixels wide, and we have
android:columnWidth set to 10e and android:horizontalSpacing set to
5. Three columns would use 310 pixels (three columns of 100 pixels
and two whitespaces of 5 pixels). With android:stretchMode set to
columnwidth, the three columns will each expand by 3-4 pixels to use
up the remaining 10 pixels. With android:stretchMode set to
spacingWidth, the two whitespaces will each grow by 5 pixels to
consume the remaining 10 pixels.

Otherwise, the Gridview works much like any other selection widget - use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

For example, here is a XML layout from the Grid sample project, showing a
Gridview configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:verticalSpacing="35px"
android:horizontalSpacing="5px"
android:numColumns="auto_fit"
android:columnWidth="100px"
android:stretchMode="columnWidth"
android:gravity="center"
/>
</LinearLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android
(android:numColumns = “auto_fit") based on j5-pixel horizontal spacing
(android:horizontalSpacing = "5"), 100—pixel columns (andr‘oid:columnWidth
= "100"), with the columns absorbing any "slop" width left over
(android:stretchMode = "columnWidth").

The Java code to configure the Gridview is:

public class GridDemo extends Activity

implements AdapterView.OnItemSelectedListener {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Gridview g=(GridView) findViewById(R.id.grid);

g.setAdapter(new FunnyLookingAdapter(this,
android.R.layout.simple_list item_1,
items));

g.setOnItemSelectedListener(this);

}

public void onItemSelected(AdapterView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView parent) {
selection.setText("");

}

private class FunnyLookingAdapter extends ArrayAdapter {
Context ctxt;

FunnyLookingAdapter (Context ctxt, int resource,
String[] items) {
super(ctxt, resource, items);

this.ctxt=ctxt;
}

public View getView(int position, View convertView,
ViewGroup parent) {
TextView label=(TextView)convertView;

if (convertView==null) {

convertView=new TextView(ctxt);
label=(TextView)convertView;

¥
label.setText(items[position]);

return(convertView);

For the grid cells, rather than using auto-generated Textview widgets as in
the previous sections, we create our own views, by subclassing ArrayAdapter
and overriding getview(). In this case, we wrap the funny-looking strings in
our own Textview widgets, just to be different. If getview() receives a

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

TextView, we just reset its text; otherwise, we create a new TextView instance
and populate it.

With the 35-pixel vertical spacing from the XML layout
(android:verticalSpacing = "35"), the grid overflows the boundaries of the
emulator's screen:

Gl & 11:43PM

GridDemo

lorem

elit

ligula

all

Figure 22, The GridDemo sample application, as initially launched

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

BHl @ 11:44PMm

GridDemo.

elit morbi
ligula
aliquet

etiam

placerat porttitor
peller e augue

purus

Figure 23. The same application, scrolled to the bottom of the grid

Fields: Now With 35% Less Typing!

The AutocompleteTextview is sort of a hybrid between the Editview (field) and
the spinner. With auto-completion, as the user types, the text is treated as a
prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that, like with Spinner,
folds down from the field. The user can either type out an entry (e.g.,

something not in the list) or choose an entry from the list to be the value of
the field.

AutoCompleteTextView subclasses Editview, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextview has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of
candidate values via setAdapter(). However, since the user could type

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

something not in the list, AutoCompleteTextview does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
Editview, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextview (pulled from the Autocomplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

public class AutoCompleteDemo extends Activity

implements TextWatcher {

TextView selection;

AutoCompleteTextView edit;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

}
public void

selection

}
public void

// needed
}

public void
// needed

}

}

.setText(edit.getText());

android.R.layout.simple_list_item_1,
items));

onTextChanged(CharSequence s, int start, int before,
int count) {

beforeTextChanged(CharSequence s, int start,
int count, int after) {
for interface, but not used

afterTextChanged(Editable s) {
for interface, but not used

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged() and beforeTextChanged(). In this case, we are only
interested in the former, and we update the selection label to match the
AutoCompleteTextView's current contents.

Here we have the results:

B & 11:47PM

AutoCompleteDemo

Figure 24. The AutoCompleteDemo sample application, as initially launched

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

BHl @ 11:47 PM

AutoCompleteDemo
lor

lor

Figure 25. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

& 11:47 P

AutoCompleteDemo

Figure 26. The same application, after the auto-complete value was selected

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Selection Widgets

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across the
horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the Listview, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the Spinner, the Gallery always shows more than one choice at
atime.

The quintessential example use for the Gallery is image preview - given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or Gridview. In your XML
layout, you have a few properties at your disposal:

+ android:spacing controls the number of pixels between entries in the
list

+ android:spinnersSelector controls what is used to indicate a selection
- this can either be a reference to a Drawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

« android:drawSelectorOnTop indicates if the selection bar (or brawable)
should be drawn before (false) or after (true) drawing the selected
child - if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise users
will not be able to read the selection

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 9

Getting Fancy With Lists

The humble Listview is one of the most important widgets in all of Android,
simply because it is used so frequently. Whether choosing a contact to call
or an email message to forward or an ebook to read, Listview widgets are
employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

The material in this chapter is based on the author's posts to the Building
'Droids column on AndroidGuys.com.

Getting To First Base
The classic Android Listview is a plain list of text — solid but uninspiring.
This is because all we have handed to the Listview is a bunch of words in an

array, and told Android to use a simple built-in layout for pouring those
words into a list.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://androidguys.com/
http://androidguys.com/category/building-droids/
http://androidguys.com/category/building-droids/

Getting Fancy With Lists

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of view objects for each row.

For example, suppose you want a Listview whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in the static sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:orientation="horizontal"
>
<ImageView
android:id="@+id/icon"
android:layout_width="22px"
android:paddinglLeft="2px"
android:paddingRight="2px"
android:paddingTop="2px"
android:layout_height="wrap_content
android:src="@drawable/ok"
/>
<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:textSize="44sp"
/>
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your Listview. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

"purus"};

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText (items[position]);

}

}

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.1layout.row) and that the Textview where the word
should go is known as R.id.1label within that custom layout.

The result is a Listview with icons down the left side. In particular, all the
icons are the same:

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

Ml & 5:10pPM

StaticDemo

vlorem
“ipsum
vdolor

~sit
vamet
vconsectetuer
~adipiscing

Figure 27. The StaticDemo application

A Dynamic Presentation

This technique - supplying an alternate layout to use for rows - handles
simple cases very nicely. However, it falls down when you have more
complicated scenarios for your rows, such as:

+ Not every row uses the same layout (e.g., some have one line of text,
others have two)

+ You need to configure the widgets in the rows (e.g., different icons
for different cases)

In those cases, the better option is to create your own subclass of your
desired Adapter, override getview(), and construct your rows yourself. The
getview() method is responsible for returning a view, representing the row
for the supplied position in the adapter data.

For example, let’s rework the above code to use getview(), so we can have
different icons for different rows - in this case, one icon for short words and
one for long words (from the bynamic sample project):

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

public class DynamicDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@Override
public void onCreate(Bundle icicle) {

}

super.onCreate(icicle);
setContentView(R.layout.main);

setListAdapter(new IconicAdapter(this));
selection=(TextView)findViewById(R.id.selection);

public void onListItemClick(ListView parent, View v,

}

int position, long id) {

selection.setText (items[position]);

class IconicAdapter extends ArrayAdapter {

Activity context;

IconicAdapter(Activity context) {
super(context, R.layout.row, items);

this.context=context;

}

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=context.getLayoutInflater();
View row=inflater.inflate(R.layout.row, null);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(items[position]);

if (items[position].length()>4) {
ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageResource(R.drawable.delete);

}

return(row);

The theory is that we override getview() and return rows based on which
object is being displayed, where the object is indicated by a position index
into the Adapter. However, if you look at the implementation shown above,

Subscribe to updates at http://commonsware.com

93

Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

you will see a reference to a viewInflate class...and that concept takes a little
bit of an explanation.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of view objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of the
specified view class, walk the attributes, convert those into property setter
calls, iterate over all child elements, lather, rinse, repeat.

The good news is that the fine folk on the Android team wrapped all that up
into a class called LayoutInflater that we can use ourselves. When it comes
to fancy lists, for example, we will want to inflate views for each row shown
in the list, so we can use the convenient shorthand of the XML layout to
describe what the rows are supposed to look like.

In the sample shown above, we inflate our R.1layout.row layout we created in
the previous section. This gives us a view object back which, in reality, is our
LinearLayout with an Imageview and a TextView, just as R.layout.row specifies.
However, rather than having to create all those objects ourselves and wire
them together, the XML and LayoutInflater handle the "heavy lifting" for us.

And Now, Back To Our Story

So we have used LayoutInflater to give us a View representing the row. This
row is "empty", since the static layout file has no idea what actual data goes
into the row. It is our job to customize and populate the row as we see fit
before returning it. So, we:

« Fill in the text label into our label widget, using the word at the
supplied position

« See if the word is longer than four characters and, if so, we find our
ImageView icon widget and replace the stock resource with a different
one

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

Now, we have a Listview with different icons based upon context of that
specific entry in the list:

Bl @ 5:15PMm

DynamicDemo

alorem
Bipsum
adolor
vSit

vamet
sconsectetuer
madipiscing
-elit

Figure 28. The DynamicDemo application

Obviously, this was a fairly contrived example, but you can see where this
technique could be used to customize rows based on any sort of criteria,
such as other columns in a returned cursor.

Better. Stronger. Faster.

The getview() implementation shown above works, but is inefficient. Every
time the user scrolls, we have to create a bunch of new view objects to
accommodate the newly-shown rows. And, since the Android framework

does not cache existing view objects itself, we wind up making new row view
objects even for rows we just created a second or two ago.

This is bad.

It might be bad for the immediate user experience, if the list appears to be
sluggish. More likely, though, it will be bad due to battery usage - every bit

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

of CPU that is used eats up the battery. This is compounded by the extra
work the garbage collector needs to do to get rid of all those extra objects
you create. So the less efficient your code, the more quickly the phone's
battery will be drained, and the less happy the user will be.

And you want happy users, right?

So, let us take a look at a few tricks to make your fancy Listview widgets
more efficient.

Using convertView

The getview() method receives, as one of its parameters, a view named, by
convention, convertview. Sometimes, convertview will be null. In those
cases, you have to create a new row Vview from scratch (e.g., via inflation),
just as we did before.

However, if convertview is not null, then it is actually one of your previously-
created views! This will happen primarily when the user scrolls the Listview
- as new rows appear, Android will attempt to recycle the views of the rows
that scrolled off the other end of the list, to save you having to rebuild them
from scratch.

Assuming that each of your rows has the same basic structure, you can use
findviewById() to get at the individual widgets that make up your row and
change their contents, then return contentview from getview(), rather than
create a whole new row.

For example, here is the getview() implementation from last time, now
optimized via contentview (from the Recycling project):

public class RecyclingDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

"purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter(this));
selection=(TextView)findViewById(R.id.selection);

}

public void onListItemClick(ListView parent, View v,
int position, long id) {

selection.setText(items[position]);

}

class IconicAdapter extends ArrayAdapter {
Activity context;

IconicAdapter(Activity context) {
super(context, R.layout.row, items);

this.context=context;

}
public View getView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

if (row==null) {
LayoutInflater inflater=context.getLayoutInflater();

row=inflater.inflate(R.layout.row, null);

¥
TextView label=(TextView)row.findViewById(R.id.label);
label.setText(items[position]);

if (items[position].length()>4) {
ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageResource(R.drawable.delete);

}

return(row);

Here, we check to see if the contentVview is null and, if so, we then inflate our
row — but if it is not-null, we just reuse it. The work to fill in the contents

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

(icon image, text) is the same in either case. The advantage is that we avoid
the potentially-expensive inflation step.

This approach will not work in every case, though. For example, it may be
that you have a ListView for which some rows will have one line of text and
others have two. In this case, recycling existing rows becomes tricky, as the
layouts may significantly differ. For example, if the row we need to create a
View for requires two lines of text, we cannot just use a vView with one line of
text as-is. We either need to tinker with the innards of that view, or ignore it
and inflate a new View.

Of course, there are ways to deal with this, such as making the second line
of text visible or invisible depending on whether it is needed. And, on a
phone, every millisecond of CPU time is precious, possibly for the user
experience, but always for battery life - more CPU utilization means a more
quickly-drained battery.

That being said, particularly if you are a rookie to Android, focus on getting
the functionality right first, then looking to optimize performance on a
second pass through your code, rather than get lost in a sea of Views trying to
tackle it all in one shot.

Using the Holder Pattern

Another somewhat expensive operation we do a lot with fancy views is call
findviewById(). This dives into our inflated row and pulls out widgets by
their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a Textview, change the icon in an Imageview). Since
findviewById() can find widgets anywhere in the tree of children of the row’s
root view, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.

In some GUI toolkits, this problem is avoided by having the composite
views, like our rows, be declared totally in program code (in this case, Java).
Then, accessing individual widgets is merely the matter of calling a getter or
accessing a field. And you can certainly do that with Android, but the code

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

gets rather verbose. What would be nice is a way where we can still use the
layout XML yet cache our row’s key child widgets so we only have to find
them once.

That's where the holder pattern comes into play, in a class we'll call
ViewWrapper.

All View objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does
is use that "tag" to hold an object that, in turn, holds each of the child
widgets of interest. By attaching that holder to the row View, every time we
use the row, we already have access to the child widgets we care about,
without having to call findviewById() again.

So, let’s take a look at one of these holder classes (taken from the
ViewWrapper sample project):

class ViewWrapper {
View base;
TextView label=null;
ImageView icon=null;

ViewWrapper(View base) {
this.base=base;

}

TextView getLabel() {
if (label==null) {
label=(TextView)base.findViewById(R.id.label);
¥

return(label);

}

ImageView getIcon() {
if (icon==null) {
icon=(ImageView)base.findViewById(R.id.icon);

}

return(icon);

}

}

ViewWrapper not only holds onto the child widgets, it lazy-finds the child
widgets. If you create a wrapper and never need a specific child, you never go

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

through the findviewById() operation for it and never have to pay for those
CPU cycles.

The holder pattern also:

« Allows us to consolidate all our per-widget type casting in one place,
rather than having to cast it everywhere we call findviewById()

« Perhaps track other information about the row, such as state
information we are not yet ready to “flush” to the underlying model

Using ViewWrapper is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row view via setTag(), as shown in
this rewrite of getview():

public class ViewWrapperDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter(this));
selection=(TextView)findViewById(R.id.selection);

}

private String getModel(int position) {
return(((IconicAdapter)getListAdapter()).getItem(position));
}

public void onListItemClick(ListView parent, View v,
int position, long id) {

selection.setText(getModel(position));

}

class IconicAdapter extends ArrayAdapter<String> {
Activity context;

IconicAdapter(Activity context) {
super(context, R.layout.row, items);

this.context=context;

}

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
ViewWrapper wrapper=null;

if (row==null) {
LayoutInflater inflater=context.getLayoutInflater();

row=inflater.inflate(R.layout.row, null);
wrapper=new ViewWrapper(row);
row.setTag(wrapper);

}
else {
wrapper=(ViewlWrapper)row.getTag();

¥
wrapper.getLabel().setText(getModel(position));

if (getModel(position).length()>4) {
wrapper.getIcon().setImageResource(R.drawable.delete);

}

return(row);

Just as we check convertview to see if it is null in order to create the row
views as needed, we also pull out (or create) the corresponding row’s
ViewWrapper. Then, accessing the child widgets is merely a matter of calling
their associated methods on the wrapper.

Making a List...

Lists with pretty icons next to them are all fine and well. But, can we create
Listview widgets whose rows contain interactive child widgets instead of
just passive widgets like Textview and Imageview? For example, could we
combine the RatingBar with text in order to allow people to scroll a list of,
say, songs and rate them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

when the interactive widget's state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the Listview is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely
no idea what model in the ArrayAdapter it is looking at. After all, the
RatingBar is just a widget, used in a row of a Listview. We need to teach the
rows which model they are presently displaying, so when their checkbox is
checked, they know which model’s state to modify.

So, let's see how this is done, using the activity in the RateList sample
project. We'll use the same basic classes as our previous demo - we’re
showing a list of nonsense words, which you can then rate. In addition,
words given a top rating are put in all caps:

public class RatelListDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

ArrayList<RowModel> list=new ArraylList<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
b

setListAdapter(new CheckAdapter(this, list));
selection=(TextView)findViewById(R.id.selection);
}

private RowModel getModel(int position) {
return(((CheckAdapter)getListAdapter()).getItem(position));
}

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(getModel(position).toString());
}

class CheckAdapter extends ArrayAdapter<RowModel> {
Activity context;

CheckAdapter(Activity context, ArraylList<RowModel> list) {
super(context, R.layout.row, list);

this.context=context;

}

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
ViewWrapper wrapper;
RatingBar rate;

if (row==null) {
LayoutInflater inflater=context.getLayoutInflater();

row=inflater.inflate(R.layout.row, null);
wrapper=new ViewWrapper(row);
row.setTag(wrapper);
rate=wrapper.getRatingBar();

RatingBar.OnRatingBarChangelListener 1=
new RatingBar.OnRatingBarChangelListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}
s

rate.setOnRatingBarChangelListener(1);

}

else {
wrapper=(ViewWrapper)row.getTag();
rate=wrapper.getRatingBar();

}

RowModel model=getModel(position);

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

}

}
}

}

class RowModel {
String label;
float rating=2.0f;

RowModel (String label) {
this.label=1abel;

}

public String toString() {

}

wrapper.getLabel().setText(model.toString());

rate.setTag(new Integer(position));
rate.setRating(model.rating);

return(row);

if (rating>=3.0) {
return(label.toUpperCase());
¥

return(label);

Here is what is different in this activity and getview() implementation than
before:

While we are still using string[] items as the list of nonsense words,
rather than pour that string array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is this demo’s poor
excuse for a mutable model: it holds the nonsense word plus the
current checked state. In a real system, these might be objects
populated from a cursor, and the properties would have more
business meaning.

Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-string model to use a RowModel.

The ArrayAdapter subclass (CheckAdapter), in getVview(), looks to see if
convertView is null. If so, we create a new row by inflating a simple
layout (see below) and also attach a viewnwrapper (also below). For the
row’s RatingBar, we add an anonymous onRatingChanged() listener
that looks at the row’s tag (getTag()) and converts that into an
Integer, representing the position within the ArrayAdapter that this
row is displaying. Using that, the checkbox can get the actual

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

RowModel for the row and update the model based upon the new state
of the rating bar. It also updates the text adjacent to the RatingBar
when checked to match the rating bar state.

4. We always make sure that the RatingBar has the proper contents and
has a tag (via setTag()) pointing to the position in the adapter the
row is displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_ parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
>
<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />
<TextView
android:id="@+id/label"
android:paddinglLeft="2px"
android:paddingRight="2px"
android:paddingTop="2px"
android:textSize="40sp"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
</LinearLayout>

The viewwrapper is similarly simple, just extracting the RatingBar and the
TextView out of the row view:

class ViewWrapper {
View base;
RatingBar rate=null;
TextView label=null;

ViewWrapper(View base) {
this.base=base;

}

RatingBar getRatingBar() {
if (rate==null) {

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

rate=(RatingBar)base.findViewById(R.id.rate);
¥

return(rate);

}

TextView getLabel() {
if (label==null) {
label=(TextView)base.findViewById(R.id.label);

}

return(label);

}

}

And the result is what you would expect, visually:

M€ 6:14 PM

RateListDemo

ﬁﬁr*lorem
¥ ¥ W ipsum
ﬁﬁ*dolor

¥ X W sit
v Y W amet
¥ Y W consect

etuer

A A A .
Figure 29. The RateListDemo application, as initially launched

This includes the toggled checkboxes turning their words into all caps:

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

B & 1:28pm

RateListViewDemo

P 9 P oren
XYY W osum
N

Y Y7 W
Y T T et
P e W comecener

Figure 30. The same application, showing a top-rated word

...And Checking It Twice

The rating list in the previous section works, but implementing it was very
tedious. Worse, much of that tedium would not be reusable except in very
limited circumstances.

We can do better.

What we'd really like is to be able to create a layout like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection"
android:layout_width="fill parent"
android:layout_height="wrap_content"/>
<com.commonsware.android.fancylists.seven.RateListView
android:id="@android:id/list"
android:layout_width="fill_parent"

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
/>

</LinearLayout>

where, in our code, almost all of the logic that might have referred to a
Listview before “just works” with the RateListview we put in the layout:

public class RateListViewDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list item_1,
items));
selection=(TextView)findViewById(R.id.selection);
}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);
}
}

Where things get a wee bit challenging is when you stop and realize that, in
everything up to this point in this chapter, never were we actually changing
the Listview itself. All our work was with the adapters, overriding getview()
and inflating our own rows, and whatnot.

So if we want RateListview to take in any ordinary ListAdapter and “just
work”, putting checkboxes on the rows as needed, we are going to need to do
some fancy footwork. Specifically, we are going to need to wrap the “raw”
ListAdapter in some other ListAdapter that knows how to put the
checkboxes on the rows and track the state of those checkboxes.

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

First, we need to establish the pattern of one ListAdapter augmenting
another. Here is the code for Adapterwrapper, which takes a ListAdapter and
delegates all of the interface’s methods to the delegate (from the
CheckListview sample project):

public class AdapterWrapper implements ListAdapter {
ListAdapter delegate=null;

public AdapterWrapper(ListAdapter delegate) {
this.delegate=delegate;
}

public int getCount() {
return(delegate.getCount());
}

public Object getItem(int position) {
return(delegate.getItem(position));
}

public long getItemId(int position) {
return(delegate.getItemId(position));
}

public View getView(int position, View convertView,
ViewGroup parent) {
return(delegate.getView(position, convertView, parent));

}

public void registerDataSetObserver(DataSetObserver observer) {
delegate.registerDataSetObserver(observer);

}

public boolean hasStableIds() {
return(delegate.hasStableIds());
}

public boolean isEmpty() {
return(delegate.isEmpty());
}

public int getViewTypeCount() {
return(delegate.getViewTypeCount());
}

public int getItemViewType(int position) {
return(delegate.getItemViewType(position));
}

public void unregisterDataSetObserver(DataSetObserver observer) {
delegate.unregisterDataSetObserver (observer);

}

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

public boolean areAllItemsEnabled() {
return(delegate.areAllItemsEnabled());

}

public boolean isEnabled(int position) {
return(delegate.isEnabled(position));

}

}

We can then subclass AdapterWrapper to create RateableWrapper, overriding
the default getview() but otherwise allowing the delegated ListAdapter to do
the “real work”

public class RateableWrapper extends AdapterWrapper {
Context ctxt=null;
float[] rates=null;

public RateableWrapper(Context ctxt, ListAdapter delegate) {
super(delegate);

this.ctxt=ctxt;
this.rates=new float[delegate.getCount()];

for (int i=0;i<delegate.getCount();i++) {
this.rates[i]=2.0f;
¥
}

public View getView(int position, View convertView,
ViewGroup parent) {
ViewWrapper wrap=null;
View row=convertView;

if (convertView==null) {
LinearLayout layout=new LinearLayout(ctxt);
RatingBar rate=new RatingBar(ctxt);

rate.setNumStars(3);
rate.setStepSize(1.0f);

View guts=delegate.getView(position, null, parent);
layout.setOrientation(LinearLayout.HORIZONTAL);

rate.setlLayoutParams(new LinearlLayout.LayoutParams(
LinearLayout.LayoutParams.WRAP_CONTENT,
LinearLayout.LayoutParams.FILL_PARENT));

guts.setLayoutParams(new LinearlLayout.LayoutParams(
LinearLayout.LayoutParams.FILL_PARENT,
LinearLayout.LayoutParams.FILL_PARENT));

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

RatingBar.OnRatingBarChangelListener 1=
new RatingBar.OnRatingBarChangelListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
rates[(Integer)ratingBar.getTag()]=rating;
}
¥

rate.setOnRatingBarChangeListener(l);

layout.addView(rate);
layout.addVview(guts);

wrap=new ViewWrapper(layout);
wrap.setGuts(guts);
layout.setTag(wrap);

rate.setTag(new Integer(position));
rate.setRating(rates[position]);

row=1layout;

}

else {
wrap=(ViewWrapper)convertView.getTag();
wrap.setGuts(delegate.getView(position, wrap.getGuts(),

parent));

wrap.getRatingBar().setTag(new Integer(position));
wrap.getRatingBar().setRating(rates[position]);

}

return(row);

}
¥

The idea is that RateableWrapper is where most of our rate-list logic resides.
It puts the rating bars on the rows and it tracks the rating bars’ states as they
are adjusted by the user. For the states, it has a float[] sized to fit the
number of rows that the delegate says are in the list.

RateableWrapper’s implementation of getview() is reminiscent of the one
from RateListDemo, except that rather than use LayoutInflater, we need to
manually construct a LinearLayout to hold our RatingBar and the “guts”
(a.k.a., whatever view the delegate created that we are decorating with the
checkbox). LayoutInflater is designed to construct a view from raw widgets;
in our case, we don’t know in advance what the rows will look like, other
than that we need to add a checkbox to them. However, the rest is similar to

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

the one from RateListDemo, including using a viewwrapper (below), hooking
onRatingBarChanged() to have the rating bar update the state, and so forth:

class ViewWrapper {
ViewGroup base;
View guts=null;
RatingBar rate=null;

ViewWrapper (ViewGroup base) {
this.base=base;

}

RatingBar getRatingBar() {
if (rate==null) {
rate=(RatingBar)base.getChildAt(9);
}

return(rate);

}

void setRatingBar(RatingBar rate) {
this.rate=rate;

}

View getGuts() {
if (guts==null) {
guts=base.getChildAt(1);
¥

return(guts);

}

void setGuts(View guts) {
this.guts=guts;
}

}

With all that in place, RateListView is comparatively simple:

public class RatelListView extends ListView {
public RateListView(Context context) {
super(context);

}

public RateListView(Context context, AttributeSet attrs) {
super(context, attrs);

}

public RateListView(Context context, AttributeSet attrs,
int defStyle) {
super(context, attrs, defStyle);

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

}

public void setAdapter(ListAdapter adapter) {
super.setAdapter(new RateableWrapper(getContext(), adapter));

}

}

We simply subclass Listview and override setAdapter() so we can wrap the
supplied ListAdapter in our own RateableWrapper.

Visually, the results are similar to the RateListDemo, albeit without top-rated
words appearing in all caps:

Eh il @ 6:40 PM

RateListViewDemo

P P P orer
Y Y0 W iosum
N

W s
XYY W et
N 2 —

Figure 31. The RateListViewDemo sample application

The difference is in reusability. We could package RateListview in its own
JAR and plop it into any Android project where we need it. So while
RateListview is somewhat complicated to write, we only have to write it
once, and the rest of the application code is blissfully simple.

Of course, this RatelListview could use some more features, such as
programmatically changing states (updating both the float[] and the actual
RatingBar itself), allowing other application logic to be invoked when a

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Getting Fancy With Lists

RatingBar state is toggled (via some sort of callback), etc. These are left as
exercises for the reader.

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 10
Employing Fancy Widgets and
Containers

The widgets and containers covered to date are not only found in many GUI
toolkits (in one form or fashion), but also are widely used in building GUI
applications, whether Web-based, desktop, or mobile. The widgets and
containers in this chapter are a little less widely used, though you will likely
find many to be quite useful.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are
aware of the type of stuff somebody is supposed to be entering is very
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of
making some sort of error (e.g., entering a letter someplace where only
numbers are expected).

As shown previously, Editview has content-aware flavors for entering in
numbers, phone numbers, etc. Android also supports widgets (patePicker,
TimePicker) and dialogs (DatePickerDialog, TimePickerDialog) for helping
users enter dates and times.

The DatePicker and DatePickerDialog allow you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note
that the month runs from e for January through 11 for December. Most

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

importantly, each let you provide a callback object (onDatecChangedListener or
OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are using
the dialog, since there is no other way for you to get at the chosen date later
on.

Similarly, TimePicker and TimePickerDialog let you:

- set the initial time the user can adjust, in the form of an hour (e
through 23) and a minute (e through 59)

« indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as "military
time" and in the rest of the world is thought of as "the way times are
supposed to be")

- provide a callback object (onTimeChangedListener or
onTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the chrono sample project, here's a trivial layout
containing a label and two buttons - the buttons will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView android:id="@+id/dateAndTime"
android:layout_width="fill _parent"
android:layout_height="wrap_content"
/>
<Button android:id="@+id/dateBtn"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Set the Date"
/>
<Button android:id="@+id/timeBtn"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Set the Time"
/>
</LinearLayout>

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

The more interesting stuff comes in the Java source:

public class ChronoDemo extends Activity {
DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
TextView dateAndTimelLabel;
Calendar dateAndTime=Calendar.getInstance();
DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener()

public void onDateSet(DatePicker view, int year, int monthOfYear,
int dayOfMonth) {

dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
updatelLabel();

¥

s

TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener()

public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updatelLabel();
}
b

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.dateBtn);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
new DatePickerDialog(ChronoDemo.this,
d,
dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH)).show();
¥
1

btn=(Button)findViewById(R.id.timeBtn);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
new TimePickerDialog(ChronoDemo.this,
tJ
dateAndTime.get(Calendar.HOUR),
dateAndTime.get(Calendar.MINUTE),
true).show();

1)

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

updateLabel();
}

private void updateLabel() {
dateAndTimeLabel.setText (fmtDateAndTime
.format (dateAndTime.getTime()));

The "model" for this activity is just a Calendar instance, initially set to be the
current date and time. We pour it into the view via a DateFormat formatter. In
the updateLabel() method, we take the current calendar, format it, and put it
in the Textview.

Each button is given a onClickListener callback object. When the button is
clicked, either a DatePickerDialog or a TimePickerDialog is shown. In the case
of the DatePickerDialog, we give it a OnDateSetListener callback that updates
the calendar with the new date (year, month, day of month). We also give
the dialog the last-selected date, getting the values out of the calendar. In
the case of the TimePickerDialog, it gets a OnTimeSetListener callback to
update the time portion of the calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Ml & 6:50 PM

ChronoDemo

Set the Date
Set the Time

Figure 32, The ChronoDemo sample application, as initially launched

Ml € s:51 pm

G Sat, August 23, 2008

+ f + +
Aug §f 23 2008

Cancel

Figure 33. The same application, showing the date picker dialog

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

M€ 6:51 PM

Figure 34. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you
may wish to use the DigitalClock or AnalogClock widgets. These are
extremely easy to use, as they automatically update with the passage of time.
All you need to do it put them in your layout and let them do their thing.

For example, from the Clocks sample application, here is an XML layout
containing both Digitalclock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<AnalogClock android:id="@+id/analog"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_alignParentTop="true"
/>
<DigitalClock android:id="@+id/digital"

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_below="@id/analog"
/>

</RelativelLayout>

Without any Java code other than the generated stub, we can build this
project and get the following activity:

il & 6:52Pm

ClocksDemo

Figure 35. The ClocksDemo sample application

Making Progress

If you need to be doing something for a long period of time, you owe it to
your users to do two things:

« Usea background thread, which will be covered in a later chapter

« Keep them apprised of your progress, lest they think your activity
has wandered away and will never come back

The typical approach to keeping users informed of progress is some form of
progress bar or "throbber” (think the animated graphic towards the upper-

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

right corner of many Web browsers). Android supports this through the
ProgressBar widget.

A PprogressBar keeps track of progress, defined as an integer, with o
indicating no progress has been made. You can define the maximum end of
the range - what value indicates progress is complete - via setMax(). By
default, a progressBar starts with a progress of o, though you can start from
some other position via setProgress().

If you prefer your progress bar to be indeterminate, use setIndeterminate(),
setting it to true.

In your Java code, you can either positively set the amount of progress that
has been made (via setProgress()) or increment the progress from its
current amount (via incrementProgressBy()). You can find out how much
progress has been made via getProgress().

Since the ProgressBar is tied closely to the use of threads - a background
thread doing work, updating the UI thread with new progress information —
we will hold off demonstrating the use of ProgressBar to a later chapter.

Putting It On My Tab

The general Android philosophy is to keep activities short and sweet. If
there is more information than can reasonably fit on one screen, albeit
perhaps with scrolling, then it perhaps belongs in another activity kicked off
via an Intent, as will be described later in this book. However, that can be
complicated to set up. Moreover, sometimes there legitimately is a lot of
information that needs to be collected to be processed as an atomic
operation.

In a traditional Ul, you might use tabs to accomplish this end, such as a
JTabbedPane in Java/Swing. In Android, you now have an option of using a
TabHost container in much the same way - a portion of your activity's screen
is taken up with tabs which, when clicked, swap out part of the view and
replace it with something else. For example, you might have an activity with

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

a tab for entering a location and a second tab for showing a map of that
location.

Some GUI toolkits refer to "tabs" as being just the things a user clicks on to
toggle from one view to another. Some toolkits refer to "tabs" as being the
combination of the clickable button-ish element and the content that
appears when that tab is chosen. Android treats the tab buttons and
contents as discrete entities, so we will call them "tab buttons" and "tab
contents" in this section.

The Pieces

There are a few widgets and containers you need to use in order to set up a
tabbed portion of a view:

« TabHost is the overarching container for the tab buttons and tab
contents

+ TabWidget implements the row of tab buttons, which contain text
labels and optionally contain icons

+ Framelayout is the container for the tab contents; each tab content is
a child of the FrameLayout

This is similar to the approach that Mozilla's XUL takes. In XUL's case, the
tabbox element corresponds to Android's TabHost, the tabs element
corresponds to TabWidget, and tabpanels corresponds to the FrameLayout.

The Idiosyncrasies

There are a few rules to follow, at least in this milestone edition of the
Android toolkit, in order to make these three work together:

+ You must give the TabWidget an android:id of @android:id/tabs

« You must set aside some padding in the FrameLayout for the tab
buttons (more on this below)

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

« If you wish to use the TabActivity, you must give the TabHost an
android:id of @android:id/tabhost

TabActivity, like ListActivity, wraps a common Ul pattern (activity made
up entirely of tabs) into a pattern-aware activity subclass. You do not
necessarily have to use TabActivity — a plain activity can use tabs as well.

With respect to the FrameLayout padding issue, for whatever reason, the
Tabwidget does not seem to allocate its own space inside the TabHost
container. In other words, no matter what you specify for
android:layout_height for the TabWidget, the FrameLayout ignores it and
draws at the top of the overall TabHost. Your tab contents obscure your tab
buttons. Hence, you need to leave enough padding (via android:paddingTop)
in FrameLayout to "shove" the actual tab contents down beneath the tab
buttons. This is likely a bug, so this behavior may well change in future
versions of the toolkit.

