Version 2.0

Exploring
Android

Xa

Mark L. Murphy €@

Exploring Android

by Mark L. Murphy

CoMMONSWARE

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Exploring Android
by Mark L. Murphy

Copyright © 2017-2020 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
December 2020: Version 2.0

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Table of Contents

Headings formatted in bold-italic have changed since the last version.

* Preface
o How the Book Is Structuredccooevererieienieieneeceeeeeee ix
o Second-Generation BOOKccoceevieiiiinininiceeeeee e X
O PrEI@QUISILES ...cccveieuriiiieiiiiiiieeiteete ettt ettt X
o About the Updatescccevieriiririiieieieeceeeee e X
o What's New in Version 2.07?cccceevviiiiiiiniininnininnniinenicnnncenneenes xi
o Copying Code From This BOOKccceeceririiiiniiiniceeeee xi
© WareSCIIPLION ...ueiiuiiieiiiiiieiiteeteenite ettt ettt et xii
© BOOK BUZ BOUNLY ..o xiii
o Source Code and Its Licensecccooceverereeienienieneneeceeeeeeenne xiii
o Creative Commons and the Four-to-Free (42F) Guarantee xiv
* What We Are Building
0 THE PUIPOSE ...ooueeiieniiiiiieieteee ettt 1
0 The €ore Ulooiiiiieieeeeieeee et 1
+ Installing the Tools
o Step #1: Checking Your Hardwarecccoocevininienienienenenceceeene 9
o Step #2: Install Android Studioceceevvevievenininieeee, 10
o Step #3: Run Android Studiocccccevevierinieieieeeeee 11
* Creating a Starter Project
o Step #1: Importing the Projectcococevevenininiieieeneeeceeeeneen 19
o Step #2: Setting Up the Emulator AVDcccooiivinininieeeeee, 23
o Step #3: Setting Up the Devicecccocoeviiviinininiriieeeeeeen 29
o Step #4: Running the Projectcccocevievieiienienenineeeeeeeeees 32
* Modifying the Manifest
o Some Notes About Relative Pathsccccceevieiieciinciirieeceee 35
o Step #1: SUPPOTtING SCIEENSeevviiruiiriiiriiiiieneeeee e 36
o Step #2: Blocking Backupscecevieviirininiieieieeeeeceeeeeee 37
o FINAl RESUILSoeceeiiieiiceceeee et 37
o What We Changedcccccovvvviiiiiiiinniniiiiininiiiieiicesssseeeseeseens 38
* Changing Our Icon
o Step #1: Getting the Replacement Artworkccocoeveeieiieniiniennenne. 39
o Step #2: Changing the [COnccccoceiiiviiiinineeee, 40
o Step #3: Running the Resultc.cccooeniiiiieiinieeee, 50
o What We Changed ..o 50

+ Adding a Library

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

o Step #1: Removing Unnecessary Cruftccccoceeveevenenencnicenienenene. 51

o Step #2: Adding Support for RecyclerViewccccocvveiiiiiiinincnenne. 52
© FINAl RESUILS ...evoeeiiiiiiieieeeeeeee e 53
o What We Changedcccocoovvvviiiiiiiiiiiiiiiiiiiiiiiiiiieceeceeeeeennens 54
 Constructing a Layout
o Step #1: Examining What We Have And What We Want 55
o Step #2: Adding a RecyclerViewccccooceveniniiniiniincncncnceeeee, 58
o Step #3: Adjusting the TextViewccccceveiiiiiiininninneeeee, 66
© FINAl RESUILS ...ocuviiiiiiiiiceee e 72
o What We Changedcccccoevvvviiiiiiiiiiiiiiiiiiiiiiiiiiieceeeeeeeeeenens 73
* Integrating Fragments
o But First, Some Notes About Working with Kotlinc.......... 75
o Step #1: Creating a Fragmentccccccoeceeviiiiiiniiiniinnicnieciecieeee, 77
o Step #2: Renaming Our Layoutcccceceeiiiriiiniiniiiniicicnieceeee, 78
o Step #3: Inflating Our Layoutccceceeiiiieieneniniiiieeenceceeeen 81
o Step #4: Dealing with Crashesccocvvniniiiiiiiinneeee, 84
o Final RESUILS ...cc.coiiiiiiiieiieieee s 86
o What We Changedccccooevvvviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeennens 86
+ Wiring In Navigation
o Step #1: Defining the Versionccocooiiiiiiiiininneccens 87
o Step #2: Adding the Plugin Dependencyc.cccooevevenencneennnee 89
o Step #3: Requesting the Pluginsccceceeviiiiiiiiininnniiceee, 89
o Step #4: Augmenting Our Dependenciesc..ccccoevevenenenennnne. 90
o Step #5: Defining Our Navigation Graphccccocevenniiiincnenenne. o1
o Step #6: Setting Up a New Activity Layout Resource 94
o Step #7: Wiring in the Navigationcccoceviiininnininicncncnee. 96
© FINAl RESUILSvoveiiiiiiieieeeceeeeee e 97
o What We Changedccccoeevvviiiiiiiiiiinniiiiiiiiniinnieiienneceeeees 100
+ Setting Up the App Bar
o Step #1: Defining Some Colorsccccoeriririiiiniiineneeeeee 102
o Step #2: Adjusting Our Themec.ccooeeiiiinininiinnicece, 105
o Step #3: Adding a Toolbarcccoeviiiiiinininiie 108
o Step #4: Adding an Iconcccoceeiiiiiiininiiee 12
o Step #5: Defining an [temcoceoviiiiiiiiiininneeeeeeeen 114
o Step #6: Enabling View Bindingcccceceiiiiinininnniiiceen 124
o Step #7: Using View Binding in Our Activityccceceeevervenenucnnnne. 125
o Step #8: Loading Our OPtionscccceeererieienieneneneneeieeeseeeenne 126
o Step #9: Trying It Outcccoociiiiiiiiiice e 127
o Final RESUILS ...cc.coiiiiiiiiiiiiiiece e 128
o What We Changedcccccoevvvviiiiiiiiiiiniiiiiiiiiiiiiiiiieeeeeeeeeeees 131

