

Exploring Android

by Mark L. Murphy

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Exploring Android
by Mark L. Murphy

Copyright © 2017-2020 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
December 2020: Version 2.0

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ How the Book Is Structured ... ix
◦ Second-Generation Book .. x
◦ Prerequisites ... x
◦ About the Updates ... x
◦ What’s New in Version 2.0? .. xi
◦ Copying Code From This Book .. xi
◦ Warescription ... xii
◦ Book Bug Bounty ... xiii
◦ Source Code and Its License ... xiii
◦ Creative Commons and the Four-to-Free (42F) Guarantee xiv

• What We Are Building
◦ The Purpose ... 1
◦ The Core UI .. 1

• Installing the Tools
◦ Step #1: Checking Your Hardware ... 9
◦ Step #2: Install Android Studio .. 10
◦ Step #3: Run Android Studio ... 11

• Creating a Starter Project
◦ Step #1: Importing the Project .. 19
◦ Step #2: Setting Up the Emulator AVD .. 23
◦ Step #3: Setting Up the Device ... 29
◦ Step #4: Running the Project .. 32

• Modifying the Manifest
◦ Some Notes About Relative Paths .. 35
◦ Step #1: Supporting Screens .. 36
◦ Step #2: Blocking Backups .. 37
◦ Final Results ... 37
◦ What We Changed .. 38

• Changing Our Icon
◦ Step #1: Getting the Replacement Artwork .. 39
◦ Step #2: Changing the Icon .. 40
◦ Step #3: Running the Result .. 50
◦ What We Changed .. 50

• Adding a Library

i

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ Step #1: Removing Unnecessary Cruft .. 51
◦ Step #2: Adding Support for RecyclerView .. 52
◦ Final Results ... 53
◦ What We Changed .. 54

• Constructing a Layout
◦ Step #1: Examining What We Have And What We Want 55
◦ Step #2: Adding a RecyclerView ... 58
◦ Step #3: Adjusting the TextView .. 66
◦ Final Results ... 72
◦ What We Changed .. 73

• Integrating Fragments
◦ But First, Some Notes About Working with Kotlin 75
◦ Step #1: Creating a Fragment .. 77
◦ Step #2: Renaming Our Layout ... 78
◦ Step #3: Inflating Our Layout ... 81
◦ Step #4: Dealing with Crashes ... 84
◦ Final Results .. 86
◦ What We Changed .. 86

• Wiring In Navigation
◦ Step #1: Defining the Version .. 87
◦ Step #2: Adding the Plugin Dependency .. 89
◦ Step #3: Requesting the Plugins .. 89
◦ Step #4: Augmenting Our Dependencies ... 90
◦ Step #5: Defining Our Navigation Graph ... 91
◦ Step #6: Setting Up a New Activity Layout Resource 94
◦ Step #7: Wiring in the Navigation ... 96
◦ Final Results ... 97
◦ What We Changed .. 100

• Setting Up the App Bar
◦ Step #1: Defining Some Colors .. 102
◦ Step #2: Adjusting Our Theme ... 105
◦ Step #3: Adding a Toolbar ... 108
◦ Step #4: Adding an Icon ... 112
◦ Step #5: Defining an Item .. 114
◦ Step #6: Enabling View Binding ... 124
◦ Step #7: Using View Binding in Our Activity 125
◦ Step #8: Loading Our Options ... 126
◦ Step #9: Trying It Out ... 127
◦ Final Results ... 128
◦ What We Changed ... 131

• Setting Up an Activity

ii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ Step #1: Creating the Stub Activity Class and Manifest Entry 133
◦ Step #2: Adding a Toolbar and a WebView 136
◦ Step #3: Launching Our Activity ... 143
◦ Step #4: Defining Some About Text ... 144
◦ Step #5: Populating the Toolbar and WebView 146
◦ Final Results ... 147
◦ What We Changed ... 149

• Defining a Model
◦ Step #1: Adding a Stub POJO ... 151
◦ Step #2: Switching to a data Class ... 151
◦ Step #3: Adding the Constructor ... 152
◦ Step #4: Supporting Instant on Older Devices 153
◦ Final Results ... 154
◦ What We Changed ... 156

• Setting Up a Repository
◦ Step #1: Adding the Repository Class ... 158
◦ Step #2: Creating Some Fake Data .. 158
◦ Final Results ... 159
◦ What We Changed ... 159

• Inverting Our Dependencies
◦ Step #1: Adding the Dependencies ... 162
◦ Step #2: Creating a Custom Application .. 163
◦ Step #3: Defining Our Module .. 164
◦ Final Results ... 166
◦ What We Changed ... 169

• Incorporating a ViewModel
◦ Step #1: Adding the Dependencies .. 172
◦ Step #2: Creating a Stub ViewModel ... 172
◦ Step #3: Getting and Using Our Repository 173
◦ Step #4: Depositing a Koin ... 173
◦ Step #5: Injecting the Motor .. 174
◦ Final Results .. 175
◦ What We Changed ... 177