In addition, the Tabwidget seems to always draw itself with room for icons,
even if you do not supply icons. Hence, for this version of the toolkit, you
need to supply at least 62 pixels of padding, perhaps more depending on the
icons you supply.

For example, here is a layout definition for a tabbed activity, from Tab:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent">
<TabHost android:id="@+id/tabhost"
android:layout_width="fill_parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
/>
<FramelLayout android:id="@android:id/tabcontent
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:paddingTop="62px">
<AnalogClock android:id="@+id/tabl"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

android:layout_centerHorizontal="true"

/>

<Button android:id="@+id/tab2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="A semi-random button"

/>

</FramelLayout>
</TabHost>
</LinearLayout>

Note that the Tabwidget and FrameLayout are immediate children of the
TabHost, and the FrameLayout itself has children representing the various
tabs. In this case, there are two tabs: a clock and a button. In a more
complicated scenario, the tabs are probably some form of container (e.g.,
LinearLayout) with their own contents.

Wiring It Together

The Java code needs to tell the TabHost what views represent the tab contents
and what the tab buttons should look like. This is all wrapped up in Tabspec
objects. You get a TabSpec instance from the host via newTabspec(), fill it out,
then add it to the host in the proper sequence.

The two key methods on TabSpec are:

+ setContent(), where you indicate what goes in the tab content for
this tab, typically the android:id of the view you want shown when
this tab is selected

+ setIndicator(), where you provide the caption for the tab button
and, in some flavors of this method, supply a brawable to represent
the icon for the tab

Note that tab "indicators" can actually be views in their own right, if you
need more control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any
of these Tabspec objects. The call to setup() is not needed if you are using
the TabActivity base class for your activity.

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

For example, here is the Java code to wire together the tabs from the
preceding layout example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);
tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("tagl");
spec.setContent(R.id.tabl);
spec.setIndicator("Clock");

tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");

tabs.addTab(spec);

tabs.setCurrentTab(9);

We find our TabHost via the familiar findviewById() method, then have it
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose
purpose is unknown at this time. Given the spec, you call setContent() and
setIndicator(), then call addTab() back on the TabHost to register the tab as
available for use. Finally, you can choose which tab is the one to show via
setCurrentTab(), providing the e-based index of the tab.

The result?

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Ml @ 6:54 PM

TabDemo

Figure 36. The TabDemo sample application, showing the first tab

Ml @ 6:54 PM

TabDemo

Button

A semi-random button

L — |
Figure 37. The same application, showing the second tab

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Other Containers of Note

Android offers AbsoluteLayout, where the contents are laid out based on
specific coordinate positions. You tell AbsoluteLayout where to place a child
in precise X,Y coordinates, and Android puts it there, no questions asked.
On the plus side, this gives you precise positioning. On the minus side, it
means your views will only look "right" on screens of a certain dimension, or
it requires you to write a bunch of code to adjust the coordinates based on
screen size. Since Android screens might run the gamut of sizes, plus have
new sizes crop up periodically, using AbsoluteLayout could get quite
annoying.

Android also has a new flavor of list, the ExpandableListview. This provides a
simplified tree representation, supporting two levels of depth: groups and
children. Groups contain children; children are "leaves" of the tree. This
requires a new set of adapters, since the ListAdapter family does not provide
any sort of group information for the items in the list. This view feels like it
is a work-in-progress and so is not covered here, but should appear in a
future edition of this book.

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 11

Applying Menus

Like applications for the desktop and some mobile operating systems, such
as PalmOS and Windows Mobile, Android supports activities with
"application" menus. Some Android phones will have a dedicated menu key
for popping up the menu; others will offer alternate means for triggering the
menu to appear.

Also, as with many GUI toolkits, you can create "context menus". On a
traditional GUI, this might be triggered by the right-mouse button. On
mobile devices, context menus typically appear when the user "taps-and-
holds" over a particular widget. For example, if a Textview had a context
menu, and the device was designed for finger-based touch input, you could
push the Textview with your finger, hold it for a second or two, and a pop-up
menu will appear for the user to choose from.

Where Android differs from most other GUI toolkits is in terms of menu
construction. While you can add items to the menu, you do not have full
control over the menu's contents, nor the timing of when the menu is built.
Part of the menu is system-defined, and that portion is managed by the
Android framework itself.

Flavors of Menu

Android considers the two types of menu described above as being the
"options menu" and "context menu". The options menu is triggered by

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

pressing the hardware "Menu" button on the device, while the context menu
is raised by a tap-and-hold on the widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and
expanded. When the user first presses the "Menu" button, the icon mode
will appear, showing up to the first six menu choices as large, finger-friendly
buttons in a grid at the bottom of the screen. If the menu has more than six
choices, the sixth button will become "More" - clicking that option will
bring up the expanded mode, showing the remaining choices not visible in
the regular menu. The menu is scrollable, so the user can get to any of the
menu choices.

Menus of Options

Rather than building your activity's options menu during onCreate(), the
way you wire up the rest of your U, you instead need to implement
onCreateOptionsMenu(). This callback receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in
any menu choices it feels are necessary. Then, you can go about adding your
own options, described below.

If you will need to adjust the menu during your activity's use (e.g., disable a
now-invalid menu choice), just hold onto the Menu instance you receive in
onCreateOptionsMenu(). Note, however, that onCreateOptionsMenu() will be
called each and every time the user presses the Menu button.

Given that you have received a Menu object via onCreateOptionsMenu(), you
add menu choices by calling add(). There are many flavors of this method,
which require some combination of the following parameters:

« A group identifier (int), which should be NoNE unless you are
creating a specific grouped set of menu choices for use with
setGroupCheckable() (see below)

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

+ A choice identifier (also an int), for use in identifying this choice in
the onoptionsItemSelected() callback when a menu choice is chosen

+ An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own - for now, just use NONE

« The text of the menu choice, as a String or a resource ID

The add() family of methods all return an instance of MenuItem, where you
can adjust any of the menu item settings you have already set (e.g., the text
of the menu choice). You can also set the shortcuts for the menu choice -
single-character mnemonics that choose that menu choice when the menu
is visible. Android supports both an alphabetic (or "qwerty") set of shortcuts
and a numeric set of shortcuts. These are set individually by calling
setAlphabeticShortcut() and setNumericShortcut() respectively. The menu is
placed into alphabetic shortcut mode by calling setQwertyMode() on the
menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu
features, such as:

« Calling MenuItem#setCheckable() with a choice identifier, to control if
the menu choice has a two-state checkbox alongside the title, where
the checkbox value gets toggled when the user chooses that menu
choice

+ Calling Menu#setGroupCheckable() with a group identifier, to turn a
set of menu choices into ones with a mutual-exclusion radio button
between them, so one out of the group can be in the "checked" state
atany time

You can also call addIntentOptions() to populate the menu with menu
choices corresponding to the available activities for an intent (see the
chapter on launching activities)

Finally, you can create fly-out sub-menus by calling addSsubMenu(), supplying
the same parameters as addMenu(). Android will eventually call
onCreatePanelMenu(), passing it the choice identifier of your sub-menu,

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

along with another Menu instance representing the sub-menu itself. As with
onCreateOptionsMenu(), you should chain upward to the superclass, then add
menu choices to the sub-menu. One limitation is that you cannot
indefinitely nest sub-menus - a menu can have a sub-menu, but a sub-menu
cannot itself have a sub-sub-menu.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are
given the MenuItem object corresponding to the selected menu choice. A
typical pattern is to switch() on the menu ID (item.getItemId()) and take
appropriate behavior. Note that onOptionsItemSelected() is used regardless
of whether the chosen menu item was in the base menu or in a submenu.

Menus in Context

By and large, context menus use the same guts as option menus. The two
main differences are how you populate the menu and how you are informed
of menu choices.

First, you need to indicate which widget(s) on your activity have context
menus. To do this, call registerForContextMenu() from your activity,
supplying the view that is the widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other
things, is passed the view you supplied in registerForContextMenu(). You can
use that to determine which menu to build, assuming your activity has more
than one.

The onCreateContextMenu() method gets the ContextMenu itself, the view the
context menu is associated with, and a ContextMenu.ContextMenuInfo, which
tells you which item in the list the user did the tap-and-hold over, in case
you want to customize the context menu based on that information. For
example, you could toggle a checkable menu choice based upon the current
state of the item. Note that you only get this "extra information" when the
menu is built, not when a choice is made.

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

It is also important to note that onCreateContextMenu() gets called for each
time the context menu is requested. Unlike the options menu (which is only
built once per activity), context menus are discarded once they are used or
dismissed. Hence, you do not want to hold onto the supplied contextMenu
object; just rely on getting the chance to rebuild the menu to suit your
activity's needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you only get the MenuItem
instance that was chosen in this callback. As a result, if your activity has two
or more context menus, you may want to ensure they have unique menu
item identifiers for all their choices, so you can tell them apart in this
callback. = Otherwise, this callback behaves the same as
onOptionsItemSelected() as is described above.

Taking a Peek

In the sample project Menus, you will find an amended version of the
Listview sample (List) with an associated menu. Since the menus are
defined in Java code, the XML layout need not change and is not reprinted
here.

However, the Java code has a few new behaviors:

public class MenuDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

public static final int EIGHT_ID = Menu.FIRST+1;

public static final int SIXTEEN_ID = Menu.FIRST+2;

public static final int TWENTY_FOUR_ID = Menu.FIRST+3;

public static final int TWO_ID = Menu.FIRST+4;

public static final int THIRTY_TWO_ID = Menu.FIRST+5;

public static final int FORTY_ID = Menu.FIRST+6;

public static final int FORTY_EIGHT_ID = Menu.FIRST+7;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items));
selection=(TextView)findViewById(R.id.selection);

registerForContextMenu(getListView());

}

public void onListItemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}

@Override
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
populateMenu(menu);

}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
populateMenu(menu) ;

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
applyMenuChoice(item);

return(applyMenuChoice(item) ||
super.onOptionsItemSelected(item));

}

@0verride
public boolean onContextItemSelected(MenuItem item) {

return(applyMenuChoice(item) ||
super.onContextItemSelected(item));

}

private void populateMenu(Menu menu) {
menu.add(Menu.NONE, TWO_ID, Menu.NONE, "2 Pixels");
menu.add (Menu.NONE, EIGHT_ID, Menu.NONE, "8 Pixels");
menu.add (Menu.NONE, SIXTEEN_ID, Menu.NONE, "16 Pixels");
menu.add(Menu.NONE, TWENTY_FOUR_ID, Menu.NONE, "24 Pixels");
menu.add (Menu.NONE, THIRTY_TWO_ID, Menu.NONE, "32 Pixels");
menu.add(Menu.NONE, FORTY_ID, Menu.NONE, "40 Pixels");
menu.add(Menu.NONE, FORTY_EIGHT_ID, Menu.NONE, "48 Pixels");

}

private boolean applyMenuChoice(MenuItem item) {
switch (item.getItemId()) {
case EIGHT_ID:

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

getListView().setDividerHeight(3);
return(true);

case SIXTEEN_ID:
getListView().setDividerHeight(16);
return(true);

case TWENTY_FOUR_ID:
getListView().setDividerHeight(24);
return(true);

case TWO_ID:
getListView().setDividerHeight(2);
return(true);

case THIRTY_TWO_ID:
getListView().setDividerHeight(32);
return(true);

case FORTY_ID:
getListView().setDividerHeight(40);
return(true);

case FORTY_EIGHT_ID:
getListView().setDividerHeight(483);
return(true);

}

return(false);

}

}

In onCreate(), we register our list widget as having a context menu, which we
fill in via our populateMenu() private method, by way of
onCreateContextMenu().

We also implement the onCreateOptionsMenu() callback, indicating that our
activity also has an options menu. Once again, we delegate to populateMenu()
to fill in the menu.

Our implementations of onOptionsItemSelected() (for options menu
selections) and onContextItemSelected() (for context menu selections) both
delegate to a private applyMenuChoice() method, plus chaining upwards to
the superclass if none of our menu choices was the one selected by the user.

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

In populateMenu(), we add four menu choices, each with a unique identifier.
Being lazy, we eschew the icons.

In applyMenuChoice(), we see if any of our menu choices were chosen; if so,
we set the list's divider size to be the user-selected width.

Initially, the activity looks the same in the emulator as it did for ListDemo:

Bl @ 4:31PM

MenuDemo
R
lorem

ipsum

dolor

sit

amet
consectetuer

Figure 38. The MenuDemo sample application, as initially launched

But, if you press the Menu button, you will get our options menu:

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

B & 432pPM
MenuDemo
- |

lorem

ipsum

dolor

sit

2 Pixels 8 Pixels 16 Pixels
24 Pixels 32 Pixels More

Figure 39. The same application, showing the options menu

Clicking the More button shows the remaining two menu choices:

B @ 4:32pPM
MenuDemo

lorem

ipsum

dolor

sit

40 Pixels

48 Pixels

Figure 40. The same application, the remaining menu choices

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

Choosing a height (say, 16 pixels) then changes the divider height of the list
to something garish:

Bl @ 4:32PM

MenuDemo

lorem

ipsum

dolor

Figure 41. The same application, made ugly

You can trigger the context menu by doing a tap-and-hold on any item in
the list:

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Applying Menus

B € 432pPM

2 Pixels

8 Pixels

16 Pixels

24 Pixels

32 Pixels

AN Piveleg

Figure 42. The same application, showing a context menu

Once again, choosing an option sets the divider height.

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 12
Embedding the WebKit Browser

Other GUI toolkits let you use HTML for presenting information, from
limited HTML renderers (e.g., Java/Swing, wxWidgets) to embedding
Internet Explorer into .NET applications. Android is much the same, in that
you can embed the built-in Web browser as a widget in your own activities,
for displaying HTML or full-fledged browsing. The Android browser is
based on WebKit, the same engine that powers Apple's Safari Web browser.

The Android browser is sufficiently complex that it gets its own Java package
(android.webkit), though using the webview widget itself can be simple or
powerful, based upon your requirements.

A Browser, Writ Small

For simple stuff, webview is not significantly different than any other widget
in Android - pop it into a layout, tell it what URL to navigate to via Java
code, and you're done.

For example (Browser1), here is a simple layout with a webview:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>
<WebView android:id="@+id/webkit"

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>
</LinearLayout>

As with any other widget, you need to tell it how it should fill up the space
in the layout (in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.webkit;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findviewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");

The only bit unusual with this edition of oncCreate() is that we invoke
loadurl() on the webview widget, to tell it to load a Web page (in this case,
the home page of some random firm).

However, we also have to make one change to AndroidManifest.xml,
requesting permission to access the Internet:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.webkit">
<uses-permission android:name="android.permission.INTERNET" />
<application>
<activity android:name=".BrowserDemol" android:label="BrowserDemol">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

</application>
</manifest>

If we fail to add this permission, the browser will refuse to load pages.

The resulting activity looks like a Web browser, just with hidden scrollbars:

il & 818 PM

BrowserDemo1

Home

Commq
All
About
the
Commq

The

firm's
mission

is to

help

people

and
organizatior

Figure 43. The Browserl sample application
As with the regular Android browser, you can pan around the page by

dragging it, while the directional pad moves you around all the focusable
elements on the page.

What is missing is all the extra accouterments that make up a Web browser,
such as a navigational toolbar.

Loading It Up

There are two main ways to get content into the webview. One, shown above,
is to provide the browser with a URL and have the browser display that page
via loadurl(). The browser will access the Internet through whatever means

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

are available to that specific device at the present time (WiFi, cellular
network, Bluetooth-tethered phone, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadbata(). Here, you supply the HTML for the
browser to view. You might use this to:

 display a manual that was installed as a file with your application
package

- display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

« generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadbata(). The simpler one allows you to provide
the content, the MIME type, and the encoding, all as strings. Typically, your
MIME type will be text/html and your encoding will be uTF-8 for ordinary
HTML.

For example, if you replace the loadurl() invocation in the previous example
with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

Bl @ 818 pPm
BrowserDemo2

Hello, world!

Figure 44. The Browser2 sample application

This is also available as a fully-buildable sample, as Browser2.

Navigating the Waters

As was mentioned above, there is no navigation toolbar with the webview
widget. This allows you to use it in places where such a toolbar would be
pointless and a waste of screen real estate. That being said, if you want to
offer navigational capabilities, you can, but you have to supply the UI.

webView offers ways to perform garden-variety browser navigation, including:

reload() to refresh the currently-viewed Web page

goBack() to go back one step in the browser history, and canGoBack()
to determine if there is any history to go back to

goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

goBackOrForward() to go backwards or forwards in the browser
history, where negative numbers represent a count of steps to go

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

backwards, and positive numbers represent how many steps to go
forwards

+ canGoBackOrForward() to see if the browser can go backwards or
forwards the stated number of steps (following the same
positive/negative convention as goBackOrForward())

« clearcache() to clear the browser resource cache and clearHistory()
to clear the browsing history

Entertaining the Client

Particularly if you are going to use the webview as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times,
particularly when users click on links. You will want to make sure those links
are handled properly, either by loading your own content back into the
WebView, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see the chapter on launching activities).

Your hook into webview activity is via setWebviewClient(), which takes an
instance of a webviewClient implementation as a parameter. The supplied
callback object will be notified of a wide range of activities, ranging from
when parts of a page have been retrieved (onPagestarted(), etc.) to when
you, as the host application, need to handle certain user- or circumstance-
initiated events, such as:

* onTooManyRedirects()
* onReceivedHttpAuthRequest()

. etc.

A common hook will be shouldoverrideUrlLoading(), where your callback is
passed a URL (plus the webview itself) and you return true if you will handle
the request or false if you want default handling (e.g., actually fetch the
Web page referenced by the URL). In the case of a feed reader application,
for example, you will probably not have a full browser with navigation built
into your reader, so if the user clicks a URL, you probably want to use an
Intent to ask Android to load that page in a full browser. But, if you have

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

inserted a "fake" URL into the HTML, representing a link to some activity-
provided content, you can update the Webview yourself.

For example, let's amend the first browser example to be a browser-based
equivalent of our original example: an application that, upon a click, shows
the current time.

From Browser3, here is the revised Java:

package com.commonsware.android.webkit;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebView;
import android.webkit.WebViewClient;
import java.util.Date;

public class BrowserDemo3 extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findviewById(R.id.webkit);
browser.setWebViewClient(new Callback());

loadTime();
}

void loadTime() {
String page="<html><body>
+new Date().toString()
+"</body></html>";

browser.loadDataWithBaseURL("x-data://base", page,
"text/html", "UTF-8",
null);
}

private class Callback extends WebViewClient {
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);

}

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

Here, we load a simple Web page into the browser (1oadTime()) that consists
of the current time, made into a hyperlink to the /clock URL. We also attach
an instance of a WebviewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want
to just reload the webview via loadTime().

Running this activity gives us:

Eh Ml @ 9:46 PM
BrowserDemo3

Thu Aug 21 21:46:26 GMT+00:00 2008

Figure 45. The Browser3 sample application

Selecting the link and clicking the D-pad center button will "click” the link,
causing us to rebuild the page with the new time.

Settings, Preferences, and Options (Oh, My!)
With your favorite desktop Web browser, you have some sort of "settings" or
"preferences” or "options" window. Between that and the toolbar controls,

you can tweak and twiddle the behavior of your browser, from preferred
fonts to the behavior of Javascript.

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Embedding the WebKit Browser

Similarly, you can adjust the settings of your webview widget as you see fit, via
the webSettings instance returned from calling the widget's getSettings()
method.

There are lots of options on WebSettings to play with. Most appear fairly
esoteric (e.g., setFantasyFontFamily ()). However, here are some that you may
find more useful:

+ Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like
LARGER and SMALLEST)

+ Control Javascript via setJavascriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows)

+ Control Web site rendering via setUserAgent() — @ means the webview
gives the Web site a user-agent string that indicates it is a mobile
browser, while 1 results in a user-agent string that suggests it is a
desktop browser

The settings you change are not persistent, so you should store them
somewhere (such as via the Android preferences engine) if you are allowing
your users to determine the settings, versus hard-wiring the settings in your
application.

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 13
Showing Pop-Up Messages

Sometimes, your activity (or other piece of Android code) will need to speak
up.

Not every interaction with Android users will be neat, tidy, and containable
in activities composed of views. Errors will crop up. Background tasks may
take way longer than expected. Something asynchronous may occur, such as
an incoming message. In these and other cases, you may need to
communicate with the user outside the bounds of the traditional user
interface.

Of course, this is nothing new. Error messages in the form of dialog boxes
have been around for a very long time. More subtle indicators also exist,
from task tray icons to bouncing dock icons to a vibrating cell phone.

Android has quite a few systems for letting you alert your users outside the
bounds of an Activity-based UI. One, notifications, is tied heavily into
intents and services and, as such, is covered in a later chapter. In this
chapter, you will see two means of raising pop-up messages: toasts and
alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on
its own without user interaction. Moreover, it does not take focus away from

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Showing Pop-Up Messages

the currently-active Activity, so if the user is busy writing the next Great
American Programming Guide, they will not have keystrokes be "eaten" by
the message.

Since a Toast is transient, you have no way of knowing if the user even
notices it. You get no acknowledgment from them, nor does the message
stick around for a long time to pester the user. Hence, the Toast is mostly for
advisory messages, such as indicating a long-running background task is
completed, the battery has dropped to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() that
accepts a string (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other context) plus a
duration. The duration is expressed in the form of the LENGTH_SHORT or
LENGTH_LONG constants to indicate, on a relative basis, how long the message
should remain visible.

If you would prefer your Toast be made out of some other view, rather that
be a boring old piece of text, simply create a new Toast instance via the
constructor (which takes a context), then call setview() to supply it with the
view to use and setDuration() to set the duration.

Once your Toast is configured, call its show() method, and the message will
be displayed.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you
want is an AlertDialog. As with any other modal dialog box, an AlertDialog
pops up, grabs the focus, and stays there until closed by the user. You might
use this for a critical error, a validation message that cannot be effectively
displayed in the base activity Ul, or something else where you are sure that
the user needs to see the message and needs to see it now.

The simplest way to construct an AlertDialog is to use the Builder class.
Following in true builder style, Builder offers a series of methods to

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Showing Pop-Up Messages

configure an AlertDialog, each method returning the Builder for easy
chaining. At the end, you call show() on the builder to display the dialog box.

Commonly-used configuration methods on Builder include:

+ setMessage() if you want the "body" of the dialog to be a simple
textual message, from either a supplied string or a supplied string
resource ID

« setTitle() and setIcon(), to configure the text and/or icon to appear
in the title bar of the dialog box

+ setPositiveButton(), setNeutralButton(), and setNegativeButton(), to
indicate which button(s) should appear across the bottom of the
dialog, where they should be positioned (left, center, or right,
respectively), what their captions should be, and what logic should
be invoked when the button is clicked (besides dismissing the
dialog).

If you need to configure the AlertDialog beyond what the builder allows,
instead of calling show(), call create() to get the partially-built AlertDialog

instance, configure it the rest of the way, then call one of the flavors of
show() on the AlertDialog itself.

Once show() is called, the dialog box will appear and await user input.

Checking Them Out

To see how these work in practice, take a peek at Message, containing the
following layout...:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<Button
android:id="@+id/alert"
android:text="Raise an alert"
android:layout_width="fill_parent”
android:layout_height="wrap_content"/>

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Showing Pop-Up Messages

<Button
android:id="@+id/toast"
android:text="Make a toast"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
</LinearLayout>

...and Java code:

public class MessageDemo extends Activity implements View.OnClickListener {
Button alert;
Button toast;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

alert=(Button)findViewById(R.id.alert);
alert.setOnClickListener(this);
toast=(Button)findviewById(R.id.toast);
toast.setOnClickListener(this);

}

public void onClick(View view) {
if (view==alert) {
new AlertDialog.Builder(this)
.setTitle("MessageDemo")
.setMessage("eek!")
.setNeutralButton("Close", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dlg, int sumthin) {
// do nothing - it will close on its own

}
H
.show();
)
else {
Toast
.makeText(this, "<clink, clink>", Toast.LENGTH_SHORT)
.show();
)

The layout is unremarkable - just a pair of buttons to trigger the alert and
the toast.

When you click the alert button, we use a builder (new Builder(this)) to set
the title (setTitle("MessageDemo")), message (setMessage("eek!")), and

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Showing Pop-Up Messages

"neutral button" (setNeutralButton("Close", new OnClickListener() ...)
before showing the dialog. When the button is clicked, the onClickListener
callback does nothing - the mere fact the button was pressed causes the
dialog to be dismissed. However, you could update information in your
activity based upon the user action, particularly if you have multiple buttons
for the user to choose from. The result is a typical dialog box:

Eh Ml & 5:05PM

@ WMessageDemo

eek!

Figure 46. The MessageDemo sample application, after clicking the "Raise an
alert"” button

When you click the toast button, the Toast class makes us a text-based toast

(makeText(this, "<clink, clink>", LENGTH_SHORT)), which we then show().
The result is a short-lived, non-interrupting message:

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Showing Pop-Up Messages

Ml @ 6:05pPM

MessageDemo

Raise an alert

Make a toast

<clink, clink=

Figure 47. The same application, after clicking the "Make a toast" button

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 14

Dealing with Threads

Ideally, you want your activities to be downright snappy, so your users don't
feel that your application is sluggish. Responding to user input quickly (e.g.,
200ms) is a fine goal. At minimum, though, you need to make sure you
respond within 5 seconds, lest the ActivityManager decide to play the role of
the Grim Reaper and kill off your activity as being non-responsive.

Of course, your activity might have real work to do, which takes non-
negligible amounts of time. There are two ways of dealing with this:

1. Do expensive operations in a background service, relying on
notifications to prompt users to go back to your activity

2. Do expensive work in a background thread
Android provides a veritable cornucopia of means to set up background
threads yet allow them to safely interact with the UI on the UI thread. These

include Handler objects, posting Runnable objects to the view, and using
UIThreadUtilities.

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread
is to create an instance of a Handler subclass. You only need one Handler
object per activity, and you do not need to manually register it or anything -

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Dealing with Threads

merely creating the instance is sufficient to register it with the Android
threading subsystem.

Your background thread can communicate with the Handler, which will do
all of its work on the activity Ul thread. This is important, as Ul changes,
such as updating widgets, should only occur on the activity Ul thread.

You have two options for communicating with the Handler: messages and
Runnable objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the Message
object out of the pool. There are a few flavors of obtainMessage(), allowing
you to just create empty Message objects, or ones populated with message
identifiers and arguments. The more complicated your Handler processing
needs to be, the more likely it is you will need to put data into the Message to
help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one
of the sendMessage. . . () family of methods, such as:

+ sendMessage() puts the message on the queue immediately

+ sendMessageAtFrontOfQueue() puts the message on the queue
immediately, and moreover puts it at the front of the message queue
(versus the back, as is the default), so your message takes priority
over all others

« sendMessageAtTime() puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock. uptimeMillis())

« sendMessageDelayed() puts the message on the queue after a delay,
expressed in milliseconds

To process these messages, your Handler needs to implement
handleMessage (), which will be called with each message that appears on the

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Dealing with Threads

message queue. There, the handler can update the Ul as needed. However, it
should still do that work quickly, as other UI work is suspended until the
Handler is done.

For example, let's create a ProgressBar and update it via a Handler. Here is the
layout from Handler:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content" />
</LinearLayout>

The progressBar, in addition to setting the width and height as normal, also
employs two other properties of note:

+ style, which will be covered in greater detail in some future edition
of this book. For now, suffice it to say that it indicates this
ProgressBar should be drawn as the traditional horizontal bar
showing the amount of work that has been completed.

+ android:max, which indicates the maximum value for the ProgressBar
(i.e., at what value is the work "done" and the progress bar
completed). A value of 100 means the ProgressBar works on a simple
percentage system.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.widget.ProgressBar;

public class HandlerDemo extends Activity {
ProgressBar bar;
Handler handler=new Handler() {

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Dealing with Threads

@Override
public void handleMessage(Message msg) {
bar.incrementProgressBy(5);
¥
s

boolean isRunning=false;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
bar=(ProgressBar)findvViewById(R.id.progress);

}

public void onStart() {
super.onStart();
bar.setProgress(9);

Thread background=new Thread(new Runnable() {
public void run() {
try {
for (int i=0;i<20 && isRunning;i++) {
Thread.sleep()
handler.sendMessage(handler.obtainMessage());

}

catch (Throwable t) {
// just end the background thread
}
¥
3

isRunning=true;
background.start();
}

public void onStop() {
super.onStop();
isRunning=false;
}
¥

As part of constructing the Activity, we create an instance of Handler, with
our implementation of handleMessage(). Basically, for any message received,
we update the ProgressBar by 5 points, then exit the message handler.

In onstart(), we set up a background thread. In a real system, this thread
would do something meaningful. Here, we just sleep one second, post a
Message to the Handler, and repeat for a total of 20 passes.

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Dealing with Threads

Note that we then leave onstart(). This is crucial. The onstart() method is
invoked on the activity Ul thread, so it can update widgets and such.
However, that means we need to get out of onstart(), both to let the Handler
get its work done, and also so Android does not think our activity is stuck.

The resulting activity is simply a horizontal progress bar:

6 @l O 8:58 AM

HandlerDemo

w

Figure 48. The HandlerDemo sample application

Runnables
If you would rather not fuss with Message objects, you can also pass Runnable
objects to the Handler, which will run those Runnable objects on the activity

UI thread. Handler offers a set of post...() methods for passing Runnable
objects in for eventual processing.

Running In Place

Just as Handler supports post() and postDelayed() to add Runnable objects to
the event queue, you can use those same methods on view. This lightly

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Dealing with Threads

simplifies your code, in that you can then skip the Handler object. However,
you lose a bit of flexibility, and the Handler has been around longer in the
Android toolkit and may be more tested.

Where, Oh Where Has My UI Thread Gone?

Sometimes, you may not know if you are presently executing on the Ul
thread of your application. For example, if you package some of your code in
a JAR for others to reuse, you might not know whether your code is being
executed on the Ul thread or from a background thread.

To help combat this problem, Activity offers runonuiThread(). This works
similar to the post() methods on Handler and view, in that it queues up a
Runnable to run on the UI thread...if you are not on the UI thread right now.
If you already are on the Ul thread, it invokes the Runnable immediately. This
gives you the best of both worlds: no delay if you are on the UI thread, yet
safety in case you are not.

And Now, The Caveats

Background threads, while eminently possible using the Android Handler
system, are not all happiness and warm puppies. Background threads not
only add complexity, but they have real-world costs in terms of available
memory, CPU, and battery life.

To that end, there are a wide range of scenarios you need to account for with
your background thread, including:

« The possibility that users will interact with your activity's Ul while
the background thread is chugging along. If the work that the
background thread is doing is altered or invalidated by the user
input, you will need to communicate this to the background thread.
Android includes many classes in the java.util.concurrent package
that will help you communicate safely with your background thread.

« The possibility that the activity will be killed off while background
work is going on. For example, after starting your activity, the user

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Dealing with Threads

might have a call come in, followed by a text message, followed by a
need to look up a contact...all of which might be sufficient to kick
your activity out of memory. The next chapter will cover the various
events Android will take your activity through; hook the proper ones
and be sure to shut down your background thread cleanly when you
have the chance.

« The possibility that your user will get irritated if you chew up a lot of
CPU time and battery life without giving any payback. Tactically,
this means using ProgressBar or other means of letting the user
know that something is happening. Strategically, this means you still
need to be efficient at what you do - background threads are no
panacea for sluggish or pointless code.

« The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the
Internet, the device might lose connectivity. Alerting the user of the
problem via a Notification and shutting down the background
thread may be your best option.

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 15
Handling Activity Lifecycle
Events

While this may sound like a broken record...please remember that Android
devices, by and large, are phones. As such, some activities are more
important that others - taking a call is probably more important to users
than is playing Sudoku. And, since it is a phone, it probably has less RAM
than does your current desktop or notebook.

As a result, your activity may find itself being killed off because other
activities are going on and the system needs your activity's memory. Think
of it as the Android equivalent of the "circle of life" - your activity dies so
others may live, and so on. You cannot assume that your activity will run
until you think it is complete, or even until the user thinks it is complete.

This is one example - perhaps the most important example - of how an
activity's lifecycle will affect your own application logic. This chapter covers
the various states and callbacks that make up an activity's lifecycle and how
you can hook into them appropriately.

Schroedinger's Activity

An activity, generally speaking, is in one of four states at any point in time:

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Activity Lifecycle Events

« Active: the activity was started by the user, is running, and is in the
foreground. This is what you're used to thinking of in terms of your
activity's operation.

- Paused: the activity was started by the user, is running, and is
visible, but a notification or something is overlaying part of the
screen. During this time, the user can see your activity but may not
be able to interact with it. For example, if a call comes in, the user
will get the opportunity to take the call or ignore it.

- Stopped: the activity was started by the user, is running, but it is
hidden by other activities that have been launched or switched to.
Your application will not be able to present anything meaningful to
the user directly, only by way of a Notification .

+ Dead: either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of available
memory.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the
four states listed above. Some transitions may result in multiple calls to your
activity, and sometimes Android will kill your application without calling it.
This whole area is rather murky and probably subject to change, so pay close
attention to the official Android documentation as well as this section when
deciding which events to pay attention to and which you can safely ignore.

Note that for all of these, you should chain upward and invoke the
superclass' edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in
all the examples. This will get called in three situations:

1. When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Activity Lifecycle Events

2. If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSaveInstanceState() as a parameter (see below).

3. If the activity had been running and you have set up your activity to
have different resources based on different device states (e.g.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called.

Here is where you initialize your user interface and set up anything that
needs to be done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the
activity is shutting down, either because the activity called finish() (which
"finishes" the activity) or because Android needs RAM and is closing the
activity prematurely. Note that onDestroy() may not get called if the need for
RAM is urgent (e.g., incoming phone call) and that the activity will just get
shut down regardless. Hence, onDestroy() is mostly for cleanly releasing
resources you obtained in oncreate() (if any).

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being
launched, or because it is being brought back to the foreground after having
been hidden (e.g., by another activity, by an incoming phone call).

The onstart() method is called in either of those cases. The onRestart()
method is called in the case where the activity had been stopped and is now
restarting.

Conversely, onstop() is called when the activity is about to be stopped.

onPause() and onResume()

The onResume() method is called just before your activity comes to the
foreground, either after being initially launched, being restarted from a

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Activity Lifecycle Events

stopped state, or after a pop-up dialog (e.g., incoming call) is cleared. This is
a great place to refresh the UI based on things that may have occurred since
the user last was looking at your activity. For example, if you are polling a
service for changes to some information (e.g., new entries for a feed),
onResume() is a fine time to both refresh the current view and, if applicable,
kick off a background thread to update the view (e.g., via a Handler).