+ Setting Up an Activity

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

o Step #1: Creating the Stub Activity Class and Manifest Entry 133

o Step #2: Adding a Toolbar and a WebViewccoceveniniiiiincnnn. 136
o Step #3: Launching Our ACtivitycccceceveeiiriieiineneneneeeeeeeen 143
o Step #4: Defining Some About TexXtcc.ccccevererenieniiniienenenennn 144
o Step #5: Populating the Toolbar and WebViewc..ccccccevinenen. 146
© FINAl RESUILS ...cccvviieiiiieeeeeeeeee e 147
o What We Changedccccooevvvviiiiiiiiiiiniiiiiiiniiiiiiiniceeeeeeeeeees 149
* Defining a Model
o Step #1: Adding a Stub POJOcocoiiiiiiieeeeeeeen 151
o Step #2: Switching to a data Classccceceeveeiieieneneneneeecee, 151
o Step #3: Adding the ConStructorccceceeceeieiienenenenceeeeeeeen 152
o Step #4: Supporting Instant on Older Devicescccceceririeeennene 153
© FINAl RESUILSooveiiiiiiieieceeeeeeeeee et 154
o What We Changedccccooevvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeeeeeeees 156
+ Setting Up a Repository
o Step #1: Adding the Repository Classcccceceeveiiienienenenenicnienns 158
o Step #2: Creating Some Fake Datacc.ccceevievienenineniiniiiieenene 158
© FINAl RESUILSoovuiiiiiiieieceeeeceeecee e 159
o What We Changedccccooovvviiiiiiiiiiiiniiiiiiiiiiiiiiieiieeeeeeeeeees 159
+ Inverting Our Dependencies
o Step #1: Adding the Dependenciesc..ccccevevenenenenienienenennnn 162
o Step #2: Creating a Custom Applicationc.ccccecevevenencennieniennns 163
o Step #3: Defining Our Moduleccoooeiiiiiiiiinininneeee 164
o Final RESUILS ...cc.coiieiiiiiiiiiieee e 166
o What We Changedccccooovviviiiiiiiiiiiniiiiiiiiiiiiniciieeeeeeeeeenes 169
+ Incorporating a ViewModel
o Step #1: Adding the Dependenciesc..cccevuevenenencninnieniencnene. 172
o Step #2: Creating a Stub ViewModelcccocoiinininininiinininene. 172
o Step #3: Getting and Using Our Repositoryc.ccceevevererieienene 173
o Step #4: Depositing a Koinccceeviiriiiniiniiiniiiicnicceecieceee 173
o Step #5: Injecting the MOtorcccoeviiiiinininiiiieeeeeeeeen 174
© FINAl RESUILSoovuiiiieiicieeeeeeeetee e 175
o What We Changedcccccoevvvviiiiiiiiiiiniiiiiiiiiiiiiiiiieeeeeeeeeeees 177
+ Populating Our RecyclerView
o Step #1: Defining @ Row Layoutcccoceeiiiiiiiiiinininneieeee 179
o Step #2: Adding a Stub ViewHoldercccccooevininininiinininenn 186
o Step #3: Creating a Stub Adapterccccoceeievienenineninieeenen 186
o Step #4: Comparing Our Modelscccceceeiiiiiinininnneeee 189
o Step #5: Completing the Adapter and ViewHolder 191
o Step #6: Wiring Up the RecyclerViewcccoceviiiiiiininnninnenns 193
© FINAl RESUILSooeuiiiiiiieieeeceeeeeeeeeee e 195
iii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

o What We Changedccccooevvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieneeeeeeeees 198
+ Tracking the Completion Status

o Step #1: Registering for EVentsccccoceverviiiiiniininencnneeene 201
o Step #2: Passing the Event Up the Chainc.ccccoceiininininiinenn, 202
o Step #3: Saving the Change ..o 204
© FINAl RESUILSoovuiiiiiiieieceeeceeee e 205
o What We Changedccccoeevvviiiiiiiiiiniiiiiinininiiininiieneeceenens 209
+ Displaying an Item
o Step #1: Creating the Fragmentccccccooeviiiiiiiiiininneeeeee, 21
o Step #2: Updating the Navigation Graphc.cccooevininninnnnne. 212
o Step #3: Responding to List Clickscc.ccceiivininininiiniiicicnen 216
o Step #4: Teaching Navigation About the App Barc.ccccceeeennens 219
o Step #5: Creating an Empty Layoutccccceeviiniiiiiiiiiniiniinnens 220
o Step #6: Adding the Completed Iconcccceoevenininiiniiiiicncnienne. 221
o Step #7: Displaying the Descriptionccccccceveveneniniienenenennnn 227
o Step #8: Showing the Created-On Datecccceceevieveneneninicenienen, 229
o Step #9: Adding the NOtescccevieiieninininiiiieeee e 233
o Step #10: Adding Navigation Argumentsc..cccceveverenenieeneennens 235
o Step #11: Displaying the Layoutccccoceeveiiiiiiniininnnieieene 238
o Step #12: Making Another Motorccceceeiiiiniinincnneeee 239
o Step #13: Populating the Layoutc.cceceeveriiiiiiniininenineeeene 241
© FINAl RESUILS ...covviiiiiiieceeeeeeeeee e 242
o What We Changedccccooevvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeeeeeeees 251
+ Editing an Item
o Step #1: Creating the Fragmentcccoceeoeriiiiiiiininencnieesee 254
o Step #2: Setting Up the Navigationc.ccceeeveneneniinnienenenennenn 254
o Step #3: Setting Up a Menu Resourcecccccceeeeviieiiieniienieeneenns 256
o Step #4: Showing the App Bar Itemccccoceviiiiiiiiininie, 260
o Step #5: Displaying the (Empty) Fragmentccccoceveiniininnnenn. 262
o Step #6: Creating an Empty Layoutccoccevviiniiiiiinniinieniicnnens 263
o Step #7: Adding the CheckBoXccccoveriiiiiiiiiiininineee 263
o Step #8: Creating the Description Fieldc..cccooeiininininiininn, 264
o Step #9: Adding the Notes Fieldc..cccocieiinininininiiiice, 268
o Step #10: Populating the Layoutc.cccceceiiiiienininnniiieenen 270
° FINAl RESUILS ...cocvviieiiiiiceeee e 272
o What We Changedccccooovvviiiiiiiiiiiiiiiiiiiiiiiiiniiiieceeceeeeeees 277
 Saving an Item
o Step #1: Adding the App Bar [temcc.cocooiiiiiininniieee 279
o Step #2: Improving the Motorccceeereriiiiiinininenneeeee 282
o Step #3: Replacing the [temcccoiiiinininiiiie 283
o Step #4: Returning to the Display Fragmentccccececeeiiiininen. 284
iv

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

o Step #5: Getting Updated Itemscccceceeeeieienenenienieieeeeens 286
° FINal RESUILSccuvieiiiiiiieieeeee e 287
o What We Changedccccooovvviiiiiiiiiiiiiiiiiiiiniiiiiiiiieeeeeeeeeeees 291
+ Adding and Deleting Items
o Step #1: Trimming Our Repositoryc.cccocevvieriiiiniieniiinienieeniens 293
o Step #2: Showing an Empty VIewccccoceiiiiiininnniniiieenen, 294
o Step #3: Adding an Add App Bar Itemcccceceevieiienenininicienee, 296
o Step #4: Launching the EditFragment for Addsccccccceceeeenenee. 299
o Step #5: Hiding the Empty Viewcccocoviiiiiiiinninneeeee 305
o Step #6: Adding a Delete App Bar [temccceceeviiiiininininiiienns 306
o Step #7: Deleting the Itemcccocoiiiiiinniie 307
o Step #8: Fixing the Delete-on-Add Problemc..ccccoceiiiiinen. 309
© FINAl RESUILSooveiiiiiiieieceeeeeeeeee et 310
o What We Changedccccooevvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeeeeeeees 317
+ Interlude: So, What’s Wrong?
o Issues With What We Havecccccceviivieiiicceniecceceeeceeen 319
° We Can Do Betterc.cooiiiiiiiiiiiiiiiiieeeeetee et 320
+ Refactoring Our Code
o Step #1: Creating Some Packagescccceceevieiinenineniniiieenen 325
o Step #2: Moving Our Classesccccoceverererienienieneneneeeeeeseeeee 326
o What We Changedcccooeririiiiiiieeeeeceee e 329
+ Getting a Room (And Some Coroutines)
o Step #1: Requesting More Dependenciesc..cccceoeverenenicnicnens 332
o Step #2: Defining an ENtityc..ccccoceieiininininniiineneeeeee 333
o Step #3: Crafting @ DAOccooiiiiiiiiieeeeeeee e 334
o Step #4: Adding a Databasecccccoeviriniiiiiiniiniee 337
o Step #5: Creating a TransSmogrifiercc.cocceveveneneniinieenenenennn, 338
o Step #6: Add Our Database to Koinc..ccccevevenineniinnieneneneene 340
o Step #7: Adding a Store to the Repositorycccceeeeeeenees 341
o Step #8: Fixing the RepoSsitoryccceevereriiiiiiniininineneeeeee 342
© FINAl RESUILS ...ccuvieiiiiiiieeeeeee e 344
o What We Changedccccoeevvviiiiiiiiiiniiiiiinininiiininiieneeceenens 349
+ Completing the Reactive Architecture
o Step #1: Adding the Dependencycccoceeeevienienenencneenienenenenn 352
o Step #2: Defining a Roster View Statec..cocceceevievenenenenicnneennns 353
o Step #3: Emitting View Statesccccoverviiriiiniiiniienieniienieeneens 354
o Step #4: Consuming Roster View Statesccccceeeeevieriieniiennnens 354
o Step #5: Wrapping the suspend Functionsccceceecevverieniienennens 356
o Step #6: Updating SingleModelMotorcccceceeviiiienenenenicnienen, 357
o Step #7: Adapting DisplayFragmentcccccoevereneniiniienenencnnenn 358
o Step #8: Adapting EditFragmentcc.cococeviinininniniiieieeen 358

This document contains free sample chapters!