• Populating Our RecyclerView
◦ Step #1: Defining a Row Layout .. 179
◦ Step #2: Adding a Stub ViewHolder ... 186
◦ Step #3: Creating a Stub Adapter .. 186
◦ Step #4: Comparing Our Models .. 189
◦ Step #5: Completing the Adapter and ViewHolder 191
◦ Step #6: Wiring Up the RecyclerView .. 193
◦ Final Results ... 195

iii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ What We Changed ... 198
• Tracking the Completion Status

◦ Step #1: Registering for Events .. 201
◦ Step #2: Passing the Event Up the Chain ... 202
◦ Step #3: Saving the Change ... 204
◦ Final Results ... 205
◦ What We Changed .. 209

• Displaying an Item
◦ Step #1: Creating the Fragment .. 211
◦ Step #2: Updating the Navigation Graph .. 212
◦ Step #3: Responding to List Clicks ... 216
◦ Step #4: Teaching Navigation About the App Bar 219
◦ Step #5: Creating an Empty Layout .. 220
◦ Step #6: Adding the Completed Icon .. 221
◦ Step #7: Displaying the Description ... 227
◦ Step #8: Showing the Created-On Date ... 229
◦ Step #9: Adding the Notes .. 233
◦ Step #10: Adding Navigation Arguments ... 235
◦ Step #11: Displaying the Layout ... 238
◦ Step #12: Making Another Motor .. 239
◦ Step #13: Populating the Layout .. 241
◦ Final Results ... 242
◦ What We Changed ... 251

• Editing an Item
◦ Step #1: Creating the Fragment ... 254
◦ Step #2: Setting Up the Navigation .. 254
◦ Step #3: Setting Up a Menu Resource .. 256
◦ Step #4: Showing the App Bar Item .. 260
◦ Step #5: Displaying the (Empty) Fragment 262
◦ Step #6: Creating an Empty Layout .. 263
◦ Step #7: Adding the CheckBox ... 263
◦ Step #8: Creating the Description Field ... 264
◦ Step #9: Adding the Notes Field .. 268
◦ Step #10: Populating the Layout ... 270
◦ Final Results ... 272
◦ What We Changed ... 277

• Saving an Item
◦ Step #1: Adding the App Bar Item .. 279
◦ Step #2: Improving the Motor .. 282
◦ Step #3: Replacing the Item .. 283
◦ Step #4: Returning to the Display Fragment 284

iv

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ Step #5: Getting Updated Items ... 286
◦ Final Results ... 287
◦ What We Changed ... 291

• Adding and Deleting Items
◦ Step #1: Trimming Our Repository ... 293
◦ Step #2: Showing an Empty View ... 294
◦ Step #3: Adding an Add App Bar Item .. 296
◦ Step #4: Launching the EditFragment for Adds 299
◦ Step #5: Hiding the Empty View .. 305
◦ Step #6: Adding a Delete App Bar Item ... 306
◦ Step #7: Deleting the Item .. 307
◦ Step #8: Fixing the Delete-on-Add Problem 309
◦ Final Results ... 310
◦ What We Changed ... 317

• Interlude: So, What’s Wrong?
◦ Issues With What We Have .. 319
◦ We Can Do Better .. 320

• Refactoring Our Code
◦ Step #1: Creating Some Packages .. 325
◦ Step #2: Moving Our Classes .. 326
◦ What We Changed .. 329

• Getting a Room (And Some Coroutines)
◦ Step #1: Requesting More Dependencies ... 332
◦ Step #2: Defining an Entity ... 333
◦ Step #3: Crafting a DAO .. 334
◦ Step #4: Adding a Database .. 337
◦ Step #5: Creating a Transmogrifier ... 338
◦ Step #6: Add Our Database to Koin ... 340
◦ Step #7: Adding a Store to the Repository 341
◦ Step #8: Fixing the Repository .. 342
◦ Final Results ... 344
◦ What We Changed .. 349

• Completing the Reactive Architecture
◦ Step #1: Adding the Dependency .. 352
◦ Step #2: Defining a Roster View State .. 353
◦ Step #3: Emitting View States ... 354
◦ Step #4: Consuming Roster View States .. 354
◦ Step #5: Wrapping the suspend Functions 356
◦ Step #6: Updating SingleModelMotor ... 357
◦ Step #7: Adapting DisplayFragment ... 358
◦ Step #8: Adapting EditFragment .. 358

v

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ Final Results ... 361
◦ What We Changed .. 370

• Testing a Motor
◦ Step #1: Examine Our Existing Tests .. 373
◦ Step #2: Decide on Instrumented Tests vs. Unit Tests 375
◦ Step #3: Adding Some Unit Test Dependencies 376
◦ Step #4: Renaming Our Unit Test .. 377
◦ Step #5: Running the Stub Unit Test .. 379
◦ Step #6: Adding a MainDispatcherRule ... 382
◦ Step #7: Setting Up a Mock Repository .. 384
◦ Step #8: Adding a Test Function ... 387
◦ Step #9: Adding Another Test Function .. 388
◦ Final Results ... 389
◦ What We Changed .. 392