Conversely, anything that steals your user away from your activity - mostly,
the activation of another activity — will result in your onPause() being called.
Here, you should undo anything you did in onResume(), such as stopping
background threads, releasing any exclusive-access resources you may have
acquired (e.g., camera), and the like.

Once onpause() is called, Android reserves the right to kill off your activity's
process at any point. Hence, you should not be relying upon receiving any
further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the
application-general level (e.g., wiring together the last pieces of your Ul in
onCreate(), closing down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of
seamlessness. Activities may come and go as dictated by memory
requirements, but users are, ideally, unaware that this is going on. If, for
example, they were using a calculator, and come back to that calculator after
an absence, they should see whatever number(s) they were working on
originally - unless they themselves took some action to close down the
calculator.

To make all this work, activities need to be able to save their application-
instance state, and to do so quickly and cheaply. Since activities could get
killed off at any time, activities may need to save their state more frequently
than one might expect. Then, when the activity restarts, the activity should

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Activity Lifecycle Events

get its former state back, so it can restore the activity to the way it appeared
previously.

Saving instance state is handled by onsaveInstancestate(). This supplies a
Bundle, into which activities can pour whatever data they need (e.g., the
number showing on the calculator's display). This method implementation
needs to be speedy, so do not try to do too much fancy - just put your data in
the Bundle and exit the method.

That instance state is provided to you again in two places:

1. InonCreate()

2. In onRestoreInstanceState()

It is your choice when you wish to re-apply the state data to your activity —
either callback is a reasonable option.

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART lll - Data Stores, Network
Services, and APIs

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 16

Using Preferences

Android has many different ways for you to store data for long-term use by
your activity. The simplest to use is the preferences system.

Android allows activities and applications to keep preferences, in the form
of key/value pairs (akin to a Map), that will hang around between invocations
of an activity. As the name suggests, the primary purpose is for you to store
user-specified configuration details, such as the last feed the user looked at
in your feed reader, or what sort order to use by default on a list, or whatever.
Of course, you can store in the preferences whatever you like, so long as it is
keyed by a string and has a primitive value (boolean, string, etc.)

Preferences can either be for a single activity or shared among all activities
in an application. Eventually, preferences might be shareable across
applications, but that is not supported as of the time of this writing.

Getting What You Want

To get access to the preferences, you have three APIs to choose from:

1. getPreferences() from within your Activity, to access activity-
specific preferences

2. getSharedPreferences() from within your Activity (or other
application Context), to access application-level preferences

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

3. getDefaultSharedPreferences(), on PreferencesManager, to get the
shared preferences that work in concert with Android's overall
preference framework

The first two take a security mode parameter - for now, pass in e. The
getSharedPreferences() method also takes a name of a set of preferences -
getPreferences() effectively calls getSharedPreferences() with the activity's
class name as the preference set name. The getDefaultSharedPreferences()
method takes the context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a
series of getters to access named preferences, returning a suitably-typed
result (e.g., getBoolean() to return a boolean preference). The getters also
take a default value, which is returned if there is no preference set under the
specified key.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an
"editor" for the preferences. This object has a set of setters that mirror the
getters on the parent SharedPreferences object. It also has:

« remove() to get rid of a single named preference
+ clear() to get rid of all preferences
« commit() to persist your changes made via the editor
The last one is important - if you modify preferences via the editor and fail

to commit() the changes, those changes will evaporate once the editor goes
out of scope.

Conversely, since the preferences object supports live changes, if one part of
your application (say, an activity) modifies shared preferences, another part
of your application (say, a service) will have access to the changed value
immediately.

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

And Now, a Word From Our Framework

Beginning with the 0.9 SDK, Android has introduced a framework for
managing preferences. Ironically, this framework does not change anything
shown above. Instead, the framework is more for presenting a consistent set
of preference-setting options for users, so different applications do not have
to "reinvent the wheel".

The linchpin to the preferences framework is yet another XML data
structure. You can describe your application's preferences in an XML file
stored in your project's res/xml/ directory. Given that, Android can present a
pleasant user Ul for manipulating those preferences, which are then stored
in the sharedpPreferences you get back from getDefaultSharedPreferences().

Below, you will find the preference XML for the Simple preferences sample
project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="@string/checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off" />
<RingtonePreference
android:key="@string/ringtone"
android:title="Ringtone Preference”
android:showDefault="true"
android:showSilent="true"
android:summary="Ping a tone, any tone, even silence" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. We will
explain why it is named that later in this chapter; for now, take it on faith
that it is a sensible name.

One of the things you can have inside a PreferenceScreen element, not
surprisingly, are preference definitions. These are subclasses of preference,
such as checkBoxPreference or RingtonePreference, as shown above. As one
might expect, these allow you to check a checkbox or choose a ringtone,
respectively. In the case of RingtonePreference, you have your option of

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

allowing users to choose the system default ringtone, or to choose "silence"
as aringtone.

Letting Users Have Their Say

Given that you have set up the preference XML, you can use a nearly-built-in
activity for allowing your users to set their preferences. The activity is
"nearly-built-in" because you need to subclass it to point it to your
preference XML, plus hook it into the rest of your application.

So, for example, here is the EditPreferences activity of the Simple project:

package com.commonsware.android.prefs;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
}
)

As you can see, there is not much to see. All you need to do is call
addPreferencesFromResource() and specify the XML resource containing your
preferences.

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.prefs">
<application android:label="@string/app_name">
<activity
android:name=".SimplePrefsDemo"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

</intent-filter>

</activity>

<activity
android:name=".EditPreferences"
android:label="@string/app_name">

</activity>

</application>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu
option, here pulled from SimplePrefsDemo:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")
.setIcon(R.drawable.misc)
.setAlphabeticShortcut('e');
menu.add(Menu.NONE, CLOSE_ID, Menu.NONE, "Close")
.setIcon(R.drawable.eject)
.setAlphabeticShortcut('c');

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case EDIT_ID:
startActivity(new Intent(this, EditPreferences.class));
return(true);

case CLOSE_ID:
finish();
return(true);

}

return(super.onOptionsItemSelected(item));

}

However, that is all that is needed, and it really is not that much code
outside of the preferences XML. When you get for your effort is an Android-
supplied preference Ul:

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

il @ 6:19pm
Checkbox Preference

it on, t off

Ringtone Preference

one,

Figure 49. The Simple project's preferences UI
The checkbox can be directly checked or unchecked. To change the ringtone

preference, just click on the entry in the preference list to bring up a
selection dialog:

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

B € 6:19pPm

e Select a ringtone

Beat Plucker

Bell Phone

Bentley Dubs

Bird Loop

Caribbean Ice

QK

Figure 50. Choosing a ringtone preference

Note that there is no explicit "save” or "commit" button or menu - changes
are persisted as soon as they are made.

The SimplePrefsDemo activity, beyond having the aforementioned menu, also
displays the current preferences via a TableLayout:

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

<TableRow>
<TextView
android:text="Checkbox:"
android:paddingRight="5px"
/>
<TextView android:id="@+id/checkbox"
/>
</TableRow>
<TableRow>
<TextView
android:text="Ringtone:"
android:paddingRight="5px"
/>
<TextView android:id="@+id/ringtone"

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

/>
</TableRow>
</TablelLayout>

The fields for the table are found in onCreate():

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

checkbox=(TextView)findViewById(R.id.checkbox);
ringtone=(TextView)findViewById(R.id.ringtone);

}

The fields are updated on each onResume():

@Override
public void onResume() {
super.onResume();

SharedPreferences prefs=PreferenceManager
.getDefaultSharedPreferences(this);

checkbox.setText(new Boolean(prefs
.getBoolean("checkbox", false))
.toString());
ringtone.setText(prefs.getString("ringtone", "<unset>"));

}

This means the fields will be updated when the activity is opened and after
the preferences activity is left (e.g., via the back button):

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

M€ 6:19pPM

SimplePrefsDemo

t://media/internal/audio/media/

Figure 51. The Simple project's list of saved preferences

Adding a Wee Bit O' Structure

If you have a lot of preferences for users to set, having them all in one big list
may become troublesome. Android's preference framework gives you a few
ways to impose a bit of structure on your bag of preferences, including
categories and screens.

Categories are added via a PreferenceCategory element in your preference
XML and are used to group together related preferences. Rather than have
your preferences all as children of the root preferenceScreen, you can put a
few PreferenceCategory elements in the PreferenceScreen, and then put your
preferences in their appropriate categories. Visually, this adds a divider with
the category title between groups of preferences.

If you have lots and lots of preferences — more than is convenient for users to
scroll through - you can also put them on separate "screens" by introducing
the PreferenceScreen element.

Yes, that PreferenceScreen element.

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

Any children of Preferencescreen go on their own screen. If you nest
PreferenceScreens, the parent screen displays the screen as a placeholder
entry - tapping that entry brings up the child screen.

For example, from the Structured sample project, here is a preference XML
file that contains both PreferenceCategory and nested PreferenceScreen
elements:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="@string/checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="@string/ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Ping a tone, any tone, even silence"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"
android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="@string/checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your preferenceActivity
implementation, is a categorized list of elements:

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com

Using Preferences

M@ 6:39PM

Simple Preferences

Checkbox Preference .
Check it on, check it off .

Ringtone Preference

Detail Screens

Detail Screen

ditional pre

Figure 52. The Structured project's preference UI, showing categories and a

screen placeholder

And, if you tap on the Detail Screen entry, you are taken to the child
preference screen:

Ml € s:39 Pm

nother Checkbox

Figure 53. The child preference screen of the Structured project's preference UI

183

Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

The Kind Of Pop-Ups You Like

Of course, not all preferences are checkboxes and ringtones.

For others, like entry fields and lists, Android uses pop-up dialogs. Users do
not enter their preference directly in the preference Ul activity, but rather
tap on a preference, fill in a value, and click OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly
different from other preference types, as seen in this preference XML from
the Dialogs sample project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="@string/checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="@string/ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Ping a tone, any tone, even silence"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"
android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="@string/checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
<PreferenceCategory android:title="Simple Preferences">
<EditTextPreference
android:key="@string/text"
android:title="Text Entry Dialog"
android:summary="Click to pop up a field for entry"
android:dialogTitle="Enter something useful"
/>
<ListPreference

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

android:key="@string/list"
android:title="Selection Dialog"
android:summary="Click to pop up a list to choose from"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:dialogTitle="Choose a Pennsylvania city" />
</PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary
you put on the preference itself, you can also supply the title to use for the
dialog.

With the list (ListPreference), you supply both a dialog title and two string-
array resources: one for the display names, one for the values. These need to
be in the same order - the index of the chosen display name determines
which value is stored as the preference in the SharedPreferences. For
example, here are the arrays for use by the ListPreference shown above:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>
</string-array>
<string-array name="airport_codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A00</item>
<item>MDT</item>
</string-array>
</resources>

When you bring up the preference Ul, you start with another category with
another pair of preference entries:

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

M@ 6:53 PM

Simple Preferences

Checkbox Preference

Detail Screens

Detail Screen

tional pref

Figure 54. The preference screen of the Dialogs project's preference UI

Tapping the Text Entry Dialog one brings up...a text entry dialog - in this
case, with the prior preference entry pre-filled-in:

Ml @ 6:54PM

o Enter something useful

Figure 55. Editing a text preference

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using Preferences

Tapping the Selection Dialog one brings up...a selection dialog, showing the
display names from the one array:

Bl @ 6:54 PM

@ Choose a Pennsylvania city

Fniladelpnia U/

Pittsburgh O

Allentown/Bethlehem

Erie O
Reading O

Cancel

Figure 56. Editing a list preference

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 17

Accessing Files

While Android offers structured storage, via preferences and databases,
sometimes a simple file will suffice. Android offers two models for accessing
files: one for files pre-packaged with your application, and one for files
created on-device by your application.

You And The Horse You Rode In On

Let's suppose you have some static data you want to ship with the
application, such as a list of words for a spell-checker. The easiest way to
deploy that is to put the file in the res/raw directory, so it gets put in the
Android application . apk file as part of the packaging process.

To access this file, you need to get yourself a Resources object. From an
activity, that is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than a
path, openRawResource() expects an integer identifier for the file as packaged.
This works just like accessing widgets via findviewById() - if you put a file
named words.xml in res/raw, the identifier is accessible in Java as
R.raw.words.

Since you can only get an InputStream, you have no means of modifying this
file. Hence, it is really only useful for static reference data. Moreover, since it
is unchanging until the user installs an updated version of your application
package, either the reference data has to be valid for the foreseeable future,

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

or you will need to provide some means of updating the data. The simplest
way to handle that is to use the reference data to bootstrap some other
modifiable form of storage (e.g., a database), but this makes for two copies
of the data in storage. An alternative is to keep the reference data as-is but
keep modifications in a file or database, and merge them together when you
need a complete picture of the information. For example, if your application
ships a file of URLs, you could have a second file that tracks URLs added by
the user or reference URLs that were deleted by the user.

In the static sample project, you will find a reworking of the listbox
example from earlier, this time using a static XML file instead of a hardwired
array in Java. The layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection”
android:layout_width="fill_parent”
android:layout_height="wrap_content"
/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
/>
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to
show in the list:

<words>
<word value="lorem" />
<word value="ipsum" />
<word value="dolor" />
<word value="sit" />
<word value="amet" />
<word value="consectetuer" />
<word value="adipiscing" />
<word value="elit" />
<word value="morbi" />
<word value="vel" />
<word value="ligula" />

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

<word value="vitae" />
<word value="arcu" />
<word value="aliquet" />
<word value="mollis" />
<word value="etiam" />
<word value="vel" />
<word value="erat" />
<word value="placerat" />
<word value="ante" />
<word value="porttitor" />
<word value="sodales" />
<word value="pellentesque" />
<word value="augue" />
<word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will
suffice for a demo.

The Java code now must read in that XML file, parse out the words, and put
them someplace for the list to pick up:

public class StaticFileDemo extends ListActivity {
TextView selection;
ArraylList items=new ArrayList();

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {
InputStream in=getResources().openRawResource(R.raw.words);

DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();

Document doc=builder.parse(in, null);

NodelList words=doc.getElementsByTagName ("word");

for (int i=0;i<words.getLength();i++) {
items.add(((Element)words.item(i)).getAttribute("value"));
¥

in.close();
b
catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(),)
.show();

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));

}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());
}
¥

The differences mostly lie within oncreate(). We get an InputStream for the
XML file (getResources().openRawResource(R.raw.words)), then use the built-
in XML parsing logic to parse the file into a DOM Document, pick out the
word elements, then pour the value attributes into an ArrayList for use by
the Arrayadapter.

The resulting activity looks the same as before, since the list of words is the
same, just relocated:

Ehil @ 8:51PM

StaticFileDemo

lorem

ipsum

dolor

sit

amet
consectetuer

Figure 57. The StaticFileDemo sample application

Of course, there are even easier ways to have XML files available to you as
pre-packaged files - using an XML resource. That is covered in the next

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

chapter. However, while this example used XML, the file could just as easily
have been a simple one-word-per-line list, or in some other format not
handled natively by the Android resource system.

Readin' 'n Writin'

Reading and writing your own, application-specific data files is nearly
identical to what you might do in a desktop Java application. The key is to
use openFileInput() and openFileOutput() on your Activity or other Context
to get an InputStream and OutputStream, respectively. From that point
forward, it is not much different than regular Java I/0 logic:

« Wrap those streams as needed, such as using an InputStreamReader or
OutputStreamwriter for text-based I/O

+ Read or write the data

+ Use close() torelease the stream when done

Relative paths (i.e., those without leading slashes) are local to the
application. If two applications both try reading a notes.txt file via
openFileInput(), they will each access their own edition of the file. If you
need to have one file accessible from many places, you probably want to
create a content provider, as will be described an upcoming chapter.

Below you will see the layout for the world's most trivial text editor, pulled
from the Readwrite sample application:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">
<Button android:id="@+id/close"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Close" />
<EditText
android:id="@+id/editor"
android:layout_width="fill parent"
android:layout_height="fill_parent"
android:singlelLine="false"

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

/>
</LinearlLayout>

All we have here is a large text-editing widget, with a "Close" button above it.

The Java is only slightly more complicated:

package com.commonsware.android.files;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
EditText editor;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
editor=(EditText)findViewById(R.id.editor);

Button btn=(Button)findViewById(R.id.close);

btn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
finish();

}
})s
}

public void onResume() {
super.onResume();

try {
InputStream in=openFileInput("notes.txt");

if (in!=null) {
BufferedReader reader=new BufferedReader(new InputStreamReader(in));
String str;
StringBuffer buf=new StringBuffer();

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

while ((str = reader.readLine()) != null) {
buf.append(str+"\n");
}

in.close();
editor.setText (buf.toString());
}
}

catch (java.io.FileNotFoundException e) {
// that's OK, we probably haven't created it yet

¥
catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(),)
.show();
¥
}

public void onPause() {
super.onPause();

try {
OutputStreamWriter out=
new OutputStreamWriter (openFileOutput("notes.txt", 9));

out.write(editor.getText().toString());
out.close();

b
catch (Throwable t) {

First, we wire up the button to close out our activity when clicked by using
setOnClickListener() to invoke finish() on the activity.

Next, we hook into onResume(), so we get control when our editor is coming
back to life, from a fresh launch or after having been frozen. We use
openFileInput() to read in notes.txt and pour the contents into the text
editor. If the file is not found, we assume this is the first time the activity
was run (or the file was deleted by other means), and we just leave the editor
empty.

Finally, we hook into onPause(), so we get control as our activity gets hidden
by other user activity or is closed, such as via our "Close" button. Here, we
use openFileOutput() to open notes.txt, into which we pour the contents of
the text editor.

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Files

The net result is that we have a persistent notepad: whatever is typed in will
remain until deleted, surviving our activity being closed, the phone being
turned off, or similar situations. Of course, it doesn't look like much:

M@ 8:53PM

ReadWriteFileDemo

— |
Figure 58. The ReadWriteFileDemo sample application, as initially launched

Ml @ s:53PMm

ReadWriteFileDemo

Close

This is a test of the Emergency
Broadcast System. This is only a test.

D —
Figure 59. The same application, after entering some text

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 18
Working with Resources

Resources are static bits of information held outside the Java source code.
You have seen one type of resource - the layout - frequently in the examples
in this book. There are many other types of resource, such as images and
strings, that you can take advantage of in your Android applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android
project layout. With the exception of raw resources (res/raw/), all the other
types of resources are parsed for you, either by the Android packaging
system or by the Android system on the device or emulator. So, for example,
when you lay out an activity's Ul via a layout resource (res/layout/), you do
not have to parse the layout XML yourself - Android handles that for you.

In addition to layout resources (first seen in an earlier chapter) and raw
resources (introduced in another earlier chapter), there are several other
types of resource available to you, including:

+ Animations (res/anim/), designed for short clips as part of a user
interface, such as an animation suggesting the turning of a page
when a button is clicked

« Images (res/drawable), for putting static icons or other pictures in a
user interface

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

- Strings, colors, arrays, and dimensions (res/values/), to both give
these sorts of constants symbolic names and to keep them separate
from the rest of the code (e.g., for internationalization and
localization)

« XML (res/xml/), for static XML files containing your own data and
structure

String Theory

Keeping your labels and other bits of text outside the main source code of
your application is generally considered to be a very good idea. In particular,
it helps with internationalization (I18N) and localization (LioN), covered
later in this chapter. Even if you are not going to translate your strings to
other languages, it is easier to make corrections if all the strings are in one
spot instead of scattered throughout your source code.

Android supports regular externalized strings, along with "string formats",
where the string has placeholders for dynamically-inserted information. On
top of that, Android supports simple text formatting, called "styled text", so
you can make your words be bold or italic intermingled with normal text.

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as
a resource. The string element takes a name attribute, which is the unique
name for this string, and a single text element containing the text of the
string:

<resources>
<string name="quick">The quick brown fox...</string>
<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote (") or an
apostrophe (). In those cases, you will want to escape those values, by

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

preceding them with a backslash (e.g., These are the times that try men\'s
souls). Or, if it is just an apostrophe, you could enclose the value in quotes
(e.g., "These are the times that try men's souls.").

You can then reference this string from a layout file (as @string/. .., where
the ellipsis is the unique name - e.g., @string/laughs). Or you can get the
string from your Java code by calling getstring() with the resource ID of the
string resource, that being the unique name prefixed with Rr.string. (e.g.,
getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android's Dalvik VM
supports string formats. Here, the string contains placeholders representing
data to be replaced at runtime by variable information (e.g., My name is
%1%$s). Plain strings stored as resources can be used as string formats:

String strFormat=getString(R.string.my_name);

String strResult=String.format(strFormat, "Tim");

((TextView)findViewById(R.layout.some_label))
.setText(strResult);

Styled Text

If you want really rich text, you should have raw resources containing
HTML, then pour those into a WebKit widget. However, for light HTML
formatting, using , <i>, and <u», you can just use a string resource:

<resources>
<string name="b">This has bold in it.</string>

<string name="1i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these the same as with plain strings, with the exception that
the result of the getstring() call is really a Spanned:

((TextView)findviewById(R.layout.another_label))
.setText(getString(R.string.laughs));

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

Styled Formats

Where styled text gets tricky is with styled string formats, as String.format()
works on String objects, not Spanned objects with formatting instructions. If

you really want to have styled string formats, here is the workaround:

Entity-escape the angle brackets in the string resource (e.g., this is
&1t;b>%1$s8&1t; /b>)

Retrieve the string resource as normal, though it will not be styled at
this point (e.g., getString(R.string.funky_format))

Generate the format results, being sure to escape any string values
you substitute in, in case they contain angle brackets or ampersands

String.format(getString(R.string.funky_format),
TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via

Html.fromHtml()

someTextView.setText(Html
.fromHtml (resultFromStringFormat));

To see this in action, let's look at the strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_ parent"
android:layout_height="fill_parent"
>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>
<Button android:id="@+id/format"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/btn_name"
/>
<EditText android:id="@+id/name"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>
<TextView android:id="@+id/result"

200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

</LinearLayout>

As you can see, it is just a button, a field, and a label. The intent is for
somebody to enter their name in the field, then click the button to cause the
label to be updated with a formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name),
so we need a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">StringsDemo</string>

<string name="btn_name">Name:</string>

<string name="funky_format">My name is %1$s&1t;/b></string>
</resources>

The app_name resource is automatically created by the activityCreator script.
The btn_name string is the caption of the Button, while our styled string
format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
EditText name;
TextView result;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

result=(TextView)findViewById(R.id.result);
Button btn=(Button)findViewById(R.id.format);

btn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
applyFormat();

¥
1)
}

private void applyFormat() {
String format=getString(R.string.funky_format);
String simpleResult=String.format(format,
TextUtils.htmlEncode(name.getText().toString()));
result.setText(Html.fromHtml(simpleResult));

}

}

The string resource manipulation can be found in applyFormat(), which is
called when the button is clicked. First, we get our format via getString() -
something we could have done at onCreate() time for efficiency. Next, we
format the value in the field using this format, getting a string back, since
the string resource is in entity-encoded HTML. Note the use of
TextUtils.htmlEncode() to entity-encode the entered name, in case
somebody decides to use an ampersand or something. Finally, we convert
the simple HTML into a styled text object via Html.fromHtml() and update
our label.

When the activity is first launched, we have an empty label:

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

B & 1:03pPM

StringsDemo

Figure 60. The StringsDemo sample application, as initially launched

but if we fill in a name and click the button, we get:

B & 1:03pPM
StringsDemo

Inigo Montoya

Is Inigo Montoya

Figure 61. The same application, after filling in some heroic figure's name

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is
officially discouraged, however; PNG is the overall preferred format. Images
can be used anywhere that requires a Drawable, such as the image and
background of an Imageview.

Using images is simply a matter of putting your image files in res/drawable/
and then referencing them as a resource. Within layout files, images are
referenced as @drawable/... where the ellipsis is the base name of the file
(e.g., for res/drawable/foo.png, the resource name is @drawable/foo). In Java,
where you need an image resource ID, use R.drawable. plus the base name
(e.g., R.drawable .foo).

If you need a uri to an image resource, you can use one of two different
string formats for the path:

1. android.resource://com.example.app/..., where com.example.app is
the name of the Java package used by your application in
AndroidManifest.xml and ... is the numeric resource ID for the
resource in question (e.g., the value of R.drawable. foo)

2. android.resource://com.example.app/raw/..., where com.example.app
is the name of the Java package used by your application in
AndroidManifest.xml and ... is the textual name of the raw resource
(e.g., foo for r'es/dr‘awable/foo.png)

Note that Android ships with some image resources built in. Those are
addressed in Java with an android.R.drawable prefix to distinguish them
from application-specific resources (e.g., android.R.drawable.picture_frame).

So, let's update the previous example to use an icon for the button instead of
the string resource. This can be found as Images. First, we slightly adjust the
layout file, using an ImageButton and referencing a drawable named
@drawable/icon:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

android:orientation="horizontal"

android:layout_width="fill parent"

android:layout_height="wrap_content"

>

<ImageButton android:id="@+id/format"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:src="@drawable/icon"
/>
<EditText android:id="@+id/name"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

</LinearLayout>

<TextView android:id="@+id/result"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

<LinearLayout xmlns:android="http://schemas.android

.com/apk/res/android"

Next, we need to put an image file in res/drawable with a base name of icon.
In this case, we use a 32x32 PNG file from the Nuvola icon set. Finally, we
twiddle the Java source, replacing our Button with an ImageButton:

package com.commonsware.android.resources;

android.
android.
android.
android.
android.
android.
android.
android.
android.

import
import
import
import
import
import
import
import
import

app.Activity;
os.Bundle;
text.TextUtils;
text.Html;
view.View;
widget.Button;
widget.ImageButton;
widget.EditText;
widget.TextView;

public class ImagesDemo extends Activity {
EditText name;
TextView result;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

name=(EditText)findViewById(R.id.name);
result=(TextView)findViewById(R.id.result);

205

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-SA 3.0 License Edition

http://en.wikipedia.org/wiki/Nuvola

Working with Resources

ImageButton btn=(ImageButton)findViewById(R.id.format);

btn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
applyFormat();

}
1)
}

private void applyFormat() {
String format=getString(R.string.funky_format);
String simpleResult=String.format(format,
TextUtils.htmlEncode(name.getText().toString()));
result.setText(Html.fromHtml(simpleResult));

}

}

Now, our button has the desired icon:

M@ 1:04pPM

ImagesDemo

Figure 62. The ImagesDemo sample application

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

XML: The Resource Way

In a previous chapter, we showed how you can package XML files as raw
resources and get access to them for parsing and usage. There is another way
of packaging static XML with your application: the XML resource.

Simply put the XML file in res/xml/, and you can access it by getxml() on a
Resources object, supplying it a resource ID of R.xml. plus the base name of
your XML file. So, in an activity, with an XML file of words.xml, you could
call getResources().getxml(R.xml.words).

This returns an instance of the presently-undocumented xmlpPullParser,
found in the org.xmlpull.vi Java namespace. Documentation for this library
can be found at the parser's site as of this writing.

An XML pull parser is event-driven: you keep calling next() on the parser to
get the next event, which could be START_TAG, END_TAG, END_DOCUMENT, etc. On
a START_TAG event, you can access the tag's name and attributes; a single TEXT
event represents the concatenation of all text nodes that are direct children
of this element. By looping, testing, and invoking per-element logic, you
parse the file.

To see this in action, let's rewrite the Java code for the static sample project
to use an XML resource. This new project, XML, requires that you place the
words.xml file from Static not in res/raw/, but in res/xml/. The layout stays
the same, so all that needs replacing is the Java source:

package com.commonsware.android.resources;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

import java.io.InputStream;

import java.util.Arraylist;

import org.xmlpull.vl.XmlPullParser;

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/package-summary.html

Working with Resources

import org.xmlpull.vl.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
TextView selection;
ArraylList items=new ArrayList();

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {
XmlPullParser xpp=getResources().getXml(R.xml.words);

while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
if (xpp.getEventType()==XmlPullParser.START_TAG) {
if (xpp.getName().equals("word")) {
items.add(xpp.getAttributevValue(9));

¥
}
xpp.next();
b
catch (Throwable t) {
Toast
.makeText(this, "Request failed: "+t.toString(),)
.show();
b

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));

}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());
}
¥

Now, inside our try...catch block, we get our xmlPullParser and loop until
the end of the document. If the current event is START_TAG and the name of
the element is word (xpp.getName().equals("word")), then we get the one-
and-only attribute and pop that into our list of items for the selection
widget. Since we're in complete control over the XML file, it is safe enough
to assume there is exactly one attribute. But, if you were not as comfortable
that the XML is properly defined, you might consider checking the attribute
count (getAttributecount()) and the name of the attribute

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

(getAttributeName()) before blindly assuming the e-index attribute is what
you think it is.

The result looks the same as before, albeit with a different name in the title
bar:

Ehil & 1:06 PM

XMLResourceDemo

lorem

ipsum

dolor

sit

amet
consectetuer

Figure 63. The XMLResourceDemo sample application

Miscellaneous Values

In the res/values/ directory, you can place one (or more) XML files
describing simple resources: dimensions, colors, and arrays. We have
already seen uses of dimensions and colors in previous examples, where
they were passed as simple strings (e.g., "10px") as parameters to calls. You
can, of course, set these up as Java static final objects and use their symbolic
names...but this only works inside Java source, not in layout XML files. By
putting these values in resource XML files, you can reference them from
both Java and layouts, plus have them centrally located for easy editing.

Resource XML files have a root element of resources; everything else is a
child of that root.

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

Dimensions

Dimensions are used in several places in Android to describe distances, such
a widget's padding. While this book usually uses pixels (e.g., 10px for ten
pixels), there are several different units of measurement available to you:

« in and mm for inches and millimeters, respectively, based on the
actual size of the screen

+ pt for points, which in publishing terms is 1/72nd of an inch (again,
based on the actual physical size of the screen)

« dp and sp for device-independent pixels and scale-independent
pixels — one pixel equals one dp for a 160dpi resolution screen, with
the ratio scaling based on the actual screen pixel density (scale-
independent pixels also take into account the user's preferred font
size)

To encode a dimension as a resource, add a dimen element, with a name
attribute for your unique name for this resource, and a single child text
element representing the value:

<resources>
<dimen name="thin">10px</dimen>
<dimen name="fat">1lin</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/. . ., where the ellipsis is
a placeholder for your unique name for the resource (e.g., thin and fat from
the sample above). In Java, you reference dimension resources by the unique
name prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors
Colors in Android are hexadecimal RGB values, also optionally specifying an

alpha channel. You have your choice of single-character hex values or
double-character hex values, leaving you with four styles:

* #RGB

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

* #ARGB
* #RRGGBB

* #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or
layout resources. If you wish to turn them into resources, though, all you
need to do is add color elements to the resources file, with a name attribute
for your unique name for this color, and a single text element containing the
RGB value itself:

<resources>
<color name="yellow_orange">#FFD555</color>
<color name="forest_green">#005500</color>
<color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/.. ., replacing the ellipsis with
your unique name for the color (e.g., burnt_umber). In Java, you reference
color resources by the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.dimen.forest_green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of
honorifics (Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a name
attribute for the unique name you are giving the array. Then, add one or
more child item elements, each of which having a single text element with
the value for that entry in the array:

<resources>
<array name="honorifics">
<item>Dr.</item>
<item>Mr.</item>
<item>Mrs.</item>

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

<item>Ms.</item>
</array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a
string[] of the items in the list. The parameter to getStringArray() is your
unique name for the array, prefixed with R.array. (e.g,
Resources.getStringArray(R.array.honorifics))

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may be
used. One obvious area comes with string resources and dealing with
internationalization (I18N) and localization (LioN). Putting strings all in
one language works fine — probably at least for the developer - but only
covers one language.

That is not the only scenario where resources might need to differ, though.
Here are others:

+ Screen orientation: is the screen in a portrait orientation?
Landscape? Is the screen square and, therefore, does not really have
an orientation?

« Screen size: how many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

+ Touchscreen: does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

- Keyboard: what keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

« Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android presently handles this is by having multiple resource
directories, with the criteria for each embedded in their names.

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

Suppose, for example, you want to support strings in both English and
Spanish. Normally, for a single-language setup, you would put your strings
in a file named res/values/strings.xml. To support both English and
Spanish, you would create two folders, res/values-en and res/values-es,
where the value after the hyphen is the ISO 639-1 two-letter code for the
language you want. Your English-language strings would go in res/values-
en/strings.xml and the Spanish ones in res/values-es/strings.xml. Android
will choose the proper file based on the user's device settings.

Seems easy, right?

Where things start to get complicated is when you need to use multiple
disparate criteria for your resources. This may come most frequently with
layouts, as you might want one layout for portrait and small screens, one
layout for larger screens in landscape mode, and variations of each for
finger-input versus other types of input (keyboard, stylus). This will allow
you to make the best use of the available screen "real estate", without any
coding changes to your activity using the layout.

Once you get into these sorts of situations, though, all sorts of rules come
into play, such as:

« The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that
order. The Android documentation outlines the specific order in
which these options can appear. For the purposes of this example,
screen orientation must precede touchscreen type, which must
precede screen size.

« There can only be one value of each configuration option category
per directory. You cannot, for example, consider portrait and square
screens to be the same - each will require its own named
res/layout. .. folder.

« Options are case sensitive

So, for the scenario described above, in theory, we would need the following
directories:

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://code.google.com/android/devel/resources-i18n.html#AlternateResources
http://en.wikipedia.org/wiki/ISO_639-1

Working with Resources

. res/layout-finger

* res/layout-square-finger

* res/layout-land-finger-640x480
* res/layout-notouch

* Tes/layout-square-notouch

* res/layout-land-notouch-640x480
. res/layout-stylus

. res/layout-square-stylus

* res/layout-land-stylus-640x480

Note that for some of these, the actual layout files will be identical. For
example, we only care about finger layouts being different than the other
two, but since we cannot combine those two, we would theoretically have to
have separate directories with identical contents for notouch and stylus.

Also note that there is nothing preventing you from also having a directory
with the unadorned base name (res/layout). In fact, this is probably a good
idea, in case future editions of the Android runtime introduce other
configuration options you did not consider - having a default layout might
make the difference between your application working or failing on that new
device.

Now, we can "cheat" a bit, by decoding the rules Android uses for
determining which, among a set of candidates, is the "right" resource
directory to use:

1. First up, Android tosses out ones that are specifically invalid. So, for
example, if the screen size of the device is 320x240, the 640x480
directories would be dropped as candidates, since they specifically
call for some other size.

2. Next, Android counts the number of matches for each folder, and
only pays attention to those with the most matches.

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Working with Resources

3. Finally, Android goes in the order of precedence of the options - in
other words, it goes from left to right in the directory name.