\"

Learn more at https://commonsware.com/AndExplore

© FINAl RESUILSoovuiiiiiiieieceeeeceeteee et 361

o What We Changedcccooeevvviiiiiiiiiiinniiiinininiiiniiiieneeceenees 370
+ Testing a Motor
o Step #1: Examine Our Existing Testscccccceverveiniieriiennenneennnens 373
o Step #2: Decide on Instrumented Tests vs. Unit Tests 375
o Step #3: Adding Some Unit Test Dependenciesc..cccccevueuennen. 376
o Step #4: Renaming Our Unit Testcccceoeriiiriiiniinniiinienieeniens 377
o Step #5: Running the Stub Unit Testccccooivinniniiiiienene 379
o Step #6: Adding a MainDispatcherRule ..o 382
o Step #7: Setting Up a Mock Repositoryc..cccceceevievienenencnicenenens 384
o Step #8: Adding a Test FUNCtioncccceceeiiieniinincncniieenene 387
o Step #9: Adding Another Test Functionc.ccccevenennicniinnnnn, 388
© FINAl RESUILSooveiiiiiiieieceeeeeeeeee et 389
o What We Changedccccooeevviiiiiiiiiiiiniiiiininniiniinicenceceeenes 392
+ Testing the Repository
o Step #1: Renaming Our Instrumented Testccccocevererieenieniennens 394
o Step #2: Adding Some Instrumented Test Dependencies 394
o Step #3: Supporting a Test Databaseccccocevevininiinienenenenn. 395
o Step #4: Testing AddScccooereririiiiine e 395
o Step #5: Writing and Running More Testscccccoveveneniennieniennens 399
© FINAl RESUILS ...cccvviieiiiieceeeeeeeeee e 401
o What We Changedccccooevvviiiiiiiiiiiiiiiiinninniiiniinieeeeceenees 405
+ Testing a Ul
o Step #1: Adding a New Test Classc..cccevevenenieniienienenencnceeenen 407
o Step #2: Initializing Our RepoOSItOrycccccevveeiiirinerieinineieenens 408
o Step #3: Testing Our LiStcccceeeiiriiiiiiiniiiiiiiccecceececeeeceee 409
o FINAl RESUILS ...occuviieiiiiieeeceeeee e 411
o What We Changedccccooovvviiiiiiiiiiiiniiiiiiiiiiiiiiieiieeeeeeeeeees 412
+ Tracking Our Load Status
o Step #1: Adjusting Our Layoutcccceceveevevinenenieincncneciencnnes 415
o Step #2: Reacting to the Loaded Statuscccceceevievienienencnceiennns 418
© FINAl RESUILSooveiiiiiiieieceeeeeeeeeee e 419
o What We Changedccccooevvviiiiiiiiiiiiiiininiiniiiiiinnieneeecenees 422
+ Filtering Our Items
o Step #1: Adding @ QUETYccoviriiriiiieieieeeeeeeeeeee e 423
o Step #2: Defining a FilterModecccoceeiriiiiiininininnieee 424
o Step #3: Consuming a FilterModecccecevinininniniiiinen 424
o Step #4: Augmenting Our Motorcccccceciiiiiiiiiiiiiiiniinenn, 425
o Step #5: Adding a Checkable Submenuc..ccccoceiininininiinnnn, 427
o Step #6: Getting Control on Filter Choicescccccocevereriniincnnens 433
o Step #7: Fixing the Empty TexXtccccoceveriniiiiiniinineneeeieeeene 435
vi

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

o Step #8: Addressing the Menu Problemccccooeninniniininn, 438

o FINAl RESUILSocuviieiiiiieeceeeeee e 440
o What We Changedcccccooevvviiiiiiiiiiinnniiiininniiiiiinienceceeeens 448
 Generating a Report
o Step #1: Adding a Save App Bar [temcccoceveiiiiiiiininniinee, 449
o Step #2: Making @ Savecccveriiiiiieiininee e 451
o Step #3: Adding Some Handlebarscc.ccceveninininiinienenineene 457
o Step #4: Creating the Reportccccoceveriiiiiiiiiiininenneeeee 458
o Step #5: Writing Where the User Askedc..cccccoenenininiincnnne. 460
o Step #6: Saving the RepoOrtccoceeiiiiiiiininiiiiiceeee 461
o Step #7: Viewing the Reportcccccocevininiiiiiiiinininnneeeene 462
© FINAl RESUILSoovuiiiiiiieieceeeeeeeeee e 465
o What We Changedccccoeevvviiiiiiiiiiiininiiiniininininiieneeceeeens 476
+ Sharing the Report
o Step #1: Adding a Share App Bar [temcccooeiiiiiiiininininie, 477
o Step #2: Adding FileProvidercocovininiiiiiiinininneeee 479
o Step #3: Caching the Reportccccooeiiiiiiiiiinininneeee, 484
o Step #4: Sharing the Reportccccoveveiiniiiiininineceeeeeeens 486
° FINal RESUILSccvvieiiiiieceeeeeeeee e 487
o What We Changedcccooeevvviiiiiiiiiiiiniiniininiiinniiiieneeceeenes 497
+ Collecting a Preference
o Step #1: Adding a Dependencycocceceeveeiiiiienenenienieieeeens 499
o Step #2: Defining a Preference Screenccceceoeiininininiinennn, 501
o Step #3: Displaying Our Preference Screenc.cccceoevveeiiiniinennen. 502
o Step #4: Adding PrefsFragment to Our Navigation Graph 503
o Step #5: Navigating to Our Preference Screenc..cccccceevuevuennne. 506
© FINAl RESUILSooveiiiiiiicieececeeetee e 511
o What We Changedccccooovvviiiiiiiiiiiiniiiiiiiiiiiiiiieiieeeeeeeeeees 517
+ Contacting a Web Service
o Step #1: Adding Some Dependenciesc..coceeveeievienenenenicneenen. 519
o Step #2: Requesting a Permissionc.cceccevveeniieinicnnecnnienneennens 520
o Step #3: Defining Our ReSponseccceceeeeieieneninencnieeenee. 521
o Step #4: Retrieving the Itemscccccceveriniiiiiininiee 523
o Step #5: Updating the Local [temsccccecuevieninineniiniiienenen 525
o Step #6: Fixing the Existing Testscccceceevievienieninenieniieieeneenn 528
o Step #7: Retrieving Our Preferencecccoocevevencninniencncncnnenn. 529
o Step #8: Offering the Download Optionc..ccceceveninenniiinienn, 530
© FINAl RESUILSoovuiiiiiiieieccceeeeee et 532
o What We Changedccccooevvvviiiiiiiiiiiniiiiiiiniiiiiiiniceeeeeeeeeees 553
+ Showing a Dialog
o Step #1: Adding a Stub Fragmentcccccocieviinininininiiieieen 556
vii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