• Testing the Repository
◦ Step #1: Renaming Our Instrumented Test 394
◦ Step #2: Adding Some Instrumented Test Dependencies 394
◦ Step #3: Supporting a Test Database .. 395
◦ Step #4: Testing Adds .. 395
◦ Step #5: Writing and Running More Tests 399
◦ Final Results ... 401
◦ What We Changed .. 405

• Testing a UI
◦ Step #1: Adding a New Test Class .. 407
◦ Step #2: Initializing Our Repository .. 408
◦ Step #3: Testing Our List .. 409
◦ Final Results .. 411
◦ What We Changed ... 412

• Tracking Our Load Status
◦ Step #1: Adjusting Our Layout .. 415
◦ Step #2: Reacting to the Loaded Status .. 418
◦ Final Results ... 419
◦ What We Changed .. 422

• Filtering Our Items
◦ Step #1: Adding a Query .. 423
◦ Step #2: Defining a FilterMode ... 424
◦ Step #3: Consuming a FilterMode .. 424
◦ Step #4: Augmenting Our Motor ... 425
◦ Step #5: Adding a Checkable Submenu ... 427
◦ Step #6: Getting Control on Filter Choices 433
◦ Step #7: Fixing the Empty Text ... 435

vi

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ Step #8: Addressing the Menu Problem .. 438
◦ Final Results .. 440
◦ What We Changed .. 448

• Generating a Report
◦ Step #1: Adding a Save App Bar Item ... 449
◦ Step #2: Making a Save .. 451
◦ Step #3: Adding Some Handlebars ... 457
◦ Step #4: Creating the Report .. 458
◦ Step #5: Writing Where the User Asked ... 460
◦ Step #6: Saving the Report .. 461
◦ Step #7: Viewing the Report ... 462
◦ Final Results ... 465
◦ What We Changed .. 476

• Sharing the Report
◦ Step #1: Adding a Share App Bar Item .. 477
◦ Step #2: Adding FileProvider .. 479
◦ Step #3: Caching the Report .. 484
◦ Step #4: Sharing the Report ... 486
◦ Final Results ... 487
◦ What We Changed .. 497

• Collecting a Preference
◦ Step #1: Adding a Dependency .. 499
◦ Step #2: Defining a Preference Screen ... 501
◦ Step #3: Displaying Our Preference Screen 502
◦ Step #4: Adding PrefsFragment to Our Navigation Graph 503
◦ Step #5: Navigating to Our Preference Screen 506
◦ Final Results .. 511
◦ What We Changed ... 517

• Contacting a Web Service
◦ Step #1: Adding Some Dependencies ... 519
◦ Step #2: Requesting a Permission ... 520
◦ Step #3: Defining Our Response .. 521
◦ Step #4: Retrieving the Items .. 523
◦ Step #5: Updating the Local Items ... 525
◦ Step #6: Fixing the Existing Tests ... 528
◦ Step #7: Retrieving Our Preference .. 529
◦ Step #8: Offering the Download Option .. 530
◦ Final Results ... 532
◦ What We Changed ... 553

• Showing a Dialog
◦ Step #1: Adding a Stub Fragment .. 556

vii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

◦ Step #2: Updating the Navigation Graph ... 556
◦ Step #3: Defining the Dialog Content .. 558
◦ Step #4: Emitting Errors From the Motor .. 559
◦ Step #5: Reacting to Errors .. 560
◦ Step #6: Responding to Input ... 561
◦ Step #7: Trying It Out .. 564
◦ Final Results ... 565
◦ What We Changed .. 576

• Scheduling Work
◦ Step #1: Defining a SwitchPreference ... 577
◦ Step #2: Observing Preference Changes 579
◦ Step #3: Adding the Dependency .. 580
◦ Step #4: Creating a Stub Worker .. 580
◦ Step #5: Injecting Into the Worker ... 581
◦ Step #6: Doing the Work ... 582
◦ Step #7: Scheduling the Work .. 582
◦ Step #8: Trying It Out .. 585
◦ Final Results .. 586
◦ What We Changed ... 593

viii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Preface

Thanks!

First, thanks for your interest in Android app development! Android is the world’s
most popular operating system, but its value comes from apps written by developers
like you.

Also, thanks for your interest in this book! Hopefully, it can help “spin you up” on
how to create Android applications that meet your needs and those of your users.

And thanks for your interest in CommonsWare! The Warescription program makes
this book and others available, to help developers like you craft the apps that your
users need.

How the Book Is Structured
Many books — such as Elements of Android Jetpack, — present programming topics,
showing you how to use different APIs, tools, and so on.

This book is different.

This book has you build an app from the beginning. Whereas traditional
programming guides are focused on breadth and depth, this book is focused on
being “hands-on”, guiding you through the steps to build the app. It provides some
details on the underlying concepts, but it relies on other resources — such as
Elements of Android Jetpack — for the full explanation of those details. Instead, this
book provides step-by-step instructions for building the app.