So we could skate by with only the following configurations:

. res/layout-land-finger-640x480
. res/layout-land-640x480
* res/layout-finger

* res/layout

If the device is in portrait or square mode, or does not have a 640x480
screen size, the first two candidates will be skipped, and the layout will be
chosen based on whether the device supports finger input or not.
Otherwise, one of the two landscape 640x480 layouts will be chosen, as they
would be a "stronger” match than the others, with the final determination
being on whether the device supports finger input or not.

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 19

Managing and Accessing Local
Databases

SQLite is a very popular embedded database, as it combines a clean SQL
interface with a very small memory footprint and decent speed. Moreover, it
is public domain, so everyone can use it. Lots of firms (Adobe, Apple,
Google, Sun, Symbian) and open source projects (Mozilla, PHP, Python) all
ship products with SQLite.

For Android, SQLite is "baked into" the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface,
it is fairly straightforward to use for people with experience in other SQL-
based databases. However, its native API is not JDBC, and JDBC might be
too much overhead for a memory-limited device like a phone, anyway.
Hence, Android programmers have a different API to learn - the good news
being is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working on
Android. It by no means is a thorough coverage of SQLite as a whole. If you
want to learn more about SQLite and how to use it in other environment
than Android, a fine book is The Definitive Guide to SQLite by Michael
Owens.

Activities will typically access a database via a content provider or service. As
such, this chapter does not have a full example. You will find a full example

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730
http://www.sqlite.org/

Managing and Accessing Local Databases

of a content provider that accesses a database in the Building a Content
Provider chapter.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT), data
manipulation (INSERT, et. al.), and data definition (CREATE TABLE, et. al.).
SQLite has a few places where it deviates from the SQL-92 standard, no
different than most SQL databases. The good news is that SQLite is so
space-efficient that the Android runtime can include all of SQLite, not some
arbitrary subset to trim it down to size.

The biggest difference from other SQL databases you will encounter is
probably the data typing. While you can specify the data types for columns
in a CREATE TABLE statement, and while SQLite will use those as a hint, that is
as far as it goes. You can put whatever data you want in whatever column you
want. Put a string in an INTEGER column? Sure! No problem! Vice versa?
Works too! SQLite refers to this as "manifest typing", as described in the
documentation:

In manifest typing, the datatype is a property of the value it-
self, not of the column in which the value is stored. SQLite
thus allows the user to store any value of any datatype into
any column regardless of the declared type of that column.

In addition, there are a handful of standard SQL features not supported in
SQLite, notably FOREIGN KEY constraints, nested transactions, RIGHT OUTER
JoIN and FULL OUTER JOIN, and some flavors of ALTER TABLE.

Beyond that, though, you get a full SQL system, complete with triggers,
transactions, and the like. Stock SQL statements, like SELECT, work pretty
much as you might expect.

If you are used to working with a major database, like Oracle, you may look
upon SQLite as being a "toy" database. Please bear in mind that Oracle and

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.sqlite.org/different.html

Managing and Accessing Local Databases

SQLite are meant to solve different problems, and that you will not be
seeing a full copy of Oracle on a phone any time real soon, in all likelihood.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to
use SQLite, you have to create your own database, then populate it with your
own tables, indexes, and data.

To create and open a database, your best option is to craft a subclass of
sQLiteopenHelper. This class wraps up the logic to create and upgrade a
database, per your specifications, as needed by your application. Your
subclass of sQLiteOpenHelper will need three methods:

« The constructor, chaining upward to the sQLiteOpenHelper
constructor. This takes the context (e.g., an Activity), the name of
the database, an optional cursor factory (typically, just pass null),
and an integer representing the version of the database schema you
are using.

+ onCreate(), which passes you a sQLiteDatabase object that you need
to populate with tables and initial data, as appropriate.

« onUpgrade(), which passes you a sQLiteDatabase object and the old
and new version numbers, so you can figure out how best to convert
the database from the old schema to the new one. The simplest,
albeit least friendly, approach is to simply drop the old tables and
create new ones. This is covered in greater detail in the chapter on
creating a content provider.

The rest of this chapter will discuss how you actually create tables, insert
data, drop tables, etc., and will show sample code from a sQLiteOpenHelper
subclass.

To use your SQLiteOpenHelper subclass, create an instance and ask it to
getReadableDatabase() or getWriteableDatabase(), depending upon whether
or not you will be changing its contents:

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

db=(new DatabaseHelper(getContext())).getWritableDatabase();

return (db == null) ? false : true;

This will return a sQLiteDatabase instance, which you can then use to query
the database or modify its data.

When you are done with the database (e.g., your activity is being closed),
simply call close() on the sQLiteDatabase to release your connection.

Setting the Table

For creating your tables and indexes, you will need to call execsQL() on your
SQLiteDatabase, providing the DDL statement you wish to apply against the
database. Barring a database error, this method returns nothing.

So, for example, you can:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT, value REAL);");

This will create a table, named constants, with a primary key column named
_id that is an auto-incremented integer (i.e., SQLite will assign the value for
you when you insert rows), plus two data columns: title (text) and value (a
float, or "real" in SQLite terms). SQLite will automatically create an index
for you on your primary key column, so the second statement adds another
index on the table, by name.

Most likely, you will create tables and indexes when you first create the
database, or possibly when the database needs upgrading to accommodate a
new release of your application. If you do not change your table schemas,
you might never drop your tables or indexes, but if you do, just use execsqQL()
to invoke DROP INDEX and DROP TABLE statements as needed.

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

Makin' Data

Given that you have a database and one or more tables, you probably want to
put some data in them and such. You have two major approaches for doing
this.

You can always use execsQL(), just like you did for creating the tables. The
execsQL() method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, etc. just fine. So, for example:

db.execSQL("INSERT INTO widgets (name, inventory)"+
"VALUES ('Sprocket', 5)");

Your alternative is to use the insert(), update(), and delete() methods on
the sqLiteDatabase object. These are "builder" sorts of methods, in that the
break down the SQL statements into discrete chunks, then take those
chunks as parameters.

These methods make use of Contentvalues objects, which implement a Map-
esque interface, albeit one that has additional methods for working with
SQLite types. For example, in addition to get() to retrieve a value by its key,
you have getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column
as the "null column hack”, and a contentvalues with the initial values you
want put into this row. The "null column hack" is for the case where the
ContentValues instance is empty — the column named as the "null column
hack" will be explicitly assigned the value NULL in the SQL INSERT statement
generated by insert().

ContentValues cv=new ContentValues();

cv.put(Constants.TITLE, "Gravity, Death Star I");
cv.put(Constants.VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert("constants", getNullColumnHack(), cv);

The update() method takes the name of the table, a cContentvalues
representing the columns and replacement values to use, an optional WHERE

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

clause, and an optional list of parameters to fill into the WHERE clause, to
replace any embedded question marks (?). Since update() only replaces
columns with fixed values, versus ones computed based on other
information, you may need to use execsQL() to accomplish some ends.

The wHERE clause and parameter list works akin to the positional SQL
parameters you may be used to from other SQL APIs. For example:

// replacements is a ContentValues instance
String[] parms=new String[] {"snicklefritz"};
db.update("widgets", replacements, "name=?", parms);

The delete() method works akin to update(), taking the name of the table,
the optional WHERE clause, and the corresponding parameters to fill into the
WHERE clause.

What Goes Around, Comes Around
As with INSERT, UPDATE, and DELETE, you have two main options for retrieving
data from a SQLite database using SELECT:

1. You can use rawQuery() to invoke a SELECT statement directly, or

2. You can use query() to build up a query from its component parts

Confounding matters further is the sQLiteQueryBuilder class and the issue of
cursors and cursor factories. Let's take all of this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery (). Simply call
it with your SQL SELECT statement. The SELECT statement can include
positional parameters; the array of these forms your second parameter to
rawQuery (). So, we wind up with:

Cursor c=db.rawQuery("SELECT name FROM sqlite master WHERE type='table' AND
name='constants'", null);

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

In this example, we actually query a SQLite system table (sqlite_master) to
see if our constants table already exists. The return value is a cursor, which
contains methods for iterating over results (see below).

If your queries are pretty much "baked into" your application, this is a very
straightforward way to use them. However, it gets complicated if parts of the
query are dynamic, beyond what positional parameters can really handle.
For example, if the set of columns you need to retrieve is not known at
compile time, puttering around concatenating column names into a
comma-delimited list can be annoying...which is where query() comes in.

Regular Queries

The query() method takes the discrete pieces of a SELECT statement and
builds the query from them. The pieces, in order that they appear as
parameters to query(), are:

« The name of the table to query against

+ The list of columns to retrieve

+ The wHERE clause, optionally including positional parameters

+ The list of values to substitute in for those positional parameters
« The Group BY clause, if any

« The orDER BY clause, if any

These can be null when they are not needed (except the table name, of
course). So, our previous snippet converts into:

String[] columns={"ID", "inventory"};

String[] parms={"snicklefritz"};

Cursor result=db.query("widgets", columns, "name=?",
parms, null, null, null);

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

Building with Builders

Yet another option is to use sQLiteQueryBuilder, which offers much richer
query-building options, particularly for nasty queries involving things like
the wunion of multiple sub-query results. More importantly, the
SQLiteQueryBuilder interface dovetails nicely with the CcontentProvider
interface for executing queries. Hence, a common pattern for your content
provider's query() implementation is to create a sQLiteQueryBuilder, fill in
some defaults, then allow it to build up (and optionally execute) the full
query combining the defaults with what is provided to the content provider
on the query request.

For example, here is a snippet of code from a content provider using
SQLiteQueryBuilder:

@Override
public Cursor query(Uri url, String[] projection, String selection,
String[] selectionArgs, String sort) {
SQLiteQueryBuilder gb=new SQLiteQueryBuilder();

gb.setTables(getTableName());

if (isCollectionUri(url)) {
gb.setProjectionMap(getDefaultProjection());
}

else {
gb.appendihere (getIdColumnName()+"="+url.getPathSegments().get(1));
}

String orderBy;

if (TextUtils.isEmpty(sort)) {
orderBy=getDefaultSortOrder();
} else {
orderBy=sort;

}

Cursor c=gb.query(db, projection, selection, selectionArgs,

null, null, orderBy);
c.setNotificationUri(getContext().getContentResolver(), url);
return c;

Content providers are explained in greater detail later in the book, so some
of this you will have to take on faith until then. Here, we see:

+ A sQLiteQueryBuilder is constructed

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

« Itis told the table to use for the query (setTables(getTableName()))

« It is either told the default set of columns to return
(setProjectionMap()), or is given a piece of a WHERE clause to identify a
particular row in the table by an identifier extracted from the uri
supplied to the query() call (appendwhere())

« Finally, it is told to execute the query, blending the preset values
with those supplied on the call to query() (qb.query(db, projection,
selection, selectionArgs, null, null, or‘derBy))

Instead of having the sQLiteQueryBuilder execute the query directly, we
could have called buildQuery() to have it generate and return the SQL SELECT
statement we needed, which we could then execute ourselves.

Using Cursors

No matter how you execute the query, you get a cursor back. This is the
Android/SQLite edition of the database cursor, a concept used in many
database systems. With the cursor, you can:

« Find out how many rows are in the result set via count()
« Iterate over the rows via first(), next(), and isAfterLast()

+ Find out the names of the columns via getColumnNames(), convert
those into column numbers via getColumnIndex(), and get values for
the current row for a given column via methods like getString(),
getInt(), etc.

« Re-execute the query that created the cursor via requery()

+ Release the cursor's resources via close()

For example, here we iterate over the widgets table entries from the previous
snippets:

Cursor result=
db.rawQuery("SELECT ID, name, inventory FROM widgets");

while (!result.isAfterLast()) {
int id=result.getInt(9);

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

String name=result.getString(1);
int inventory=result.getInt(2);

// do something useful with these

result.next();

}

result.close();

Making Your Own Cursors

There may be circumstances in which you want to use your own Cursor
subclass, rather than the stock implementation provided by Android. In
those cases, you can use queryWithFactory() and rawQueryWithFactory() that
take a sQLiteDatabase.CursorFactory instance as a parameter. The factory, as
one might expect, is responsible for creating new cursors via its newCursor()
implementation.

Finding and implementing a valid use for this facility is left as an exercise for
the reader. Suffice it to say that you should not need to create your own
cursor classes much, if at all, in ordinary Android development.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably used
to having tools to inspect and manipulate the contents of the database,
beyond merely the database's API. With Android's emulator, you have two
main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program
and makes it available from the adb shell command. Once you are in the
emulator's shell, just execute sqlite3, providing it the path to your database
file. Your database file can be found at:

|/data/data/your.app.package/databases/your-db-name.db |

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Managing and Accessing Local Databases

Here your.app.package is the Java package for your application (e.g.,
com.commonswar‘e.android) and your-db-name is the name of your database, as
supplied to createDatabase().

Note, however, that the Android 0.9 SDK appears to be missing the sqlite3
command.

The sqlite3 program works, and if you are used to poking around your
tables using a console interface, you are welcome to use it. If you prefer
something a little bit friendlier, you can always copy the SQLite database off
the device onto your development machine, then use a SQLite-aware client
program to putter around. Note, though, that you are working off a copy of
the database; if you want your changes to go back to the device, you will
need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or
the equivalent in your IDE), which takes the path to the on-device database
and the local destination as parameters. To store a modified database on the
device, use adb push, which takes the local path to the database and the on-
device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension
for Firefox, as it works across all platforms.

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

https://addons.mozilla.org/en-US/firefox/addon/5817

Managing and Accessing Local Databases

) SQLite Manager. = ==

Database Table |ndex Wiew Trigger Tools Help profile Database: [(Se\ect Profile Database) :ll Go

Refresh | DNewDatabase ﬁcannect Database ‘ @?Create Table ﬁDrop Table ‘ ?Create Index HDrop Index ‘

Database Structure | Browse & Search \ Execute SQL \ DB Settings

Database Not Selected

Figure 64 the'SQLite Manager Firefox extension

You can find dozens of others on the SQLite Web site.

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.sqlite.org/

CHAPTER 20
Leveraging Java Libraries

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, "third-party libraries" refer to the
innumerable JARs that you can include in a server or desktop Java
application - the things that the Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and
what it provides in its SDK is not precisely the same as any traditional Java
SDK. That being said, many Java third-party libraries still provide
capabilities that Android lacks natively and therefore may be of use to you
in your project, for the ones you can get working with Android's flavor of
Java.

This chapter explains what it will take for you to leverage such libraries and
the limitations on Android's support for arbitrary third-party code.

The Outer Limits

Not all available Java code, of course, will work well with Android. There are
a number of factors to consider, including:

- Expected Platform APIs: Does the code assume a newer JVM than
the one Android is based on? Or, does the code assume the existence
of Java APIs that ship with J2SE but not with Android, such as
Swing?

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Leveraging Java Libraries

« Size: Existing Java code designed for use on desktops or servers need
not worry too much about on-disk size, or, to some extent, even in-
RAM size. Android, of course, is short on both. Using third-party
Java code, particularly when pre-packaged as JARs, may balloon the
size of your application.

« Performance: Does the Java code effectively assume a much more
powerful CPU than what you may find on many Android devices?
Just because a desktop can run it without issue doesn't mean your
average mobile phone will handle it well.

+ Interface: Does the Java code assume a console interface? Or is it a
pure API that you can wrap your own interface around?

One trick for addressing some of these concerns is to use open source Java
code, and actually work with the code to make it more Android-friendly. For
example, if you're only using 10% of the third-party library, maybe it's
worthwhile to recompile the subset of the project to be only what you need,
or at least removing the unnecessary classes from the JAR. The former
approach is safer, in that you get compiler help to make sure you're not

discarding some essential piece of code, though it may be more tedious to
do.

Ants and Jars

You have two choices for integrating third-party code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your
own source tree (under src/ in your project), so it can sit alongside your
existing code, then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have
the source code, you will need to teach your build chain how to use the JAR.
If you are using an IDE, that's a matter of telling it to reference the JAR. If,
on the other hand, you are not using an IDE and are relying upon the
build.xml Ant script, put the JAR in the 1ibs/ directory created for you by
activityCreator, and the Ant build process will pick it up.

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Leveraging Java Libraries

For example, in a previous edition of this book, we had a MailBuzz project.
MailBuzz, as the name suggests, dealt with email. To accomplish that end,
MailBuzz leveraged the JavaMail APIs and needs two JavaMail JARs:
mail-1.4.jar and activation-1.1.jar. With both of those in the 1ibs/
directory, the classpath tells javac to link against those JARs, so any JavaMail
references in the MailBuzz code can be correctly resolved. Then, those JARs
are listed, along with the MailBuzz compiled classes, in the task that invokes
the dex tool to convert the Java code into Dalvik VM instructions. Without
this step, even though your code may compile, it won't find the JavaMail
classes at runtime and will fail with an exception.

As it turned out, though, the Dalvik VM and compiler supplied with the
Android 0.9 SDK no longer supported some Java language features used by
JavaMail. And, while the JavaMail source code is available, it is under an
open source license (CDDL) that...has issues.

Following the Script

The material in this section is based on the author's posts to the Building
'Droids column on AndroidGuys.com.

Unlike other mobile device operating systems, Android has no restrictions
on what you can run on it, so long as you can do it in Java using the Dalvik
VM. This includes incorporating your own scripting language into your
application, something that is expressly prohibited on some other devices.

One possible Java scripting language is Beanshell. Beanshell gives you Java-
compatible syntax with implicit typing and no compilation required.

So, to add Beanshell scripting, you need to put the Beanshell interpreter's
JAR file in your 1ibs/ directory. The 2.0b4 JAR available for download from
the Beanshell site, unfortunately, does not work out of the box with the
Android 0.9 SDK, perhaps due to the compiler that was used to build it.
Instead, you should probably check out the source code from Subversion
and execute ant jarcore to build it, then copy the resulting JAR (in
Beanshell's dist/ directory) to your own project's 1ibs/. Or, just use the

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://beanshell.org/
http://androidguys.com/
http://androidguys.com/category/building-droids/
http://androidguys.com/category/building-droids/

Leveraging Java Libraries

Beanshell JAR that accompanies the source code for this book, up on the
CommonsWare site.

From there, using Beanshell on Android is no different than using Beanshell
in any other Java environment:

1. Create an instance of the Beanshell Interpreter class
2. Setany “globals” for the script’s use via Interpreter#set()
3. Call interpreter#eval() to run the script and, optionally, get the

result of the last statement

For example, here is the XML layout for the world’s smallest Beanshell IDE:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="fill parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/eval"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Go!"
/>

<EditText
android:id="@+id/script”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:singlelLine="false"
android:gravity="top"
/>

</LinearLayout>

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/Android/

Leveraging Java Libraries

public class MainActivity extends Activity {
private Interpreter i=new Interpreter();

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.eval);
final EditText script=(EditText)findViewById(R.id.script);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
String src=script.getText().toString();

try {
i.set("context", MainActivity.this);

i.eval(src);

catch (bsh.EvalError e) {
AlertDialog.Builder builder=
new AlertDialog.Builder(MainActivity.this);

builder
.setTitle("Exception!")
.setMessage(e.toString())
.setPositiveButton("OK", null)
.show();

1)

Compile and run it (including incorporating the Beanshell JAR as
mentioned above), and install it on the emulator. Fire it up, and you get a
trivial IDE, with a large text area for your script and a big "Go!" button to
execute it:

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Leveraging Java Libraries

B & 1:57pPm

Beanshell Demo

I —
Figure 65. The AndShell Beanshell IDE

import android.widget.Toast;

Toast.makeText(context, "Hello, world!",).show();

Note the use of context to refer to the activity when making the Toast. That
is the global set by the activity to reference back to itself. You could call this
global variable anything you want, so long as the set() call and the script
code use the same name.

Then, click the Go! button, and you get:

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Leveraging Java Libraries

BH @ 2:01pPMm

Beanshell Demo

import android.widget.Toast;

Toast.makeText(context, "Hello,
world!", 5000).show();

Hello, world!

Figure 66. The AndShell Beanshell IDE, executing some code

And now, some caveats...

First, not all scripting languages will work. For example, those that
implement their own form of just-in-time (JIT) compilation, generating Java
bytecodes on the fly, would probably have to be augmented to generate
Dalvik VM bytecodes instead of those for stock Java implementations.
Simpler languages that execute off of parsed scripts, calling Java reflection
APIs to call back into compiled classes, will likely work better. Even there,
though, not every feature of the language may work, if it relies upon some
facility in a traditional Java API that does not exist in Dalvik - for example,
there could be stuff hidden inside Beanshell or the add-on JARs that does
not work on today’s Android.

Second, scripting languages without JIT will inevitably be slower than
compiled Dalvik applications. Slower may mean users experience
sluggishness. Slower definitely means more battery life is consumed for the
same amount of work. So, building a whole Android application in
Beanshell, simply because you feel it is easier to program in, may cause your
users to be unhappy.

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Leveraging Java Libraries

Third, scripting languages that expose the whole Java API, like Beanshell,
can pretty much do anything the underlying Android security model allows.
So, if your application has the READ_CONTACTS permission, expect any
Beanshell scripts your application runs to have the same permission.

Last, but certainly not least, is that language interpreter JARs tend to
be...portly. The Beanshell JAR used in this example is 200KB. That is not
ridiculous, considering what it does, but it will make applications that use
Beanshell that much bigger to download, take up that much more space on
the device, etc.

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 21
Communicating via the Internet

The expectation is that most, if not all, Android devices will have built-in
Internet access. That could be WiFi, cellular data services (EDGE, 3G, etc.),
or possibly something else entirely. Regardless, most people - or at least
those with a data plan or WiFi access - will be able to get to the Internet
from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways
to make use of this Internet access. Some offer high-level access, such as the
integrated WebKit browser component we saw in an earlier chapter. If you
want, you can drop all the way down to using raw sockets. Or, in between,
you can leverage APIs - both on-device and from 3rd-party JARs - that give
you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit
component and Internet-access APIs, as busy coders should be trying to
reuse existing components versus rolling one's own on-the-wire protocol
wherever possible.

REST and Relaxation
Android does not have built-in SOAP or XML-RPC client APIs. However, it
does have the Apache HttpComponents library baked in. You can either

layer a SOAP/XML-RPC layer atop this library, or use it "straight" for
accessing REST-style Web services. For the purposes of this book, "REST-

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Communicating via the Internet

style Web services" is defined as "simple HTTP requests for ordinary URLSs
over the full range of HTTP verbs, with formatted payloads (XML, JSON,
etc.) as responses’.

More expansive tutorials, FAQs, and HOWTOs can be found at the
HttpComponents Web site. Here, we'll cover the basics, while checking the
weather.

HTTP Operations via Apache HttpComponents

The first step to using HttpClient is, not surprisingly, to create an HttpClient
object. The client object handles all HTTP requests upon your behalf. Since
HttpClient is an interface, you will need to actually instantiate some
implementation of that interface, such as befaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different
HttpRequest implementations for each different HTTP verb (e.g., HttpGet for
HTTP GeT requests). You create an HttpRequest implementation instance, fill
in the URL to retrieve and other configuration data (e.g., form values if you
are doing an HTTP PosT via HttpPost), then pass the method to the client to
actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want.
You can get an HttpResponse object back, with response code (e.g,. 200 for
OK), HTTP headers, and the like. Or, you can use a flavor of execute() that
takes a ResponseHandler<String> as a parameter - the net result there being
that execute() returns just the string representation of the request body. In
practice, this is not a recommended approach, because you really should be
checking your HTTP response codes for errors. However, for trivial
applications, like book examples, the ResponseHandler<String> approach
works just fine.

For example, let's take a look at the weather sample project. This implements
an activity that retrieves weather data for your current location from the
National Weather Service (NOTE: this probably only works in the US). That
data is converted into an HTML page, which is poured into a webkit widget

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://hc.apache.org/

Communicating via the Internet

for display. Rebuilding this demo using a Listview is left as an exercise for
the reader. Also, since this sample is relatively long, we will only show
relevant pieces of the Java code here in this chapter, though you can always
download the full source from the CommonsWare Web site.

To make this a bit more interesting, we use the Android location services to
figure out where we are...sort of. The full details of how that works is
described in the chapter on location services.

In the onResume() method, we toggle on location updates, so we will be
informed where we are now and when we move a significant distance
(1okm). When a location is available - either at the start or based on
movement - we retrieve the National Weather Service data via our
updateForecast() method:

private void updateForecast(Location loc) {
String url=String.format(format, loc.getLatitude(), loc.getLongitude());
HttpGet getMethod=new HttpGet(url);

try {
ResponseHandler<String> responseHandler = new BasicResponseHandler();
String responseBody=client.execute(getMethod, responseHandler);

buildForecasts(responseBody);
String page=generatePage();

browser.loadDataWithBaseURL (null, page, "text/html",
"UTF-8", null);

}
catch (Throwable t) {
Toast
.makeText(this, "Request failed: "+t.toString(),)
.show();

The updatefForecast() method takes a Location as a parameter, obtained
from the location update process. For now, all you need to know is that
Location sports getLatitude() and getLongitude() methods that return the
latitude and longitude of the device's position, respectively.

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/Android/

Communicating via the Internet

We hold the URL to the National Weather Service XML in a string resource,
and pour in the latitude and longitude at runtime. Given our HttpClient
object created in onCreate(), we populate an HttpGet with that customized
URL, then execute that method. Given the resulting XML from the REST
service, we build the forecast HTML page (see below) and pour that into the
webkit widget. If the Httpclient blows up with an exception, we provide that
€ITOr as a Toast.

Parsing Responses

The response you get will be formatted using some system — HTML, XML,
JSON, whatever. It is up to you, of course, to pick out what information you
need and do something useful with it. In the case of the weatherbemo, we
need to extract the forecast time, temperature, and icon (indicating sky
conditions and precipitation) and generate an HTML page from it.

Android includes:

+ Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX
parser (org.xml.sax), and the XML pull parser discussed in the
chapter on resources

+ AJSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to handle
other formats, such as a dedicated RSS/Atom parser for a feed reader. The
use of third-party Java code is discussed in a separate chapter.

For weatherDemo, we use the W3C DOM parser in our buildForecasts()
method:

void buildForecasts(String raw) throws Exception {
DocumentBuilder builder=DocumentBuilderFactory
.newInstance()
.newDocumentBuilder();
Document doc=builder.parse(new InputSource(new StringReader(raw)));
NodeList times=doc.getElementsByTagName("start-valid-time");

for (int i=0;i<times.getLength();i++) {
Element time=(Element)times.item(i);

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Communicating via the Internet

Forecast forecast=new Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());
}

NodeList temps=doc.getElementsByTagName("value");
for (int i=0;i<temps.getLength();i++) {
Element temp=(Element)temps.item(i);

Forecast forecast=forecasts.get(i);

forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
}

NodeList icons=doc.getElementsByTagName("icon-1ink");
for (int i=0;i<icons.getLength();i++) {
Element icon=(Element)icons.item(i);

Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());
}

}

The National Weather Service XML format is...curiously structured, relying
heavily on sequential position in lists versus the more object-oriented style
you find in formats like RSS or Atom. That being said, we can take a few
liberties and simplify the parsing somewhat, taking advantage of the fact
that the elements we want (start-valid-time for the forecast time, value for
the temperature, and icon-1link for the icon URL) are all unique within the
document.

The HTML comes in as an InputStream and is fed into the DOM parser. From
there, we scan for the start-valid-time elements and populate a set of
Forecast models using those start times. Then, we find the temperature
value elements and icon-1ink URLs and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with
the forecasts:

String generatePage() {
StringBuffer bufResult=new StringBuffer("<html><body><table>");

bufResult.append("<tr><th width=\"50%\">Time</th>"+
"<th>Temperature</th><th>Forecast</th></tr>");

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Communicating via the Internet

bufResult
bufResult
bufResult
bufResult
bufResult

}

for (Forecast forecast : forecasts) {
bufResult.

append("<tr><td align=\"center\">");

.append(forecast.getTime());
.append("</td><td align=\"center\">");
.append(forecast.getTemp());
.append("</td><td><img src=\"");
.append(forecast.getIcon());
bufResult.

append("\"></td></tr>");

bufResult.append("</table></body></html>");

return(bufResult.toString());

The result looks like this:

Al & 9:40 PM
WeatherDemo

Time Temperature Forecast
S |
S |
S |
e = [l
e o Bl
SN * |
2008-09-01 m

Figure 67. The WeatherDemo sample application

Stuff To Consider

If you need to use SSL, bear in mind that the default HttpClient setup does
not include SSL support. Mostly, this is because you need to decide how to
handle SSL certificate presentation — do you blindly accept all certificates,

Subscribe to updates at http://commonsware.com

242

Special Creative Commons BY-SA 3.0 License Edition

Communicating via the Internet

even self-signed or expired ones? Or do you want to ask the user if they
really want to use some strange certificates?

Similarly, HttpcClient, by default, is designed for single-threaded use. If you
will be using HttpClient from a service or some other place where multiple
threads might be an issue, you can readily set up HttpClient to support
multiple threads.

For these sorts of topics, you are best served by checking out the
HttpComponents Web site for documentation and support.

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART IV - Intents

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 22

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by
the user from the device's launcher. This, of course, is the most obvious case
for getting your activity up and visible to the user. And, in many cases it is
the primary way the user will start using your application.

However, remember that the Android system is based upon lots of loosely-
coupled components. What you might accomplish in a desktop GUI via
dialog boxes, child windows, and the like are mostly supposed to be
independent activities. While one activity will be "special”, in that it shows
up in the launcher, the other activities all need to be reached...somehow.

The "how" is via intents.

An intent is basically a message that you pass to Android saying, "Yo! I want
to do...er...something! Yeah!" How specific the "something" is depends on
the situation - sometimes you know exactly what you want to do (e.g., open
up one of your other activities), and sometimes you don't.

In the abstract, Android is all about intents and receivers of those intents.
So, now that we are well-versed in creating activities, let's dive into intents,
so we can create more complex applications while simultaneously being
"good Android citizens".

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Intent Filters

Some of the material in this chapter is based on the author's posts to the
Building 'Droids column on AndroidGuys.com.

What's Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol —
HTTP - he set up a system of verbs plus addresses in the form of URLs. The
address indicated a resource, such as a Web page, graphic, or server-side
program. The verb indicated what should be done: GET to retrieve it, POST
to send form data to it for processing, etc.

Intents are similar, in that they represent an action plus context. There are
more actions and more components to the context with Android intents
than there are with HTTP verbs and resources, but the concept is still the
same.

Just as a Web browser knows how to process a verb+URL pair, Android
knows how to find activities or other application logic that will handle a
given intent.

Pieces of Intents

The two most important pieces of an intent are the action and what Android
refers to as the "data". These are almost exactly analogous to HTTP verbs
and URLs - the action is the verb, and the "data" is a uri, such as
content://contacts/people/1 representing a contact in the contacts
database. Actions are constants, such as ACTION_VIEW (to bring up a viewer
for the resource), ACTION_EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android
would know to find and open an activity capable of viewing that resource.

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://androidguys.com/
http://androidguys.com/category/building-droids/

Creating Intent Filters

There are other criteria you can place inside an intent (represented as an
Intent object), besides the action and "data" uri, such as:

« A category. Your "main" activity will be in the LAUNCHER category,
indicating it should show up on the launcher menu. Other activities
will probably be in the DEFAULT or ALTERNATIVE categories.

« A MIME type, indicating the type of resource you want to operate
on, if you don't know a collection uri.

« A component, which is to say, the class of the activity that is
supposed to receive this intent. Using components this way obviates
the need for the other properties of the intent. However, it does
make the intent more fragile, as it assumes specific
implementations.

« "Extras", which is a Bundle of other information you want to pass
along to the receiver with the intent, that the receiver might want to
take advantage of. What pieces of information a given receiver can
use is up to the receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your intent, Android
has no doubt where the intent is supposed to be routed to - it will launch
the named activity. This might be OK if the target intent is in your
application. It definitely is not recommended for sending intents to other
applications. Component names, by and large, are considered private to the
application and are subject to change. Content uri templates and MIME
types are the preferred ways of identifying services you wish third-party
code to supply.

If you do not specify the target component, then Android has to figure out
what activities (or other intent receivers) are eligible to receive the intent.
Note the use of the plural "activities", as a broadly-written intent might well
resolve to several activities. That is the...ummm...intent (pardon the pun), as

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Intent Filters

you will see later in this chapter. This routing approach is referred to as
implicit routing.

Basically, there are three rules, all of which must be true for a given activity
to be eligible for a given intent:

1. The activity must support the specified action
2. The activity must support the stated MIME type (if supplied)

3. The activity must support all of the categories named in the intent

The upshot is that you want to make your intents specific enough to find the
right receiver(s), and no more specific than that.

This will become clearer as we work through some examples later in this
chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare
intent filters, so Android knows which intents should go to that component.
To do this, you need to add intent-filter elements to your
AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the
Android application-building script (activityCreator.py or the IDE
equivalent). They look something like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Intent Filters

Note the intent-filter element under the activity element. Here, we declare
that this activity:

« Is the main activity for this application

« Itis in the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows this
is the component it should launch when somebody chooses the application
from the main menu.

The intent filter also has a label (android:label = "ConsActivity"). In this
case, this controls the name associated with the application's icon in the
main menu.

You are welcome to have more than one action or more than one category in
your intent filters. That indicates that the associated component (e.g.,
activity) handles multiple different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN)
activities specify the MIME type of data they work on. Then, if an intent is
targeted for that MIME type - either directly, or indirectly by the uri
referencing something of that type - Android will know that the component
handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
</intent-filter>
</activity>

This activity will get launched by an intent requesting to view a Uri
representing a vnd.android.cursor.item/vnd.commonsware.tour piece of
content. That intent could come from another activity in the same
application (e.g., the MAIN activity for this application) or from another

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Intent Filters

activity in another Android application that happens to know a uri that this
activity handles.

Narrow Receivers

In the examples shown above, the intent filters were set up on activities.
Sometimes, tying intents to activities is not exactly what we want:

« Some system events might cause us to want to trigger something in a
service rather than an activity

« Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if we get intent X and the database
has a Y, then launch activity M; if the database does not have a Y,
then launch activity N)

For these cases, Android offers the intent receiver, defined as a class
implementing the BroadcastReceiver interface. Intent receivers are
disposable objects designed to receive intents - particularly broadcast
intents - and take action, typically involving launching other intents to
trigger logic in an activity, service, or other component.