o Step #2: Updating the Navigation Graphc.ccccoveninininiininn. 556

o Step #3: Defining the Dialog Contentc..cccceceeviiiiinenenienicneennns 558
o Step #4: Emitting Errors From the Motorccccooveninniniinennn, 559
o Step #5: Reacting to EITOTSc..ccocoeiiiiiiiiiniiiiiiiiiiccccicees 560
o Step #6: Responding to INPULccccoereririiiiiiiiiienee 561
o Step #7: Trying It OUt ..o 564
© FINAl RESUILSoovuiiiiiiieieeeeeeceeeeeee e 565
o What We Changedccccooevviviiiiiiiiininniiiininiiinniniceneeceenees 576
* Scheduling Work
o Step #1: Defining a SwitchPreferenceccccocoveiiiiiiiininininninn, 577
o Step #2: Observing Preference Changescccccceeeeeees 579
o Step #3: Adding the Dependencyccccevevvviiiiiiiiiiiiieennnnns 580
o Step #4: Creating a Stub Workerccccoceiiviinininnniciee 580
o Step #5: Injecting Into the Workerc..coovivinnniniinininen, 581
o Step #6: Doing the WOrkccccociiiiiiiiiiiinic 582
o Step #7: Scheduling the Workcccoooeiiiiiiiiinie 582
o Step #8: TryIng It OUt ...ccc.coviiiiiiiiiiiiiieee e 585
© FINAl RESUILS ..cuvovuiiiiiiieieeeeeeee e 586
o What We Changedccccooovvviiiiiiiiiiiiniiiiiiiiiiiiiiieiieeeeeeeeeees 593
viii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Preface

Thanks!

First, thanks for your interest in Android app development! Android is the world’s
most popular operating system, but its value comes from apps written by developers
like you.

Also, thanks for your interest in this book! Hopefully, it can help “spin you up” on
how to create Android applications that meet your needs and those of your users.

And thanks for your interest in CommonsWare! The Warescription program makes
this book and others available, to help developers like you craft the apps that your
users need.

How the Book Is Structured

Many books — such as Elements of Android Jetpack, — present programming topics,
showing you how to use different APIs, tools, and so on.

This book is different.

This book has you build an app from the beginning. Whereas traditional
programming guides are focused on breadth and depth, this book is focused on
being “hands-on”, guiding you through the steps to build the app. It provides some
details on the underlying concepts, but it relies on other resources — such as
Elements of Android Jetpack — for the full explanation of those details. Instead, this
book provides step-by-step instructions for building the app.

If you are the sort of person who “learns by doing’”, then this book is for you!

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/
https://commonsware.com/warescription
https://commonsware.com/Jetpack

PREFACE

Second-Generation Book

Android app development can be divided into two generations:

+ First-generation app development uses Java as the programming language
and leverages the Android Support Library and the android.arch edition of
the Architecture Components

*+ Second-generation app development more often uses Kotlin as the
programming language and leverages AndroidX and the rest of Jetpack
(which includes an AndroidX edition of the Architecture Components)

This book is a second-generation book. It will show you step-by-step how to build a
Kotlin-based Android app, using AndroidX libraries.

Prerequisites

This book is targeted at developers starting out with Android app development.

You will want another educational resource to go along with this book. The book
will cross-reference Elements of Android Jetpack, but you can use other
programming guides as well. This book shows you each step for building an app, but
you will need to turn to other resources for answers to questions like “why do we
need to do X?” or “what other options do we have than Y?”.

The app that you will build will be written in Kotlin, so you will need to have a bit of
familiarity with that language. Elements of Kotlin covers this language and will be
cross-referenced in a few places in this book.

Also, the app that you will create in this book works on Android 5.0+ devices and

emulators. You will either need a suitable device or be in position to use the Android
SDK emulator in order to build and run the app.

About the Updates

This book will be updated a few times per year, to reflect new advances with
Android, the libraries used by the sample app, and the development tools.

If you obtained this book through the Warescription, you will be able to download
updates as they become available, for the duration of your subscription period.

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/Kotlin

PREFACE

If you obtained this book through other channels... um, well, it’s still a really nice
book!

Each release has notations to show what is new or changed compared with the
immediately preceding release:

+ The Table of Contents in the ebook formats (PDF, EPUB, MOBI/Kindle)
shows sections with changes in bold-italic font

+ Those sections have changebars on the right to denote specific paragraphs
that are new or modified

And, there is the “What’s New” section, just below this paragraph.

What’s New in Version 2.0?

As with all of the CommonsWare x.o releases, this is the same as the previous
release (1.9), other than some bug fixes.

Copying Code From This Book

You are welcome to copy the code as you see in the book itself, as part of working
through the tutorials.

However, copying from the PDF version of the book can be troublesome, depending
on your PDF viewer. Some PDF viewers do not handle the syntax highlighting used
in this book very well.

Recommended PDF viewers include:

+ Adobe Reader (Windows, macOS)

+ Foxit Reader (Windows, macOS, Linux)
* Google Chrome (Windows, macOS)

*+ Google Chromium (Linux)

Also, once we start modifying files, you will find “Final Results” sections towards the
end of each chapter. Those will contain the full listings of the source files that were
modified in that chapter’s tutorial. And, these listings will not have syntax
highlighting, making them suitable copy sources for a wider range of PDF viewers.

Xi

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

PREFACE

Warescription

If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other books that CommonsWare publishes during

that subscription period, such as the aforementioned Elements of Android Jetpack.

You also get access to first-generation Android books, such as the legendary The
Busy Coder’s Guide to Android Development.

Each subscriber gets personalized editions of all editions of each book. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After
that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed

3. Opting into emails announcing each book release — log into the
Warescription site and choose Configure from the nav bar
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

+ “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

+ A discussion board for asking arbitrary questions about Android app
development.

Xii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/Jetpack
https://commonsware.com/Android
https://commonsware.com/Android
https://commonsware.com/blog
http://twitter.com/CommonsWare
https://wares.commonsware.com/
https://wares.commonsware.com/

PREFACE

Book Bug Bounty

Find a problem in the book? Let CommonsWare know!

Be the first to report a unique concrete problem in the current digital edition, and
CommonsWare will extend your Warescription by six months as a bounty for
helping CommonsWare deliver a better product.

By “concrete” problem, we mean things like:

1. Typographical errors

2. Sample applications that do not work as advertised, in the environment
described in the book

3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty

consideration, should be sent to bounty@commonsware.com.

Source Code and Its License

The source code samples shown in this book are available for download from the
book’s GitLab repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with

xiii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/AndExplore/errata
mailto:bounty@commonsware.com
https://gitlab.com/commonsguy/cw-andexplore
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

PREFACE

Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee

Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 4.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 December 2024. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
4.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Xiv

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

What We Are Building

By following the instructions in this book, you will build an Android app.

But first, let’s see what the app is that you are building.

The Purpose

Everybody has stuff to do. Ever since we have had “digital assistants” — such as the
venerable Palm line of PDAs — a common use has been for tracking tasks to be
done. So-called “to-do lists” are a popular sort of app, whether on the Web, on the
desktop, or on mobile devices.

The world has more than enough to-do list apps. Google themselves have published
a long list of sample apps that use a to-do list as a way of exploring various GUI
architectures.