If you are the sort of person who “learns by doing”, then this book is for you!

ix

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/
https://commonsware.com/warescription
https://commonsware.com/Jetpack

Second-Generation Book
Android app development can be divided into two generations:

• First-generation app development uses Java as the programming language
and leverages the Android Support Library and the android.arch edition of
the Architecture Components

• Second-generation app development more often uses Kotlin as the
programming language and leverages AndroidX and the rest of Jetpack
(which includes an AndroidX edition of the Architecture Components)

This book is a second-generation book. It will show you step-by-step how to build a
Kotlin-based Android app, using AndroidX libraries.

Prerequisites
This book is targeted at developers starting out with Android app development.

You will want another educational resource to go along with this book. The book
will cross-reference Elements of Android Jetpack, but you can use other
programming guides as well. This book shows you each step for building an app, but
you will need to turn to other resources for answers to questions like “why do we
need to do X?” or “what other options do we have than Y?”.

The app that you will build will be written in Kotlin, so you will need to have a bit of
familiarity with that language. Elements of Kotlin covers this language and will be
cross-referenced in a few places in this book.

Also, the app that you will create in this book works on Android 5.0+ devices and
emulators. You will either need a suitable device or be in position to use the Android
SDK emulator in order to build and run the app.

About the Updates
This book will be updated a few times per year, to reflect new advances with
Android, the libraries used by the sample app, and the development tools.

If you obtained this book through the Warescription, you will be able to download
updates as they become available, for the duration of your subscription period.

PREFACE

x

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/Kotlin

If you obtained this book through other channels… um, well, it’s still a really nice
book!

Each release has notations to show what is new or changed compared with the
immediately preceding release:

• The Table of Contents in the ebook formats (PDF, EPUB, MOBI/Kindle)
shows sections with changes in bold-italic font

• Those sections have changebars on the right to denote specific paragraphs
that are new or modified

And, there is the “What’s New” section, just below this paragraph.

What’s New in Version 2.0?
As with all of the CommonsWare x.0 releases, this is the same as the previous
release (1.9), other than some bug fixes.

Copying Code From This Book
You are welcome to copy the code as you see in the book itself, as part of working
through the tutorials.

However, copying from the PDF version of the book can be troublesome, depending
on your PDF viewer. Some PDF viewers do not handle the syntax highlighting used
in this book very well.

Recommended PDF viewers include:

• Adobe Reader (Windows, macOS)
• Foxit Reader (Windows, macOS, Linux)
• Google Chrome (Windows, macOS)
• Google Chromium (Linux)

Also, once we start modifying files, you will find “Final Results” sections towards the
end of each chapter. Those will contain the full listings of the source files that were
modified in that chapter’s tutorial. And, these listings will not have syntax
highlighting, making them suitable copy sources for a wider range of PDF viewers.

PREFACE

xi

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Warescription
If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other books that CommonsWare publishes during
that subscription period, such as the aforementioned Elements of Android Jetpack.
You also get access to first-generation Android books, such as the legendary The
Busy Coder’s Guide to Android Development.

Each subscriber gets personalized editions of all editions of each book. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After
that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed
3. Opting into emails announcing each book release — log into the

Warescription site and choose Configure from the nav bar
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

• “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

• A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

• A discussion board for asking arbitrary questions about Android app
development.

PREFACE

xii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/Jetpack
https://commonsware.com/Android
https://commonsware.com/Android
https://commonsware.com/blog
http://twitter.com/CommonsWare
https://wares.commonsware.com/
https://wares.commonsware.com/

Book Bug Bounty
Find a problem in the book? Let CommonsWare know!

Be the first to report a unique concrete problem in the current digital edition, and
CommonsWare will extend your Warescription by six months as a bounty for
helping CommonsWare deliver a better product.

By “concrete” problem, we mean things like:

1. Typographical errors
2. Sample applications that do not work as advertised, in the environment

described in the book
3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code and Its License
The source code samples shown in this book are available for download from the
book’s GitLab repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with

PREFACE

xiii

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/AndExplore/errata
mailto:bounty@commonsware.com
https://gitlab.com/commonsguy/cw-andexplore
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 4.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 December 2024. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
4.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

PREFACE

xiv

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

What We Are Building

By following the instructions in this book, you will build an Android app.

But first, let’s see what the app is that you are building.

The Purpose
Everybody has stuff to do. Ever since we have had “digital assistants” — such as the
venerable Palm line of PDAs — a common use has been for tracking tasks to be
done. So-called “to-do lists” are a popular sort of app, whether on the Web, on the
desktop, or on mobile devices.

The world has more than enough to-do list apps. Google themselves have published
a long list of sample apps that use a to-do list as a way of exploring various GUI
architectures.

So, let’s build another one!

Ours is not a fork of Google’s, but rather a “cleanroom” implementation of a to-do
list with similar functionality.

The Core UI
There are three main screens that the user will spend time in: the roster of to-do
items, a screen with details of a particular item, and a screen for either adding a new
item or editing an existing one.

There is also an “about” screen for displaying information about the app.

1

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://en.wikipedia.org/wiki/Palm_(PDA)
https://en.wikipedia.org/wiki/Palm_(PDA)
https://github.com/googlesamples/android-architecture

The Roster

When initially launched, the app will show a roster of the recorded to-do items, if
there are any. Hence, on the first run, it will show just an “empty view”, prompting
the user to click the “add” app bar item to add a new item:

Figure 1: ToDo App, As Initially Launched, with No Items

WHAT WE ARE BUILDING

2

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Once there are some items in the database, the roster will show those items, in
alphabetical order by description, with a checkbox indicating whether or not they
have been completed:

Figure 2: ToDo App, Showing Some Items

From here, the user can tap the checkbox to quickly mark an item as completed (or
un-mark it if needed).

WHAT WE ARE BUILDING

3

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

The Details

A simple tap on an item in the roster brings up the details screen:

Figure 3: ToDo App, Showing a Completed Item

This just shows additional information about the item, including any notes the user
entered to provide more detail than the simple description that gets shown in the
roster. The checkmark icon will appear for completed items.

From here, the user can edit this item (via the “pencil” icon).

WHAT WE ARE BUILDING

4

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

The Editor

The editor is a simple form, either to define a new to-do item or edit an existing one.
If the user taps on the “add” app bar item from the roster, the editor will appear
blank, and submitting the form will create a new to-do item. If the user taps on the
“edit” (pencil) app bar item from the details screen, the editor will have the existing
item’s data, which can be altered and saved:

Figure 4: ToDo App, Editing a Completed Item

WHAT WE ARE BUILDING

5

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Phase One: Getting a GUI

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Installing the Tools

First, let us get you set up with the pieces and parts necessary to build an Android
app. Specifically, in this tutorial, we will set up Android Studio.

Step #1: Checking Your Hardware
Compiling and building an Android application, on its own, can be a hardware-
intensive process, particularly for larger projects. Beyond that, your IDE and the
Android emulator will stress your development machine further. Of the two, the
emulator poses the bigger problem.

The more RAM you have, the better. 8GB or higher is a very good idea if you intend
to use an IDE and the emulator together. If you can get an SSD for your data storage,
instead of a conventional hard drive, that too can dramatically improve the IDE
performance.

A faster CPU is also a good idea. The Android SDK emulator supports CPUs with
multiple cores. However, other processes on your development machine will be
competing with the emulator for CPU time, and so the faster your CPU is, the better
off you will be. Ideally, your CPU has 4 or more cores, each 2.5GHz or faster at their
base speed.

There are two types of emulator: x86 and ARM. These are the two major types of
CPUs used for Android devices. You really want to be able to use the x86 emulator,
as the ARM emulator is extremely slow. However, to do that, you need a CPU with
certain features:

9

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Development
OS

CPU
Manufacturer

CPU Requirements

mac OS Intel any modern Mac should work

Linux/
Windows

Intel
support for Intel VT-x, Intel EM64T (Intel 64),

and Execute Disable (XD) Bit functionality

Linux AMD
support for AMD Virtualization (AMD-V) and
Supplemental Streaming SIMD Extensions 3

(SSSE3)

Windows 10
April 2018 or

newer
AMD

support for Windows Hypervisor Platform
(WHPX) functionality

If your CPU does not meet those requirements, you will want to have one or more
Android devices available to you, so that you can test on hardware.

Also, if you are running Windows or Linux, you need to ensure that your computer’s
BIOS is set up to support the Intel/AMD virtualization extensions. Unfortunately,
many PC manufacturers disable this by default. The details of how to get into your
BIOS settings will vary by PC, but usually it involves rebooting your computer and
pressing some function key on the initial boot screen. In the BIOS settings, you are
looking for references to “virtualization” (or perhaps “VT-x” for Intel). Enable them
if they are not already enabled. macOS machines come with virtualization
extensions pre-enabled, which is really nice of Apple.

Step #2: Install Android Studio
At the time of this writing, the current production version of Android Studio is 4.1
and this book covers that version. Android Studio gets updated often, and so you
may be on a newer version — there may be some differences between what you have
and what is presented here.

You have two major download options. You can get the latest shipping version of
Android Studio from the Android Studio download page. Or, you can download
Android Studio 4.1 directly, for:

• Windows

INSTALLING THE TOOLS

10

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://developer.android.com/studio
https://redirector.gvt1.com/edgedl/android/studio/install/4.1.0.19/android-studio-ide-201.6858069-windows.exe

• macOS
• Linux

Windows users can download a self-installing EXE, which will add suitable launch
options for you to be able to start the IDE.

Mac users can download a DMG disk image and install it akin to other Mac
software, dragging the Android Studio icon into the Applications folder.

Linux users (and power Windows users) can download a ZIP file, then unZIP it to
some likely spot on your hard drive. Android Studio can then be run from the
studiostudio batch file or shell script in your Android Studio installation’s bin/ directory.

Step #3: Run Android Studio
When you first run Android Studio, you may be asked if you want to import settings
from some other prior installation of Android Studio:

Figure 5: Android Studio First-Run Settings Migration Dialog

If you are using Android Studio for the first time, the “Do not import settings”
option is the correct choice to make.