The BroadcastReceiver interface has only one method: onReceive(). Intent
receivers implement that method, where they do whatever it is they wish to
do upon an incoming intent. To declare an intent receiver, add an receiver
element to your AndroidManifest.xml file:

|<r‘eceiver‘ android:name=".MyIntentReceiverClassName" /> |

An intent receiver is only alive for as long as it takes to process onReceive() —
as soon as that method returns, the receiver instance is subject to garbage
collection and will not be reused. This means intent receivers are somewhat
limited in what they can do, mostly to avoid anything that involves any sort
of callback. For example, they cannot bind to a service, and they cannot
open a dialog box.

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Intent Filters

The exception is if the BroadcastReceiver is implemented on some longer-
lived component, such as an activity or service - in that case, the intent
receiver lives as long as its "host” does (e.g., until the activity is frozen).
However, in this case, you cannot declare the intent receiver via
AndroidManifest.xml. Instead, you need to call registerReceiver() on your
Activity's onResume() callback to declare interest in an intent, then call
unregisterReceiver() from your Activity's onPause() when you no longer
need those intents.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages
around: it only works when the receiver is active. To quote from the
documentation for BroadcastReceiver:

If registering a receiver in your Activity.onResume() imple-
mentation, you should unregister it in Activity.onPause().
(You won't receive intents when paused, and this will cut
down on unnecessary system overhead). Do not unregister in
Activity.onSavelnstanceState(), because this won't be called if
the user moves back in the history stack.

Hence, you can only really use the Intent framework as an arbitrary message
bus if:

« Your receiver does not care if it misses messages because it was not
active, or

« You provide some means of getting the receiver "caught up" on
messages it missed while it was inactive

In the chapters on creating and using services, you will see an example of
the former condition, where the receiver (service client) will use Intent-

based messages when they are available but does not need them if the client
is not active.

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 23

Launching Activities and Sub-
Activities

As discussed previously, the theory behind the Android UI architecture is
that developers should decompose their application into distinct activities,
each implemented as an Activity, each reachable via intents, with one
"main” activity being the one launched by the Android launcher. For
example, a calendar application could have activities for viewing the
calendar, viewing a single event, editing an event (including adding a new
one), and so forth.

This, of course, implies that one of your activities has the means to start up
another activity. For example, if somebody clicks on an event from the view-
calendar activity, you might want to show the view-event activity for that
event. This means that, somehow, you need to be able to cause the view-
event activity to launch and show a specific event (the one the user clicked
upon).

This can be further broken down into two scenarios:

1. You know what activity you want to launch, probably because it is
another activity in your own application

2. You have a content uri to...something, and you want your users to be
able to do...something with it, but you do not know up front what
the options are

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Launching Activities and Sub-Activities

This chapter covers the first scenario; the next chapter handles the second.

Peers and Subs

One key question you need to answer when you decide to launch an activity
is: does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect
authentication information for some Web service you are connecting to -
maybe you need to authenticate with OpenID in order to use an OAuth
service. In this case, your main activity will need to know when the
authentication is complete so it can start to use the Web service.

On the other hand, imagine an email application in Android. When the user
elects to view an attachment, neither you nor the user necessarily expect the
main activity to know when the user is done viewing that attachment.

In the first scenario, the launched activity is clearly subordinate to the
launching activity. In that case, you probably want to launch the child as a
sub-activity, which means your activity will be notified when the child
activity is complete.

In the second scenario, the launched activity is more a peer of your activity,
so you probably want to launch the “child” just as a regular activity. Your
activity will not be informed when the “child” is done, but, then again, your
activity really doesn't need to know.

Start 'Em Up

The two pieces for starting an activity are an intent and your choice of how
to start it up.

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://oauth.net/
http://openid.net/

Launching Activities and Sub-Activities

Make an Intent

As discussed in a previous chapter, intents encapsulate a request, made to
Android, for some activity or other intent receiver to do something.

If the activity you intend to launch is one of your own, you may find it
simplest to create an explicit intent, naming the component you wish to
launch. For example, from within your activity, you could create an intent
like this:

|new Intent(this, HelpActivity.class); |

This would stipulate that you wanted to launch the HelpActivity. This
activity would need to be named in your AndroidManifest.xml file, though
not necessarily with any intent filter, since you are trying to request it
directly.

Or, you could put together an intent for some uri, requesting a particular
action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION_VIEW, uri);

Here, given that we have the latitude and longitude of some position (lat
and lon, respectively) of type Double, we construct a geo scheme uri and
create an intent requesting to view this Uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child
activity to launch. You have four choices:

1. The simplest option is to call startActivity() with the intent - this
will cause Android to find the best-match activity or intent receiver
and pass the intent to it for handling. Your activity will not be
informed when the “child” activity is complete.

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Launching Activities and Sub-Activities

2. You can call startSubActivity(), passing it the intent and a number
(unique to the calling activity). Android will find the best-match
handler and pass the intent over to it. However, your activity will be
notified when the child activity is complete via the
onActivityResult() callback (see below).

3. You can call broadcastIntent(). In this case, Android will pass the
intent to all registered activities and intent receivers that could
possibly want this intent, not just the best match.

4. You can call broadcastIntentSerialized(). Here, Android will pass
the intent to all candidate activities and intent receivers one at a
time - if any one “consumes” the intent, the rest of the candidates
are not notified.

Most of the time, you will wind up wusing startActivity() or
startSubActivity() - broadcast intents are more typically raised by the
Android system itself.

With startSubActivity(), as noted, you can implement the
onActivityResult() callback to be notified when the child activity has
completed its work. The callback receives the unique number supplied to
startSubActivity(), so you can determine which child activity is the one that
has completed. You also get:

« A result code, from the child activity calling setResult(). Typically
this is RESULT_OK or RESULT_CANCELLED, though you can create your
own return codes (pick a number starting with RESULT_FIRST_USER)

« An optional string containing some result data, possibly a URL to
some internal or external resource - for example, a ACTION_PICK
intent typically returns the selected bit of content via this data string

« An optional Bundle containing additional information beyond the
result code and data string

To demonstrate launching a peer activity, take a peek at the Launch sample
application. The XML layout is fairly straightforward: two fields for the
latitude and longitude, plus a button:

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Launching Activities and Sub-Activities

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TablelLayout
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:stretchColumns="1,2"

>
<TableRow>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:paddinglLeft="2dip"
android:paddingRight="4dip"
android:text="Location:"

/>

<EditText android:id="@+id/lat"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"
android:layout_weight="1"

/>

<EditText android:id="@+id/lon"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"
android:layout_weight="1"

/>

</TableRow>
</TableLayout>

<Button android:id="@+id/map"
android:layout_width="fill_parent”
android:layout_height="wrap_content"
android:text="Show Me!"
/>
</LinearLayout>

The button's onclickListener simply takes the latitude and longitude, pours
them into a geo scheme uri, then starts the activity.

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Launching Activities and Sub-Activities

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.map);
lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
String _lat=1lat.getText().toString();
String _lon=lon.getText().toString();
Uri uri=Uri.parse("geo:"+_lat+","+_lon);
startActivity(new Intent(Intent.ACTION_VIEW, uri));

}
1)

The activity is not much to look at:

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Launching Activities and Sub-Activities

BHE 2:11pM

LaunchDemo

Location: [EERGRM -77.0492

Figure 68. The LaunchDemo sample application, with a location filled in
If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and
click the button, the resulting map is more interesting. Note that this is the

built-in Android map activity — we did not create our own activity to display
this map.

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Launching Activities and Sub-Activities

- Independanca s w5
Figure 69. The map launched by Launch Demo, showing the Lincoln Memorial in
Washington DC

In a later chapter, you will see how you can create maps in your own
activities, in case you need greater control over how the map is displayed.

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 24

Finding Available Actions via
Introspection

Sometimes, you know just what you want to do, such as display one of your
other activities.

Sometimes, you have a pretty good idea of what you want to do, such as view
the content represented by a uri, or have the user pick a piece of content of
some MIME type.

Sometimes, you're lost. All you have is a content uri, and you don't really
know what you can do with it.

For example, suppose you were creating a common tagging subsystem for
Android, where users could tag pieces of content - contacts, Web URLs,
geographic locations, etc. Your subsystem would hold onto the uri of the
content plus the associated tags, so other subsystems could, say, ask for all
pieces of content referencing some tag.

That's all well and good. However, you probably need some sort of
maintenance activity, where users could view all their tags and the pieces of
content so tagged. This might even serve as a quasi-bookmark service for
items on their phone. The problem is, the user is going to expect to be able
to do useful things with the content they find in your subsystem, such as
dial a contact or show a map for a location.

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

The problem is, you have absolutely no idea what is all possible with any
given content Uri. You probably can view any of them, but can you edit
them? Can you dial them? Since new applications with new types of content
could be added by any user at any time, you can't even assume you know all
possible combinations just by looking at the stock applications shipped on
all Android devices.

Fortunately, the Android developers thought of this.

Android offers various means by which you can present to your users a set of
likely activities to spawn for a given content Uri...even if you have no idea
what that content uri really represents. This chapter explores some of these
Uri action introspection tools.

Pick 'Em

Sometimes, you know your content Uri represents a collection of some type,
such as content://contacts/people representing the list of contacts in the
stock Android contacts list. In this case, you can let the user pick a contact
that your activity can then use (e.g., tag it, dial it).

To do this, you need to create an intent for the ACTION_PICK on the target uri,
then start a sub activity (via startSubActivity()) to allow the user to pick a
piece of content of the specified type. If your onActivityResult() callback for
this request gets a RESULT_OK result code, your data string can be parsed into
a Uri representing the chosen piece of content.

For example, take a look at pick in the sample applications. This activity
gives you a field for a collection uri (with content://contacts/people pre-
filled in for your convenience), plus a really big “Gimme!” button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<EditText android:id="@+id/type"

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singleLine="true"
android:text="content://contacts/people”

/>

<Button
android:id="@+id/pick"
android:layout_width="fill parent"
android:layout_height="fill_parent"
android:text="Gimme!"
android:layout_weight="1"

/>

</LinearLayout>

Upon being clicked, the button creates the AcTION_pIck on the user-supplied
collection uri and starts the sub-activity. When that sub-activity completes
with RESULT_OK, the ACTION_VIEW is invoked on the resulting content uri.

public class PickDemo extends Activity {
static final int PICK_REQUEST= 8
private EditText type;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
type=(EditText)findViewById(R.id.type);

Button btn=(Button)findViewById(R.id.pick);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent i=new Intent(Intent.ACTION_PICK,
Uri.parse(type.getText().toString()));

startActivityForResult (i, PICK_REQUEST);
¥
s
}

@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK_REQUEST) {
if (resultCode==RESULT_OK) {
startActivity(new Intent(Intent.ACTION_VIEW,
data.getData()));

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

The result: the user chooses a collection, picks a piece of content, and views

it.

PickDemo

Eh Ml @ 5:16 PM

kontent://contacts/people

Gimme!

Figure 70. The PickDemo sample application, as initially launched

Subscribe to updates at http://commonsware.com

266

Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

M@ 5:16 PM

Contacts

Jane Smith
Mobile +

Joe Schmoe
Mebile +

Figure 71. The same application, after clicking the "Gimme!" button, showing
the list of available people

Ml & 5:16 PM

q Jane Smith w

Dial number

Mobile @ +1.202.555.1212 *
Send SMS/MMS

+1.202.555.1212 [:)]

Send email

Home +1.703.555.1212

Figure 72. A view of a contact, launched by PickDemo after choosing one of the
people from the pick list

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

One flaw in this application is that it may not have permission to view
whatever content collection the user entered. For the sample, we had to
specifically request permission to read the user's contacts, via a uses-
permission element in AndroidManifest.xml. We'll cover more about
requesting (and requiring) permissions later in this book.

Would You Like to See the Menu?

Another way to give the user ways to take actions on a piece of content,
without you knowing what actions are possible, is to inject a set of menu
choices into the options menu via addIntentOptions(). This method,
available on Menu, takes an Intent and other parameters and fills in a set of
menu choices on the Menu instance, each representing one possible action.
Choosing one of those menu choices spawns the associated activity.

The canonical example of using addIntentoptions() illustrates another flavor
of having a piece of content and not knowing the actions that can be taken.
In the previous example, showing ActivityAdapter, the content was from
some other Android application, and we know nothing about it. It is also
possible, though, that we know full well what the content is - it's ours.
However, Android applications are perfectly capable of adding new actions
to existing content types, so even though you wrote your application and
know what you expect to be done with your content, there may be other
options you are unaware of that are available to users.

For example, imagine the tagging subsystem mentioned in the introduction
to this chapter. It would be very annoying to users if, every time they wanted
to tag a piece of content, they had to go to a separate tagging tool, then turn
around and pick the content they just had been working on (if that is even
technically possible) before associating tags with it. Instead, they would
probably prefer a menu choice in the content's own “home” activity where
they can indicate they want to tag it, which leads them to the set-a-tag
activity and tells that activity what content should get tagged.

To accomplish this, the tagging subsystem should set up an intent filter,
supporting any piece of content, with their own action (e.g., ACTION_TAG) and

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

a category of ALTERNATE_CATEGORY. The category ALTERNATE_CATEGORY is the
convention for one application adding actions to another application's
content.

If you want to write activities that are aware of possible add-ons like tagging,
you should use addIntentOptions() to add those add-ons' actions to your
options menu, such as the following:

Intent intent = new Intent(null, myContentUri);

intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.ALTERNATIVE, 9,
new ComponentName(this,
MyActivity.class),
null, intent, 9, null);

Here, myContenturi is the content uri of whatever is being viewed by the user
in this activity, MyActivity is the name of the activity class, and menu is the
menu being modified.

In this case, the Intent we are using to pick actions from requires that
appropriate intent receivers support the ALTERNATIVE_CATEGORY. Then, we add
the options to the menu with addintentoptions() and the following
parameters:

« The sort position for this set of menu choices, typically set to o
(appear in the order added to the menu) or ALTERNATIVE (appear after
other menu choices)

« A unique number for this set of menu choices, or e if you do not
need a number

« A ComponentName instance representing the activity that is populating
its menu - this is used to filter out the activity's own actions, so the
activity can handle its own actions as it sees fit

« An array of Intent instances that are the “specific” matches - any
actions matching those intents are shown first in the menu before
any other possible actions

« The 1ntent for which you want the available actions

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Finding Available Actions via Introspection

« A set of flags. The only one of likely relevance is represented as
MATCH_DEFAULT_ONLY, which means matching actions must also
implement the DEFAULT_CATEGORY category. If you do not need this,
use a value of o for the flags.

« An array of Menu. Item, which will hold the menu items matching the
array of Intent instances supplied as the “specifics”, or null if you do
not need those items (or are not using “specifics”)

Asking Around

Both the ActivityAdapter family and addIntentOptions() use
queryIntentActivityoptions() for the “heavy lifting” of finding possible
actions. The queryIntentActivityOptions() method is implemented on
PackageManager, which is available to your activity via getPackageManager().

The queryIntentActivityoptions() method takes some of the same
parameters as does addIntentOptions(), notably the caller componentName, the
“specifics” array of Intent instances, the overall Intent representing the
actions you are seeking, and the set of flags. It returns a List of Intent
instances matching the stated criteria, with the “specifics” ones first.

If you would like to offer alternative actions to users, but by means other
addIntentOptions(), you could call queryIntentActivityOptions(), get the
Intent instances, then use them to populate some other user interface (e.g.,
a toolbar).

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART V - Content Providers and
Services

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 25
Using a Content Provider

Any uUri in Android that begins with the content:// scheme represents a
resource served up by a content provider. Content providers offer data
encapsulation using Uri instances as handles - you neither know nor care
where the data represented by the uri comes from, so long as it is available
to you when needed. The data could be stored in a SQLite database, or in
flat files, or retrieved off a device, or be stored on some far-off server
accessed over the Internet.

Given a uri, you can perform basic CRUD (create, read, update, delete)
operations using a content provider. Uri instances can represent either
collections or individual pieces of content. Given a collection uri, you can
create new pieces of content via insert operations. Given an instance uri,
you can read data represented by the uri, update that data, or delete the
instance outright.

Android lets you use existing content providers, plus create your own. This
chapter covers using content providers; the next chapter will explain how
you can serve up your own data using the content provider framework.

Pieces of Me

The simplified model of the construction of a content uri is the scheme, the
namespace of data, and, optionally, the instance identifier, all separated by

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

slashes in URL-style notation. The scheme of a content Uri is always
content://.

So, a content Uri of content://constants/5 represents the constants instance
with an identifier of s.

The combination of the scheme and the namespace is known as the “base
Uri” of a content provider, or a set of data supported by a content provider.
In the example above, content://constants is the base uri for a content
provider that serves up information about “constants” (in this case, physical
constants).

The base uri can be more complicated. For example, the base uri for
contacts is content://contacts/people, as the contacts content provider may
serve up other data using other base uri values.

The base uri represents a collection of instances. The base uri combined
with an instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be uri objects, though in common
discussion, it is simpler to think of them as strings. The uri.parse() static
method creates a uri out of the string representation.

Getting a Handle

So, where do these uri instances come from?

The most popular starting point, if you know the type of data you want to
work with, is to get the base uri from the content provider itself in code. For
example, android.provider.CONTENT_URI is the base uri for contacts
represented as people - this maps to content://contacts/people. If you just
need the collection, this uri works as-is; if you need an instance and know
its identifier, you can call add1d() on the uri to inject it, so you have a uri for
the instance.

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

You might also get uri instances handed to you from other sources. In the
preceding chapter, we saw how you got uri handles for contacts via sub-
activities responding to ACTION_PICK intents. In this case, the uri is truly an
opaque handle...unless you decide to pick it apart using the various getters
on the uri class.

You can also hard-wire literal string objects and convert them into uri
instances via Uri.parse(). For example, in the preceding chapter, the sample
code used an Editview with content://contacts/people pre-filled in. This
isn't an ideal solution, as the base uri values could conceivably change over
time.

Makin' Queries

Given a base Uri, you can run a query to return data out of the content
provider related to that uri. This has much of the feel of SQL: you specify
the “columns” to return, the constraints to determine which “rows” to
return, a sort order, etc. The difference is that this request is being made of a
content provider, not directly of some database (e.g., SQLite).

The nexus of this is the managedQuery() method available to your activity.
This method takes five parameters:

1. The base uri of the content provider to query, or the instance uri of a
specific object to query

2. An array of properties of instances from that content provider that
you want returned by the query

A constraint statement, functioning like a SQL wHERE clause

4. An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

5. An optional sort statement, functioning like a SQL oRDER BY clause

This method returns a cursor object, which you can use to retrieve the data
returned by the query.

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

“Properties” is to content providers as columns are to databases. In other
words, each instance (row) returned by a query consists of a set of properties
(columns), each representing some piece of data.

This will hopefully make more sense given an example.

Our content provider examples come from the Constants sample
application, specifically the constantsBrowser class:

constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
PROJECTION, null, null, null);

In the call to managedQuery (), we provide:

« The uri passed into the activity by the caller (CONTENT_URI), in this
case representing the collection of physical constants managed by
the content provider

- Alist of properties to retrieve (see code below)

+ Three null values, indicating that we do not need a constraint clause
(the uri represents the instance we need), nor parameters for the
constraint, nor a sort order (we should only get one entry back)

private static final String[] PROJECTION = new String[] {
Provider.Constants._ID, Provider.Constants.TITLE,
Provider.Constants.VALUE};

The biggest “magic” here is the list of properties. The lineup of what
properties are possible for a given content provider should be provided by
the documentation (or source code) for the content provider itself. In this
case, we define logical values on the Provider content provider
implementation class that represent the various properties (namely, the
unique identifier, the display name or title, and the value of the constant).

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

Adapting to the Circumstances

Now that we have a Cursor via managedQuery(), we have access to the query
results and can do whatever we want with them. You might, for example,
manually extract data from the cursor to populate widgets or other objects.

However, if the goal of the query was to return a list from which the user
should choose an item, you probably should consider using
SimpleCursorAdapter. This class bridges between the cursor and a selection
widget, such as a Listview or Spinner. Pour the cursor into a
SimpleCursorAdapter, hand the adapter off to the widget, and you're set -
your widget will show the available options.

For example, here is the oncreate() method from constantsBrowser, which
gives the user a list of physical constants:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
PROJECTION, null, null, null);

ListAdapter adapter=new SimpleCursorAdapter(this,
R.layout.row, constantsCursor,
new String[] {Provider.Constants.TITLE,
Provider.Constants.VALUE},
new int[] {R.id.title, R.id.value});

setListAdapter(adapter);
registerForContextMenu(getListView());

After executing the managedQuery() and getting the Cursor, ConstantsBrowser
creates a SimpleCursorAdapter with the following parameters:

+ The activity (or other context) creating the adapter; in this case, the
ConstantsBrowser itself

« The identifier for a layout to be used for rendering the list entries
(R. layout. r‘ow)

+ The cursor (constantsCur‘sor‘)

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

« The properties to pull out of the cursor and use for configuring the
list entry View instances (TITLE and VALUE)

« The corresponding identifiers of Textview widgets in the list entry
layout that those properties should go into (R.id.title and
R.id.value)

After that, we put the adapter into the Listview, and we get:

Ml & 6:57pm

ConstantsBrowser
G Death

Figure 73. ConstantsBrowser, showing a list of physical constants

If you need more control over the views than you can reasonably achieve
with the stock view construction logic, subclass SimpleCursorAdapter and
override getview() to create your own widgets to go into the list, as
demonstrated earlier in this book.

Doing It By Hand

Of course, you can always do it the “hard way” - pulling data out of the
cursor by hand. The cursor interface is similar in concept to other database
access APIs offering cursors as objects, though, as always, the devil is in the
details.

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

Position

Cursor instances have a built-in notion of position, akin to the Java Iterator
interface. To get to the various rows, you can use:

+ moveToFirst() to move to the first row in the result set or
moveTolLast() to move to the last row in the result set

+ moveToNext() to move to the next row and determine if there is yet
another row to process (moveToNext() returns true if it points to
another row after moving, false otherwise)

« moveToPrevious() to move to the previous row, as the opposite to
moveToNext ()

+ moveToPosition() to move to a specific index, or move() to move to a
relative position plus or minus from your current position

* getPosition() to return your current index

« a whole host of condition methods, including isFirst(), isLast(),
isBeforeFirst(), and isAfterLast()

Getting Properties
Once you have the cursor positioned at a row of interest, you have a variety
of methods to retrieve properties from that row, with different methods

supporting different types (getString(), getInt(), getFloat(), etc.). Each
method takes the zero-based index of the property you want to retrieve.

If you want to see if a given property has a value, you can use isNull() to test
it for null-ness.

Give and Take

Of course, content providers would be astonishingly weak if you couldn't
add or remove data from them, only update what is there. Fortunately,
content providers offer these abilities as well.

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

To insert data into a content provider, you have two options available on the
ContentProvider interface (available through getContentProvider() to your
activity):

1. Use insert() with a collection Uri and a Contentvalues structure
describing the initial set of data to put in the row

2. Use bulkInsert() with a collection uri and an array of Contentvalues
structures to populate several rows at once

The insert() method returns a uri for you to use for future operations on
that new object. The bulkInsert() method returns the number of created
rows; you would need to do a query to get back at the data you just inserted.

For example, here is a snippet of code from ConstantsBrowser to insert a new
constant into the content provider, given a DialogWrapper that can provide
access to the title and value of the constant:

private void processAdd(DialogWrapper wrapper) {
ContentValues values=new ContentValues(2);

values.put(Provider.Constants.TITLE, wrapper.getTitle());
values.put(Provider.Constants.VALUE, wrapper.getValue());

getContentResolver().insert(Provider.Constants.CONTENT_URI,
values);
constantsCursor.requery();

In this case, all we do is populate the title. Since we get a uri back, we can
turn around and get a Cursor on that Uri (via managedQuery(uri, PROJECTION,
null, null)) and reuse our existing update logic to add in any additional
data beyond the title itself.

Also, if we already have an outstanding cursor for the content provider's
contents, call requery() on that to update cursor. This, in turn, will update
any SimpleCursorAdapter you may have wrapping the cursor — and that will
update any selection widgets (e.g., Listview) you have using the adapter.

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using a Content Provider

To delete one or more rows from the content provider, use the delete()
method on ContentResolver. This works akin to a SQL DELETE statement and
takes three parameters:

1. Avurirepresenting the collection (or instance) you wish to update

2. A constraint statement, functioning like a SQL wHERe clause, to
determine which rows should be updated

3. An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

Beware of the BLOB!

Binary large objects - BLOBs - are supported in many databases, including
SQLite. However, the Android model is more aimed at supporting such
hunks of data via their own separate content uri values. A content provider,
therefore, does not provide direct access to binary data, like photos, via a
cursor. Rather, a property in the content provider will give you the content
uri for that particular BLOB. You can use getInputStream() and
getOutputStream() on your ContentProvider to read and write the binary data.

Quite possibly, the rationale is to minimize unnecessary data copying. For
example, the primary use of a photo in Android is to display it to the user.
The Imageview widget can do just that, via a content uri to a JPEG. By storing
the photo in a manner that has its own uri, you do not need to copy data out
of the content provider into some temporary holding area just to be able to
display it - just use the uri. The expectation, presumably, is that few
Android applications will do much more than upload binary data and use
widgets or built-in activities to display that data.

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 26
Building a Content Provider

Building a content provider is probably the most complicated and tedious
task in all of Android development. There are many requirements of a
content provider, in terms of methods to implement and public data
members to supply. And, until you try using it, you have no great way of
telling if you did any of it correctly (versus, say, building an activity and
getting validation errors from the resource compiler).

That being said, building a content provider is of huge importance if your
application wishes to make data available to other applications. If your
application is keeping its data solely to itself, you may be able to avoid
creating a content provider, just accessing the data directly from your
activities. But, if you want your data to possibly be used by others - for
example, you are building a feed reader and you want other programs to be
able to access the feeds you are downloading and caching - then a content
provider is right for you.

First, Some Dissection

As was discussed in the previous chapter, the content uri is the linchpin
behind accessing data inside a content provider. When using a content
provider, all you really need to know is the provider's base uri; from there
you can run queries as needed, or construct a Uri to a specific instance if you
know the instance identifier.

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

When building a content provider, though, you need to know a bit more
about the innards of the content uri.

A content uri has two to four pieces, depending on situation:

« It always has a scheme (content://), indicating it is a content Uri
instead of a uri to a Web resource (http://).

« It always has an authority, which is the first path segment after the
scheme. The authority is a unique string identifying the content
provider that handles the content associated with this uri.

It may have a data type path, which is the list of path segments after
the authority and before the instance identifier (if any). The data
type path can be empty, if the content provider only handles one
type of content. It can be a single path segment (foo) or a chain of
path segments (foo/bar/goo) as needed to handle whatever data
access scenarios the content provider requires.

« It may have an instance identifier, which is an integer identifying a
specific piece of content. A content uri without an instance
identifier refers to the collection of content represented by the
authority (and, where provided, the data path).

For example, a content uri could be as simple as content://sekrits, which
would refer to the collection of content held by whatever content provider
was tied to the sekrits authority (e.g., SecretsProvider). Or, it could be as
complex as content://sekrits/card/pin/17, which would refer to a piece of
content (identified as 17) managed by the sekrits content provider that is of
the data type card/pin.

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the
content your content provider will provide.

Android uses both the content uri and the MIME type as ways to identify
content on the device. A collection content uri - or, more accurately, the
combination authority and data type path - should map to a pair of MIME

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

types. One MIME type will represent the collection; the other will represent
an instance. These map to the uri patterns above for no-identifier and
identifier, respectively. As you saw earlier in this book, you can fill in a
MIME type into an Intent to route the Intent to the proper activity (e.g.,
ACTION_PICK on a collection MIME type to call up a selection activity to pick
an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where
X is the name of your firm, organization, or project, and Y is a dot-delimited
type name. So, for example, you might use
vnd.tlagency.cursor.dir/sekrits.card.pin as the MIME type for your
collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually
for the same values of x and Y as you used for the collection MIME type
(though that is not strictly required).

Step #1: Create a Provider Class

Just as an activity and intent receiver are both Java classes, so is a content
provider. So, the big step in creating a content provider is crafting its Java
class, with a base class of contentProvider.

In your subclass of ContentProvider, you are responsible for implementing
six methods that, when combined, perform the services that a content
provider is supposed to offer to activities wishing to create, read, update, or
delete content.

onCreate()

As with an activity, the main entry point to a content provider is onCreate().
Here, you can do whatever initialization you want. In particular, here is
where you should lazy-initialize your data store. For example, if you plan on
storing your data in such-and-so directory on an SD card, with an XML file
serving as a "table of contents", you should check and see if that directory

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

and XML file are there and, if not, create them so the rest of your content
provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause
the data store to shift structure, you should check to see what structure you
have now and adjust it if what you have is out of date. You don't write your
own "installer" program and so have no great way of determining if, when
onCreate() is called, if this is the first time ever for the content provider, the
first time for a new release of a content provider that was upgraded in-place,
or if this is just a normal startup.

If your content provider uses SQLite for storage, you can detect to see if your
tables exist by querying on the sqlite_master table. This is useful for lazy-
creating a table your content provider will need.

For example, here is the oncreate() method for provider, from the Constants
sample application:

@Override
public boolean onCreate() {
db=(new DatabaseHelper(getContext())).getWritableDatabase();

return (db == null) ? false : true;

}

While that doesn't seem all that special, the "magic" is in the private
DatabaseHelper object, described in the chapter on database access.

query()

As one might expect, the query() method is where your content provider
gets details on a query some activity wants to perform. It is up to you to
actually process said query.

The query method gets, as parameters:

« Avuri representing the collection or instance being queried

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

A string[] representing the list of properties that should be
returned

« A string representing what amounts to a SQL wHERE clause,
constraining which instances should be considered for the query
results

« A string[] representing values to "pour into" the WHERE clause,
replacing any ? found there

« A string representing what amounts to a SQL oRDER BY clause

You are responsible for interpreting these parameters however they make
sense and returning a Cursor that can be used to iterate over and access the
data.

As you can imagine, these parameters are aimed towards people using a
SQLite database for storage. You are welcome to ignore some of these
parameters (e.g., you elect not to try to roll your own SQL WHERE clause
parser), but you need to document that fact so activities only attempt to
query you by instance Uri and not using parameters you elect not to handle.

For SQLite-backed storage providers, however, the query() method
implementation should be largely boilerplate. Use a sQLiteQueryBuilder to
convert the various parameters into a single SQL statement, then use
query() on the builder to actually invoke the query and give you a cursor
back. The cursor is what your query() method then returns.

For example, here is query() from Provider:

@Override
public Cursor query(Uri url, String[] projection, String selection,
String[] selectionArgs, String sort) {
SQLiteQueryBuilder gb=new SQLiteQueryBuilder();

gb.setTables(getTableName());

if (isCollectionUri(url)) {
gb.setProjectionMap(getDefaultProjection());
}

else {
gb.appendWhere(getIdColumnName()+"="+url.getPathSegments().get(1));

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

}
String orderBy;

if (TextUtils.isEmpty(sort)) {
orderBy=getDefaultSortOrder();
} else {
orderBy=sort;

}

Cursor c=gb.query(db, projection, selection, selectionArgs,

null, null, orderBy);
c.setNotificationUri(getContext().getContentResolver(), url);
return c;

We create a sQLiteQueryBuilder and pour the query details into the builder.
Note that the query could be based around either a collection or an instance
uri - in the latter case, we need to add the instance ID to the query. When
done, we use the query() method on the builder to get a cursor for the
results.

insert()

Your insert() method will receive a uri representing the collection and a
ContentValues structure with the initial data for the new instance. You are
responsible for creating the new instance, filling in the supplied data, and
returning a Uri to the new instance.

If this is a SQLite-backed content provider, once again, the implementation
is mostly boilerplate: validate that all required values were supplied by the
activity, merge your own notion of default values with the supplied data, and
call insert() on the database to actually create the instance.

For example, here is insert() from Provider:

@0verride

public Uri insert(Uri url, ContentValues initialValues) {
long rowID;
ContentValues values;

if (initialvalues!=null) {
values=new ContentValues(initialValues);
} else {

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

values=new ContentValues();

}

if (!isCollectionUri(url)) {
throw new IllegalArgumentException("Unknown URL " + url);

}

for (String colName : getRequiredColumns()) {
if (values.containsKey(colName) == false) {
throw new IllegalArgumentException("Missing column: "+colName);
¥
}

populateDefaultValues(values);

rowID=db.insert(getTableName(), getNullColumnHack(), values);
if (rowID > 9) {
Uri uri=ContentUris.withAppendedId(getContentUri(), rowID);
getContext().getContentResolver().notifyChange(uri, null);
return uri;

}

throw new SQLException("Failed to insert row into " + url);

The pattern is the same as before: use the provider particulars plus the data
to be inserted to actually do the insertion. Of note:

« You can only insert into a collection uri, so we validate that by
calling iscollectionuri()

« The provider also knows what columns are required
(getRequiredColumns()), so we iterate over those and confirm our
supplied values cover the requirements

« The provider is also responsible for filling in any default values
(populateDefaultvalues()) for columns not supplied in the insert()
call and not automatically handled by the SQLite table definition

update()
Your update() method gets the uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL

WHERE clause, and a string[] with parameters to use to replace ? found in the
WHERE clause. Your responsibility is to identify the instance(s) to be modified

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

(based on the uri and wHERE clause), then replace those instances' current
property values with the ones supplied.

This will be annoying, unless you're using SQLite for storage. Then, you can
pretty much pass all the parameters you received to the update() call to the
database, though the update() call will vary slightly depending on whether
you are updating one instance or several.

For example, here is update() from Provider:

@0verride
public int update(Uri url, ContentValues values, String where, String[]
whereArgs) {

int count;

if (isCollectionUri(url)) {
count=db.update(getTableName(), values, where, whereArgs);

else {
String segment=url.getPathSegments().get(1);
count=db
.update(getTableName(), values, getIdColumnName()+"="
+ segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where
+ ")+ ""), whereArgs);

}

getContext().getContentResolver().notifyChange(url, null);
return count;

In this case, updates can either be to a specific instance or applied across the
entire collection, so we check the uri (isCollectionuri()) and, if it is an
update for the collection, just perform the update. If we are updating a
single instance, we need to add a constraint to the WHERE clause to only
update for the requested row.

delete()

As with update(), delete() receives a Uri representing the instance or
collection to work with and a wHERE clause and parameters. If the activity is
deleting a single instance, the uri should represent that instance and the
WHERE clause may be null. But, the activity might be requesting to delete an

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

open-ended set of instances, using the WHERE clause to constrain which ones
to delete.

As with update(), though, this is simple if you are using SQLite for database
storage (sense a theme?). You can let it handle the idiosyncrasies of parsing
and applying the wHERE clause - all you have to do is call delete() on the
database.