So, let’s build another one!

Ours is not a fork of Google’s, but rather a “cleanroom” implementation of a to-do
list with similar functionality.

The Core Ul

There are three main screens that the user will spend time in: the roster of to-do
items, a screen with details of a particular item, and a screen for either adding a new
item or editing an existing one.

There is also an “about” screen for displaying information about the app.

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://en.wikipedia.org/wiki/Palm_(PDA)
https://en.wikipedia.org/wiki/Palm_(PDA)
https://github.com/googlesamples/android-architecture

WHAT WE ARE BUILDING

The Roster

When initially launched, the app will show a roster of the recorded to-do items, if
there are any. Hence, on the first run, it will show just an “empty view”, prompting
the user to click the “add” app bar item to add a new item:

P4 1089%

Click the + icon to add a todo item!

Figure 1: ToDo App, As Initially Launched, with No Items

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

WHAT WE ARE BUILDING

Once there are some items in the database, the roster will show those items, in
alphabetical order by description, with a checkbox indicating whether or not they
have been completed:

519 @ @d40891%

ToDo

Buy a copy of _Exploring Android_

D Complete all of the tutorials

D Write an app for somebody in my community

Figure 2: ToDo App, Showing Some Items

From here, the user can tap the checkbox to quickly mark an item as completed (or
un-mark it if needed).

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

WHAT WE ARE BUILDING

The Details

A simple tap on an item in the roster brings up the details screen:

520 @ @d40892%

< ToDo 7’

Buy a copy of _Exploring Android_ 0
Created on: 0 minutes ago, 5:19 PM

See https://wares.commonsware.com

Figure 3: ToDo App, Showing a Completed Item

This just shows additional information about the item, including any notes the user
entered to provide more detail than the simple description that gets shown in the
roster. The checkmark icon will appear for completed items.

From here, the user can edit this item (via the “pencil” icon).

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

WHAT WE ARE BUILDING

The Editor

The editor is a simple form, either to define a new to-do item or edit an existing one.
If the user taps on the “add” app bar item from the roster, the editor will appear
blank, and submitting the form will create a new to-do item. If the user taps on the
“edit” (pencil) app bar item from the details screen, the editor will have the existing
item’s data, which can be altered and saved:

520 @ @d40892%

< ToDo %]

Buy a copy of _Exploring Android_

See https://wares.commonsware.com

Figure 4: ToDo App, Editing a Completed Item

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Phase One: Getting a GUI

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Installing the Tools

First, let us get you set up with the pieces and parts necessary to build an Android
app. Specifically, in this tutorial, we will set up Android Studio.

Step #1: Checking Your Hardware

Compiling and building an Android application, on its own, can be a hardware-

intensive process, particularly for larger projects. Beyond that, your IDE and the

Android emulator will stress your development machine further. Of the two, the
emulator poses the bigger problem.

The more RAM you have, the better. 8GB or higher is a very good idea if you intend
to use an IDE and the emulator together. If you can get an SSD for your data storage,
instead of a conventional hard drive, that too can dramatically improve the IDE
performance.

A faster CPU is also a good idea. The Android SDK emulator supports CPUs with
multiple cores. However, other processes on your development machine will be
competing with the emulator for CPU time, and so the faster your CPU is, the better
off you will be. Ideally, your CPU has 4 or more cores, each 2.5GHz or faster at their
base speed.

There are two types of emulator: x86 and ARM. These are the two major types of
CPUs used for Android devices. You really want to be able to use the x86 emulator,
as the ARM emulator is extremely slow. However, to do that, you need a CPU with
certain features:

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

Development CPU .
0S Manufacturer CPU Requirements
mac OS Intel any modern Mac should work

Linux/ Intel support for Intel VT-x, Intel EM64T (Intel 64),

Windows and Execute Disable (XD) Bit functionality
support for AMD Virtualization (AMD-V) and

Linux AMD Supplemental Streaming SIMD Extensions 3

(SSSE3)

Windows 10
April 2018 or AMD
newer

support for Windows Hypervisor Platform
(WHPX) functionality

If your CPU does not meet those requirements, you will want to have one or more
Android devices available to you, so that you can test on hardware.

Also, if you are running Windows or Linux, you need to ensure that your computer’s
BIOS is set up to support the Intel/AMD virtualization extensions. Unfortunately,
many PC manufacturers disable this by default. The details of how to get into your
BIOS settings will vary by PC, but usually it involves rebooting your computer and
pressing some function key on the initial boot screen. In the BIOS settings, you are
looking for references to “virtualization” (or perhaps “VT-x” for Intel). Enable them
if they are not already enabled. macOS machines come with virtualization
extensions pre-enabled, which is really nice of Apple.

Step #2: Install Android Studio

At the time of this writing, the current production version of Android Studio is 4.1
and this book covers that version. Android Studio gets updated often, and so you
may be on a newer version — there may be some differences between what you have
and what is presented here.

You have two major download options. You can get the latest shipping version of
Android Studio from the Android Studio download page. Or, you can download
Android Studio 4.1 directly, for:

« Windows

10

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://developer.android.com/studio
https://redirector.gvt1.com/edgedl/android/studio/install/4.1.0.19/android-studio-ide-201.6858069-windows.exe

INSTALLING THE TOOLS

* macOS
* Linux

Windows users can download a self-installing EXE, which will add suitable launch
options for you to be able to start the IDE.

Mac users can download a DMG disk image and install it akin to other Mac
software, dragging the Android Studio icon into the Applications folder.

Linux users (and power Windows users) can download a ZIP file, then unZIP it to

some likely spot on your hard drive. Android Studio can then be run from the
studio batch file or shell script in your Android Studio installation’s bin/ directory.

Step #3: Run Android Studio

When you first run Android Studio, you may be asked if you want to import settings
from some other prior installation of Android Studio:

Import Android Studio Settings From... *

Config or installation Folder:

® Do notimport settings

OK

Figure 5: Android Studio First-Run Settings Migration Dialog

If you are using Android Studio for the first time, the “Do not import settings”
option is the correct choice to make.

11

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://redirector.gvt1.com/edgedl/android/studio/install/4.1.0.19/android-studio-ide-201.6858069-mac.dmg
https://redirector.gvt1.com/edgedl/android/studio/ide-zips/4.1.0.19/android-studio-ide-201.6858069-linux.tar.gz

INSTALLING THE TOOLS

Then, after a short splash screen, you may be presented with a “Data Sharing”
dialog:

Data Sharing x

Allow Google to collect anonymous usage data for Android Studio and its related tools—
such as how you use features and resources, and how you configure plugins. This data
helps improve Android Studio and is collected in accordance with Coogle's Privacy Policy.

Data sharing preferences apply to all installed Google products.

You can always change this behavior in Settings | Appearance & Behavior | System Settings | Data Sharing.

Send usage statistics to Google Don'tsend

Figure 6: Android Studio Data Sharing Dialog

Click whichever button you wish.

12

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

Then, after a potentially long “Finding Available SDK Components” progress dialog,
you will be taken to the Android Studio Setup Wizard:

Android Studio Setup Wizard

£ welcome

H Android Studio

Welcome! This wizard will set up your development environment For Android Studio.
Additionally, the wizard will help port existing Android apps into Android Studio
or create a new Android application project.

MO ImE

Previo m Cancel Finish
Figure 7: Android Studio Setup Wizard, First Page

13

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

Just click “Next” to advance to the second page of the wizard:

Android Studio Setup Wizard

"'(' Install Type

Choose the type of setup you want For Android Studio:

© standard
Android Studio will be installed with the most common settings and options.
Recommended for most users.