INSTALLING THE TOOLS

11

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://redirector.gvt1.com/edgedl/android/studio/install/4.1.0.19/android-studio-ide-201.6858069-mac.dmg
https://redirector.gvt1.com/edgedl/android/studio/ide-zips/4.1.0.19/android-studio-ide-201.6858069-linux.tar.gz

Then, after a short splash screen, you may be presented with a “Data Sharing”
dialog:

Figure 6: Android Studio Data Sharing Dialog

Click whichever button you wish.

INSTALLING THE TOOLS

12

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Then, after a potentially long “Finding Available SDK Components” progress dialog,
you will be taken to the Android Studio Setup Wizard:

Figure 7: Android Studio Setup Wizard, First Page

INSTALLING THE TOOLS

13

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Just click “Next” to advance to the second page of the wizard:

Figure 8: Android Studio Setup Wizard, Second Page

Here, you have a choice between “Standard” and “Custom” setup modes. Most likely,
right now, the “Standard” route will be fine for your environment.

INSTALLING THE TOOLS

14

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

If you go the “Standard” route and click “Next”, you should be taken to a wizard page
where you can choose your UI theme:

Figure 9: Android Studio Setup Wizard, UI Theme Page

INSTALLING THE TOOLS

15

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Choose whichever you like, then click “Next”, to go to a wizard page to verify what
will be downloaded and installed:

Figure 10: Android Studio Setup Wizard, Verify Settings Page

INSTALLING THE TOOLS

16

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Clicking “Next” may take you to a wizard page explaining some information about
the Android emulator:

Figure 11: Android Studio Setup Wizard, Emulator Info Page

What is explained on this page may not make much sense to you. That is perfectly
normal, and we will get into what this page is trying to say later in the book. Just
click “Finish” to begin the setup process. This will include downloading a copy of the
Android SDK and installing it into a directory adjacent to where Android Studio
itself is installed.

When that is done, Android Studio will busily start downloading stuff to your
development machine.

INSTALLING THE TOOLS

17

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Clicking “Finish” when that is done will then take you to the Android Studio
Welcome dialog:

Figure 12: Android Studio 4.0 Welcome Dialog

INSTALLING THE TOOLS

18

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Creating a Starter Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

Step #1: Importing the Project
First, we need an Android project to work in.

Sometimes, you will create a new project yourself, using Android Studio’s new-
project wizard. However, frequently, you will start with an existing project that
somebody else created. For example, if you are joining an Android development
team, odds are that somebody else will create the project, or the project will already
have been created by the time you join. In those cases, you will import an existing
project, and that’s what we will do here.

Download the starter project from CommonsWare’s Web site. Then, UnZIP that
project to some place on your development machine. It will unZIP into a ToDo/
directory.

At that point, look at the contents of gradle/wrapper/gradle-wrapper.properties.
It should look like this:

19

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://commonsware.com/AndExplore/starter/4.1.0/ToDo-Starter.zip

#Fri Jun 05 08:55:24 EDT 2020
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\:\://services.gradle.org/distributions/gradle-6.5-all.zip

(from T02-Project/ToDo/gradle/wrapper/gradle-wrapper.properties)

In particular, make sure that the distributionUrl points to a services.gradle.org
URL. Never import a project into Android Studio without checking the
distributionUrl, as a malicious person could have distributionUrl point to
malware that Android Studio would load and execute.

Then, import the project. From the Android Studio welcome dialog — where we left
off in the previous tutorial — that is handled by the “Import project (Gradle, Eclipse
ADT, etc.)” option. From an existing open Android Studio IDE window, you would
use File > New > Import Project… from the main menu.

Importing a project brings up a typical directory-picker dialog. Pick the ToDo/
directory and click “OK” to begin the import process. This may take a while,
depending on the speed of your development machine. A “Tip of the Day” dialog
may appear, which you can dismiss.

CREATING A STARTER PROJECT

20

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T02-Project/ToDo/gradle/wrapper/gradle-wrapper.properties

At this point, the IDE window should be open on your starter project:

Figure 13: ToDo Project, As Initially Imported

CREATING A STARTER PROJECT

21

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

The “Project” view — docked by default on the left side, towards the top — brings
up a way for you to view what is in the project. Android Studio has several ways of
viewing the contents of Android projects. The default one, that you are presented
with when creating or importing the project, is known as the “Android view”:

Figure 14: Android Studio, Project View, Android Content

CREATING A STARTER PROJECT

22

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

While you are welcome to navigate your project using it, the tutorial chapters in this
book, where they have screenshots of Android Studio, will show the “Project”
contents in this view:

Figure 15: Android Studio, Project View, Project Content

To switch to this view — and therefore match what the tutorials will show you —
click the Android drop-down above the tree and choose “Project” from the list.

Step #2: Setting Up the Emulator AVD
Your first decision to make is whether or not you want to bother setting up an
emulator image right now. If you have an Android device, you may prefer to start
testing your app on it, and come back to set up the emulator at a later point. In that
case, skip to Step #3.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. To open the AVD Manager in Android
Studio, choose Tools > AVD Manager from the main menu.