For example, here is delete() from Provider:

@Override

public int delete(Uri url, String where, String[] whereArgs) {
int count;
long rowld=0;

if (isCollectionUri(url)) {
count=db.delete(getTableName(), where, whereArgs);

else {
String segment=url.getPathSegments().get(1);
rowId=Long.parseLong(segment);

count=db
.delete(getTableName(), getIdColumnName()+"="
+ segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where

+ ')" ¢ ""), whereArgs);

}

getContext().getContentResolver().notifyChange(url, null);
return count;

This is almost a clone of the update() implementation described above —
either delete a subset of the entire collection or delete a single instance (if it
also satisfies the supplied WHERE clause).

getType()
The last method you need to implement is getType(). This takes a uri and
returns the MIME type associated with that uri. The uri could be a

collection or an instance uri; you need to determine which was provided
and return the corresponding MIME type.

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

For example, here is getType() from Provider:

@Override
public String getType(Uri url) {
if (isCollectionUri(url)) {
return(getCollectionType());
}

return(getSingleType());

}

As you can see, most of the logic delegates to private getCollectionType()
and getSingleType() methods:

private String getCollectionType() {
return("vnd.android.cursor.dir/vnd.commonsware.constant");
¥

private String getSingleType() {
return("vnd.android.cursor.item/vnd.commonsware.constant");
¥

Step #2: Supply a Uri

You also need to add a public static member...somewhere, containing the
uri for each collection your content provider supports. Typically, this is a
public static final uri put on the content provider class itself:

public static final Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.tourit.Provider/tours");

You may wish to use the same namespace for the content uri that you use
for your Java classes, to reduce the chance of collision with others.

Step #3: Declare the Properties

Remember those properties you referenced when you were using a content
provider, in the previous chapter? Well, you need to have those too for your
own content provider.

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

Specifically, you want a public static class implementing BaseColumns that
contains your property names, such as this example from Provider:

public static final class Constants implements BaseColumns {
public static final Uri CONTENT_URI
=Uri.parse("content://com.commonsware.android.constants.Provider/constants
")s
public static final String DEFAULT_SORT_ORDER="title";
public static final String TITLE="title";
public static final String VALUE="value";

}

If you are using SQLite as a data store, the values for the property name
constants should be the corresponding column name in the table, so you
can just pass the projection (array of properties) to SQLite on a query(), or
pass the Contentvalues on an insert() or update().

Note that nothing in here stipulates the types of the properties. They could
be strings, integers, or whatever. The biggest limitation is what a Cursor can
provide access to via its property getters. The fact that there is nothing in
code that enforces type safety means you should document the property
types well, so people attempting to use your content provider know what
they can expect.

Step #4: Update the Manifest

The glue tying the content provider implementation to the rest of your
application resides in your AndroidManifest.xml file. Simply add a <provider>
element as a child of the <application> element:

<provider
android:name=".Provider"
android:authorities="com.commonsware.android.tourit.Provider" />

The android:name property is the name of the content provider class, with a
leading dot to indicate it is in the stock namespace for this application's
classes (just like you use with activities).

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

The android:authorities property should be a semicolon-delimited list of
the authority values supported by the content provider. Recall, from earlier
in this chapter, that each content uri is made up of a scheme, authority, data
type path, and instance identifier. Each authority from each CONTENT_URI
value should be included in the android:authorities list.

Now, when Android encounters a content Uri, it can sift through the
providers registered through manifests to find a matching authority. That
tells Android which application and class implements the content provider,
and from there Android can bridge between the calling activity and the
content provider being called.

Notify-On-Change Support

An optional feature your content provider to its clients is notify-on-change
support. This means that your content provider will let clients know if the
data for a given content uri changes.

For example, suppose you have created a content provider that retrieves RSS
and Atom feeds from the Internet based on the user's feed subscriptions (via
OPML, perhaps). The content provider offers read-only access to the
contents of the feeds, with an eye towards several applications on the phone
using those feeds versus everyone implementing their own feed poll-fetch-
and-cache system. You have also implemented a service that will get updates
to those feeds asynchronously, updating the underlying data store. Your
content provider could alert applications using the feeds that such-and-so
feed was updated, so applications using that specific feed can refresh and
get the latest data.

On the content provider side, to do this, call notifyChange() on your
ContentResolver instance (available in your content provider via
getContext().getContentResolver()). This takes two parameters: the uri of
the piece of content that changed and the contentobserver that initiated the
change. In many cases, the latter will be null; a non-null value simply means
that observer will not be notified of its own changes.

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Building a Content Provider

On the content consumer side, an activity can call
registerContentObserver() on its ContentResolver (via getContentResolver()).
This ties a ContentObserver instance to a supplied uri - the observer will be
notified whenever notifycChange() is called for that specific uri. When the
consumer is done with the uri, unregisterContentObserver() releases the
connection.

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 27
Requesting and Requiring
Permissions

In the late 1990's, a wave of viruses spread through the Internet, delivered
via email, using contact information culled from Microsoft Outlook. A virus
would simply email copies of itself to each of the Outlook contacts that had
an email address. This was possible because, at the time, Outlook did not
take any steps to protect data from programs using the Outlook API, since
that API was designed for ordinary developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data
by requiring that a user explicitly grant rights for other programs to access
the contact information. Those rights could be granted on a case-by-case
basis or a once at install time.

Android is no different, in that it requires permissions for applications to
read or write contact data. Android's permission system is useful well
beyond contact data, and for content providers and services beyond those
supplied by the Android framework.

You, as an Android developer, will frequently need to ensure your
applications have the appropriate permissions to do what you want to do
with other applications' data. You may also elect to require permissions for
other applications to use your data or services, if you make those available to
other Android components. This chapter covers how to accomplish both
these ends.

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Requesting and Requiring Permissions

Mother, May I?

Requesting the use of other applications' data or services requires the uses-
permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct
children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is
the name of the permission your application requires:

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

The stock system permissions all begin with android.permission and are
listed in the Android SDK documentation for Manifest.permission. Third-
party applications may have their own permissions, which hopefully they
have documented for you. Here are some of the more important built-in
permissions:

+ ACCESS_MOCK_LOCATION, if you are using the built-in mock location
provider

 INTERNET, if your application wishes to access the Internet through
any means, from raw Java sockets through the webview widget

+ READ_CALENDAR, READ_CONTACTS, and the like for reading data out of the
built-in content providers

« WRITE_CALENDAR, WRITE_CONTACTS, and the like for modifying data in
the built-in content providers

Permissions are confirmed at the time the application is installed - the user
will be prompted to confirm it is OK for your application to do what the
permission calls for. This prompt is not available in the current emulator,
however.

If you do not have the desired permission and try to do something that
needs it, you may get a SecurityException informing you of the missing
permission, but this is not a guarantee - failures may come in other forms,

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Requesting and Requiring Permissions

depending on if something else is catching and trying to handle that
exception.

To see the effects of permissions, go back to the pick example project. If you
look at the AndroidManifest.xml file, you will see it requests the
READ_CONTACTS permission. This is what allows you to view the contact
information. Comment out the uses-permission element in the manifest,
recompile, and try out the new version in the emulator. You should get a
SecurityException. NOTE: you may need to restart the emulator, if you were
using the PickDemo before during this same emulator session.

Halt! Who Goes There?

The other side of the coin, of course, is to secure your own application. If
your application is merely activities and intent receivers, security may be
just an “outbound” thing, where you request permission to use resources of
other applications. If, on the other hand, you put content providers or
services in your application, you will want to implement “inbound” security
to control which applications can do what with the data.

Note that the issue here is less about whether other applications might
“mess up” your data, but rather about privacy of the user's information or
use of services that might incur expense. That is where the stock
permissions for built-in Android applications are focused - can you read or
modify contacts, can you send SMS, etc. If your application does not store
information that might be considered private, security is less an issue. If, on
the other hand, your application stores private data, such as medical
information, security is much more important.

The first step to securing your own application using permissions is to
declare said permissions, once again in the AndroidManifest.xml file. In this
case, instead of uses-permission, you add permission elements. Once again,
you can have zero or more permission elements, all as direct children of the
root manifest element.

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Requesting and Requiring Permissions

Declaring a permission is slightly more complicated than using a
permission. There are three pieces of information you need to supply:

1. The symbolic name of the permission. To keep your permissions
from colliding with those from other applications, you should use
your application's Java namespace as a prefix

2. A label for the permission: something short that would be
understandable by users

3. A description for the permission: something a wee bit longer that is
understandable by your users

<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
android:label="@string/see_sekrits_label"
android:description="@string/see_sekrits_description"” />

This does not enforce the permission. Rather, it indicates that it is a possible
permission; your application must still flag security violations as they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating
where and under what circumstances they are required. The easier one is to
indicate in the manifest where permissions are required.

Activities, services, and intent receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is
required to access those items:

<activity
android:name=".SekritApp"
android:label="Top Sekrit"
android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Requesting and Requiring Permissions

Only applications that have requested your indicated permission will be
able to access the secured component. In this case, “access” means:

« Activities cannot be started without the permission

« Services cannot be started, stopped, or bound to an activity without
the permission

« Intent receivers ignore messages sent via broadcastIntent() unless
the sender has the permission

Content providers offer two distinct attributes: readPermission and
writePermission:

<provider
android:name=".SekritProvider"
android:authorities="vnd.tla.sekrits.SekritProvider"
android:readPermission="vnd.tla.sekrits.SEE_SEKRITS"
android:writePermission="vnd.tla.sekrits.MOD_SEKRITS" />

In this case, readPermission controls access to querying the content provider,
while writePermission controls access to insert, update, or delete data in the
content provider.

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write
methods, you could get the effect of readpPermission and writePermission in
code by checking those methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This
means that eligible receivers must hold that permission; those without the
permission are ineligible to receive it. For example, the Android subsystem
presumably includes the RECEIVE_SMS permission when it broadcasts that an

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Requesting and Requiring Permissions

SMS message has arrived - this will restrict the receivers of that intent to be
only those authorized to receive SMS messages.

May I See Your Documents?

There is no automatic discovery of permissions at compile time; all
permission failures occur at runtime. Hence, it is important that you
document the permissions required for your public APIs, including content
providers, services, and activities intended for launching from other
activities. Otherwise, the programmers attempting to interface with your
application will have to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be
prompted to confirm any permissions your application says it needs. Hence,
you need to document for your users what they should expect, lest they get
confused by the question posed by the phone and elect to not install or use
your application.

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 28

Creating a Service

As noted previously, Android services are for long-running processes that
may need to keep running even when decoupled from any activity. Examples
include playing music even if the "player" activity gets garbage-collected,
polling the Internet for RSS/Atom feed updates, and maintaining an online
chat connection even if the chat client loses focus due to an incoming phone
call.

Services are created when manually started (via an API call) or when some
activity tries connecting to the service via inter-process communication
(IPC). Services will live until no longer needed and if RAM needs to be
reclaimed. Running for a long time isn't without its costs, though, so
services need to be careful not to use too much CPU or keep radios active
too much of the time, lest the service cause the device's battery to get used
up too quickly.

This chapter covers how you can create your own services; the next chapter
covers how you can use such services from your activities or other contexts.
Both chapters will analyze the WeatherPlus sample application, with this
chapter focusing mostly on the wWeatherPlusService implementation.
WeatherPlusService extends the weather-fetching logic of the original
Weather sample, by bundling it in a service that monitors changes in
location, so the weather is updated as the emulator is "moved".

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

Service with Class

Creating a service implementation shares many characteristics with
building an activity. You inherit from an Android-supplied base class,
override some lifecycle methods, and hook the service into the system via
the manifest.

So, the first step in creating a service is to extend the service class, in our
case with our own WeatherPlusService subclass.

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations can override three different lifecycle methods:

1. onCreate(), which, as with services, is called when the service
process is created

2. onstart(), which is called when a service is manually started by some
other process, versus being implicitly started as the result of an IPC
request (discussed more in the next chapter)

3. onDestroy() which is called as the service is being shut down
Common startup and shutdown logic should go in oncreate() and

onDestroy(); onstart() is mostly if your service needs data passed into it
from the starting process and you don't wish to use IPC.

For example, here is the onCreate() method for weatherPlusService:

@Override
public void onCreate() {
super.onCreate();

client=new DefaultHttpClient();
format=getString(R.string.url);

background=new Thread(new Runnable() {
public void run() {

try {
Object event=null;

while (true) {
event=queue.poll();

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

if (event==SHUTDOWN) {
break;
}
else {
updateForecast((Location)event);
)
}

¥
catch (Throwable t) {
// just end the background thread

}
}
s

myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE);
initMockProvider();

background.start();

enableLocationPoll();

First, we chain upward to the superclass, so Android can do any setup work
it needs to have done. Then we initialize our HttpClient and format string as
we did in the Weather demo. Next, we set up a background thread to
monitor a ConcurrentLinkedQueue, looking for new events. As we'll see, the
queue allows us to do the actual retrieval of weather in a separate thread
than those used for the incoming IPC method calls from the weatherplus
activity.

The oncreate() method wraps up by preparing the location-monitoring
logic, which will be discussed in greater detail in the chapter on location-
based services.

The onDestroy() method is much simpler:

@Override
public void onDestroy() {
super.onDestroy();

disablelLocationPoll();
queue.add (SHUTDOWN) ;
mockery.close();

}

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

Here, we just shut down the timer and location-monitoring logic, in
addition to chaining upward to the superclass for any Android internal
bookkeeping that might be needed.

In addition to those lifecycle methods, though, your service also needs to
implement onBind(). This method returns an 1Binder, which is the linchpin
behind the IPC mechanism. If you're creating a service class while reading
this chapter, just have this method return null for now, and we'll fill in the
full implementation in the next section.

When IPC Attacks!

Services will tend to offer inter-process communication (IPC) as a means of
interacting with activities or other Android components. Each service
declares what methods it is making available over IPC; those methods are
then available for other components to call, with Android handling all the
messy details involved with making method calls across component or
process boundaries.

The guts of this, from the standpoint of the developer, is expressed in AIDL:
the Android Interface Description Language. If you have used IPC
mechanisms like COM, CORBA, or the like, you will recognize the notion of
IDL. AIDL spells out the public IPC interface, and Android supplies tools to
build the client and server side of that interface.

With that in mind, let's take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a "language-neutral" syntax. AIDL, on the
other hand, looks a lot like a Java interface. For example, here is the AIDL for
the Iweather:

package com.commonsware.android.service;

// Declare the interface.

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

interface IWeather {
String getForecastPage();

}

As with a Java interface, you declare a package at the top. As with a Java
interface, the methods are wrapped in an interface declaration (interface
IWeather { ... }).And, as with a Java interface, you list the methods you are
making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

« Primitive values (int, float, double, boolean, etc.)
+ String and charSequence

« List and Map (from java.util)

« Any other AIDL-defined interfaces

« Any Java classes that implement the Parcelable interface, which is
Android's flavor of serialization (see below)

In the case of the latter two categories, you need to include import
statements referencing the names of the classes or interfaces that you are
using (e.g., import com.commonsware.android.ISomething). This is true even if
these classes are in your own package — you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or
inout can be changed by the service and those changes will be propagated
back to the client. Primitives (e.g., int) can only be in; we included in for the
AIDL for enable() just for illustration purposes.

Also, you cannot throw any exceptions. You will need to catch all exceptions
in your code, deal with them, and return failure indications some other way
(e.g., error code return values).

Name your AIDL files with the .aidl extension and place them in the proper
directory based on the package name.

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

When you build your project, either via an IDE or via Ant, the aidl utility
from the Android SDK will translate your AIDL into a server stub and a
client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the service,
either directly in the stub, or by routing the stub implementation to other
methods you have already written.

The mechanics of this are fairly straightforward:

+ Create a private instance of the AIDL-generated .stub class (e.g.,
IWeather‘.Stub)

+ Implement methods matching up with each of the methods you
placed in the AIDL

« Return this private instance from your onBind() method in the
Service subclass

For example, here is the Iweather.Stub instance:

private final IWeather.Stub binder=new IWeather.Stub() {
public String getForecastPage() {
return(getForecastPageImpl());
}
}s

In this case, the stub calls the corresponding method on the service itself.
That method, which simply returns the cached most-recent weather
forecast for the current location, is shown below:

synchronized private String getForecastPageImpl() {
return(forecast);
}

Note that AIDL IPC calls are synchronous, and so the caller is blocked until
the IPC method returns. Hence, your services need to be quick about their
work.

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

Manifest Destiny

Finally, you need to add the service to your AndroidManifest.xml file, for it to
be recognized as an available service for use. That is simply a matter of
adding a service element as a child of the application element, providing
android:name to reference your service class.

For example, here is the AndroidManifest.xml file for WeatherPlus:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.service">
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION" />
<application android:label="@string/app_name">
<activity android:name=".WeatherPlus" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<service android:name=".WeatherPlusService" />
</application>
</manifest>

Since the service class is in the same Java namespace as everything else in
this application, we can use the shorthand dot-notation
(".WeatherPlusService") to reference our class.

If you wish to require some permission of those who wish to start or bind to
the service, add an android:permission attribute naming the permission you
are mandating - see the chapter on permissions for more details.

Lobbing One Over the Fence

Classic IPC is one-way: the client calls functions on the service. It is possible,
through the creative use of AIDL, to allow the service to call back into an
activity. However, this is a bit fragile, as the service may not know if the
activity is still around or if it has been killed off to free up some memory.

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

An alternative approach, first mentioned in the chapter on Intent filters, is
to have the service send a broadcast Intent that can be picked up by the
activity...assuming the activity is still around and is not paused. We will
examine the client side of this exchange in the next chapter; for now, let us
examine how the service can send a broadcast.

The theory behind the weatherPlusService implementation is that the
service gets "tickled" when the device (or emulator) position changes. At
that point, the service calls out to the Web service and generates a new
forecast Web page for the activity to display. At the same time, though, the
service also sends a broadcast, to alert the activity that there is a page update
available if it wants it.

Here is the high-level implementation of the aforementioned flow:

private void updateForecast(Location loc) {
String url=String.format(format, loc.getLatitude(),
loc.getLongitude());
HttpGet getMethod=new HttpGet(url);

try {
ResponseHandler<String> responseHandler=new BasicResponseHandler();
String responseBody=client.execute(getMethod, responseHandler);
String page=generatePage(buildForecasts(responseBody));

synchronized(this) {
forecast=page;

¥
sendBroadcast (broadcast);

catch (Throwable t) {
android.util.Log.e("WeatherPlus",
"Exception in updateForecast()", t);

Much of this is similar to the equivalent piece of the original Weather demo
- perform the HTTP request, convert that into a set of Forecast objects, and
turn those into a Web page. The first difference is that the Web page is
simply cached in the service, since the service cannot directly put the page
into the activity's webview. The second difference is that we call
sendBroadcast(), which takes an Intent and sends it out to all interested
parties. That Intent is declared up front in the class prologue:

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating a Service

[private Intent broadcast=new Intent(BROADCAST_ACTION); |

Here, BROADCAST_ACTION is simply a static String with a value that will
distinguish this Intent from all others:

public static final String BROADCAST_ACTION=
"com.commonsware.android.service.ForecastUpdateEvent";

Where's the Remote? And the Rest of the
Code?

In Android, services can either be local or remote. Local services run in the
same process as the launching activity; remote services run in their own
process. A detailed discussion of remote services will be added to a future
edition of this book.

We will return to this service in the chapter on location-based services, at
which point we will flesh out how locations are tracked (and, in this case,
mocked up).

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 29

Invoking a Service

Services can be used by any application component that "hangs around"” for
a reasonable period of time. This includes activities, content providers, and
other services. Notably, it does not include pure intent receivers (i.e., intent
receivers that are not part of an activity), since those will get garbage
collected immediately after each instance processes one incoming Intent.

To use a service, you need to get an instance of the AIDL interface for the
service, then call methods on that interface as if it were a local object. When
done, you can release the interface, indicating you no longer need the
service.

In this chapter, we will look at the client side of the WeatherPlus sample
application (WeatherPlus). The WeatherPlus activity looks an awful lot like
the original Weather application - just a Web page showing a weather
forecast:

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Invoking a Service

BHl® 11:33Pm

WeatherPlus
Time Temperature Forecast

2008-09-04

20:00 84

2008-09-04

23:00 7

2008-09-05

02:00 7

2008-09-05

05:00 68

2008-09-05

08:00 7

2008-09-05

11:00 80

R

2008-09-05 il
Figure 74. The WeatherPlus service client

The difference is that, as the emulator "moves", the weather forecast
changes, based on updates provided by the service.

Bound for Success

To use a service, you first need to create an instance of your own
ServiceConnection class. ServiceConnection, as the name suggests, represents
your connection to the service for the purposes of making IPC calls. For
example, here is the ServiceConnection from the weatherPlus class in the
WeatherPlus project:

private ServiceConnection svcConn=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder binder) {
service=IWeather.Stub.asInterface(binder);

browser.postDelayed(new Runnable() {
public void run() {
updateForecast();
¥
s)
}

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Invoking a Service

public void onServiceDisconnected(ComponentName className) {
service=null;
}
}s

Your ServiceConnection subclass needs to implement two methods:

1. onServiceConnected(), which is called once your activity is bound to
the service

2. onServiceDisconnected(), which is called if your connection ends
normally, such as you unbinding your activity from the service

Each of those methods receives a ComponentName, which simply identifies the
service you connected to. More importantly, onServiceConnected() receives
an IBinder instance, which is your gateway to the IPC interface. You will
want to convert the IBinder into an instance of your AIDL interface class, so
you can use IPC as if you were calling regular methods on a regular Java class
(Iweather .Stub.asInterface(binder)).

To actually hook your activity to the service, call bindService() on the
activity:

|bindService(serviceIntent, svcConn, BIND_AUTO_CREATE); |

The bindservice() method takes three parameters:

1. An Intent representing the service you wish to invoke - for your own
service, it's easiest to use an intent referencing the service class
directly (new Intent(this, WeatherPlusService.class))

2. Your ServiceConnection instance

3. Aset of flags - most times, you will want to pass in BIND_AUTO_CREATE,
which will start up the service if it is not already running

After your bindService() call, your onServiceConnected() callback in the
ServiceConnection will eventually be invoked, at which time your connection
is ready for use.

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Invoking a Service

Request for Service

Once your service interface object is ready
(Iweather.Stub.asInterface(binder)), you can start calling methods on it as
you need to. In fact, if you disabled some widgets awaiting the connection,
now is a fine time to re-enable them.

However, you will want to trap two exceptions. One is DeadObjectException —
if this is raised, your service connection terminated unexpectedly. In this
case, you should unwind your use of the service, perhaps by calling
onServiceDisconnected() manually, as shown above. The other is
RemoteException, which is a more general-purpose exception indicating a
cross-process communications problem. Again, you should probably
unwind your use of the service.

Prometheus Unbound

When you are done with the IPC interface, call unbindService(), passing in
the ServiceConnection. Eventually, your connection's
onServiceDisconnected() callback will be invoked, at which point you should
null out your interface object, disable relevant widgets, or otherwise flag
yourself as no longer being able to use the service.

For example, in the WeatherPlus implementation of
onServiceDisconnected() shown above, we null out the Iweather service
object.

You can always reconnect to the service, via bindservice(), if you need to use
it again.

Manual Transmission

In addition to binding to the service for the purposes of IPC, you can
manually start and stop the service. This is particularly useful in cases where
you want the service to keep running independently of your activities -

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Invoking a Service

otherwise, once you unbind the service, your service could well be closed
down.

To start a service, simply call startService(), providing two parameters:

1. The Intent specifying the service to start (again, the easiest way is
probably to specify the service class, if its your own service)

2. A Bundle providing configuration data, which eventually gets passed
to the service's onstart() method

Conversely, to stop the service, call stopService() with the Intent you used
in the corresponding startService() call.

Catching the Lob

In the preceding chapter, we showed how the service sends a broadcast to let
the weatherPlus activity know a change was made to the forecast based on
movement. Now, we can see how the activity receives and uses that
broadcast.

Here are the implementations of onResume() and onPause() for WeatherPlus:

@0verride
public void onResume() {
super.onResume();

registerReceiver(receiver,
new IntentFilter(WeatherPlusService.BROADCAST_ACTION));
¥

@Override
public void onPause() {
super.onPause();

unregisterReceiver(receiver);

}

In onResume(), we register a static BroadcastReceiver to receive Intents
matching the action declared by the service. In onPause(), we disable that

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Invoking a Service

BroadcastReceiver, since we will not be receiving any such Intents while
paused, anyway.

The BroadcastReceiver, in turn, simply arranges to update the forecast on
the UI thread:

private BroadcastReceiver receiver=new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
runOnUiThread (new Runnable() {
public void run() {
updateForecast();
¥
3
}

};

And updateForecast() uses the interface stub to call into the service and
retrieve the latest forecast page, also handling the case where the forecast is
not yet ready (null):

private void updateForecast() {

try {
String page=service.getForecastPage();

if (page==null) {
browser.postDelayed(new Runnable() {
public void run() {
updateForecast();

}
bs)
Toast
.makeText(this, "No forecast available",)
.show();
b
else {
browser.loadDataWithBaseURL(null, page, "text/html",
"UTF-8", null);
¥

}
catch (final Throwable t) {
svcConn.onServiceDisconnected(null);

runOnUiThread (new Runnable() {
public void run() {
goBlooey(t);

}
});

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Invoking a Service

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 30
Alerting Users Via Notifications

Pop-up messages. Tray icons and their associated "bubble”" messages.
Bouncing dock icons. You are no doubt used to programs trying to get your
attention, sometimes for good reason.

Your phone also probably chirps at you for more than just incoming calls:
low battery, alarm clocks, appointment notifications, incoming text message
or email, etc.

Not surprisingly, Android has a whole framework for dealing with these
sorts of things, collectively called "notifications".

Types of Pestering

A service, running in the background, needs a way to users know something
of interest has occurred, such as when email has been received. Moreover,
the service may need some way to steer the user to an activity where they
can act upon the event - reading a received message, for example. For this,
Android supplies status bar icons, flashing lights, and other indicators
collectively known as "notifications".

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android,
applications can add their own status bar icons, with an eye towards having
them appear only when needed (e.g., a message has arrived).

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Alerting Users Via Notifications

In Android, you can raise notifications via the NotificationManager. The
NotificationManager is a system service. To use it, you need to get the service
object via getSystemService (NOTIFICATION_SERVICE) from your activity.

The NotificationManager gives you three methods: one to pester (notify())
and two to stop pestering (cancel() and cancelAll()).

The notify() method takes a Notification, which is a data structure that
spells out what form your pestering should take. Here is what is at your
disposal (bearing in mind that not all devices will necessarily support all of
these):

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying
the color (as an #ARGB value in ledArGB) and what pattern the light should
blink in (by providing off/on durations in milliseconds for the light via
ledonMs and ledOffMs).

You can play a sound, using a Uri to a piece of content held, perhaps, by a
ContentManager (sound). Think of this as a "ringtone" for your application.

You can vibrate the device, controlled via a long[] indicating the on/off
patterns (in milliseconds) for the vibration (vibrate). You might do this by
default, or you might make it an option the user can choose when
circumstances require a more subtle notification than a ringtone.

Icons

While the flashing lights, sounds, and vibrations are aimed at getting
somebody to look at the device, icons are designed to take them the next
step and tell them what's so important.

To set up an icon for a Notification, you need to set icon, where you provide
the identifier of a Drawable resource representing the icon, and

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Alerting Users Via Notifications

contentIntent, where you supply an PendingIntent to be raised when the icon
is clicked. You should be sure the PendingIntent will be caught by
something, perhaps your own application code, to take appropriate steps to
let the user deal with the event triggering the notification.

You can also supply a text blurb to appear when the icon is put on the status
bar (tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(),
which wraps all three of those in a single call.

Seeing Pestering in Action

Let us now take a peek at the Notify1 sample project, in particular the
NotifyDemo class:

public class NotifyDemo extends Activity {
private static final int NOTIFY_ME_ID= ;
private Timer timer=new Timer();

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.notify);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
TimerTask task=new TimerTask() {
public void run() {
notifyMe();

1

timer.schedule(task,)
¥
s

btn=(Button)findViewById(R.id.cancel);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
NotificationManager mgr=
(NotificationManager)getSystemService (NOTIFICATION_SERVICE);

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Alerting Users Via Notifications

mgr.cancel (NOTIFY_ME_ID);
¥
1
}

private void notifyMe() {
final NotificationManager mgr=
(NotificationManager)getSystemService (NOTIFICATION_SERVICE);

Notification note=new Notification(R.drawable.red_ball,

"Status message!",

System.currentTimeMillis());
PendingIntent i=PendingIntent.getActivity(this, 9,

new Intent(this, NotifyMessage.class),

El

note.setLatestEventInfo(this, "Notification Title",
"This is the notification message", i);

mgr.notify(NOTIFY_ME_ID, note);

This activity sports two large buttons, one to kick off a notification after a
five-second delay, and one to cancel that notification (if it is active):

Ch il & 12:04 AM
NotifyDemo

Click to raise a notification in 5 seconds

Click to clear the notification

)
Figure 75. The NotifyDemo activity main view
Creating the notification, in notifyMe(), is accomplished in five steps:

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

5.

Alerting Users Via Notifications

Get access to the NotificationManager instance

Create a Notification object with our icon (red ball), a message to
flash on the status bar as the notification is raised, and the time
associated with this event

Create a PendingIntent that will trigger the display of another activity
(Noti-FyMessage)

Use setLatestEventInfo() to specify that, when the notification is
clicked on, we are to display a certain title and message, and if that is
clicked on, we launch the pendingIntent

Tell the NotificationManager to display the notification

Hence, if we click the top button, after five seconds, our red ball icon will
appear in the status bar, briefly along with our status message:

) Status message!
NotifyDemo

Click to raise a notification in 5 seconds

Click to clear the notification

Figure 76. Our notification as it appears on the status bar, with our status

message

If you click on the red ball, a drawer will appear beneath the status bar. Drag
that drawer all the way to the bottom of the screen to show the outstanding
notifications, including our own:

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Alerting Users Via Notifications

September 07, 2008 & {f]] @@ 12:05 AM

Android Clear notifications

@ Notification Title
This is the notification message 12:04 AM

®

Figure 77. The notifications drawer, fully expanded, with our notification

If you click on the notification entry in the drawer, you'll be taken to a trivial
activity displaying a message - though in a real application, this activity
would do something useful based upon the event that occurred (e.g., take
users to the newly-arrived mail messages).

Clicking on the cancel button, or clicking on the Clear Notifications button
in the drawer, will remove the red ball from the status bar.

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART VI - Other Android Capabilities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 31

Accessing Location-Based
Services

A popular feature on current-era mobile devices is GPS capability, so the
device can tell you where you are at any point in time. While the most
popular use of GPS service is mapping and directions, there are other things
you can do if you know your location. For example, you might set up a
dynamic chat application where the people you can chat with are based on
physical location, so you're chatting with those you are nearest. Or, you
could automatically "geotag" posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location.
Alternatives include:

+ The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

« Cell tower triangulation, where your position is determined based
on signal strength to nearby cell towers

« Proximity to public WiFi "hotspots” that have known geographic
locations

Android devices may have one or more of these services available to them.
You, as a developer, can ask the device for your location, plus details on what
providers are available. There are even ways for you to simulate your location
in the emulator, for use in testing your location-enabled applications.

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

Location Providers: They Know Where You're
Hiding

Android devices can have access to several different means of determining
your location. Some will have better accuracy than others. Some may be
free, while others may have a cost associated with them. Some may be able
to tell you more than just your current position, such as your elevation over
sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the
device. Providers know not only your location, but their own characteristics,
in terms of accuracy, cost, etc.

You, as a developer, will use a LocationManager, which holds the
LocationProvider set, to figure out which LocationProvider is right for your
particular circumstance. You will also need the ACCESS_LOCATION permission
in your application, or the various location APIs will fail due to a security
violation. Depending on which location providers you wish to use, you may
need other permissions as well, such as ACCESS_GPS, ACCESS_ASSISTED_GPS,
ACCESS_CELL_ID, or, as the WeatherPlus sample requires,
ACCESS_MOCK_LOCATION.

Finding Yourself

The obvious thing to do with a location service is to figure out where you are
right now.

To do that, you need to get a LocationManager - call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it
to be a LocationManager.

The next step to find out where you are is to get the name of the
LocationProvider you want to use. Here, you have two main options:

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

1. Ask the user to pick a provider

2. Find the best-match provider based on a set of criteria

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then present
to the user for selection.

Or, you can create and populate a criteria object, stating the particulars of
what you want out of a LocationProvider, such as:

+ setAltitudeRequired() to indicate if you need the current altitude or
not

+ setAccuracy() to set a minimum level of accuracy, in meters, for the
position

+ setCostAllowed() to control if the provider must be free or if it can
incur a cost on behalf of the device user

Given a filled-in critieria object, call getBestProvider() on your
LocationManager, and Android will sift through the criteria and give you the
best answer. Note that not all of your criteria will be met - all but the
monetary cost criterion might be relaxed if nothing matches. For example,
here is how WeatherPlusService finds its location provider:

void enableLocationPoll() {
Criteria criteria=new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_COARSE);
criteria.setAltitudeRequired(false);
criteria.setCostAllowed(true);
criteria.setPowerRequirement(Criteria.POWER_LOW);
criteria.setSpeedRequired(false);

String provider=myLocationManager.getBestProvider(criteria,
true);

myLocationManager.requestLocationUpdates(provider, B
.of,
onLocationChange);

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

Once you know the name of the LocationProvider, you can call
getLastKnownPosition() to find out where you were recently. Note, however,
that "recently” might be fairly out of date (e.g., phone was turned off) or
even null if there has been no location recorded for that provider yet. On
the other hand, getLastknownPosition() incurs no monetary or power cost,
since the provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude and
longitude of the device in degrees as a Java double. If the particular location
provider offers other data, you can get at that as well:

+ For altitude, hasAltitude() will tell you if there is an altitude value,
and getAltitude() will return the altitude in meters.

« For bearing (i.e., compass-style direction), hasBearing() will tell you
if there is a bearing available, and getBearing() will return it as
degrees east of true north.

« For speed, hasspeed() will tell you if the speed is known and
getspeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider,
though, is to register for updates, as described in the next section.

On the Move

Not all location providers are necessarily immediately responsive. GPS, for
example, requires activating a radio and getting a fix from the satellites
before you get a location. That is why Android does not offer a
getMeMyCurrentLocationNow() method. Combine that with the fact that your
users may well want their movements to be reflected in your application,
and you are probably best off registering for location updates and using that
as your means of getting the current location.