() Custom
You can customize installation settings and components installed.

Previo... m Cancel Finish
Figure 8: Android Studio Setup Wizard, Second Page

Here, you have a choice between “Standard” and “Custom” setup modes. Most likely,
right now, the “Standard” route will be fine for your environment.

14

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

If you go the “Standard” route and click “Next”, you should be taken to a wizard page
where you can choose your Ul theme:

Android Studio Setup Wizard

H Select Ul Theme

() Darcula © Light
= module src ' (€7 HelloWorld
¢ Helloworld.java
import javax.swing.;

import javax.awt.*;

public class HelloWorld {
public Helloworld() {
rame rame | ® JFrame frame = new JFrame (“Hello wt

1 labe JLabel(); JLabel label = new JLabel(]);
label.setFont(new Font("Serif", Fom

Breakpoints

Breakpoints label

Trame

Trameg 4 @] (€]
frame

frame ® Line Breakpoints

frame v Line 6 in Helloworld.He|

n Helloworld.Hel

Previo... m Cancel Fin
Figure 9: Android Studio Setup Wizard, UI Theme Page

15

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

Choose whichever you like, then click “Next”, to go to a wizard page to verify what
will be downloaded and installed:

Android Studio Setup Wizard

Verify Settings

IF you want to review or change any of your installation settings, click Previous.

Current Settings:

Android SDK Build-Tools 29.0.3 51.3MB
Android SDK Platform 29 74.6 MB
Android SDK Platform-Tools 8.96 MB
Android SDK Tools 147 MB
SDK Patch Applier v4 1.74 MB
Sources for Android 29 37.6 MB

Previo... m Cancel Finish
Figure 10: Android Studio Setup Wizard, Verify Settings Page

16

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

Clicking “Next” may take you to a wizard page explaining some information about
the Android emulator:

Android Studio Setup Wizard

Q Emulator Settings

We have detected that your system can run the Android emulator in an accelerated performance mode.

Linux-based systems support virtual machine acceleration through the KVM (Kernel-based Virtual
Machine) software package.

Follow Configure hardware acceleration for the Android Emulator to enable KVM and achieve better
performance.

Previo... Next Cancel m
Figure 11: Android Studio Setup Wizard, Emulator Info Page

What is explained on this page may not make much sense to you. That is perfectly
normal, and we will get into what this page is trying to say later in the book. Just
click “Finish” to begin the setup process. This will include downloading a copy of the

Android SDK and installing it into a directory adjacent to where Android Studio
itself is installed.

When that is done, Android Studio will busily start downloading stuff to your
development machine.

17

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

INSTALLING THE TOOLS

Clicking “Finish” when that is done will then take you to the Android Studio
Welcome dialog:

Welcome to Android Studio - O =

Al
Android _S_tudio

=+ Create New Project

&= Open an Existing Project

« Get from Version Control

¥ Profile or Debug APK

1 Import Project (Gradle, Eclipse ADT, etc.)

t Import an Android Code Sample

2 Configure~ GetHelp~

Figure 12: Android Studio 4.0 Welcome Dialog

18

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Creating a Starter Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

Step #1: Importing the Project

First, we need an Android project to work in.

Sometimes, you will create a new project yourself, using Android Studio’s new-
project wizard. However, frequently, you will start with an existing project that
somebody else created. For example, if you are joining an Android development
team, odds are that somebody else will create the project, or the project will already
have been created by the time you join. In those cases, you will import an existing
project, and that’s what we will do here.

Download the starter project from CommonsWare’s Web site. Then, UnZIP that
project to some place on your development machine. It will unZIP into a ToDo/
directory.

At that point, look at the contents of gradle/wrapper/gradle-wrapper.properties.
It should look like this:

19

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/AndExplore/starter/4.1.0/ToDo-Starter.zip

CREATING A STARTER PROJECT

#Fri Jun 05 08:55:24 EDT 2020

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-6.5-all.zip

(from To2-Project/ToDo/gradle/wrapper/gradle-wrapper.properties)

In particular, make sure that the distributionUrl points to a services.gradle.org
URL. Never import a project into Android Studio without checking the
distributionUrl, as a malicious person could have distributionUrl point to
malware that Android Studio would load and execute.

Then, import the project. From the Android Studio welcome dialog — where we left
off in the previous tutorial — that is handled by the “Import project (Gradle, Eclipse
ADT, etc.)” option. From an existing open Android Studio IDE window, you would
use File > New > Import Project... from the main menu.

Importing a project brings up a typical directory-picker dialog. Pick the ToDo/
directory and click “OK” to begin the import process. This may take a while,
depending on the speed of your development machine. A “Tip of the Day” dialog
may appear, which you can dismiss.

20

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T02-Project/ToDo/gradle/wrapper/gradle-wrapper.properties

CREATING A STARTER PROJECT

At this point, the IDE window should be open on your starter project:

ToDo [~/stuff{CommonsWare/books/AndExplore/samples3/T02-Project/ToDo]

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
EH S| ¢ > A [=app~|[LIOWXGA~ | P ¢ = &6 & K8 0% K EQ A
= ToDo I:app

» & Gradle Scripts

2 Resource Manager

a

£

2

fis

il

*

2

=

E

g

2

a d

= g
=

© 8

= =

‘E &

@ &

~ =3

- B

cs Cl M Terminal A Build = 6:Logcat = TODO Q EventLog @ Layout Inspector
IO Gradle sync finished in 3 s 328 ms (3 minutes ago) B85 of 1081m

Figure 13: ToDo Project, As Initially Imported

21

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

The “Project” view — docked by default on the left side, towards the top — brings
up a way for you to view what is in the project. Android Studio has several ways of
viewing the contents of Android projects. The default one, that you are presented

with when creating or importing the project, is known as the “Android view™:

= Android ~ h = O —
manifests
java
res

& Gradle Scripts
build.gradle (Project: ToDo)
build.gradle (Module: app)
figradle.properties (Global Properties)
L1gradle-wrapper.properties (Gradle Versi
= proguard-rules.pro (ProGuard Rules for
Ligradle.propenties (Project Properties)
settings.gradle (Project Settings)
f1local.properties (SDK Location)
Figure 14: Android Studio, Project View, Android Content

22

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

While you are welcome to navigate your project using it, the tutorial chapters in this
book, where they have screenshots of Android Studio, will show the “Project”
contents in this view:

Project - B - o —
ToDo
.gradle
idea
| > wapp
gradle
% -gitignore
build.gradle
1gradle.properties
gradlew
= gradlew.bat
ilocal.properties
settings.gradle
Iln External Libraries
Scratches and Consoles

Figure 15: Android Studio, Project View, Project Content

To switch to this view — and therefore match what the tutorials will show you —
click the Android drop-down above the tree and choose “Project” from the list.

Step #2: Setting Up the Emulator AVD

Your first decision to make is whether or not you want to bother setting up an
emulator image right now. If you have an Android device, you may prefer to start
testing your app on it, and come back to set up the emulator at a later point. In that
case, skip to Step #3.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. To open the AVD Manager in Android
Studio, choose Tools > AVD Manager from the main menu.

23

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

By default, a fresh installation of Android Studio 4.1 will also set up an initial AVD
for you, and the AVD Manager will show it in a list:

Android Virtual Device Manager

Your Virtual Devices
Android Studio

Your CPU does not support required Features (VT-x or SVM). Troubleshoot
Type Name PlaySto... Resolution APl Target CPU/ABI Size on Disk Actions
[Pixel 3a_APi_30_... 1080 x 2220:440... 30 Android 11.0(Go... x86 801 MB > £ -
+ Create Virtual Device... S ?

Figure 16: Android Studio AVD Manager, With Pre-Installed AVD

If you have a fairly powerful development machine, and you want an emulator that
emulates an Android 11 device, you are welcome to use that emulator at the outset.
For most starting developers, this is not a particularly good emulator choice.

24

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

If you would like to create a different AVD — perhaps one for an older Android
version or one that will run better on less-powerful development machines — click
the “Create Virtual Device” button, which brings up a “Virtual Device Configuration’
wizard:

)

Virtual Device Configuration

Select Hardware

M! Android Studio

Choose a device definition

- [j Nexus 4
Category Name ~ PlaysStore| sSize |Resoluti...| Density
v Nexus 6P 57" 1440%... 560dpi
) 768px
Nexus 6 5.96 1440x%... 560dpi Size: normal
Ratio: long _
Wear 0OS Nexus 5% E- 5.2" 1080x... 420dpi Density: xhdpi
a7 J1280px
Tablet Nexus 5 5" 1080x... xxhdpi
.
Galaxy Nexus 5" 720x1... xhdpi
8" Foldable 8.03" 2200%... 420dpi
New Hardware Profile Import Hardware Profiles S Clone Device...
‘ Previous m cancel Finish Help

Figure 17: Android Studio Virtual Device Configuration Wizard, First Page

The first page of the wizard allows you to choose a device profile to use as a starting
point for your AVD. The “New Hardware Profile” button allows you to define new
profiles, if there is no existing profile that meets your needs.

Since emulator speeds are tied somewhat to the resolution of their (virtual) screens,
you generally aim for a device profile that is on the low end but is not completely
ridiculous. For example, a 1280x768 or 1280x720 phone would be considered by
many people to be fairly low-resolution. However, there are plenty of devices out
there at that resolution (or lower), and it makes for a reasonable starting emulator.

If you want to create a new device profile based on an existing one — to change a
few parameters but otherwise use what the original profile had — click the “Clone

Device” button once you have selected your starter profile.

However, in general, at the outset, using an existing profile is perfectly fine. The

25

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

Nexus 4 image is a likely choice to start with.

Clicking “Next” allows you to choose an emulator image to use:

Virtual Device Configuration

Select a system image

Recommended x86 Images Otherlmages

Release Name APl Level ~
R Download R

Q Download 29

Oreo Download 27

Oreo Download 26

Nougat Download 25

Nougat Download 29
Marshmallow 23

Lollipop Download 22

© Asystem image must be selected to continue.

ABI

Target

Android 10.0+ (Google AP)
Android 10.0 (Google APIs,
Android 8.1 (Google APIs)
Android 8.0 (Google APIs)
Android 7.1.1 {Google API:
Android 7.0 (Google APIs)
Android 6.0 (Google APIs)
Android 5.1 (Google APIs)

Previous

APl Level

m Android

Google Inc.

System Image

x86

Recommendation
Your CPU does nok support required
features (VT-x or SVM).
Troubleshoot

We recommend these images because they

Next Cancel Finish Help

Figure 18: Android Studio Virtual Device Configuration Wizard, Second Page

The emulator images are spread across three tabs:

+ “Recommended”
+ “x86 Images”
+ “Other Images”

For the purposes of the tutorials, you do not need an emulator image with the

“Google APIs” — those are for emulators that have Google Play Services in them and

related apps like Google Maps. However, in terms of API level, you can choose
anything from API Level 21 (Android 5.0) on up.

It is best to use one of the x86 images for the best emulator performance. On the
“x86 Images” tab, you should see some entries with a “Download” link, and you
might see others without it. The emulator images with “Download” next to them
will trigger a one-time download of the files necessary to create AVDs for that

particular API level and CPU architecture combination, after another license dialog

This document contains free sample chapters!

26

Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

and progress dialog:

SDK Quickfix Installation

Component Installer

Installing Requested Components

SDK Path: fhome/mmurphy/Android/sdk

Packages to install:
- Intel x86 Atom System Image (system-images;android-29;default;x86)

Preparing "Install Intel x86 Atom System Image (revision: 7)".
Downloading https://dl.google.com/android/repository/sys-img/android/x86-29 r07-linux.zip

Downloading x86-29_r07-linux.zip (25%): 121.6/ 486.4 MB ...

https://dl.google.com/android/repository/sys-img/android/x86-29_r07-linux.zip

© Pplease wait until the installation finishes

Previous Next Cancel Finish

Figure 19: Android Studio Component Installer Dialog, Downloading API 29 Image

27

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

Once you have identified the image that you want — and have downloaded it if
needed — click on one of them in the wizard. Clicking “Next” allows you to finalize
the configuration of your AVD:

Virtual Device Configuration

g Android Virtual Device (AVD)

Verify Configuration

AVD Name | Nexus 4 API 29 AVD Name
|:'|:| Nexus 4 4.7 768x1280 xhdpi Change... The name of this AVD.
& Q Android 10.0 x86 change...
Startup orientation
D D Recommendation
) Your CPU does not support required features (VT-x or
Portrait Landscape SVM).

Consider using a system image with Google APIs to
nable testing with Gooale Plav Servi

Emulated Graphics: | Automatic e

show Advanced Settings

Previous Next Cancel m Help
Figure 20: Android Studio Virtual Device Configuration Wizard, Third Page

If you get the “Recommendation” box with the red “Your CPU does not support
required features...” message, your development machine is not set up to support
this type of emulator image. For example, you may need to enable virtualization
extensions in your PC’s BIOS, as was noted in the previous tutorial.

A default name for the AVD is suggested, though you are welcome to replace this
with your own value. However, that name must be something valid: only letters,
numbers, spaces, and select punctuation (e.g., ., _, -, (,)) are supported.

The rest of the default values should be fine for now.

Clicking “Finish” will return you to the main AVD Manager, showing your new AVD.
You can then close the AVD Manager window.

If you also have a physical device that you want to use for testing, continue with Step
#3. Otherwise, feel free to skip to Step #4.

28

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

Step #3: Setting Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device — maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip

this step.

The first thing to do to make your device ready for use with development is to go
into the Settings application on the device. On Android 8.0+, go into System >
About phone. On older devices, About is usually a top-level entry. In the About
screen, tap on the build number seven times, then press BACK, and go into
“Developer options” (which was formerly hidden)

®
<&

Developer options

(o)}

Take bug report

Desktop backup password
Desktop full backups aren't currently protected

Stay awake

Screen will never sleep while charging

Enable Bluetooth HCI snoop log

Capture all bluetooth HCI packets in a file

OEM unlocking

Allow the bootloader to be unlocked

Running services
View and control currently running services

Picture color mode
Use sRGB

Debugging

Figure 21: Developer Options, in Android 9.0 Settings App

You may need to slide a switch in the upper-right corner of the screen to the “ON”

position to modify the values on this screen.

This document contains free sample chapters!

29

Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

Generally, you will want to scroll down and enable USB debugging, so you can use
your device with the Android build tools:

®
&

Developer options

o]}

Picture color mode
Use sRGB

Debugging

USB debugging

Debug mode when USB is connected

Revoke USB debugging authorizations

Bug report shortcut
Show a button in the power menu for taking a bug

report

Select mock location app
No mock location app set

Enable view attribute inspection

Select debug app
No debug application set

Figure 22: Debugging Options, in Android 9.0 Settings App

You can leave the other settings alone for now if you wish, though you may find the
“Stay awake” option to be handy, as it saves you from having to unlock your phone
all of the time while it is plugged into USB.

This document contains free sample chapters!

30

Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

Note that on Android 4.2.2 and higher devices, before you can actually use the
setting you just toggled, you will be prompted to allow USB debugging with your
specific development machine via a dialog box:

Allow USB debugging?

The computer's RSA key fingerprint is:
RN EeCh EC R3S A0 T A e TE AR e L5

Always allow from this computer

CANCEL OK

Figure 23: Allow USB Debugging Dialog

This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.

Windows
When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the

driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.
Windows Update
Some versions of Windows (e.g., Vista) will prompt you to search Windows Update

for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

31

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

Standard Android Driver

In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is suitable
for your device. This will often work for Nexus devices.

Manufacturer-Supplied Driver

If you still do not have a driver, the OEM USB Drivers in the developer
documentation may help you find one for download from your device manufacturer.
Note that you may need the model number for your device, instead of the model
name used for marketing purposes (e.g., GT-P3113 instead of “Samsung Galaxy Tab 2

7.0”).
macOS and Linux
It is likely that simply plugging in your device will “just work”.

If you are running Ubuntu (or perhaps other Linux variants), and when you later try
running your app it appears that Android Studio does not “see” your device, you may
need to add some udev rules. This GitHub repository contains some instructions and
a large file showing the rules for devices from a variety of manufacturers, and this
blog post provides more details of how to work with udev rules for Android devices.

Step #4: Running the Project

Now, we can confirm that our project is set up properly by running it on a device or
emulator.

Android Studio has a toolbar just below the main menu. In that toolbar, you will
find two drop-down lists, followed by the Run toolbar button (usually depicted as a
green rightward-pointing triangle):

N app - L1I0OWXGA = b =
Figure 24: Android Studio Toolbar Segment

32

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://developer.android.com/studio/run/oem-usb
https://github.com/M0Rf30/android-udev-rules
https://twikkie.wordpress.com/2016/08/02/how-to-debug-android-application-on-device-via-ubuntu/
https://twikkie.wordpress.com/2016/08/02/how-to-debug-android-application-on-device-via-ubuntu/

CREATING A STARTER PROJECT

The first drop-down says “this is what [want to run”. Right now, your only viable
option is “app’, referring to the app that this project builds.

The second drop-down says “this is where I want to run it”. Here, you will find a list
of devices and emulators that are available to you.

To run the app, choose your desired device or emulator in the second drop-down,
then click the Run toolbar button. If you choose an emulator, and the emulator is
not already running, Android Studio will start it up. Then, after a short wait, your
app should appear on it:

539 P 0 @ 4 B95%

ToDo

Hello World!

Figure 25: Android 8.1 Device, Showing ToDo App

Note that you may have to unlock your device or emulator to actually see the app
running.

33

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

CREATING A STARTER PROJECT

The first time you launch the emulator for a particular AVD, you may see this
message:

Cold boot: snapshot

doesn't exist

Figure 26: Android Emulator Cold-Boot Warning

The emulator behaves a bit more like an Android device. Closing the emulator
window is like tapping the POWER button to turn off the screen. The next time you
start that particular AVD, it will wake up to the state in which you left it, rather than
booting from scratch (“cold boot”). This speeds up starting the emulator.
Occasionally, though, you will have the need to start the emulator as if the device
were powering on. To do that, in the AVD Manager, in the drop-down menu in the
Actions column, choose “Cold Boot Now”.

Actions

a|peIs

R
Duplicate

» 4 Wipe Data
» » Cold Boot Now

Show on Disk
N

View Details
» 7 Delete
N

Figure 27: AVD Manager, Showing Actions Drop-Down Menu

34

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Modifying the Manifest

Now that we have our starter project, we need to start making changes, as we have a
lot of work to do.

In this tutorial, we will start with the Android manifest, one of the core files in an
app. Here, we will make a few changes, just to help get you familiar with editing this
file. We will be returning to this file — and other core files, like Gradle build files —
many times over the course of the rest of the book.

This is a continuation of the work we did in the previous tutorial. The book’s GitLab
repository contains the results of the previous tutorial as well as the results of
completing the work in this tutorial.

You can learn more about the contents of the manifest in the

\/ "Inspecting Your Manifest" chapter of Elements of Android

etpack!

Some Notes About Relative Paths

In these tutorials, you will see references to relative paths, like
AndroidManifest.xml, res/layout/, and so on.

You should interpret these paths as being relative to the app/src/main/ directory
within the project, except as otherwise noted. So, for example, Step #1 below will ask
you to open AndroidManifest.xml — that file can be found in app/src/main/
AndroidManifest.xml from the project root.

35

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://gitlab.com/commonsguy/cw-andexplore/tree/master/T02-Project/ToDo
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://commonsware.com/Jetpack
https://commonsware.com/Jetpack

MODIFYING THE MANIFEST

Step #1: Supporting Screens

Android devices come in a wide range of shapes and sizes. Our app can support
them all. However, we should advise Android that we are indeed willing to support
any screen size. To do this, we need to add a <supports-screens> element to the
manifest.

To do this, double-click on AndroidManifest.xml in the project explorer:

g Project & = @ — & AndroidManifestxml -
2 ToDo <?xml version="1.0" encoding="utf-8"7> g
= -gradle <manifest package="com.commonsware.todo" &

"‘;ia e xmlns:android="http://schemas.android.com/apk/res/android">
= a h
& libs |
5 src <application
= " n
] androidTest android:allowBackup="true
3 main android: icon="@mipmap/ic_launcher"
2 .
@ Java android:label="ToDo"
[res . T s : "

S AT TS aT android:roundIcon= @Tlpmaﬁ/lc_launcher_round
test android:supportsRtl="true

5 gitignore android:theme="@style/AppTheme">
2 build gradle <activity android:name=".MainActivity">
é £ proguard-rules.pro <intent-filter>
“ gradie <action android:name="android.intent.action.MAIN" />
= % -gitignore

build.gradle " . .
g 4 gradle.properties <category android:name="android.intent.category.LAUNCH
g gradlew </intent-filter>
; & gradlew bat </activity>
2 /1local properiies </application> g
= settings.gradle 5
" Il External Libraries </ ifest> g
% Scraiches and Consoles manites §
z 1Y
= manifest S
* Text Merged Manifest =

=TODO cs CheckStyle A Build = 6:Logcat B Terminal Q EventLog ™ Layout Inspector

Figure 28: Android Studio, Showing Manifest Editor

As a child of the root <manifest> element, add a <supports-screens> element as
follows:

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>

At this point, the manifest should resemble:

36

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

MODIFYING THE MANIFEST

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.todo"
xmlns:android="http://schemas.android.com/apk/res/android">

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Step #2: Blocking Backups

If you look at the <application> element, you will see that it has a few attributes,
including android:allowBackup="true". This attribute indicates that ToDo should
participate in Android’s automatic backup system.

That is not a good idea, until you understand the technical and legal ramifications of
that choice.

In the short term, change android:allowBackup to be false.

Final Results

At this point, your manifest should look like:

<?xml version="1.0" encoding="utf-8"7?>

37

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

MODIFYING THE MANIFEST

<manifest package="com.commonsware.todo"
xmlns:android="http://schemas.android.com/apk/res/android">

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>

<application
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>

</manifest>

(from To3-Manifest/ToDo/app/src¢/main/AndroidManifest.xml)

What We Changed

The book’s GitLab repository contains the entire result of having completed this
tutorial. In particular, it contains the changed files:

* app/src/main/AndroidManifest.xml |

38

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T03-Manifest/ToDo/app/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T03-Manifest/ToDo/app/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T03-Manifest/ToDo/app/src/main/AndroidManifest.xml