CREATING A STARTER PROJECT

23

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

By default, a fresh installation of Android Studio 4.1 will also set up an initial AVD
for you, and the AVD Manager will show it in a list:

Figure 16: Android Studio AVD Manager, With Pre-Installed AVD

If you have a fairly powerful development machine, and you want an emulator that
emulates an Android 11 device, you are welcome to use that emulator at the outset.
For most starting developers, this is not a particularly good emulator choice.

CREATING A STARTER PROJECT

24

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

If you would like to create a different AVD — perhaps one for an older Android
version or one that will run better on less-powerful development machines — click
the “Create Virtual Device” button, which brings up a “Virtual Device Configuration”
wizard:

Figure 17: Android Studio Virtual Device Configuration Wizard, First Page

The first page of the wizard allows you to choose a device profile to use as a starting
point for your AVD. The “New Hardware Profile” button allows you to define new
profiles, if there is no existing profile that meets your needs.

Since emulator speeds are tied somewhat to the resolution of their (virtual) screens,
you generally aim for a device profile that is on the low end but is not completely
ridiculous. For example, a 1280x768 or 1280x720 phone would be considered by
many people to be fairly low-resolution. However, there are plenty of devices out
there at that resolution (or lower), and it makes for a reasonable starting emulator.

If you want to create a new device profile based on an existing one — to change a
few parameters but otherwise use what the original profile had — click the “Clone
Device” button once you have selected your starter profile.

However, in general, at the outset, using an existing profile is perfectly fine. The

CREATING A STARTER PROJECT

25

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Nexus 4 image is a likely choice to start with.

Clicking “Next” allows you to choose an emulator image to use:

Figure 18: Android Studio Virtual Device Configuration Wizard, Second Page

The emulator images are spread across three tabs:

• “Recommended”
• “x86 Images”
• “Other Images”

For the purposes of the tutorials, you do not need an emulator image with the
“Google APIs” — those are for emulators that have Google Play Services in them and
related apps like Google Maps. However, in terms of API level, you can choose
anything from API Level 21 (Android 5.0) on up.

It is best to use one of the x86 images for the best emulator performance. On the
“x86 Images” tab, you should see some entries with a “Download” link, and you
might see others without it. The emulator images with “Download” next to them
will trigger a one-time download of the files necessary to create AVDs for that
particular API level and CPU architecture combination, after another license dialog

CREATING A STARTER PROJECT

26

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

and progress dialog:

Figure 19: Android Studio Component Installer Dialog, Downloading API 29 Image

CREATING A STARTER PROJECT

27

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Once you have identified the image that you want — and have downloaded it if
needed — click on one of them in the wizard. Clicking “Next” allows you to finalize
the configuration of your AVD:

Figure 20: Android Studio Virtual Device Configuration Wizard, Third Page

If you get the “Recommendation” box with the red “Your CPU does not support
required features…” message, your development machine is not set up to support
this type of emulator image. For example, you may need to enable virtualization
extensions in your PC’s BIOS, as was noted in the previous tutorial.

A default name for the AVD is suggested, though you are welcome to replace this
with your own value. However, that name must be something valid: only letters,
numbers, spaces, and select punctuation (e.g., ., _, -, (,)) are supported.

The rest of the default values should be fine for now.

Clicking “Finish” will return you to the main AVD Manager, showing your new AVD.
You can then close the AVD Manager window.

If you also have a physical device that you want to use for testing, continue with Step
#3. Otherwise, feel free to skip to Step #4.

CREATING A STARTER PROJECT

28

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Step #3: Setting Up the Device
You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device – maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

The first thing to do to make your device ready for use with development is to go
into the Settings application on the device. On Android 8.0+, go into System >
About phone. On older devices, About is usually a top-level entry. In the About
screen, tap on the build number seven times, then press BACK, and go into
“Developer options” (which was formerly hidden)

Figure 21: Developer Options, in Android 9.0 Settings App

You may need to slide a switch in the upper-right corner of the screen to the “ON”
position to modify the values on this screen.

CREATING A STARTER PROJECT

29

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Generally, you will want to scroll down and enable USB debugging, so you can use
your device with the Android build tools:

Figure 22: Debugging Options, in Android 9.0 Settings App

You can leave the other settings alone for now if you wish, though you may find the
“Stay awake” option to be handy, as it saves you from having to unlock your phone
all of the time while it is plugged into USB.

CREATING A STARTER PROJECT

30

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Note that on Android 4.2.2 and higher devices, before you can actually use the
setting you just toggled, you will be prompted to allow USB debugging with your
specific development machine via a dialog box:

Figure 23: Allow USB Debugging Dialog

This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the
driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

CREATING A STARTER PROJECT

31

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Standard Android Driver

In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is suitable
for your device. This will often work for Nexus devices.

Manufacturer-Supplied Driver

If you still do not have a driver, the OEM USB Drivers in the developer
documentation may help you find one for download from your device manufacturer.
Note that you may need the model number for your device, instead of the model
name used for marketing purposes (e.g., GT-P3113 instead of “Samsung Galaxy Tab 2
7.0”).

macOS and Linux

It is likely that simply plugging in your device will “just work”.

If you are running Ubuntu (or perhaps other Linux variants), and when you later try
running your app it appears that Android Studio does not “see” your device, you may
need to add some udev rules. This GitHub repository contains some instructions and
a large file showing the rules for devices from a variety of manufacturers, and this
blog post provides more details of how to work with udev rules for Android devices.

Step #4: Running the Project
Now, we can confirm that our project is set up properly by running it on a device or
emulator.

Android Studio has a toolbar just below the main menu. In that toolbar, you will
find two drop-down lists, followed by the Run toolbar button (usually depicted as a
green rightward-pointing triangle):

Figure 24: Android Studio Toolbar Segment

CREATING A STARTER PROJECT

32

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://developer.android.com/studio/run/oem-usb
https://github.com/M0Rf30/android-udev-rules
https://twikkie.wordpress.com/2016/08/02/how-to-debug-android-application-on-device-via-ubuntu/
https://twikkie.wordpress.com/2016/08/02/how-to-debug-android-application-on-device-via-ubuntu/

The first drop-down says “this is what I want to run”. Right now, your only viable
option is “app”, referring to the app that this project builds.

The second drop-down says “this is where I want to run it”. Here, you will find a list
of devices and emulators that are available to you.

To run the app, choose your desired device or emulator in the second drop-down,
then click the Run toolbar button. If you choose an emulator, and the emulator is
not already running, Android Studio will start it up. Then, after a short wait, your
app should appear on it:

Figure 25: Android 8.1 Device, Showing ToDo App

Note that you may have to unlock your device or emulator to actually see the app
running.

CREATING A STARTER PROJECT

33

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

The first time you launch the emulator for a particular AVD, you may see this
message:

Figure 26: Android Emulator Cold-Boot Warning

The emulator behaves a bit more like an Android device. Closing the emulator
window is like tapping the POWER button to turn off the screen. The next time you
start that particular AVD, it will wake up to the state in which you left it, rather than
booting from scratch (“cold boot”). This speeds up starting the emulator.
Occasionally, though, you will have the need to start the emulator as if the device
were powering on. To do that, in the AVD Manager, in the drop-down menu in the
Actions column, choose “Cold Boot Now”.

Figure 27: AVD Manager, Showing Actions Drop-Down Menu

CREATING A STARTER PROJECT

34

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

Modifying the Manifest

Now that we have our starter project, we need to start making changes, as we have a
lot of work to do.

In this tutorial, we will start with the Android manifest, one of the core files in an
app. Here, we will make a few changes, just to help get you familiar with editing this
file. We will be returning to this file — and other core files, like Gradle build files —
many times over the course of the rest of the book.

This is a continuation of the work we did in the previous tutorial. The book’s GitLab
repository contains the results of the previous tutorial as well as the results of
completing the work in this tutorial.

You can learn more about the contents of the manifest in the
"Inspecting Your Manifest" chapter of Elements of Android
Jetpack!

Some Notes About Relative Paths
In these tutorials, you will see references to relative paths, like
AndroidManifest.xml, res/layout/, and so on.

You should interpret these paths as being relative to the app/src/main/ directory
within the project, except as otherwise noted. So, for example, Step #1 below will ask
you to open AndroidManifest.xml— that file can be found in app/src/main/
AndroidManifest.xml from the project root.

35

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://gitlab.com/commonsguy/cw-andexplore/tree/master/T02-Project/ToDo
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://commonsware.com/Jetpack
https://commonsware.com/Jetpack

Step #1: Supporting Screens
Android devices come in a wide range of shapes and sizes. Our app can support
them all. However, we should advise Android that we are indeed willing to support
any screen size. To do this, we need to add a <supports-screens> element to the
manifest.

To do this, double-click on AndroidManifest.xml in the project explorer:

Figure 28: Android Studio, Showing Manifest Editor

As a child of the root <manifest> element, add a <supports-screens> element as
follows:

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

At this point, the manifest should resemble:

MODIFYING THE MANIFEST

36

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.todo"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">>
<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Step #2: Blocking Backups
If you look at the <application> element, you will see that it has a few attributes,
including android:allowBackup="true". This attribute indicates that ToDo should
participate in Android’s automatic backup system.

That is not a good idea, until you understand the technical and legal ramifications of
that choice.

In the short term, change android:allowBackup to be false.

Final Results
At this point, your manifest should look like:

<?xml version="1.0" encoding="utf-8"?>

MODIFYING THE MANIFEST

37

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

<manifest package="com.commonsware.todo"
xmlns:android="http://schemas.android.com/apk/res/android">

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>

<application
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

(from T03-Manifest/ToDo/app/src/main/AndroidManifest.xml)

What We Changed
The book’s GitLab repository contains the entire result of having completed this
tutorial. In particular, it contains the changed files:

• app/src/main/AndroidManifest.xml

MODIFYING THE MANIFEST

38

This document contains free sample chapters! Learn more at https://commonsware.com/AndExplore

https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T03-Manifest/ToDo/app/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://gitlab.com/commonsguy/cw-andexplore/tree/master/T03-Manifest/ToDo
https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T03-Manifest/ToDo/app/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-andexplore/blob/v2.0/T03-Manifest/ToDo/app/src/main/AndroidManifest.xml