The code sample shown in the preceding section not only shows finding the
best-available provider via a set of criteria, but it also shows how to register
for updates - call requestLocationUpdates() on your LocationManager
instance. This takes four parameters:

332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

1. The name of the location provider you wish to use

2. How long, in milliseconds, must have elapsed before we might get a
location update

3. How far, in meters, must the device have moved before we might get
a location update

4. A LocationListener that will be notified of key location-related
events, as shown below:

LocationListener onLocationChange=new LocationListener() {
public void onLocationChanged(Location location) {
updateForecast(location);

}

public void onProviderDisabled(String provider) {
// required for interface, not used

}

public void onProviderEnabled(String provider) {
// required for interface, not used

}

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used
}
}s

Here, all we do is call updateForecast() with the Location supplied to the
onLocationChanged() callback method. The updateForecast()
implementation, as shown in the chapter on creating services, builds a Web
page with the current forecast for the location and sends a broadcast so the
activity knows an update is available.

When you no longer need the updates, call removeupdates() with the
LocationListener you registered.

Are We There Yet? Are We There Yet? Are We
There Yet?

Sometimes, you want to know not where you are now, or even when you
move, but when you get to where you're going. This could be an end

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

destination, or it could be getting to the next step on a set of directions, so
you can give the user the next turn.

To accomplish this, LocationManager offers addProximityAlert(). This
registers an PendingIntent, which will be fired off when the device gets
within a certain distance of a certain location. The addProximityAlert()
method takes, as parameters:

+ The latitude and longitude of the position that you are interested in

+ Aradius, specifying how close you should be to that position for the
Intent to be raised

« A duration for the registration, in milliseconds - after this period,
the registration automatically lapses. A value of -1 means the
registration lasts wuntil you manually remove it via
removeProximityAlert().

« The pendingIntent to be raised when the device is within the "target
zone" expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent, if
there is an interruption in location services, or if the device is not in the
target zone during the period of time the proximity alert is active. For
example, if the position is off by a bit, and the radius is a little too tight, the
device might only skirt the edge of the target zone, or go by so quickly that
the device's location isn't sampled while in the target zone.

It is up to you to arrange for an activity or intent receiver to respond to the
Intent you register with the proximity alert. What you then do when the
Intent arrives is up to you: set up a notification (e.g., vibrate the device), log
the information to a content provider, post a message to a Web site, etc.
Note that you will receive the Intent whenever the position is sampled and
you are within the target zone - not just upon entering the zone. Hence, you
will get the Intent several times, perhaps quite a few times depending on the
size of the target zone and the speed of the device's movement.

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

Testing...Testing...

The Android emulator does not have the ability to get a fix from GPS,
triangulate your position from cell towers, or identify your location by some
nearby WiFi signal. So, if you want to simulate a moving device, you will
need to create and use a mock location provider. This basically allows you to
add in your own source of location information and use that in testing your
applications.

As part of the WeatherPlus application, you will find a framework for mock
location providers, called Mockery. This section will explain how Mockery
works and how WeatherPlus integrates with it to simulate a moving device.

Feed Me! See More!

Before we get into Mockery, though, we first need to talk about location
feeds.

When you think about it, a location provider should really supplying a
steady feed of locations. You ask the provider for a location, and it tells you
where you are. Now, the practicalities of GPS and cell tower triangulation
mean that LocationProvider cannot be written that way. But, for our location
mocking framework, we can safely avoid reality.

Hence, the Mockery framework has the notion of a location feed, defined via
the I_LocationFeed interface:

package com.commonsware.android.service;
import android.location.LlLocation;

public interface I_LocationFeed {
Location getNextLocation();

}

A Mockery will use a location feed to find out the locations it should pour
into the Android mock location provider system. By using an interface, we

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

could, in principle create feeds that pull from files, from an array of
Locations hardwired in code, or wherever else we choose.

In WeatherPlus, we have a LinearLocationFeed. This class takes a beginning
and ending position, plus a length of time it should take to move between
them. The feed doles out locations based on elapsed time, in a straight line
from beginning to end. Once the end is reached, it flips direction and starts
to feed back the other way. This bears little resemblance to any real-world
movements, but all it requires is two latitude/longitude pairs, and so
requires very little work.

class LinearLocationFeed implements I_LocationFeed {
Location start=null;
Location end=null;
long duration=0;
double latDelta=0.0d;
double lonDelta=9.0d;
long timeStart=0;

LinearLocationFeed(Location start, Location end,
long duration) {
this.start=start;
this.end=end;
this.duration=duration;

latDelta=end.getLatitude()-start.getLatitude();
lonDelta=end.getLongitude()-start.getLongitude();

}

public Location getNextLocation() {
if (timeStart==0) {
timeStart=System.currentTimeMillis();

}

long now=System.currentTimeMillis();
long timeElapsed=now-timeStart;

while (timeElapsed>duration) {
timeStart=timeStart+duration;
timeElapsed=now-timeStart;

Location tmp=start;

start=end;

end=tmp;
latDelta=-1.0d*latDelta;
lonDelta=-1.0d*1lonDelta;

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

double pctComplete=(double)timeElapsed/(double)duration;

Location result=new Location(start);
result.setLatitude(start.getLatitude()+(pctComplete*latDelta));
result.setLongitude(start.getLongitude()+(pctComplete*lonDelta));

result.setTime(now);

return(result);

Making a Mockery of the Situation

Given that we have isolated the process of determining the current Location
in the location feed classes, Mockery itself is fairly straightforward:

« Add the test location provider to Android if it is not there already
« Enable said provider

« On a periodic basis, ask the location feed for the current location
and pass that into Android as the current position of the test
location provider

For the periodic updates, we use a Timer and a TimerTask, to avoid the
headache of setting up our own background thread:

class Mockery {
private Timer timer=null;
private I_LocationFeed feed=null;
private LocationManager locMgr=null;
private String mock=null;

Mockery(I_LocationFeed feed, long timeBetweenUpdates,
String mock, LocationManager locMgr) {
this.feed=feed;
this.mock=mock;
this.locMgr=1locMgr;

timer=new Timer();

if (locMgr.getProvider(mock)==null) {
locMgr.addTestProvider(mock, false, false, false,
false, false, false, false,
Criteria.POWER_LOW,
Criteria.ACCURACY_COARSE);

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

locMgr.setTestProviderEnabled(mock, true);

TimerTask task=new TimerTask() {
public void run() {
update();
¥
s

timer.scheduleAtFixedRate(task, @, timeBetweenUpdates);

}

void close() {
timer.cancel();
timer=null;
locMgr.setTestProviderEnabled(mock, false);

}

private void update() {
Location loc=feed.getNextLocation();

locMgr.setTestProviderLocation(mock, loc);

}
}

Changing Weather Patterns

So now we have a Mockery class, to which we can hand a location feed, that
will update a test location provider in Android. To use this from
WeatherPlusService or anywhere else, we need to both create our Mockery
instance (to get the updates started) and use that same test location
provider.

WeatherPlusService has an initMockProvider() method, called during
startup, that handles the first part of this - initializing our Mockery:

void initMockProvider() {
Location start=new Location(MOCK);
Location end=new Location(MOCK);

start.setLatitude()8
start.setLongitude(-)5
end.setLatitude()
end.setLongitude(-)8

I_LocationFeed feed=new LinearLocationFeed(start, end,

);

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Accessing Location-Based Services

mockery=new Mockery(feed, , MOCK, myLocationManager);

}

Here, we craft two locations, one for New York City and one for Los Angeles,
and have our LinearLocationFeed set up to move between them every hour
(a.k.a., "a brisk pace"). We then wire in a Mockery to have it pass the feed's
data to the Android test provider system.

The wWeatherPlusService class' enableLocationPoll() method should, in
theory, just use the Mock test location provider, to ensure we use the same
provider that we have mocked with the Mockery. For the purposes of
illustration, though, enableLocationPoll() uses a Criteria object and finds
the best match, using the same values as Mockery uses to define the test
provider.

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 32

Mapping with MapView and
MapActivity

One of Google's most popular services - after search, of course - is Google
Maps, where you can find everything from the nearest pizza parlor to
directions from New York City to San Francisco (only 2,905 miles!) to street
views and satellite imagery.

Android, not surprisingly, integrates Google Maps. There is a mapping
activity available to users straight off the main Android launcher. More
relevant to you, as a developer, are Mapview and MapActivity, which allow you
to integrate maps into your own applications. Not only can you display
maps, control the zoom level, and allow people to pan around, but you can
tie in Android's location-based services to show where the device is and
where it is going.

Fortunately, integrating basic mapping features into your Android project is
fairly easy. However, there is a fair bit of power available to you, if you want
to get fancy.

The Bare Bones

Far and away the simplest way to get a map into your application is to create
your own subclass of MapActivity. Like ListActivity, which wraps up some
of the smarts behind having an activity dominated by a Listview,

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

MapActivity handles some of the nuances of setting up an activity
dominated by a Mapview.

In your layout for the MapActivity subclass, you need to add an element
named, at the time of this writing, com.google.android.maps.MapView. This is
the "longhand" way to spell out the names of widget classes, by including
the full package name along with the class name. This is necessary because
MapView is not in the com.google.android.widget namespace. You can give the
MapView widget whatever android:id attribute value you want, plus handle all
the layout details to have it render properly alongside your other widgets.

However, you do need to have:

+ android:apikey, which in production will need to be a Google Maps
API key. For now, though, you can substitute whatever string you like
here.

+ android:clickable = "true", if you want users to be able to click and
pan through your map

For example, from the NooYawk sample application, here is the main layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<com.google.android.maps.MapView android:id="@+id/map"
android:layout_width="fill_parent”
android:layout_height="fill_parent"
android:apiKey="NooYawk"
android:clickable="true" />
<LinearLayout android:id="@+id/zoom"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentLeft="true" />
</Relativelayout>

We'll cover that mysterious zoom LinearLayout in the next section.

In addition, you will need a couple of extra things in vyour
AndroidManifest.xml file:

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

« The INTERNET and ACCESS_COARSE_LOCATION permissions

- Inside your «<application>, a <uses-library> element with
android:name = "com.google.android.maps", to indicate you are using
one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.maps">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

<application android:label="@string/app_name">
<uses-library android:name="com.google.android.maps" />
<activity android:name=".NooYawk" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity
from MapActivity. If you were to do nothing else, and built that project and
tossed it in the emulator, you'd get a nice map of the world. Note, however,
that MapActivity is abstract — you need to implement isRouteDisplayed() to
indicate if you are supplying some sort of driving directions or not.

In theory, the user could pan around the map using the directional pad.
However, that's not terribly useful when the user has the whole world in her
hands.

Since a map of the world is not much good by itself, we need to add a few
things...

Exercising Your Control

You can find your Mapview widget by findviewById(), no different than any
other widget. The widget itself then offers a getMapController() method.

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

Between the Mapview and MapController, you have a fair bit of capability to
determine what the map shows and how it behaves. Here are some likely
features you will want to use:

Zoom

The map of the world you start with is rather broad. Usually, people looking
at a map on a phone will be expecting something a bit narrower in scope,
such as a few city blocks.

You can control the zoom level directly via the setzoom() method on the
MapController. This takes an integer representing the level of zoom, where 1
is the world view and 21 is the tightest zoom you can get. Each level is a
doubling of the effective resolution: 1 has the equator measuring 256 pixels
wide, while 21 has the equator measuring 268,435,456 pixels wide. Since the
phone's display probably doesn't have 268,435,456 pixels in either
dimension, the user sees a small map focused on one tiny corner of the
globe. A level of 16 will show you several city blocks in each dimension and
is probably a reasonable starting point for you to experiment with.

If you wish to allow users to change the zoom level, you will need to do a few
things:

- First, pick a spot on the screen where you want the zoom controls to
appear. These are not huge, and they only appear when being used,
so they can overlay the actual map itself if you choose. In the layout
shown above, for example, the zoom controls are placed over the
map, in the lower-left corner of the screen. You should use a
LinearLayout or other simple container for the zoom controls'
position in your layout.

« In your activity's onCreate() method, get your zoom controls'
container via findviewById()

« Add the result of map.getzoomControls() to that container

For example, here are the lines from the NooYawk activity's onCreate()
method that accomplish the latter points:

344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

ViewGroup zoom=(ViewGroup)findViewById(R.id.zoom);

zoom.addView(map.getZoomControls());

Then, you can manually get the zoom controls to appear by calling
displayZoomControls() on your Mapview, or they will automatically appear
when the user pans the map.

Bl @ 5:37 PM

¥ T
My, @ b, 2
i 6’9'.5\, 8 %&' ‘ék <
& 2 Il &
§T L3 = [%
(3
‘90‘,) gf "SYS(?"*Q“s} 7
o
e - 4
Sy q"’.s‘,.
/ 8.
R

Center

Typically, you will need to control what the map is showing, beyond the
zoom level, such as the user's current location, or a location saved with
some data in your activity. To change the map's position, call setCenter() on
the MapController.

This takes a GeoPoint as a parameter. A GeoPoint represents a location, via
latitude and longitude. The catch is that the Point stores latitude and
longitude as integers representing the actual latitude and longitude
multiplied by 1ee. This saves a bit of memory versus storing a float or
double, and it probably speeds up some internal calculations Android needs

345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

to do to convert the GeoPoint into a map position. However, it does mean you
have to remember to multiple the "real world" latitude and longitude by 1Es.

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display
satellite imagery, so too can Android maps.

MapView offers toggleSatellite(), which, as the names suggest, toggle on and
off this perspective on the area being viewed. You can have the user trigger
these via an options menu or, in the case of NooYawk, via keypresses:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
return(true);

}

else if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls(true);
return(true);

}

return(super.onKeyDown (keyCode, event));

}

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably
used to seeing things overlaid atop the map itself, such as "push-pins"
indicating businesses near the location being searched. In map parlance -
and, for that matter, in many serious graphic editors - the push-pins are on a
separate layer than the map itself, and what you are seeing is the
composition of the push-pin layer atop the map layer.

Android's mapping allows you to create layers as well, so you can mark up
the maps as you need to based on user input and your application's purpose.
For example, NooYawk uses a layer to show where select buildings are located
in the island of Manhattan.

346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a
subclass of overlay. There is an Itemizedoverlay subclass available if you are
looking to add push-pins or the like; Itemizedoverlay simplifies this process.

To attach an overlay class to your map, just call getoverlays() on your
MapView and add() your Overlay instance to it:

Drawable marker=getResources().getDrawable(R.drawable.marker);

marker.setBounds(©, ©, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will explain that marker in just a bit.

Drawing the ItemizedOverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points of
interest to be displayed on the map - specifically, instances of overlayItem.
The overlay, then, handles much of the drawing logic for you. Here are the
minimum steps to make this work:

« First, override ItemizedOverlay<OverlayItem> asyour own subclass (in
this example, Sitesoverlay)

+ In the constructor, build your roster of overlayItem instances, and
call populate() when they are ready for use by the overlay

« Implement size() to return the number of items to be handled by
the overlay

« Override createItem() to return OverlayItem instances given an index

« When you instantiate your ItemizedOverlay subclass, provide it with
a Drawable that represents the default icon (e.g., push-pin) to display
for each item

347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

The marker from the NooYawk constructor is the Drawable used for the
fourth bullet above - it shows a push-pin, as illustrated in the screen shot
shown earlier in this chapter.

You may also wish to override draw() to do a better job of handling the
shadow for your markers. While the map will handle casting a shadow for
you, it appears you need to provide a bit of assistance for it to know where
the "bottom" of your icon is, so it can draw the shadow appropriately.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
private List<OverlayItem> items=new ArrayList<OverlayItem>();
private Drawable marker=null;

public SitesOverlay(Drawable marker) {
super(marker);
this.marker=marker;

items.add(new OverlayItem(getPoint(5
"UN", "United Nations"));
items.add(new OverlayItem(getPoint(,
-))
"Lincoln Center",
"Home of Jazz at Lincoln Center"));
items.add(new OverlayItem(getPoint()

"Carnegie Hall",

"Where you go with practice, practice, practice"));
items.add(new OverlayItem(getPoint(5
-))

"The Downtown Club",

"Original home of the Heisman Trophy"));

populate();

@Override
protected OverlayItem createItem(int i) {
return(items.get(i));

}

@Override
public void draw(Canvas canvas, MapView mapView,
boolean shadow) {
super.draw(canvas, mapView, shadow);

boundCenterBottom(marker);

348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Mapping with MapView and MapActivity

}

@Override
protected boolean onTap(int i) {
Toast.makeText (NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

}

@Override
public int size() {
return(items.size());
}
)

Handling Screen Taps

An overlay subclass can also implement onTap(), to be notified when the
user taps on the map, so the overlay can adjust what it draws. For example,
in full-size Google Maps, clicking on a push-pin pops up a bubble with
information about the business at that pin's location. With onTap(), you can
do much the same in Android.

The onTap() method for Itemizedoverlay receives the index of the
overlayItem that was clicked. It is up to you to do something worthwhile
with this event.

In the case of sitesoverlay, as shown above, onTap() looks like this:

@Override
protected boolean onTap(int i) {
Toast.makeText (NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT) .show();

return(true);

}

Here, we just toss up a short Toast with the "snippet" from the overlayItem,
returning true to indicate we handled the tap.

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 33

Handling Telephone Calls

Many, if not most, Android devices will be phones. As such, not only will
users be expecting to place and receive calls using Android, but you will
have the opportunity to help them place calls, if you wish.

Why might you want to?

Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the
ability to call prospects with a single button click, and without them
having to keep those contacts both in your application and in the
phone's contacts application

Maybe you are writing a social networking application, and the
roster of phone numbers that you can access shifts constantly, so
rather than try to "sync" the social network contacts with the
phone's contact database, you let people place calls directly from
your application

Maybe you are creating an alternative interface to the existing
contacts system, perhaps for users with reduced motor control (e.g.,
the elderly), sporting big buttons and the like to make it easier for
them to place calls

Whatever the reason, Android has the means to let you manipulate the
phone just like any other piece of the Android system.

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Telephone Calls

Report To The Manager

To get at much of the phone API, you use the TelephonyManager. That class
lets you do things like:

« Determine if the phone is in use via getCallstate(), with return
values of cALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING
(call requested but still being connected), and CALL_STATE_OFFHOOK
(call in progress)

« Find out the SIM ID (IMSI) via getSubscriberId()

+ Find out the phone type (e.g., GSM) via getPhoneType() or find out
the data connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!

You can also initiate a call from your application, such as from a phone
number you obtained through your own Web service. To do this, simply
craft an ACTION_DIAL Intent with a Uri of the form tel:NNNNN (where NNNNN is
the phone number to dial) and use that Intent with startActivity(). This
will not actually dial the phone; rather, it activates the dialer activity, from
which the user can then press a button to place the call.

For example, let's look at the pialer sample application. Here's the crude-
but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Number to dial:"
/>

352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Telephone Calls

<EditText android:id="@+id/number"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singleLine="true"
/>
</LinearLayout>
<Button android:id="@+id/dial"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
/>
</LinearLayout>

We have a labeled field for typing in a phone number, plus a button for
dialing said number.

The Java code simply launches the dialer using the phone number from the

field:

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class DialerDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

final EditText number=(EditText)findViewById(R.id.number);
Button dial=(Button)findViewById(R.id.dial);

dial.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
String toDial="tel:"+number.getText().toString();

startActivity(new Intent(Intent.ACTION_DIAL,
Uri.parse(toDial)));

3

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Telephone Calls

The activity's own Ul is not that impressive:

BHl @ 7:34pPM

DialerDemo

Dial It!

]
Figure 79. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing
you the number you are about to dial:

354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Handling Telephone Calls

BH @ 7:34pPM
B B m %

Dialer Contacts Favorites

@ 1-212-555-1212 |«

2 3

Figure 80. The Android Dialer activity, as launched from DialerDemo

355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 34
Searching with SearchManager

One of the firms behind the Open Handset Alliance - Google - has a teeny
weeny Web search service, one you might have heard of in passing. Given
that, it's not surprising that Android has some amount of built-in search
capabilities.

Specifically, Android has "baked in" the notion of searching not only on the
device for data, but over the air to Internet sources of data.

Your applications can participate in the search process, by triggering
searches or perhaps by allowing your application's data to be searched.

Note that this is fairly new to the Android platform, and so some shifting in
the APIs is likely. Stay tuned for updates to this chapter.

Hunting Season

There are two types of search in Android: local and global. Local search
searches within the current application; global search searches the Web via
Google's search engine. You can initiate either type of search in a variety of
ways, including:

+ You can call onSearchRequested() from a button or menu choice,
which will initiate a local search (unless you override this method in
your activity)

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

« You can directly call startSearch() to initiate a local or global search,

including optionally supplying a search string to use as a starting
point

« You can elect to have keyboard entry kick off a search via
setDefaultKeyMode(), for either local search
(setDefaultKeyMode (DEFAULT_KEYS_SEARCH_LOCAL)) or global search
(setDefaultkeyMode (DEFAULT_KEYS_SEARCH_GLOBAL))

In either case, the search appears as a set of Ul components across the top of
the screen, with your activity blurred underneath it.

Ehil & 9:04 PM

forem

Figure 81. The Android local search popup

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

Ml & 9:04 PM

lGoogle Search

Smith

Figure 82. The Android global search popup, showing a drop-down with
previous searches

Search Yourself

Over the long haul, there will be two flavors of search available via the
Android search system:

1. Query-style search, where the user's search string is passed to an
activity which is responsible for conducting the search and
displaying the results

2. Filter-style search, where the user's search string is passed to an
activity on every keypress, and the activity is responsible for
updating a displayed list of matches

Since the latter approach is under heavy development right now by the
Android team, let's focus on the first one.

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

Craft the Search Activity

The first thing you are going to want to do if you want to support query-style
search in your application is to create a search activity. While it might be
possible to have a single activity be both opened from the launcher and
opened from a search, that might prove somewhat confusing to users.
Certainly, for the purposes of learning the techniques, having a separate
activity is cleaner.

The search activity can have any look you want. In fact, other than watching
for queries, a search activity looks, walks, and talks like any other activity in
your system.

All the search activity needs to do differently is check the intents supplied to
onCreate() (via getIntent()) and onNewIntent() to see if one is a search, and,
if so, to do the search and display the results.

For example, let's look at the Lorem sample application. This starts off as a
clone of the list-of-lorem-ipsum-words application that we first built back
when showing off the Listview container, then later with XML resources.
Now, we update it to support searching the list of words for ones containing
the search string.

The main activity and the search activity both share a common layout: a
Listview plus a Textview showing the selected entry:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

/>
</LinearlLayout>

In terms of Java code, most of the guts of the activities are poured into an
abstract LoremBase class:

abstract public class LoremBase extends ListActivity {
abstract ListAdapter makeMeAnAdapter(Intent intent);

private static final int LOCAL_SEARCH_ID = Menu.FIRST+1;
private static final int GLOBAL_SEARCH_ID = Menu.FIRST+2;
private static final int CLOSE_ID = Menu.FIRST+3;
TextView selection;

ArraylList<String> items=new ArraylList<String>();

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

try {
XmlPullParser xpp=getResources().getXml(R.xml.words);

while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
if (xpp.getEventType()==XmlPullParser.START_TAG) {
if (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(©));
¥
}

xpp.next();

¥
catch (Throwable t) {
Toast
.makeText(this, "Request failed: "+t.toString(),)
.show();

}

setDefaultKeyMode (DEFAULT_KEYS_SEARCH_LOCAL);

onNewIntent(getIntent());
}

@Override
public void onNewIntent(Intent intent) {
ListAdapter adapter=makeMeAnAdapter(intent);

if (adapter==null) {
finish();
)

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

else {
setListAdapter(adapter);
b
}

public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());

}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
menu.add(Menu.NONE, LOCAL_SEARCH_ID, Menu.NONE, "Local Search")
.setIcon(android.R.drawable.ic_search_category_default);
menu.add (Menu.NONE, GLOBAL_SEARCH_ID, Menu.NONE, "Global Search")
.setIcon(R.drawable.search)
.setAlphabeticShortcut(SearchManager .MENU_KEY);
menu.add(Menu.NONE, CLOSE_ID, Menu.NONE, "Close")
.setIcon(R.drawable.eject)
.setAlphabeticShortcut('c');

return(super.onCreateOptionsMenu(menu));

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case LOCAL_SEARCH_ID:
onSearchRequested();
return(true);

case GLOBAL_SEARCH_ID:
startSearch(null, false, null, true);
return(true);

case CLOSE_ID:
finish();
return(true);

}

return(super.onOptionsItemSelected(item));
}
}

This activity takes care of everything related to showing a list of words, even
loading the words out of the XML resource. What it does not do is come up
with the ListAdapter to put into the Listview — that is delegated to the
subclasses.

The main activity — LoremDemo — just uses a ListAdapter for the whole word
list:

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

package com.commonsware.android.search;

import android.content.Intent;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;

public class LoremDemo extends LoremBase {
@Override
ListAdapter makeMeAnAdapter(Intent intent) {
return(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));

The search activity, though, does things a bit differently.

First, it inspects the Intent supplied to the abstract makeMeAnAdpater()
method. That Intent comes from either onCreate() or onNewIntent(). If the
intent is a ACTION_SEARCH, then we know this is a search. We can get the
search query and, in the case of this silly demo, spin through the loaded list
of words and find only those containing the search string. That list then gets
wrapped in a ListAdapter and returned for display:

package com.commonsware.android.search;

import android.app.SearchManager;
import android.content.Intent;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;
import java.util.Arraylist;

import java.util.List;

public class LoremSearch extends LoremBase {
@Override
ListAdapter makeMeAnAdapter(Intent intent) {
ListAdapter adapter=null;

if (intent.getAction().equals(Intent.ACTION_SEARCH)) {
String query=intent.getStringExtra(SearchManager.QUERY);
List<String> results=searchItems(query);

adapter=new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
results);

setTitle("LoremSearch for: "+query);

}

return(adapter);

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

}

private List<String> searchItems(String query) {
List<String> results=new ArraylList<String>();

for (String item : items) {
if (item.indexOf(query)>-1) {
results.add(item);
¥
}

return(results);

}

}

Update the Manifest

While this implements search, it doesn't tie it into the Android search
system. That requires a few changes to the auto-generated

AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">
<application>
<activity android:name=".LoremDemo" android:label="LoremDemo">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<meta-data android:name="android.app.default_searchable"
android:value=".LoremSearch" />
</activity>
<activity
android:name=".LoremSearch"
android:label="LoremSearch"
android:launchMode="singleTop">

<intent-filter>
<action android:name="android.intent.action.SEARCH" />

<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
</activity>
</application>
</manifest>

The changes that are needed are:

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

1. The LoremDemo main activity gets a meta-data element, with an
android:name of android.app.default_searchable and a android:value
of the search implementation class (.LoremSearch)

2. The LoremSearch activity gets an intent filter for
android.intent.action.SEARCH, so search intents will be picked up

3. The Loremsearch activity is set to have android:launchMode =
"singleTop", which means at most one instance of this activity will
be open at any time, so we don't wind up with a whole bunch of little
search activities cluttering up the activity stack

4. The Loremsearch activity gets a meta-data element, with an
android:name of android.app.searchable and a android:value of an
XML resource containing more information about the search facility
offered by this activity (@xml/searchable)

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/searchLabel"
android:hint="@string/searchHint" />

That XML resource provides two bits of information today:

1. What name should appear in the search domain button to the left of
the search field, identifying to the user where she is searching
(andr‘oid:label)

2. What hint text should appear in the search field, to give the user a
clue as to what they should be typing in (android:hint)

Searching for Meaning In Randomness

Given all that, search is now available - Android knows your application is
searchable, what search domain to use when searching from the main
activity, and the activity knows how to do the search.

The options menu for this application has both local and global search
options. In the case of local search, we just call onsearchRequested(); in the
case of global search, we call startSearch() with true in the last parameter,
indicating the scope is global.

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

Ml & 9:04 PM

forem

Figure 83. The Lorem sample application, showing the local search popup
Typing in a letter or two, then clicking Search, will bring up the search

activity and the subset of words containing what you typed, with your search
query in the activity title bar:

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Searching with SearchManager

BH @ 9:11pM

LoremSearch for: co

consectetuer

Figure 84. The results of searching for 'co' in the Lorem search sample

You can get the same effect if you just start typing in the main activity, since
it is set up for triggering a local search.

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

ClasS..ccvueeecerirrrmeneceeneernensssnnscsenssenns BroadcastReceiver.......rrvveccnen 252, 253,317, 318
ADBSOIUEELAYOUE ..o 128 Builder................... 152, 153
ActionEvent............_ 20 Bundle........cooovrinniininiiiiinns 167, 169, 249, 258, 317
ActionLiStener.........couvvvvviiiiiniiininiiiiniccen 20 Button... 25 27730, 34, 35, 201, 205
Activity8, 74, 151, 152, 160, 162, 166, 173, 174, 193, 210, Calendar.......ccoieurinecieicec e 18
253, 2

53, 255 CharSequence.......307
ActivityAdapter........c.cceeeuerererererenenennn 74, 268, 270 CheckAdapter 104
ActivityIcONAdapLer.........cccovvevererererirerireeeeean 74 CheckBox 30, 42, 44
ActivityManager..........cccccccciiiiiiiiceees 1

¥ & 57 CheckBoxPreference............c.cococoeeeeecenenennene 175
AdAPLer.....c.cocueveuiieieieieieieieieeeeeeeeeee 90, 92, 93 Chrono 6
AdapterWrapper..........cccoeueevevvrerreceeennennes 109, 110 Clocl
OCKS. ..vvveveteveteeete ettt 120
AlertDialog..........cocueueeieininieieiieieieeieeeas 152, 153 ComponentName
AnalogClock..

nalogCloc 120 CompoundButton...........cevveveeerererirerrseee e 42
ArrayAdapter.............. 72, 73, 75, 82, 91, 102, 104, 192 ConcurrentLinkedQueue 305
ATTAY LSt vttt

TrayLs 192 ConstantSBrowser..........cocovevvevveeerennen. 276, 277, 280
AutoC JEte.....eiieiii e 8

utot-ompiete > ContentManager.. 322
AutoC leteTextView.......cccoveevereeeennes 8, 84-86

utol-ompletetextyiew 3 54 ContentObserver:. 204, 295
BaseCOIUMNS..........cocoviiiieieeeeeeccses e 2

93 ContentProvider...........cccoevevenenn. 224, 280, 281, 285
BOX.iuiiiiiiic

ox 47 ContentResolver.... ..281, 204, 295

BoxLayout..

ContentValues..........ccocu..... 221, 280, 288, 289, 293

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

ContexXt...c.cceeeenreeeueenns 72, 152, 173, 174, 193, 219, 277
ContextMen..........ccccueucuiuiiiiciciiiciciccciecenes 132, 133
ContextMenu.ContextMenulnfo............cccceeuuee. 132
CrIteria. crereeeeeeeeresieees e saeeee e 331, 332, 339
CIIEIOTIA vttt 331

Cursor...73, 95, 104, 223, 225, 226, 275, 277-281, 287,
288, 293

CursOrAdapter..........cvvcueveieicinicicieiicisicecenes 73
DatabaseHelper.........cooeevevininieinieeeienicieenenee 286
DateFOormat......c.coeueeerireeeeniereienirieiceeieeeseeeee e 1u8
DatePicKer.........ccceiiciiiiiiiicciicceeiecs 15
DatePickerDialog...........cccoeeeeeeerenueieennenns 15, 18
DeadObjectException 316
DefaultHttpClient.......c.covveeeccccccccieeennenen 238
Dialer................ 352
DialogWrapper: ..280
DigitalClocK.......ccueuiuciriiiciiiciciiceeiiciecees 120
Document.........coceeeivieininiiiiiniiiiceiciececee 192
Double ..257
Drawable..........cccovevvvennes 88, 125, 204, 322, 347, 348
EditPreferences........ccovvrerereeeeeeeeeeeeesieeeeens 176
EditTextPreference 185
EditView......coveveveveveverreccncs 36, 37, 84, 85, 115, 275
ExpandableListView.........c.cccccceueueueueueieieieencnnenns 128
Field.....c.ccoenne .37
FlowLayout

FOreCast....cueeeueeeeieeeeeeeee et 241, 310
FrameLayout.......c..cccoovviiininniiiiiiii 123-125
Gallery....ccueueueueieieieieieeieieieeeeeee e 71, 88
GeOPOINt......cviiiiiecccc 345, 346
GIId. e 81

Subscribe to updates at http://commonsware.com

GridVIeW......ccoouiieieieiiiieicreeceeeeeees 80, 81, 88
Handler........c.ovvvieecieieeeececeeeeeeveens 157-162, 168
HelpActivity. 257
HttpClient.......ccccoeveveenennnes 238, 240, 242, 243, 305
HttpGet.....oooouiiiiiiiicics ..238, 240
HEEPPOSE. c...ceeeiiiiicicicicicicicicicicicieicieieieieieieeiene s 238
HttpRequest
HttpResponse...........ccccviiiiiiiiiiccccccee 238
I_LocationFeed.........cccooverininininininininenineniceenenens 335
IBinder et 306, 315
ImageButton...........ccoviviiiiiiiiiiiiiinns 35, 204, 205
IMAGeS...c.covvuiiiiriiiiciiccccc e 204
ImageView.......ccccoecvvvenuinnnnne 35, 94, 98, 101, 204, 281
InputMethod........ccoveueuviiuciniiciriicirecceee 37
InputStream....
InputStreamReader.........c.coeeurneecurineecienencennnene 193
INEGET ..o 104

Intent. .122, 146, 249, 253, 268-270, 285, 310, 311, 313,
315, 317, 318, 334, 352, 363

Interpreter.......... 232
ItemizedOverlay.......c.ccccceeueeeecienenennnns 347, 349
TEETALOT. ..ot 279
[Weather..........306
JButton .20, 21
JCRECKBOX. ... eueeiieieieieieieieieie ettt 72
JComboBox.

JLADEL .. 72
JLASE e 72
JTabbedPane. 122
JTaDBIe .o 72
Label.... i 34

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

Launch ettt ettt 258
LayoutInflater...........cccoveuveieenininiecnincins 94, 111
Linear .51

LinearLayout47-52, 64, 90, 94, 105, 111, 125, 342, 344

LinearLocationFeed.........cccccoeeueueveueuerenennnne. 336, 339
L 74, 133, 270, 307, 331
ListActivity.... .74, 75, 124, 341
ListAdapter........c.ccocveeunee 108-110, 113, 128, 362, 363
ListCellRenderer 72
ListDemo........cccceuiuiuiniiiiiiiriciiniciiccciecceees 136
LiStPreference.covveveeereneneneninencnineseseeesee 185

ListView....73, 74, 76, 77, 88-91, 95, 96, 101, 102, 108,
113, 133, 239, 277, 278, 280, 341, 360, 362

Location........ccccceeiiiiiinnnnns 239, 332, 333, 336, 337
LocationListener............cccccoeeieinecniiiiiiniicnnens 333
LocationManager...........c.ccccoeeuvueviucnnnnns 330-332, 334
LocationProvider.........c.cccocoeeveccccnnnne 330-332, 335
Lorem................ 360
LoremBase.........cccoceeiriniiniiiiinincceceeeeene 361
LoremDemo........cccovueuieinreennericiniicinicnnens 362, 365
LoremSearch 365
Map....coiiiiii 173, 221, 307
MaPpACHIVILY....coveveririeriiniciieecencceae e 341-343
MapController..........ccoocuieirniiiccirciiinne 344, 345
MapVieW.......cccvimiiiiiiiiicniiccs 341-347
MENU....ooiieieiieiieieeie et ereee s 130, 132, 268
Menu.Jtem......c.ooeeereeieieererceeee e 270
Menultem.......ccoceeenenieinininieeeceeeees 131-133
MENUS......cotiriiiiiiciiietee ettt 133
Messag 153, 158, 160, 161
MOCKETY ..ottt 335, 337-339

Subscribe to updates at http://commonsware.com

MYACEIVIEY ..o 269
NOOYaWK.....cuvviieieieieieieieieieeeieeeeeeieiae 344, 346
NOtIfication........cceuevverererererirreeereecseeene 322, 325
NotificationManager...........coeeceeecvreeveennnnes 322, 325
NOLIfYDEMO. ...t 323
NOtIfYMESSAgE......vvereerireririirerereseeeieseeeeie e 325
Now. 19, 29, 30
NOWREAUX. ... 29
OnCheckedChangeListener...................... 39, 40, 54
OnClickLiStener...........ccoveveveveveeeenens 20, 118, 155, 259
OnDateChangedListener............c.cceeeurnieueuennnns 16
OnDateSetLiStener...........ccccccveevveeeeeecveeeennnns 16, n8
OnltemSelectedListener............ccceoererueeeereenennn. 78
OnTimeChangedListener............ccoccoeueverinueucnnnns 16
OnTimeSetListener

OUtPULSEIEAM.vvvirrrcieieieieieieieieieieere e 193
OutputStreamWTiter.........cccccoviiiiiiiiiiinns 193
OVETIAY...c.cviueuiiiiiiiiiieeeeieeeeeieeere e 347, 349
Overlayltem........c.oueeeurecuernereerincereeeeneeens 347, 349
PackageManager..........cccuveeueuninicureeuerennnienennnns 270
Parcelable.........coovvvrnnnr e 307
PendingIntent.... ...323, 325, 334
PICK vttt 264, 299
PiCKDEMO......vvvrvreiereieieieieteteieieiereieieresereneie e 299
PreferenCe.......c.cueveveveeeeeeeeeeeeeeeeeeeeseeeeeeae e enens 175
PreferenceActivity. 182
PreferenceCategory.........ccoeeueuereuerereenennenes 181, 182
PreferenceScreen............ccoveveveeeeeeueeenen. 175, 181, 182
PreferencesManager ..174
ProgressBar.. ...122, 159, 160, 163

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

Provider.......cooeoevvenineeccnnenne 276, 286-288, 290-293 SQLiteQueryBuilder............. 222, 224, 225, 287, 288
RadioBUtton........ccceueueueeeueueueieiecnieene 42-44, 47, 52 Static 190, 207
RadioGroup........cceveveeevreeruennene. 42, 43, 47, 52, 54, 55 String. 104, 152, 153, 173, 200, 202, 238, 258, 275, 287,

307,31
RateableWrapper...........cooceeureeecunenicnnnnes 110, 111, 113

Strings ..200
RateListView 108, 12, 13

TaD.veiiieeeee e 124
RatingBar........c..ccccceueee 101, 102, 104, 105, 111, 113, 114

TaDACHVILY ..ot 124, 125
ReadWIite........ccouveeverereererienannns 193

TabHOSE. ..o 122-126
REIAtIVE. ..o 59

Table....ovoiiiieieeee e 65
RelativeLayout........ccccceuereuenneee. 47, 56, 57, 60, 61, 65

TableLayout........ccceueuriceerreeeueeneceenenes 47, 62-65, 179
RemoteEXception...........cccoceeviiciniiinccciicciiinnnene 316

TableRow.......... ...62-64
Resources 189, 207

TabSPEC.....iiiiirieieiieieieeeeeeeeeeee e 125, 126
RingtonePreference 175

TabWidget 123-125
RowModel ettt 104, 105

TelephonyManager............cccoooeuviiucivicicninicnnnns 352
Runnable........ccoooeevviveeiieeeceeennns 157, 158, 161, 162

TextView 28, 33-36, 39, 42, 73, 82, 83, 91, 94, 98, 101,
Scroll ...66 105, 118, 129, 278, 360
SCIOIIVIEW......voeeeeeeeeeeeeeeeeeeeee e 47, 66, 68 TexXtWatCher.......ccovevveeeeeeieeeeeeeeeeereeee s 85, 86
SecretSPIOVIAET.cveeeeeee e 284 TimePicker.......cceueveveueiereieieiieiceiceeeceees 15, 16
SecurityException.........c.coceeveeivecninnineenns 298, 299 TimePickerDialog..........cccccoeueeeccincnins 15, 16, u8
Service304, 308 THMET ettt 337
ServiceConnection..........cocoeveeveeerueeerueenienennns 314-316 TimMerTasK......ccocveieveiririeiiieieeiieeeeee e 337
SharedPreferences..........c.ccceevvvereereennnen. 174, 175, 185
SimpleAdapter 73
SimpleCursorAdapter...........cccccvueeueueee 277, 278, 280 Uri......35, 204, 225, 248, 249, 251, 252, 255, 257, 259,

263-265, 269, 273-276, 280, 281, 283-292, 294, 295,
SimplePrefSDemo.........covveveverrnececnienicennne. 177,179 322, 352
SitesOVerlay........cccoceueueueueeueueeeieeeeeeeenes 347-349 View....25, 29, 44, 64, 68, 78, 90, 92, 94-96, 98, 100,

101, 105, 111, 132, 152, 157, 161, 162
Spanned.........cceveeniienieeeeee 199, 200

ViewInflate.......ccccoceeeeeieeeeeeeeeeeeererenenns 94
SPINner......ccoeoiniiiiiicinicced 76, 77, 84, 88, 277

ViewWrapper.........cccocoveevieennnnns 99-101, 104, 105, 112
SQLiteDatabase.........cccceveuerereerererieenirereeieae 219-221

WeAther......c.cueviiiieieieieieieieeee e 238
SQLiteDatabase.CursorFactory..........cccceveeuenenee 226

WeatherDemo.........ccoueeeviiieirieieeninieieeeenennes 240
SQLiteOpenHelper..........c.cccocoeiiiiivccccecnnnn. 219

WeatherPlus........ccoovevnrnnnnnnens 305, 313, 314, 317

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

WeatherPlusService............... 303, 304, 310, 338, 339 ALTERNATIVE_CATEGORY......c.ccectviriinnieenianns 269
WEDKIt ... 238, 240 BIND_AUTO_CREATE.......ccctotiiiieiienieneenes 315
WEDSELHNGS......cueveereiiiiiiciiiiieieieieieeiceeieieeceneeeenes 149 CONTENT_URL...cooviiiriiniiiiiieccnicrciceeene 294
WebView.......cccooevvriennnnens 141-143, 145-149, 298, 310 DEFAULT ...ttt 249
WebVieWClient........cococoveeeeeneneieenienieeeneas 146, 148 DEFAULT_CATEGORY......coeviieiriririrririrsiesiene 270
XmIPUlIParser........cccovevveeeeeeierecreeeeeeeveens 207, 208 DELETE.....ciiiitiieeeieecresieve e 221, 222, 281
END_DOCUMENT.......ccootmtriirnieeninieteieieniennes 207
Command.........eeeeeeeeeneeeeeeeeeeanannnannnns
END_TAG
activityCreator e 230 R 238
db pull...ceeiiicic e
acbpu 227 HORIZONTAL ..o 48
Dl
adb pus 227 INSERT
1
adb shel 226 INTEGER
Eurerereeeseeneeesseeae e ese sttt ss ettt nees §
an 89 LARGER............. 149
£ JATCOTE. ...ttt seaene e
antjarcore 3 LAUNCHER ...249, 251
LS.veeeeveeeeiteteeeetee ettt
antrelease 9 LENGTH_LONG ..o oo 152
X w231 LENGTH_SHORT
Jarsigner 9 MAIN. ..o eseeeeeeeon 251
B 226,227 MATCH_DEFAULT_ONLY..ooosseoeorrreeerereeeee 270
NULL ottt 221
Constant......ccuueeiiiiiennniiiinieennnnennen.
ORDER BY ..ottt 275
ACCESS_ASSISTED_GPS.......cccevieuviviieiniinenens 330
PERMISSION_DENIED.........cccccoovuviimnrrininrrennines 301
ACCESS_CELL_ID
PERMISSION_GRANTED........cccctvmrinirrenieeens 301
ACCESS_GPS...oiiieiiieeeeeeseeee et 330
POST ...t 238
ACCESS_LOCATION.......ceuviiriniierniiniereiienne 330
R
ACTION_EDIT....coeoviieirinenreieinenienne ..248
READ_CONTACTS....oovovoooeoeeeeeeeeeeeeeeeeeeeeeeeeseseeeee 299
ACTION_PICK....
RECEIVE_SMS......coiioiieieieeeieseeee e 301
ACTION_SEARCH......cooceuriiiiinicicriiiccinaad 363
RESULT_CANCELLED 258
ACTION_TAG.....c.eeerereireererieeieeeeeenreesre e 268
RESULT_FIRST_USER....c.ccceiiiriniienieeeenieeee 258
ACTION_VIEW.....oooeeereeeseeeeeeeeceee. 248, 257, 265
RESULT_OK...oeveiiciiiieeieieneeienee 258, 264, 265
ALTERNATE_CATEGORY.... ...269
SELECT. ..218, 222, 225
ALTERNATIVE........ccccooiviiiiniiiiicinicnee 249, 269
372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

SMALLEST ..o 149
START _TAG oo 207, 208
TEXT oottt s 207
TITLE. ... 278
UPDATE ..ot 221, 222
VERTICAL......ooiiiiiiiiccicccccccccces 48
WHERE.............. 221-223, 225, 275, 281, 287, 289-201
A ...220

Method.......covuieeeiireiieiireeeeecereeanenns

add() 130, 131, 347

addId() et 274

addIntentOptions()...

AdAMENU()....ovevieeerereeieeeeeereeeee e 131
addPreferencesFromResource().........ccccoveverrnenns 176
addProximityAlert().......cceveercerreeuncereeerrcererenenes 334
addSubMenu()....

addTab() ettt et eaeens 126
AppendWhere()........ceveeueurieeeieieieirireeieieieeesins 225
ApPIYFOImMAat().....cceeveveieeieirieieeieiereeeieeeieeeenes 202

applyMenuChoice()...

beforeTextChanged()86
bindService()......ccoveveueevereeeiereeeerereeeiee e

broadcastIntent()..........ccoeeveveveeeerereeeereneenenns

broadcastIntentSerialized()

buildForecasts()........ccvvevereveerereeerereeeeereeveeseeneens 240
buildQuery() s 225
BUIKINSETE()...vvveeeceieecececiceceeeeeceee e 280
cancel()

cancelAll() s 322

373

Subscribe to updates at http://commonsware.com

canGoBack() ..145
canGoBackOrForward()..........ccveereeeeerereeeeeneannn 146
canGOFOrWward().......coovveveveeevereeeiereeeerereeereeneenns 145
CHECK() e 42, 43
checkCallingPermission()............coceeueiruevevcnnnnne 301
CLEAT()..veveveeeeieeeteeeee ettt 174
clearCache() 146
clearCheck()

ClearHiStOrY (). euvevereeeeereerereeceeiriineieneeeieeseeeenene 146
ClOSE()..viueiereteeereeeeteee e 193, 220, 225
COMIMIE().vvvvereverererererere et 174
count()

create()153
createDatabase()........cccoeveveveveveeeveriieeeiieeereeeens 227
createltem().......cevevereeerererereeeeereree e 347
delete() 221, 222, 281, 290, 291
displayZoomControls().........oceeeeeereerevrecurererenenes 345
ATaW () voeeeeeeeeeieeeeeeeee et 348
EAIE()-rnrneeeeeeeeeeeee et 174
€NADIE()..eviuieiieiiiieeee e 307
enableLocationPoll()........ccoeveevernireennecierricenes 339
equery() -225
€XECSQL)vrrveveerrrerrirerereiieieesee e 220-222

execute()...

findViewByld().29, 30, 45, 96, 98-100, 126, 189, 343,
344

finish() ...167,195
FITSE() vttt 225
generatePage().........ccoveuveiiininiieininines 241
get()eeeeeerenenee 221
getAltitude()

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

EtASINEEZET().vuveevereecrrnieceeereciereeciceereee e 221
GELASSEIING().vrvvevrvrevererrereireertereeeeeereiee e 221
getAttributeCount().......ceveeeeeerrereeerereeeinerierennes 208
getAttributeName() . 209
etBEaring()....c.eueveerereuneeieireienereineee e 332
getBeStProvider().......ocoveueureeerernieeeirieenieeeennne 331
getBoolean() et 174
getCallState()...
getCheckedRadioButtonId().......ccoeeererrvevererinnenes 42
getCollectionTyPe().....cvucveveeeerererceerreereereeeceenens 292
getColumnIndex()......oceeeeeeerceeeernieneeereerereeeenenes 225
getColumnNames()....
getContentProvider()........cocovecueureceerreneecrrenceenns 280
getContentReSOIVET()......uueveeerecereuncereeiiiniccene 205
getDefaultSharedPreferences()..........cc.cevevee 174, 175
getFloat()
2etINPULSEIEAM()...vuvueeereereereeirereeeeereieee e 281
ELINE().cvevrevvereeeieirieetrecee e 225,279
EtINEENE().euvevrrieceeericieieicecer et 360

getLastKnownPosition()

getLatitude()....o.vveeeveeceeeeiieieieiesee e 239
getLongitude().....ceueucurrceereirecrrecreeeecee 239
2etMapController()........ocveeeweerevrieercrnenerererenenes 343

getMeMyCurrentLocationNow()...

getNetworkType() 352
2etOUtputStream()......cveueeeeereereeeeeereveeeerereenes 281
EtOVETIaYS() ... evvevceieeiricieieicieiereeeee s 347
getPackageManager()........coweveereceerrueueenneneennns 270
getParent().......ccveuueee 45
etPhONETYPE()..c.ovvreveiireiereiiieirieieieieeie e 352

Subscribe to updates at http://commonsware.com

GEtPOSIEION().v.veevreeeireecieiccer e 279
getPreferences()......cooeveeeeeueureeeeerneeneierneenenes 173, 174
GELPTOGIESS()..ovuveevircreieinieeieiieiereeieiease et 122
getProviders() .331
getReadableDatabase().........cveveveeeereeereeueeneuennes 219
getRequiredColumns()......oveeeveeeeeerrrererenneeenennns 289
GEtRESOUITES()..cvuvrerernraeirircieieecicirneae st 189
getRootView()

getSettings() ..149
getSharedPreferences()........ccevecuerreeecennne 173, 174
2etSINGIETYPE()..uvvevrrierrcriireieieireieic e 202
GESPEEA().eevurrvrirerreiiieisiee et 332
EtSEIING()..cvuemeereeneeeerireeereieieeenenes 199, 202, 225, 279
GEtSIINGATTAY (). cvovuevrveeeericereeercerereeeerererevenenes 212
2etSubscriberld()......oeeevereerrrrereierieerieeeesine 352
getTag()99, 104
GEtTYPE().eueviieeieiicieieciei e 201, 292
getView().....73, 82, 92, 93, 95, 96, 100, 104, 108, 110,
111, 278
getWriteableDatabase().........cccvvueveeerereverererennnn 219
getXml()..ocevreennne ...207
g0BaCK(). e 145
g0BackOrForward()........ceveeveevreeeercereuenecnes 145, 146
goForward() 145
handleMessage() 158, 160
hasAltitude() .332
hasBearing() .332
hasSpeed()......cccvueueureeueuniieeirieieeiiee e 332
incrementProgressBy().......c.cueuveevcueeereerneeenenens 122
INitMOCKProvider().......covveereveecrreneecrenreenneeenenes 338
insert()

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

ISAFEETLASE().vvevvevevereieeeeeieieieieieieieie e 225, 279
iSBeforeFirst().......ccoveururueerueeeecreneannn. 279
isChecked()...... 39, 42
1SCollectionUTi()....ovovveeiiieriireeeee e 289, 290
ASENADIEd()..evueeveieeeeiieieeee e 44
ISFATSE() vveviveveeeeeeeeeeereteeee ettt 279
isFocused()

ASLASE() vttt 279
ISNULLO) vt 279
isRouteDisplayed().......cooueueurrreecrrineecunineceereennne 343
10adDAta()..vveereereenieeieireneieieeeee e 144
102dTImME()...cveveeerereeeceeeeeeerereeeeeteeeere e 148
10adUTI() v 142-144
makeMeAnAdpater()..........coceenieurireereinieuenenn 363
makeText() 152
managedQuUEry().......cocerreeereenecerreereenennene 275-277
Menu#setGroupCheckable()........c..cvevevecerernieenee 131
Menultem#setCheckable()...........cccccevvevueerienennes 131
move() ettt 279
MOVETOFITSE()...vevvevevevererevevevevereree e 279
moveToLast() 279
moveToNext() 279
mMOoveToPOoSItion()......cceveveveveieieieieieieieeieeeeeeee 279
MOVETOPTEVIOUS()...cuvvvieirereeiievceievereeere e 279
NEWCUTISOT().uvvreeerereeeeeeeeeereeeeeeseeere e ere e 226
newTabSpec() .125, 126
NEXE().ovieirereeeieeeeeeeereeee ettt ere e 207, 225
notify() e n 322
NOtIfyChange()......cveeeereveeeeeeeereeneerenerenenen 294, 295
notifyMe().. ..324

Subscribe to updates at http://commonsware.com

obtainMessage() .158
ONACEIVItYRESULE()...cvveevvceecrciceecien 258, 264
ONBINA()..oovevieieveieieieceeee e 306, 308
onCheckedChanged().......c.cooveuevrureeeuenencecnnes 40, 54
onClick() 20, 21
onContextltemSelected()........cocevrrierrreennas 133, 135
onCreate()............20, 21, 28, 29, 43, 54, 130, 135, 142,

166-169, 180, 192, 202, 219, 240, 277, 285, 286, 304,
305, 344, 360, 363

onCreateContextMenu().......ccceeeurevennens 132, 133, 135
onCreateOptionsMenu().........cccoceveveee. 130, 132, 135
onCreatePanelMenu()..........ccccoveveeevereeveeeeereenenns 131
ONDESLIOY (). vvvevrreecreveeeeerieeeeeereeeeaenns 167, 304, 305
onListltemClick() .75, 104
onLocationChanged().......coeeeerereeerrrnerveneeirennenes 333
onNewIntent() 360, 363
onOptionsltemSelected().......ccoovvevrennene. 131-133, 135
0nPageStarted()......ocevurerererrireerrierereieeseeenenene 146
ONPaAUSE().vvveeeveeeieieieieieieenas 168, 195, 253, 304, 317
onRatingBarChanged()..........ccoereeereereecereccucnns 12
onRatingChanged()........c.ceueerrreerernieienieeennas 104
ONRECEIVE()...vvevvierieeeiereteeeieeee e 252

onReceivedHttpAuthRequest()...

ONRESLATE().vvevvvrererereierereieieie ettt 167
onRestorelnstanceState()...........ccceeveveevrrereeenenenns 169
onResume()....... 167, 168, 180, 195, 239, 253, 304, 317
onSavelnstanceState()..........ccoceevvverevererennnn. 167,169
onSearchRequested().........ccovuereeveveereuenas 357, 365
onServiceConnected()........coeuevevreevereeruereienenenes 315
onServiceDisconnected()........ccvveveveerienennns 315, 316
onStart()...

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

onStop() 167
ONTAP()- vt 349
onTextChanged().......coceveveeerereeerireeieireceeeneniene 86
onTooManyRedirects()........cccvecueureeeeeerercuerreceenes 146
onUpgrade().......cveueerererreunceceeuneens 219
openFilelnput() 193, 195
openFileOutput().....coveeeveeeererenererreenieeenenes 193, 195
openRawResource() 189
POPULALE().vvreereieicietrce et 347
populateDefaultValues() 289
populateMenu()........c.eeeereeeeeererneeenererreeenens 135, 136
post()161, 162
postDelayed()........ceurueeeurrnecerineeeneeeeeeeeeene 161
QUETY ()i 222-225, 286-288, 293
querylntentActivityOptions()........coeveeeereernnnes 270

queryWithFactory()...

TAWQUETY (). vnevereereeeieeretreieeseieiseieneeeseeesesenenenenes 222
rawQueryWithFactory()......ccveeveveeeerrneereennne 226
registerContentObserver()..........cccvecuererueveennns 205

registerForContextMenu()...

1egisterReCeiVEr(). .. ovrveureirerererciririereieeeeeieeenens 253
TE10AA ()i 145
TEMOVE() ..ottt es et eae e 174

removeProximityAlert()....

removelUpdates()........coeeeurecrerreiecurireereeeeerennenes 333
requery() ..280
1eqUESLFOCUS().vvvevieiereieireeieiecese e 44
requestLocationUpdates()........ccceueucururererueuenns 332
runOnUIThread()........cccovevevevevererereieieieieieieeeeenns 162
sendBroadcast().........cccveveveveevererireereiereeneenn 301, 310

Subscribe to updates at http://commonsware.com

sendMessage() 158
sendMessageAtFrontOfQueue()........coceeveennne 158
sendMessageAtTime()......coouvveverrerererreeeeernererenens 158
sendMessageDelayed().........coceeeurecrerernecrerenennene 158
SEL().vveeeereeeeee ettt 234
SELACCUTACY ().vrvevverereerierereineseiesseeeeseeesesessesesenes 331
setAdapter()......ccoereererrerieuerenennns

setAlphabeticShortcut()

setAltitudeRequired()........ccoerveevrrrerererrieenirierenenns 331
setCellRenderer().........ccoeeveveeevereeereeeieieeeneeeenen 72
setCenter().......coeuen. ...345
setChecked()

setColumnCollapsed() s ..65
setColumnShrinkable().........c.ccccoeeueueueeeierierenens 65
setColumnStretchable()...........ccocoveveveveereevreenenen. 65
SELCONLENE()..vviveerereeeierereerereeeeereeeeee e 125, 126
5etContentView()......cceveeverereeerrereerenennens 20, 29, 45
SetCOStAIIOWEd().....coveveeerereererereeeeeeeeeeeereeeeeaeeee 331
setCurrentTab().......ccceeveveveeeeereiereeeceeere e 126

setDefaultFontSize().... .149

setDefaultKeyMode()........cevvveererniienirinererennnnns 358
setDropDownViewResource()........coveeeurecueuneeees 76
setDuration()........ccceeveveveverererenennen. ..152
SetENabled().....cceuieevrieeeieiieireeese e 44
setFantasyFontFamily()........ccoeveceeurevcreinnicennns 149
setGravity() ...50
setGroupCheckable() .130
setlcon() ...153
SetIMAGEURI()..vuvuevueeeeneieeeieitineieeereteieieenenenes 35
setIndeterminate() 122

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

$etINdicator()....ovoveveeeereririreeirseereee e 125, 126 SHOW().eeeeeeeieieieieiee e 152, 153, 155
setJavaScriptCanOpenWindowsAutomatically() SIZE()rrrrriieeeeeeeeeeee e 347
............................. 149

SEATtACEIVIEY (). eveveveerereeereneieirirecsieeenenns 257, 258, 352
setJavaScriptEnabled().......ocveerveeieurevnicicecnens 149

StartSearch()......ceeeeeeeeueeeeeeeieieieeeesieeeeeee 358, 365
setLatestEventInfo().......c.coeeeeeeririeeennnens 323, 325

SEATESEIVICE()..v.vvveverererererererererevererere et 317
setListAdapter()

StartSUBACHVILY ().vuvveveveveeeeieeeirecieinceeenenes 258, 264
SEtMaAX()..ouverriiieeieeeeeeeineae 122

stopService() 317
SEEMESSAZE().vrvereerrreerarieeiercereie et 153

SWIECH().cvevvevevcteieecece e 132
setNegativeButton() 153

toggle() .39, 42
setNeutral Button().......coeeeeeererererercncncncene 153

toggleSatellite().......coeueurueuerrrrecerineecieinicnireeenne 346
setNUmericShortcut()......c.oeeveeveeeerreneerirreeenenns 131

EOSEIING (). vevvvvevmeererncereeenieereteeeeeretseie e 72
setOnClickListener()..........ccceeeeeuvenirccnnns 20,195

unbindService()
setOnltemSelectedListener().................... 74, 76, 80

unregisterContentObserver()...........cocceueeeurenene 295
SetOrientation()........ccevevreririrerireiieeeeseeseenas 48

unregisterReceiver()........ocveeveeurcereeererrererrerenenes 253
setPadding() 1050

UPdate().eeeeeeeeereeereeneieenesierenens
5etPOSItIVEBULLON()..vvevreeveiereceeeieieieneeeeeieeena 153

updateForecast()....
SEEPTOZIESS().vuveveevrrrrerrcreieareieeenseneeseiesseareaeens 122,

updateLabel().....c.oceeeueereeeriereeeieireieeeneseeceene nu8
$etProjectionMap().......cccoveeeerrreeeerireenreeenenennnes 225

UPAAteTime (). ceeeeererereeneeeeeeirerereieieereee e 20
setQwertyMode() 131
SERESUIE() v 258 PIOPEILY...crerrenreenenrenrenseesesvessesnnens
SEETAG().vevrervrrreereereneieirercreeseseesereee e 99, 100, 105 android:authomties .o 204
setText() 21 android:autoTeXt.........ovreeeieieeeieieeeeereeeisessenesnns 36
SCLTRXESIZR()- oot 149 android:background...........cccoeeverininininninieienene. 44
ST hrrrrsnssmrnsnsssmmsmssssmsnssssnsnsssnssnnes 153 android:capitalize..........ccoccueureecuernecerinierecrinenenes 36
SEtTYPeface()......ceurveueureieerrieieieiicirseereeseenenene 26 android:collapseColumns...
SEEUD()evscsvsnssssnsnssssssnssssssnsssssnsssnsss 125,126 android:columnWidth..........ccoovvnnniciicninenne 8o
SELUSELAGENE().vevsnrnsnssmrrsnssssmsnssssnsnsnssnns 149 android:completionThreshold...........cccccvecurueunnens 84
setView() 152 ANATOIAIAIGIES. o vvuevrereecerreeieeereeieie e 36
setWebViewClient().........ocooveveveevereeeereeeeeeenens 146 android:drawSelectorOnTop
T Z076) 111 TR TUTUSRUORRRN 344

android:horizontalSpacing.........c.cceceevvveucerrinuencne 8o

shouldOverrideUrlLoading()

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

android:id.......cceeeeeeieieeennne 27, 28, 42, 57, 123-125
android:inputMethod............ccceeveenvciniecnnne 37
android:label...........ccoieieiirieiiniecees 14
android:layout_above.........c.cccceererceerniericnineenene 58
android:layout_alignBaseline...........c.ccccevveueunenee 58
android:layout_alignBottom.........c.cccccccerenveunnnne 58

android:layout_alignLeft

android:layout_alignParentBottom...................... 57
android:layout_alignParentLeft............ccccecenvenneee. 57
android:layout_alignParentRight..........ccccecceueuennne 57
android:layout_alignParentTop............cccccueu.. 57, 61
android:layout_alignRight .58
android:layout_alignTop.........cccovvevereunrecerenenee 58, 59
android:layout_below..........ccccveuriniirnicininncnne. 58

android:layout_centerHorizontal.

android:layout_centerInParent..........ccoccoveveveuenne 57
android:layout_centerVertical...........cccovccurunuenene 57
android:layout_column.........ccccccevvvevvvcncnnecncnnes 63
android:layout_gravity.........ccoeveeereececennccrrnneeenns 50
android:layout_height...........ccc.oc....... 27, 49, 59, 124
android:layout_span........c.c.coeceeeeeeeerirercnenieenennen 63

android:layout_toLeftOf..

android:layout_toRightOf.........c.cccceuvviriinncnne. 58
android:layout_weight .49
android:layout_width......c..cccccoererenneeee 27, 49, 53, 59
android:manifest .12
ANAroidimaX.....c.eueveveveuereveieieieeeeeieeeeeeee e 159
android:name...........cccoeueneenenn 14, 293, 298, 309, 365
android:nextFocusDOWN.........cccevvueurerirerineenienene 44

378

Subscribe to updates at http://commonsware.com

android:nextFocusLeft 44
android:nextFocusRight.........cccccvvieivniciinnnne 44
android:nextFocusUp.........c.cocoevveiieccccnnennennes 44
android:numColumNS........ccceurecuernecirireeeereeens 8o
android:NUMEeTiC........cccooveveveeeeeeeeeieeereene 37
android:orientation..........cccveeeveerirreeriereereeeenneens 48

android:padding....

android:paddingBottom............ccceuevereunicuernennenes 51
android:paddingLeft.........c.cccoevninnninninincninininne 51
android:paddingRight.........cccceeveurrcuernnireinennnes 51
android:paddingTop........cccceeeeunieuciricereucnnnns 51, 124
android:password..........c.cccevvvieiiiniciiiiiieenes 37
android:permission............cccoeeececcecenness 300, 309
android:phoneNumber..........ccceeveurinierriruecnnnns 37

android:shrinkColumns.

android:singleLine ..36,37
android:SPacing..........ceueeeeuveeeueuninieurirenieieiseienens 88
android:spinnerSelector..............cccoeoeecceeeenennen 88
android:src .35
android:stretchColumns..........ccovvereeeirieneecnnenne. 64
android:stretchMode...........cccococueiviiiivinicriiininnne 8o
android:text. 27,33
android:teXtColOr. ... 34, 39
android:textStyle........ccoeveeeeeeeeineieinenes 33, 36
android:typeface.........ocerecueureieinencierneicneenes 33
android:value365
android:verticalSpacing............cccoverevererrerrirenenee 8o
android:visibility.........cccccoeeeiieiiiiicee 44

Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

	Welcome to the Book!
	Prerequisites
	Warescription
	Book Bug Bounty
	Source Code License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments
	The Big Picture
	What Androids Are Made Of
	Activities
	Content Providers
	Intents
	Services

	Stuff At Your Disposal
	Storage
	Network
	Multimedia
	GPS
	Phone Services

	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, The Rest of the Story
	What You Get Out Of It

	Inside the Manifest
	In The Beginning, There Was the Root, And It Was Good
	Permissions, Instrumentations, and Applications (Oh, My!)
	Your Application Does Something, Right?

	Creating a Skeleton Application
	Begin at the Beginning
	The Activity
	Dissecting the Activity
	Building and Running the Activity

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What's With the @ Signs?
	And We Attach These to the Java...How?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who's Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It's Quite a View
	Useful Properties
	Useful Methods

	Working with Containers
	Thinking Linearly
	Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity
	Padding

	Example

	All Things Are Relative
	Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	Example

	Tabula Rasa
	Concepts and Properties
	Putting Cells in Rows
	Non-Row Children of TableLayout
	Stretch, Shrink, and Collapse

	Example

	Scrollwork

	Using Selection Widgets
	Adapting to the Circumstances
	Using ArrayAdapter
	Other Key Adapters

	Lists of Naughty and Nice
	Spin Control
	Grid Your Lions (Or Something Like That...)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art

	Getting Fancy With Lists
	Getting To First Base
	A Dynamic Presentation
	A Sidebar About Inflation
	And Now, Back To Our Story

	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern

	Making a List...
	...And Checking It Twice

	Employing Fancy Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Making Progress
	Putting It On My Tab
	The Pieces
	The Idiosyncrasies
	Wiring It Together

	Other Containers of Note

	Applying Menus
	Flavors of Menu
	Menus of Options
	Menus in Context
	Taking a Peek

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh, My!)

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Dealing with Threads
	Getting Through the Handlers
	Messages
	Runnables

	Running In Place
	Where, Oh Where Has My UI Thread Gone?
	And Now, The Caveats

	Handling Activity Lifecycle Events
	Schroedinger's Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Using Preferences
	Getting What You Want
	Stating Your Preference
	And Now, a Word From Our Framework
	Letting Users Have Their Say
	Adding a Wee Bit O' Structure
	The Kind Of Pop-Ups You Like

	Accessing Files
	You And The Horse You Rode In On
	Readin' 'n Writin'

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks

	Managing and Accessing Local Databases
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin' Data
	What Goes Around, Comes Around
	Raw Queries
	Regular Queries
	Building with Builders
	Using Cursors
	Making Your Own Cursors

	Data, Data, Everywhere

	Leveraging Java Libraries
	The Outer Limits
	Ants and Jars
	Following the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpComponents
	Parsing Responses
	Stuff To Consider

	Creating Intent Filters
	What's Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Sub-Activities
	Peers and Subs
	Start 'Em Up
	Make an Intent
	Make the Call

	Finding Available Actions via Introspection
	Pick 'Em
	Would You Like to See the Menu?
	Asking Around

	Using a Content Provider
	Pieces of Me
	Getting a Handle
	Makin' Queries
	Adapting to the Circumstances
	Doing It By Hand
	Position
	Getting Properties

	Give and Take
	Beware of the BLOB!

	Building a Content Provider
	First, Some Dissection
	Next, Some Typing
	Step #1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step #2: Supply a Uri
	Step #3: Declare the Properties
	Step #4: Update the Manifest
	Notify-On-Change Support

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?

	Creating a Service
	Service with Class
	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	Manifest Destiny
	Lobbing One Over the Fence
	Where's the Remote? And the Rest of the Code?

	Invoking a Service
	Bound for Success
	Request for Service
	Prometheus Unbound
	Manual Transmission
	Catching the Lob

	Alerting Users Via Notifications
	Types of Pestering
	Hardware Notifications
	Icons

	Seeing Pestering in Action

	Accessing Location-Based Services
	Location Providers: They Know Where You're Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...
	Feed Me! See More!
	Making a Mockery of the Situation
	Changing Weather Patterns

	Mapping with MapView and MapActivity
	The Bare Bones
	Exercising Your Control
	Zoom
	Center

	Rugged Terrain
	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	Handling Telephone Calls
	Report To The Manager
	You Make the Call!

	Searching with SearchManager
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness

