Table of Contents
Headings formatted in bold-italic have changed since the last version.

	
Preface
	How the Book Is Structured

	Second-Generation Book

	Prerequisites

	Copying Code From This Book

	Source Code and Its License

	
What We Are Building
	The Purpose

	The Core UI

	
Installing the Tools
	Step #1: Checking Your Hardware

	Step #2: Install Android Studio

	Step #3: Run Android Studio

	
Creating a Starter Project
	Step #1: Importing the Project

	Step #2: Setting Up the Emulator AVD

	Step #3: Setting Up the Device

	Step #4: Running the Project

	
Modifying the Manifest
	Some Notes About Relative Paths

	Step #1: Supporting Screens

	Step #2: Blocking Backups

	Final Results

	What We Changed

	
Changing Our Icon
	Step #1: Getting the Replacement Artwork

	Step #2: Changing the Icon

	Step #3: Running the Result

	What We Changed

	
Adding a Library
	Step #1: Examining What We Have

	Step #2: Adding Support for RecyclerView

	Final Results

	What We Changed

	
Constructing a Layout
	Step #1: Examining What We Have And What We Want

	Step #2: Adding a RecyclerView

	Step #3: Adjusting the TextView

	Final Results

	What We Changed

	
Integrating Fragments
	But First, Some Notes About Working with Kotlin

	Step #1: Creating a Fragment

	Step #2: Renaming Our Layout

	Step #3: Inflating Our Layout

	Step #4: Dealing with Crashes

	Final Results

	What We Changed

	
Wiring In Navigation
	Step #1: Defining the Version

	Step #2: Adding the Plugin Dependency

	Step #3: Requesting the Plugins

	Step #4: Augmenting Our Dependencies

	Step #5: Defining Our Navigation Graph

	Step #6: Setting Up a New Activity Layout Resource

	Step #7: Wiring in the Navigation

	Final Results

	What We Changed

	
Setting Up the App Bar
	Step #1: Defining Some Colors

	Step #2: Adjusting Our Theme

	Step #3: Adding a Toolbar

	Step #4: Adding an Icon

	Step #5: Defining an Item

	Step #6: Enabling View Binding

	Step #7: Using View Binding in Our Activity

	Step #8: Loading Our Options

	Step #9: Trying It Out

	Final Results

	What We Changed

	
Setting Up an Activity
	Step #1: Creating the Stub Activity Class and Manifest Entry

	Step #2: Adding a Toolbar and a WebView

	Step #3: Launching Our Activity

	Step #4: Defining Some About Text

	Step #5: Populating the Toolbar and WebView

	Final Results

	What We Changed

	
Defining a Model
	Step #1: Adding a Stub POJO

	Step #2: Switching to a data Class

	Step #3: Adding the Constructor

	Step #4: Supporting Instant on Older Devices

	Final Results

	What We Changed

	
Setting Up a Repository
	Step #1: Adding the Repository Class

	Step #2: Creating Some Fake Data

	Final Results

	What We Changed

	
Inverting Our Dependencies
	Step #1: Adding the Dependencies

	Step #2: Creating a Custom Application

	Step #3: Defining Our Module

	Final Results

	What We Changed

	
Incorporating a ViewModel
	Step #1: Creating a Stub ViewModel

	Step #2: Getting and Using Our Repository

	Step #3: Depositing a Koin

	Step #4: Injecting the Motor

	Final Results

	What We Changed

	
Populating Our RecyclerView
	Step #1: Defining a Row Layout

	Step #2: Adding a Stub ViewHolder

	Step #3: Creating a Stub Adapter

	Step #4: Comparing Our Models

	Step #5: Completing the Adapter and ViewHolder

	Step #6: Wiring Up the RecyclerView

	Final Results

	What We Changed

	
Tracking the Completion Status
	Step #1: Registering for Events

	Step #2: Passing the Event Up the Chain

	Step #3: Saving the Change

	Final Results

	What We Changed

	
Displaying an Item
	Step #1: Creating the Fragment

	Step #2: Updating the Navigation Graph

	Step #3: Responding to List Clicks

	Step #4: Teaching Navigation About the App Bar

	Step #5: Creating an Empty Layout

	Step #6: Adding the Completed Icon

	Step #7: Displaying the Description

	Step #8: Showing the Created-On Date

	Step #9: Adding the Notes

	Step #10: Adding Navigation Arguments

	Step #11: Displaying the Layout

	Step #12: Making Another Motor

	Step #13: Populating the Layout

	Final Results

	What We Changed

	
Editing an Item
	Step #1: Creating the Fragment

	Step #2: Setting Up the Navigation

	Step #3: Setting Up a Menu Resource

	Step #4: Showing the App Bar Item

	Step #5: Displaying the (Empty) Fragment

	Step #6: Creating an Empty Layout

	Step #7: Adding the CheckBox

	Step #8: Creating the Description Field

	Step #9: Adding the Notes Field

	Step #10: Populating the Layout

	Final Results

	What We Changed

	
Saving an Item
	Step #1: Adding the App Bar Item

	Step #2: Improving the Motor

	Step #3: Replacing the Item

	Step #4: Returning to the Display Fragment

	Step #5: Getting Updated Items

	Final Results

	What We Changed

	
Adding and Deleting Items
	Step #1: Trimming Our Repository

	Step #2: Showing an Empty View

	Step #3: Adding an Add App Bar Item

	Step #4: Launching the EditFragment for Adds

	Step #5: Hiding the Empty View

	Step #6: Adding a Delete App Bar Item

	Step #7: Deleting the Item

	Step #8: Fixing the Delete-on-Add Problem

	Final Results

	What We Changed

	
Interlude: So, What’s Wrong?
	Issues With What We Have

	We Can Do Better

	
Refactoring Our Code
	Step #1: Creating Some Packages

	Step #2: Moving Our Classes

	What We Changed

	
Getting a Room (And Some Coroutines)
	Step #1: Requesting More Dependencies

	Step #2: Defining an Entity

	Step #3: Crafting a DAO

	Step #4: Adding a Database

	Step #5: Creating a Transmogrifier

	Step #6: Add Our Database to Koin

	Step #7: Adding a Store to the Repository

	Step #8: Fixing the Repository

	Final Results

	What We Changed

	
Completing the Reactive Architecture
	Step #1: Defining a Roster View State

	Step #2: Emitting View States

	Step #3: Consuming Roster View States

	Step #4: Wrapping the suspend Functions

	Step #5: Updating SingleModelMotor

	Step #6: Adapting DisplayFragment

	Step #7: Adapting EditFragment

	Final Results

	What We Changed

	
Testing a Motor
	Step #1: Examine Our Existing Tests

	Step #2: Decide on Instrumented Tests vs. Unit Tests

	Step #3: Adding Some Unit Test Dependencies

	Step #4: Renaming Our Unit Test

	Step #5: Running the Stub Unit Test

	Step #6: Adding a MainDispatcherRule

	Step #7: Setting Up a Mock Repository

	Step #8: Adding a Test Function

	Step #9: Adding Another Test Function

	Final Results

	What We Changed

	
Testing the Repository
	Step #1: Renaming Our Instrumented Test

	Step #2: Adding Some Instrumented Test Dependencies

	Step #3: Supporting a Test Database

	Step #4: Testing Adds

	Step #5: Writing and Running More Tests

	Final Results

	What We Changed

	
Testing a UI
	Step #1: Adding a New Test Class

	Step #2: Initializing Our Repository

	Step #3: Testing Our List

	Final Results

	What We Changed

	
Tracking Our Load Status
	Step #1: Adjusting Our Layout

	Step #2: Reporting our Loaded Status

	Step #3: Reacting to the Loaded Status

	Final Results

	What We Changed

	
Filtering Our Items
	Step #1: Adding a Query

	Step #2: Defining a FilterMode

	Step #3: Consuming a FilterMode

	Step #4: Augmenting Our Motor

	Step #5: Adding a Checkable Submenu

	Step #6: Getting Control on Filter Choices

	Step #7: Fixing the Empty Text

	Step #8: Addressing the Menu Problem

	Final Results

	What We Changed

	
Generating a Report
	Step #1: Adding a Save App Bar Item

	Step #2: Making a Save

	Step #3: Adding Some Handlebars

	Step #4: Creating the Report

	Step #5: Writing Where the User Asked

	Step #6: Saving the Report

	Step #7: Viewing the Report

	Final Results

	What We Changed

	
Sharing the Report
	Step #1: Adding a Share App Bar Item

	Step #2: Adding FileProvider

	Step #3: Caching the Report

	Step #4: Sharing the Report

	Final Results

	What We Changed

	
Collecting a Preference
	Step #1: Adding a Dependency

	Step #2: Defining a Preference Screen

	Step #3: Displaying Our Preference Screen

	Step #4: Adding PrefsFragment to Our Navigation Graph

	Step #5: Navigating to Our Preference Screen

	Final Results

	What We Changed

	
Contacting a Web Service
	Step #1: Adding Some Dependencies

	Step #2: Requesting a Permission

	Step #3: Defining Our Response

	Step #4: Retrieving the Items

	Step #5: Updating the Local Items

	Step #6: Fixing the Existing Tests

	Step #7: Retrieving Our Preference

	Step #8: Offering the Download Option

	Final Results

	What We Changed

	
Showing a Dialog
	Step #1: Adding a Stub Fragment

	Step #2: Updating the Navigation Graph

	Step #3: Defining the Dialog Content

	Step #4: Emitting Errors From the Motor

	Step #5: Reacting to Errors

	Step #6: Responding to Input

	Step #7: Trying It Out

	Final Results

	What We Changed

	
Scheduling Work
	Step #1: Defining a SwitchPreference

	Step #2: Observing Preference Changes

	Step #3: Adding the Dependency

	Step #4: Creating a Stub Worker

	Step #5: Injecting Into the Worker

	Step #6: Doing the Work

	Step #7: Scheduling the Work

	Step #8: Trying It Out

	Final Results

	What We Changed

Preface
Thanks!
First, thanks for your interest in Android app development! Android is the world’s
most popular operating system, but its value comes from apps written by developers
like you.
Also, thanks for your interest in this book! Hopefully, it can help “spin you up”
on how to create Android applications that meet your needs and those of your
users.
And thanks for your interest in CommonsWare! The
Warescription program makes this book
and others available, to help developers like you craft the apps that your users
need.
How the Book Is Structured
Many books — such as
Elements of Android Jetpack,
— present programming topics, showing you how to use different APIs, tools,
and so on.
This book is different.
This book has you build an app from the beginning. Whereas traditional
programming guides are focused on breadth and depth, this book is focused
on being “hands-on”, guiding you through the steps to build the app. It provides some
details on the underlying concepts, but it relies on other resources —
such as Elements of Android Jetpack — for the full
explanation of those details. Instead, this book provides step-by-step instructions
for building the app.
If you are the sort of person who “learns by doing”, then this book is for you!
Second-Generation Book
Android app development can be divided into two generations:

	First-generation app development uses Java as the programming language
and leverages the Android Support Library and the android.arch edition of
the Architecture Components

	Second-generation app development more often uses Kotlin as the programming
language and leverages AndroidX and the rest of Jetpack (which
includes an AndroidX edition of the Architecture Components)

This book is a second-generation book. It will show you step-by-step how to
build a Kotlin-based Android app, using AndroidX libraries.
Prerequisites
This book is targeted at developers starting out with Android app development.
You will want another educational resource to go along with this book. The book
will cross-reference Elements of Android Jetpack, but you can
use other programming guides as well. This book shows you each step for building
an app, but you will need to turn to other resources for answers to questions
like “why do we need to do X?” or “what other options do we have than Y?”.
The app that you will build will be written in Kotlin, so you will need to have
a bit of familiarity with that language. Elements of Kotlin
covers this language and will be cross-referenced in a few places in this book.
Also, the app that you will create in this book works on Android 5.0+ devices
and emulators. You will either need a suitable device or be in position to use
the Android SDK emulator in order to build and run the app.
Copying Code From This Book
You are welcome to copy the code as you see in the book itself, as part of
working through the tutorials.
However, copying from the PDF version of the book can be troublesome, depending on your
PDF viewer. Some PDF viewers do not handle the syntax highlighting used in this book
very well.
Recommended PDF viewers include:

	Adobe Reader (Windows, macOS)

	Foxit Reader (Windows, macOS, Linux)

	Google Chrome (Windows, macOS)

	Google Chromium (Linux)

Also, once we start modifying files, you will find “Final Results” sections
towards the end of each chapter. Those will contain the full listings of the
source files that were modified in that chapter’s tutorial. And, these listings
will not have syntax highlighting, making them suitable copy sources for a wider
range of PDF viewers.
Source Code and Its License
The source code samples shown in this book are available for download from the
book’s GitLab repository. All of the
Android projects are licensed under the
Apache 2.0 License, in case you have the
desire to reuse any of it.
Copying source code directly from the book, in the PDF editions, works best
with Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.
What We Are Building
By following the instructions in this book, you will build an Android app.
But first, let’s see what the app is that you are building.
The Purpose
Everybody has stuff to do. Ever since we have had “digital assistants” — such
as the venerable Palm line of PDAs —
a common use has been for tracking tasks to be done. So-called “to-do lists”
are a popular sort of app, whether on the Web, on the desktop, or on mobile
devices.
The world has more than enough to-do list apps.
Google themselves have published a long list of sample apps
that use a to-do list as a way of exploring various GUI architectures.
So, let’s build another one!
Ours is not a fork of Google’s, but rather a “cleanroom” implementation of
a to-do list with similar functionality.
The Core UI
There are three main screens that the user will spend time in: the roster
of to-do items, a screen with details of a particular item, and a screen
for either adding a new item or editing an existing one.
There is also an “about” screen for displaying information about the app.
The Roster
When initially launched, the app will show a roster of the recorded to-do items,
if there are any. Hence, on the first run, it will show just an “empty view”,
prompting the user to click the “add” app bar item to add a new item:

[image: ToDo App, As Initially Launched, with No Items]

Figure 1: ToDo App, As Initially Launched, with No Items
Once there are some items in the database, the roster will show those items,
in alphabetical order by description, with a checkbox indicating whether or not they
have been completed:

[image: ToDo App, Showing Some Items]

Figure 2: ToDo App, Showing Some Items
From here, the user can tap the checkbox to quickly mark an item as completed
(or un-mark it if needed).
The Details
A simple tap on an item in the roster brings up the details screen:

[image: ToDo App, Showing a Completed Item]

Figure 3: ToDo App, Showing a Completed Item
This just shows additional information about the item, including any notes
the user entered to provide more detail than the simple description that gets
shown in the roster. The checkmark icon will appear for completed items.
From here, the user can edit this item (via the “pencil” icon).
The Editor
The editor is a simple form, either to define a new to-do item or edit an existing
one. If the user taps on the “add” app bar item from the roster, the
editor will appear blank, and submitting the form will create a new to-do item.
If the user taps on the “edit” (pencil) app bar item from the details screen, the
editor will have the existing item’s data, which can be altered and saved:

[image: ToDo App, Editing a Completed Item]

Figure 4: ToDo App, Editing a Completed Item
Installing the Tools
First, let us get you set up with the pieces and parts necessary to build an Android
app. Specifically, in this tutorial, we will set up Android Studio.
Step #1: Checking Your Hardware
Compiling and building an Android application, on its own, can be a
hardware-intensive process, particularly for larger projects. Beyond that,
your IDE and the Android emulator will stress your development machine
further. Of the two, the emulator poses the bigger problem.
The more RAM you have, the better. 8GB or higher is a very good idea if you
intend to use an IDE and the emulator together. If you can get an SSD for
your data storage, instead of a conventional hard drive, that too can dramatically
improve the IDE performance.
A faster CPU is also a good idea. The Android SDK emulator
supports CPUs with multiple cores. However, other processes on your development machine will be competing
with the emulator for CPU time, and so the faster your CPU is, the better
off you will be. Ideally, your CPU has 4 or more cores, each 2.5GHz or faster at
their base speed.
There are two types of emulator: x86 and ARM. These are the two major types
of CPUs used for Android devices. You really want to be able to use
the x86 emulator, as the ARM emulator is extremely slow. However, to do that, you
need a CPU with certain features:

 	Development OS
 	CPU Manufacturer
 	CPU Requirements

 	macOS
 	Intel
 	any modern Mac should work

 	macOS
 	Apple M1
 	unclear

 	Linux/Windows
 	Intel
 	support for Intel VT-x, Intel EM64T (Intel 64), and Execute Disable (XD) Bit functionality

 	Linux
 	AMD
 	support for AMD Virtualization (AMD-V) and Supplemental Streaming SIMD Extensions 3 (SSSE3)

 	Windows 10 April 2018 or newer
 	AMD
 	support for Windows Hypervisor Platform (WHPX) functionality

If your CPU does not meet those requirements, you will want to have one or more
Android devices available to you, so that you can test on hardware.
Also, if you are running Windows or Linux,
you need to ensure that your computer’s BIOS is set up to support
the Intel/AMD virtualization extensions. Unfortunately, many PC manufacturers
disable this by default. The details of how to get into your BIOS settings
will vary by PC, but usually it involves rebooting your computer and
pressing some function key on the initial boot screen. In the BIOS settings,
you are looking for references to “virtualization” (or perhaps “VT-x” for Intel). Enable
them if they are not already enabled. macOS machines come with virtualization
extensions pre-enabled, which is really nice of Apple.
Note that Apple M1 chip support is still a work in progress. While Android Studio
Arctic Fox appears to have M1 support, it also appears that this support is a bit
rough in spots. Hopefully, this will smooth out with future versions of Android Studio.
Step #2: Install Android Studio
At the time of this writing, the current production version of Android Studio is
2020.3.1 Arctic Fox and this book covers that version. Android Studio gets updated often, and so
you may be on a newer version — there may be some differences
between what you have and what is presented here.
You have two major download options.
You can get the latest shipping version of Android Studio from
the Android Studio download page.
Or, you can download Android Studio Arctic Fox directly, for:

	Windows

	macOS x86

	macOS M1

	Linux

Windows users can download a self-installing EXE, which will add suitable
launch options for you to be able to start the IDE.
Mac x86 users can
download a DMG disk image and install it akin to other Mac software, dragging
the Android Studio icon into the Applications folder. M1 users get a ZIP file instead.
Linux users can download a ZIP file, then
unZIP it to some
likely spot on your hard drive.
Android Studio can then be run from the studio batch file
or shell script in your Android Studio installation’s bin/ directory.
Step #3: Run Android Studio
When you first run Android Studio, you may be asked if you want to import
settings from some other prior installation of Android Studio:

[image: Android Studio First-Run Settings Migration Dialog]

Figure 5: Android Studio First-Run Settings Migration Dialog
If you are using Android Studio for the first time,
the “Do not import settings” option is the correct choice to make.
Then, after a short splash screen, you may be presented with a “Data Sharing” dialog:

[image: Android Studio Data Sharing Dialog]

Figure 6: Android Studio Data Sharing Dialog
Click whichever button you wish.
Eventually, you will be taken to the Android Studio Setup Wizard:

[image: Android Studio Setup Wizard, First Page]

Figure 7: Android Studio Setup Wizard, First Page
Just click “Next” to advance to the second page of the wizard:

[image: Android Studio Setup Wizard, Second Page]

Figure 8: Android Studio Setup Wizard, Second Page
Here, you have a choice between “Standard” and “Custom” setup modes.
Most likely, right now, the “Standard” route will be fine for your environment.
If you go the “Standard” route and click “Next”, you should be taken
to a wizard page where you can choose your UI theme:

[image: Android Studio Setup Wizard, UI Theme Page]

Figure 9: Android Studio Setup Wizard, UI Theme Page
Choose whichever you like, then click “Next”,
to go to a wizard page to verify what will be downloaded and installed:

[image: Android Studio Setup Wizard, Verify Settings Page]

Figure 10: Android Studio Setup Wizard, Verify Settings Page
Clicking “Next” may take you
to a wizard page explaining some information about the Android emulator:

[image: Android Studio Setup Wizard, Emulator Info Page]

Figure 11: Android Studio Setup Wizard, Emulator Info Page
What is explained on this page may not make much sense to you. That
is perfectly normal, and we will get into what this page is trying to
say later in the book. Just click “Finish” to begin
the setup process. This will include downloading a copy of the Android
SDK and installing it into a directory adjacent to where Android Studio
itself is installed.
When that is done, Android
Studio will busily start downloading stuff to your development machine.
Clicking “Finish” when that is done will then take you
to the Android Studio Welcome dialog:

[image: Android Studio Arctic Fox Welcome Dialog]

Figure 12: Android Studio Arctic Fox Welcome Dialog
Creating a Starter Project
Creating an Android application first involves creating an Android “project”.
As with many other development environments, the project is where your source
code and other assets (e.g., icons) reside. And, the project contains the
instructions for your tools for how to convert that source code and other
assets into an Android APK file for use with an emulator or device, where
the APK is Android’s executable file format.
Hence, in this tutorial, we kick off development of a sample Android application, to give
you the opportunity to put some of what you are learning in this book
in practice.
Step #1: Importing the Project
First, we need an Android project to work in.
Sometimes, you will create a new project yourself, using Android Studio’s new-project
wizard. However, frequently, you will start with an existing project that somebody
else created. For example, if you are joining an Android development team, odds are
that somebody else will create the project, or the project will already have been
created by the time you join. In those cases, you will import an existing project,
and that’s what we will do here.
Download the starter project from CommonsWare’s Web site.
Then, UnZIP that project to some place on your development machine. It will
unZIP into a ToDo/ directory.
At that point, look at the contents of gradle/wrapper/gradle-wrapper.properties. It should
look like this:

#Sun Aug 15 13:58:44 EDT 2021
distributionBase=GRADLE_USER_HOME
distributionUrl=https\://services.gradle.org/distributions/gradle-7.0.2-bin.zip
distributionPath=wrapper/dists
zipStorePath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME

(from T02-Project/ToDo/gradle/wrapper/gradle-wrapper.properties)
In particular, make sure that the distributionUrl points to a services.gradle.org
URL. Never import a project into Android Studio without checking the
distributionUrl, as a malicious person could have distributionUrl
point to malware that Android Studio would load and execute.
Then, import the project. From the Android Studio welcome dialog — where we left
off in the previous tutorial — that is handled
by the “Import project (Gradle, Eclipse ADT, etc.)” option. From an existing
open Android Studio IDE window, you would use File > New > Import Project… from
the main menu.
Importing a project brings up a typical directory-picker dialog. Pick the ToDo/
directory and click “OK” to begin the import process. This may take a while,
depending on the speed of your development machine. A “Tip of the Day” dialog
may appear, which you can dismiss.
At this point, the IDE window should be open on your starter project:

[image: ToDo Project, As Initially Imported]

Figure 13: ToDo Project, As Initially Imported
The “Project” view — docked by default on the left side, towards the
top — brings up a way for you to view what is in the project.
Android Studio has several ways of viewing the contents
of Android projects. The default one, that you are presented with when
creating or importing the project, is known as the “Android view”:

[image: Android Studio, Project View, Android Content]

Figure 14: Android Studio, Project View, Android Content
While you are welcome to navigate your project using it, the tutorial chapters
in this book, where they have screenshots of Android Studio, will show the
“Project” contents in this view:

[image: Android Studio, Project View, Project Content]

Figure 15: Android Studio, Project View, Project Content
To switch to this view — and therefore match what the tutorials
will show you — click the Android drop-down above the tree and choose “Project”
from the list.
Step #2: Setting Up the Emulator AVD
Your first decision to make is whether or not you want to bother setting up an emulator
image right now. If you have an Android device, you may prefer to start testing
your app on it, and come back to set up the emulator at a later point. In
that case, skip to Step #3.
The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The
AVD Manager is where you create these AVDs.
To open the AVD Manager in Android Studio, choose Tools > AVD Manager
from the main menu.
By default, you have no AVDs to use:

[image: Android Studio AVD Manager, With Pre-Installed AVD]

Figure 16: Android Studio AVD Manager, With Pre-Installed AVD
To create an AVD, click the “Create Virtual Device” button,
which brings up a “Virtual Device Configuration” wizard:

[image: Android Studio Virtual Device Configuration Wizard, First Page]

Figure 17: Android Studio Virtual Device Configuration Wizard, First Page
The first page of the wizard allows you to choose a device profile
to use as a starting point for your AVD. The “New Hardware Profile”
button allows you to define new profiles, if there is no existing profile
that meets your needs.
Since emulator speeds are tied somewhat to
the resolution of their (virtual) screens, you generally aim for a device
profile that is on the low end but is not completely ridiculous. For
example, a 1280x768 or 1280x720 phone would be considered by many people to be fairly
low-resolution. However, there are plenty of devices out there at that
resolution (or lower), and it makes for a reasonable starting emulator.
If you want to create a new device profile based on an existing one — to
change a few parameters but otherwise use what the original profile had —
click the “Clone Device” button once you have selected your starter profile.
However, in general, at the outset, using an existing profile is perfectly
fine. The Nexus 4 image is a likely choice to start with.
Clicking “Next” allows you to choose an emulator image to use:

[image: Android Studio Virtual Device Configuration Wizard, Second Page]

Figure 18: Android Studio Virtual Device Configuration Wizard, Second Page
The emulator images are spread across three tabs:

	“Recommended”

	“x86 Images”

	“Other Images”

For the purposes of the tutorials, you do
not need an emulator image with the “Google APIs” — those
are for emulators that have
Google Play Services in them and related apps like Google Maps.
However,
in terms of API level, you can choose anything from API Level 21 (Android 5.0)
on up.
It is best to use one of the x86 images for the best emulator performance. On the “x86 Images” tab,
you should see some entries with a “Download” link, and you might see others
without it.
The emulator images
with “Download” next to them will trigger a one-time download of the files
necessary to create AVDs for that particular API level and CPU architecture
combination, after another license dialog and progress dialog:

[image: Android Studio Component Installer Dialog, Downloading API 29 Image]

Figure 19: Android Studio Component Installer Dialog, Downloading API 29 Image
Once you have identified the image that you want — and have downloaded
it if needed — click on one of
them in the wizard. Clicking “Next” allows you to finalize the configuration of your AVD:

[image: Android Studio Virtual Device Configuration Wizard, Third Page]

Figure 20: Android Studio Virtual Device Configuration Wizard, Third Page
If you get the “Recommendation” box with the red “Your CPU does not support required
features…” message, your development machine
is not set up to support this type of emulator image. For example, you may need to enable
virtualization extensions in your PC’s BIOS, as was noted in the previous tutorial.
A default name for the AVD is suggested, though you are welcome to replace
this with your own value.
However, that name must be something valid: only letters, numbers,
spaces, and select punctuation (e.g., ., _, -, (,)) are supported.
The rest of the default values should be fine for now.
Clicking “Finish” will return you to the main AVD Manager, showing your
new AVD. You can then close the AVD Manager window.
If you also have a physical device that you want to use for testing, continue
with Step #3. Otherwise, feel free to skip to Step #4.
Step #3: Setting Up the Device
You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application
(e.g., upload it to the Play Store). And, perhaps you already have a device
– maybe that is what is spurring your interest in developing for Android.
If you do not have an Android device that you wish to set up for development,
skip this step.
The first thing to do to make your device ready for use with development is to go into
the Settings application on the device. On Android 8.0+, go into System > About
phone. On older devices, About is usually a top-level entry.
In the About screen, tap on the build number seven
times, then press BACK, and go into “Developer options” (which was formerly
hidden)

[image: Developer Options, in Android 9.0 Settings App]

Figure 21: Developer Options, in Android 9.0 Settings App
You may need to slide a switch in the upper-right corner of the screen to the
“ON” position to modify the values on this screen.
Generally, you will want to scroll down and
enable USB debugging, so you can use your device
with the Android build tools:

[image: Debugging Options, in Android 9.0 Settings App]

Figure 22: Debugging Options, in Android 9.0 Settings App
You can leave the other settings alone for now if
you wish, though you may find the “Stay awake” option to be handy, as it saves
you from having to unlock your phone all of the time while it is plugged into
USB.
Note that on Android 4.2.2 and higher devices, before you can actually
use the setting you just toggled, you will be prompted to allow
USB debugging with your specific development machine via a dialog box:

[image: Allow USB Debugging Dialog]

Figure 23: Allow USB Debugging Dialog
This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.
Windows
When you first plug in your Android device, Windows will attempt to find a
driver for it. It is possible that, by virtue of other software you have
installed, that the driver is ready for use. If it finds a driver, you are
probably ready to go.
If the driver is not found, here are some options for getting one.
Windows Update
Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have
supplied its driver to Microsoft.
Standard Android Driver
In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is
suitable for your device. This will often work for Nexus devices.
Manufacturer-Supplied Driver
If you still do not have a driver, the
OEM USB Drivers
in the developer documentation may help you find one for download from your
device manufacturer. Note that you may need the model number for your device,
instead of the model name used for marketing purposes (e.g., GT-P3113 instead
of “Samsung Galaxy Tab 2 7.0”).
macOS and Linux
It is likely that simply plugging in your device will “just work”.
If you are running Ubuntu (or perhaps other Linux variants), and when you later
try running your app it appears that Android Studio does not “see” your device,
you may need to add some udev rules. This GitHub repository
contains some instructions and a large file showing the rules for devices
from a variety of manufacturers, and this blog post
provides more details of how to work with udev rules for Android devices.
Step #4: Running the Project
Now, we can confirm that our project is set up properly by running it
on a device or emulator.
Android Studio has a toolbar just below the main menu. In that toolbar, you
will find two drop-down lists, followed by the Run toolbar button
(usually depicted as a green rightward-pointing triangle):

[image: Android Studio Toolbar Segment]

Figure 24: Android Studio Toolbar Segment
The first drop-down says “this is what I want to run”. Right now, your only
viable option is “app”, referring to the app that this project builds.
The second drop-down says “this is where I want to run it”. Here, you will
find a list of devices and emulators that are available to you.
To run the app, choose your desired device or emulator in the second drop-down,
then click the Run toolbar button. If you choose an emulator, and the emulator
is not already running, Android Studio will start it up. Then, after a short
wait, your app should appear on it:

[image: Android 8.1 Device, Showing ToDo App]

Figure 25: Android 8.1 Device, Showing ToDo App
Note that you may have to unlock your device or emulator to actually see the
app running.
The first time you launch the emulator for a particular AVD, you may see this
message:

[image: Android Emulator Cold-Boot Warning]

Figure 26: Android Emulator Cold-Boot Warning
The emulator behaves a bit more like an Android device. Closing the
emulator window is like tapping the POWER button to turn off the screen. The next
time you start that particular AVD, it will wake up to the state in which
you left it, rather than booting from scratch (“cold boot”). This speeds up
starting the emulator. Occasionally, though, you will have the need to start
the emulator as if the device were powering on. To do that, in the AVD Manager,
in the drop-down menu in the Actions column, choose “Cold Boot Now”.

[image: AVD Manager, Showing Actions Drop-Down Menu]

Figure 27: AVD Manager, Showing Actions Drop-Down Menu
Modifying the Manifest
Now that we have our starter project, we need to start making changes, as we
have a lot of work to do.
In this tutorial, we will start with the Android manifest, one of the core files
in an app. Here, we will make a few
changes, just to help get you familiar with editing this file. We will be
returning to this file — and other core files, like Gradle build files —
many times over the course of the rest of the book.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about the contents of the manifest in the "Inspecting Your Manifest" chapter of
Elements of Android Jetpack!

Some Notes About Relative Paths
In these tutorials, you will see references to relative paths, like AndroidManifest.xml,
res/layout/, and so on.
You should interpret these paths as being relative to the app/src/main/
directory within the project, except as otherwise noted. So, for example, Step #1 below
will ask you to open AndroidManifest.xml — that file can be found in
app/src/main/AndroidManifest.xml from the project root.
Step #1: Supporting Screens
Android devices come in a wide range of shapes and sizes. Our app can support
them all. However, we should advise Android that we are indeed willing to
support any screen size. To do this, we need to add a <supports-screens> element
to the manifest.
To do this, double-click on AndroidManifest.xml in the project explorer:

[image: Android Studio, Showing Manifest Editor]

Figure 28: Android Studio, Showing Manifest Editor
As a child of the root <manifest> element, add a <supports-screens> element as follows:

<supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true"/>

At this point, the manifest should resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.commonsware.todo"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Step #2: Blocking Backups
If you look at the <application> element, you will see that it
has a few attributes, including android:allowBackup="true".
This attribute indicates that ToDo should participate in
Android’s automatic backup system.
That is not a good idea, until you understand the technical
and legal ramifications of that choice.
In the short term, change android:allowBackup to be false.
Final Results
At this point, your manifest should look like:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.todo">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true"/>

 <application
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from T03-Manifest/ToDo/app/src/main/AndroidManifest.xml)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/AndroidManifest.xml

Changing Our Icon
Our ToDo project has some initial resources, such as our app’s display name
and its launcher icon. However, the defaults are not what
we want for the long term. So, in addition to adding new resources in future
tutorials, we will change the launcher icon in this tutorial.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about Android’s resource system in the "Exploring Your Resources" chapter of
Elements of Android Jetpack!

You can learn more about launcher icons and the Image Asset Wizard in the "Icons" chapter of
Elements of Android Jetpack!

Step #1: Getting the Replacement Artwork
First, we need something that visually represents a to-do list, particularly
when shown as the size of an icon in a launcher.
This piece of clipart, originally
from OpenClipArt.org, will serve this purpose:

[image: Checklist Clipart from OpenClipArt.org]

Figure 29: Checklist Clipart from OpenClipArt.org
Download the PNG file
to some location on your development machine outside of the project directory.
You will only need it for a few minutes, so feel free to use a temporary location
(e.g., /tmp on Linux) if desired.
Step #2: Changing the Icon
Android Studio includes an Image Asset Wizard that is great at creating
launcher icons. This is important, as while creating launcher icons used
to be fairly simple, Android 8.0 made launcher icons a lot more complicated…
but the Image Asset Wizard hides most of that complexity.
First, right-click over the res/ directory in your main source set
in the project explorer:

[image: Android Studio Project Tree Context Menu]

Figure 30: Android Studio Project Tree Context Menu
In that context menu, choose New > Image Asset from the context
menu. That will bring up the Asset Studio wizard:

[image: Android Studio Image Asset Wizard, As Initially Launched]

Figure 31: Android Studio Image Asset Wizard, As Initially Launched
In the “Icon Type” drop-down, make sure that “Launcher Icons (Adaptive and Legacy)”
is chosen — this should be the default. Also, ensure that the “Name” field
has ic_launcher, which also should be the default.
In the “Foreground Layer” tab, ensure that the “Layer Name” is ic_launcher_foreground.
In the “Source Asset” group, ensure that the “Asset Type” is set to “Image”.
Then, click the folder button next to the “Path” field, and find the clipart that
you downloaded in Step #1 above.
When you load the image, it will be just a bit too big:

[image: Android Studio Image Asset Wizard, With Custom Image]

Figure 32: Android Studio Image Asset Wizard, With Custom Image
To fix this, in the “Scaling” group, select “Yes” for “Trim”. Then, adjust
the “Resize” slider until the clipart is inside the circular “safe zone” region
in the previews. A “Resize” value of around 80% should work:

[image: Android Studio Image Asset Wizard, With Scaled Custom Image]

Figure 33: Android Studio Image Asset Wizard, With Scaled Custom Image
Switch to the “Background Layer” tab and ensure that the “Layer Name” is
ic_launcher_background. Then, switch the “Asset Type” to “Color”:

[image: Android Studio Image Asset Wizard, Background Layer Tab, Using Default Color Background]

Figure 34: Android Studio Image Asset Wizard, Background Layer Tab, Using Default Color Background
If you do not like the default color, tap the hex color value to bring up
a color picker:

[image: Android Studio Image Asset Wizard Color Picker Modal]

Figure 35: Android Studio Image Asset Wizard Color Picker Modal
Pick some other color (such as #006144) to apply it to the icon background, then
click anywhere outside the modal to dismiss it:

[image: Android Studio Image Asset Wizard, Background Layer Tab, Using Custom Color Background]

Figure 36: Android Studio Image Asset Wizard, Background Layer Tab, Using Custom Color Background
Then, switch to the “Options” tab. Ensure that the “Generate” value is “Yes” for
both “Legacy Icon” and “Round Icon”, but set it to “No” for “Google Play Store
Icon” (as this app will not be published on the Play Store). Also, switch
the “Shape” value for the “Legacy Icon” to “Circle”:

[image: Android Studio Image Asset Wizard, Options Tab, Using Custom Settings]

Figure 37: Android Studio Image Asset Wizard, Options Tab, Using Custom Settings
That way, our icon should be the same on most pre-Android 8.0 devices. On
Android 8.0+ devices — and on a few third-party launchers on older devices —
our icon will be our clipart on our chosen background color, but with a shape
determined by the launcher implementation.
Click the “Next” button at the bottom of the wizard to advance to a confirmation
screen:

[image: Android Studio Image Asset Wizard, Confirmation Page]

Figure 38: Android Studio Image Asset Wizard, Confirmation Page
There will be a warning that existing files will be overwritten. Since that is
what we are intending to do, this is fine.
Click “Finish”, and Android Studio will generate your launcher icon.
Step #3: Running the Result
If you run the resulting app, then go back to the launcher,
you will see that it shows up with the new icon:

[image: Android Launcher, Showing App Icon]

Figure 39: Android Launcher, Showing App Icon
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
A number of files were changed in app/src/main/res/, as creating launcher
icons is annoyingly complicated.
Adding a Library
Most of an Android app comes from code that you did not write. It comes from
code written by others, in the form of libraries. Even though we have not
gotten very far with the ToDo app, we are already using some libraries, and
in this chapter, we will update that roster.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about Gradle in the "Reviewing Your Gradle Scripts" chapter of
Elements of Android Jetpack!

Step #1: Examining What We Have
Open app/build.gradle in Android Studio. You will find that it contains
a dependencies closure that looks like this:

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T04-Resources/ToDo/app/build.gradle)
A new Android Studio project will contain this sort of initial set of dependencies,
though the details will vary a bit depending on Android Studio version and the
particular choices you make when creating the project. The implementation,
testImplementation, and androidTestImplementation lines indicate libraries
that we want to use, where implementation is for our app and the others are
for our tests.
Step #2: Adding Support for RecyclerView

The idea is that the ToDo app will present a list of tasks to be done. That
requires that we have something to display a list to the user. There are
two typical solutions for that problem: ListView and RecyclerView.
RecyclerView is more modern and more flexible, so it is a good choice for
this problem.
However, ListView does have one advantage over RecyclerView: ListView
is part of the framework portion of the Android SDK, and so it is always
available to apps. RecyclerView requires us to add a dependency to the app.
Fortunately, we happen to be in a tutorial where we are working with the
dependencies in the app.
To that end, inside the dependencies closure, add the following line:

 implementation "androidx.recyclerview:recyclerview:1.2.1"

(from T05-Libraries/ToDo/app/build.gradle)
At this point, you should get a banner at the top of the editor, offering
you the chance to “Sync Now”:

[image: Android Studio Sync Now Banner]

Figure 40: Android Studio “Sync Now” Banner
Go ahead and click the “Sync Now” link in the banner at the top
of the editor.
Final Results
Your resulting app/build.gradle file should now resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T05-Libraries/ToDo/app/build.gradle)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

Constructing a Layout
Our starter project has a layout resource: res/layout/activity_main.xml
already. However, it is just a bit different from what we need. So, in this
tutorial, we will modify that layout, using the Android Studio drag-and-drop
GUI builder.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about ConstraintLayout in the "Introducing ConstraintLayout" chapter of
Elements of Android Jetpack!

Step #1: Examining What We Have And What We Want
The starter project has a single layout resource, in res/layout/activity_main.xml.
Open that in the IDE.
If it does not open up showing you XML, look towards the upper-right corner
of the editor for a small toolstrip of icons:

[image: Android Studio Layout Editor Toolstrip]

Figure 41: Android Studio Layout Editor Toolstrip
Click the “Code” button to switch to viewing the XML of the layout.
That XML should look like:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

(from T05-Libraries/ToDo/app/src/main/res/layout/activity_main.xml)
We have a ConstraintLayout as our root container. ConstraintLayout
comes from that androidx.constraintlayout:constraintlayout artifact
that we saw in our dependencies list in the preceding tutorial.
ConstraintLayout
is Google’s recommended base container for most layout resources, as it is
the most flexible option.
Inside, we have a TextView, with a simple “Hello World!” message.
As it turns out, we can use both the ConstraintLayout and the TextView in the UI that we are going
to construct:

[image: Android Studio Layout Designer, Showing End Result of This Tutorial]

Figure 42: Android Studio Layout Designer, Showing End Result of This Tutorial
We want:

	a RecyclerView, to use for our list of to-do items

	a TextView, to show when the RecyclerView is empty

The RecyclerView and the TextView will go in the same space.
In code, we will toggle the visibility of the TextView, so that
it is visible when we have no to-do items to show in the RecyclerView and
hidden when we have one or more to-do items to show.
Step #2: Adding a RecyclerView
In that toolstrip, click the “Design” button,
to switch to the design view. Then, in the “Palette”
area, switch to “Common” category:

[image: Android Studio Layout Designer Palette]

Figure 43: Android Studio Layout Designer Palette
Drag a RecyclerView out of the “Palette” and drop it in
the preview area:

[image: Android Studio Layout Designer, Showing Added RecyclerView]

Figure 44: Android Studio Layout Designer, Showing Added RecyclerView
This will take up the top or bottom half of the layout, or possibly the full layout,
or possibly just the middle of the layout, depending on where you drop it.
Unfortunately, the Android Studio layout editor has many issues, including
making the RecyclerView too big to manipulate. Grab a corner
of the RecyclerView and drag it inwards to shrink it a bit. Then, drag
the RecyclerView away from the edge a bit, to give you room
to maneuver on all four sides:

[image: Android Studio Layout Designer, Showing Resized and Moved RecyclerView]

Figure 45: Android Studio Layout Designer, Showing Resized and Moved RecyclerView
Hover your mouse over the left edge of the RecyclerView preview rectangle, find
the dot towards the center of the left edge, and drag it to
connect with the left edge of the preview area, which will connect it to that
side of the ConstraintLayout:

[image: Android Studio Layout Designer, Showing RecyclerView Anchored on the Left]

Figure 46: Android Studio Layout Designer, Showing RecyclerView Anchored on the Left
Repeat that process on the right side:

[image: Android Studio Layout Designer, Showing RecyclerView Anchored on Both Sides]

Figure 47: Android Studio Layout Designer, Showing RecyclerView Anchored on Both Sides
Repeat that process on the top side:

[image: Android Studio Layout Designer, Showing RecyclerView Anchored on Both Sides and the Top]

Figure 48: Android Studio Layout Designer, Showing RecyclerView Anchored on Both Sides and the Top
Repeat that process on the bottom side:

[image: Android Studio Layout Designer, Showing RecyclerView Anchored on All Four Sides]

Figure 49: Android Studio Layout Designer, Showing RecyclerView Anchored on All Four Sides
In the “Attributes” pane on the right side of the Layout Designer, change the
layout_width and layout_height values each to match_constraint
(a.k.a., 0dp) from their current fixed values:

[image: Android Studio Layout Designer, Attributes Pane, Showing New Sizes (Highlighted)]

Figure 50: Android Studio Layout Designer, Attributes Pane, Showing New Sizes (Highlighted)
Now, you should see our RecyclerView fill the entire space. More importantly,
we taught the RecyclerView to fill the entire space, no matter what the screen
size is. Before, the RecyclerView would have some fixed size, regardless of whether
the screen is larger or smaller than that size.
Back in the “Attributes” pane, give the RecyclerView an ID of items, via
the field at the top:

[image: Android Studio Layout Designer, Attributes Pane, ID Highlighted]

Figure 51: Android Studio Layout Designer, Attributes Pane, ID Highlighted
Step #3: Adjusting the TextView
We can reuse the TextView that came in the starter project, but we need
to make a few changes to it. However, to change it, we need to select it first,
and now it is covered by the RecyclerView that we just added. Instead,
click on the TextView entry in the “Component Tree” pane of the Layout
Designer:

[image: Android Studio Layout Designer, Component Tree Pane]

Figure 52: Android Studio Layout Designer, Component Tree Pane
Then, in the “Attributes” pane, fill in empty for the ID. Then, click on the “O”
button to the side of the “text” field that has “Hello World!” as its current
value:

[image: Android Studio Layout Designer, Attributes Pane, with Arrow Pointing to Button]

Figure 53: Android Studio Layout Designer, Attributes Pane, with Arrow Pointing to Button
This will bring up a dialog showing available string resources:

[image: Android Studio Resource Selector]

Figure 54: Android Studio Resource Selector
Click the “+” icon to fold open a drop-down menu, and in there choose
“String Value”. This brings up a dialog to define a new string resource:

[image: Android Studio New String Resource Dialog]

Figure 55: Android Studio New String Resource Dialog
For the “Resource name”, fill in msg_empty. For the “Resource value”, fill
in “placeholder text”:

[image: Android Studio New String Resource Dialog, with Values]

Figure 56: Android Studio New String Resource Dialog, with Values
As the text suggests, this is a placeholder for a better message that we will
swap in later in this book.
Click “OK” to define the resource, then click “OK” to close the resource selector,
and you should be taken back to the designer.
Then, in the “Common Attributes” section, fill in the following value for the “textAppearance”:
?android:attr/textAppearanceMedium

This says “we want this text to be in the standard medium text size for whatever
overall UI theme we happen to be using”.
This, then, gives us what we were seeking from the outset:
the RecyclerView, and the TextView, all properly configured and positioned:

[image: Android Studio Layout Designer, Showing End Result of This Tutorial]

Figure 57: Android Studio Layout Designer, Showing End Result of This Tutorial
If you run the app, since the MainActivity loads up this layout resource
via setContentView(R.layout.activity_main), you will see the “placeholder text”
and nothing else:

[image: ToDo App, As Currently Implemented]

Figure 58: ToDo App, As Currently Implemented
We have not put anything into the RecyclerView, so it has
no content for us to see.
Final Results
At this point, your activity_main layout resource XML should look something like:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/empty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/msg_empty"
 android:textAppearance="?android:attr/textAppearanceMedium"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/items"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

(from T06-Layout/ToDo/app/src/main/res/layout/activity_main.xml)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/layout/activity_main.xml

Integrating Fragments
As we saw at the outset, there will be three main elements
of the user interface when we are done:

	a list of to-do items

	a place to edit an item, whether that is a new one being added to the list
or modifying an existing one

	a place to view details of a single item

We will use fragments to implement each of those. This lines up with current
recommended practices in Android development, and it gives us the flexibility
to rearrange those bits of UI in varying situations (e.g., show both the list and
one of the other fragments at the same time on larger-screen devices). In this
chapter, we start setting up the first of these fragments, to show the list of to-do items.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about fragments in the "Adopting Fragments" chapter of
Elements of Android Jetpack!

But First, Some Notes About Working with Kotlin
Starting in this tutorial, we will begin editing Kotlin source files. Some
useful Android Studio shortcut key combinations are:

	Alt-Enter (Option-Return on macOS)
will bring up context-aware “quick-fixes” for the problem at the code
where the cursor is.

	Ctrl-Alt-O (Command-Option-O on macOS)
will organize your Java import statements, including
removing unused imports.

	Ctrl-Alt-L (Command-Option-L on macOS)
will reformat the Kotlin or XML in the current editing
window, in accordance with either the default styles in Android Studio or whatever
you have modified them to in Settings.

Copying and pasting Kotlin code from this book may or may not work, depending on what
you are using to read the book. For the PDF, some PDF viewers (e.g., Adobe
Reader) should copy the code fairly well; others may do a much worse job.
The book’s preface has a section with recommended PDF viewers.
Reformatting the code with Ctrl-Alt-L (Command-Option-L on macOS)
after pasting it in sometimes helps.
Also, you may find it useful to have the IDE supply “hints” about the types it
thinks that variables and function return values resolve to. Kotlin does not require you
to enter all of the type information, as the compiler can infer types in many
places. However, sometimes that makes it difficult to identify where things are
going wrong. Enabling type hints allows the IDE to tell you the inferred types, without
you having to enter those types yourself:

[image: Android Studio Kotlin Editor, Showing Variable Type Hint]

Figure 59: Android Studio Kotlin Editor, Showing Variable Type Hint
To toggle this on, go into the
Settings dialog (“File” > “Settings” in Linux and Windows, and in “Android Studio” > “Preferences…” on macOS).
Drill down into “Editor” > “Inlay Hints” > “Kotlin” in the category tree
on the left, then check the hints that you want in the various lists:

[image: Android Studio Settings, Showing Type Hints Options]

Figure 60: Android Studio Settings, Showing Type Hints Options
And if you see a “Code Vision” checkbox with no caption,
that is a bug.
Step #1: Creating a Fragment
First, we need to set up a fragment. While Android Studio offers a new-fragment
wizard, its results are poor, so we will create one as a normal Kotlin class.
Right-click over the com.commonsware.todo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. This will bring up a strange-looking popup
where we can define a new Kotlin class:

[image: Android Studio Create Kotlin Class Popup]

Figure 61: Android Studio Create Kotlin Class Popup
For the name, fill in RosterListFragment, as this fragment is showing a list
of our to-do items. Choose “Class” in the list of Kotlin structures below the field.
Then, press Enter or Return to create the class. That will give you a RosterListFragment that looks like:

package com.commonsware.todo

class RosterListFragment {
}

Modify it to extend androidx.fragment.app.Fragment:

package com.commonsware.todo

import androidx.fragment.app.Fragment

class RosterListFragment : Fragment() {
}

Step #2: Renaming Our Layout
We want to show the layout resource that we tweaked in the preceding chapter.
However, our layout resource is called activity_main,
and we want to use it from a fragment, not an activity.
So, let’s rename this layout to todo_roster instead.
To do that, right-click over res/layout/activity_main.xml in the project
tree, then choose “Refactor” > “Rename” from the context menu. This will bring
up a dialog for you to provide the replacement name:

[image: Android Studio Rename Dialog]

Figure 62: Android Studio Rename Dialog
Change that to be todo_roster.xml, then click “Refactor”. This may display
a “Refactoring Preview” view towards the bottom of the IDE:

[image: Android Studio Refactoring Preview view]

Figure 63: Android Studio Refactoring Preview view
This will not appear for everything that you rename, but it will show up
from time to time, particularly when Android Studio wants confirmation that you really
want to rename all of these things. If it does show up, click the “Do Refactor”
button towards the bottom of the “Refactoring Preview” view.
Step #3: Inflating Our Layout
Right now, this fragment does not do anything, and we need it to display our user
interface. So, with your cursor inside the { } of the class, press Ctrl-O
to bring up a list of methods that we could override:

[image: Android Studio Method Override Dialog]

Figure 64: Android Studio Method Override Dialog
If you start typing with that dialog on the screen, what you type in works as
a search mechanism, jumping you to the first method that resembles what you
typed in. So, start typing in onCreateView, until that becomes the selected
method:

[image: Android Studio Method Override Dialog, During Search]

Figure 65: Android Studio Method Override Dialog, During Search
Then, click “OK” to add a stub implementation of that method to your RosterListFragment:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment

class RosterListFragment : Fragment() {
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 return super.onCreateView(inflater, container, savedInstanceState)
 }
}

The override keyword means that we are overriding an existing function that we are
inheriting from Fragment.
The job of onCreateView() of a fragment is to set up the UI for that fragment.
In MainActivity, right now, we are doing that by calling setContentView(R.layout.activity_main).
We want to use that layout file here instead. To do that, modify onCreateView()
to look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment

class RosterListFragment : Fragment() {
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 return inflater.inflate(R.layout.todo_roster, container, false)
 }
}

Here, we use the supplied LayoutInflater. To “inflate” in Android means “convert
an XML resource into a corresponding tree of Java objects”. LayoutInflater
inflates layout resources, via its family of inflate() methods. We are specifically
saying:

	Inflate R.layout.todo_roster

	Its widgets will eventually go into the container supplied to onCreateView()

	Do not put those widgets in that container right now, as the fragment system
will handle that for us at an appropriate time

In practice, you could skip the return type of the function. However, Android
Studio will complain about that, as Kotlin cannot tell whether onCreateView()
is allowed to return null or not. So, to eliminate the Android Studio warning,
we have onCreateView() return View? specifically.
Note that at this point you cannot see this fragment. We need to take some steps
to have MainActivity display it, which we will handle in the next tutorial.
Step #4: Dealing with Crashes
Most likely, you will not need this step.
But, sometimes, when writing Android apps, you will make mistakes. Your code will
compile, but then it will crash at runtime. A crash is signaled by a dialog
indicating that there was a problem. The look of that dialog varies by Android
version, but a typical one is:

[image: Crash Dialog, on Android 8.1]

Figure 66: Crash Dialog, on Android 8.1
When that occurs, you can find out more about the crash by opening the Logcat
tool in Android Studio. By default, this is docked along the lower edge. Opening
it gives you access to all sorts of messages logged by apps and the operating
system.
There will be lots of messages.
Ideally, Android Studio would help you narrow down the messages. It offers a couple
of things for that:

	There is a message “severity” drop down (third from left in the screenshot below),
showing options like “Verbose” and
“Error” — crashes are logged at “Error” severity

	The end drop-down will default to “Show only selected application”, which will
then (theoretically) limit the output to only messages logged by your app, or
by whatever app is shown in the second drop-down

[image: Logcat, Showing Stack Trace]

Figure 67: Logcat, Showing Stack Trace
When you crash, you will get a red Java stack trace showing what went
wrong:

8937-8937/com.commonsware.todo E/AndroidRuntime: FATAL EXCEPTION: main
 Process: com.commonsware.todo, PID: 8937
 android.content.res.Resources$NotFoundException: Resource ID #0x7f060000 type #0x12 is not valid
 at android.content.res.Resources.loadXmlResourceParser(Resources.java:2139)
 at android.content.res.Resources.getLayout(Resources.java:1143)
 at android.view.MenuInflater.inflate(MenuInflater.java:111)
 at com.commonsware.todo.MainActivity.onCreateOptionsMenu(MainActivity.kt:14)
 at android.app.Activity.onCreatePanelMenu(Activity.java:3388)
 at com.android.internal.policy.PhoneWindow.preparePanel(PhoneWindow.java:631)
 at com.android.internal.policy.PhoneWindow.doInvalidatePanelMenu(PhoneWindow.java:1024)
 at com.android.internal.policy.PhoneWindow$1.run(PhoneWindow.java:264)
 at android.os.Handler.handleCallback(Handler.java:790)
 at android.os.Handler.dispatchMessage(Handler.java:99)
 at android.os.Looper.loop(Looper.java:164)
 at android.app.ActivityThread.main(ActivityThread.java:6494)
 at java.lang.reflect.Method.invoke(Native Method)
 at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:438)
 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:807)

In this case, this comes from a modified version of this sample app, hacked
to introduce a crash. Typically, you look for the top-most line that refers to
your code. In this case, that is:

 at com.commonsware.todo.MainActivity.onCreateOptionsMenu(MainActivity.kt:14)

The location (MainActivity.kt:14) will be a link that you can click to jump
to that particular line of code. That, plus the error message, will hopefully
help you diagnose exactly what went wrong.
Final Results
Your RosterListFragment should look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment

class RosterListFragment : Fragment() {
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 return inflater.inflate(R.layout.todo_roster, container, false)
 }
}

(from T07-Fragments/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/layout/todo_roster.xml

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

Wiring In Navigation
In the last tutorial, we created a fragment, but we did not display it.
There are three main ways we have of displaying a fragment:

	Use a <fragment> element in a layout resource. This is for fragments that
we will be showing all the time.

	Use a FragmentTransaction to tell a FragmentManager to display a fragment
in a specified container.

	Use the Navigation component to abstract away requests to navigate to a particular
screen from the implementation of that screen.

In this tutorial, we will look at the third of those options.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about the Navigation component in the "Navigating Your App" chapter of
Elements of Android Jetpack!

Step #1: Defining the Version
We are going to have several dependencies entries tied to the Navigation
component. These will have synchronized version numbers, and we will want to
use the same version number for each dependency. So, it is best to define
the version number as a constant, so we can refer to that constant everywhere
we need the version number. Then, when the version number changes, we can change
it in one place and have it update all the necessary lines automatically.
If you open up the top-level build.gradle file — the one in the root of your
project — it should resemble this:

buildscript {

 repositories {
 google()
 mavenCentral()
 }

 dependencies {
 classpath "com.android.tools.build:gradle:7.0.2"
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.5.21"
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

(from T07-Fragments/ToDo/build.gradle)
Just after the opening buildscript { line, add:

 ext.nav_version = '2.3.5'

(from T08-Nav/ToDo/build.gradle)
This sets up a constant that we can use in our Gradle builds files. Specifically,
we are going to use a particular version of the Navigation component, and this
line sets up that version number.
After making this change, you should get a banner suggesting that you
“Sync Now” due to your Gradle changes. Ignore it for now, as we have more changes
to make.
Step #2: Adding the Plugin Dependency
In that same buildscript closure, you will see a list of dependencies:

 dependencies {
 classpath "com.android.tools.build:gradle:7.0.2"
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.5.21"
 }

(from T07-Fragments/ToDo/build.gradle)
These represent sources of Gradle plugins, for helping us do more interesting
things when we build our app.
Part of the Navigation component is a plugin, so we need to add another dependency
to the buildscript roster. So, add this line to that dependencies closure:

 classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"

(from T08-Nav/ToDo/build.gradle)
This pulls in the androidx.navigation:navigation-safe-args-gradle-plugin artifact,
for the version number that we specified. We use string interpolation to add our
nav_version value into the dependency, which is why this string uses double-quotes;
in Gradle (and the Groovy language it is built upon), a single-quoted string
cannot use string interpolation.
The banner should still be there, asking you to “Sync Now”. Continue to hold
off, as we need to make changes to another Gradle file.
Step #3: Requesting the Plugins
Just because we added a plugin artifact does not mean that we actually use the
plugin. We need an additional line to say where we want that plugin to take effect.
That line goes in the app/build.gradle file, representing build instructions
for the app module. We already have a plugins closure listing a pair of plugins:

plugins {
 id 'com.android.application'
 id 'kotlin-android'

(from T07-Fragments/ToDo/app/build.gradle)
Add one more to that list:

 id 'androidx.navigation.safeargs.kotlin'

(from T08-Nav/ToDo/app/build.gradle)
The androidx.navigation.safeargs.kotlin plugin is for “Safe Args”, a feature
of the Navigation component that helps us pass data from one screen to another.
You will be tempted by the banner asking you to “Sync Now”.
Do not give into the temptation.
(or, go ahead and click “Sync Now” if you really want to, though we have more
changes to make)
Step #4: Augmenting Our Dependencies
The line we added to dependencies in the top-level build.gradle file
defined an artifact that contributes compile-time code, in the form of this
Gradle plugin. We also need to add dependencies for runtime code, just as we
have for things like RecyclerView.
So, in app/build.gradle, in its dependencies closure, add these lines:

 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"

(from T08-Nav/ToDo/app/build.gradle)
The androidx.navigation:navigation-fragment-ktx artifact contains the core
code for using the Navigation component to navigate between fragments. The
androidx.navigation:navigation-ui-ktx contains a bit of additional code for
integrating navigation with the Toolbar.
You may now go ahead and click the “Sync Now” link in the
banner. Conversely, if for some reason that banner did not appear, choose
“File” > “Sync Project with Gradle Files” in the Android Studio main menu.
Step #5: Defining Our Navigation Graph
The Navigation component uses navigation resources to define navigation
graphs. A navigation graph simply states what screens there are, how they
are implemented (e.g., as fragments), and how they are connected. A navigation
graph is stored in a XML file as a navigation resource, in a res/navigation/
directory in your module.
We need to create a stub navigation graph for our app to begin using the
Navigation component.
With that in mind, right-click over the res/ directory in your module and
choose “New” > “Android resource file” from the context menu. This will bring
up a dialog that allows you to define a resource type and file in one shot:

[image: Android Studio New Resource File Dialog]

Figure 68: Android Studio New Resource File Dialog
Fill in nav_graph.xml for the filename. Choose “Navigation” for the “Resource
Type”. Then, click OK to create a res/navigation/ directory and a nav_graph.xml
file in it.
As with layout and menu resources, the editor for navigation resources contains multiple views,
controlled by toolbar buttons. The two main views are the one that shows the raw XML (“Code”)
and the one that shows a graphical navigation designer (“Design”).
If you click on “Code” to view the raw XML, you will see that our XML is pretty empty:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph">

</navigation>

To add RosterListFragment as our one-and-only screen, click the “Design” button to switch to the graphical designer view.
There, click the toolbar button that looks like a document with a green + sign in the
lower-right corner:

[image: Android Studio Navigation Resource Editor Toolbar]

Figure 69: Android Studio Navigation Resource Editor Toolbar
This will drop down a list of possible “destinations”, and RosterListFragment
will be among them:

[image: Android Studio Navigation Resource Editor Candidate Destinations]

Figure 70: Android Studio Navigation Resource Editor Candidate Destinations
Click on RosterListFragment in the drop-down list. That will add it as a destination
to our navigation graph:

[image: Android Studio Navigation Resource Editor, Showing One Destination, with Home Icon Highlighted]

Figure 71: Android Studio Navigation Resource Editor, Showing One Destination, with Home Icon Highlighted
The little house icon above the preview rectangle marks this destination
as the “home”. It is where this navigation graph will start, when we begin
using it to navigate screens in our app.
We will have several changes to make to this in later tutorials, but this will
suffice for now.
Step #6: Setting Up a New Activity Layout Resource
To navigate between fragments, the Navigation component uses one fragment as the
“host”. That fragment, in turn, will hold the fragments representing individual screens.
Earlier in the book, we had an activity_main layout resource, but we renamed it
to todo_roster when we converted the app to use fragments. Now, we need a layout
resource for our MainActivity again, where we can set up the host fragment.
So, right-click over the res/layout/ directory and choose “New” > “Layout resource file”
from the context menu. Fill in activity_main for the filename and use
ConstraintLayout for the “Root element” (if you start typing in that name, it
will show up in a selection list for you to choose from). Click “OK” to create
the mostly-empty layout resource.
We want to add a <FragmentContainerView> element to the layout resource. As the name suggests,
this is a container for a fragment and will show that fragment wherever we size and position it. An
android:name attribute will indicate what fragment class we want.
While the drag-and-drop GUI builder offers FragmentContainerView, not all widgets
and containers that we want to use will be available for drag-and-drop.
So, in this case, we will add this element by hand, directly in the XML.
Click on the “Code” button to switch to the XML editor view. There, add in this XML element as a child of the
ConstraintLayout element:

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/nav_host"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:defaultNavHost="true"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:navGraph="@navigation/nav_graph" />

(from T08-Nav/ToDo/app/src/main/res/layout/activity_main.xml)
This fragment will be part of our UI for as long
as we are using this layout. The actual fragment implementation is
androidx.navigation.fragment.NavHostFragment, which is a fragment from the
Navigation component that knows how to switch between screens defined in a
navigation resource. That navigation resource is identified via the
app:navGraph attribute, in this case pointing to our nav_graph that we
defined. The fragment also has app:defaultNavHost="true", which tells
the Navigation component that this fragment is the one responsible for
that navigation graph.
You may find that the app namespace shows up in red:

[image: Android Studio Layout XML Editor, Yelling About app Namespace]

Figure 72: Android Studio Layout XML Editor, Yelling About app Namespace
app is used as a namespace prefix for a lot of attributes used by widgets and
containers that we get from libraries. To add the definition of this namespace,
with the text cursor in one of those app prefixes, press Alt-Enter
(Option-Return on macOS) and choose “Create namespace declaration” from
the quick-fix menu.
Step #7: Wiring in the Navigation
We need to switch MainActivity to use this re-created activity_main
layout resource. So, change the onCreate() function in MainActivity
to be:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }

(from T08-Nav/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
If you now run the app, it should give you the same result as before we added
the fragment:

[image: ToDo App, After Switching to Fragment and Navigation]

Figure 73: ToDo App, After Switching to Fragment and Navigation
When we add new screens in upcoming tutorials, we will:

	Create fragments for those screens

	Add those as destinations in our navigation graph, connecting them with
previous screens to indicate how we move from one to the next

	Add some Kotlin code to say “let’s navigate from where we are to this destination”

And the rest will be taken care of by the Navigation component.
Final Results
Your overall top-level build.gradle should now resemble:

buildscript {
 ext.nav_version = '2.3.5'

 repositories {
 google()
 mavenCentral()
 }

 dependencies {
 classpath "com.android.tools.build:gradle:7.0.2"
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.5.21"
 classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

(from T08-Nav/ToDo/build.gradle)
The overall app/build.gradle file should now resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T08-Nav/ToDo/app/build.gradle)
The navigation resource XML (res/navigation/nav_graph.xml) now should resemble:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.RosterListFragment"
 android:label="RosterListFragment" />
</navigation>

(from T08-Nav/ToDo/app/src/main/res/navigation/nav_graph.xml)
The res/layout/activity_main.xml resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/nav_host"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:defaultNavHost="true"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:navGraph="@navigation/nav_graph" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from T08-Nav/ToDo/app/src/main/res/layout/activity_main.xml)
And MainActivity.kt should look like:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 }

(from T08-Nav/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	build.gradle

	app/build.gradle

	app/src/main/res/navigation/nav_graph.xml

	app/src/main/res/layout/activity_main.xml

	app/src/main/java/com/commonsware/todo/MainActivity.kt

Setting Up the App Bar
Next up is to configure the app bar in our ToDo application. The app
bar is that bar at the top of your activity UI, showing your app’s title.
It can also have toolbar-style buttons and an “overflow menu”, each holding
what are known as action items.
Google has made a bit of a mess of this app bar over the years, mixing the terms
“app bar”, “action bar”, and “toolbar”. This book will tend to use:

	
Toolbar, in monospace, when referring to the actual Toolbar class

	“App bar”, when referring to the concept of this bar

	“Toolbar buttons”, when referring to the icons that can appear in this bar
that the user can tap on to perform actions

In this tutorial, we will add a Toolbar to our UI that will serve as our app bar.
In that Toolbar, we will add an action item to the overflow menu to launch an
“about” page, though we will not actually show that page until a later tutorial.
And, along the way, we will update our app’s theme with a new color scheme.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about styles and themes in the "Defining and Using Styles" chapter of
Elements of Android Jetpack!

You can learn more about Toolbar in the "Configuring the App Bar" chapter of
Elements of Android Jetpack!

Step #1: Defining Some Colors
Just as Android has layout, drawable, and string resources, Android has color
resources. We can define some colors in a resource file, then apply those
colors elsewhere in our app.
By convention, colors are defined in a colors.xml file. Colors are considered
“value” resources, like our strings, and so the file would go into res/values/colors.xml.
But, we need to choose some colors.
To that end, visit https://www.materialpalette.com/,
which offers a very simple point-and-click way of setting up a color palette
for use in an Android app:

[image: Material Design Palette Site, As Initially Launched]

Figure 74: Material Design “Palette” Site, As Initially Launched
For the purposes of this tutorial, click on “Teal”, then “Amber”:

[image: Material Design Palette Site, With Teal/Amber Colors]

Figure 75: Material Design “Palette” Site, With Teal/Amber Colors
Then, click the “Download” button in the “Your Palette” area, and choose
“XML” as the type of file to download. This will trigger your browser to download
a file named colors_teal_amber.xml. Open in it your favorite text editor.
You should see something like:

<!-- Palette generated by Material Palette - materialpalette.com/teal/amber -->
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary">#009688</color>
 <color name="primary_dark">#00796B</color>
 <color name="primary_light">#B2DFDB</color>
 <color name="accent">#FFC107</color>
 <color name="primary_text">#212121</color>
 <color name="secondary_text">#757575</color>
 <color name="icons">#FFFFFF</color>
 <color name="divider">#BDBDBD</color>
</resources>

Then, in Android Studio, open your existing res/values/colors.xml file, which
will have three colors already defined:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#008577</color>
 <color name="colorPrimaryDark">#00574B</color>
 <color name="colorAccent">#D81B60</color>
</resources>

(from T08-Nav/ToDo/app/src/main/res/values/colors.xml)
The file from the Material “Palette” site has colors for the same roles as Android
Studio uses, but with slightly different names (e.g., primary instead
of colorPrimary). In the end, the names do not matter all that much. For the purposes
of this tutorial, we will use Android Studio’s names.
With that in mind, adjust res/values/colors.xml to use the colors from the
Material “Palette” site:

	Change colorPrimary to #009688

	Change colorPrimaryDark to #00796B

	Change colorAccent to #FFC107

You will see that the Android Studio color resource editor contains color swatches in the “gutter” area,
adjacent to each of the color values:

[image: Android Studio Values Resource Editor, with Color Swatches]

Figure 76: Android Studio Values Resource Editor, with Color Swatches
The color swatches are clickable
and will bring up a color picker, if you wanted to change any of the colors a
bit from what the site gave you:

[image: Android Studio Color Picker]

Figure 77: Android Studio Color Picker
Step #2: Adjusting Our Theme
The app bar color is one aspect of our app that is managed by a theme. A
theme provides overall “look and feel” instructions for our activity, including
the app bar color.
Your project already has a custom theme declared. If you look in your res/values/
directory, you will see a styles.xml file — open that in Android Studio:

<resources>

 <!-- Base application theme. -->
 <style name="Theme.ToDo" parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>

</resources>

(from T08-Nav/ToDo/app/src/main/res/values/styles.xml)
Here, we see that we have a style resource named Theme.ToDo. Style resources
can be applied either to widgets (to tailor that particular widget) or as a theme
to an activity or entire application. By convention, style resources with
“Theme” in the name are themes. This particular theme inherits from
Theme.AppCompat.Light.DarkActionBar, as indicated in the parent attribute.
And, it associates our three colors with three roles in the theme:

	
colorPrimary will be the dominant color and will be the background color of the app bar

	
colorPrimaryDark mostly is used for coloring the status bar (the bar at the top of
the screen that has the time, battery level, signal strength, etc.)

	
colorAccent will be used for certain pieces of widgets, such as the
text-selection cursor in EditText widgets

However, we will be configuring the app bar ourselves with a Toolbar. By default,
a DarkActionBar theme will add an app bar for us, which we do not need.
Another consideration is whether the overall color scheme will be “light” or “dark”.
Historically, Google would steer developers towards a “light” theme, with dark text
on a mostly-white background. This is not great for people using apps in dark places
or at night, though. In Android 10, Google is starting to steer developers towards
having two themes: a light one for normal use and a “dark mode” one. This means
that you, the developer, have four main courses of action:

	Ignore Google and stick with a light theme

	Use two themes

	Use a single “day-night” theme with two sets of colors

	Use a dark theme all the time

The latter approach is simplest, in that it accommodates “dark mode” scenarios
and does not require that you deal with two themes or two sets of colors. So, that is what we will use
in this tutorial.
With that in mind, replace Theme.AppCompat.Light.DarkActionBar in res/value/styles.xml
with Theme.AppCompat.NoActionBar. Removing the Light portion gives us a dark
theme, and replacing DarkActionBar with NoActionBar removes the automatically-added
app bar.
The resulting resource should look like:

<resources>

 <!-- Base application theme. -->
 <style name="Theme.ToDo" parent="Theme.AppCompat.NoActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>

</resources>

(from T09-Toolbar/ToDo/app/src/main/res/values/styles.xml)
Note that the color swatches in the gutter in this Android Studio are clickable
as well, bringing up the same editor as before, this time defaulting to the “Resources” tab:

[image: Style Resource Editor, Showing Pop-Up Color Picker]

Figure 78: Style Resource Editor, Showing Pop-Up Color Picker
Our AndroidManifest.xml file already ties in this custom theme, via the android:theme
attribute in the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.todo">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true"/>

 <application
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from T09-Toolbar/ToDo/app/src/main/AndroidManifest.xml)
Step #3: Adding a Toolbar

Our app bar will be in the form of a Toolbar widget. This is an ordinary widget
that you can put in a layout wherever it needs to go. Traditionally, the app
bar appears at the top of the activity, so we will place one there.
Open res/layout/activity_main.xml in Android Studio. Right now, this contains
our FragmentContainerView. Now, we want to modify
the layout to have a Toolbar at the top.
Switch to the “Design” view if you are not already there.
In the “Containers” category of the “Palette”, you should find a Toolbar option:

[image: Android Studio Palette, Showing Toolbar]

Figure 79: Android Studio Palette, Showing Toolbar
Drag one from the “Palette” over the ConstraintLayout in the “Component Tree”
view to add it as a child widget:

[image: Android Studio, Showing Added Toolbar]

Figure 80: Android Studio, Showing Added Toolbar
Next, we need to set up the anchoring rules for the Toolbar. It looks
like it is in the correct position but that is just the default behavior. We
really should set up the rules properly. So, grab the circles on the start,
top, and end sides of the Toolbar and connect them with the start, top, and
end sides of the ConstraintLayout. Leave the bottom alone.
And, since the drag-and-drop editor makes this difficult, you could elect to modify
the XML instead and add app:layout_constraintStart_toStartOf="parent",
app:layout_constraintEnd_toEndOf="parent", and app:layout_constraintTop_toTopOf="parent" to
the Toolbar.
Next, click on the nav_host entry in the “Component Tree” to select the FragmentContainerView.
You should see it be connected with the bounds of the ConstraintLayout on all
four sides. Grab the top anchor and drag it down until it connects with the bottom
of the Toolbar:

[image: Android Studio, Showing FragmentContainerView Top Anchored to Toolbar Bottom]

Figure 81: Android Studio, Showing FragmentContainerView Top Anchored to Toolbar Bottom
Again, the drag-and-drop editor makes this difficult. If you prefer, switch to the XML
and replace app:layout_constraintTop_toTopOf="parent" to
app:layout_constraintTop_toBottomOf="@+id/toolbar" on the FragmentContainerView.
Then, select the Toolbar widget, and in the “Attributes” pane:

	Ensure that the ID is set to toolbar (it should be by default)

	Set the layout_width to match_constraint (a.k.a., 0dp)

[image: Android Studio, Showing Anchored and Configured Toolbar]

Figure 82: Android Studio, Showing Anchored and Configured Toolbar
Step #4: Adding an Icon
We are going to need a an icon for our app bar item. Nowadays,
the preferred approach for doing this is to start with vector drawables, rather
than bitmaps, to reduce the size of the app and maximize the quality of the
icons when they are displayed.
Right-click over the res/ directory and choose New > “Vector Asset”
from the context menu. This brings up the first page of the vector
asset wizard:

[image: Android Studio Vector Asset Studio, As Initially Launched]

Figure 83: Android Studio Vector Asset Studio, As Initially Launched
Click on the “Clip Art” button, which by default has the image of the head of the Android
mascot (“bugdroid”). This is supposed to bring up an icon selector, with a bunch
of icons from Google’s “Material Design” art library.
In the search field, type info, then click on the “info” icon:

[image: Android Studio Icon Selector, Showing info Icon]

Figure 84: Android Studio Icon Selector, Showing “info” Icon
Click “OK”. This will update the name of the asset to
ic_baseline_info_24. Change the name in the “Name” field to ic_about (ic is
a prefix representing icons).
Click “Next”, then “Finish”, to add that icon as an XML file in res/drawable/.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Step #5: Defining an Item
Next, we will add a low-priority action item, for an “about” screen.
Right click over the res/ directory in your project, and choose
New > “Android Resource Directory” from the context menu. This will bring
up a dialog to let you create a new resource directory:

[image: Android Studio New Resource Directory Dialog]

Figure 85: Android Studio New Resource Directory Dialog
Change the “Resource type” drop-down to be “menu”, then click “OK” to create the
directory.
Then, right-click over your new res/menu/ directory and choose
New > “Menu Resource File” from the context menu. Fill in actions.xml in the
“New Menu Resource File” dialog:

[image: Android Studio New Menu Resource File Dialog]

Figure 86: Android Studio New Menu Resource File Dialog
Then click “OK” to create the file. It will open up into a menu editor. As with
the layout editor, there are modes that you can toggle via icons in the
tab itself:

[image: Android Studio Menu Editor, with Toolbar Buttons Highlighted]

Figure 87: Android Studio Menu Editor, with Toolbar Buttons Highlighted
As with the layout designer, the “Code” button shows you the XML of this resource, while the “Design” button
gives you a graphical menu designer:

[image: Android Studio Menu Designer]

Figure 88: Android Studio Menu Designer
This editor looks and works a lot like the layout editor. The “Palette” contains
things that can be dragged-and-dropped into the menu. The “Component Tree”
shows the current contents of the menu. The preview area shows visually what
this looks like, and the “Attributes” pane (not shown in the above screenshot)
shows attributes of the selected item in the “Component Tree”.
In the “Palette” view, drag a “Menu Item” into the preview area over the right
end of the app bar. This will appear as an item in an overflow area:

[image: Android Studio Menu Designer, with a New Menu Item]

Figure 89: Android Studio Menu Designer, with a New Menu Item
In the Attributes pane, fill in about for the “id”.
Next, we want to set the “showAsAction” value to never. To do this, click the
little flag icon in the “showAsAction” field:

[image: Android Studio Menu Designer, Attributes Pane, Showing showAsAction Flag]

Figure 90: Android Studio Menu Designer, Attributes Pane, Showing “showAsAction” Flag
That will fold open a list of available choices:

[image: Android Studio Menu Designer, Attributes Pane, Showing showAsAction Options]

Figure 91: Android Studio Menu Designer, Attributes Pane, Showing “showAsAction” Options
Check the “never” checkbox in the list, then click the “Apply” button in the drop-down
to close it and set “showAsAction” to never.
Then, click on the “O” button next to the “icon” field:

[image: Android Studio Menu Designer, O Button Highlighted]

Figure 92: Android Studio Menu Designer, “O” Button Highlighted
This will bring up a
drawable resource selector:

[image: Android Studio Drawable Resource Selection Dialog]

Figure 93: Android Studio Drawable Resource Selection Dialog
Click on ic_about in the list of drawables, then click
“OK” to accept that choice of icon. In truth, this is unnecessary, as our item
should never show the icon. But, you never know when someday Google will decide
to show icons for overflow menu items, so it is best to define one.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on the “+” icon, followed by “String Value” in
the resulting drop-down list. This will bring up a new string resource dialog.
In the dialog, fill in menu_about as the
resource name and “About” as the resource value:

[image: Android Studio New String Resource Dialog]

Figure 94: Android Studio New String Resource Dialog
Click “OK” to close each dialog, and you will see your new title appear in the
menu editor:

[image: Android Studio Menu Designer, Showing About Item]

Figure 95: Android Studio Menu Designer, Showing About Item
Step #6: Enabling View Binding
We are going to need to start working with our widgets from Kotlin. There are
a variety of options for doing this. The one that we will use in this book
is called “view binding”. By enabling view binding, the build tools will code-generate
a class that helps us work with our widgets in a type-safe fashion.
To turn this on, add these lines to the android closure in your app/build.gradle
file:

 buildFeatures {
 viewBinding true
 }

(from T09-Toolbar/ToDo/app/build.gradle)

You can learn more about view binding in the "Binding Your Data" chapter of
Elements of Android Jetpack!

When the editor suggests that you sync your Gradle files with the project, go ahead and do that.
NOTE: You will see these lines written elsewhere as:

 buildFeatures {
 viewBinding = true
 }

That was the correct syntax for a while, but Arctic Fox (and its edition of the Android
Gradle Plugin) changed the syntax.
Step #7: Using View Binding in Our Activity
Next, modify onCreate() of MainActivity to look like this:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)
 }

The class code-generated by view binding is based off of the name of the
layout resource. The lower_snake_case portion of the name is converted
into UpperCamelCase, then gets Binding appended to it. So, activity_main
becomes ActivityMainBinding.
Originally, onCreate() used setContentView(R.layout.activity_main).
“Under the covers”, this would use a LayoutInflater to “inflate” activity_main,
creating a tree of widgets and containers based on what is in the layout resource
file. setContentView() would then take the root of that hierarchy and use it for
rendering the UI.
Our two replacement lines do the same thing, in the end. The inflate()
function on the ActivityMainBinding class inflates the activity_main
layout using a LayoutInflater. It gets that LayoutInflater from us as a
parameter to inflate(), and we get one via layoutInflater from the activity.
The ActivityMainBinding object that we get back from inflate() has a root
property, and we pass that to setContentView() to display our view hierarchy.
The only effective difference between what we had and what we now have is that
we have the binding object, and we can use that to reference the widgets
inside of the layout, such as using binding.toolbar to get to our Toolbar.
Step #8: Loading Our Options
Simply defining res/menu/actions.xml is insufficient. We need to actually
tell Android to use what we defined in that file and show it in our Toolbar.
Once again, there are a few ways of doing this. For this book, we are going to
use our Toolbar as the action bar. This is the simplest way to have multiple
fragments all contribute to the Toolbar. In particular, it is the simplest way
to have those fragments’ contributions come and go as the fragments themselves
come and go.
To do that, add a setSupportActionBar() call to the bottom of onCreate() of MainActivity:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)
 setSupportActionBar(binding.toolbar)
 }

(from T09-Toolbar/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
This tells AppCompatActivity that we want to use our Toolbar in the role
of the activity’s action bar. binding.toolbar is a reference to the Toolbar
widget from our layout, courtesy of view binding.
Then, add this function to MainActivity

 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 menuInflater.inflate(R.menu.actions, menu)

 return super.onCreateOptionsMenu(menu)
 }

(from T09-Toolbar/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
This is how you contribute toolbar buttons, overflow menu items, and other things
to the activity’s action bar. The “options menu” name is a reference to the original
Android UI (from Android 1.0).
Here, just as we used a LayoutInflater with ActivityMainBinding to inflate
a layout resource, we use a MenuInflater to inflate a menu resource, pouring its contents
into the supplied Menu object. We then chain to the superclass, just in case
some superclass also wants to put things in the action bar.
Step #9: Trying It Out
If you run the app, you should see a “…” icon on the app bar:

[image: ToDo App, Showing Overflow Menu Affordance]

Figure 96: ToDo App, Showing Overflow Menu Affordance
Pressing that brings up a menu showing our “About” item:

[image: ToDo App, Showing Overflow Menu with About Item]

Figure 97: ToDo App, Showing Overflow Menu with About Item
Tapping that item has no effect — we will address that in an upcoming
tutorial.
Final Results
In theory, your res/layout/activity_main.xml resource should now look like:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <androidx.appcompat.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:background="?attr/colorPrimary"
 android:minHeight="?attr/actionBarSize"
 android:theme="?attr/actionBarTheme"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/nav_host"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:defaultNavHost="true"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/toolbar"
 app:navGraph="@navigation/nav_graph">

 </androidx.fragment.app.FragmentContainerView>
</androidx.constraintlayout.widget.ConstraintLayout>

(from T09-Toolbar/ToDo/app/src/main/res/layout/activity_main.xml)
It might vary a from this, given that the drag-and-drop GUI editor is not very precise.
Your app/build.gradle file should look like:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T09-Toolbar/ToDo/app/build.gradle)
And MainActivity should resemble:

package com.commonsware.todo

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.Menu
import com.commonsware.todo.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)
 setSupportActionBar(binding.toolbar)
 }

 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 menuInflater.inflate(R.menu.actions, menu)

 return super.onCreateOptionsMenu(menu)
 }
}

(from T09-Toolbar/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/menu/actions.xml

	app/src/main/res/values/colors.xml

	app/src/main/res/values/styles.xml

	app/src/main/res/layout/activity_main.xml

	app/build.gradle

	app/src/main/java/com/commonsware/todo/MainActivity.kt

Setting Up an Activity
Of course, it would be nice if that “About” menu item that
we added in a previous tutorial actually did something.
We could set up another fragment, and have that be displayed when the user clicked “About”.
However, we have a few other fragments to set up, so we will have plenty of
opportunities to learn about fragments. Besides, we do not want you to get bored.
So, in this tutorial, we will define another activity class, one that will be
responsible for the “about” details.
And, we will arrange to start up that activity when that menu item
is selected. While in modern Android app development you would not need a full
activity to display an “about” screen, there may be times when you really do need
another activity, so this will show you how to set one up.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about having multiple activities in the "Implementing Multiple Activities" chapter of
Elements of Android Jetpack!

Step #1: Creating the Stub Activity Class and Manifest Entry
First, we need to define the Kotlin class for our new activity,
AboutActivity. We could just create a new empty class, but the Android
Studio new-activity wizard is not bad, so we will use it.
Right-click on your main/ source set directory in the project explorer, and
choose “New” > “Activity” > “Empty Activity” from the context menu. This will bring
up a new-activity wizard:

[image: Android Studio New-Activity Wizard, As Initially Launched]

Figure 98: Android Studio New-Activity Wizard, As Initially Launched
Fill in AboutActivity in the “Activity Name” field. Leave “Launcher Activity”
unchecked.
If the package name drop-down is showing the app’s package
name (com.commonsware.todo), leave it alone. On the other hand, if the package name drop-down
is empty, click on it and choose
the app’s package name. Leave the source language drop-down set to Kotlin.
This should give you a dialog like:

[image: Android Studio New-Activity Wizard, Filled In]

Figure 99: Android Studio New-Activity Wizard, Filled In
If you click on “Finish”, Android Studio will create your AboutActivity class
and open it in the editor. The source code should look like:

package com.commonsware.todo

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

class AboutActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_about)
 }
}

The new-activity wizard also added a manifest entry for us:

 <activity
 android:name=".AboutActivity"
 android:exported="true" />

Step #2: Adding a Toolbar and a WebView

In addition to a new AboutActivity Kotlin class and manifest entry, the new-activity wizard
created an activity_about layout resource for us, alongside the existing
activity_main layout. Open activity_about into the graphical layout
editor.
As we did in the previous tutorial, in the “Palette”, choose the “Containers” category,
and drag a Toolbar into the preview area:

[image: Android Studio Layout Designer, Showing Toolbar]

Figure 100: Android Studio Layout Designer, Showing Toolbar
Using the corner (square) handles, drag the ends of the Toolbar in from the
left and right edges of the layout, so you have room to maneuver.
Then, use the grab handles on the start, top, and end sides and connect them to the start,
top, and end sides of the ConstraintLayout that is the root of our layout:

[image: Android Studio Layout Designer, Showing Anchored Toolbar]

Figure 101: Android Studio Layout Designer, Showing Anchored Toolbar
Then, in the “Attributes” pane, set
the layout_width to be match_constraint
(a.k.a., 0dp) and the layout_height to be wrap_content.
We want the id to be toolbar. If it shows up as toolbar2, change it to be toolbar.
Next, switch back to the “Design” view. In the “Palette”, choose the “Widgets” category, and drag a WebView into
the preview area:

[image: Android Studio Layout Designer, Showing Toolbar and WebView]

Figure 102: Android Studio Layout Designer, Showing Toolbar and WebView
However, while the WebView might seem like it is set to fill all of
the available space, the design tool probably just assigned it some hard-coded
values, ones that make it difficult to work with. So, once again, use the corner
handles to resize the WebView to be a bit smaller, and drag it away from the edges:

[image: Android Studio Layout Designer, Showing Smaller WebView]

Figure 103: Android Studio Layout Designer, Showing Smaller WebView
Then,
drag the grab handles from the start, bottom, and end of the WebView and attach them to the
corresponding sides of the ConstraintLayout. Also, drag the grab handle from the top
of the WebView and connect it to the bottom of the Toolbar:

[image: Android Studio Layout Designer, Showing Constrained WebView]

Figure 104: Android Studio Layout Designer, Showing Constrained WebView
Then, go back to the “Attributes” pane and set the ID to about,
the “layout_width” and
“layout_height” each to match_constraint (a.k.a., 0dp), to have the
WebView fill all of the available space:

[image: Android Studio Layout Designer, Showing WebView Attributes]

Figure 105: Android Studio Layout Designer, Showing WebView Attributes
Step #3: Launching Our Activity
Now that we have declared that the activity exists and can be used, we can
start using it.
Go into MainActivity and modify onCreate() to start
AboutActivity if the user chooses the about menu item, by adding an onOptionsItemSelected() function:

 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {
 R.id.about -> {
 startActivity(Intent(this, AboutActivity::class.java))
 true
 }
 else -> super.onOptionsItemSelected(item)
 }

(from T10-Activities/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
onOptionsItemSelected() will be called when the user taps on one of the action
bar items. We get passed a MenuItem identifying the item that the user tapped on,
and we can examine its itemId value and compare it to the IDs of the items
that we put into the menu resource that we used to populate the action bar.
For the R.id.about menu item, we create an Intent, pointing at our new
AboutActivity. Then, we call startActivity() on that Intent.
onOptionsItemSelected() returns a Boolean: true if we handled the event,
false otherwise. So, in the R.id.about branch we return true, otherwise
we chain to the superclass implementation and return whatever it returns.
If you run this app in a device or emulator, and you choose the
About overflow item, the AboutActivity
should appear, but empty, as we have not given the Toolbar or WebView any content yet.
Instead of using startActivity(), we could have added an <activity> element
to our navigation graph and then used the Navigation component to start the
activity. That has some advantages, but using the Navigation component to start
an activity is very modern and not all that common. Using startActivity() is
far more representative of how existing code with multiple activities starts
another activity.
Step #4: Defining Some About Text
We need some HTML to put into the WebView. We could load some from the
Internet. However, then the user can only view the about text when they are
online, which seems like a silly requirement. Instead, we can package some
HTML as an asset inside of our app, then display that HTML in the WebView.
To that end, right-click over the main source set directory and choose
“New” > “Directory” from the context menu. That will pop up a dialog, asking
for the name of the directory to create:

[image: Android Studio New Directory Input]

Figure 106: Android Studio New Directory Input
assets happens to be one of the pre-defined options. Double-click on that to
create an assets/ directory under main/.
Then, right-click over your new assets/ directory and choose “New” > “File”
from the context menu. Once again, you will get an input area, this time to provide
the filename. Fill in about.html and click press Enter or Return to create this file. It
should also open up an editor tab on that file, which will be empty.
There, fill in some HTML. For example, you could use:

<h1>About This App</h1>

<p>This app is cool!</p>

<p>No, really — this app is awesome!</p>

<div>
 .

 .

 .

 .
</div>

<p>OK, this app isn't all that much. But, hey, it's mine!</p>

(from T10-Activities/ToDo/app/src/main/assets/about.html)
Step #5: Populating the Toolbar and WebView

Open up AboutActivity into the editor, and change it to:

package com.commonsware.todo

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import com.commonsware.todo.databinding.ActivityAboutBinding

class AboutActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityAboutBinding.inflate(layoutInflater)

 setContentView(binding.root)

 binding.toolbar.title = getString(R.string.app_name)
 binding.about.loadUrl("file:///android_asset/about.html")
 }
}

(from T10-Activities/ToDo/app/src/main/java/com/commonsware/todo/AboutActivity.kt)
As with MainActivity, we are using view binding in AboutActivity. We create
an instance of ActivityAboutBinding using inflate() and use the binding’s
root for our content view. Then, we configure one item on each widget in the layout:

	We set the title of our Toolbar to be our app’s name, which we obtain by
calling getString(R.string.app_name) to retrieve the value of the app_name
string resource

	We tell the WebView to load our asset

loadUrl() normally takes
an https URL, but in this case, we use the special file:///android_asset/
notation to indicate that we want to load an asset out of assets/. file:///android_asset/
points to the root of assets/, so file:///android_asset/about.html
points to assets/about.html.
(yes, file:///android_asset/ is singular, and assets/ is plural —
eventually, you just get used to this…)
If you now run the app, and choose “About” from the overflow, you will see
your about text:

[image: ToDo About Activity]

Figure 107: ToDo About Activity
Final Results
The new res/layout/activity_about.xml resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".AboutActivity">

 <androidx.appcompat.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:background="?attr/colorPrimary"
 android:minHeight="?attr/actionBarSize"
 android:theme="?attr/actionBarTheme"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <WebView
 android:id="@+id/about"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/toolbar" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from T10-Activities/ToDo/app/src/main/res/layout/activity_about.xml)
MainActivity should now be something like:

package com.commonsware.todo

import android.content.Intent
import android.os.Bundle
import android.view.Menu
import android.view.MenuItem
import androidx.appcompat.app.AppCompatActivity
import com.commonsware.todo.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)
 setSupportActionBar(binding.toolbar)
 }

 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 menuInflater.inflate(R.menu.actions, menu)

 return super.onCreateOptionsMenu(menu)
 }

 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {
 R.id.about -> {
 startActivity(Intent(this, AboutActivity::class.java))
 true
 }
 else -> super.onOptionsItemSelected(item)
 }
}

(from T10-Activities/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
And, as shown above, AboutActivity should look like:

package com.commonsware.todo

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import com.commonsware.todo.databinding.ActivityAboutBinding

class AboutActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityAboutBinding.inflate(layoutInflater)

 setContentView(binding.root)

 binding.toolbar.title = getString(R.string.app_name)
 binding.about.loadUrl("file:///android_asset/about.html")
 }
}

(from T10-Activities/ToDo/app/src/main/java/com/commonsware/todo/AboutActivity.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/AndroidManifest.xml

	app/src/main/res/layout/activity_about.xml

	app/src/main/assets/about.html

	app/src/main/java/com/commonsware/todo/MainActivity.kt

	app/src/main/java/com/commonsware/todo/AboutActivity.kt

Defining a Model
If we are going to show to-do items in this list, it would help to have some
to-do items. That, in turn, means that we need a Kotlin class that represents
a to-do item. Such a class is often referred to as a “model” class, so in
this chapter, we will create a ToDoModel, where each ToDoModel instance
represents one to-do item.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a Stub POJO
First, let’s create the base ToDoModel class. To do this, right-click over
the com.commonsware.todo package in the project tree in Android Studio, and
choose “New” > “Kotlin File/Class” from the context menu. As before, this brings
up a dialog where we can define a new Kotlin class, by default into the same
Java package that we right-clicked over. Fill in ToDoModel in the “Name”
field and choose “Class” in the list of available Kotlin structures. Then press
Enter or Return to create this class. ToDoModel
should show up in an editor, with an implementation like this:

package com.commonsware.todo

class ToDoModel {
}

Step #2: Switching to a data Class
A typical pattern for model objects in Kotlin is for them to be data
classes. data classes with val properties are immutable: you do not change a model, but instead
replace it with a new instance that has the new values.

You can learn more about data classes in the "Data Class" chapter of
Elements of Kotlin!

So, add the data keyword before class, giving you:

package com.commonsware.todo

data class ToDoModel {
}

This will immediately show a red undersquiggle, indicating that Android Studio
is unhappy about something:

[image: Android Studio, Yelling]

Figure 108: Android Studio, Yelling
That is because a data class must have a constructor with 1+ parameters.
We will add that constructor in the next section.
Step #3: Adding the Constructor
Let’s add 5 properties to ToDoModel, as constructor val parameters:

	A unique ID

	A flag to indicate if the task is completed or not

	A description, which will appear in the list

	Some notes, in case there is more information

	The date/time that the model was created on

To that end, modify ToDoModel to look like:

package com.commonsware.todo

import java.time.Instant
import java.util.*

data class ToDoModel(
 val description: String,
 val id: String = UUID.randomUUID().toString(),
 val isCompleted: Boolean = false,
 val notes: String = "",
 val createdOn: Instant = Instant.now()
)

(from T11-Model/ToDo/app/src/main/java/com/commonsware/todo/ToDoModel.kt)
Here, we have added the five constructor parameters. Four of them — all but description —
provide default values, so we can supply values or not as we see fit when we create instances.
Of particular note:

	We use UUID to generate a unique identifier for our to-do item, held in the id
property

	We use Instant for tracking the created-on time for this to-do item, held in
the createdOn property

Step #4: Supporting Instant on Older Devices
However, you probably have a new red undersquiggle, this time for the now()
call on Instant. If you hover your mouse over that error, you should see
something to the effect of “Call requires API level 26 (current min is 21): java.time.Instant#now”.
The java.time classes were not added to Android until API Level 26 (Android 8.0).
Our project’s minSdkVersion is 21 (Android 5.0). The error is pointing out that
this code will crash if we try running it on an Android 5.0-7.1 device.
That does not sound good.
Fortunately, Google has added a way for us to support Instant and other java.time
classes on older versions of Android. To do that, we need to make a tweak to app/build.gradle.
If you open up that file, you should see lines like these:

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

(from T10-Activities/ToDo/app/build.gradle)
These tell the Android build tools that we are using Java 8 syntax underneath
the Kotlin that we are writing.
Add a coreLibraryDesugaringEnabled true line to that compileOptions closure,
giving you:

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

(from T11-Model/ToDo/app/build.gradle)
Also, in our list of dependencies, add:

 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'

(from T11-Model/ToDo/app/build.gradle)
This is a corresponding library used by this “desugaring” mechanism that
supplies implementations of the missing logic on those older devices.
You should have another “Sync Now” banner — go ahead and sync the project with
the Gradle files. After that completes, the error for now() should be gone.
Final Results
Our new ToDoModel should look like:

package com.commonsware.todo

import java.time.Instant
import java.util.*

data class ToDoModel(
 val description: String,
 val id: String = UUID.randomUUID().toString(),
 val isCompleted: Boolean = false,
 val notes: String = "",
 val createdOn: Instant = Instant.now()
)

(from T11-Model/ToDo/app/src/main/java/com/commonsware/todo/ToDoModel.kt)
And our revised app/build.gradle should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T11-Model/ToDo/app/build.gradle)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/ToDoModel.kt

	app/build.gradle

Setting Up a Repository
So, now we have a ToDoModel. Wonderful!
But, this raises the question: where do ToDoModel instances come from?
In the long term, we will be storing our to-do items in a database. For the moment,
to get our UI going, we can just cache them in memory. We could, if desired,
have a server somewhere that is the “system of record” for our to-do items,
with the local database serving as a persistent cache.
Ideally, our UI code does not have to care about any of that. And, ideally,
our code that does have to deal with all of the storage work does not care
about how our UI is written.
One pattern for enforcing that sort of separation is to use a repository. The
repository handles all of the data storage and retrieval work. Exactly how
it does that is up to the repository itself. It offers a fairly generic API
that does not “get into the weeds” of the particular storage techniques that it
uses. The UI layer works with the repository to get data, create new data,
update or delete existing data, and so on, and the repository does the actual work.
So, in this tutorial, we will set up a simple repository. Right now, that
will just be an in-memory cache, but in later tutorials we will move that data
to a database.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding the Repository Class
Once again, we need another Kotlin class.
Right-click over
the com.commonsware.todo package in the project tree in Android Studio, and
choose “New” > “Kotlin File/Class” from the context menu. As before, this brings
up a dialog where we can define a new Kotlin source file, by default into the same
Java package that we right-clicked over. Fill in ToDoRepository in the “Name”
field, and choose “Class” from the list of Kotlin structures. Then press Enter or Return to create this file.
ToDoRepository
should show up in an editor, with an implementation like this:

package com.commonsware.todo

class ToDoRepository {
}

Step #2: Creating Some Fake Data
At the moment, our repository has no data. We need to fix this, so that we have
some to-do items to show in our UI. But we have not built any forms to allow the user to create
new to-do items either. So, for the time being, we can have our repository create some
fake data, which we can then replace with user-supplied data later on.
To that end, replace the stub ToDoRepository that Android Studio gave us with:

package com.commonsware.todo

class ToDoRepository {
 var items = listOf(
 ToDoModel(
 description = "Buy a copy of _Exploring Android_",
 isCompleted = true,
 notes = "See https://wares.commonsware.com"
),
 ToDoModel(
 description = "Complete all of the tutorials"
),
 ToDoModel(
 description = "Write an app for somebody in my community",
 notes = "Talk to some people at non-profit organizations to see what they need!"
)
)
}

(from T12-Repository/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
This just adds an items property that is a simple immutable list of three
ToDoModel objects. We provide a description for all three models, but we
use the default constructor options for some of the other properties.
Later, this is going to need to get a lot more complicated:

	We will need to get our data from a database

	We will need to update the database with new, changed, or deleted models

	All of that is slow, so we will need to do that work on a background thread

But, for the moment, this will suffice. In an upcoming tutorial, we will have
our RosterListFragment get its data from this ToDoRepository singleton.
Final Results
ToDoRepository should look like:

package com.commonsware.todo

class ToDoRepository {
 var items = listOf(
 ToDoModel(
 description = "Buy a copy of _Exploring Android_",
 isCompleted = true,
 notes = "See https://wares.commonsware.com"
),
 ToDoModel(
 description = "Complete all of the tutorials"
),
 ToDoModel(
 description = "Write an app for somebody in my community",
 notes = "Talk to some people at non-profit organizations to see what they need!"
)
)
}

(from T12-Repository/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/ToDoRepository.kt

Inverting Our Dependencies
In general, layers of an app should be loosely coupled.
For example, ToDoRepository will be hiding all of the details of exactly where
our to-do items get stored. Right now, they are “stored” in memory. Later, they
will be stored in a database. They could be stored on a server. And so on.
This allows our UI layer to be independent of those storage details.
Our upcoming UI needs access to those to-do items. One approach for this would be to
make ToDoRepository be a Kotlin object. That is a global singleton, and our
activities and fragments could access it as needed.
On the surface, this is fine. This is a fairly simple app. We are not going to
be adding smarts to allow users to “plug in” alternative places for storing
the to-do items. One ToDoRepository, in theory, should be enough.
However, even for a small app like this, that argument starts to break down when
it comes to testing. We may need to set up specific test implementations of
ToDoRepository to test various scenarios, such as what happens when the repository
throws an exception (e.g., could not connect to the server). And many apps
are much more complicated than this one, where we might really need to have
different repository implementations at runtime.
“Dependency inversion” is an approach for dealing with this. In a nutshell, it
means that loosely-coupled layers should not be defining the implementations of
those other layers. In our app, our activities and fragments should not be declaring that
some particular ToDoRepository singleton is the one-and-only repository that those
fragments should work from. Rather, our fragments should have their repository
objects “injected” from outside, so that in the “real app” we can do one thing
and in tests we can do something else.
Part of the problem with dependency inversion in Android is that the historically
dominant solution — Dagger — is very complex and has difficult-to-understand
documentation. While there have been recent moves to simplify it, such as the
Jetpack’s Hilt library, those are very new and are very much “up for debate” at
this time.
Kotlin opened up new opportunities for simplifying dependency inversion. One
of the more popular Kotlin dependency inversion libraries is Koin.
While it may lack some of the power of Dagger, it is good enough for many apps,
including the one that we are building here.

You can learn more about dependency inversion with Koin in the "Inverting Your Dependencies" chapter of
Elements of Android Jetpack!

So, in this chapter, we will integrate Koin and set it up that ToDoRepository
is able to be injected into other objects.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding the Dependencies
There are a couple of new dependencies that we will need to be able to add Koin
to the app. And, similar to the Navigation component, we will have dependencies
that need to share a common version number. So, we should define that version
number in one place, so when we want to upgrade Koin, we can change the version
number in that one place and cover everything.
When we created the nav_version constant, we did so in the buildscript
closure of the top-level build.gradle file. That is because the Navigation
component includes plugins, so we needed the constant in the buildscript
edition of the dependencies. However, Koin does not have a plugin that we will
be using, so we should define this constant outside of buildscript, since we
do not need it there.
With that in mind, add the following to the bottom of the top-level build.gradle
file:

ext {
 koin_version = "3.1.2"
}

(from T13-DI/ToDo/build.gradle)
This is equivalent to:

ext.koin_version = "3.1.2"

The ext {} syntax is to simplify matters when we need to define more such
ext constants, and we will be adding a few more before the tutorials are over.
Then, in the app/build.gradle file, add this line to the dependencies
closure:

 implementation "io.insert-koin:koin-android:$koin_version"

(from T13-DI/ToDo/app/build.gradle)
Android Studio should be asking you to “Sync Now” in a banner — go ahead
and click that link.
Step #2: Creating a Custom Application

We need to configure Koin and teach it what objects we want it to make available
to the rest of our app.
In Android, the typical place to configure something like Koin is in a custom
Application subclass. The Android framework creates a singleton instance of Application —
or of a custom subclass — when your process starts. That Application object
will be around for the life of the process. And, it has an onCreate() method
where we can initialize libraries like Koin.
So, we need another Kotlin class.
Right-click over the com.commonsware.todo class where (presently) all of our
Kotlin classes reside, and choose “New” > “Kotlin File/Class” from the context
menu. Fill in ToDoApp for the “Name” and choose “Class” as the kind.
Press Enter or Return, and you will get an empty ToDoApp class.
Then, modify it to have it extend from android.app.Application:

package com.commonsware.todo

import android.app.Application

class ToDoApp : Application() {
}

Next, open up the AndroidManifest.xml file. On the <application>
element, add in an android:name attribute:

 <application
 android:name=".ToDoApp"
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity
 android:name=".AboutActivity"
 android:exported="true" />
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

(from T13-DI/ToDo/app/src/main/AndroidManifest.xml)
This tells the Android framework to use our subclass of Application, rather
than Application itself, when it comes time to create this singleton.
Step #3: Defining Our Module
Now we need to teach Koin how to make our ToDoRepository available via
dependency inversion.
Back in ToDoApp, add this property:

 private val koinModule = module {
 single { ToDoRepository() }
 }

(from T13-DI/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Here, module() is an extension function supplied by Koin, and it will
need to be imported:

import org.koin.dsl.module

(from T13-DI/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
module() is part of a Koin domain-specific language (DSL) that describes
the roster of objects to be available via dependency inversion. An app can
have one or several Koin modules — for our purposes, one will be enough.
In that module, single() defines an object that will be available as a Koin-managed
singleton. In our case, it is an instance of our ToDoRepository. The nice
thing about Koin — and about dependency inversion frameworks in general — is
that a singleton like this can be replaced where needed, such as for testing.
Simply having a Koin module is insufficient — we need to tell Koin about it.
To that end, add this onCreate() function to ToDoApp:

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 modules(koinModule)
 }
 }

(from T13-DI/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
startKoin() and androidLogger() are other extension functions
that will need to be imported:

import org.koin.android.ext.koin.androidLogger
import org.koin.core.context.startKoin

(from T13-DI/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
As the name suggests, startKoin() starts the Koin dependency inversion engine.
Like module(), startKoin() has a DSL for configuring Koin. Here, we use
two configuration options, each handled via a function call:

	
androidLogger(), telling Koin that if it has any messages to log, use Logcat

	
modules(), where we can provide one or more modules that we want Koin to support
(in our case, just the one we declared as koinModule)

When we start our app and Android forks a process for us, the framework will
create a ToDoApp instance for our process and call onCreate(). That allows
us to set up Koin before any of the rest of our code might need it.
Final Results
Your overall top-level build.gradle file should now resemble:

buildscript {
 ext.nav_version = '2.3.5'

 repositories {
 google()
 mavenCentral()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:7.0.2'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.5.21"
 classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

ext {
 koin_version = "3.1.2"
}

(from T13-DI/ToDo/build.gradle)
Your app/build.gradle file should look like:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T13-DI/ToDo/app/build.gradle)
The manifest should look something like:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.todo">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true" />

 <application
 android:name=".ToDoApp"
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity
 android:name=".AboutActivity"
 android:exported="true" />
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

(from T13-DI/ToDo/app/src/main/AndroidManifest.xml)
And, our new ToDoApp should look like:

package com.commonsware.todo

import android.app.Application
import org.koin.android.ext.koin.androidLogger
import org.koin.core.context.startKoin
import org.koin.dsl.module

class ToDoApp : Application() {
 private val koinModule = module {
 single { ToDoRepository() }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 modules(koinModule)
 }
 }
}

(from T13-DI/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	build.gradle

	app/build.gradle

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

	app/src/main/AndroidManifest.xml

Incorporating a ViewModel

The Jetpack has a class named ViewModel. Its name
evokes GUI architecture patterns like Model-View-ViewModel (MVVM). In reality,
ViewModel and its supporting classes are there to help us with a key challenge
in Android: configuration changes.
A configuration change is any change in the device condition where Google thinks
that we might want different resources. The most common configuration change
is a change in the screen orientation, such as moving from portrait to landscape.
We may want different layouts in this case, as our portrait layouts might be
too tall for a landscape device, or our landscape layouts might be too wide
for a portrait device.
Android’s default behavior when a configuration change occurs is to destroy all
visible activities and recreate them from scratch, so you can load the desired
resources. However, we need some means to hold onto information during this change,
so our new activity has access to the same data that our old activity did. There
are many solutions to this problem, but a ViewModel works fairly nicely, which is why
we will use it here.
So, in this tutorial, we will set up a basic ViewModel for RosterListFragment.

You can learn more about ViewModel in the "Integrating ViewModel" chapter of
Elements of Android Jetpack!

This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Creating a Stub ViewModel
So, once again, we create a new Kotlin class. Right-click over the
com.commonsware.todo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
RosterMotor, then choose “Class” for the kind.
Then press Enter or Return to create the empty RosterMotor class.
Then, modify RosterMotor to extend from ViewModel:

ppackage com.commonsware.todo

import androidx.lifecycle.ViewModel

class RosterMotor : ViewModel() {
}

Step #2: Getting and Using Our Repository
Ideally, an activity or fragment does not work directly with a repository. Instead,
the ViewModel works with the repository, and the activity or fragment work with
the ViewModel. The big benefit that we get from a ViewModel is that it is stable
across configuration changes, so data that we have retrieved from the repository
is not lost when the user rotates the screen and our activity/fragments are destroyed
and recreated. Right now, that is not a big benefit, since our model objects are
just held in memory. If it took network I/O to get those model objects, though…
now caching that data becomes a lot more important. So, we will be switching
to having the repository be something the ViewModel talks to.
That implies that RosterMotor will need access to the repository, and that
RosterMotor will need to expose an API that our RosterListFragment can use
in lieu of the fragment working directly with the repository.
Revise RosterMotor to look like this:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 val items = repo.items
}

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
Here, we get our ToDoRepository via the constructor. In our next step, Koin will
be supplying our RosterMotor, and Koin will be able to give the motor its
repository. We also expose the list of items, right now just by having a reference to the
repository’s list of items. That part will change a lot later on, as we start moving towards
having the to-do items in a database, but this will do for now.
Step #3: Depositing a Koin
As was noted earlier, Koin can supply ViewModel objects via dependency injection
to activities and fragments. However, we have to teach it what ViewModel classes
are available for injection.
So, in ToDoApp, modify the koinModule property to add in a viewModel line:

 private val koinModule = module {
 single { ToDoRepository() }
 viewModel { RosterMotor(get()) }
 }

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
single() is a Koin DSL function that says “make a singleton instance of this
object available to those needing it”. viewModel() is a Koin DSL function that
says “use the AndroidX ViewModel system to make this ViewModel available
to those activities and fragments that need it”. There are a few possible Koin
import statements you could have for viewModel() — the one that you want is:

import org.koin.androidx.viewmodel.dsl.viewModel

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
In our case, we are saying that we are willing to supply instances of RosterMotor
to interested activities and fragments. To satisfy the RosterMotor constructor,
we use get() to retrieve a ToDoRepository from Koin itself. When it comes
time to create an instance of RosterMotor, Koin will get the ToDoRepository
singleton and supply it to the RosterMotor constructor.
Step #4: Injecting the Motor
Now, we can have RosterListFragment use the RosterMotor.
Add a new motor property:

 private val motor: RosterMotor by viewModel()

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
viewModel() is another Koin extension function, one specifically designed to
get AndroidX ViewModel objects from Koin:

import org.koin.androidx.viewmodel.ext.android.viewModel

In particular, viewModel() will:

	Create a new instance of the ViewModel if needed, and

	Will reuse an existing instance of the ViewModel if an activity or fragment
was destroyed and recreated as part of a configuration change and is now trying
to get the ViewModel again

Our code does not care which of those scenarios occurs. We know that motor
will give us our RosterMotor, and whether it is a brand-new RosterMotor
or an existing one from a previous RosterListFragment does not matter.
We will start using motor, and the associated ToDoRepository, in
the next tutorial, when we show our list of to-do items on the screen.
Final Results
The modified app/build.gradle should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T14-ViewModel/ToDo/app/build.gradle)
Our new RosterMotor should look like:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 val items = repo.items
}

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
ToDoApp should resemble:

package com.commonsware.todo

import android.app.Application
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.dsl.module

class ToDoApp : Application() {
 private val koinModule = module {
 single { ToDoRepository() }
 viewModel { RosterMotor(get()) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 modules(koinModule)
 }
 }
}

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
And the altered RosterListFragment should look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import org.koin.androidx.viewmodel.ext.android.viewModel

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 return inflater.inflate(R.layout.todo_roster, container, false)
 }
}

(from T14-ViewModel/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

	app/src/main/java/com/commonsware/todo/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

Populating Our RecyclerView
We now have a repository with some fake to-do items. It would be helpful if the
user could see these items in our MainActivity and its RosterListFragment.
We have a RecyclerView in that fragment, and now we need to tie the data
from the repository into the RecyclerView.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about RecyclerView in the "Employing RecyclerView" chapter of
Elements of Android Jetpack!

Step #1: Defining a Row Layout
Next, we need to define a layout resource to use for the rows in our roster
of to-do items.
Right-click over the res/layout/ directory and choose “New” > “Layout resource file”
from the context menu. In the dialog that appears, fill in todo_row as the
“File name” and ensure that the “Root element” is set to
androidx.constraintlayout.widget.ConstraintLayout.
Then, click “OK” to close the dialog and create the mostly-empty resource
file.
We want a CheckBox in the rows. We can then arrange to allow the users to mark
to-do items as completed by checking the CheckBox.
In Android, a CheckBox widget consists of the actual “box” plus an associated
text caption. In principle, we could use that caption to show the description
of the to-do item. The downside of this approach is that CheckBox does
not distinguish between click events on the box itself and clicks on the caption.
Both serve to check (or uncheck) the CheckBox. In many situations, that is fine.
In this case, though, we also want the user to be able to click on a row in
our RecyclerView and be able to navigate to a screen with the full details
of this to-do item. Ideally, we would have the user click the caption to navigate to the
detail screen, with clicks on the box to check and uncheck it. Unfortunately,
CheckBox does not support that.
As a result, what we are going to do is use a CheckBox but leave its caption
empty. Instead, we will place a TextView next to the CheckBox and use that
for the description. Then, we can distinguish between clicks on the box and
clicks on anything else in the row.
With all that in mind… let’s start off by setting up the CheckBox.
So, drag a CheckBox from the “Buttons” category in the “Palette” into the preview area:

[image: Android Studio Layout Designer, Showing CheckBox Widget]

Figure 109: Android Studio Layout Designer, Showing CheckBox Widget
Use the round grab handles to drag connections from the CheckBox to the top, bottom,
and start sides of the ConstraintLayout:

[image: Android Studio Layout Designer, Showing CheckBox]

Figure 110: Android Studio Layout Designer, Showing CheckBox
In the “Attributes” tool, change the “id” to isCompleted. Also,
in the “Layout” section, change the three
drop-downs surrounding the square to be 8dp, setting margins on those sides:

[image: Android Studio Attributes Pane, Showing 8dp Margins]

Figure 111: Android Studio Attributes Pane, Showing 8dp Margins
Also, clear out the “text” attribute, leaving that blank.
Next, from the “Common” category in the “Palette”, drag a TextView into the
layout. Using the round circles, add constraints from the TextView to:

	the top, bottom, and end edges of the ConstraintLayout, and

	the end side of the CheckBox

[image: Android Studio Layout Designer, Showing CheckBox and TextView]

Figure 112: Android Studio Layout Designer, Showing CheckBox and TextView
In the “Attributes” pane, set the “id” to desc and the “layout_width” to “match_constraint”
(a.k.a., 0dp). Also, clear out the “text” attribute, leaving it blank.
Then, in the “Layout” section, change the four
drop-downs surrounding the square to be 8dp, setting margins on those sides:

[image: Android Studio Attributes Pane, Showing 8dp Margins]

Figure 113: Android Studio Attributes Pane, Showing 8dp Margins
Then, in the “Attributes” pane, fold open the “All Attributes” section. This brings
up a long list of possible attributes to change.
In there, change “ellipsize” to end, by choosing end from the drop-down for that
attribute. And, set “maxLines” to 3. This says “show at most 3 lines of text, and
if our description is longer than that, truncate the end and show an ellipsis (…) instead”.
Next, select the ConstraintLayout itself in the “Component Tree”. Then, in the
“Attributes” pane, set the “layout_height” to be wrap_content. This will keep our
rows to be only as tall as is the content in the row.
Finally, switch to the “Code” view in the layout editor and add three attributes
to the root <ConstraintLayout> element:

	
android:clickable="true", to indicate that this widget represents something that can be clicked

	
android:focusable="true", to indicate that this widget represents something
that should be focusable if the user is using arrow keys, a D-pad, or other similar
sort of non-touchscreen form of input

	
android:background="?attr/selectableItemBackground", to give this widget a
background that is the stock background from our theme for things that can be clicked upon

The reason for these three attributes is that rows should be clickable elements,
and we want to provide the proper visual response when the user clicks upon them.
In Material Design, the standard visual response is a ripple effect in a contrasting
color, and android:background="?attr/selectableItemBackground" will give that to
us automatically for clickable-and-focusable widgets.
At this point, with those manual edits, the todo_row layout XML should look like:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 android:focusable="true"
 android:background="?attr/selectableItemBackground">

 <CheckBox
 android:id="@+id/isCompleted"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginBottom="8dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginBottom="8dp"
 android:ellipsize="end"
 android:maxLines="3"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/isCompleted"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from T15-RecyclerView/ToDo/app/src/main/res/layout/todo_row.xml)
Step #2: Adding a Stub ViewHolder

RecyclerView relies upon custom subclasses of RecyclerView.Adapter and
RecyclerView.ViewHolder to do “the heavy lifting” of populating its contents.
The ViewHolder is responsible for a single item in the RecyclerView, such as
a single row in a scrolling list. The Adapter is responsible for creating
and populating the ViewHolder instances for each of our model objects, as needed.
So, let’s start by creating a stub subclass of RecyclerView.ViewHolder.
Right-click over the com.commonsware.todo Java package and choose “New” > “Kotlin File/Class”
from the context menu. Fill in RosterRowHolder as the “Name” and choose “Class”
from the list of Kotlin structures. Then, press Enter or Return to create a stub Kotlin class.
Then, replace the stub with:

package com.commonsware.todo

import androidx.recyclerview.widget.RecyclerView

class RosterRowHolder : RecyclerView.ViewHolder() {
}

This has RosterRowHolder inherit from RecyclerView.ViewHolder.
This will give you an error, complaining that you are not passing a required
parameter to the RecyclerView.ViewHolder constructor. We will address that in
a later step, so ignore that error for now.
Step #3: Creating a Stub Adapter
A RecyclerView.ViewHolder is managed by a RecyclerView.Adapter. The Adapter
knows how to create instances of ViewHolder and how to populate them with
data as the user views items in the list. So, we need a RecyclerView.Adapter
implementation.
Right-click over the com.commonsware.todo Java package and choose “New” > “Kotlin File/Class”
from the context menu. Fill in RosterAdapter as the “Name” and choose “Class”
from the list of Kotlin structures. Then, press Enter or Return to create a stub Kotlin class.
Then, replace the generated contents with:

package com.commonsware.todo

import androidx.recyclerview.widget.ListAdapter

class RosterAdapter : ListAdapter<ToDoModel, RosterRowHolder>() {
}

Here, we are using a subclass of RecyclerView.Adapter named ListAdapter.
There are two classes named ListAdapter in the Android SDK — be sure that
you are using androidx.recyclerview.widget.ListAdapter. ListAdapter
knows how to manage a list of items. In particular, when we replace that list,
it knows how to make incremental changes to the RecyclerView contents to update
it to match the new list. ListAdapter takes two data types:

	The type of model data that will be in the list (ToDoModel)

	The RecyclerView.ViewHolder that will be used for the views (RosterRowHolder)

The stub RosterAdapter will show two errors. One is that we are not
passing a required constructor parameter to ListAdapter– we will address that
shortly. The other error is that we are missing some functions required by
ListAdapter, as it is an abstract class.
To address that bug, with the text cursor in the RosterAdapter name,
press Alt-Enter (Option-Return on macOS) and choose “Implement members”
from the quick-fix popup menu:

[image: Android Studio, Quick-Fix Popup Menu]

Figure 114: Android Studio, Quick-Fix Popup Menu
This will pop up a dialog box with functions that you can implement:

[image: Android Studio, Implement Members Dialog]

Figure 115: Android Studio, Implement Members Dialog
Select both functions in the list, then click “OK”.
That will update the Kotlin code to look something like:

package com.commonsware.todo

import android.view.ViewGroup
import androidx.recyclerview.widget.ListAdapter

class RosterAdapter : ListAdapter<ToDoModel, RosterRowHolder>() {
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
): RosterRowHolder {
 TODO("Not yet implemented")
 }

 override fun onBindViewHolder(holder: RosterRowHolder, position: Int) {
 TODO("Not yet implemented")
 }
}

onCreateViewHolder() and onBindViewHolder() will need real implementations
at some point — we will address that later in this tutorial.
Step #4: Comparing Our Models
The constructor parameter that we are missing to the ListAdapter constructor
is an instance of the awkwardly-named DiffUtil.ItemCallback interface.
This interface tells ListAdapter how to compare two model objects. In particular,
it tells ListAdapter whether two model objects should be visually identical, so
RecyclerView does not have to re-draw or move around views that have not changed
their appearance. So, we need an object that can do this for us to provide
to ListAdapter.
We can take advantage of a couple of Kotlin features as part of this work:

	A Kotlin source file is not limited to a single class, the way Java source
files are

	Kotlin has an object keyword for creating single instances of objects,
for places where we only need one

With that in mind, at the bottom of the RosterAdapter Kotlin file,
add this:

private object DiffCallback : DiffUtil.ItemCallback<ToDoModel>() {
 override fun areItemsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.id == newItem.id

 override fun areContentsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.isCompleted == newItem.isCompleted &&
 oldItem.description == newItem.description
}

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
This implements DiffUtil.ItemCallback for ToDoModel. areItemsTheSame()
needs to return true if the two models are really the same thing — in our
case, that would be determined using their unique IDs. areContentsTheSame()
should return true if the two models’ visual representations are the same.
Our CheckBox will use the description property for the text and the
isCompleted property for the checked state, so areContentsTheSame()
compares those two values. In particular, the notes property is ignored
for this comparison, since it will not appear in the list rows.
Then, add DiffCallback as the missing constructor parameter to ListAdapter.
This means the entire Kotlin source file at this point should look like:

package com.commonsware.todo

import android.view.ViewGroup
import androidx.recyclerview.widget.DiffUtil
import androidx.recyclerview.widget.ListAdapter

class RosterAdapter : ListAdapter<ToDoModel, RosterRowHolder>(DiffCallback) {
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
): RosterRowHolder {
 TODO("Not yet implemented")
 }

 override fun onBindViewHolder(holder: RosterRowHolder, position: Int) {
 TODO("Not yet implemented")
 }
}

private object DiffCallback : DiffUtil.ItemCallback<ToDoModel>() {
 override fun areItemsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.id == newItem.id

 override fun areContentsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.isCompleted == newItem.isCompleted &&
 oldItem.description == newItem.description
}

Step #5: Completing the Adapter and ViewHolder
Now, we can start filling in the implementations of those stub methods
in our RosterAdapter, plus get our RosterRowHolder working.
The job of onCreateViewHolder() is to create instances of a ViewHolder,
including working with the ViewHolder to set up the widgets. Since our widgets
are defined in a layout resource, we will need a LayoutInflater to accomplish
this. The best way to get a LayoutInflater is to call getLayoutInflater()
on an activity or fragment… but RosterAdapter has none of these.
So, add a constructor parameter to RosterAdapter to take in a LayoutInflater:

class RosterAdapter(private val inflater: LayoutInflater) :
 ListAdapter<ToDoModel, RosterRowHolder>(DiffCallback) {

Then, modify onCreateViewHolder() in RosterAdapter to be:

 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
) = RosterRowHolder(TodoRowBinding.inflate(inflater, parent, false))

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
Here, we are using inflate() on the generated TodoRowBinding class to
not only inflate the todo_row layout, but also to set up the binding object
we can use to populate that row’s widgets. The
particular flavor of inflate() that we are calling says:

	Use this LayoutInflater to inflate the layout resource (host.getLayoutInflater())

	The widgets in that layout resource eventually will be children of a
certain parent (parent)…

	…but do not add them as children right away (false)

(some container classes, like RelativeLayout, really need to know their parent
in order to work properly, so we use this standard recipe for calling inflate())
However, onCreateViewHolder() will have a compile error, as we are passing
a constructor parameter to RosterRowHolder that does not exist. So,
modify RosterRowHolder to look like this:

package com.commonsware.todo

import androidx.recyclerview.widget.RecyclerView
import com.commonsware.todo.databinding.TodoRowBinding

class RosterRowHolder(private val binding: TodoRowBinding) :
 RecyclerView.ViewHolder(binding.root) {
}

getRoot() on a binding object returns the root widget of the inflated layout,
which in our case is the ConstraintLayout. We need to pass that to the
ViewHolder constructor, so this change fixes that compile error that we had
from when we originally set up this class.
Now our RosterAdapter knows to create RosterRowHolder objects as needed.
However, somewhere, we need to get a ToDoModel object and
fill in the text and is-completed state for the CheckBox.
With that in mind, modify onBindViewHolder() on RosterAdapter to look
like this:

 override fun onBindViewHolder(holder: RosterRowHolder, position: Int) {
 holder.bind(getItem(position))
 }

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
onBindViewHolder() is called when RecyclerView wants us to update a ViewHolder
to reflect data from some item in the RecyclerView. We are given the position
of that item, along with the RosterRowHolder that needs to be updated. Since
RosterAdapter extends ListAdapter, we have a getItem() function that
gives us our ToDoModel for a given position, and we pass that to a bind()
function on RosterRowHolder.
This will have a compile error, as there is no bind() function on RosterRowHolder.
The objective of bind() is to populate our widgets, and since we are using
the data binding framework, that comes in the form of calling binding methods
on the TodoRowBinding object.
So, add a bind() function to RosterRowHolder:

 fun bind(model: ToDoModel) {
 binding.apply {
 isCompleted.isChecked = model.isCompleted
 desc.text = model.description
 }
 }

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
Here, we use our binding property to access each of our widgets and update
their states to match that of the associated ToDoModel.
Step #6: Wiring Up the RecyclerView

Now, we can teach RosterListFragment to use our RosterAdapter.
So far, we have not needed to reference any widgets from our todo_roster layout, so
we have a simple use of LayoutInflater in onCreateView() of RosterListFragment. But, we are going to need
to start configuring the RecyclerView, so we should switch to view binding for
this layout.
First, add a binding property to RosterListFragment:

 private var binding: TodoRosterBinding? = null

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
This property is nullable, and we initialize it to be null.
Then, change onCreateView() in RosterListFragment to be:

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Now, we return the results of calling inflate() on the TodoRosterBinding
class created from our todo_roster layout resource. And, we use Kotlin’s
also() scope function to say “in addition, please set binding to be this value”,
so we can have a reference to it later on.
Then, add this onViewCreated() function to RosterListFragment:

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(layoutInflater)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.items)
 binding?.empty?.visibility = View.GONE
 }

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Here we:

	Create a RosterAdapter instance

	Attach that RosterAdapter to our RecyclerView via setAdapter()

	Tell the RecyclerView that it is to be in the form of a vertically-scrolling
list, by supplying a LinearLayoutManager to the layoutManager property

	Add divider lines between the rows by creating a DividerItemDecoration
and adding it as a decoration to the RecyclerView

	Populate the list by calling submitList() on the RosterAdapter, providing the list of
ToDoModel objects that we get from asking our RosterMotor instance for the
items

	Hide the empty widget, by setting its visibility to be GONE

Finally, add this onDestroyView() function:

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
This sets binding back to null. Ideally, anything that you create in onCreateView()
and explicitly hold onto, you clean up in onDestroyView(), to prevent possible
memory leaks. We populated binding in onCreateView(), so we should clean up
binding in onDestroyView(), so we do not leak the binding object after our UI
is destroyed.
You can now run the app, and it will show your hard-coded to-do items in the list:

[image: ToDo App, When Launched, Showing Hard-Coded Items]

Figure 116: ToDo App, When Launched, Showing Hard-Coded Items
And, if you click on rows in the list (away from the checkboxes), you should see
a ripple effect. We got that from those manually-added attributes on the ConstraintLayout
in the row layout XML. Long-term, that ripple effect will have less of an impact,
because we will be launching another screen when the user taps on a row, and that
will happen quickly enough that users may not notice the ripple effect. But, having
that sort of visual cue for clickable widgets is still considered to be a good idea.
Final Results
Our todo_row layout resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:clickable="true"
 android:focusable="true"
 android:background="?attr/selectableItemBackground">

 <CheckBox
 android:id="@+id/isCompleted"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginBottom="8dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginBottom="8dp"
 android:ellipsize="end"
 android:maxLines="3"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/isCompleted"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from T15-RecyclerView/ToDo/app/src/main/res/layout/todo_row.xml)
RosterAdapter should look like:

package com.commonsware.todo

import android.view.LayoutInflater
import android.view.ViewGroup
import androidx.recyclerview.widget.DiffUtil
import androidx.recyclerview.widget.ListAdapter
import com.commonsware.todo.databinding.TodoRowBinding

class RosterAdapter(private val inflater: LayoutInflater) :
 ListAdapter<ToDoModel, RosterRowHolder>(DiffCallback) {
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int
) = RosterRowHolder(TodoRowBinding.inflate(inflater, parent, false))

 override fun onBindViewHolder(holder: RosterRowHolder, position: Int) {
 holder.bind(getItem(position))
 }
}

private object DiffCallback : DiffUtil.ItemCallback<ToDoModel>() {
 override fun areItemsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.id == newItem.id

 override fun areContentsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.isCompleted == newItem.isCompleted &&
 oldItem.description == newItem.description
}

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
…and RosterRowHolder should look like:

package com.commonsware.todo

import androidx.recyclerview.widget.RecyclerView
import com.commonsware.todo.databinding.TodoRowBinding

class RosterRowHolder(private val binding: TodoRowBinding) :
 RecyclerView.ViewHolder(binding.root) {

 fun bind(model: ToDoModel) {
 binding.apply {
 isCompleted.isChecked = model.isCompleted
 desc.text = model.description
 }
 }
}

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
Finally, RosterListFragment now should look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.databinding.TodoRosterBinding
import org.koin.androidx.viewmodel.ext.android.viewModel

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(layoutInflater)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.items)
 binding?.empty?.visibility = View.GONE
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }
}

(from T15-RecyclerView/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/layout/todo_row.xml

	app/src/main/java/com/commonsware/todo/RosterRowHolder.kt

	app/src/main/java/com/commonsware/todo/RosterAdapter.kt

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

Tracking the Completion Status
We have checkboxes in the list to show the completion status. However, the
user can toggle these checkboxes. Right now, that is only affecting the UI —
our models still have the old data. We should find out when the user toggles
the checked state of a checkbox, then update the associated model to match.
So, that is what we will work on in this tutorial.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Registering for Events
We need to register an OnCheckedChangedListener
on the CheckBox in each row, so we find out when that checkbox is checked and
unchecked. We also will need to know which ToDoModel is bound to this row, so we
can update the correct model.
To that end, modify bind() in RosterRowHolder to look like:

 fun bind(model: ToDoModel) {
 binding.apply {
 isCompleted.isChecked = model.isCompleted
 isCompleted.setOnCheckedChangeListener { _, _ -> TODO() }
 desc.text = model.description
 }
 }

We now have attached a lambda expression to our CheckBox check events.
Of note:

	The first parameter to the lambda expression is the CheckBox that was
checked. We do not need this, so we use _ to indicate that this is an
unused parameter. Similarly, the second parameter to the lambda expression is
a Boolean indicating the current state of the CheckBox. We do not need
that either (it is the opposite of the current state of our model), so we
use _ as the parameter name for it as well.

	
TODO() is a Kotlin function that serves as a marker, indicating
that we are not yet done with this logic.

If you were to run this and try checking or unchecking a CheckBox, your app
will crash, as TODO() throws an exception as a way of getting the point
across that you are not done yet.
(hence, do not run the app right now, unless you like crashing)
Step #2: Passing the Event Up the Chain
Eventually, we need to modify our
repository to reflect the change in the model state.
We could have the RosterRowHolder do that. However, it is
best to minimize the number of places that you are modifying your data. The
more your model-manipulating code is scattered, the more difficult it will
be to change that code, such as when we want to start storing this stuff
in a database. Since we already are working with the repository in
RosterMotor, we may as well have it handle the model modifications as
well.
However, our RosterRowHolder does not have access to the RosterMotor.
We could pass it down from the RosterListFragment if we wanted.
Alternatively, we can pass the event up the Kotlin object hierarchy, from
the RosterRowHolder through the RosterAdapter to the RosterListFragment,
and from there affect our RosterMotor.
With that in mind, modify the constructor of RosterRowHolder to look like:

class RosterRowHolder(
 private val binding: TodoRowBinding,
 val onCheckboxToggle: (ToDoModel) -> Unit
) :

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
Here, onCheckboxToggle is a function type. We are passing some sort of function
or lambda expression into RosterRowHolder that takes a ToDoModel as input
and returns nothing (i.e., Unit, roughly analogous to void in Java).
Then, revise bind() on RosterRowHolder to look like:

 fun bind(model: ToDoModel) {
 binding.apply {
 isCompleted.isChecked = model.isCompleted
 isCompleted.setOnCheckedChangeListener { _, _ -> onCheckboxToggle(model) }
 desc.text = model.description
 }
 }

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
Now, our setOnCheckedChangeListener() calls the onCheckboxToggle function type,
passing in the current model. This replaces the TODO() that we used in the
previous step.
Now, though, RosterAdapter will have a compile error, as we are not passing
in this value. So, add a similar constructor parameter to RosterAdapter:

class RosterAdapter(
 private val inflater: LayoutInflater,
 private val onCheckboxToggle: (ToDoModel) -> Unit
) :

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
Then, pass onCheckboxToggle to the RosterRowHolder constructor call in onCreateViewHolder():

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int) =
 RosterRowHolder(
 TodoRowBinding.inflate(inflater, parent, false),
 onCheckboxToggle
)

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
So now we are passing the onCheckboxToggle that the RosterAdapter receives to
each of the RosterRowHolder instances. This, though, has broken RosterListFragment,
as it is not passing a value for onCheckboxToggle in its RosterAdapter constructor call.
To fix this, modify the creation of the RosterAdapter instance in
RosterListFragment to look like:

 val adapter = RosterAdapter(layoutInflater) { model ->
 TODO()
 }

When a function type is the last parameter for a function call, we can use a lambda
expression outside of the function call parentheses. So, the lambda expression
that we have here turns into onCheckboxToggle.
Right now, we have a TODO() function call in the lambda expression. So,
if you run the app and you click on one of the CheckBox widgets…
you crash with a error of:

kotlin.NotImplementedError: An operation is not implemented.

However, this is an expected crash. NotImplementedError is what TODO() throws.
So, this confirms that we got control in RosterListFragment when the user
clicked the CheckBox. Now, we need to replace the TODO() with something
more useful and less crash-prone.
Step #3: Saving the Change
Now, we need to update our repository, given that the user toggled the completed
state of the model.
To that end, add a save() function to ToDoRepository:

 fun save(model: ToDoModel) {
 items = if (items.any { it.id == model.id }) {
 items.map { if (it.id == model.id) model else it }
 } else {
 items + model
 }
 }

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
Here, we see if the items list already contains the supplied model, based on
the id values. If it does, this means we are replacing an existing ToDoModel
with an updated copy, so we generate a new list of models, replacing the old
one with the new one via map(). If, however, the list does not contain a model
with this id, then we must be adding some new model to the list, so we just
create a list that adds the new model to the end.
Next, add a similar save() function to RosterMotor:

 fun save(model: ToDoModel) {
 repo.save(model)
 }

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
Right now, all this does is call through to save() on the repository. Later,
when we have to start taking database I/O and threading into account, save()
will do more work. But, for now, this is all that we need.
Then, we can call save() on RosterMotor from our onCheckedChange lambda expression, over in
RosterListFragment:

 val adapter = RosterAdapter(layoutInflater) {
 motor.save(it.copy(isCompleted = !it.isCompleted))
 }

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Here, we create the updated model by using copy(), a function added to all
Kotlin data classes. As the name suggests, copy() makes a copy of the immutable
object, except it replaces whatever properties we include as parameters to the
copy() call. In our case, we replace isCompleted with the opposite of its
current value.
If you run this revised sample… nothing much seems to change, except that our
TODO() crash is gone. You cannot readily see the objects in the repository, to see what
the ToDoModel objects look like. Plus,
we are only affecting memory, so these changes go away when the app’s process
does. All of those limitations will be addressed in upcoming tutorials.
Final Results
RosterRowHolder should resemble:

package com.commonsware.todo

import androidx.recyclerview.widget.RecyclerView
import com.commonsware.todo.databinding.TodoRowBinding

class RosterRowHolder(
 private val binding: TodoRowBinding,
 val onCheckboxToggle: (ToDoModel) -> Unit
) :
 RecyclerView.ViewHolder(binding.root) {

 fun bind(model: ToDoModel) {
 binding.apply {
 isCompleted.isChecked = model.isCompleted
 isCompleted.setOnCheckedChangeListener { _, _ -> onCheckboxToggle(model) }
 desc.text = model.description
 }
 }
}

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
RosterAdapter should look like:

package com.commonsware.todo

import android.view.LayoutInflater
import android.view.ViewGroup
import androidx.recyclerview.widget.DiffUtil
import androidx.recyclerview.widget.ListAdapter
import com.commonsware.todo.databinding.TodoRowBinding

class RosterAdapter(
 private val inflater: LayoutInflater,
 private val onCheckboxToggle: (ToDoModel) -> Unit
) :
 ListAdapter<ToDoModel, RosterRowHolder>(DiffCallback) {
 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int) =
 RosterRowHolder(
 TodoRowBinding.inflate(inflater, parent, false),
 onCheckboxToggle
)

 override fun onBindViewHolder(holder: RosterRowHolder, position: Int) {
 holder.bind(getItem(position))
 }
}

private object DiffCallback : DiffUtil.ItemCallback<ToDoModel>() {
 override fun areItemsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.id == newItem.id

 override fun areContentsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.isCompleted == newItem.isCompleted &&
 oldItem.description == newItem.description
}

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
ToDoRepository should resemble:

package com.commonsware.todo

class ToDoRepository {
 var items = listOf(
 ToDoModel(
 description = "Buy a copy of _Exploring Android_",
 isCompleted = true,
 notes = "See https://wares.commonsware.com"
),
 ToDoModel(
 description = "Complete all of the tutorials"
),
 ToDoModel(
 description = "Write an app for somebody in my community",
 notes = "Talk to some people at non-profit organizations to see what they need!"
)
)

 fun save(model: ToDoModel) {
 items = if (items.any { it.id == model.id }) {
 items.map { if (it.id == model.id) model else it }
 } else {
 items + model
 }
 }
}

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
RosterMotor should have:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 val items = repo.items

 fun save(model: ToDoModel) {
 repo.save(model)
 }
}

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
And RosterListFragment should contain:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.databinding.TodoRosterBinding
import org.koin.androidx.viewmodel.ext.android.viewModel

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(layoutInflater) {
 motor.save(it.copy(isCompleted = !it.isCompleted))
 }

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.items)
 binding?.empty?.visibility = View.GONE
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }
}

(from T16-Completion/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/RosterRowHolder.kt

	app/src/main/java/com/commonsware/todo/RosterAdapter.kt

	app/src/main/java/com/commonsware/todo/ToDoRepository.kt

	app/src/main/java/com/commonsware/todo/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

Displaying an Item
We are storing things, like notes, in the ToDoModel that do not appear in
the roster list. That sort of list usually shows limited information, with
the rest of the details shown when you tap on an item in the list. That is
the approach that we will use here, where we will show a separate fragment
with the details of the to-do item when the user taps on the item.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Creating the Fragment
Once again, we need to set up a fragment.
Right-click over the com.commonsware.todo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. This will bring up a dialog
where we can define a new Kotlin class. For the name, fill in DisplayFragment.
For the kind, choose “Class”. Press Enter or Return to create the class.
That will give you a DisplayFragment that looks like:

package com.commonsware.todo

class DisplayFragment {
}

Then, have it extend the Fragment class:

package com.commonsware.todo

import androidx.fragment.app.Fragment

class DisplayFragment : Fragment() {
}

Step #2: Updating the Navigation Graph
We need to add this new fragment to our navigation graph, so we can navigate to it.
Open up the res/navigation/nav_graph.xml resource. In the graphical design view,
once again click the new-destination toolbar button (rectangle with green plus).
This will drop down a list of candidate fragments, and DisplayFragment
should be among them:

[image: Android Studio Navigation Editor, Adding New Destination]

Figure 117: Android Studio Navigation Editor, Adding New Destination
Choose DisplayFragment, and you should see it appear in your editor:

[image: Android Studio Navigation Editor, with New Destination]

Figure 118: Android Studio Navigation Editor, with New Destination
If, as in the screenshot shown above, displayFragment shows up to the left
of rosterListFragment, drag it more to the right:

[image: Android Studio Navigation Editor, with Repositioned Destination]

Figure 119: Android Studio Navigation Editor, with Repositioned Destination
Then, click on rosterListFragment, and drag the circle that appears on the
right over to displayFragment, creating an arrow:

[image: Android Studio Navigation Editor, with Connected Destinations]

Figure 120: Android Studio Navigation Editor, with Connected Destinations
This sets up an “action”. It indicates that we want to be able to navigate
from our RosterListFragment to our DisplayFragment.
Now, we need to adjust some attributes of our navigation graph.
Click on the rosterListFragment, so its attributes appear in the “Attributes”
pane. Replace its current “Label” with @string/app_name, so we use our existing
app name string resource.
Then, click on displayFragment and do the same thing: replace its current
“Label” with @string/app_name.
Finally, click on the arrow connecting the two destinations. This allows us
to modify attributes of the action itself. It has a generated ID of
@+id/action_rosterListFragment_to_displayFragment, which is fine but rather
long. Change it to @+id/displayModel.
At this point, the XML of the navigation resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.RosterListFragment"
 android:label="@string/app_name">
 <action
 android:id="@+id/displayModel"
 app:destination="@id/displayFragment" />
 </fragment>
 <fragment
 android:id="@+id/displayFragment"
 android:name="com.commonsware.todo.DisplayFragment"
 android:label="@string/app_name" />
</navigation>

Step #3: Responding to List Clicks
The typical way lists work in Android is that if you tap on a row in the list,
the user is taken to some UI (activity or fragment) that pertains to the tapped-upon
row. More generally, we have ways of finding out when the row gets clicked upon.
Once we get control when the user taps on a row, we need to show that
DisplayFragment… even if at the moment it will be empty.
At this point, we have two separate events to track: clicking on the row and toggling the
checked state of the CheckBox. We can set up separate callback functions
for those.
To that end, modify the constructor for RosterRowHolder to have both
onCheckboxToggle and onRowClick parameters:

class RosterRowHolder(
 private val binding: TodoRowBinding,
 val onCheckboxToggle: (ToDoModel) -> Unit,
 val onRowClick: (ToDoModel) -> Unit
) :

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
Then, update bind() to add a new line to the apply() call:

 fun bind(model: ToDoModel) {
 binding.apply {
 root.setOnClickListener { onRowClick(model) }
 isCompleted.isChecked = model.isCompleted
 isCompleted.setOnCheckedChangeListener { _, _ -> onCheckboxToggle(model) }
 desc.text = model.description
 }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
Click events that are not handled by child widgets ripple up the view hierarchy.
So, by putting a click listener on the ConstraintLayout — the root of our binding — we will find out
if the user clicks on the TextView or any empty space in the row. And,
here, we invoke our onRowClick function type. At this point, we are
getting control for both UI events and routing them to the appropriate function types.
At this point, though, RosterAdapter will have a compile error, as we are not
passing in both onRowClick and onCheckboxToggle. So, modify its constructor
to accept both of those:

class RosterAdapter(
 private val inflater: LayoutInflater,
 private val onCheckboxToggle: (ToDoModel) -> Unit,
 private val onRowClick: (ToDoModel) -> Unit
) :

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
…and modify onCreateViewHolder() to pass both along to the RosterRowHolder
constructor:

 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int) =
 RosterRowHolder(
 TodoRowBinding.inflate(inflater, parent, false),
 onCheckboxToggle,
 onRowClick
)

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
Now, of course, RosterListFragment has a compile error, as we are not providing
both onRowClick and onCheckboxToggle. We need to provide the onRowClick
value and do something to show the DisplayFragment.
With that in mind, add the following function to RosterListFragment:

 private fun display(model: ToDoModel) {
 findNavController().navigate(RosterListFragmentDirections.displayModel())
 }

Our primary gateway to the Navigation component from our Kotlin code is
by findNavController(). We can call this on any activity or fragment and
get a NavController back that we can use to navigate through our navigation
graph, among other things.
Here, we call navigate() on the NavController, to indicate that we want
to transition from this destination to another one in our navigation graph.
Because we added the Safe Args plugin back in the preceding tutorial,
our parameter to navigate() is a “directions” object. We get ours by calling
displayModel() on RosterListFragmentDirections. The ...Directions
class will have a name based on the destination that we are coming from — we
are in the rosterListFragment destination in our navigation graph, so our
class is RosterListFragmentDirections. The function that we call is based
on the ID of the action that we want to perform. We gave our action an ID
of displayModel earlier in this tutorial, so our function is displayModel().
We pass whatever that function returns to navigate(), and the Navigation component
will arrange to perform that action and send us to whatever destination it designates.
In the IDE, you will see that our model parameter to our display()
function is unused. This hints at a flaw in our implementation. The idea is
that we want DisplayFragment to display the details of some to-do item.
That implies that DisplayFragment knows what that to-do item actually is. We
have the model parameter, but we are not somehow getting that information
over to the DisplayFragment. We will address this shortcoming in a later
step of this tutorial.
So, modify the RosterAdapter constructor call in onViewCreated() of
RosterListFragment to look like this:

 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display)

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Here, to help us keep track of our parameters,
we are taking advantage of Kotlin’s named arguments. We have our original
lambda expression assigned to onCheckboxToggle, and we have a function reference
to our display() function assigned to onRowClick.
If you run the sample app now, and you click on one of the to-do items,
you will be taken to the DisplayFragment… which happens to not display
anything. We will fix that in the upcoming steps of this tutorial.
If you press BACK when viewing the (empty) DisplayFragment, you will return
to the list of to-do items.
Step #4: Teaching Navigation About the App Bar
Google, however, is not happy.
Google wants apps to have “up navigation”. This involves having a back arrow
visible in the Toolbar when the user is somewhere deeper in the navigation
graph than the start destination, such as being on our DisplayFragment:

[image: ToDo App Toolbar, Showing Up Navigation]

Figure 121: ToDo App Toolbar, Showing Up Navigation
(if you are wondering why this is called “up navigation” when the arrow
points to the side… well, that’s complicated…)
To make Google happy, we need to add a few things to our MainActivity, so
that the Navigation component knows about the app bar and can add the
up navigation icon when needed.
First, in MainActivity, add this property:

 private lateinit var appBarConfiguration: AppBarConfiguration

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
An AppBarConfiguration is… a configuration for our app bar. In this app,
our Toolbar will serve as our app bar.
(if you are wondering why we have action bars, toolbars, and app bars…
well, that’s complicated…)
Next, add this block of code to the end of the onCreate() function in
MainActivity:

 supportFragmentManager.findFragmentById(R.id.nav_host)?.findNavController()?.let { nav ->
 appBarConfiguration = AppBarConfiguration(nav.graph)
 setupActionBarWithNavController(nav, appBarConfiguration)
 }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
To get our NavController, we need to call findNavController() on something.
Unfortunately, Google made that relatively complex
when you are using FragmentContainerView for these fragments. We need to:

	Get a FragmentManager by referencing supportFragmentManager

	Find our NavHostFragment in there by calling findFragmentById() and passing
in the ID of our FragmentContainerView (R.id.nav_host)

	Call findNavController() on that Fragment

We then:

	Create an AppBarConfiguration for the navigation graph managed by that
NavController

	Call setupActionBarWithNavController(), to tell the Navigation component
that we want it to automatically update the app bar based on our navigation
through our navigation graph

Finally, add this function to MainActivity:

 override fun onSupportNavigateUp() =
 navigateUp(findNavController(R.id.nav_host), appBarConfiguration)

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
When the user taps that arrow in the app bar, this function will be called.
Here, we just pass that event along to the Navigation component, asking it
to perform whatever would be appropriate for up navigation at this point.
Here, it is safe for us to just use findNavController(). The issues requiring
us to go through the extra complexity to call findNavController() up in onCreate() are
tied to that code being in onCreate(), before the Navigation system has gotten
everything wired up. By the time onSupportNavigateUp() is called, Navigation is
fully initialized and we can just use the simpler straightforward findNavController() call.
If you run the app, not only will that arrow appear in the app bar when
we are viewing the DisplayFragment, but tapping
it will return you to the RosterListFragment
Step #5: Creating an Empty Layout
To have DisplayFragment display the contents of a ToDoModel, it helps
to have a layout resource.
Right-click over the res/layout/ directory and choose “New” > “Layout resource file”
from the context menu. In the dialog that appears, fill in todo_display as the
“File name” and ensure that the “Root element” is set to
androidx.constraintlayout.widget.ConstraintLayout.
Then, click “OK” to close the dialog and create the mostly-empty resource
file.
Then, we are going to need to describe the UI that we want, setting up our
widgets to display the different pieces of data in our ToDoModel. We will do that
over the next several tutorial steps.
Step #6: Adding the Completed Icon
Part of what we need to display is whether or not this to-do item is completed.
In the roster rows, that was handled by the CheckBox. However, a CheckBox
is a widget designed for input. We have two choices:

	We could use a CheckBox and allow the user to change the completion status
from within the DisplayFragment

	We could use something else to represent the current completion status, restricting
the user to changing the status somewhere else

Since we are also going to allow the user to change the completion status
from the fragment that allows editing of the whole ToDoModel, it seems reasonable
to make DisplayFragment be display-only. We could still use a CheckBox
and simply ignore any changes that the user makes in it, but that’s just rude.
Instead, let’s use an ImageView to display an icon for completed items, hiding
it for items that are not completed.
To do this, first we should set up the icon artwork. Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard, that we used when creating the app bar
item in an earlier tutorial.
There, click the “Clip Art” button and search for check:

[image: Android Studio Vector Asset Selector, Showing check Options]

Figure 122: Android Studio Vector Asset Selector, Showing “check” Options
Choose the “check circle” icon and click “OK” to close up the icon selector. Then,
change the name to ic_check_circle. Finally, click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Then, in the graphical designer for todo_display.xml, drag an
ImageView from the “Common” category of the “Palette” into the layout. This
immediately displays a dialog from which you can choose a resource to display:

[image: Android Studio Drawable Resource Selector]

Figure 123: Android Studio Drawable Resource Selector
In the “app” section, choose the ic_check_circle
resource that we just created, then
click “OK” to close up the dialog.
Add constraints to tie the top and end side of the ImageView to the top and
end side of the ConstraintLayout. Then, in the Attributes pane, give the ImageView an “ID” of completed.
And, in the “Layout”
section, give it 8dp of top and end margin.
The icon is a bit small by default, at only 24dp. We can make it bigger by changing
its width and height. We want it to be square, and we might want the size to
be different on larger-screen devices. So, we should set up a dimension resource
for a larger size, then apply it to both the width and the height.
To do that, click the “O” button to the right of the “layout_width” drop-down
in the Attributes pane:

[image: Android Studio Layout Designer, Showing Tiny O Button]

Figure 124: Android Studio Layout Designer, Showing Tiny “O” Button
That brings up a dialog to choose a dimension resource:

[image: Android Studio Dimension Resource Selector]

Figure 125: Android Studio Dimension Resource Selector
Click the + icon and choose “Dimension Value…” from the drop-down menu
to bring up the new-resource dialog:

[image: Android Studio New Dimension Resource Dialog]

Figure 126: Android Studio New Dimension Resource Dialog
For the name, fill in checked_icon_size, and use 48dp for the value.
Click “OK” to close up both dialogs and fill in that dimension. Then, click the
“O” next to the “layout_height” drop-down in the Attributes pane, and choose
the checked_icon_size dimension from the list. This will give you a larger
icon, with both height and width set to 48dp:

[image: Android Studio Layout Designer, Showing Slightly Larger ImageView]

Figure 127: Android Studio Layout Designer, Showing Slightly Larger ImageView
For accessibility, it is good to supply a “content description” for an ImageView,
which is some text to announce using a screen reader. To do that, in the “Common Attributes” section
of the “Attributes” pane, click the “O”
button next to the “contentDescription” field, to bring up a string resource
chooser. Click the + icon and choose “String Value” from the drop-down menu to
bring up the new string resource dialog.
For the resource name, use is_completed, and for the resource value, use
Item is completed. Click “OK” to close up both dialogs and apply this new
string resource to the android:contentDescription attribute.
The icon appears gray. That works, but it is a bit boring, and it does not
blend in with the rest of the colors used in the app. To change it to use our
accent color, switch to the “Code” view and add app:tint="@color/colorAccent"
as an attribute to the <ImageView> element. This will apply our amber accent
color as a tint, which you will see if you switch back to the “Design” view:

[image: Android Studio Layout Designer, Showing Tinted ImageView]

Figure 128: Android Studio Layout Designer, Showing Tinted ImageView
Your layout XML should now resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent" android:layout_height="match_parent">

 <ImageView
 android:id="@+id/completed"
 android:layout_width="@dimen/checked_icon_size"
 android:layout_height="@dimen/checked_icon_size"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:contentDescription="@string/is_completed"
 android:tint="@color/colorAccent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:srcCompat="@drawable/ic_check_circle" />
</androidx.constraintlayout.widget.ConstraintLayout>

Step #7: Displaying the Description
Next is the description of the to-do item.
In the graphical designer view of the layout resource editor, from the “Common”
category of the “Palette” pane, drag a TextView into the preview area. Using
the grab handles, set up three constraints:

	Tie the top and start edges to the corresponding edges of the ConstraintLayout

	Tie the end edge to the start edge of the ImageView

[image: Android Studio Layout Designer, Showing Added TextView]

Figure 129: Android Studio Layout Designer, Showing Added TextView
In the “Attributes” pane, change the “layout_width” attribute to match_constraint (a.k.a., 0dp).
In the “Layout” section give it 8dp
of top, start, and end margin.
And, clear the contents of the “text” attribute, as we will fill that in at runtime.
To change the ID, switch to the “Code” view. There, in the <TextView> element,
change the android:id value to be “@+id/desc”. Then, switch back to the “Design” view.
Then, in the “Common Attributes” section of the “Attributes” pane, find the textAppearance
attribute and fill in ?attr/textAppearanceHeadline1. This says “use a text appearance
defined by textAppearanceHeadline1 in our theme”. According to Material Design,
this should format the text as a headline, and that seems like a reasonable
choice for the description, since it is the most important element of our to-do item.
Unfortunately, Google’s AppCompat system does not adhere particularly well to
Material Design. So, we need to make some adjustments, customizing this style
a bit.
Open the res/values/styles.xml resource and add the following element to it:

 <style name="HeadlineOneAppearance" parent="@style/TextAppearance.AppCompat.Large">
 <item name="android:textStyle">bold</item>
 </style>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
This defines a custom style, HeadlineOneAppearance, that is based on the
existing TextAppearance.AppCompat.Large style. It also overrides the
textStyle attribute to be bold. Since TextAppearance.AppCompat.Large
has a large font, this custom style defines a large bold font.
Then, add this element to the Theme.ToDo resource definition in that file:

 <item name="textAppearanceHeadline1">@style/HeadlineOneAppearance</item>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
This says “when a widget tries to use textAppearanceHeadline1, use this
style resource for that”.
The layout should now resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent" android:layout_height="match_parent">

 <ImageView
 android:id="@+id/completed"
 android:layout_width="@dimen/checked_icon_size"
 android:layout_height="@dimen/checked_icon_size"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:contentDescription="@string/is_completed"
 android:tint="@color/colorAccent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:srcCompat="@drawable/ic_check_circle" />

 <TextView
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:textAppearance="?attr/textAppearanceHeadline1"
 app:layout_constraintEnd_toStartOf="@+id/completed"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

Step #8: Showing the Created-On Date
The next bit of data to display is the date on which the to-do item was created.
Also, we need to provide a label for the date, as otherwise the user may not
realize what this date means.
First, let’s set up the label. In the graphical designer, drag another TextView
into the layout. Drag the grab handles to set up constraints:

	On the start end of the label, to the start side of the ConstraintLayout

	On the top of the label, to the bottom of the desc TextView

[image: Android Studio Layout Designer, Showing Another Added TextView]

Figure 130: Android Studio Layout Designer, Showing Another Added TextView
Give the widget an ID of labelCreated. And, in the “Layout” section of the
“Attributes” pane, give it 8dp of top and start margin, via the drop-downs.
Set layout_width and layout_height each to wrap_content.
To set the text to a fixed value, we can set up another string resource. However,
the Attributes pane has two attributes that look like they set the text of
the TextView:

[image: Android Studio Layout Designer, Showing Two TextView Text Options]

Figure 131: Android Studio Layout Designer, Showing Two TextView Text Options
The one with the wrench icon sets up separate text to show when working
in the design view of the layout resource editor. We want the other one,
that sets the text for actual app — it has TextView as the value right
now. Click the “O” button next to that field, and choose the drop-down
option to create a new string resource. Give it a name of created_on
and a value of “Created on:”. Clicking “OK” will close the dialog and assign
that string resource to the TextView for the android:text attribute.
Then, find the textAppearance attribute in the “Attributes” pane and set its
value to ?attr/textAppearanceHeadline2. As before, this delegates the design
of the text to whatever our theme has for textAppearanceHeadline2.
However, while this is supposed to be sized like a secondary headline, that is not
what AppCompat has. So, back over in res/values/styles.xml, add a new
style resource:

 <style name="HeadlineTwoAppearance" parent="@style/TextAppearance.AppCompat.Medium">
 </style>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
This HeadlineTwoAppearance simply inherits from TextAppearance.AppCompat.Medium.
We could override other attributes here, but at the moment, we do not need any.
Then, add this attribute to Theme.ToDo:

 <item name="textAppearanceHeadline2">@style/HeadlineTwoAppearance</item>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
This indicates that the theme’s textAppearanceHeadline2 maps to our new
HeadlineTwoAppearance style. And this gives us a better text size for our
creation date.
Now, we can show the created-on date, next to our newly-created label.
Drag yet another TextView
into the layout. Drag the grab handles to set up constraints:

	On the start side of this TextView, to the end side of the labelCreated
TextView

	On the top of this TextView, to the bottom of the desc TextView

	On the end side of this TextView, to the start side of the icon

[image: Android Studio Layout Designer, Showing Yet Another TextView]

Figure 132: Android Studio Layout Designer, Showing Yet Another TextView
Then, set the “layout_width” to match_constraint (a.k.a., 0dp).
Give the widget an ID of createdOn. Tn the “Layout” section of the
“Attributes” pane, give it 8dp of top, start, and end margin, via the drop-downs.
And, clear the contents of the “text” attribute, as we will fill that in at runtime.
Next, find the textAppearance attribute in the “Attributes” pane and set its
value to ?attr/textAppearanceHeadline2, the same as we used for its label.
At this point, the XML of the layout resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent" android:layout_height="match_parent">

 <ImageView
 android:id="@+id/completed"
 android:layout_width="@dimen/checked_icon_size"
 android:layout_height="@dimen/checked_icon_size"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:contentDescription="@string/is_completed"
 android:tint="@color/colorAccent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:srcCompat="@drawable/ic_check_circle" />

 <TextView
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:textAppearance="?attr/textAppearanceHeadline1"
 app:layout_constraintEnd_toStartOf="@+id/completed"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/labelCreated"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:text="@string/created_on"
 android:textAppearance="?attr/textAppearanceHeadline2"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/desc" />

 <TextView
 android:id="@+id/createdOn"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:textAppearance="?attr/textAppearanceHeadline2"
 app:layout_constraintEnd_toStartOf="@+id/completed"
 app:layout_constraintStart_toEndOf="@+id/labelCreated"
 app:layout_constraintTop_toBottomOf="@+id/desc" />
</androidx.constraintlayout.widget.ConstraintLayout>

Step #9: Adding the Notes
There is only one more widget to add: another TextView, this time for
the notes.
Over in the design tab, drag one more TextView out of the “Palette” pane into
the preview area. Set the constraints to have the top of the TextView attach
to the bottom of the createdOn TextView, and have the other three sides
attach to the edges of the ConstraintLayout:

[image: Android Studio Layout Designer, Showing One More TextView]

Figure 133: Android Studio Layout Designer, Showing One More TextView
Change both the “layout_width” and “layout_height” attributes to match_constraint.
Give the widget an ID of notes. Clear the “text” attribute, as we will fill that
value in at runtime. And, in the “Layout” section of the
“Attributes” pane, give it 8dp of margin on all four sides, via the drop-downs:

[image: Android Studio Layout Designer, Showing Stretched TextView]

Figure 134: Android Studio Layout Designer, Showing Stretched TextView
For the textAppearance, fill in ?attr/textAppearanceBody1, to use our theme’s
textAppearanceBody1 rules for formatting the text. Over in res/values/styles.xml,
add this XML element:

 <style name="BodyAppearance" parent="@style/TextAppearance.AppCompat.Medium">
 </style>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
This is the same as HeadlineTwoAppearance, other than the name. Having two separate
styles allows us to format the text differently in the future (e.g., have the body be
monospace), should we choose to do so.
Then, add another <item> element to Theme.ToDo to tie in this new style:

 <item name="textAppearanceBody1">@style/BodyAppearance</item>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
Step #10: Adding Navigation Arguments
Before we can display our ToDoModel, we need to get it in DisplayFragment.
And before we can do that, we need DisplayFragment to know what model that is.
This gets back to the gap we saw several steps ago, where
our display() function in RosterListFragment was not doing anything
with the ToDoModel that the user clicked on. We need to use that somehow.
And for that, we will add an argument to our navigation graph.
Open res/navigation/nav_graph.xml and, in the graphical editor, click on the displayFragment.
In the “Attributes” pane, you will see an “Arguments” section with a + icon:

[image: Android Studio Navigation Editor, Showing displayFragment Attributes]

Figure 135: Android Studio Navigation Editor, Showing displayFragment Attributes
Click that + icon in the “Arguments” to open up a dialog to define an argument:

[image: Android Studio Navigation Editor, Add Argument Link Dialog]

Figure 136: Android Studio Navigation Editor, Add Argument Link Dialog
Fill it in as follows:

 	Property
 	Value

 	Name
 	modelId

 	Type
 	String

 	Array
 	unchecked

 	Nullable
 	unchecked

 	Default Value
 	(leave empty)

[image: Android Studio Navigation Editor, Add Argument Link Dialog, Filled In]

Figure 137: Android Studio Navigation Editor, Add Argument Link Dialog, Filled In
Click “Add” to add it to the navigation graph.
From the Android Studio main menu, choose “Build” > “Make Module ‘app’”. After a
few moments, you should get a compile error, from our display() function
in RosterListFragment:

 private fun display(model: ToDoModel) {
 findNavController().navigate(RosterListFragmentDirections.displayModel())
 }

We added an argument to displayFragment. Now our action that will navigate
to displayFragment needs a value for that argument, so the RosterListFragmentDirections.displayModel()
function needs our modelId value. So, modify the function to look like:

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Then, over in DisplayFragment, add this property:

 private val args: DisplayFragmentArgs by navArgs()

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
DisplayFragmentArgs is code-generated by the Safe Args plugin for the Navigation
component. It looks at our declared arguments and creates a Kotlin class that
represents them. Moreover, we get a navArgs() delegate that will build that
DisplayFragmentArgs for us when we first access the args property. We will
be able to use this to access our modelId value.
Step #11: Displaying the Layout
In DisplayFragment, add a binding field, pointing to our newly-generated
TodoDisplayBinding class from our todo_display layout resource:

 private var binding: TodoDisplayBinding? = null

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
Then, in DisplayFragment, add an onCreateView() function:

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoDisplayBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
This works akin to how onCreateViewHolder() does in RosterAdapter,
inflating the binding from the resource, using the code-generated
TodoDisplayBinding class. Here, we assign the binding itself to the binding
property, while returning the root View of the inflated layout.
Also, add this onDestroyView() function to DisplayFragment:

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
As with RosterListFragment, this sets binding back to null, so we do not leak
the binding after our fragment’s UI is destroyed.
Step #12: Making Another Motor
Now, let’s create another ViewModel implementation that uses the same pattern
as RosterMotor, but for a single model based on its ID. We can use this both
for DisplayFragment and the EditFragment that we will create in the next tutorial.
Right-click over the
com.commonsware.todo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
SingleModelMotor, then choose “Class” for the kind.
Then press Enter or Return to create the empty SingleModelMotor class.
Then, replace its contents with:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class SingleModelMotor(
 private val repo: ToDoRepository,
 private val modelId: String
) : ViewModel() {
}

Like RosterMotor, this takes a ToDoRepository as a constructor parameter. Unlike RosterMotor,
this also takes the ID of the ToDoModel that we want to use, as another constructor
parameter.
To actually retrieve the ToDoModel for this ID, we could just rummage through repo.items
here in RosterMotor. It will be cleaner to have ToDoRepository do this. So, add this
find() function to ToDoRepository:

 fun find(modelId: String) = items.find { it.id == modelId }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
Right now, all this does is scan through the items list and find the matching ToDoModel.
Later on, we will do a database query to find the to-do item in the database.
Then, add a corresponding getModel() function to SingleModelMotor:

 fun getModel() = repo.find(modelId)

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
This just uses the repo and modelId to retrieve the ToDoModel and returns it.
We need to teach Koin about this viewmodel, the same way that we did with RosterMotor.
So, in ToDoApp, add this line to the koinModule declaration:

 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This is a bit different than the viewModel() call to set up RosterMotor:

 viewModel { RosterMotor(get()) }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This time, we want to provide a parameter when we retrieve the SingleModelMotor: the
model ID of the ToDoModel that we want to display. Koin has no way of getting this
value on its own, the way it can for the ToDoRepository singleton. So, we set up
the lambda expression to return a function type, one that takes our modelId as
a parameter and uses it to construct the SingleModelMotor instance.
Then, in DisplayFragment, add this property:

 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
This time, instead of just using by viewModel(), we use a variant that employs
parametersOf() to supply the parameters that get passed to our function type
that we used in the Koin declaration. Here, we get the modelId out of our
Navigation component arguments, wrap them using parametersOf(), and use that
to set up the SingleModelMotor. The net result is that the model ID that we
had in RosterListFragment — from when the user clicked the row — winds up
in the hands of our viewmodel, and from there can be used to get the ToDoModel.
Step #13: Populating the Layout
Finally, we can use our ToDoModel to fill in the widgets of our layout.
Add this onViewCreated() function to DisplayFragment:

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 completed.visibility = if (it.isCompleted) View.VISIBLE else View.GONE
 desc.text = it.description
 createdOn.text = DateUtils.getRelativeDateTimeString(
 requireContext(),
 it.createdOn.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS,
 0
)
 notes.text = it.notes
 }
 }
 }

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
This retrieves the model given its ID and updates the widgets in the ToDoBinding based on that model:

	For the checkmark icon, we control its visibility based on the isCompleted
model value, to show the icon if the model is completed (View.VISIBLE) or
hide it if the model is not (View.GONE).

	For the description and notes, we just populate the TextView widgets from
the strings held in the model.

	For createdOn, we get the Instant from the model, convert it into a
standard “milliseconds since the Unix epoch” value, and pass that to DateUtils.getRelativeDateTimeString().
DateUtils.getRelativeDateTimeString() will return a value formatted in
accordance with the user’s locale and device configuration, plus use a relative time
(e.g., “35 minutes ago”) for recent times.

At this point, if you run the app, and you click on one of the to-do items in
the list, the full details should appear in the DisplayFragment:

[image: ToDo Apps DisplayFragment]

Figure 138: ToDo App’s DisplayFragment
Pressing BACK returns you to the list, as before.
Final Results
We changed a lot of stuff in this tutorial!
The nav_graph navigation resource should contain:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.RosterListFragment"
 android:label="@string/app_name">
 <action
 android:id="@+id/displayModel"
 app:destination="@id/displayFragment" />
 </fragment>
 <fragment
 android:id="@+id/displayFragment"
 android:name="com.commonsware.todo.DisplayFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string" />
 </fragment>
</navigation>

(from T17-Display/ToDo/app/src/main/res/navigation/nav_graph.xml)
RosterRowHolder should look like:

package com.commonsware.todo

import androidx.recyclerview.widget.RecyclerView
import com.commonsware.todo.databinding.TodoRowBinding

class RosterRowHolder(
 private val binding: TodoRowBinding,
 val onCheckboxToggle: (ToDoModel) -> Unit,
 val onRowClick: (ToDoModel) -> Unit
) :
 RecyclerView.ViewHolder(binding.root) {

 fun bind(model: ToDoModel) {
 binding.apply {
 root.setOnClickListener { onRowClick(model) }
 isCompleted.isChecked = model.isCompleted
 isCompleted.setOnCheckedChangeListener { _, _ -> onCheckboxToggle(model) }
 desc.text = model.description
 }
 }
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterRowHolder.kt)
RosterAdapter should resemble:

package com.commonsware.todo

import android.view.LayoutInflater
import android.view.ViewGroup
import androidx.recyclerview.widget.DiffUtil
import androidx.recyclerview.widget.ListAdapter
import com.commonsware.todo.databinding.TodoRowBinding

class RosterAdapter(
 private val inflater: LayoutInflater,
 private val onCheckboxToggle: (ToDoModel) -> Unit,
 private val onRowClick: (ToDoModel) -> Unit
) :
 ListAdapter<ToDoModel, RosterRowHolder>(DiffCallback) {
 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int) =
 RosterRowHolder(
 TodoRowBinding.inflate(inflater, parent, false),
 onCheckboxToggle,
 onRowClick
)

 override fun onBindViewHolder(holder: RosterRowHolder, position: Int) {
 holder.bind(getItem(position))
 }
}

private object DiffCallback : DiffUtil.ItemCallback<ToDoModel>() {
 override fun areItemsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.id == newItem.id

 override fun areContentsTheSame(oldItem: ToDoModel, newItem: ToDoModel) =
 oldItem.isCompleted == newItem.isCompleted &&
 oldItem.description == newItem.description
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterAdapter.kt)
RosterListFragment should look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.databinding.TodoRosterBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import androidx.navigation.fragment.findNavController

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.items)
 binding?.empty?.visibility = View.GONE
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
MainActivity should contain:

package com.commonsware.todo

import android.content.Intent
import android.os.Bundle
import android.view.Menu
import android.view.MenuItem
import androidx.appcompat.app.AppCompatActivity
import androidx.navigation.findNavController
import androidx.navigation.fragment.findNavController
import androidx.navigation.ui.AppBarConfiguration
import androidx.navigation.ui.NavigationUI.navigateUp
import androidx.navigation.ui.setupActionBarWithNavController
import com.commonsware.todo.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {
 private lateinit var appBarConfiguration: AppBarConfiguration

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)
 setSupportActionBar(binding.toolbar)

 supportFragmentManager.findFragmentById(R.id.nav_host)?.findNavController()?.let { nav ->
 appBarConfiguration = AppBarConfiguration(nav.graph)
 setupActionBarWithNavController(nav, appBarConfiguration)
 }
 }

 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 menuInflater.inflate(R.menu.actions, menu)

 return super.onCreateOptionsMenu(menu)
 }

 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {
 R.id.about -> {
 startActivity(Intent(this, AboutActivity::class.java))
 true
 }
 else -> super.onOptionsItemSelected(item)
 }

 override fun onSupportNavigateUp() =
 navigateUp(findNavController(R.id.nav_host), appBarConfiguration)
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/MainActivity.kt)
The todo_display layout resource should contain:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:id="@+id/completed"
 android:layout_width="@dimen/checked_icon_size"
 android:layout_height="@dimen/checked_icon_size"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:contentDescription="@string/is_completed"
 app:tint="@color/colorAccent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:srcCompat="@drawable/ic_check_circle" />

 <TextView
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:textAppearance="?attr/textAppearanceHeadline1"
 app:layout_constraintEnd_toStartOf="@+id/completed"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/labelCreated"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:text="@string/created_on"
 android:textAppearance="?attr/textAppearanceHeadline2"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/desc" />

 <TextView
 android:id="@+id/createdOn"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:textAppearance="?attr/textAppearanceHeadline2"
 app:layout_constraintEnd_toStartOf="@+id/completed"
 app:layout_constraintStart_toEndOf="@+id/labelCreated"
 app:layout_constraintTop_toBottomOf="@+id/desc" />

 <TextView
 android:id="@+id/notes"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginBottom="8dp"
 android:textAppearance="?attr/textAppearanceBody1"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/createdOn" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from T17-Display/ToDo/app/src/main/res/layout/todo_display.xml)
The styles resource should resemble:

<resources>

 <!-- Base application theme. -->
 <style name="Theme.ToDo" parent="Theme.AppCompat.NoActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 <item name="textAppearanceHeadline1">@style/HeadlineOneAppearance</item>
 <item name="textAppearanceHeadline2">@style/HeadlineTwoAppearance</item>
 <item name="textAppearanceBody1">@style/BodyAppearance</item>
 </style>

 <style name="HeadlineOneAppearance" parent="@style/TextAppearance.AppCompat.Large">
 <item name="android:textStyle">bold</item>
 </style>

 <style name="HeadlineTwoAppearance" parent="@style/TextAppearance.AppCompat.Medium">
 </style>

 <style name="BodyAppearance" parent="@style/TextAppearance.AppCompat.Medium">
 </style>

</resources>

(from T17-Display/ToDo/app/src/main/res/values/styles.xml)
SingleModelMotor should contain:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class SingleModelMotor(
 private val repo: ToDoRepository,
 private val modelId: String
) : ViewModel() {
 fun getModel() = repo.find(modelId)
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
ToDoRepository should contain:

package com.commonsware.todo

class ToDoRepository {
 var items = listOf(
 ToDoModel(
 description = "Buy a copy of _Exploring Android_",
 isCompleted = true,
 notes = "See https://wares.commonsware.com"
),
 ToDoModel(
 description = "Complete all of the tutorials"
),
 ToDoModel(
 description = "Write an app for somebody in my community",
 notes = "Talk to some people at non-profit organizations to see what they need!"
)
)

 fun save(model: ToDoModel) {
 items = if (items.any { it.id == model.id }) {
 items.map { if (it.id == model.id) model else it }
 } else {
 items + model
 }
 }

 fun find(modelId: String) = items.find { it.id == modelId }
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
ToDoApp should contain:

package com.commonsware.todo

import android.app.Application
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.dsl.module

class ToDoApp : Application() {
 private val koinModule = module {
 single { ToDoRepository() }
 viewModel { RosterMotor(get()) }
 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 modules(koinModule)
 }
 }
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Finally, DisplayFragment should now resemble:

package com.commonsware.todo

import android.os.Bundle
import android.text.format.DateUtils
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.databinding.TodoDisplayBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class DisplayFragment : Fragment() {
 private val args: DisplayFragmentArgs by navArgs()
 private var binding: TodoDisplayBinding? = null
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoDisplayBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 completed.visibility = if (it.isCompleted) View.VISIBLE else View.GONE
 desc.text = it.description
 createdOn.text = DateUtils.getRelativeDateTimeString(
 requireContext(),
 it.createdOn.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS,
 0
)
 notes.text = it.notes
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }
}

(from T17-Display/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/DisplayFragment.kt

	app/src/main/res/navigation/nav_graph.xml

	app/src/main/java/com/commonsware/todo/RosterRowHolder.kt

	app/src/main/java/com/commonsware/todo/RosterAdapter.kt

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

	app/src/main/java/com/commonsware/todo/MainActivity.kt

	app/src/main/res/layout/todo_display.xml

	app/src/main/res/drawable/ic_check_circle.xml

	app/src/main/res/values/styles.xml

	app/src/main/java/com/commonsware/todo/SingleModelMotor.kt

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

	app/src/main/java/com/commonsware/todo/ToDoRepository.kt

Editing an Item
Displaying to-do items is nice. However, right now, all of the to-do items
are fake. We need to start allowing the user to fill in their own to-do items.
The first task is to set up an edit fragment. Just as we can click on a to-do
item in the list to bring up the details, we need to be able to click on something
in the details to be able to edit the description, notes, etc. So, just as we
created a DisplayFragment in the preceding tutorial, here we will create an
EditFragment and arrange to display it.
This tutorial has many similarities to the preceding one:

	We create a fragment

	We create a layout for that fragment

	We use data binding to populate the layout from the fragment

The differences come in the layout itself, as we have a different mix of
widgets than before. Plus, we need to add toolbar button to the app bar, to
allow the user to request to edit that to-do item.
You might wonder “hey, shouldn’t we use inheritance or something here?” In
theory, we could. In practice, the DisplayFragment is going to change quite
a bit in a later tutorial, and so we would have to undo the inheritance work
at that point anyway.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Creating the Fragment
Yet again, we need to set up a fragment.
Right-click over the com.commonsware.todo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. This will bring up a dialog
where we can define a new Kotlin class. For the name, fill in EditFragment.
For the kind, choose “Class”. Press Enter or Return to create the class.
That will give you an EditFragment that looks like:

package com.commonsware.todo

class EditFragment {
}

Then, have it extend the Fragment class:

package com.commonsware.todo

import androidx.fragment.app.Fragment

class EditFragment : Fragment() {
}

Step #2: Setting Up the Navigation
This class needs the ID of the ToDoModel to edit, just as DisplayFragment
needed the model to display. So, we are going to set up the same sort
of navigation logic as we used to get from RosterListFragment to DisplayFragment,
this time to get from DisplayFragment to EditFragment.
Once again, open res/navigation/nav_graph.xml. This time, when you click the
new-destination toolbar button, EditFragment should be among the options.
Choose it, adding it to your graph. If needed, drag it over to the right side of
the space, perhaps adjusting the zoom level using the +/- toolbar buttons:

[image: Android Studio Navigation Editor, Showing editFragment Destination]

Figure 139: Android Studio Navigation Editor, Showing editFragment Destination
Next, click on displayFragment and drag an arrow from it to editFragment:

[image: Android Studio Navigation Editor, Showing New Action]

Figure 140: Android Studio Navigation Editor, Showing New Action
In the “Attributes” pane, with the new action selected, change the
ID to editModel.
Then, click on editFragment. Change the “Label” to be @string/app_name.
Next, in the “Arguments” section of the “Attributes”
pane, click the + icon to add a new argument. As before, give it a name of
modelId and a type of String. Then click “Add” to add it to the navigation
graph.
Step #3: Setting Up a Menu Resource
Somewhere, somehow, the user has to be able to get to this fragment. A typical
pattern is for there to be an “edit” option somewhere where we are displaying
the thing to be edited. In the case of this app, that implies having an “edit”
option on the DisplayFragment, and we can do this by adding an app bar item.
First, though, we need an icon for that button. Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Clip Art” button and search for edit:

[image: Android Studio Vector Asset Selector, Showing edit Options]

Figure 141: Android Studio Vector Asset Selector, Showing “edit” Options
Choose the “edit” icon and click “OK” to close up the icon selector. Change the
icon’s name to ic_edit. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Then, right-click over the res/menu/ directory and choose
New > “Menu resource file” from the context menu. Fill in actions_display.xml in the
“New Menu Resource File” dialog, then click OK to create the file and open
it up in the menu editor.
In the Palette, drag a “Menu Item” into the preview area. This will appear
as an item in an overflow area:

[image: Android Studio Menu Editor, Showing Added MenuItem]

Figure 142: Android Studio Menu Editor, Showing Added MenuItem
In the Attributes pane, fill in edit for the “id”. Then, choose both
“ifRoom” and “withText” for the “showAsAction” option:

[image: Android Studio Menu Editor, Attributes Pane, Showing showAsAction Popup]

Figure 143: Android Studio Menu Editor, Attributes Pane, Showing “showAsAction” Popup
Click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector. Open the “Project” category, then click on
ic_edit in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “String Value”
in the “+” drop-down towards the top. In the dialog, fill in menu_edit as the
resource name and “Edit” as the resource value. Click OK to close both dialogs.
At this point, your menu editor preview should resemble:

[image: Android Studio Menu Editor, Showing Configured MenuItem]

Figure 144: Android Studio Menu Editor, Showing Configured MenuItem
Step #4: Showing the App Bar Item
We also need to take steps to arrange to show this app bar item
on DisplayFragment. Previously, we defined an app bar item
that would be available to the entire activity. Now we want one that will
be for just this one fragment. The way to do that is to have the fragment
itself add this item to the app bar — Android will only show this item
when the fragment itself is visible.
Add this onCreate() method to DisplayFragment:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
onCreate() is called when the fragment is created, and here we indicate that
we want to add items to the app bar, via setHasOptionsMenu(true).
Next, add this onCreateOptionsMenu() method to DisplayFragment:

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_display, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
Here, we use a MenuInflater to “inflate” the menu resource and add its
item to the app bar. Plus, we chain to the superclass, in case the superclass
wants to add things to the app bar as well.
If you run the app and tap on a to-do item in the list, you should see the
new app bar item on the DisplayFragment:

[image: ToDo App, DisplayFragment, with Edit App Bar Item]

Figure 145: ToDo App, DisplayFragment, with Edit App Bar Item
This is in addition to the overflow menu, which still has our “About” item.
By having our activity’s Toolbar serve as the app bar, the activity
and the currently-visible fragment(s) can all contribute items.
Step #5: Displaying the (Empty) Fragment
Now that we are displaying the app bar item, we can get control and
show the presently-empty EditFragment.
First, add this edit() function to DisplayFragment:

 private fun edit() {
 findNavController().navigate(
 DisplayFragmentDirections.editModel(
 args.modelId
)
)
 }

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
As we did in RosterListFragment, we use findNavController() to get the
NavController for the navigation graph associated with the DisplayFragment.
Then, we use navigate() to go somewhere. Specifically, we use
DisplayFragmentDirections.editModel() to invoke the action that we added to
editFragment in the navigation graph. And, since editFragment requires an
argument, we supply that model ID to editModel(), getting the modelId
from our own args.
Then, add this onOptionsItemSelected() function to DisplayFragment:

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.edit -> {
 edit()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
Here, if the MenuItem is our edit one, we call edit() and return true
to indicate that we consumed the event. Otherwise, we chain to the superclass.
If you run the sample app now, and you click on one of the to-do items,
and then click on the “edit” app bar item,
you will be taken to the empty EditFragment.
If you press BACK when viewing the (empty) EditFragment, you will return
to the DisplayFragment, and pressing BACK from there will return you to the
list of to-do items.
Step #6: Creating an Empty Layout
As was the case with DisplayFragment, to have EditFragment show the contents
of a ToDoModel and allow editing, it helps to have a layout resource.
Right-click over the res/layout/ directory and choose “New” > “Layout resource file”
from the context menu. In the dialog that appears, fill in todo_edit as the
“File name” and ensure that the “Root element” is set to
androidx.constraintlayout.widget.ConstraintLayout.
Then, click “OK” to close the dialog and create the mostly-empty resource
file.
Step #7: Adding the CheckBox
As with the roster rows — but unlike the DisplayFragment layout — we should
have a CheckBox to allow the user to toggle the completion status of the
to-do item being edited.
In the graphical designer for todo_edit, drag a CheckBox
from the “Buttons” group in the “Palette” pane into the preview area. Use the grab handles to add
constraints tying the CheckBox to the top and start sides of the
ConstraintLayout:

[image: Android Studio Layout Designer, Showing Added CheckBox]

Figure 146: Android Studio Layout Designer, Showing Added CheckBox
In the Attributes pane, clear out the contents of the “text” attribute, as we
just want a bare checkbox, without a caption. Also, in the “Layout” section of the
“Attributes” pane, give it 8dp of margin on the top and start sides, via the drop-downs.
Then, switch to the “Code” view and modify the android:id attribute of the <CheckBox>
element to have a value of @+id/isCompleted.
At this point, the XML should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent" android:layout_height="match_parent">

 <CheckBox
 android:id="@+id/isCompleted"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

Step #8: Creating the Description Field
The other two things that the user should be able to edit here are the
description and the notes. They should not be able to edit the created-on
date — that is the date on which the to-do item was created, and so it should
not change after creation. For the description and the notes, we will
use EditText widgets.
Switch back to graphical designer in the layout editor. In the “Palette” pane,
in the “Text” category, drag a “Plain Text” widget into the design area.
Using the grab handles, set up constraints to:

	Tie the top and end sides of the EditText to the top and end sides
of the ConstraintLayout

	Connect the start side of the EditText to the end side of the CheckBox

[image: Android Studio Layout Designer, Showing Added EditText]

Figure 147: Android Studio Layout Designer, Showing Added EditText
Next, change the “layout_width” attribute in the Attributes pane to
match_constraint:

[image: Android Studio Layout Designer, Showing Stretched EditText]

Figure 148: Android Studio Layout Designer, Showing Stretched EditText
Then, in the “Layout” section of the
“Attributes” pane, give it 8dp of margin on the top, start, and end sides, via the drop-downs.
Next, switch to the “Code” view, and change the android:id value for this <EditText>
to be @+id/desc. Afterwards, switch back to the “Design” view.
If you look closely, you will see that our CheckBox is not very well aligned
vertically with respect to the EditText:

[image: Android Studio Layout Designer, Showing Vertical Alignment Problem]

Figure 149: Android Studio Layout Designer, Showing Vertical Alignment Problem
Ideally, it would be vertically centered. To do that, re-drag a constraint from
the top of the CheckBox to the top of the EditText. Then,
create a similar constraint, from the bottom of the CheckBox to the
bottom of the EditText

[image: Android Studio Layout Designer, Showing Aligned Widgets]

Figure 150: Android Studio Layout Designer, Showing Aligned Widgets
In the Attributes pane, the “Plain Text” widget that we dragged into the
preview gave us an EditText set up with an “inputType” of textPersonName:

[image: Android Studio Layout Designer, Attributes Pane, Showing inputType]

Figure 151: Android Studio Layout Designer, Attributes Pane, Showing “inputType”
The android:inputType attribute provides hints to soft keyboards as to what
we expect to use as input. For example, in languages where there is a distinction
between uppercase and lowercase letters, textPersonName might trigger
a switch to an uppercase keyboard for each portion of a name. In this case,
we really want plain text, so click on the flag adjacent to textPersonName.
Then, in the pop-up panel that appears, uncheck textPersonName and check text:

[image: Android Studio Layout Designer, Attributes Pane, Showing inputType Pop-Up]

Figure 152: Android Studio Layout Designer, Attributes Pane, Showing “inputType” Pop-Up
Then, click the “Apply” button in the popup to close that popup.
An EditText has an android:hint attribute. This provides some text that
will appear in the field in gray when there is no actual text entered by the
user in the field. Once the user starts typing, the hint goes away. This is
used to save space over having a separate label or caption for the field.
With that in mind, click the “O” button for the “hint” attribute in
the Attributes pane. Create a new string resource using the drop-down menu.
Give the resource a name of desc and a value of Description.
Then, click OK to define the string resource and apply it to the hint.
Finally, clear out the “text” attribute, as we will set that at runtime.
At this point, the layout XML should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent" android:layout_height="match_parent">

 <CheckBox
 android:id="@+id/isCompleted"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 app:layout_constraintBottom_toBottomOf="@+id/desc"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="@+id/desc" />

 <EditText
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:ems="10"
 android:hint="@string/desc"
 android:inputType="text"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/isCompleted"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

Step #9: Adding the Notes Field
The other widget is another EditText, this time for the notes.
Switch back to the graphical designer in the layout editor. In the “Palette” pane,
in the “Text” category, drag a “Multiline Text” widget into the design area.
Using the grab handles, set up constraints to:

	Tie the bottom, start, and end sides of the EditText to the bottom, start, and end sides
of the ConstraintLayout

	Tie the top of the EditText to the bottom of the previous EditText

[image: Android Studio Layout Designer, Showing Added EditText]

Figure 153: Android Studio Layout Designer, Showing Added EditText
Then, set both the “layout_height” and “layout_width” attributes to match_constraint:

[image: Android Studio Layout Designer, Showing Big EditText]

Figure 154: Android Studio Layout Designer, Showing Big EditText
In the “Layout” section of the
“Attributes” pane, give it 8dp of margin on all four sides, via the drop-downs.
Next, switch to the “Code” view, and change the android:id value for this new <EditText>
to be @+id/notes. Afterwards, switch back to the “Design” view.
Click the “O” button for the “hint” attribute in
the Attributes pane. Create a new string resource using the drop-down menu.
Give the resource a name of notes and a value of Notes.
Then, click OK to define the string resource and apply it to the hint.
Step #10: Populating the Layout
Now, we can add the same sort of logic in EditFragment to bind the ToDoModel that we added
to DisplayFragment.
In EditFragment, add properties for our binding, our navigation arguments, and our viewmodel:

 private var binding: TodoEditBinding? = null
 private val args: EditFragmentArgs by navArgs()
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
Then, add functions to inflate the binding, bind our model, and clear the binding:

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoEditBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 isCompleted.isChecked = it.isCompleted
 desc.setText(it.description)
 notes.setText(it.notes)
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
If you run the app, click on a to-do item to display it, then click on the
“edit” app bar item, you will get a form for modifying the to-do item:

[image: ToDo App, Showing EditFragment]

Figure 155: ToDo App, Showing EditFragment
Note that EditText only word-wraps when set up for multiline. Otherwise, long text
just scrolls off the end. This is perfectly normal.
A bigger problem is that our changes are not being reflected anywhere. For that,
we will need to update our models, and we will deal with that in the next
tutorial.
Final Results
Your nav_graph navigation resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.RosterListFragment"
 android:label="@string/app_name">
 <action
 android:id="@+id/displayModel"
 app:destination="@id/displayFragment" />
 </fragment>
 <fragment
 android:id="@+id/displayFragment"
 android:name="com.commonsware.todo.DisplayFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string" />
 <action
 android:id="@+id/editModel"
 app:destination="@id/editFragment" />
 </fragment>
 <fragment
 android:id="@+id/editFragment"
 android:name="com.commonsware.todo.EditFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string" />
 </fragment>
</navigation>

(from T18-Edit/ToDo/app/src/main/res/navigation/nav_graph.xml)
The new actions_display resource should have this XML:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/edit"
 android:icon="@drawable/ic_edit"
 android:title="@string/menu_edit"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T18-Edit/ToDo/app/src/main/res/menu/actions_display.xml)
The new todo_edit layout resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <CheckBox
 android:id="@+id/isCompleted"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 app:layout_constraintBottom_toBottomOf="@+id/desc"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="@+id/desc" />

 <EditText
 android:id="@+id/desc"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:ems="10"
 android:hint="@string/desc"
 android:inputType="text"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/isCompleted"
 app:layout_constraintTop_toTopOf="parent" />

 <EditText
 android:id="@+id/notes"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginBottom="8dp"
 android:ems="10"
 android:gravity="start|top"
 android:hint="@string/notes"
 android:inputType="textMultiLine"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/desc"
 app:layout_constraintVertical_bias="0.505" />
</androidx.constraintlayout.widget.ConstraintLayout>

(from T18-Edit/ToDo/app/src/main/res/layout/todo_edit.xml)
DisplayFragment should look like:

package com.commonsware.todo

import android.os.Bundle
import android.text.format.DateUtils
import android.view.*
import androidx.fragment.app.Fragment
import androidx.navigation.fragment.findNavController
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.databinding.TodoDisplayBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class DisplayFragment : Fragment() {
 private val args: DisplayFragmentArgs by navArgs()
 private var binding: TodoDisplayBinding? = null
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }
 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoDisplayBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 completed.visibility = if (it.isCompleted) View.VISIBLE else View.GONE
 desc.text = it.description
 createdOn.text = DateUtils.getRelativeDateTimeString(
 requireContext(),
 it.createdOn.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS,
 0
)
 notes.text = it.notes
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_display, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.edit -> {
 edit()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun edit() {
 findNavController().navigate(
 DisplayFragmentDirections.editModel(
 args.modelId
)
)
 }
}

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/DisplayFragment.kt)
EditFragment at this point should resemble:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.databinding.TodoEditBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class EditFragment : Fragment() {
 private var binding: TodoEditBinding? = null
 private val args: EditFragmentArgs by navArgs()
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoEditBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 isCompleted.isChecked = it.isCompleted
 desc.setText(it.description)
 notes.setText(it.notes)
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }
}

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/EditFragment.kt

	app/src/main/res/navigation/nav_graph.xml

	app/src/main/res/drawable/ic_edit.xml

	app/src/main/res/menu/actions_display.xml

	app/src/main/java/com/commonsware/todo/DisplayFragment.kt

	app/src/main/res/layout/todo_edit.xml

Saving an Item
Having the EditFragment is nice, but we are not saving the changes anywhere.
As soon as we leave the fragment, the “edits” vanish.
This is not ideal.
So, in this tutorial, we will allow the user to save their changes, by clicking
a suitable app bar item.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding the App Bar Item
First, let’s set up the Save app bar item.
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Clip Art” button and search for save:

[image: Android Studio Vector Asset Selector, Showing save Options]

Figure 156: Android Studio Vector Asset Selector, Showing “save” Options
Choose the “save” icon and click “OK” to close up the icon selector. Change the name
of the icon to ic_save. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Then, right-click over the res/menu/ directory and choose
New > “Menu resource file” from the context menu. Fill in actions_edit.xml in the
“New Menu Resource File” dialog, then click OK to create the file
and open it in the menu editor.
In the Palette, drag a “Menu Item” into the preview area. This will appear
as an item in an overflow area as before.
In the Attributes pane, fill in save for the “id”. Then, choose both
“ifRoom” and “withText” for the “showAsAction” option. Next, click on the
“O” button next to the “icon” field. This will bring up an
drawable resource selector — click on ic_save in the list of
drawables, then click OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “+”, then click on “String Value”
in the resulting drop-down. In the dialog, fill in menu_save as the
resource name and “Save” as the resource value. Click OK to close the dialog,
to complete our work on setting up the app bar item:

[image: Android Studio Menu Editor, Showing Configured MenuItem]

Figure 157: Android Studio Menu Editor, Showing Configured MenuItem
We also need to take steps to arrange to show this app bar item
on EditFragment, as we did with DisplayFragment for the “edit” item.
Add this onCreate() function to EditFragment, to indicate that this
fragment wishes to participate in the app bar:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
Next, add this onCreateOptionsMenu() function to EditFragment, to inflate our
newly-created menu resource:

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_edit, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
If you run the app and edit a to-do item, you should see the
new app bar item on the EditFragment:

[image: ToDo App, EditFragment, with Save App Bar Item]

Figure 158: ToDo App, EditFragment, with Save App Bar Item
Step #2: Improving the Motor
We need to be able to save changes from EditFragment. We already have logic
in ToDoRepository for this, in the form of a save() function that we used
from RosterMotor. However, EditFragment is using SingleModelMotor, which
right now lacks a save() function.
So… let’s add it!
Add this save() function to SingleModelMotor, perhaps by copying it from
RosterMotor:

 fun save(model: ToDoModel) {
 repo.save(model)
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
Step #3: Replacing the Item
Now that we have the app bar item, we can get control when it is clicked and
update our repository with a revised ToDoModel.
Create this save() function on EditFragment:

 private fun save() {
 binding?.apply {
 val model = motor.getModel()
 val edited = model?.copy(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
) ?: ToDoModel(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
)

 edited.let { motor.save(it) }
 }
 }

Here we:

	Retrieve our current ToDoModel from the viewmodel

	Use the copy() function on our data class to create a revised instance of ToDoModel with the data from the form

	If, inexplicably, getModel() returned null, create a new ToDoModel with the data from the form

	Tell the SingleModelMotor to replace the existing ToDoModel for this ID
with this new or revised model

Then, arrange to call this save() method when the user clicks on the “save”
app bar item, by adding this onOptionsItemSelected() function to
EditFragment:

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.save -> {
 save()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
If you run the app, select some to-do item, make some change to that item,
then click that app bar item… nothing
seems to happen. But, if you then press BACK to return to the DisplayFragment, then BACK
again to return to the list, you will see that… the list appears to be unchanged.
These are problems. And, we will fix them in the next couple of steps.
Step #4: Returning to the Display Fragment
The “nothing seems to happen” bit from the preceding step is a problem. Usually,
when the user clicks a “save” option in an app, not only does the data get saved,
but the user is taken to some other portion of the app. In the case of EditFragment,
we could send the user back to the DisplayFragment that they came from.
With that in mind, add this navToDisplay() function to EditFragment:

 private fun navToDisplay() {
 findNavController().popBackStack()
 }

This simply “pops the back stack”, doing the same thing as if the user pressed
the device BACK button or clicked the “up” arrow in the app bar.
Then, add a call to navToDisplay() from save():

 private fun save() {
 binding?.apply {
 val model = motor.getModel()
 val edited = model?.copy(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
) ?: ToDoModel(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
)

 edited.let { motor.save(it) }
 }

 navToDisplay()
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
If you run the sample app now, when you click “save” in the EditFragment,
you go back to the DisplayFragment.
However, if you are using a device with a soft keyboard, that soft keyboard
may still be visible after clicking “save”. This is annoying. But, with
some trickery, we can fix it.
Add this function to EditFragment:

 private fun hideKeyboard() {
 view?.let {
 val imm = context?.getSystemService<InputMethodManager>()

 imm?.hideSoftInputFromWindow(
 it.windowToken,
 InputMethodManager.HIDE_NOT_ALWAYS
)
 }
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
This method, based on
this Stack Overflow answer,
hides the soft keyboard (a.k.a., “input method editor”). This code is clunky
but is unavoidable. Basically, we get the InputMethodManager system service
and call hideSoftInputFromWindow() on it. Note that the getSystemService()
function we are using is an extension function provided by Android KTX, the Kotlin
extension functions supplied by the Jetpack:

import androidx.core.content.getSystemService

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
Then, modify navToDisplay() in EditFragment to call hideKeyboard():

 private fun navToDisplay() {
 hideKeyboard()
 findNavController().popBackStack()
 }

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
Now, if you run the sample app and edit a to-do item, saving your changes
both returns you to the DisplayFragment and hides the soft keyboard if
needed.
However, we still do not see the changes from our edits. The list appears as it
did originally.
Step #5: Getting Updated Items
The problem lies in RosterMotor. There, we have an items property, populated
from the repository’s list of items:

 val items = repo.items

(from T18-Edit/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
When we return to our RosterListFragment, we go through onCreateView()
and onViewCreated() again. We ask the motor for the items and display them in the
list. The problem is that we still have the same RosterMotor instance as we
did originally, and it has the same items collection as we did originally. However,
we replaced the items collection in the repository… but RosterMotor does
not know about this.
Ideally, we would be using some sort of “reactive” system that allows RosterMotor
to respond as soon as ToDoRepository has updated contents. We will switch to that
sort of solution later in the book. For now, though, we can settle for simply getting
the list from the repository every time.
With that in mind, replace the items property in RosterMotor with a nearly-identical
getItems() function:

 fun getItems() = repo.items

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
Then, in RosterListFragment, change our submitList() call in onViewCreated() to
use this new function, instead of the now-replaced items property:

 adapter.submitList(motor.getItems())

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Now, when you save changes to an item, you return to the list, and the list will
reflect the changes that you made.
Final Results
The new actions_edit menu resource should contain:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/save"
 android:icon="@drawable/ic_save"
 android:title="@string/menu_save"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T19-Save/ToDo/app/src/main/res/menu/actions_edit.xml)
EditFragment should resemble:

package com.commonsware.todo

import android.os.Bundle
import android.view.*
import android.view.inputmethod.InputMethodManager
import androidx.core.content.getSystemService
import androidx.fragment.app.Fragment
import androidx.navigation.fragment.findNavController
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.databinding.TodoEditBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class EditFragment : Fragment() {
 private var binding: TodoEditBinding? = null
 private val args: EditFragmentArgs by navArgs()
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoEditBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 isCompleted.isChecked = it.isCompleted
 desc.setText(it.description)
 notes.setText(it.notes)
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_edit, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.save -> {
 save()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun save() {
 binding?.apply {
 val model = motor.getModel()
 val edited = model?.copy(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
) ?: ToDoModel(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
)

 edited.let { motor.save(it) }
 }

 navToDisplay()
 }

 private fun navToDisplay() {
 hideKeyboard()
 findNavController().popBackStack()
 }

 private fun hideKeyboard() {
 view?.let {
 val imm = context?.getSystemService<InputMethodManager>()

 imm?.hideSoftInputFromWindow(
 it.windowToken,
 InputMethodManager.HIDE_NOT_ALWAYS
)
 }
 }
}

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
RosterMotor should look like:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 fun getItems() = repo.items

 fun save(model: ToDoModel) {
 repo.save(model)
 }
}

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/RosterMotor.kt)
And RosterListFragment should resemble:

package com.commonsware.todo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.databinding.TodoRosterBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import androidx.navigation.fragment.findNavController

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.getItems())
 binding?.empty?.visibility = View.GONE
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }
}

(from T19-Save/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/drawable/ic_save.xml

	app/src/main/res/menu/actions_edit.xml

	app/src/main/java/com/commonsware/todo/EditFragment.kt

	app/src/main/java/com/commonsware/todo/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

Adding and Deleting Items
Now, we can edit our to-do items. However, the app is still pretty limited,
in that we can only have exactly three to-do items. While we can now change
what appears in those to-do items, we cannot add or remove any.
We really should fix that.
So, in this tutorial, we will wrap up the “glassware” portion of the app,
by getting rid of the fake starter data and giving the user the ability to add
new to-do items and delete existing ones.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Trimming Our Repository
First, let’s get rid of the sample data. That is merely a matter of
changing the items declaration in ToDoRepository to be:

 var items = emptyList<ToDoModel>()

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
We already have a save() function in the repository to add items, but we
need a function to remove them as well. To that end, add this delete()
function to ToDoRepository:

 fun delete(model: ToDoModel) {
 items = items.filter { it.id != model.id }
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
Here, we just replace items with a filtered edition of items, keeping any
item that has an ID different than the one that we are trying to remove.
If you now run the sample app, it runs, but we have no to-do items:

[image: ToDo App, Showing Nothing]

Figure 159: ToDo App, Showing Nothing
Step #2: Showing an Empty View
Dumping the user onto an empty screen at the outset is rather unfriendly. A
typical solution is to have an “empty view” that is displayed when there is
nothing else to show. That “empty view” usually has a message that tells the
user what to do first.
We created the empty view back in an earlier tutorial, but we set its
visibility to GONE. Let’s revert that change, so the empty view appears to the
user.
In onViewCreated() of RosterListFragment, remove the binding.empty.visibility = View.GONE
line, leaving you with:

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display)

 binding.items.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.items)
 }

Now when you run the app, you will see… some placeholder text:

[image: ToDo App, Showing Placeholder Empty Text]

Figure 160: ToDo App, Showing Placeholder Empty Text
We will replace that text with a better message shortly.
Step #3: Adding an Add App Bar Item
We need to add another app bar item, this one in the roster
fragment, to allow the user to add a new to-do item.
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Clip Art” button and search for add:

[image: Android Studio Vector Asset Selector, Showing add Options]

Figure 161: Android Studio Vector Asset Selector, Showing “add” Options
(we really like to add things in Android…)
Choose the “add” icon and click “OK” to close up the icon selector. Change the name
to ic_add. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
While it feels like we keep adding app bar items, we have never added one
directly to the RosterListFragment. All previous app bar items were
added to the other fragments or to MainActivity. So, we need to set up a new
menu resource and the corresponding Kotlin code.
Right-click over the res/menu/ directory and choose
New > “Menu resource file” from the context menu. Fill in actions_roster.xml in the
“New Menu Resource File” dialog, then click OK to create the file to open it
in the menu editor.
In the Palette, drag a “Menu Item” into the preview area.
In the Attributes pane, fill in add for the “id”. Then, choose both
“ifRoom” and “withText” for the “showAsAction” option. Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector.
Click on ic_add in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “+”, then click on “String Value”
in the resulting drop-down. In the dialog, fill in menu_add as the
resource name and “Add” as the resource value.
Click OK to close the dialog and complete the configuration of this
app bar item.
Add this onCreate() function to RosterListFragment, to indicate that this
fragment wishes to participate in the app bar:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Next, add this onCreateOptionsMenu() function to RosterListFragment, to inflate our
newly-created menu resource:

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 super.onCreateOptionsMenu(menu, inflater)

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
Finally, open up the res/values/strings.xml resource file. You should find
a string resource named msg_empty in there, with a value of placeholder text.
Replace that value with Click the + icon to add a todo item!.
Now, when you run the app, not only do you get the “add” app bar item, but
the empty view text is more useful:

[image: ToDo App, with Add App Bar Item and Better Empty Text]

Figure 162: ToDo App, with Add App Bar Item and Better Empty Text
Step #4: Launching the EditFragment for Adds
Next, we need to add some logic to do some work when the user taps that “add”
app bar item. Specifically, we want to navigate from the RosterListFragment
to the EditFragment… but do so in a way that tells the EditFragment that
we should be adding a new to-do item, not editing an existing one.
Right now, to navigate to the EditFragment, we need to provide a modelId
value, identifying the existing to-do item to be edited. In this case, though, we
do not have an existing to-do item — we want to create a new one. So, we can
change the navigation graph to allow modelId to support null as a value.
Then, we can have a null modelId indicate that we are creating a new to-do item,
while a non-null modelId would indicate that we are editing an existing to-do item.
With all that in mind, open res/navigation/nav_graph.xml, and click on the
editFragment destination. In the “Attributes” pane, we have our modelId
argument. Double-click on it to bring up a dialog to update its configuration:

[image: Android Studio Navigation Editor, Update Argument Link Dialog]

Figure 163: Android Studio Navigation Editor, Update Argument Link Dialog
Check the “Nullable” checkbox, then click Update to close the dialog.
Next, click on the rosterListFragment destination. Using the circle on the
right edge, drag a new action, connecting it to editFragment. When you have
done that, you may want to click the toolbar button that looks like… well…
plusses or stars or something. It will “auto-arrange” the destinations to
help make the actions more visible:

[image: Android Studio Navigation Editor, With Auto-Arrange Toolbar Button Highlighted]

Figure 164: Android Studio Navigation Editor, With Auto-Arrange Toolbar Button Highlighted
In the “Attributes” pane for this new action, set the ID to createModel.
Then, there should be an “Argument Default Values” section, showing
modelId. Fill in @null in the “default value” field, where @null
means “no, I really mean null, and not the string "null"”.
From the Android Studio main menu, choose “Build” > “Make Module ‘app’” to get
Android Studio to generate fresh Safe Args code for our navigation resource.
Next, add this add() function to RosterListFragment:

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
This does the same sort of thing as display(), except that it uses the
createModel() action instead of the displayModel() action.
Then, add this onOptionsItemSelected() function to RosterListFragment:

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 }

 return super.onOptionsItemSelected(item)

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
If the user clicks the add app bar item, we call the add() function.
If you run the app and click the new “Add” action bar item… you should crash.
Specifically, you will get an error from Kotlin, complaining that something
was null but was declared to be not-null.
That error is coming from this line in SingleModelMotor:

 private val modelId: String

We declared this constructor parameter as taking String, and that used to work.
But now we allow our modelId to be null to represent the case where we are
creating a new model.
To fix that, change that parameter to be String? instead of String:

class SingleModelMotor(
 private val repo: ToDoRepository,
 private val modelId: String?
) : ViewModel() {

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
That, in turn, gives you an error in the getModel() function, as find()
on ToDoRepository is set to take a String parameter, not String?.
So, adjust find() on ToDoRepository to take String? instead:

 fun find(modelId: String?) = items.find { it.id == modelId }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
The implementation of find() does not need to change; it will simply return null
when none of the items matches the null ID.
Now, if you run the app and click the “add” app bar item, you should get an
empty EditFragment form, showing our hints for the description and notes fields:

[image: ToDo App, Showing Empty Form]

Figure 165: ToDo App, Showing Empty Form
If you run the sample app, click the “add” app bar item, fill in the form,
and click the “save” app bar item, you wind up seeing the list of to-do items…
with the empty text still visible:

[image: ToDo App, Showing Both an Item and the Empty Text]

Figure 166: ToDo App, Showing Both an Item and the Empty Text
Step #5: Hiding the Empty View
Showing the empty view with just one to-do item is not so bad. The problem
is that when we get enough to-do items, we wind up with overlapping text:

[image: ToDo App, Showing Items Overlapping the Empty Text]

Figure 167: ToDo App, Showing Items Overlapping the Empty Text
Besides, the point of the empty view is to show it only when the list is empty.
To make that happen, add this line to the bottom of onViewCreated()
on RosterListFragment:

 binding?.empty?.visibility =
 if (adapter.itemCount == 0) View.VISIBLE else View.GONE

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
So, we check our RosterAdapter to see if we have any items, and if we do,
we set the empty view to be GONE.
Now, if you run the app, you will see the empty view at the outset — when we
have no items — but the empty view will go away once you start adding items.
Step #6: Adding a Delete App Bar Item
We have one more app bar item to create, this one to allow the user to delete
an item. We will add that to the app bar on EditFragment, so the user
can delete the item from there.
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Clip Art” button and search for delete:

[image: Android Studio Vector Asset Selector, Showing delete Options]

Figure 168: Android Studio Vector Asset Selector, Showing “delete” Options
Choose the “delete” icon and click “OK” to close up the icon selector. Change the
name to ic_delete. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
Once again, if the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead.
Open res/menu/actions_edit.xml in the IDE. In the graphical designer view, drag a second
“Menu Item” into the preview area.
In the Attributes pane, fill in delete for the “id”. Then, choose both
“ifRoom” and “withText” for the “showAsAction” option. Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector. Click on ic_delete in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “+”, then click on “String Value”
in the resulting drop-down. In the dialog, fill in menu_delete as the
resource name and “Delete” as the resource value. Click OK to close the dialog,
to complete the configuration of this app bar item.
Now, when you run the app and you go to add a new to-do item, or later you
edit an existing to-do item, you will see the “delete” app bar item:

[image: ToDo App, Edit Fragment, Showing Two App Bar Items]

Figure 169: ToDo App, Edit Fragment, Showing Two App Bar Items
The fact that there is a delete icon for an add operation is… disturbing. We
will address that later in this tutorial.
Step #7: Deleting the Item
Deleting the ToDoModel seems fairly straightforward: call delete() on
the ToDoRepository, supplying the model to be deleted. To help, add this
delete() function to SingleModelMotor, which forwards the call to the repository:

 fun delete(model: ToDoModel) {
 repo.delete(model)
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
However, there is one wrinkle: we do not want to go back to the DisplayFragment
after deleting the item, as there is nothing to display. Instead, we should
head back to the RosterListFragment.
To that end, add this navToList() function to EditFragment:

 private fun navToList() {
 hideKeyboard()
 findNavController().popBackStack(R.id.rosterListFragment, false)
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
This hides the keyboard, then uses the NavController to pop the back stack.
The default popBackStack() just pops one level off of the stack, akin to the
user pressing BACK or the “up” arrow. In this case, we are telling the
Navigation component:

	Pop all the way back to rosterListFragment…

	…but do not remove rosterListFragment itself (the false value)

Then, add this delete() function to EditFragment:

 private fun delete() {
 val model = motor.getModel()

 model?.let { motor.delete(it) }
 navToList()
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
This deletes the current model in the binding, plus calls the new
navToList() function.
Then, add another option to the when in onOptionsItemSelected() on EditFragment
to call delete() if the user taps the “delete” app bar item:

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.save -> {
 save()
 return true
 }
 R.id.delete -> {
 delete()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
If you run the sample app, add a new item, go back in to edit it, and click the
delete app bar item, that newly-added item is deleted, and you return to an
empty list.
Step #8: Fixing the Delete-on-Add Problem
Right now, when you edit an existing to-do item, the “delete” app bar item appears.
It also appears when you are adding a new to-do item. This is unnecessary
and may confuse the user. Plus, it may not work all that well, since we cannot
delete an item that has not been added.
Fortunately, fixing this requires just one line of code: updating isVisible
on the MenuItem corresponding to “delete”.
Modify onCreateOptionsMenu() of EditFragment to look like:

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_edit, menu)
 menu.findItem(R.id.delete).isVisible = args.modelId != null

 super.onCreateOptionsMenu(menu, inflater)
 }

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
Here, we retrieve the delete MenuItem and call setVisibility() with
true if we have a model, false otherwise. This has the desired effect: removing
the “delete” item if we do not have anything to delete.
And, if you run the app and go to add a new item, the delete icon does not appear
in the app bar, but it will appear if you try to edit an existing item.
Final Results
Our new actions_roster menu resource should contain:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_add"
 android:title="@string/menu_add"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T20-Add/ToDo/app/src/main/res/menu/actions_roster.xml)
The nav_graph resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.RosterListFragment"
 android:label="@string/app_name">
 <action
 android:id="@+id/displayModel"
 app:destination="@id/displayFragment" />
 <action
 android:id="@+id/createModel"
 app:destination="@id/editFragment" >
 <argument
 android:name="modelId"
 android:defaultValue="@null" />
 </action>
 </fragment>
 <fragment
 android:id="@+id/displayFragment"
 android:name="com.commonsware.todo.DisplayFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string" />
 <action
 android:id="@+id/editModel"
 app:destination="@id/editFragment" />
 </fragment>
 <fragment
 android:id="@+id/editFragment"
 android:name="com.commonsware.todo.EditFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string"
 app:nullable="true" />
 </fragment>
</navigation>

(from T20-Add/ToDo/app/src/main/res/navigation/nav_graph.xml)
SingleModelMotor should look like:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class SingleModelMotor(
 private val repo: ToDoRepository,
 private val modelId: String?
) : ViewModel() {
 fun getModel() = repo.find(modelId)

 fun save(model: ToDoModel) {
 repo.save(model)
 }

 fun delete(model: ToDoModel) {
 repo.delete(model)
 }
}

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
ToDoRepository should resemble:

package com.commonsware.todo

class ToDoRepository {
 var items = emptyList<ToDoModel>()

 fun save(model: ToDoModel) {
 items = if (items.any { it.id == model.id }) {
 items.map { if (it.id == model.id) model else it }
 } else {
 items + model
 }
 }

 fun find(modelId: String?) = items.find { it.id == modelId }

 fun delete(model: ToDoModel) {
 items = items.filter { it.id != model.id }
 }
}

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/ToDoRepository.kt)
RosterListFragment should look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.*
import androidx.fragment.app.Fragment
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.databinding.TodoRosterBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import androidx.navigation.fragment.findNavController

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 adapter.submitList(motor.getItems())
 binding?.empty?.visibility =
 if (adapter.itemCount == 0) View.VISIBLE else View.GONE
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }
}

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/RosterListFragment.kt)
The actions_edit menu resource should now resemble:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/save"
 android:icon="@drawable/ic_save"
 android:title="@string/menu_save"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/delete"
 android:icon="@drawable/ic_delete"
 android:title="@string/menu_delete"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T20-Add/ToDo/app/src/main/res/menu/actions_edit.xml)
SingleModelMotor should look like:

package com.commonsware.todo

import androidx.lifecycle.ViewModel

class SingleModelMotor(
 private val repo: ToDoRepository,
 private val modelId: String?
) : ViewModel() {
 fun getModel() = repo.find(modelId)

 fun save(model: ToDoModel) {
 repo.save(model)
 }

 fun delete(model: ToDoModel) {
 repo.delete(model)
 }
}

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/SingleModelMotor.kt)
Finally, EditFragment overall should look like:

package com.commonsware.todo

import android.os.Bundle
import android.view.*
import android.view.inputmethod.InputMethodManager
import androidx.core.content.getSystemService
import androidx.fragment.app.Fragment
import androidx.navigation.fragment.findNavController
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.databinding.TodoEditBinding
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class EditFragment : Fragment() {
 private var binding: TodoEditBinding? = null
 private val args: EditFragmentArgs by navArgs()
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoEditBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 motor.getModel()?.let {
 binding?.apply {
 isCompleted.isChecked = it.isCompleted
 desc.setText(it.description)
 notes.setText(it.notes)
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_edit, menu)
 menu.findItem(R.id.delete).isVisible = args.modelId != null

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.save -> {
 save()
 return true
 }
 R.id.delete -> {
 delete()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun save() {
 binding?.apply {
 val model = motor.getModel()
 val edited = model?.copy(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
) ?: ToDoModel(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
)

 edited.let { motor.save(it) }
 }

 navToDisplay()
 }

 private fun delete() {
 val model = motor.getModel()

 model?.let { motor.delete(it) }
 navToList()
 }

 private fun navToDisplay() {
 hideKeyboard()
 findNavController().popBackStack()
 }

 private fun navToList() {
 hideKeyboard()
 findNavController().popBackStack(R.id.rosterListFragment, false)
 }

 private fun hideKeyboard() {
 view?.let {
 val imm = context?.getSystemService<InputMethodManager>()

 imm?.hideSoftInputFromWindow(
 it.windowToken,
 InputMethodManager.HIDE_NOT_ALWAYS
)
 }
 }
}

(from T20-Add/ToDo/app/src/main/java/com/commonsware/todo/EditFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/ToDoRepository.kt

	app/src/main/java/com/commonsware/todo/RosterListFragment.kt

	app/src/main/res/drawable/ic_add.xml

	app/src/main/res/menu/actions_roster.xml

	app/src/main/res/drawable/ic_delete.xml

	app/src/main/res/menu/actions_edit.xml

	app/src/main/java/com/commonsware/todo/SingleModelMotor.kt

	app/src/main/java/com/commonsware/todo/EditFragment.kt

Interlude: So, What’s Wrong?
We’re done! Right?
Right?!?
.
.
.
Well, OK, we are not done.
There are some features that we could add, such as filtering the list of items
based on whether they are completed or not, or being able to save the items
out to a Web page.
However, beyond that, there are some fairly fundamental flaws in our app
implementation, and some corresponding features of the Jetpack components that can help
us address those.
Issues With What We Have
The app has few, if any, outright bugs. However, it does have some shortcomings
that affect users, ourselves, and (theoretical) future maintainers of the code.
Lack of Persistence
The biggest gap is that our to-do items are not stored anywhere other than memory.
As soon as our process is terminated, the to-do items will go away. And our app’s
process may not live that long in the background. So, after a period of time,
it is all but guaranteed that the user will have no more to-do items.
Admittedly, some users will consider that to be a feature, not a bug.
However, in general, people put items in a to-do list in order to keep track of
what needs to be done, and for that, we need to save the items somewhere.
Synchronous Work
Adding persistence will cause another problem: all of our interactions with
the ToDoRepository are synchronous. That means that our I/O will tie up the
main application thread, freezing our UI while that I/O is being done.
This is not good.
Instead, we need to switch to an asynchronous interaction with the repository.
For example, when we save() a ToDoModel, it should not be a blocking call.
Instead, the actual work for saving the data should happen on a background thread,
with us finding out about the result asynchronously. That way, the UI remains
responsive while we are doing the I/O.
We Can Do Better
The next several tutorials will be focused on addressing these concerns, using
solutions from the Jetpack components and from popular approaches in the Android development
ecosystem.
Persistence: Room
In theory, we could save our to-do items to “the cloud”, persisting them on a server
somewhere. However, that is complicated, in ways that go far beyond complicated
Android code. It would require you to set up a server, or sign up for some service,
to have something in the cloud for the app to talk to.
Besides, this is just a list of to-do items. Not everything needs a server.
So, we will keep the to-do items locally on the device. Specifically, we will
use Room, the Jetpack solution for local databases. Room is a wrapper around
Android’s built-in SQLite database. We can create classes that represent databases,
tables, and operations (e.g., queries, inserts), and our ToDoRepository can use
those to store the to-do items.
Asynchronous Work: Coroutines
There are a wide range of solutions for doing work asynchronously in Android.
In these tutorials, we will use two, the first being Kotlin coroutines.
Coroutines are a recent addition to Kotlin that make it easy to designate
some work to be done on background threads, while still making it easy to write
code that consumes the results of that work on the main application thread.
Refactoring Our Code
Right now, all of our code resides in a single package: com.commonsware.todo.
For tiny apps, that is reasonable. The more complex your app gets, the more likely
it is that you will want to organize the classes into sub-packages. We will be
adding many more classes to the app, so now seems like a good time to refactor
the code and set up some sub-packages.
Fortunately, Android Studio makes this very easy!
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Creating Some Packages
First, we should set up the packages into which we want to reorganize the classes.
Right-click over the com.commonsware.todo package and choose “New” > “Package”
from the context menu. In the field, fill in repo and press Enter or Return to create
the package.
Do that again, but this time fill in ui.display. This creates a package (ui)
and a sub-package (display) in one shot.
Do that again, but this time fill in ui.edit.
Now, right-click over the com.commonsware.todo.ui package and choose “New” > “Package”
from the context menu. Enter roster in the field and click OK. Since we started
from the com.commonsware.todo.ui package, roster becomes a sub-package of that,
a peer of the display and edit ones.
At this point, your project tree should resemble:

[image: Android Studio Project Tree, Showing Empty Packages]

Figure 170: Android Studio Project Tree, Showing Empty Packages
Step #2: Moving Our Classes
From here, it is a matter of dragging our classes from where they are to the
desired package. Android Studio will take care of fixing up any import statements,
view binding references, the manifest, and related stuff.
Start by dragging ToDoRepository to the repo package.
When you drop the class in the repo package, a “Move” dialog will appear:

[image: Android Studio Move Dialog]

Figure 171: Android Studio Move Dialog
This confirms that we are going to move this class to the designated package.
The checkboxes towards the bottom of the dialog indicate where Android Studio
will look for this class, in order to change that code to point to the new package
(if needed).
Click “Refactor”, and in a moment, your class will now be in the repo package.
Then, move most of the remaining classes to the new packages:

 	Class(es)
 	Package

 	ToDoModel
 	repo

 	
AboutActivity, MainActivity, SingleModelMotor

 	ui

 	
RosterAdapter, RosterListFragment, RosterMotor, RosterRowHolder

 	roster

 	DisplayFragment
 	display

 	EditFragment
 	edit

In the end, only ToDoApp should be directly in com.commonsware.todo, with
everything else in one of the sub-packages off of com.commonsware.todo.

[image: Android Studio Project Tree, Showing Many Moved Classes]

Figure 172: Android Studio Project Tree, Showing Many Moved Classes
You may find Android Studio showing a bunch of red errors in the editors for
your fragments. If that happens, choose “File” > “Sync Project with Gradle Files”
from the main menu, and that may clear up the problem.
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
Many files were changed, both directly and indirectly, as a result of the steps
in this tutorial, including all but one of the Kotlin source files.
Getting a Room (And Some Coroutines)
So far, we have been content to have our to-do items vanish when we re-run our
app. This was simple and easy to write. However, it is not realistic. Users
will expect their to-do items to remain until deleted. To do that, we need
our items to survive process termination, and that requires that we
save those items somewhere, such as on disk.
In this tutorial, we will start in on that work, setting up database support
using Room, a Google-supplied framework that layers atop Android’s native
SQLite support. SQLite is a relational database. Through Room, we will create
a database containing a table for our to-do items.

You can learn more about Room in the "Storing Data in a Room" chapter of
Elements of Android Jetpack!

In truth, this app is trivial enough that you could use something simpler
for storage, such as storing the items in a JSON file. The bigger the app,
the more likely it is that SQLite and Room will be better options for you.
However, even trivial database I/O takes some time, so we want to move that work
to background threads. To do that, we will use Kotlin coroutines.
Coroutines are a relatively new addition to Kotlin. They try to make it easy
for you to write code that looks like it is happening all on one thread,
statement after statement, when in reality multiple threads are involved.

You can learn more about Kotlin coroutines in the "Introducing Coroutines" chapter of
Elements of Kotlin Coroutines!

This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Requesting More Dependencies
Room has its own set of dependencies that we need to add to the dependencies
closure in app/build.gradle.
Room has its own series of versions, independent of anything else that we have
used. So, let’s define another version constant in our top-level build.gradle
file. Add this line to the ext closure:

 room_version = "2.3.0"

(from T22-Room/ToDo/build.gradle)
Then, in app/build.gradle, add three new dependencies that reference that version constant… and one other dependency:

 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"

(from T22-Room/ToDo/app/build.gradle)
Room is based heavily on the use of Java annotations, and the androidx.room:room-compiler
dependency will handle those annotations for us at compile time. The androidx.room:room-runtime
dependency is for core Room functionality, while the androidx.room:room-ktx dependency
adds support for Room doing database I/O using coroutines (along with a few other
Kotlin extension functions).
The kapt directive that we are using for room-compiler says that this dependency contains
an annotation processor. That, in turn, requires a new plugin. So, add this line to the
other apply plugin statements towards the top of app/build.gradle:

 id 'kotlin-kapt'

(from T22-Room/ToDo/app/build.gradle)
After adding these lines, go ahead and allow Android Studio to sync the project
with the Gradle build files.
Step #2: Defining an Entity
In Room, an entity is a class that is our in-memory representation of
a SQLite table. Instances of the entity class represent rows in that table.
So, we need an entity to create a SQLite table for our to-do items.
Which means… we need another Kotlin class!
Right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
ToDoEntity and choose “Class” as the kind. Press Enter or Return to create the class, giving you:

package com.commonsware.todo.repo

class ToDoEntity {
}

Then, replace that stub implementation with this:

package com.commonsware.todo.repo

import androidx.room.Entity
import androidx.room.Index
import androidx.room.PrimaryKey
import java.time.Instant
import java.util.*

@Entity(tableName = "todos", indices = [Index(value = ["id"])])
data class ToDoEntity(
 val description: String,
 @PrimaryKey
 val id: String = UUID.randomUUID().toString(),
 val notes: String = "",
 val createdOn: Instant = Instant.now(),
 val isCompleted: Boolean = false
)

This class has the same properties as ToDoModel. You might wonder why we did not just
use ToDoModel. Mostly, that is for realism: there is no guarantee that your entities
will have a 1:1 relationship with models. Room puts restrictions on how entities
can be constructed, particularly when it comes to relationships with other entities.
Things that you might do in model objects (e.g., a category object holding a collection of
item objects) wind up having to be implemented significantly differently using
Room entities. Those details will get hidden by your repositories. A repository
exists in part to convert specialized forms of your data (Room entities, Web service
responses, etc.) into the model objects that your UI is set up to use.
What makes ToDoEntity an entity is the @Entity annotation at the top. There,
we can provide metadata about the table that we want to have created. Here, we
specify that we want the underlying table name to be todos, as opposed to the default,
which is the same as the class name (ToDoEntity).
Room knows that the id property is our primary key because we gave it the @PrimaryKey annotation.
Room wants us to declare some
primary key, typically via that @PrimaryKey annotation. We also have an index
on our id column, courtesy of the @Index nested annotation inside of the @Entity
annotation.
Step #3: Crafting a DAO
The @Entity class says “this is what my table should look like”. A
@Dao class says “this is how I want to read and write from that table”.
With Room, we define an interface or abstract class to describe the API
that we want to have for working with the database. Room then code-generates
an implementation for us, dealing with all of the SQLite code for getting
our entities to and from our table.
Inside the ToDoEntity class (i.e., inside a {} that you add after the constructor), add this nested interface:

 @Dao
 interface Store {
 @Query("SELECT * FROM todos ORDER BY description")
 fun all(): Flow<List<ToDoEntity>>

 @Query("SELECT * FROM todos WHERE id = :modelId")
 fun find(modelId: String?): Flow<ToDoEntity?>

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 suspend fun save(vararg entities: ToDoEntity)

 @Delete
 suspend fun delete(vararg entities: ToDoEntity)
 }

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
The @Dao annotation tells Room that this interface serves as a DAO and defines
an API that we want to use. On it, we have four functions. Each has an annotation
indicating what is the database operation that this method should apply:

	
@Insert for inserts

	
@Update for updates

	
@Delete for deletions

	
@Query for anything, but mostly used for data retrieval

The @Query annotations always take a SQL statement as an annotation property,
to indicate what SQL should be executed when this function is called. That SQL
statement sometimes stands alone, as does SELECT * FROM todos for the all()
function. However, the SQL can reference function parameters, such as in the
case of the find() function. It has a modelId parameter, and our SQL
statement refers to that, using a : prefix to identify that it is a reference
to a parameter name (SELECT * FROM todos WHERE id = :modelId).
Query functions based on SELECT statements return whatever it is that the
query is supposed to return. In our case, we are querying all columns from the
todos table, and we are asking Room to map those rows to instances of our
ToDoEntity class. For the all() function, we are expecting that there may
be more than one, so the return type is based on a List of entities. By contrast,
find() expects at most one result, so the return type is based on a single
ToDoEntity.
We could have written all() and find() like this:

 @Query("SELECT * FROM todos")
 fun all(): List<ToDoEntity>

 @Query("SELECT * FROM todos WHERE id = :modelId")
 fun find(modelId: String): ToDoEntity

In that case, those functions would be synchronous, blocking until the query
is complete.
Instead, our functions wrap our desired return values in Flow, from Kotlin’s
coroutines system. This has two key effects:

	Room will perform the queries on a background thread and post the results to the
Flow when the results are ready. Hence, our functions are asynchronous,
returning immediately, rather than blocking waiting for the database I/O to complete.

	So long as we have 1+ observers of the Flow, if we do other database
operations that affect the todos table, Room will automatically deliver a new
result to those observers via the Flow. So, if we insert or delete a row
from our table, observers will get updated data, which (if appropriate) will
reflect those data changes.

Our other two functions — save() and delete() — use other Room annotations.
save() uses @Insert, while delete() uses @Delete.
We are using save() for both inserts and updates. The onConflict = OnConflictStrategy.REPLACE
property in our @Insert annotation says “if there already is a row with this
primary key in the database, replace it with new contents”. So, if we pass in a
brand-new ToDoEntity, it will be inserted, but if we pass in a ToDoEntity
that reflects a change to an existing row, that row will be updated.
Note that both save() and delete() use vararg. This allows us to pass as
many entities as we want, with all of them being saved or deleted. This is not
required — you can have @Insert or @Delete functions that accept a single
entity, a List of entities, etc.
And, note that both save() and delete() are suspend functions. As with Flow,
suspend comes from Kotlin coroutines. Room will have save() and delete() perform
their I/O on background threads, but from a programming standpoint, it will feel like
we are making synchronous calls on the current thread.
Step #4: Adding a Database
The third major piece of any Room usage is a @Database. Here, we not only
need to add the annotation to a class, but we need to have that class
inherit from Room’s own RoomDatabase base class.
Which means… we need another Kotlin class! Again!
Right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
ToDoDatabase, and choose “Class” as the kind. Then, Press Enter or Return to create the class, giving you:

package com.commonsware.todo.repo

class ToDoDatabase {
}

Then, replace that implementation with:

package com.commonsware.todo.repo

import android.content.Context
import androidx.room.Database
import androidx.room.Room
import androidx.room.RoomDatabase

private const val DB_NAME = "stuff.db"

@Database(entities = [ToDoEntity::class], version = 1)
abstract class ToDoDatabase : RoomDatabase() {
 abstract fun todoStore(): ToDoEntity.Store

 companion object {
 fun newInstance(context: Context) =
 Room.databaseBuilder(context, ToDoDatabase::class.java, DB_NAME).build()
 }
}

The @Database annotation is where we provide metadata about the database
that we want Room to manage for us. Specifically:

	We tell it which classes have @Entity annotations and should have their
tables in this database

	What is the version code of this database schema — usually, we start at
1, and we increment from there, any time that we add tables, columns, indexes,
and so on

The todoStore() method returns an instance of our @Dao-annotated interface.
This, coupled with the @Database annotation, tells Room’s annotation processor
to code-generate an implementation of our abstract ToDoDatabase class that has an implementation
of todoStore() that returns a code-generated implementation of ToDoEntity.Store.
To create the ToDoDatabase instance, in our newInstance() factory function,
we use Room.databaseBuilder(), passing it three values:

	a Context to use — and since this is a singleton, we need to use the
Application to avoid any memory leaks

	the class representing the RoomDatabase to create

	a String with the filename to use for the database

The resulting RoomDatabase.Builder could be further configured, but we do not need
that here, so we just have it build() the database and return it.
ToDoDatabase is marked as abstract — the actual class that is used by
RoomDatabase.Builder will be a subclass created by Room’s annotation processor.
Step #5: Creating a Transmogrifier
If you try building the project — for example, Build > “Make module ‘app’” from
the Android Studio main menu — you will get build errors, such as:
error: Cannot figure out how to save this field into database. You can consider adding a type converter for it.
 private final java.time.Instant createdOn = null;

The problem is that Room does not know what to do with an Instant object.
SQLite does not have a native date/time column type, and Room cannot convert
arbitrary objects into arbitrary SQLite column types. Instead, Room’s annotation
processor detects the issue and fails the build.
To fix this, we need to teach Room how to convert Instant objects to
and from some standard SQLite column type. And for that… we could really use
another Kotlin class. Fortunately, you can never have too many Kotlin classes!
(NARRATOR: you definitely can have too many Kotlin classes, but one more will not hurt)
Right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
TypeTransmogrifier. But, this time, choose “Object” for the kind. Press Enter or Return to create the class, giving you:

package com.commonsware.todo.repo

object TypeTransmogrifier {
}

A transmogrifier is a
~30-year-old piece of advanced technology that can convert one thing into
another. Here, we are creating a type transmogrifier: a set of functions that
turn one type into another.
To that end, replace the stub generated class with this:

package com.commonsware.todo.repo

import androidx.room.TypeConverter
import java.time.Instant

object TypeTransmogrifier {
 @TypeConverter
 fun fromInstant(date: Instant?): Long? = date?.toEpochMilli()

 @TypeConverter
 fun toInstant(millisSinceEpoch: Long?): Instant? = millisSinceEpoch?.let {
 Instant.ofEpochMilli(it)
 }
}

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/TypeTransmogrifier.kt)
The @TypeConverter annotations tell Room that this is a function that can
convert one type into another. Here, we convert Instant objects into
Long objects, using the time-since-the-Unix-epoch methods on Instant.
Then, add this annotation to the ToDoDatabase class declaration, under
the existing @Database annotation:

@TypeConverters(TypeTransmogrifier::class)

This tells Room that for any entities used by this ToDoDatabase, if you
need to convert a type, try looking for @TypeConverter methods
on TypeTransmogrifier.
Now, if you choose Build > “Make module ‘app’” from the Android Studio
main menu, the app should build successfully.
Step #6: Add Our Database to Koin
Usually, a Room database is a singleton. And, since we are using Koin, we can have
Koin supply our database to other classes via dependency injection.
In ToDoApp, add this line to the koinModule declaration:

 single { ToDoDatabase.newInstance(androidContext()) }

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This simply invokes our newInstance() factory function and exposes that instance
as a single object. It uses an androidContext() function, supplied by Koin,
to get the Application singleton and supply that as a Context to our newInstance()
factory function.
However, to enable androidContext() to work in our single() call, we need to
teach Koin about our ToDoApp object. To that end, modify onCreate() in ToDoApp to
look like this:

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }
 }

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Now, our startKoin() call contains an androidContext() setter call, where we
provide the Context to use for our androidContext() call up in koinModule.
Technically, we could bypass all of this and have our single() in koinModule
use this instead of androidContext(). The downside of that approach is that
if we wanted a different Context in testing, we would be unable to provide
it. Basically, Koin allows us to inject the top-level Context in addition to injecting
our own classes.
Step #7: Adding a Store to the Repository
Next, we need to have our ToDoRepository get access to a ToDoEntity.Store,
so it can manipulate the database instead of an in-memory transient copy of data.
Update the ToDoRepository to add a pair of constructor parameters:

class ToDoRepository(
 private val store: ToDoEntity.Store,
 private val appScope: CoroutineScope
) {

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
The first parameter is our DAO, ToDoEntity.Store. We will use that to work with the database.
The second parameter is a CoroutineScope. Take it on faith for the moment that
we need that parameter — we will apply it in the next section and see more about
why we need it in the next tutorial.
Next, in ToDoApp, add this single to our koinModule:

 single(named("appScope")) { CoroutineScope(SupervisorJob()) }

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This sets up a singleton instance of a CoroutineScope, wrapped around a SupervisorJob.
That will be important
when we tie in our viewmodels to our updated repository, as we will see in the next tutorial.
The named("appScope") parameter to the single() call tells Koin that there
might be more than one CoroutineScope in our module, and we only want to use
this CoroutineScope if somebody asks for it by name. In reality, we will only
have this one CoroutineScope, but using named components like this is good practice
for a general-purpose object like CoroutineScope.
Then, in ToDoApp, change the ToDoRepository line in koinModule to be:

 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope"))
)
 }

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
We use get() twice to find our dependencies and inject them. However, the get()
calls are a bit different than the ones we have used previously:

	The first one uses generics to indicate that we want to fetch a ToDoDatabase.
Normally, get() works on the type of the parameter, but that is a ToDoEntity.Store.
Koin does not know how to get such a thing, so we tell it to get() the
ToDoDatabase, and from there we call todoStore() ourselves to get the ToDoEntity.Store
that ToDoRepository needs.

	The second one uses a similar named("appScope") parameter to the one we used
in the CoroutineScope single declaration. So, we are asking to get() the
object of the desired type (CoroutineScope, based on the parameter type)
that is named appScope.

Step #8: Fixing the Repository
Now, we need to have the ToDoRepository really use the ToDoEntity.Store, rather
than just get it in a constructor parameter.
However, we have problems. ToDoRepository works with models. ToDoEntity.Store
works with entities. We are going to need to be able to convert between these two types.
To that end, add this constructor and function to ToDoEntity:

 constructor(model: ToDoModel) : this(
 id = model.id,
 description = model.description,
 isCompleted = model.isCompleted,
 notes = model.notes,
 createdOn = model.createdOn
)

 fun toModel(): ToDoModel {
 return ToDoModel(
 id = id,
 description = description,
 isCompleted = isCompleted,
 notes = notes,
 createdOn = createdOn
)
 }

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
These offer bi-directional conversion between a ToDoModel and a ToDoEntity.
If we needed more data conversion between things that Room knows how to store
and how we wanted to represent them in the models, we could have that logic here
as well.
Then, replace the contents of ToDoRepository with the following:

package com.commonsware.todo.repo

import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.withContext

class ToDoRepository(
 private val store: ToDoEntity.Store,
 private val appScope: CoroutineScope
) {
 fun items(): Flow<List<ToDoModel>> =
 store.all().map { all -> all.map { it.toModel() } }

 fun find(id: String?): Flow<ToDoModel?> = store.find(id).map { it?.toModel() }

 suspend fun save(model: ToDoModel) {
 withContext(appScope.coroutineContext) {
 store.save(ToDoEntity(model))
 }
 }

 suspend fun delete(model: ToDoModel) {
 withContext(appScope.coroutineContext) {
 store.delete(ToDoEntity(model))
 }
 }
}

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
items() now calls all() on our ToDoEntity.Store, to retrieve all of the
entities. We use the map() operator on Flow to convert the List of
ToDoEntity into a corresponding List of ToDoModel. So, items() now
returns a Flow for that list of models. Every time ToDoEntity.Store emits
a new list of entities, our repository emits the corresponding list of models.
Similarly, find() now calls find() on the ToDoEntity.Store and uses
map() to convert the entity into a model.
We also delegate our save() and delete() calls to their corresponding ones
on ToDoEntity.Store. We use the constructor that we
added to ToDoEntity to map from our models to our entities. And, we wrap
the actual DAO calls in withContext(), using a CoroutineContext obtained
from our CoroutineScope. This says “use this context (and job) to manage the
work in this coroutine”. Since the scope and context are tied to that SupervisorJob,
that job manages the work, rather than any job that was set up by callers of these
suspend functions. We will see how this comes into play when we update our viewmodels,
in the next tutorial.
So, right now, our app is broken. SingleModelMotor and RosterMotor are expecting
the old, synchronous repository API, instead of this new coroutines-based one.
We will fix that, and get our app working once again, in the next tutorial.
Final Results
Your top-level build.gradle file should look like:

buildscript {
 ext.nav_version = '2.3.5'

 repositories {
 google()
 mavenCentral()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:7.0.2'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.5.21"
 classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

ext {
 koin_version = "3.1.2"
 room_version = "2.3.0"
}

(from T22-Room/ToDo/build.gradle)
And your app module’sbuild.gradle file should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T22-Room/ToDo/app/build.gradle)
ToDoEntity should now look like:

package com.commonsware.todo.repo

import androidx.room.*
import kotlinx.coroutines.flow.Flow
import java.time.Instant
import java.util.*

@Entity(tableName = "todos", indices = [Index(value = ["id"])])
data class ToDoEntity(
 val description: String,
 @PrimaryKey
 val id: String = UUID.randomUUID().toString(),
 val notes: String = "",
 val createdOn: Instant = Instant.now(),
 val isCompleted: Boolean = false
) {
 constructor(model: ToDoModel) : this(
 id = model.id,
 description = model.description,
 isCompleted = model.isCompleted,
 notes = model.notes,
 createdOn = model.createdOn
)

 fun toModel(): ToDoModel {
 return ToDoModel(
 id = id,
 description = description,
 isCompleted = isCompleted,
 notes = notes,
 createdOn = createdOn
)
 }

 @Dao
 interface Store {
 @Query("SELECT * FROM todos ORDER BY description")
 fun all(): Flow<List<ToDoEntity>>

 @Query("SELECT * FROM todos WHERE id = :modelId")
 fun find(modelId: String?): Flow<ToDoEntity?>

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 suspend fun save(vararg entities: ToDoEntity)

 @Delete
 suspend fun delete(vararg entities: ToDoEntity)
 }
}

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
ToDoDatabase should look like:

package com.commonsware.todo.repo

import android.content.Context
import androidx.room.Database
import androidx.room.Room
import androidx.room.RoomDatabase
import androidx.room.TypeConverters

private const val DB_NAME = "stuff.db"

@Database(entities = [ToDoEntity::class], version = 1)
@TypeConverters(TypeTransmogrifier::class)
abstract class ToDoDatabase : RoomDatabase() {
 abstract fun todoStore(): ToDoEntity.Store

 companion object {
 fun newInstance(context: Context) =
 Room.databaseBuilder(context, ToDoDatabase::class.java, DB_NAME).build()
 }
}

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)
And ToDoApp now should resemble:

package com.commonsware.todo

import android.app.Application
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.ui.SingleModelMotor
import com.commonsware.todo.ui.roster.RosterMotor
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import org.koin.android.ext.koin.androidContext
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.core.qualifier.named
import org.koin.dsl.module

class ToDoApp : Application() {
 private val koinModule = module {
 single(named("appScope")) { CoroutineScope(SupervisorJob()) }
 single { ToDoDatabase.newInstance(androidContext()) }
 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope"))
)
 }
 viewModel { RosterMotor(get()) }
 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }
 }
}

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	build.gradle

	app/build.gradle

	app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt

	app/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt

	app/src/main/java/com/commonsware/todo/repo/TypeTransmogrifier.kt

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

	app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

Completing the Reactive Architecture
We have our database, and our repository now offers a reactive and asynchronous
API for working with the data. However:

	Our viewmodels do not know how to work with this new repository API, and

	Our fragments will need to be adjusted to adapt to whatever changes we make to the viewmodels
to address the preceding bullet

	Our data model is getting more complex, as we no longer can just worry about
a handful of to-do items

For example, right now, RosterListFragment only needs the list of to-do items. However,
that is very simplistic. Most UIs are more complex than that. Even in the
scope of this book, this is too simple. Later on, we will add filtering into
the app, so the user can restrict the output to only show a subset of the items.
Similarly, we could add searches, so the user could find items that match some
search expression. Now, we need to keep track of filter modes, search expressions,
and so on, in addition to the items to be displayed. And, as we move into asynchronous
operations, we will want to track whether or not we are working on loading the data,
so we can show some sort of progress indicator while that is going on. And so forth.
To help deal with that complexity, rather than having our motors keep track
just of items, we will have them emit “view-state” objects. The view-state represents
the data needed to render the UI. The fragments will observe those view-states and
update their UIs to match, based on what is in those states.
This idea of a “view-state” is part of implementing a unidirectional
data flow architecture. In this style of UI development, UI actions trigger updates
to repositories, where those updates in turn trigger new view-states to be emitted,
which trigger changes to the UI itself:

[image: Unidirectional Data Flow Architecture]

Figure 173: Unidirectional Data Flow Architecture
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Defining a Roster View State
Next, let’s create a RosterViewState class to represent our view-state
for our RosterListFragment. Since this will be a small class that is tightly
tied to RosterMotor, we can take advantage of Kotlin’s support for multiple
classes in a single source file, to reduce clutter in our project tree a bit.
So, in RosterMotor, above the RosterMotor class itself, add this class:

data class RosterViewState(
 val items: List<ToDoModel> = listOf()
)

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This just holds onto our list of to-do items, though over time we will add other
properties to this class.
Step #2: Emitting View States
Then, replace getItems() in RosterMotor with:

 val states = repo.items()
 .map { RosterViewState(it) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, RosterViewState())

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
Flow has a map() operator for converting data between types. Here, we map()
the list of ToDoModel objects into a RosterViewState.
We then use an stateIn() extension function. This converts a Flow into a StateFlow, ready to be
consumed by our RosterListFragment.

You can learn more about StateFlow in the "Opting Into SharedFlow and StateFlow" chapter of
Elements of Kotlin Coroutines!

A StateFlow is a flow of states. It holds onto a current state and gives that to any new
observer once it starts observing. And, it emits new states to current observers if it
is handed a new state.
stateIn() takes three parameters:

	A CoroutineScope (more on this below)

	A value indicating when states should start flowing — in this case, we start immediately

	The initial state for the flow — in this case, one with an empty list

For the CoroutineScope, we use viewModelScope.
viewModelScope is an extension function supplied by
lifecycle-viewmodel-ktx, to give us a CoroutineScope associated with our
ViewModel.
The major feature of viewModelScope is that it is aware of the viewmodel’s lifecycle.
When the viewmodel is cleared (after the user exits the fragment), any outstanding
coroutines being run in the context of the viewModelScope get canceled.
We use a property (states), rather than a function. For the view-state pattern,
it works best if you have a stable stream of states. That will make our viewmodels
a bit more complicated in the future, but it means that our fragments are simpler:
just subscribe to the one source of view-states and use them. In fact, we will do just
that in the next step.
Step #3: Consuming Roster View States
Our RosterListFragment now will complain that it no longer has a getItems()
function on our RosterMotor. Specifically, we have an error on this
line in onViewCreated():

 adapter.submitList(motor.getItems())

(from T22-Room/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Replace that line with:

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 when {
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 else -> empty.visibility = View.GONE
 }
 }
 }
 }

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
We start off by referencing viewLifecycleOwner.lifecycleScope. This gives us
a CoroutineScope tied to the lifecycle of this fragment’s views. Whereas a viewModelScope
of a ViewModel will cancel its outstanding coroutines once the ViewModel is cleared,
the CoroutineScope that we get with viewLifecycleOwner.lifecycleScope is one that
will cancel its outstanding coroutines once the fragment’s views are destroyed (i.e., when
the fragment is called with onDestroyView()).
The specific subtype of CoroutineScope that we get from viewLifecycleOwner.lifecycleScope
is a LifecyleCoroutineScope, and it has some functions that give us sub-scopes
based on specific lifecycle events. In this case, we use launchWhenStarted(). This returns
a CoroutineScope that will:

	Start running the supplied lambda expression as a coroutine once the fragment’s views are
visible

	Suspend running that coroutine once the fragment’s views are no longer visible

	Resumes running that coroutine if the fragment is restarted and its views become visible again

	Cancels the coroutine if the fragment’s views are destroyed

The net of all of that is we have a CoroutineScope that does work during useful times
(when the views are visible) and cleans up when our views are destroyed.
Inside that scope, we call motor.states.collect(). states is our StateFlow
from our RosterMotor (motor). collect() observes the states emitted by the StateFlow
for as long as the coroutine runs. Our supplied lambda expression gets called for each
such state, including the initial empty state.
So, the state parameter in the lambda expression is our RosterViewState.
However, that view-state not only represents the initial list of to-do items, but any changed
editions of the list that are published by the ToDoRepository — we keep getting
view-states pushed to us as the data changes, as Room gives updates to the repository, which
gives them to the RosterMotor, which in turn streams them to the fragment.
So, our lambda expression can update the RosterAdapter and the empty
visibility, both for our initial state and after we make any changes to that state.
That is why if you run the app after making these changes, you will see that the
items that you add, edit, and delete have those actions reflected in the list.
Note that the collect() function used in motor.states.collect() is an extension
function that needs to be imported:

import kotlinx.coroutines.flow.collect

Also, in onViewCreated() of RosterListFragment, replace:

 binding?.empty?.visibility =
 if (adapter.itemCount == 0) View.VISIBLE else View.GONE

with:

 binding?.empty?.visibility = View.GONE

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
We are now making the empty state visible inside our when() for the view-states, so
we do not need to be manipulating it here anymore.
Step #4: Wrapping the suspend Functions
RosterMotor still is showing an error message, where we cannot call save() on ToDoRepository
because:
Suspend function 'save' should be called only from a coroutine or another suspend function

That is because you cannot call a suspend function from a normal function
as we are doing here. Either:

	The caller needs to be a suspend function itself, or

	We need to do something that accepts suspend functions safely

To fix that, revise save() in RosterMotor to be:

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
To consume a suspend function from a normal function, you can use launch
on a CoroutineScope.
In effect, launch says “I am willing to deal with suspend functions, allowing
my work to be suspended as needed to wait for the suspend work to complete”.
As noted earlier, viewModelScope is aware of the viewmodel’s lifecycle.
When the viewmodel is cleared (after the user exits the fragment), any outstanding
coroutines being run in the context of the viewModelScope get canceled. For a read
operation, that is fine. However, usually, we want a write operation to proceed
even if the user moved along in the UI. That is why, in ToDoRepository, we are
using the appScope CoroutineScope as a wrapper around the Room coroutines.
appScope is set up to live for as long as our process does, so any coroutines
executed from within it will get to run to completion, even if viewModelScope
gets canceled.
Step #5: Updating SingleModelMotor

We need to make similar adjustments to SingleModelMotor that we made to RosterMotor.
With that in mind, add this view-state class above the declaration of SingleModelMotor:

data class SingleModelViewState(
 val item: ToDoModel? = null
)

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/SingleModelMotor.kt)
And, replace the current SingleModelMotor implementation with:

class SingleModelMotor(
 private val repo: ToDoRepository,
 modelId: String?
) : ViewModel() {
 val states = repo.find(modelId)
 .map { SingleModelViewState(it) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, SingleModelViewState())

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

 fun delete(model: ToDoModel) {
 viewModelScope.launch {
 repo.delete(model)
 }
 }
}

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/SingleModelMotor.kt)
SingleModelViewState is akin to RosterViewState, wrapping a single model object…
or null, since we may not have a model (e.g., for a new to-do item).
states works like the RosterMotor edition, except that it calls find() on
the ToDoRepository rather than all(). But, like RosterMotor, it maps
the result to a view-state and it converts the Flow into a StateFlow.
save() and delete() both wrap their corresponding ToDoRepository calls
in viewModelScope.launch(), so that those coroutines get run in our desired
CoroutineScope.
Step #6: Adapting DisplayFragment

Similarly, we need to update DisplayFragment and EditFragment to handle
the changes that we made to SingleModelMotor. First, let’s fix DisplayFragment,
as it is simpler: change onViewCreated() to be:

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 state.item?.let {
 binding?.apply {
 completed.visibility =
 if (it.isCompleted) View.VISIBLE else View.GONE
 desc.text = it.description
 createdOn.text = DateUtils.getRelativeDateTimeString(
 requireContext(),
 it.createdOn.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS,
 0
)
 notes.text = it.notes
 }
 }
 }
 }
 }

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/display/DisplayFragment.kt)
Here, we observe the view-states from our SingleModelMotor. When we get one, we do the
same work as before: if the model is not null, we populate the widgets based on that
model.
Step #7: Adapting EditFragment

Fixing EditFragment is more involved.
Partly, that is because we use more functions from SingleModelMotor, such as in the fragment’s
save() and delete() functions. Change those to get the ToDoModel by getting the
value from the StateFlow:

 private fun save() {
 binding?.apply {
 val model = motor.states.value.item
 val edited = model?.copy(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
) ?: ToDoModel(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
)

 edited.let { motor.save(it) }
 }

 navToDisplay()
 }

 private fun delete() {
 val model = motor.states.value.item

 model?.let { motor.delete(it) }
 navToList()
 }

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/edit/EditFragment.kt)
value on StateFlow is whatever the last-emitted object was. In our case,
it is the last-emitted view-state. So, here, we get the last-emitted view-state, get
the model from it (if there was a model), and proceed as we did before.
In terms of populating the widgets, you might think that we would use the same
approach that we did in DisplayFragment: collect() the StateFlow and use the model
(if we have one) for the widget contents. Indeed, we do that… but there is a problem.
We are only updating our model when the user clicks the save app bar item.
In particular, the user can edit the description or notes, or check the is-completed
CheckBox, and then undergo a configuration change. Those edits are not
reflected in our model, because we have not yet updated it — the user did not click the
save app bar item. However, we really should try to hold onto the user’s edits, as
the user may get irritated if we lose them just because they rotated the screen.
The good news is that Android automatically knows how to handle those edits.
That savedInstanceState Bundle that we see in functions like onViewCreated()
contains the edits, put there by Android as part of processing the configuration
change. Even better is that Android automatically updates the widgets with those
edits in the new fragment after the configuration change.
We just need to not screw it up.
Specifically, we need to make sure that if we have a saved instance state, it gets
used to populate our widgets. Getting the data from the model is to be used if
we do not have the state.
So, with all that in mind, replace onViewCreated() in EditFragment with
this implementation:

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 if (savedInstanceState == null) {
 state.item?.let {
 binding?.apply {
 isCompleted.isChecked = it.isCompleted
 desc.setText(it.description)
 notes.setText(it.notes)
 }
 }
 }
 }
 }
 }

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/edit/EditFragment.kt)
We once again collect() our StateFlow, and we once again use the view-state
to update the widgets… but only if our savedInstanceState is null. Otherwise,
we assume that our widgets already have what we want from a pre-configuration
change instance of our fragment.
At this point, the app should compile and run. More importantly, courtesy of
the changes that we made in the past few tutorials, any to-do items that you
enter will be saved and will be available in future runs of the app.
Final Results
Our module’s build.gradle file should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T23-Arch/ToDo/app/build.gradle)
In the end, RosterMotor should contain:

package com.commonsware.todo.ui.roster

import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import kotlinx.coroutines.flow.SharingStarted
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.stateIn
import kotlinx.coroutines.launch

data class RosterViewState(
 val items: List<ToDoModel> = listOf()
)

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 val states = repo.items()
 .map { RosterViewState(it) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, RosterViewState())

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }
}

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
The updated RosterListFragment should look like:

package com.commonsware.todo.ui.roster

import android.os.Bundle
import android.view.*
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.ToDoModel
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 when {
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 else -> empty.visibility = View.GONE
 }
 }
 }
 }

 binding?.empty?.visibility = View.GONE
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }
}

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Our revised SingleModelMotor should contain:

package com.commonsware.todo.ui

import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import kotlinx.coroutines.flow.SharingStarted
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.stateIn
import kotlinx.coroutines.launch

data class SingleModelViewState(
 val item: ToDoModel? = null
)

class SingleModelMotor(
 private val repo: ToDoRepository,
 modelId: String?
) : ViewModel() {
 val states = repo.find(modelId)
 .map { SingleModelViewState(it) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, SingleModelViewState())

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

 fun delete(model: ToDoModel) {
 viewModelScope.launch {
 repo.delete(model)
 }
 }
}

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/SingleModelMotor.kt)
The tweaked DisplayFragment should resemble:

package com.commonsware.todo.ui.display

import android.os.Bundle
import android.text.format.DateUtils
import android.view.*
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoDisplayBinding
import com.commonsware.todo.ui.SingleModelMotor
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class DisplayFragment : Fragment() {
 private val args: DisplayFragmentArgs by navArgs()
 private var binding: TodoDisplayBinding? = null
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoDisplayBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 state.item?.let {
 binding?.apply {
 completed.visibility =
 if (it.isCompleted) View.VISIBLE else View.GONE
 desc.text = it.description
 createdOn.text = DateUtils.getRelativeDateTimeString(
 requireContext(),
 it.createdOn.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS,
 0
)
 notes.text = it.notes
 }
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_display, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.edit -> {
 edit()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun edit() {
 findNavController().navigate(
 DisplayFragmentDirections.editModel(
 args.modelId
)
)
 }
}

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/display/DisplayFragment.kt)
And the current EditFragment should look like:

package com.commonsware.todo.ui.edit

import android.os.Bundle
import android.view.*
import android.view.inputmethod.InputMethodManager
import androidx.core.content.getSystemService
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoEditBinding
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.ui.SingleModelMotor
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel
import org.koin.core.parameter.parametersOf

class EditFragment : Fragment() {
 private var binding: TodoEditBinding? = null
 private val args: EditFragmentArgs by navArgs()
 private val motor: SingleModelMotor by viewModel { parametersOf(args.modelId) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
) = TodoEditBinding.inflate(inflater, container, false)
 .apply { binding = this }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 if (savedInstanceState == null) {
 state.item?.let {
 binding?.apply {
 isCompleted.isChecked = it.isCompleted
 desc.setText(it.description)
 notes.setText(it.notes)
 }
 }
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_edit, menu)
 menu.findItem(R.id.delete).isVisible = args.modelId != null

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.save -> {
 save()
 return true
 }
 R.id.delete -> {
 delete()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun save() {
 binding?.apply {
 val model = motor.states.value.item
 val edited = model?.copy(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
) ?: ToDoModel(
 description = desc.text.toString(),
 isCompleted = isCompleted.isChecked,
 notes = notes.text.toString()
)

 edited.let { motor.save(it) }
 }

 navToDisplay()
 }

 private fun delete() {
 val model = motor.states.value.item

 model?.let { motor.delete(it) }
 navToList()
 }

 private fun navToDisplay() {
 hideKeyboard()
 findNavController().popBackStack()
 }

 private fun navToList() {
 hideKeyboard()
 findNavController().popBackStack(R.id.rosterListFragment, false)
 }

 private fun hideKeyboard() {
 view?.let {
 val imm = context?.getSystemService<InputMethodManager>()

 imm?.hideSoftInputFromWindow(
 it.windowToken,
 InputMethodManager.HIDE_NOT_ALWAYS
)
 }
 }
}

(from T23-Arch/ToDo/app/src/main/java/com/commonsware/todo/ui/edit/EditFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

	app/src/main/java/com/commonsware/todo/ui/SingleModelMotor.kt

	app/src/main/java/com/commonsware/todo/ui/display/DisplayFragment.kt

	app/src/main/java/com/commonsware/todo/ui/edit/EditFragment.kt

Testing a Motor
We think that our app works, in that we can see it working when
we use the app’s UI. Besides, this is a book, and books
never have mistakes, right?
(right?!?)
In the real world, though, you do not have a set of tutorials for every bit of
code that you want to write. Along the way, writing tests will help you confirm
that the code that you wrote actually works, including for scenarios that are
supported by the API that you created but might not be used yet by the UI.
So, in this tutorial, we will start adding some tests to our project.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.

You can learn more about basics of testing in the "Touring the Tests" chapter of
Elements of Android Jetpack!

Step #1: Examine Our Existing Tests
The good news is that the project you imported to start these tutorials
already has some tests written for you.
(no, this does not mean that you are done with testing)
Tests in Android modules go into “source sets” that are peers of main/.
If you examine your project in Android Studio, you will see that there
are three directories in app/src/: androidTest/, main/, and test/:

[image: Android Studio, Showing Source Sets]

Figure 174: Android Studio, Showing Source Sets
androidTest/ holds “instrumented tests”. Simply put, these are tests
of our code that run on an Android device or emulator, just as our app does.
If you go into that directory, you will see that it has its own java/
tree, with an ExampleInstrumentedTest defined there:

package com.commonsware.todo

import androidx.test.platform.app.InstrumentationRegistry
import androidx.test.ext.junit.runners.AndroidJUnit4

import org.junit.Test
import org.junit.runner.RunWith

import org.junit.Assert.*

/**
 * Instrumented test, which will execute on an Android device.
 *
 * See [testing documentation](http://d.android.com/tools/testing).
 */
@RunWith(AndroidJUnit4::class)
class ExampleInstrumentedTest {
 @Test
 fun useAppContext() {
 // Context of the app under test.
 val appContext = InstrumentationRegistry.getInstrumentation().targetContext
 assertEquals("com.commonsware.todo", appContext.packageName)
 }
}

(from T23-Arch/ToDo/app/src/androidTest/java/com/commonsware/todo/ExampleInstrumentedTest.kt)
test/ holds “unit tests”. These are tests of our code that run directly
on our development machine. On the plus side, they run much faster, as we do
not have to copy the test code over to a device or emulator, and a device or
emulator is going to be slower than our development machine (usually). On the other hand,
our development machine is not running Android, so we cannot easily test
code that touches Android-specific classes and methods. Like androidTest/,
test/ has its own java/ tree, with an ExampleUnitTest defined there:

package com.commonsware.todo

import org.junit.Test

import org.junit.Assert.*

/**
 * Example local unit test, which will execute on the development machine (host).
 *
 * See [testing documentation](http://d.android.com/tools/testing).
 */
class ExampleUnitTest {
 @Test
 fun addition_isCorrect() {
 assertEquals(4, 2 + 2)
 }
}

(from T23-Arch/ToDo/app/src/test/java/com/commonsware/todo/ExampleUnitTest.kt)
Neither of these test very much, let alone anything related to our own code.
Step #2: Decide on Instrumented Tests vs. Unit Tests
So, which should we use? Instrumented tests? Unit tests? Both?
If you only wanted to worry about one, choose instrumented tests. Everything
can be tested using instrumented tests, while unit tests cannot readily test
everything.
And, for a small project like this one, going with instrumented tests for
everything would be perfectly reasonable. However, most projects are not this small.
For larger projects — particularly those where tests will be run frequently —
the speed gain from unit tests can be significant. So, a typical philosophy is:

	Test what you can with unit tests

	Test the other stuff, such as the UI, with instrumented tests

That is the approach that we will take over the next few tutorials, starting
with some unit tests.
Step #3: Adding Some Unit Test Dependencies
So far, all of the dependencies that we have been adding to our app have
used the implementation keyword. Those dependencies become part of the
main app.
However, our dependencies closure in app/build.gradle also has
androidTestImplementation and testImplementation statements. These
are for instrumented tests and unit tests, respectively:

 	Test Type
 	Where the Source Goes
 	How You Add Dependencies

 	instrumented test
 	androidTest
 	androidTestImplementation

 	unit test
 	test
 	testImplementation

Right now, we have just one testImplementation dependency, for JUnit. JUnit
is the foundation of all Android unit tests and instrumented tests, so we will
be writing JUnit-based tests for both types.
Technically, we do not need anything more than that for our unit tests. In practice,
though, usually we add some more dependencies, ones that will help us test more
effectively.
With that in mind, add these lines to the dependencies closure in app/build.gradle:

 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'

(from T24-Tests/ToDo/app/build.gradle)
The org.mockito:mockito-inline and com.nhaarman.mockitokotlin2:mockito-kotlin
bring in Mockito and a Kotlin wrapper for Mockito.
Mockito is a popular “mocking” library, allowing us to define ad hoc implementations
of classes. Sometimes, we use these to test scenarios that would be difficult to
test otherwise. Sometimes, we use these as “call recorders”, to see whether certain
functions were called as part of our tests.
The org.jetbrains.kotlinx:kotlinx-coroutines-test library helps you test coroutines.
The author hopes that this was not a surprise.
(if it was… surprise!)
Step #4: Renaming Our Unit Test
Our unit test class is named ExampleUnitTest. That is not a particularly
useful name for us. Since we will be using this class to test SingleModelMotor,
we should rename it to something like SingleModelMotorTest. Typically, a unit
test class focuses on testing one main project class, so SingleModelMotorTest
would focus on testing SingleModelMotor.
Also, typically, the test class resides in the same package as is the class
that it is testing. So, just as SingleModelMotor is in com.commonsware.todo.ui,
so should SingleModelMotorTest. However, we do not have a ui sub-package
in the test source set — the one that we added earlier is in the main
source set.
In the test source set, right-click over the com.commonsware.todo package
and choose “New” > “Package” from the context menu. Fill in com.commonsware.todo.ui for the new
package name, then click “OK” to create the sub-package.
Next, drag and drop the ExampleUnitTest class from its current location
(inside com.commonsware.todo) into this new ui sub-package. As before
when we moved around classes, this will bring up a “Move” dialog:

[image: Android Studio Move Dialog]

Figure 175: Android Studio “Move” Dialog
Just click the “Refactor” button to complete the move.
Then, right-click over the newly-moved ExampleUnitTest and choose
“Refactor” > “Rename” from the context menu. In the “Rename” dialog, fill in
SingleModelMotorTest as the new name:

[image: Android Studio Rename Dialog]

Figure 176: Android Studio “Rename” Dialog
Then click “Refactor”. This will rename both the file and the Kotlin class,
so we now have a SingleModelMotorTest.
Step #5: Running the Stub Unit Test
You have a variety of ways to run the unit test. The simplest ones come from
“run” icons in the gutter of the editor:

[image: Android Studio Kotlin Editor, Showing Run Icons]

Figure 177: Android Studio Kotlin Editor, Showing Run Icons
Functions that implement tests will have the @Test annotation.
Clicking the run icon next to a test function will run just that test function. Clicking
the run icon next to a class will run all of the test functions in that class.
If you click the run icon next to SingleModelMotorTest, that class’ test functions
will be run, and the “Run” tool window will open in Android Studio to show you the results:

[image: Android Studio Run Tool Window, Showing Test Results]

Figure 178: Android Studio “Run” Tool Window, Showing Test Results
Our test function uses an assertEquals() method supplied by JUnit. assertEquals()
compares two values and fails the test if they are not equal.
Not surprisingly, 2 + 2 does indeed equal 4.
(if you were surprised by this, once again… surprise!)
The test output shows passing tests with a green checkmark, so we can see that
our test passed. Also, at this point, the run icons in the editor become “run again”
icons, with the green check-circle indicating that the previous test passed:

[image: Android Studio Kotlin Editor, Showing Run Again Icons]

Figure 179: Android Studio Kotlin Editor, Showing “Run Again” Icons
If you change the assertEquals() call to be assertEquals(5, 2 + 2) and
run the test again, you will see that it fails:

[image: Android Studio Run Tool Window, Showing Failed Test Results]

Figure 180: Android Studio “Run” Tool Window, Showing Failed Test Results
The yellow icon indicates that the test failed due to a failed assertion.
If you change the assertEquals() call to be assertEquals(4, 2 / 0) and run
the test again, you will see that the test fails again. This time, though, the
test output uses a red icon, to indicate that our test crashed:

[image: Android Studio Run Tool Window, Showing Crashed Test Results]

Figure 181: Android Studio “Run” Tool Window, Showing Crashed Test Results
Usually, after a test failure, our editor icons turn red, indicating that the previous
run of the test failed:

[image: Android Studio Kotlin Editor, Showing Run Failed Test Again Icons]

Figure 182: Android Studio Kotlin Editor, Showing “Run Failed Test Again” Icons
As we add more test functions, you may get a mix of results, with some tests
succeeding and some tests failing. The test class is only considered to have
succeeded if all of its test functions succeed.
Step #6: Adding a MainDispatcherRule

Implicitly, SingleModelMotor uses Dispatchers.Main — that is the default
coroutine dispatcher for viewModelScope.launch(). Dispatchers in coroutines control
the threads that coroutines run on. In an Android app, Dispatchers.Main
says “run this code on the main application thread”.
In JUnit, all tests
run on a test thread — and in a unit test, such as this, since we are not running
on Android, there is no “Android’s main application thread”.
As a side effect, there is no definition of Dispatchers.Main.
We need to do something in our app to teach the coroutines system what to use
when we reference Dispatchers.Main in our code. The coroutines testing library that we just added
contains a TestCoroutineDispatcher that we can use, but we need to tell
the coroutines system to use a TestCoroutineDispatcher for Dispatchers.Main.
Right-click over the com.commonsware.todo.ui package in the test/ source set and choose “New” >
“Kotlin File/Class” from the context menu. Fill in MainDispatcherRule as the name,
and choose “Class” for the kind. Click “OK” to create the empty class.
This puts MainDispatcherRule in com.commonsware.todo.ui. We did not have much of a choice
but to put it there, as that is our one-and-only package, and the new-class “dialog” does
not let us choose a different package. However, this class is not strictly tied to the UI
classes. So, let’s move it into com.commonsware.todo instead.
To do that, right-click over MainDispatcherRule and choose “Refactor” > “Move”
from the context menu. In the “To package:” field, change the package to be com.commonsware.todo,
then click “Refactor”. This will move MainDispatcherRule to that package.
Then, replace the contents of MainDispatcherRule with this Kotlin code:

package com.commonsware.todo

import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.test.TestCoroutineDispatcher
import kotlinx.coroutines.test.resetMain
import kotlinx.coroutines.test.setMain
import org.junit.rules.TestWatcher
import org.junit.runner.Description

// inspired by https://medium.com/androiddevelopers/easy-coroutines-in-android-viewmodelscope-25bffb605471

class MainDispatcherRule(paused: Boolean) : TestWatcher() {
 val dispatcher =
 TestCoroutineDispatcher().apply { if (paused) pauseDispatcher() }

 override fun starting(description: Description?) {
 super.starting(description)

 Dispatchers.setMain(dispatcher)
 }

 override fun finished(description: Description?) {
 super.finished(description)

 Dispatchers.resetMain()
 dispatcher.cleanupTestCoroutines()
 }
}

(from T24-Tests/ToDo/app/src/test/java/com/commonsware/todo/MainDispatcherRule.kt)
In JUnit, a Rule is a standard way to package reusable bits of test logic,
particularly related to common test configuration. Here, we define our own
custom rule, by extending TestWatcher. MainDispatcherRule says “do threading differently for coroutines
in this test”.
Specifically, we create a TestCoroutineDispatcher and use
that for Dispatchers.Main. starting() is called on our TestWatcher when a test
is starting, and there we call Dispatches.setMain() to provide a dispatcher
to use for Dispatchers.Main. finished() is called on our TestWatcher when a test
is ending, and there we call Dispatchers.resetMain() to reset the Dispatchers.Main
definition to its default. We also call cleanupTestCoroutines() on our
TestCoroutineDispatcher, to indicate that we are done with this dispatcher and
anything still outstanding should be canceled.
If you add this code to your project, Android Studio will have some complaints:

[image: Android Studio Warnings]

Figure 183: Android Studio Warnings
If you hover your mouse over those yellow warnings, you will find that the problem
is that all of those things are considered “experimental” by JetBrains (the creators
of Kotlin). It is possible that these classes and functions will be renamed or
even removed in some future version of coroutines. That is a problem for the future —
for now, this code will work fine.
Step #7: Setting Up a Mock Repository
Now, we can start setting up some tests.
As part of this, you will start to discover that testing code frequently has
strange restrictions and requirements, above and beyond the strange restrictions
and requirements that you see in standard Android app development.
Next, change SingleModelMotorTest to be:

package com.commonsware.todo.ui

import com.commonsware.todo.MainDispatcherRule
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.nhaarman.mockitokotlin2.doReturn
import com.nhaarman.mockitokotlin2.mock
import kotlinx.coroutines.flow.flowOf
import org.junit.Test

import org.junit.Assert.*
import org.junit.Before
import org.junit.Rule

class SingleModelMotorTest {
 @get:Rule
 val mainDispatcherRule = MainDispatcherRule(paused = true)

 private val testModel = ToDoModel("this is a test")

 private val repo: ToDoRepository = mock {
 on { find(testModel.id) } doReturn flowOf(testModel)
 }

 private lateinit var underTest: SingleModelMotor

 @Before
 fun setUp() {
 underTest = SingleModelMotor(repo, testModel.id)
 }
}

There is quite a bit to explain in these few lines of code.

 @get:Rule
 val mainDispatcherRule = MainDispatcherRule(paused = true)

This applies our MainDispatcherRule as a JUnit rule to our JUnit test.
The @get:Rule syntax is a side-effect of the way Kotlin integrates with Java.
If this were a Java class, we would annotate our rule field with @Rule.
@get:Rule says “add the @Rule annotation to the getter function associated with this property”.
JUnit’s annotation processor supports the @Rule annotation being on a field
or on a getter method, so @get:Rule allows that annotation processor to work
with a Kotlin property.

 private lateinit var underTest: SingleModelMotor

 @Before
 fun setUp() {
 underTest = SingleModelMotor(repo, testModel.id)
 }

We then have an underTest property for our SingleModelMotor. underTest is a common
name in unit tests for “the instance of the class that we are testing”.
@Before is a JUnit annotation that says “run this function before each of the
test functions”. Here, we create our SingleModelMotor instance. Ideally, we would
just use a val and initialize our SingleModelMotor that way, skipping this
setUp() function. Unfortunately, our MainDispatcherRule will not have had
a chance to do its work yet.
So, we are forced to use this approach, so the MainDispatcherRule can
fix up the threading before we try creating a SingleModelMotor instance.

 private val testModel = ToDoModel("this is a test")

 private val repo: ToDoRepository = mock {
 on { find(testModel.id) } doReturn flowOf(testModel)
 }

In Android testing, we use mocks for two main things.
One is for creating a fake instance of some object, one that we teach how to respond
to various function calls. This is not the object that we are trying to test, but
it is some object that is needed by what we are trying to test… such as a motor
needing a repository. We use the mock instead of a real instance of the object
for a variety of reasons:

	To have faster tests (e.g., to avoid database I/O)

	To provide specific responses to calls (particularly for server calls that we cannot control in the tests)

	To test scenarios that are difficult to recreate using the real object (e.g., server failures)

Another is to track which calls are made on the object. That way not only can our
tests supply input to the object being tested, but we can examine the output, in the
form of calls to the mock, and confirm that those calls did what we want.
Here, we use a mock() function from Mockito to set up a mock implementation of ToDoRepository.
It
generates an instance of a generated subclass of ToDoRepository,
one where we can dictate how it behaves in our test code, rather than relying on
the real ToDoRepository implementation. Specifically, we have it return a
manually-created ToDoModel instance (testModel) when something tries finding
a model with that model’s id.
Step #8: Adding a Test Function
Now, we can start testing SingleModelMotor.
Add this test function to SingleModelMotorTest:

 @Test
 fun `initial state`() {
 mainDispatcherRule.dispatcher.runCurrent()

 runBlocking {
 val item = underTest.states.first().item

 assertEquals(testModel, item)
 }
 }

(from T24-Tests/ToDo/app/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)
Here, we start by calling mainDispatcherRule.dispatcher.runCurrent() to get
our TestCoroutineDispatcher from the MainDispatcherRule and
tell that dispatcher to run any coroutines that are set up for that dispatcher.
Our viewmodel functions are setting up coroutines to run
on Dispatchers.Main, and Dispatchers.Main is tied to our TestCoroutineDispatcher
through our MainDispatcherRule. The effect is that when we call runCurrent(),
we cause those coroutines to be executed, making their requests of our (mock)
repository. runCurrent() shows up with warning highlights, as it too is experimental,
as with much of the test coroutines API that we are calling in MainDispatcherRule.
After that, we:

	Use runBlocking() to say that we want to execute a block of code synchronously
even though it uses a suspend function (first())

	In that block, call first() on our StateFlow to get the view-state

	Use JUnit’s assertEquals() function to confirm that the item from the view-state
is our test ToDoModel instance

If you run this test function, it should succeed.
Step #9: Adding Another Test Function
That tests our motor’s states — we should also test the actions.
Add this test function to SingleModelMotorTest:

 @Test
 fun `actions pass through to repo`() {
 val replacement = testModel.copy("whatevs")

 underTest.save(replacement)
 mainDispatcherRule.dispatcher.runCurrent()

 runBlocking { verify(repo).save(replacement) }

 underTest.delete(replacement)
 mainDispatcherRule.dispatcher.runCurrent()

 runBlocking { verify(repo).delete(replacement) }
 }

(from T24-Tests/ToDo/app/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)
Here, we are confirming that we can save and delete properly. To do this, we need
to determine if save() and delete() on the motor are calling save() and
delete() on the repository.
Since our repository is a mock, it tracks all calls made to it during a test
run. We can then have test code check to see if the calls were made as expected.
So, we call save() and delete() on our SingleModelMotor that we are testing.
After each of those calls, we call mainDispatcherRule.dispatcher.runCurrent(),
to ensure that the actual work executes, now that we are ready for it to do so.
We then want to verify that our repository was called to save and delete
those models. verify(), from Mockito, lets us see if a particular call was
made on our mock. To do this, we pass the mock() to verify, then make
the call that we want verified on the ToDoRepository object returned by verify().
This will either work or fail with an assertion error.
However, since save() and delete() in our repository are suspend functions,
though, we need to run them inside of some CoroutineScope, even though those
are really mock functions. runBlocking() will suffice for our mock call verification.
If you run all the tests on SingleModelMotorTest, they should all succeed.
Final Results
Our app/build.gradle file with the updated dependencies list should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}

(from T24-Tests/ToDo/app/build.gradle)
And our SingleModelMotorTest should look like:

package com.commonsware.todo.ui

import com.commonsware.todo.MainDispatcherRule
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.nhaarman.mockitokotlin2.doReturn
import com.nhaarman.mockitokotlin2.mock
import com.nhaarman.mockitokotlin2.verify
import kotlinx.coroutines.flow.first
import kotlinx.coroutines.flow.flowOf
import kotlinx.coroutines.runBlocking
import org.junit.Assert.assertEquals
import org.junit.Before
import org.junit.Rule
import org.junit.Test

class SingleModelMotorTest {
 @get:Rule
 val mainDispatcherRule = MainDispatcherRule(paused = true)

 private val testModel = ToDoModel("this is a test")

 private val repo: ToDoRepository = mock {
 on { find(testModel.id) } doReturn flowOf(testModel)
 }

 private lateinit var underTest: SingleModelMotor

 @Before
 fun setUp() {
 underTest = SingleModelMotor(repo, testModel.id)
 }

 @Test
 fun `initial state`() {
 mainDispatcherRule.dispatcher.runCurrent()

 runBlocking {
 val item = underTest.states.first().item

 assertEquals(testModel, item)
 }
 }

 @Test
 fun `actions pass through to repo`() {
 val replacement = testModel.copy("whatevs")

 underTest.save(replacement)
 mainDispatcherRule.dispatcher.runCurrent()

 runBlocking { verify(repo).save(replacement) }

 underTest.delete(replacement)
 mainDispatcherRule.dispatcher.runCurrent()

 runBlocking { verify(repo).delete(replacement) }
 }
}

(from T24-Tests/ToDo/app/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

	app/src/test/java/com/commonsware/todo/MainDispatcherTest.kt

	app/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt

Testing the Repository
The objective of a test suite is to completely test the functionality of the main
code, including all code paths. Often, this gets measured in the form of “test coverage”,
where we confirm:

	Whether all lines of code were executed

	Whether both the true and false branches of an if condition were taken

	Whether a loop was executed 0, 1, and N times

	And so on

This project does not have 100% test coverage. Few projects presented in books
have 100% test coverage.
This tutorial extends our test coverage a bit, by testing ToDoRepository and our
Room code. To do
that, though, we will switch to writing instrumented tests. Room is designed
to use Android’s SQLite by default, and so it is much easier to test this stuff
when we run our tests on Android, rather than on our development machine.
Testing in instrumented tests is a lot like unit testing:

	We write JUnit tests with @Test functions and so on

	We use assertions to determine whether our tests succeed or fail

	We can run the tests from Android Studio to see whether they work

On the other hand, there are substantial differences as well:

	The tests will run in an Android environment, on our chosen device or emulator

	The tests will be subject to some Android limitations, just as the regular Kotlin code
that we might use on a server will not necessarily work in Android

This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Renaming Our Instrumented Test
The existing instrumented test class, inside the androidTest source set,
is ExampleInstrumentedTest. This is not a very useful name. Since we will be testing
some of the functionality from ToDoRepository, we should rename it to
ToDoRepositoryTest. And, since ToDoRepository is in the repo
sub-package, we should have the test class mimic that.
In the androidTest source set, right click over the com.commonsware.todo.repo
package and choose “New” > “Package” from the context menu. Fill in com.commonsware.todo.repo
for the name, then click “OK” to make this sub-package.
Then, drag-and-drop the ExampleInstrumentedTest into this new repo sub-package.
The default values in the “Move” dialog should be fine, so just click “Refactor”
to make the move.
Finally, right-click over the ExampleInstrumentedTest class and choose “Refactor” > “Rename”
from the context menu. Fill in ToDoRepositoryTest as the replacement name,
and click “Refactor” to make the change.
Step #2: Adding Some Instrumented Test Dependencies
Right now, our dependencies closure in app/build.gradle
has two androidTestImplementation statements:

 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'

(from T24-Tests/ToDo/app/build.gradle)
Add these lines to those:

 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'

(from T25-RepoTests/ToDo/app/build.gradle)
The androidx.arch.core:core-testing library contains some JUnit rules and related classes
that are commonly needed in Android app testing.
Similarly, the org.jetbrains.kotlinx:kotlinx-coroutines-test library is
one that we used in unit testing, but we now also want to use it for instrumented testing.
Also, add these lines inside the android closure:

 packagingOptions {
 exclude 'META-INF/AL2.0'
 exclude 'META-INF/LGPL2.1'
 }

(from T25-RepoTests/ToDo/app/build.gradle)
Sometimes, libraries package open source license files along with their compiled code.
And, sometimes, that results in collisions, where two libraries put the same license
text in the same files. This snippet of Gradle code says to exclude all of those
from the app that we are building.
Step #3: Supporting a Test Database
Right now, ToDoDatabase is set up to have a database file named stuff.db. For
our “production” code, that is what we want. For tests, though, it is very convenient
to have an in-memory database:

	Tests run faster

	All of our test stuff gets cleared between tests, as a side-effect of how
Room and in-memory databases work

With that in mind, add this function to the companion object in ToDoDatabase:

 fun newTestInstance(context: Context) =
 Room.inMemoryDatabaseBuilder(context, ToDoDatabase::class.java).build()

(from T26-Espresso/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)
This is almost identical to the newInstance() function that already exists.
However, newTestInstance() uses inMemoryDatabaseBuilder() instead of
databaseBuilder(), to create an in-memory SQLite database.
Step #4: Testing Adds
Now, we can start putting in test logic for testing ToDoRepository itself.
Replace the ToDoRepositoryTest implementation with:

package com.commonsware.todo.repo

import androidx.arch.core.executor.testing.InstantTaskExecutorRule
import androidx.test.ext.junit.runners.AndroidJUnit4
import androidx.test.platform.app.InstrumentationRegistry
import kotlinx.coroutines.flow.collect
import kotlinx.coroutines.flow.first
import kotlinx.coroutines.launch
import kotlinx.coroutines.test.runBlockingTest
import org.hamcrest.Matchers.empty
import org.hamcrest.Matchers.equalTo
import org.hamcrest.collection.IsIterableContainingInOrder.contains
import org.junit.Assert.assertThat
import org.junit.Rule
import org.junit.Test
import org.junit.runner.RunWith

@RunWith(AndroidJUnit4::class)
class ToDoRepositoryTest {
 @get:Rule
 val instantTaskExecutorRule = InstantTaskExecutorRule()

 private val context = InstrumentationRegistry.getInstrumentation().targetContext
 private val db = ToDoDatabase.newTestInstance(context)

 @Test
 fun canAddItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this)
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results.size, equalTo(1))
 assertThat(results[0], empty())

 val testModel = ToDoModel("test model")

 underTest.save(testModel)

 assertThat(results.size, equalTo(2))
 assertThat(results[1], contains(testModel))
 assertThat(underTest.find(testModel.id).first(), equalTo(testModel))

 itemsJob.cancel()
 }
}

Once again, we have a lot to explain.

@RunWith(AndroidJUnit4::class)

The @RunWith annotation gives JUnit a specific class to use to orchestrate
running the test functions in this test class.
For unit tests, by default we do not need to use this annotation, though certain
libraries that you might use could require one. For instrumented tests, though,
we need to point to a class that knows how to run the test and get the results
off the device or emulator and over to the IDE. That is what AndroidJUnit4 helps
with, in part.
Unless you are using some other library that requires a different @RunWith annotation,
all of your instrumented tests will start with this line.

 @get:Rule
 val instantTaskExecutorRule = InstantTaskExecutorRule()

This is another JUnit rule, one provided by the Jetpack testing library that we added
to our dependencies. Like our MainDispatcherRule, InstantTaskExecutorRule ensures that our
Room and other Jetpack asynchronous work really happens synchronously, to simplify
our tests.

 private val context = InstrumentationRegistry.getInstrumentation().targetContext

We are going to need a Context to be able to set up our Room database.
Specifically, we want a Context in the “context” of the code being tested
(our app code). To get such a Context, we can ask an InstrumentationRegistry
to give us an Instrumentation object representing our instrumented tests, and
on there retrieve targetContext.

 private val db = ToDoDatabase.newTestInstance(context)

From there, we can set up a ToDoDatabase, using our newly-added newTestInstance()
function and the context that we just obtained.

 @Test
 fun canAddItems() = runBlockingTest {

As with SingleModelMotorTest, we are going to be working with Kotlin
coroutines. This time, though, we are running on Android, so we do not need to
fuss with trying to change the nature of Dispatchers.Main. However, we do need
to worry about ensuring that we have a CoroutineScope to use for our tests.
In SingleModelMotorTest, we used runBlocking() where needed, and we used
a TestCoroutineDispatcher inside of MainDispatcherRule. This time, we are
using runBlockingTest(), which sets up a TestCoroutineDispatcher and
uses that to have all of our coroutines run synchronously. Using runBlocking()
has more flexibility; using runBlockingTest() frequently is simpler.

 val underTest = ToDoRepository(db.todoStore(), this)

We then can set up our ToDoRepository that we want to test. We use the
DAO from our test ToDoDatabase for the first parameter. The second parameter — this —
in the scope of runBlockingTest() is a TestCoroutineScope that we can use to manage
the work done by our repository.

 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

We then need to be able to see what gets put into the repository, to confirm
that our changes to that database work. We already have an items() function
to retrieve the items from the database. That is a Flow, emitting a new
database result when we make changes to the database, in addition to emitting an
initial result when we make the items() call. So, here, we manually collect()
that flow, piping its results into a results object. results, therefore,
is a List of our query results, with one element in the list per emission from
the Flow. We hold onto the Job object created by launch(), because we need
to cancel() that Job before the test completes — otherwise, runBlockingTest()
will complain.

 assertThat(results.size, equalTo(1))
 assertThat(results[0], empty())

We then test to confirm that we got an initial result from our repository, and
it shows that we have no entries in the database. assertThat(), equalTo(),
and empty() are functions from Hamcrest, a testing library that we have
access to via transitive dependencies from our other androidTestImplementation
dependencies. Hamcrest, apparently named for a wave of cured pork products.
(the author of this book would like to point out that he is not responsible for
naming these libraries)
Hamcrest is a large function library of “matchers” that, in the end,
can perform some inspections of objects and return a boolean indicating whether
the objects matched expectations or not. assertThat() uses those matchers,
such as equalTo() and empty(), to examine and object and see if it meets
expectations. Here, we are confirming that the results list has one element
and that that element itself is an empty list.

 val testModel = ToDoModel("test model")

 underTest.save(testModel)

 assertThat(results.size, equalTo(2))
 assertThat(results[1], contains(testModel))
 assertThat(underTest.find(testModel.id).first(), equalTo(testModel))

We then:

	Create a test model object

	
save() that to the repository

	Validate that we got another emission from the Flow, and that it contains
our test model object

	Validate that if we use find() to retrieve that model object based on its id
value, that we get the model object back

Remember: ToDoModel is a data class. As a result, equality is based on
the properties. We are not literally getting testModel back from Room — we are getting
an equivalent model object, containing the same data.

 itemsJob.cancel()

Finally, we cancel() that Job that we set up, to make runBlockingTest() happy.
If you have a device or emulator set up, and you run ToDoRepositoryTest, you will
see that canAddItems() succeeds.
Step #5: Writing and Running More Tests
That test function tests our ability to save() an item to an empty repository.
Now, let’s test some more scenarios.
Add these two test functions to ToDoRepositoryTest:

 @Test
 fun canModifyItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this)
 val testModel = ToDoModel("test model")
 val replacement = testModel.copy(notes = "This is the replacement")
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results[0], empty())

 underTest.save(testModel)

 assertThat(results[1], contains(testModel))

 underTest.save(replacement)

 assertThat(results[2], contains(replacement))

 itemsJob.cancel()
 }

 @Test
 fun canRemoveItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this)
 val testModel = ToDoModel("test model")
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results[0], empty())

 underTest.save(testModel)

 assertThat(results[1], contains(testModel))

 underTest.delete(testModel)

 assertThat(results[2], empty())

 itemsJob.cancel()
 }

These use all the same techniques that the first test function did. The
can modify items() test function confirms that if we save() a modified version
of our model, that the repository is updated with that modification. can remove items()
confirms that if we delete() a model that was saved earlier, that the model is
removed from the repository.
If you run all the test functions for ToDoRepositoryTest, they should all succeed.
There are lots of other tests that we could write:

	What happens if you try removing a model that is not in the repository?

	What happens if you try saving a second model?

	What happens if you change other properties of the model, besides notes?

However, for the purposes of showing how to test our repository, these three
test functions will be enough.
Final Results
Our updated app/build.gradle should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }

 packagingOptions {
 exclude 'META-INF/AL2.0'
 exclude 'META-INF/LGPL2.1'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
}

(from T25-RepoTests/ToDo/app/build.gradle)
And our new ToDoRepositoryTest should contain:

package com.commonsware.todo.repo

import androidx.arch.core.executor.testing.InstantTaskExecutorRule
import androidx.test.ext.junit.runners.AndroidJUnit4
import androidx.test.platform.app.InstrumentationRegistry
import kotlinx.coroutines.flow.collect
import kotlinx.coroutines.flow.first
import kotlinx.coroutines.launch
import kotlinx.coroutines.test.runBlockingTest
import org.hamcrest.Matchers.empty
import org.hamcrest.Matchers.equalTo
import org.hamcrest.collection.IsIterableContainingInOrder.contains
import org.hamcrest.MatcherAssert.assertThat
import org.junit.Rule
import org.junit.Test
import org.junit.runner.RunWith

@RunWith(AndroidJUnit4::class)
class ToDoRepositoryTest {
 @get:Rule
 val instantTaskExecutorRule = InstantTaskExecutorRule()

 private val context = InstrumentationRegistry.getInstrumentation().targetContext
 private val db = ToDoDatabase.newTestInstance(context)

 @Test
 fun canAddItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this)
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results.size, equalTo(1))
 assertThat(results[0], empty())

 val testModel = ToDoModel("test model")

 underTest.save(testModel)

 assertThat(results.size, equalTo(2))
 assertThat(results[1], contains(testModel))
 assertThat(underTest.find(testModel.id).first(), equalTo(testModel))

 itemsJob.cancel()
 }

 @Test
 fun canModifyItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this)
 val testModel = ToDoModel("test model")
 val replacement = testModel.copy(notes = "This is the replacement")
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results[0], empty())

 underTest.save(testModel)

 assertThat(results[1], contains(testModel))

 underTest.save(replacement)

 assertThat(results[2], contains(replacement))

 itemsJob.cancel()
 }

 @Test
 fun canRemoveItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this)
 val testModel = ToDoModel("test model")
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results[0], empty())

 underTest.save(testModel)

 assertThat(results[1], contains(testModel))

 underTest.delete(testModel)

 assertThat(results[2], empty())

 itemsJob.cancel()
 }
}

(from T25-RepoTests/ToDo/app/src/androidTest/java/com/commonsware/todo/repo/ToDoRepositoryTest.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

	app/src/test/java/com/commonsware/todo/repo/ToDoRepositoryTest.kt

Testing a UI
To test a UI, we need to be able to set up that UI, perform some actions, and
see what the results are. That will involve messing with our widgets.
For that widget manipulation, the Jetpack solution is Espresso. This provides a
succinct (albeit strange) API for accessing widgets, checking their states, and
performing actions on them (like clicks).
In this tutorial, we will write an Espresso test to test the RecyclerView
created by RosterListFragment.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a New Test Class
If we are going to create tests for RosterListFragment, we should create a RosterListFragmentTest. And,
since we do not have a ui.roster sub-package in androidTest, we will need to add that.
In the androidTest source set, right click over the com.commonsware.todo.repo
package and choose “New” > “Package” from the context menu. Fill in com.commonsware.todo.ui.roster
for the name, then click “OK” to make this sub-package.
Then, right-click over the new com.commonsware.todo.ui.roster package and choose
“New” > “Kotlin File/Class” from the context menu. For the name, fill in
RosterListFragmentTest and choose “Class” as the kind. Press Enter or Return to create the class, giving you:

package com.commonsware.todo.repo

class RosterListFragmentTest {
}

Step #2: Initializing Our Repository
Next, replace the current implementation of RosterListFragmentTest with this:

package com.commonsware.todo.ui.roster

import androidx.test.platform.app.InstrumentationRegistry
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import kotlinx.coroutines.runBlocking
import org.junit.Before
import org.koin.core.context.loadKoinModules
import org.koin.dsl.module

class RosterListFragmentTest {
 private lateinit var repo: ToDoRepository
 private val items = listOf(
 ToDoModel("this is a test"),
 ToDoModel("this is another test"),
 ToDoModel("this is... wait for it... yet another test")
)

 @Before
 fun setUp() {
 val context = InstrumentationRegistry.getInstrumentation().targetContext
 val db = ToDoDatabase.newTestInstance(context)
 val appScope = CoroutineScope(SupervisorJob())

 repo = ToDoRepository(db.todoStore(), appScope)

 loadKoinModules(module {
 single { repo }
 })

 runBlocking { items.forEach { repo.save(it) } }
 }
}

As with ToDoRepositoryTest, we are creating our own ToDoRepository instance.
That way, we can have a fresh one for each test run, and we do not need to worry
about the results of a previous test affecting the next test.
However, there is one small problem: the activity and fragments know nothing
about this test repository. They will want to use the one supplied by Koin.
So, via loadKoinModules(), we replace the repository that Koin normally would return
with a fresh instance. loadKoinModules() works in conjunction with the
single() to replace the true singleton ToDoRepository with this replacement instance.
We then populate our test repository with three model objects, using save()
on the repository, wrapped in runBlocking() to have that work happen on the current thread.
Step #3: Testing Our List
Now, add this test function to RosterListFragmentTest:

 @Test
 fun testListContents() {
 ActivityScenario.launch(MainActivity::class.java)

 onView(withId(R.id.items)).check(matches(hasChildCount(3)))
 }

While containing only two lines of code (not counting several import statements),
quite a bit is done here.
ActivityScenario.launch() will start up our MainActivity, which in turn
will display our RosterListFragment. launch() will not return until our UI
is up and ready for testing. ActivityScenario comes from the androidx.test.ext:junit
library that we added.
The other line is a fairly typical Espresso statement. Espresso uses a lot of
imported functions to try to keep the code terse.
An Espresso statement usually takes one of two forms:

	
onView().check(), to see if a widget is in a particular state

	
onView().perform(), to perform some action on a widget, such as clicking it

Here, we have a statement that is of the first form, where we want to check() the
state of a widget and confirm that it meets our expectations.
onView() is the Espresso way of looking up widgets in the current activity’s
view hierarchy. It takes a ViewMatcher as a parameter, where that ViewMatcher
encodes some rule(s) for what widget we want to access. The withId() function
creates a ViewMatcher that finds a view by its ID, in this case R.id.items.
So, onView(withId(R.id.items)) looks up our RecyclerView and returns…
a ViewInteraction.
One thing that you can do with a ViewInteraction is to call check() on it.
check() takes a ViewAssertion as a parameter. A ViewAssertion works a bit
like the Kluent assertions that we used in the unit tests, in that it checks our
view and will fail the test if the view does not match expectations.
The most common way of getting a ViewAssertion is to call the matches()
function. This returns a ViewAssertion wrapped around a Hamcrest Matcher.
hasChildCount() is a ViewMatcher, which is a Matcher that knows how to “match”
some view property against some expected value. hasChildCount() looks at the number
of child widgets of a ViewGroup and compares it against the expected value.
In this case, we are expecting that our RecyclerView has three rows, because
we put three model objects into our test repository. hasChildCount(3) will return
true if the RecyclerView has three rows, false otherwise. So, overall,
check(matches(hasChildCount(3))) will fail the test if the RecyclerView has
anything other than three rows.
If you run the test, the test succeeds. Moreover, if you run the test, you will
actually see the activity flash onto the screen for a brief moment, as
ActivityScenario.launch() displays our MainActivity. This is one of the
reasons why instrumented tests are slow: we often are doing a lot of setup
work, such as launching an activity.
This is obviously a very limited test of the UI. Unfortunately, Espresso
gets very complex very quickly. Trying to do more — such as clicking on a CheckBox
to confirm the repository is updated — will get to be more complex than is suitable
for a tutorial.
Note: you might wonder why the function name is testListContents() and not something
like test list contents(). The backticks style of writing function names works
in unit tests but not in instrumented tests, due to some Android limitations.
Final Results
RosterListFragmentTest should look like:

package com.commonsware.todo.ui.roster

import androidx.test.core.app.ActivityScenario
import androidx.test.espresso.Espresso.onView
import androidx.test.espresso.assertion.ViewAssertions.matches
import androidx.test.espresso.matcher.ViewMatchers.hasChildCount
import androidx.test.espresso.matcher.ViewMatchers.withId
import androidx.test.platform.app.InstrumentationRegistry
import com.commonsware.todo.R
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.ui.MainActivity
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import kotlinx.coroutines.runBlocking
import org.junit.Before
import org.junit.Test
import org.koin.core.context.loadKoinModules
import org.koin.dsl.module

class RosterListFragmentTest {
 private lateinit var repo: ToDoRepository
 private val items = listOf(
 ToDoModel("this is a test"),
 ToDoModel("this is another test"),
 ToDoModel("this is... wait for it... yet another test")
)

 @Before
 fun setUp() {
 val context = InstrumentationRegistry.getInstrumentation().targetContext
 val db = ToDoDatabase.newTestInstance(context)
 val appScope = CoroutineScope(SupervisorJob())

 repo = ToDoRepository(db.todoStore(), appScope)

 loadKoinModules(module {
 single { repo }
 })

 runBlocking { items.forEach { repo.save(it) } }
 }

 @Test
 fun testListContents() {
 ActivityScenario.launch(MainActivity::class.java)

 onView(withId(R.id.items)).check(matches(hasChildCount(3)))
 }
}

(from T26-Espresso/ToDo/app/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

Tracking Our Load Status
There are three logical states that our RosterListFragment and its
RecyclerView can be in:

	We have to-do items, and we are displaying them

	We do not have to-do items, because the user has not entered any, and so we
should show the “empty” view to help guide the user

	We do not know whether we have to-do items or not, because we have not yet
loaded them from the database

That third state is not being handled by the app. Instead, we treat “do not know”
as being the same as “we do not have to-do items” — we show the “empty” view
if our RosterListAdapter is empty, no matter why it is empty. Plus, it would
be nice to show some sort of “loading” indicator while the data load is in progress…
such as a ProgressBar.
So, in this tutorial, we will fix this. For most Android devices, and for shorter
to-do lists, the difference will not be visible, as the data will load very rapidly.
However, on slower devices, or with large to-do lists, the difference may be
noticeable.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adjusting Our Layout
We need to make a couple of changes to the layout used by RosterListFragment.
Open res/layout/todo_roster.xml in the IDE. In the design view, click on the empty TextView
in the “Component Tree”. In the list of all attributes, find the visibility
attribute, and set it to gone:

[image: Android Studio, Showing empty View Visibility]

Figure 184: Android Studio, Showing empty View Visibility
Next, choose the “Widgets” category in the “Palette” view. You will see two
labeled “ProgressBar”, one with a circle and one that is an actual bar:

[image: Android Studio, Showing Palette Widgets Category]

Figure 185: Android Studio, Showing “Palette” Widgets Category
Typically, the circular ProgressBar is used for indefinite progress, where we
do not know how long the work will take. The horizontal ProgressBar is more
often used for cases where we can let the user know how far we have progressed.
In this case, the work is fairly atomic: either our data is loaded or it is not.
We have no intermediate steps with which to provide progress updates, so we should
use the circular indefinite ProgressBar.
However, we cannot drag and drop a widget into the preview area, since the
preview is mostly our RecyclerView. The IDE will attempt to make our widget
be a child of the RecylerView, and that does not work very well. Instead,
drag the circular ProgressBar from the “Palette” and drop it on the ConstraintLayout
entry in the “Component Tree” view. This will add it as a child to the
ConstraintLayout, which is what we want.
Then, use the grab handles on the ProgressBar to set up constraints to all four edges of the
ConstraintLayout. However, there is a decent chance that you will sometimes
get a constraint that ties the ProgressBar to the items RecyclerView, instead
of to the parent ConstraintLayout:

 <ProgressBar
 android:id="@+id/progressBar"
 style="?android:attr/progressBarStyle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:layout_constraintBottom_toBottomOf="@+id/items"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

Here, app:layout_constraintBottom_toBottomOf wound up being set to
@+id/items instead of parent.
The simplest thing to do is to change the XML manually, so that all four
constraints are set to parent.
Also, change the widget’s ID to loading.
Step #2: Reporting our Loaded Status
Right now, RosterListFragment cannot detect when we are loading data. Because
of the rules of StateFlow, we have to provide an initial value, which has an empty
list of to-do items. RosterListFragment has no good way to distinguish that from
the case where we have loaded the data and the database is empty. So, we need to do
something to clarify “empty but not yet loaded” from “empty after loading”.
To that end, add an isLoaded property to RosterViewState:

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false
)

(from T27-Load/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
We will use false to indicate that we are loading the data and true to indicate
that the data is loaded. Since we default it to false, we need to update our map()
call in the states definition of RosterMotor to pass in true:

 val states = repo.items()
 .map { RosterViewState(it, true) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, RosterViewState())

(from T27-Load/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
Now, isLoaded will be false for the initial state and true once our data is loaded.
Step #3: Reacting to the Loaded Status
Right now, we have the loading widget set as VISIBLE and the empty
widget set as GONE. We already have code to display the empty widget when
that is appropriate. We need to add in some smarts to hide the loading widget
at the same time.
So, change the observer in the onViewCreated() function of RosterListFragment
to be:

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.isLoaded -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 else -> empty.visibility = View.GONE
 }
 }
 }
 }

(from T27-Load/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Then, remove this line from onViewCreated():

 binding?.empty?.visibility = View.GONE

If you run the app, you will not see any differences, most likely. Loading a few
to-do items — if any — from the database will be fairly quick. And, we have no good
way to tell Room to pretend to be slow.
If you would like to see the ProgressBar, you could delay the response from
ToDoRepository to the items() call, such as:

 fun items(): Flow<List<ToDoModel>> =
 store.all().map { all -> all.map { it.toModel() } }
 .onStart { delay(5000) }

onStart() tells the Flow to do some work when we start observing the flow.
Here, we introduce a five-second delay, using delay(5000).
If you make that change, then run the app, you will see the ProgressBar for
five seconds, after which it vanishes and is replaced by the items list or
the empty state. After seeing the effect, remove the .onStart { delay(5000) },
so you do not have to wait the extra time in the remaining tutorials.
Final Results
Your todo_roster layout resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.MainActivity">

 <ProgressBar
 android:id="@+id/loading"
 style="?android:attr/progressBarStyle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/empty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/msg_empty"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:visibility="gone"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/items"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

(from T27-Load/ToDo/app/src/main/res/layout/todo_roster.xml)
The modified RosterMotor should look like:

package com.commonsware.todo.ui.roster

import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import kotlinx.coroutines.flow.SharingStarted
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.stateIn
import kotlinx.coroutines.launch

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false
)

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 val states = repo.items()
 .map { RosterViewState(it, true) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, RosterViewState())

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }
}

(from T27-Load/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
And the tweaked RosterListFragment should look like:

package com.commonsware.todo.ui.roster

import android.os.Bundle
import android.view.*
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.ToDoModel
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private var binding: TodoRosterBinding? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.isLoaded -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 else -> empty.visibility = View.GONE
 }
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }
}

(from T27-Load/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/layout/todo_roster.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

Filtering Our Items
It is entirely possible that a user of this app will have a lot of to-do items.
Rather than force the user to have to scroll through all of them in the list,
we could offer some options for working with a subset of those items. In this
tutorial, we will add a “filter” feature, to allow the user to work with either
the outstanding to-do items, the completed items, or all of the items.
In reality, given the scope of this app, we could do all of our filtering in the
RosterListFragment, or perhaps in the RosterMotor. This is a book sample,
and you are not likely to create lots and lots of to-do items.
In theory, though, there could be lots and lots of to-do items. Or, we could
have a more complex data model, Or, we could have to call out to a server to do
some sort of search, rather than just filtering some subset of model objects already in memory.
So, in this tutorial, we will pretend that we really do need to request a new
roster of items from our repository when the user elects to filter (or stop filtering)
the list of items. That makes things a bit more complex but a bit more realistic.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a Query
Let’s work “back to front”, updating our ToDoEntity.Store first, before we start
changing ToDoRepository, RosterMotor, etc.
In terms of the filtering, we need to have a way of asking the ToDoEntity.Store
to give us the items that match our filter criterion: is the to-do item completed or
not.
To that end, add this filtered() function to ToDoEntity.Store:

 @Query("SELECT * FROM todos WHERE isCompleted = :isCompleted ORDER BY description")
 fun filtered(isCompleted: Boolean): Flow<List<ToDoEntity>>

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
filtered() takes a Boolean parameter, indicating if we want the completed or
outstanding to-do items. We use that in the WHERE clause by putting :isCompleted
where we want the value to show up. filtered() otherwise works like all(), returning
our items via a Flow.
Step #2: Defining a FilterMode

From the standpoint of the UI, we have three possible filter conditions:

	We want to show the completed to-do items

	We want to show the outstanding to-do items (i.e., the ones not yet completed)

	We want to show all items, regardless of completion status

That is beyond a simple Boolean value, but we can model that via an enum class.
In the ToDoRepository.kt source file, add this enum class before the ToDoRepository
definition:

enum class FilterMode { ALL, OUTSTANDING, COMPLETED }

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
Step #3: Consuming a FilterMode

Now, we can update ToDoRepository to help us get at a filtered edition of the
to-do items.
First, we need to map from the FilterMode enum to the functions and parameters
that we need for ToDoEntity.Store. To handle that, add this function to
ToDoRepository:

 private fun filteredEntities(filterMode: FilterMode) = when (filterMode) {
 FilterMode.ALL -> store.all()
 FilterMode.OUTSTANDING -> store.filtered(isCompleted = false)
 FilterMode.COMPLETED -> store.filtered(isCompleted = true)
 }

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
Here, we just use Kotlin’s “exhaustive when” to handle the three FilterMode
cases, calling the appropriate function on ToDoEntity.Store for each.
Then, replace the items function in ToDoRepository with this implementation:

 fun items(filterMode: FilterMode = FilterMode.ALL): Flow<List<ToDoModel>> =
 filteredEntities(filterMode).map { all -> all.map { it.toModel() } }

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
Here, we use the new filteredEntities()
function to get the Flow of entities. We have items() use a
default value for its filterMode parameter, so a call to items() with no
parameters will retrieve the unfiltered list (FilterMode.ALL).
Step #4: Augmenting Our Motor
RosterMotor now needs to offer a way for the RosterListFragment to request a particular FilterMode.
First, add a filterMode property to RosterViewState:

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false,
 val filterMode: FilterMode = FilterMode.ALL
)

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This will allow us to keep track of the currently-active filter mode, with
an initial state of ALL.
Then, replace the current RosterMotor implementation with:

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 private val _states = MutableStateFlow(RosterViewState())
 val states = _states.asStateFlow()
 private var job: Job? = null

 init {
 load(FilterMode.ALL)
 }

 fun load(filterMode: FilterMode) {
 job?.cancel()

 job = viewModelScope.launch {
 repo.items(filterMode).collect {
 _states.emit(RosterViewState(it, true, filterMode))
 }
 }
 }

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }
}

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
The save() function towards the bottom is unchanged from what we had before.
The rest is quite different.
Before, states was very simple:

 val states = repo.items()
 .map { RosterViewState(it) }
 .stateIn(viewModelScope, SharingStarted.Eagerly, RosterViewState())

That is because we always loaded all of the to-do items. We still could have
kept this code, but it would not give our UI the ability to change the filter
mode, which is what we are trying to achieve.
However, if we later call repo.items(FilterMode.COMPLETED)
or repo.items(FilterMode.OUTSTANDING), we get a different Flow than
the one we had originally. That highlights a limitation of stateIn():
it can only give us one StateFlow. In our case, we may have several, as the user
toggles between various filter options.
Moreover, it will simplify our RosterListFragment if there always is one
StateFlow supplying the RosterViewState objects, rather than having to know
to subscribe to different StateFlow objects at different times for different reasons.
So, we have one or more Flow objects with our items, and we want to funnel
them all into a single StateFlow of RosterViewState objects.
One solution for that is MutableStateFlow.
MutableStateFlow is a StateFlow that we manage ourselves. We supply an initial
state in the constructor, then call emit() whenever our state changes.
So, what RosterMotor is doing is using a MutableStateFlow as the stable
StateFlow that RosterListFragment observes.
With all that in mind…

	
_states is our MutableStateFlow, and it is private

	Since we do not want RosterListFragment to know the implementation details,
states is a plain StateFlow property that happens to point to the MutableStateFlow
in _states

	
load() will observe a call to items() on the repo, supplying whatever
the requested FilterMode is, and emit() any changes as new RosterViewState
objects through _states

	
init {} triggers our initial load() call, to retrieve ALL items

However, we also track a Job object, representing our current Flow collection.
On each load() call, we cancel() the preceding Job (if there was one), then
save the launch() result as the next Job.
What happens if we fail to do this? Each items() call keeps getting collected,
piling up if we call load() multiple times:

	We call load() first when the RosterMotor is created, via the init {}
block, and we start observing a Flow from items().

	Later, when we add logic to RosterListFragment to switch filters, we will
call load() again for a new filter. So, we start observing a Flow from items().
However, if we did not cancel the Job from the first load() call, that Flow will continue to be collected.

	The user goes and adds another to-do item, and both Flow objects report the
revised database contents, because Room does not know that these Flow objects
are, in effect, duplicates. So, we emit() two RosterViewState objects, one triggered
by each Flow.

	And, if the user toggles the filter mode several times, we might pile up several
outstanding Flow objects.

So, we track the Job from the last Flow collection and cancel() it before
observing the next Flow.
And, if you run the app, it should work as it did before, showing you all of the
to-do items in the list.
Step #5: Adding a Checkable Submenu
We have added quite a few app bar items in these tutorials. This time, we need
to add one to allow the user to filter the list of items. To do that, we will
use an app bar item that has a submenu of radio buttons, so the user can toggle
between the different filter modes.
But, first, we need another icon.
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Icon” button and search for filter:

[image: Android Studio Vector Asset Selector, Showing filter Options]

Figure 186: Android Studio Vector Asset Selector, Showing “filter” Options
Choose the “filter list” icon and click “OK” to close up the icon selector. Change the
icon’s name to ic_filter. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Next, open up the res/menu/actions_roster.xml resource file, and switch to
the graphical designer. Drag a “Menu Item” from the “Palette” view into the Component
Tree, slotting it before the existing “add” item:

[image: Android Studio Graphical Menu Editor, Showing New Item]

Figure 187: Android Studio Graphical Menu Editor, Showing New Item
In the Attributes view for this new item, assign it an ID of filter.
Then, choose both “ifRoom” and “withText” for the “showAsAction” option.
Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector.
Click on ic_filter in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “Add new resource” > “New string Value”
in the drop-down towards the top. In the dialog, fill in menu_filter as the
resource name and “Filter” as the resource value.
Click OK to close the dialog and complete the configuration of this
app bar item:

[image: Android Studio Menu Editor, Showing Configured MenuItem]

Figure 188: Android Studio Menu Editor, Showing Configured MenuItem
Unfortunately, at this point, Android Studio bugs crop up yet again, and we cannot
readily add a checkable submenu to this item via drag-and-drop. So, switch to the
“Code” view and add an empty <menu> element as a child of the filter <item> element:

 <item
 android:id="@+id/filter"
 android:icon="@drawable/ic_filter"
 android:title="@string/menu_filter"
 app:showAsAction="ifRoom|withText">
 <menu />
 </item>

Then, switch back to the “Design” view.
From the Palette, drag a “Group” into the new “menu” in the Component Tree:

[image: Android Studio Menu Editor, Showing New Group]

Figure 189: Android Studio Menu Editor, Showing New Group
In the Attributes pane, give the group an ID of filter_group and set the
“checkableBehavior” to “single”.
Then, from the Palette, drag a “Menu Item” into the new group in the Component
Tree:

[image: Android Studio Menu Editor, Showing New MenuItem in the Group]

Figure 190: Android Studio Menu Editor, Showing New MenuItem in the Group
Drag two more “Menu Item” entries from the “Palette” and drop them in the group
in the Component Tree, to give you a total of three items in the group.
Select the first of the three submenu items in the Component Tree. In the Attributes pane, give it
an ID of all. In the “All Attributes” section, check the “checked” checkbox, so that it contains a checkmark.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “Add new resource” > “New string Value”
in the drop-down towards the top. In the dialog, fill in menu_filter_all as the
resource name and “All” as the resource value.
Click OK to close the dialog and complete the configuration of this
submenu item.
Select the second submenu item in the Component Tree. In the Attributes pane,
give it an ID of completed. Then, for the “title”, use the “O” button to
assign it a new string resource, named menu_filter_completed, with a value of
“Completed”.
Select the third submenu item in the Component Tree. In the Attributes pane,
give it an ID of outstanding. Then, for the “title”, use the “O” button to
assign it a new string resource, named menu_filter_outstanding, with a value of
“Outstanding”.
If you run your app, you should see the new filter app bar item. Clicking
it will expose the submenu, although clicking on the submenu items will have no
effect.

[image: ToDo App, Showing Checkable Submenu]

Figure 191: ToDo App, Showing Checkable Submenu
Step #6: Getting Control on Filter Choices
In particular, clicking on the submenu items does not even change their checked
state. Even though our submenu looks like a group of radio buttons, it does
not behave like one automatically. Instead, we need to add some code for that.
Plus, we really ought to consider actually doing the filtering.
In RosterListFragment, replace the current onOptionsItemSelected() function
with:

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 R.id.all -> {
 item.isChecked = true
 motor.load(FilterMode.ALL)
 return true
 }
 R.id.completed -> {
 item.isChecked = true
 motor.load(FilterMode.COMPLETED)
 return true
 }
 R.id.outstanding -> {
 item.isChecked = true
 motor.load(FilterMode.OUTSTANDING)
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
onOptionsItemSelected() will get called when the user clicks on the checkable
sub-menu items, so we add cases to our when for those three menu items. For
each, we mark it as checked, so the radio button associated with that “checkable”
menu item becomes checked (and others as unchecked). Plus, we call
load() on our RosterMotor with the appropriate FilterMode for that menu item.
At this point, if you run the app, and you have some to-do items, the filtering
should work:

	“All” will show all of the items

	“Completed” will show those where the isCompleted checkbox is checked

	“Outstanding” will show those where the isCompleted checkbox is unchecked

However, there are a couple of minor UI glitches that we still need to fix, which
we will handle in the remaining steps of this tutorial.
Step #7: Fixing the Empty Text
At this point, there are two situations when we have an empty list:

	If there are no to-do items at all

	If there are no to-do items in the current filter mode (e.g., all of the items
are outstanding, and the filter mode is set to COMPLETED)

This is going to be confusing to the user — the user might not realize that
the reason their list is empty is that all of the relevant to-do items have been
removed from the list via the filter.
We should improve this.
First, go into res/values/strings.xml and add a new string resource:

 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>

(from T28-Filter/ToDo/app/src/main/res/values/strings.xml)
(note: this will be shown in the book as split across multiple lines, but
you are welcome to have it be all on one line in your project, if you wish)
Next, open res/layout/todo_roster.xml in the IDE. Click on our empty
TextView. In the “Layout” section of the “Attributes” pane, give the widget
8dp of margin on all four sides, so it does not run all the way to the edges
of the screen:

[image: Android Studio, Showing Margins]

Figure 192: Android Studio, Showing Margins
Then, open the “gravity” options:

[image: Android Studio, Showing TextView Gravity Options]

Figure 193: Android Studio, Showing TextView Gravity Options
Check the “center” option, which will cause our text to be centered within
the space being occupied by the TextView.
Then, in RosterListFragment, update the motor.states observer in
onViewCreated() to be:

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = View.GONE

 when {
 state.items.isEmpty() && state.filterMode == FilterMode.ALL -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty_filtered)
 }
 else -> empty.visibility = View.GONE
 }
 }
 }
 }

Here, we use a when block to handle the three cases:

	Showing the original empty message if we have no items and have a FilterMode of ALL

	Showing the new empty message if we have no items and have some other FilterMode

	Removing the empty message if we have items to show

Now, if you run the app, you will see the empty message centered, and you will
see the new empty message if you have items but they are all hidden by the filter:

[image: ToDo App, Showing Revised Empty Message]

Figure 194: ToDo App, Showing Revised Empty Message
Step #8: Addressing the Menu Problem
We have one more glitch to fix.
If you filter the list, then click on a to-do item to view its details, then click
BACK, you will find that the list is filtered, but the menu checked state is
back to having the “All” option checked. That is because the UI of the RosterListFragment
was rebuilt, and our menu reverted to its default state.
What we need to do is to have the menu reflect the current RosterViewState
filterMode value. This is a bit annoying to implement:

	We cannot easily access a menu item at an arbitrary point in time, so we need
to hold onto the menu items when we set up the menu

	We need to be able to get the right menu item for the current FilterMode

	We need to handle this work both when the menu is created and when the
state gets updated, as there is no guaranteed order of when those two things
happen

To handle all of this, first add a menuMap property to RosterListFragment:

 private val menuMap = mutableMapOf<FilterMode, MenuItem>()

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Then, modify the onCreateOptionsMenu() function in RosterListFragment to be:

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 menuMap.apply {
 put(FilterMode.ALL, menu.findItem(R.id.all))
 put(FilterMode.COMPLETED, menu.findItem(R.id.completed))
 put(FilterMode.OUTSTANDING, menu.findItem(R.id.outstanding))
 }

 menuMap[motor.states.value.filterMode]?.isChecked = true

 super.onCreateOptionsMenu(menu, inflater)
 }

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Here, we:

	Populate the menuMap to map each FilterMode value to its corresponding MenuItem

	See if we have a RosterViewState, and if we do, mark the MenuItem for the current FilterMode as checked

To find out the current value of the StateFlow, we can just reference value.
That will either be the initial value or whatever the last emitted RosterViewState was.
Then, add this line to the bottom of the RosterViewState observer that we set up
in onViewCreated():

 menuMap[state.filterMode]?.isChecked = true

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
This ensures that when we get a new RosterViewState that the appropriate
MenuItem is checked.
Now, if you run the app, you should see that the filtering applied to the list
matches the checked MenuItem, even after some navigation.
Final Results
At this point, ToDoEntity should look like:

package com.commonsware.todo.repo

import androidx.room.*
import kotlinx.coroutines.flow.Flow
import java.time.Instant
import java.util.*

@Entity(tableName = "todos", indices = [Index(value = ["id"])])
data class ToDoEntity(
 val description: String,
 @PrimaryKey
 val id: String = UUID.randomUUID().toString(),
 val notes: String = "",
 val createdOn: Instant = Instant.now(),
 val isCompleted: Boolean = false
) {
 constructor(model: ToDoModel) : this(
 id = model.id,
 description = model.description,
 isCompleted = model.isCompleted,
 notes = model.notes,
 createdOn = model.createdOn
)

 fun toModel(): ToDoModel {
 return ToDoModel(
 id = id,
 description = description,
 isCompleted = isCompleted,
 notes = notes,
 createdOn = createdOn
)
 }

 @Dao
 interface Store {
 @Query("SELECT * FROM todos ORDER BY description")
 fun all(): Flow<List<ToDoEntity>>

 @Query("SELECT * FROM todos WHERE isCompleted = :isCompleted ORDER BY description")
 fun filtered(isCompleted: Boolean): Flow<List<ToDoEntity>>

 @Query("SELECT * FROM todos WHERE id = :modelId")
 fun find(modelId: String?): Flow<ToDoEntity?>

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 suspend fun save(vararg entities: ToDoEntity)

 @Delete
 suspend fun delete(vararg entities: ToDoEntity)
 }
}

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
ToDoRepository.kt should resemble:

package com.commonsware.todo.repo

import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.withContext

enum class FilterMode { ALL, OUTSTANDING, COMPLETED }

class ToDoRepository(
 private val store: ToDoEntity.Store,
 private val appScope: CoroutineScope
) {
 fun items(filterMode: FilterMode = FilterMode.ALL): Flow<List<ToDoModel>> =
 filteredEntities(filterMode).map { all -> all.map { it.toModel() } }

 private fun filteredEntities(filterMode: FilterMode) = when (filterMode) {
 FilterMode.ALL -> store.all()
 FilterMode.OUTSTANDING -> store.filtered(isCompleted = false)
 FilterMode.COMPLETED -> store.filtered(isCompleted = true)
 }

 fun find(id: String?): Flow<ToDoModel?> = store.find(id).map { it?.toModel() }

 suspend fun save(model: ToDoModel) {
 withContext(appScope.coroutineContext) {
 store.save(ToDoEntity(model))
 }
 }

 suspend fun delete(model: ToDoModel) {
 withContext(appScope.coroutineContext) {
 store.delete(ToDoEntity(model))
 }
 }
}

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
RosterMotor.kt should now be:

package com.commonsware.todo.ui.roster

import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import kotlinx.coroutines.Job
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.asStateFlow
import kotlinx.coroutines.flow.collect
import kotlinx.coroutines.launch

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false,
 val filterMode: FilterMode = FilterMode.ALL
)

class RosterMotor(private val repo: ToDoRepository) : ViewModel() {
 private val _states = MutableStateFlow(RosterViewState())
 val states = _states.asStateFlow()
 private var job: Job? = null

 init {
 load(FilterMode.ALL)
 }

 fun load(filterMode: FilterMode) {
 job?.cancel()

 job = viewModelScope.launch {
 repo.items(filterMode).collect {
 _states.emit(RosterViewState(it, true, filterMode))
 }
 }
 }

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }
}

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
The actions_roster menu resource XML should resemble:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/filter"
 android:icon="@drawable/ic_filter"
 android:title="@string/menu_filter"
 app:showAsAction="ifRoom|withText">
 <menu>

 <group
 android:id="@+id/filter_group"
 android:checkableBehavior="single" >
 <item
 android:id="@+id/all"
 android:checked="true"
 android:title="@string/menu_filter_all" />
 <item
 android:id="@+id/completed"
 android:title="@string/menu_filter_completed" />
 <item
 android:id="@+id/outstanding"
 android:title="@string/menu_filter_outstanding" />
 </group>
 </menu>
 </item>
 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_add"
 android:title="@string/menu_add"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T28-Filter/ToDo/app/src/main/res/menu/actions_roster.xml)
The strings resource XML should resemble:

<resources>
 <string name="app_name">ToDo</string>
 <string name="msg_empty">Click the + icon to add a todo item!</string>
 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>
 <string name="menu_about">About</string>
 <string name="is_completed">Item is completed</string>
 <string name="created_on">Created on:</string>
 <string name="menu_edit">Edit</string>
 <string name="desc">Description</string>
 <string name="notes">Notes</string>
 <string name="menu_save">Save</string>
 <string name="menu_add">Add</string>
 <string name="menu_delete">Delete</string>
 <string name="menu_filter">Filter</string>
 <string name="menu_filter_all">All</string>
 <string name="menu_filter_completed">Completed</string>
 <string name="menu_filter_outstanding">Outstanding</string>
</resources>

(from T28-Filter/ToDo/app/src/main/res/values/strings.xml)
RosterListFragment now should look like:

package com.commonsware.todo.ui.roster

import android.os.Bundle
import android.view.*
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private val menuMap = mutableMapOf<FilterMode, MenuItem>()
 private var binding: TodoRosterBinding? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.filterMode == FilterMode.ALL -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty_filtered)
 }
 else -> empty.visibility = View.GONE
 }
 }

 menuMap[state.filterMode]?.isChecked = true
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 menuMap.apply {
 put(FilterMode.ALL, menu.findItem(R.id.all))
 put(FilterMode.COMPLETED, menu.findItem(R.id.completed))
 put(FilterMode.OUTSTANDING, menu.findItem(R.id.outstanding))
 }

 menuMap[motor.states.value.filterMode]?.isChecked = true

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 R.id.all -> {
 item.isChecked = true
 motor.load(FilterMode.ALL)
 return true
 }
 R.id.completed -> {
 item.isChecked = true
 motor.load(FilterMode.COMPLETED)
 return true
 }
 R.id.outstanding -> {
 item.isChecked = true
 motor.load(FilterMode.OUTSTANDING)
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }
}

(from T28-Filter/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
And the todo_roster menu resource XML should resemble:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.MainActivity">

 <ProgressBar
 android:id="@+id/loading"
 style="?android:attr/progressBarStyle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/empty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="8dp"
 android:layout_marginTop="8dp"
 android:layout_marginRight="8dp"
 android:layout_marginBottom="8dp"
 android:gravity="center"
 android:text="@string/msg_empty"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:visibility="gone"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/items"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

(from T28-Filter/ToDo/app/src/main/res/layout/todo_roster.xml)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt

	app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

	app/src/main/res/drawable/ic_filter_list_black_24dp.xml

	app/src/main/res/menu/actions_roster.xml

	app/src/main/res/values/strings.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

	app/src/main/res/layout/todo_roster.xml

Generating a Report
Right now, our to-do information is held in a SQLite database, whose contents
are viewable via the app. This is fine, as far as it goes… but it does not
go very far. We have no good means of getting this information to any other
device or any other person.
In the next two tutorials, we will work on some options for doing just that.
In this tutorial, we will generate a simple Web page containing our to-do list,
filtered by whatever filter mode we have applied. That Web page will be saved
in a location specified by the user, and we will view the Web page in a Web
browser when we are done.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a Save App Bar Item
It’s time for another app bar item! This time, though, it uses an existing
icon and string resource, as we already have a “save” app bar item in the
EditFragment. We will reuse that for a “save” app bar item in the RosterListFragment.
Open up the res/menu/actions_roster.xml resource file, and switch to
the graphical designer. Drag a “Menu Item” from the “Palette” view into the Component
Tree, slotting it after the existing “add” item:

[image: Android Studio Menu Editor, Showing New Item]

Figure 195: Android Studio Menu Editor, Showing New Item
In the Attributes view for this new item, assign it an ID of save.
Then, choose both “ifRoom” and “withText” for the “showAsAction” option.
Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector.
Click on ic_save in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. This time, we actually have a menu_save string
resource in the selector:

[image: Android Studio Resources Dialog, Showing menu_save Resource]

Figure 196: Android Studio Resources Dialog, Showing menu_save Resource
Double-click on it to choose it and complete configuration of our app bar item.
Step #2: Making a Save
Now, we need to respond to that action item click by asking the user where we
should save the Web page generated from the filtered to-do items. To accomplish
that, we are going to use the Storage Access Framework, which provides us with UI
akin to the “file open” and “file ‘save as’” dialogs that you see in desktop
operating systems.
ACTION_CREATE_DOCUMENT is an Intent action that, as the name suggests, guides
the user to create a new document for your use. In modern editions of the Jetpack,
that Intent is wrapped up in an “activity result” request that will give us
a Uri pointing to where that document resides.
Up in your list of properties for RosterListFragment (before the onCreate() function),
add this new property:

 private val createDoc =
 registerForActivityResult(ActivityResultContracts.CreateDocument()) {
 }

registerForActivityResult() tells the Jetpack “hey, we want to register a way to make
a request and get a response”. The request is in the form of an ActivityResultContract
instance, in this case ActivityResultContracts.CreateDocument. CreateDocument
maps to ACTION_CREATE_DOCUMENT, and it will request that the user choose a place on their
device (or in their cloud storage) to create a new document. We get a Uri pointing
to that new document in the lambda expression that we provide to registerForActivityResult().
Next, add this saveReport() function to RosterListFragment:

 private fun saveReport() {
 createDoc.launch("report.html")
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Here, we call launch() on the createDoc that we just created. launch() says
“OK, let’s make an actual request”, and for our case, that will ask the user to pick the place
to create the document. We supply report.html as the default name to use for this new
document, though the user might change that name.
Then, add another branch to the when in onOptionsItemSelected()
in RosterListFragment, to call saveReport() if the user clicks the “Save” action
bar item:

 R.id.save -> {
 saveReport()
 return true
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
If you run this on your device or emulator and click that “Save” item, you
should be presented with a screen where you can choose where to save the content:

[image: Android 9.0 Storage Access Framework UI, As Initially Opened]

Figure 197: Android 9.0 Storage Access Framework UI, As Initially Opened
The user can choose “Show internal storage” from the overflow menu to add more
options of where to save the content:

[image: Android 8.1 Storage Access Framework UI, Showing Overflow Menu]

Figure 198: Android 8.1 Storage Access Framework UI, Showing Overflow Menu
If your device happened to show the “Save” item in the overflow, you might have
noticed that “About” appeared before “Save”:

[image: ToDo App, Showing Overflow Menu]

Figure 199: ToDo App, Showing Overflow Menu
Ideally, “About” would be last, as it is the least important of our overflow
items. To fix this, open res/menu/actions.xml — the resource file containing
the “About” item. Then, in the full list of the Attributes pane for the “About”
item, set “orderInCategory” to 100. Each item is placed into a category; we
are just using the default category for everything, as menu categories are rarely
used. Higher numbers for “orderInCategory” appear later in the overflow, and so
we are pushing the “About” item down by setting its “orderInCategory” value to 100.
Now, “Save” appears before “About”:

[image: ToDo App, Showing Revised Overflow Menu]

Figure 200: ToDo App, Showing Revised Overflow Menu
Step #3: Adding Some Handlebars
To generate HTML, it is often convenient to use a template language. There
are lots of those, with a popular one being Handlebars.
While the original Handlebars is in JavaScript, there is
a port to Java, which we can use
in our app.
So, we will use
it to pour our to-do item data into an HTML template to generate a Web page.
To that end, add this line to the dependencies closure in the app/build.gradle
file:

 implementation "com.github.jknack:handlebars:4.1.2"

(from T29-Report/ToDo/app/build.gradle)
Then, in ToDoApp, add this single to our koinModule:

 single {
 Handlebars().apply {
 registerHelper("dateFormat", Helper<Instant> { value, _ ->
 DateUtils.getRelativeDateTimeString(
 androidContext(),
 value.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS, 0
)
 })
 }
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This creates a Handlebars singleton that Koin can inject into various places
in our app. We configure the Handlebars object as part of setting it up,
calling a registerHelper() function. This registers a “helper”, which we can
refer to from templates to perform a bit of formatting work for us. Specifically,
we are registering a dateFormat helper that takes an Instant object
and formats it using DateUtils, as we are doing in our DisplayFragment.
Step #4: Creating the Report
Now, we can work on some code to use Handlebars for converting our to-do items
into a simple Web page.
First, let’s create a new package to hold our report code, since it is neither part
of the UI nor part of the repository. Right-click over the com.commonsware.todo
package in the java/ directory, choose “New” > “Package” from the context menu, fill in com.commonsware.todo.report
for the package name, and press Enter or Return.
Then, right-click over the new
com.commonsware.todo.report package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
RosterReport, and choose “Class” for the kind. Press Enter or Return to create the class, giving you:

package com.commonsware.todo.report

class RosterReport {
}

Next, open up res/values/strings.xml again and add this odd-looking string resource:

 <string name="report_template"><![CDATA[<h1>To-Do Items</h1>
{{#this}}
<h2>{{description}}</h2>
<p>{{#completed}}COMPLETED — {{/completed}}Created on: {{dateFormat createdOn}}</p>
<p>{{notes}}</p>
{{/this}}
]]></string>

(from T29-Report/ToDo/app/src/main/res/values/strings.xml)
Handlebars uses {{ }} syntax to indicate parts of a template
that should be replaced at runtime with dynamic data. The dynamic data is
represented by what Handlebars calls the “context” (which has nothing to do with
Android’s Context class). In our case, the “context” will be a List of
ToDoModel objects, representing the filtered items. Given that context:

	
{{#this}} and {{/this}} represent the beginning and ending markers of
a loop over that list

	
{{description}} and {{notes}} pull values out of our
models

	
{{#completed}} and {{/completed}} represent the beginning and ending
markers of a conditional section, which will only be included if isCompleted
is true (Handlebars uses “Java beans” notation, which is why we drop off the “is”
portion of the name)

	
{{dateFormat createdOn}} will apply a dateFormat “helper” to format
our createdOn value into something human-readable

Therefore, this template will create a chunk of HTML for each ToDoModel, with
the <h1> heading at the top. We need the CDATA stuff so that Android does not
try interpreting the HTML tags inside of this string resource.
Next, add a constructor to RosterReport that gives us a Context, our
Handlebars object, and the appScope that we used in ToDoRepository:

class RosterReport(
 private val context: Context,
 engine: Handlebars,
 private val appScope: CoroutineScope
) {

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/report/RosterReport.kt)
Handlebars compiles a template like the one from our string resource into a Template object. So, add
this property to RosterReport:

 private val template =
 engine.compileInline(context.getString(R.string.report_template))

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/report/RosterReport.kt)
This retrieves the string resource and has the Handlebars object compile it for us.
We still need some code to actually use this template, which we will work on shortly.
Finally, add another line to koinModule in ToDoApp to allow us to inject our RosterReport where needed:

 single { RosterReport(androidContext(), get(), get(named("appScope"))) }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Step #5: Writing Where the User Asked
We now need to start connecting the createDoc request to our
RosterReport.
What we get from createDoc is a Uri pointing to… something.
It is up to the user where to save the Web page, and that could be anything
from a local file to an entry in Google Drive. A ContentResolver has an
openOutputStream() method that will work with any Uri returned by
createDoc, so we will not need to worry about the location details.
This means that RosterReport needs a function where we can hand it the user-supplied
Uri and have it write the report to that location.
To that end, add this function to RosterReport:

 suspend fun generate(content: List<ToDoModel>, doc: Uri) {
 withContext(Dispatchers.IO + appScope.coroutineContext) {
 context.contentResolver.openOutputStream(doc, "rwt")?.writer()?.use { osw ->
 osw.write(template.apply(content))
 osw.flush()
 }
 }
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/report/RosterReport.kt)
generate() takes a List of models, along with that Uri. In a coroutine
set to run on a background thread and managed by our appScope (withContext(Dispatchers.IO + appScope.coroutineContext)), we:

	Open an OutputStream on the location specified by the Uri

	Wrap that in an OutputStreamWriter

	Call use() on the writer to automatically close it when we are done

	Call apply() on our template to have it generate the HTML for our models

	Write that to the OutputStreamWriter

You may get a warning on the openOutputStream() call, complaining about an “inappropriate
blocking method call”. That is an IDE bug.
The “rwt” parameter to openOutputStream() represents the “mode”, indicating what
we want to do with the stream. The default mode, if you leave off this parameter,
is “w”, indicating that you want to overwrite parts of the content. The “t” in “rwt”
indicates that we want to truncate the output — whatever we write becomes the complete
content. The “r” means we want to be able to read the content. We are not using
that capability, but “wt” is not a documented option for the mode, so we settle for
“rwt” to get write and truncate capability.
Step #6: Saving the Report
Now, we can wrap all this up, saving the report to the desired location.
First, add a new constructor parameter to RosterMotor, so we can get access to a
RosterReport instance:

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport
) : ViewModel() {

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This will require a change to its corresponding line in ToDoApp to get() the
second parameter:

 viewModel { RosterMotor(get(), get()) }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Then, add this function to RosterMotor:

 fun saveReport(doc: Uri) {
 viewModelScope.launch {
 report.generate(_states.value.items, doc)
 }
 }

Here, we launch()
our generate() coroutine, supplying that list of items from the current RosterViewState, along with
the Uri identifying where we want the report to be written.
Next, in RosterListFragment, modify the createDoc property to call saveReport() on our
RosterMotor:

 private val createDoc =
 registerForActivityResult(ActivityResultContracts.CreateDocument()) {
 motor.saveReport(it)
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Step #7: Viewing the Report
One limitation of what we have now is that we do not do anything once the report
is saved. We should have some sort of acknowledgment, so the user knows the
report is ready for use.
One possibility is to simply show the user the report. We can use an ACTION_VIEW
Intent to display the report, using the Uri pointing to where we saved it.
First, though, we need our fragment to find out when the report is ready to be viewed and
that we should navigate to the Web browser app to display it.
However, we need to be careful about how we do that. We could just tuck the Uri
into a new RosterViewState and have our fragment see the Uri and launch the
browser. However, we only want to launch the browser once, not on every future
updated viewstate.
For Kotlin, the current recommended pattern for handling this is to use a
SharedFlow. Whereas StateFlow is for states, a SharedFlow
is better for events.
Right now, we have a single thing that we want to treat as an event: the report
is ready to be viewed. However, in the next tutorial, we will add another.
A typical way of representing this in Kotlin is to use a sealed class, which is
basically “an enum with superpowers”. So, add this Nav sealed class to RosterMotor.kt for
representing all of our navigation requests:

sealed class Nav {
 data class ViewReport(val doc: Uri) : Nav()
}

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This has a ViewReport subclass for
representing the “hey! let’s view the report!” navigation request. ViewReport
wraps the Uri that identifies where the report is stored.
Then, add these properties to RosterMotor:

 private val _navEvents = MutableSharedFlow<Nav>()
 val navEvents = _navEvents.asSharedFlow()

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This sets up a MutableSharedFlow, this time for a Nav object. Like
MutableStateFlow, MutableSharedFlow is a SharedFlow that we manage ourselves,
calling emit() when we want to publish an event.
This is
private; we use asSharedFlow() to make a SharedFlow available for the fragment to use
to consume the events off of the channel (navEvents).
Next, modify saveReport() in RosterMotor to be:

 fun saveReport(doc: Uri) {
 viewModelScope.launch {
 report.generate(_states.value.items, doc)
 _navEvents.emit(Nav.ViewReport(doc))
 }
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
Here, once the report has been saved, we emit() a ViewReport request to our
MutableSharedFlow.
In order to view the report, we are going to want to use an ACTION_VIEW Intent and
startActivity(). It is very likely that the user will have an app that supports
ACTION_VIEW for HTML, such as a Web browser. But, it is not guaranteed. The
problem is that startActivity() will throw an ActivityNotFoundException
if the user does not have anything that supports ACTION_VIEW for HTML, which will
lead to a crash if we do not take some steps.
To that end, add this safeStartActivity() function to RosterListFragment:

 private fun safeStartActivity(intent: Intent) {
 try {
 startActivity(intent)
 } catch (t: Throwable) {
 Log.e(TAG, "Exception starting $intent", t)
 Toast.makeText(requireActivity(), R.string.oops, Toast.LENGTH_LONG).show()
 }
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
The big thing is that we use a try/catch block to handle any exception that
might get raised by trying to start an activity. The most likely exception would
be ActivityNotFoundException, meaning that no activity was found that matched
the Intent that we used to try to start the activity. safeStartActivity() has a
few other “bells and whistles”:

	If we do catch an exception, we log a message to Logcat with the exception
itself (so the stack trace shows up)

	And, if we catch an exception, we show a Toast to the user, which presents
a message in little temporary popup window

This code will have a couple of errors due to some missing symbols. The first
missing symbol is TAG. This is a label that is included in our Logcat output.
Since this string is not visible to users, we do not need to worry about translating it, so
a plain string is fine. So, add this TAG constant towards the top of the
RosterListFragment.kt source file:

private const val TAG = "ToDo"

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Also, the Toast.makeText() call references an oops string resource
that we have not defined. So, in res/values/strings.xml, add:

 <string name="oops">Sorry! Something went wrong!</string>

(from T29-Report/ToDo/app/src/main/res/values/strings.xml)
Then, in RosterListFragment, add this viewReport() function:

 private fun viewReport(uri: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_VIEW, uri)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
)
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
This sets up an ACTION_VIEW Intent, where ACTION_VIEW is the standard
Intent action for “I want to view… something…”. Here, the “something…”
is the report, identified by the supplied Uri. We need to add
FLAG_GRANT_READ_URI_PERMISSION to the Intent to ensure that the Web browser
(or other app responding to our Intent) is given read access to our content.
Then, we call safeStartActivity() to bring up the Web browser (or whatever).
Finally, in RosterListFragment, towards the bottom of onViewCreated(),
add the following:

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.navEvents.collect { nav ->
 when (nav) {
 is Nav.ViewReport -> viewReport(nav.doc)
 }
 }
 }

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
This is the same basic structure that we use for the states StateFlow, this
time for the navEvents SharedFlow
Now, if you choose “Save” from the toolbar and pick a spot to write the report,
you will either be taken to the saved
report or, possibly, see the Toast popup indicating that the report was saved.
You may or may not have a Web browser that supports the particular sort of Uri that we
get back from the Storage Access Framework.
Final Results
The actions_roster menu resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/filter"
 android:icon="@drawable/ic_filter"
 android:title="@string/menu_filter"
 app:showAsAction="ifRoom|withText">
 <menu>

 <group
 android:id="@+id/filter_group"
 android:checkableBehavior="single" >
 <item
 android:id="@+id/all"
 android:checked="true"
 android:title="@string/menu_filter_all" />
 <item
 android:id="@+id/completed"
 android:title="@string/menu_filter_completed" />
 <item
 android:id="@+id/outstanding"
 android:title="@string/menu_filter_outstanding" />
 </group>
 </menu>
 </item>
 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_add"
 android:title="@string/menu_add"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/save"
 android:icon="@drawable/ic_save"
 android:title="@string/menu_save"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T29-Report/ToDo/app/src/main/res/menu/actions_roster.xml)
RosterListFragment, after all of our changes, should resemble:

package com.commonsware.todo.ui.roster

import android.content.Intent
import android.net.Uri
import android.os.Bundle
import android.util.Log
import android.view.*
import android.widget.Toast
import androidx.activity.result.contract.ActivityResultContracts
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

private const val TAG = "ToDo"

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private val menuMap = mutableMapOf<FilterMode, MenuItem>()
 private var binding: TodoRosterBinding? = null

 private val createDoc =
 registerForActivityResult(ActivityResultContracts.CreateDocument()) {
 motor.saveReport(it)
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.filterMode == FilterMode.ALL -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty_filtered)
 }
 else -> empty.visibility = View.GONE
 }
 }

 menuMap[state.filterMode]?.isChecked = true
 }
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.navEvents.collect { nav ->
 when (nav) {
 is Nav.ViewReport -> viewReport(nav.doc)
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 menuMap.apply {
 put(FilterMode.ALL, menu.findItem(R.id.all))
 put(FilterMode.COMPLETED, menu.findItem(R.id.completed))
 put(FilterMode.OUTSTANDING, menu.findItem(R.id.outstanding))
 }

 menuMap[motor.states.value.filterMode]?.isChecked = true

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 R.id.all -> {
 item.isChecked = true
 motor.load(FilterMode.ALL)
 return true
 }
 R.id.completed -> {
 item.isChecked = true
 motor.load(FilterMode.COMPLETED)
 return true
 }
 R.id.outstanding -> {
 item.isChecked = true
 motor.load(FilterMode.OUTSTANDING)
 return true
 }
 R.id.save -> {
 saveReport()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }

 private fun saveReport() {
 createDoc.launch("report.html")
 }

 private fun viewReport(uri: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_VIEW, uri)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
)
 }

 private fun safeStartActivity(intent: Intent) {
 try {
 startActivity(intent)
 } catch (t: Throwable) {
 Log.e(TAG, "Exception starting $intent", t)
 Toast.makeText(requireActivity(), R.string.oops, Toast.LENGTH_LONG).show()
 }
 }
}

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
The strings value resource should contain:

<resources>
 <string name="app_name">ToDo</string>
 <string name="msg_empty">Click the + icon to add a todo item!</string>
 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>
 <string name="menu_about">About</string>
 <string name="is_completed">Item is completed</string>
 <string name="created_on">Created on:</string>
 <string name="menu_edit">Edit</string>
 <string name="desc">Description</string>
 <string name="notes">Notes</string>
 <string name="menu_save">Save</string>
 <string name="menu_add">Add</string>
 <string name="menu_delete">Delete</string>
 <string name="menu_filter">Filter</string>
 <string name="menu_filter_all">All</string>
 <string name="menu_filter_completed">Completed</string>
 <string name="menu_filter_outstanding">Outstanding</string>
 <string name="oops">Sorry! Something went wrong!</string>
 <string name="report_template"><![CDATA[<h1>To-Do Items</h1>
{{#this}}
<h2>{{description}}</h2>
<p>{{#completed}}COMPLETED — {{/completed}}Created on: {{dateFormat createdOn}}</p>
<p>{{notes}}</p>
{{/this}}
]]></string>
</resources>

(from T29-Report/ToDo/app/src/main/res/values/strings.xml)
Our module’s build.gradle file should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }

 packagingOptions {
 exclude 'META-INF/AL2.0'
 exclude 'META-INF/LGPL2.1'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "com.github.jknack:handlebars:4.1.2"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
}

(from T29-Report/ToDo/app/build.gradle)
ToDoApp, after a few revisions, should resemble:

package com.commonsware.todo

import android.app.Application
import android.text.format.DateUtils
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import com.commonsware.todo.ui.SingleModelMotor
import com.commonsware.todo.ui.roster.RosterMotor
import com.github.jknack.handlebars.Handlebars
import com.github.jknack.handlebars.Helper
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import org.koin.android.ext.koin.androidContext
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.core.qualifier.named
import org.koin.dsl.module
import java.time.Instant

class ToDoApp : Application() {
 private val koinModule = module {
 single(named("appScope")) { CoroutineScope(SupervisorJob()) }
 single { ToDoDatabase.newInstance(androidContext()) }
 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope"))
)
 }
 single {
 Handlebars().apply {
 registerHelper("dateFormat", Helper<Instant> { value, _ ->
 DateUtils.getRelativeDateTimeString(
 androidContext(),
 value.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS, 0
)
 })
 }
 }
 single { RosterReport(androidContext(), get(), get(named("appScope"))) }
 viewModel { RosterMotor(get(), get()) }
 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }
 }
}

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Our new RosterReport class should look like:

package com.commonsware.todo.report

import android.content.Context
import android.net.Uri
import com.commonsware.todo.R
import com.commonsware.todo.repo.ToDoModel
import com.github.jknack.handlebars.Handlebars
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.withContext

class RosterReport(
 private val context: Context,
 engine: Handlebars,
 private val appScope: CoroutineScope
) {
 private val template =
 engine.compileInline(context.getString(R.string.report_template))

 suspend fun generate(content: List<ToDoModel>, doc: Uri) {
 withContext(Dispatchers.IO + appScope.coroutineContext) {
 context.contentResolver.openOutputStream(doc, "rwt")?.writer()?.use { osw ->
 osw.write(template.apply(content))
 osw.flush()
 }
 }
 }
}

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/report/RosterReport.kt)
And, our updated RosterMotor should contain:

package com.commonsware.todo.ui.roster

import android.net.Uri
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import kotlinx.coroutines.Job
import kotlinx.coroutines.flow.*
import kotlinx.coroutines.launch

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false,
 val filterMode: FilterMode = FilterMode.ALL
)

sealed class Nav {
 data class ViewReport(val doc: Uri) : Nav()
}

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport
) : ViewModel() {
 private val _states = MutableStateFlow(RosterViewState())
 val states = _states.asStateFlow()
 private val _navEvents = MutableSharedFlow<Nav>()
 val navEvents = _navEvents.asSharedFlow()
 private var job: Job? = null

 init {
 load(FilterMode.ALL)
 }

 fun load(filterMode: FilterMode) {
 job?.cancel()

 job = viewModelScope.launch {
 repo.items(filterMode).collect {
 _states.emit(RosterViewState(it, true, filterMode))
 }
 }
 }

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

 fun saveReport(doc: Uri) {
 viewModelScope.launch {
 report.generate(_states.value.items, doc)
 _navEvents.emit(Nav.ViewReport(doc))
 }
 }
}

(from T29-Report/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/menu/actions_roster.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

	app/build.gradle

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

	app/src/main/java/com/commonsware/todo/report/RosterReport.kt

	app/src/main/res/values/strings.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

Sharing the Report
We have the HTML form of our to-do list, and, on some devices, we can view it
automatically in a Web browser.
However, for getting the report off of the device, the user has only clunky options:

	The user could copy the report from wherever they stored it to wherever they
want, but that requires launching other apps or using desktop software in
many cases

	If a Web browser appeared to view the report, it might have a “share” option
that the user could use, but not all devices will have a compatible browser

Ideally, our app would have its own “share” option, so the report can be handed to
any app that can share HTML. In this tutorial, we will add such an option to our
app bar.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a Share App Bar Item
Right now, it may seem like Android app development is just a series of app
bar items, with little bits of code between them. This is a gross exaggeration,
as there is quite a bit of Android development that does not involve creating
app bar items.
That being said… we need to create another app bar item.
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Icon” button and search for share:

[image: Vector Asset Wizard, Showing share Search Results]

Figure 201: Vector Asset Wizard, Showing “share” Search Results
Choose the “share” icon and click “OK” to close up the icon selector. Change the icon’s
name to ic_share. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Open up the res/menu/actions_roster.xml resource file, and switch to
the graphical designer. Drag an “Item” from the “Palette” view into the Component
Tree, slotting it after the existing “save” item:

[image: Menu Resource Editor, Showing Share Item]

Figure 202: Menu Resource Editor, Showing Share Item
In the Attributes view for this new item, assign it an ID of “share”.
Then, choose both “ifRoom” and “withText” for the “showAsAction” option.
Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector.
Click on ic_share in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “Add new resource” > “New string Value”
in the drop-down towards the top. In the dialog, fill in menu_share as the
resource name and “Share” as the resource value.
Click OK to close the dialog and complete the configuration of this
app bar item.
Step #2: Adding FileProvider

For the purposes of a “share” app bar item, we want the experience to be
fairly seamless: the user clicks the item, then is prompted with options for
sharing it. The flow should not be: the user clicks the item, goes through some
UI to choose where to save it, then is prompted with options for sharing it.
In other words, we should not be using ACTION_CREATE_DOCUMENT as we are in the
“save” scenario.
We can save the report to a file fairly easily. However, on modern versions of
Android, we cannot share a file with other apps. However, Jetpack offers
FileProvider, which is way for us to serve files to other apps. All
we need to do is add it to our manifest and configure it.
Open the app/src/main/AndroidManifest.xml file and add this XML element
to the manifest, below the two existing <activity> elements:

<provider
 android:name="androidx.core.content.FileProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
</provider>

FileProvider is a ContentProvider, which is an Android component that… provides
content.
Just as an <activity> element identifies an Activity in our app, a <provider>
element identifies a ContentProvider in our app. In this case, instead of it
being one that we wrote, we are going to use FileProvider. As a result, our
android:name attribute has to be the fully-qualified class name to FileProvider
(androidx.core.content.FileProvider).
The android:authorities attribute indicates what name we wish to use for our
provider. This name needs to be unique, and it fills a similar role as does a domain
name in Web development. Here, we use ${applicationId}.provider. The
${applicationId} part is a “manifest placeholder” — a macro that will be expanded
when our app is compiled and turned into our app’s application ID. If you click
on the “Merged Manifest” sub-tab, you will see the results of this expansion:

[image: Merged Manifest, Showing Expanded applicationId Placeholder]

Figure 203: Merged Manifest, Showing Expanded applicationId Placeholder
By using ${applicationId}, we are helping to ensure that our authority value is unique,
as the applicationId value itself is guaranteed to be unique on the device.
The android:exported="false" value indicates that our provider is not to be
exported, meaning that by default, other apps have no ability to access our
provider’s content. This may seem silly, as the point of having this provider is
to get our report to other apps. However, FileProvider does not support
android:exported="true". Instead, we use android:grantUriPermissions="true"
to indicate that we will grant rights to other apps on a case-by-case basis
at runtime.
We need to tell our FileProvider what files it should serve. To do this, we need
to create an XML file with instructions, a bit reminiscent of how you configure
a Web server to say what directories it should serve.
To that end, right-click over res/ and choose “New” > “Android Resource Directory”
from the context menu. This brings up the “New Resource Directory” dialog:

[image: New Resource Directory Dialog]

Figure 204: New Resource Directory Dialog
In the “Resource type” drop-down, choose “xml”. Leave everything else alone,
and click “OK” to create a res/xml/ directory in our project. This directory
is good for holding arbitrary XML files — so long as they are well-formed XML,
the build tools do not care about the exact contents of those files.
Then, right-click over the new res/xml/ directory and choose “New” > “XML resource file”
from the context menu. Fill in provider_paths.xml as the name, fill in paths for
the “Root element”, then click “OK” to create this file.
This should give you a file like this:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">

</paths>

Replace that with:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <cache-path name="shared" path="shared" />
</paths>

(from T30-Share/ToDo/app/src/main/res/xml/provider_paths.xml)
The <paths> list all of the locations that we want FileProvider to serve.
In our case, there is only one child element, so we will only serve from this
one place.
The child element name — cache-path — says that we start with the filesystem
location that represents the “cache” portion of our app’s internal storage.
This is the location identified by the getCacheDir() method on Context, and
we will use that method to save our report to a file. The path attribute
further constrains FileProvider to only serve files from the shared/ directory
inside of getCacheDir(). The name attribute indicates that the Uri
values that FileProvider uses to identify its content should have a shared
path segment that maps to this filesystem location.
Then, to teach FileProvider about this XML, modify the manifest entry to
have a child <meta-data> element:

 <provider
 android:name="androidx.core.content.FileProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/provider_paths" />
 </provider>

(from T30-Share/ToDo/app/src/main/AndroidManifest.xml)
In a manifest, <meta-data> refers to additional information that the component
can use to configure its operation, or that users of that component can use to
know what that component is supposed to do. In this case, we are using it to
configure the FileProvider. The FileProvider class knows to look up
its android.support.FILE_PROVIDER_PATHS metadata entry and read the <paths>
out of the associated XML resource. This way, we do not need to subclass
FileProvider and override methods to teach it what files to serve — it
can handle that on its own via this metadata.
Step #3: Caching the Report
To share the report with other apps, we need to write it to a file that
can be served by the FileProvider. Based on the FileProvider metadata,
that would be in a shared/ subdirectory off of the location supplied by
the getCacheDir() method on a Context. The work to save the report to this
file should be done on a background thread. When that work is done, then we
can actually share the report with other apps.
Add these functions to RosterMotor:

 fun shareReport() {
 viewModelScope.launch {
 saveForSharing()
 }
 }

 private suspend fun saveForSharing() {
 withContext(Dispatchers.IO + appScope.coroutineContext) {
 val shared = File(context.cacheDir, "shared").also { it.mkdirs() }
 val reportFile = File(shared, "report.html")
 val doc = FileProvider.getUriForFile(context, AUTHORITY, reportFile)

 _states.value.let { report.generate(it.items, doc) }
 _navEvents.emit(Nav.ShareReport(doc))
 }
 }

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
saveReport() is simply a wrapper around saveForSharing(), launching another
coroutine. saveForSharing() implements that coroutine, where we:

	Create the shared directory under getCacheDir()

	Create a File object pointing to a report.html file in that shared
directory

	Use FileProvider.getUriForFile() to get a Uri from FileProvider that
maps to our File

	Ask our RosterReport to write the report to that Uri

	Post another navigation request, this time indicating that our report
is ready for sharing

You will have a few compile errors. One is that AUTHORITY is undefined.
This needs to match the value that we have in the android:authorities
attribute in the <provider> element in the manifest. That, in turn, is being
created based on our application ID. So, add this constant to RosterMotor.kt:

private const val AUTHORITY = BuildConfig.APPLICATION_ID + ".provider"

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
BuildConfig is a code-generated class that contains constants associated with
our build, and BuildConfig.APPLICATION_ID is our application ID. As a result,
AUTHORITY is being assembled the same way that the android:authorities value
is being assembled.
Another compile error is that there is no Nav.ShareReport class. Fix that
by changing Nav to look like:

sealed class Nav {
 data class ViewReport(val doc: Uri) : Nav()
 data class ShareReport(val doc: Uri) : Nav()
}

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This adds another subclass to Nav called ShareReport, which also wraps a Uri.
saveForSharing() refers to context in a couple of places. That needs
to be a Context, so we can use it for getCacheDir(), and for FileProvider.getUriForFile().
It also refers to appScope, which is the custom CoroutineScope that we are using
for write operations. So, add two more constructor parameters to RosterMotor for context and appScope:

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport,
 private val context: Application,
 private val appScope: CoroutineScope
) : ViewModel() {

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
We use Application for the context parameter to avoid an invalid Lint check complaint.
Google is worried that a ViewModel with a Context parameter might result in a memory leak,
but the Lint check cannot distinguish between valid and invalid uses of Context.
To make the Lint error go away, we use Application, which means that our ToDoApp
will need to be the Context.
This requires a corresponding change to ToDoApp, adding androidApplication() and get(named("appScope"))
to our RosterMotor constructor call:

 viewModel { RosterMotor(get(), get(), androidApplication(), get(named("appScope"))) }

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
androidApplication() is functionally equivalent to androidContext(), but it returns
an Application to satisfy compiler type checking.
Step #4: Sharing the Report
To actually share the report, we need to start an ACTION_SEND activity.
ACTION_SEND is the implicit Intent action used for most of the “share” options
that you see in Android apps. We can provide it with the Uri to the report, via
an EXTRA_STREAM extra. Usually, a device will have 2+ apps that support
ACTION_SEND for a text/html MIME type, so frequently the user will get a chooser,
asking which of those apps to use. If the user has only one compatible app,
or if the user chose a default share target on some past ACTION_SEND Intent,
then there will be no chooser, and the user will be taken straight to some
ACTION_SEND-supporting activity.
But, there is also the chance that there are zero apps that support ACTION_SEND
for text/html.
You might encounter this on an emulator, for example, which usually has few
apps installed. So we need to handle this scenario as well, just as we did
in the preceding tutorial, where we needed to handle the case where there was
no ACTION_VIEW Intent for our content.
In RosterListFragment, add this shareReport() function:

 private fun shareReport(doc: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_SEND)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
 .setType("text/html")
 .putExtra(Intent.EXTRA_STREAM, doc)
)
 }

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
This is nearly identical to viewReport(). We create an ACTION_SEND Intent,
tucking our Uri into the EXTRA_STREAM extra. We use setType() to indicate
that this is HTML — this is needed due to the way that ACTION_SEND needs the
Uri to be in an extra rather than in the main portion of the Intent the way
our ACTION_VIEW Intent was set up.
Then, in onOptionsItemSelected(), add another branch to handle the share
app bar item, routing it to shareReport() on our RosterMotor:

 R.id.share -> {
 motor.shareReport()
 return true
 }

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Finally, in onViewCreated() of RosterListFragment, modify the navEvents collector
configuration to look like:

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.navEvents.collect { nav ->
 when (nav) {
 is Nav.ViewReport -> viewReport(nav.doc)
 is Nav.ShareReport -> shareReport(nav.doc)
 }
 }
 }

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Now, if you run the app and click the “share” action item, you should get
some options for sharing the generated report.
Final Results
The actions_roster menu resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/filter"
 android:icon="@drawable/ic_filter"
 android:title="@string/menu_filter"
 app:showAsAction="ifRoom|withText">
 <menu>

 <group
 android:id="@+id/filter_group"
 android:checkableBehavior="single" >
 <item
 android:id="@+id/all"
 android:checked="true"
 android:title="@string/menu_filter_all" />
 <item
 android:id="@+id/completed"
 android:title="@string/menu_filter_completed" />
 <item
 android:id="@+id/outstanding"
 android:title="@string/menu_filter_outstanding" />
 </group>
 </menu>
 </item>
 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_add"
 android:title="@string/menu_add"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/save"
 android:icon="@drawable/ic_save"
 android:title="@string/menu_save"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/share"
 android:icon="@drawable/ic_share"
 android:title="@string/menu_share"
 app:showAsAction="ifRoom|withText" />
</menu>

(from T30-Share/ToDo/app/src/main/res/menu/actions_roster.xml)
The overall AndroidManifest.xml file should now look like:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.todo">

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true" />

 <application
 android:name=".ToDoApp"
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity
 android:name=".ui.AboutActivity"
 android:exported="true" />
 <activity
 android:name=".ui.MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider
 android:name="androidx.core.content.FileProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/provider_paths" />
 </provider>
 </application>

</manifest>

(from T30-Share/ToDo/app/src/main/AndroidManifest.xml)
Our new provider_paths XML resource should contain:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <cache-path name="shared" path="shared" />
</paths>

(from T30-Share/ToDo/app/src/main/res/xml/provider_paths.xml)
At this point, RosterMotor should resemble:

package com.commonsware.todo.ui.roster

import android.app.Application
import android.content.Context
import android.net.Uri
import androidx.core.content.FileProvider
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.BuildConfig
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
import java.io.File

private const val AUTHORITY = BuildConfig.APPLICATION_ID + ".provider"

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false,
 val filterMode: FilterMode = FilterMode.ALL
)

sealed class Nav {
 data class ViewReport(val doc: Uri) : Nav()
 data class ShareReport(val doc: Uri) : Nav()
}

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport,
 private val context: Application,
 private val appScope: CoroutineScope
) : ViewModel() {
 private val _states = MutableStateFlow(RosterViewState())
 val states = _states.asStateFlow()
 private val _navEvents = MutableSharedFlow<Nav>()
 val navEvents = _navEvents.asSharedFlow()
 private var job: Job? = null

 init {
 load(FilterMode.ALL)
 }

 fun load(filterMode: FilterMode) {
 job?.cancel()

 job = viewModelScope.launch {
 repo.items(filterMode).collect {
 _states.emit(RosterViewState(it, true, filterMode))
 }
 }
 }

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

 fun saveReport(doc: Uri) {
 viewModelScope.launch {
 report.generate(_states.value.items, doc)
 _navEvents.emit(Nav.ViewReport(doc))
 }
 }

 fun shareReport() {
 viewModelScope.launch {
 saveForSharing()
 }
 }

 private suspend fun saveForSharing() {
 withContext(Dispatchers.IO + appScope.coroutineContext) {
 val shared = File(context.cacheDir, "shared").also { it.mkdirs() }
 val reportFile = File(shared, "report.html")
 val doc = FileProvider.getUriForFile(context, AUTHORITY, reportFile)

 _states.value.let { report.generate(it.items, doc) }
 _navEvents.emit(Nav.ShareReport(doc))
 }
 }
}

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
Also, ToDoApp should look like:

package com.commonsware.todo

import android.app.Application
import android.text.format.DateUtils
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import com.commonsware.todo.ui.SingleModelMotor
import com.commonsware.todo.ui.roster.RosterMotor
import com.github.jknack.handlebars.Handlebars
import com.github.jknack.handlebars.Helper
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import org.koin.android.ext.koin.androidApplication
import org.koin.android.ext.koin.androidContext
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.core.qualifier.named
import org.koin.dsl.module
import java.time.Instant

class ToDoApp : Application() {
 private val koinModule = module {
 single(named("appScope")) { CoroutineScope(SupervisorJob()) }
 single { ToDoDatabase.newInstance(androidContext()) }
 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope"))
)
 }
 single {
 Handlebars().apply {
 registerHelper("dateFormat", Helper<Instant> { value, _ ->
 DateUtils.getRelativeDateTimeString(
 androidContext(),
 value.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS, 0
)
 })
 }
 }
 single { RosterReport(androidContext(), get(), get(named("appScope"))) }
 viewModel { RosterMotor(get(), get(), androidApplication(), get(named("appScope"))) }
 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }
 }
}

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Finally, our updated RosterListFragment should look like:

package com.commonsware.todo.ui.roster

import android.content.Intent
import android.net.Uri
import android.os.Bundle
import android.util.Log
import android.view.*
import android.widget.Toast
import androidx.activity.result.contract.ActivityResultContracts
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

private const val TAG = "ToDo"

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private val menuMap = mutableMapOf<FilterMode, MenuItem>()
 private var binding: TodoRosterBinding? = null

 private val createDoc =
 registerForActivityResult(ActivityResultContracts.CreateDocument()) {
 motor.saveReport(it)
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.filterMode == FilterMode.ALL -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty_filtered)
 }
 else -> empty.visibility = View.GONE
 }
 }

 menuMap[state.filterMode]?.isChecked = true
 }
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.navEvents.collect { nav ->
 when (nav) {
 is Nav.ViewReport -> viewReport(nav.doc)
 is Nav.ShareReport -> shareReport(nav.doc)
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 menuMap.apply {
 put(FilterMode.ALL, menu.findItem(R.id.all))
 put(FilterMode.COMPLETED, menu.findItem(R.id.completed))
 put(FilterMode.OUTSTANDING, menu.findItem(R.id.outstanding))
 }

 menuMap[motor.states.value.filterMode]?.isChecked = true

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 R.id.all -> {
 item.isChecked = true
 motor.load(FilterMode.ALL)
 return true
 }
 R.id.completed -> {
 item.isChecked = true
 motor.load(FilterMode.COMPLETED)
 return true
 }
 R.id.outstanding -> {
 item.isChecked = true
 motor.load(FilterMode.OUTSTANDING)
 return true
 }
 R.id.save -> {
 saveReport()
 return true
 }
 R.id.share -> {
 motor.shareReport()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }

 private fun saveReport() {
 createDoc.launch("report.html")
 }

 private fun viewReport(uri: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_VIEW, uri)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
)
 }

 private fun shareReport(doc: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_SEND)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
 .setType("text/html")
 .putExtra(Intent.EXTRA_STREAM, doc)
)
 }

 private fun safeStartActivity(intent: Intent) {
 try {
 startActivity(intent)
 } catch (t: Throwable) {
 Log.e(TAG, "Exception starting $intent", t)
 Toast.makeText(requireActivity(), R.string.oops, Toast.LENGTH_LONG).show()
 }
 }
}

(from T30-Share/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/drawable/ic_share.xml

	app/src/main/res/menu/actions_roster.xml

	app/src/main/AndroidManifest.xml

	app/src/main/res/xml/provider_paths.xml

	app/src/main/res/values/strings.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

Collecting a Preference
If there are aspects of your app that are user-configurable, you have two main
options for allowing the user to configure them:

	Integrate that configuration into your own UI

	Set up a PreferenceScreen

A PreferenceScreen is a way to declare what sorts of configuration options your
app has. The PreferenceScreen can then be used to generate a UI that resembles
the Settings app and lets the user configure the items. That generated UI also
handles storing the values in a SharedPreferences object, so you can use the
values from within your app code.
In this tutorial, we will set up a PreferenceScreen, right now to collect
just a single preference.

You can learn more about SharedPreferences and the preference UI system in the "Using Preferences" chapter of
Elements of Android Jetpack!

This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a Dependency
There are framework classes related to preferences. However, most of them are
deprecated, with replacements in the Jetpack components. To pull in those replacements, we
need to add another dependency.
Add this line to the dependencies closure of your app/build.gradle file:

 implementation "androidx.preference:preference-ktx:1.1.1"

(from T31-Prefs/ToDo/app/build.gradle)
This pulls in the preference-ktx library, which will give us the Jetpack
preference classes, along with some Kotlin extension functions related
to preferences.
At this point, the dependencies closure should resemble:

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation "androidx.preference:preference-ktx:1.1.1"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "com.github.jknack:handlebars:4.1.2"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
}

(from T31-Prefs/ToDo/app/build.gradle)
This may look like a lot of libraries for a fairly trivial app. However, on
the whole, Android app development has become very focused on libraries, and
a production-grade app may have a lot more libraries than does this app.
Step #2: Defining a Preference Screen
Like our FileProvider configuration from the preceding tutorial,
a PreferenceScreen is defined as an XML resource in res/xml/. So, right-click
over res/xml/ and choose “New” > “XML resource file” from the context menu.
Fill in prefs for the name and leave the “Root element” alone. Then, click “OK”
to create the resource.
Android Studio will bring up another graphical resource editor, this time set up
to define preferences:

[image: Android Studio Preference Resource Editor]

Figure 205: Android Studio Preference Resource Editor
Unfortunately, the Android Studio preference resource editor does not work all
that well. So, switch over to the XML editor and replace
your current XML with:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <EditTextPreference
 android:key="@string/web_service_url_key"
 android:selectAllOnFocus="true"
 android:title="@string/pref_url_title"
 app:defaultValue="@string/web_service_url_default" />
</PreferenceScreen>

(from T31-Prefs/ToDo/app/src/main/res/xml/prefs.xml)
The root element is a PreferenceScreen, which mostly contains different
types of preferences.
Our one-and-only preference is an EditTextPreference. This will provide
a PreferenceScreen entry that pops up a dialog with a field when the user taps
on it. The user can adjust the preference value by typing in that field.
There are four attributes on our EditTextPreference. One of these —
android:selectAllOnFocus — is actually an attribute available for EditText,
indicating that the contents of the field should be selected automatically once
the field gets the focus. This is a useful feature of an EditText for fields where
you expect the user to replace the entire value much more often than they edit
the existing value. EditTextPreference itself has a feature where it will accept
many EditText attributes on the EditTextPreference element.
The other three attributes are ones that you will find on most preferences:

	
android:key is the identifier of the preference. Unlike android:id, though,
it can be whatever string you want — it is not limited to @+id:/... syntax.

	
android:title is what the user sees on the screen when this preference is
shown in the PreferenceScreen

	
app:defaultValue is the default value to show in the field, if the user has
not filled in their own value yet

To make this work, though, we need to add three more string resource.
Edit your res/values/strings.xml file and add:

 <string name="pref_url_title">Web service URL</string>
 <string name="web_service_url_key">webServiceUrl</string>
 <string name="web_service_url_default">https://commonsware.com/AndExplore/2.0/items.json</string>

(from T31-Prefs/ToDo/app/src/main/res/values/strings.xml)
Step #3: Displaying Our Preference Screen
Now, we need some Kotlin code to arrange for that preference XML to get used.
The typical approach is to use PreferenceFragmentCompat, which is a fragment
class that knows how to work with the rest of the preference system to render
the PreferenceScreen, collect preferences from the user, and save the changes.
However, this fragment does not match any of our existing com.commonsware.todo.ui
sub-packages. So, right-click over the com.commonsware.todo.ui
package in the java/ directory, choose “New” > “Package” from the context menu, fill in com.commonsware.todo.ui.prefs
for the package name, and press Enter or Return.
Then, right-click over the new
com.commonsware.todo.ui.prefs package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
PrefsFragment, and choose “Class” for the kind. Press Enter or Return to create the class, giving you:

package com.commonsware.todo.ui.prefs

class PrefsFragment {
}

Finally, replace that stub class with:

package com.commonsware.todo.ui.prefs

import android.os.Bundle
import androidx.preference.PreferenceFragmentCompat
import com.commonsware.todo.R

class PrefsFragment : PreferenceFragmentCompat() {
 override fun onCreatePreferences(state: Bundle?, rootKey: String?) {
 setPreferencesFromResource(R.xml.prefs, rootKey)
 }
}

(from T31-Prefs/ToDo/app/src/main/java/com/commonsware/todo/ui/prefs/PrefsFragment.kt)
Here, we are creating a subclass of PreferenceFragmentCompat. The only required
function is onCreatePreferences(), where our job is to provide the details
of the preferences that we wish to collect. For that, we can call setPreferencesFromResource(),
indicating that we want to display the PreferenceScreen from res/xml/prefs.xml.
Step #4: Adding PrefsFragment to Our Navigation Graph
Just like our other fragments, we should add PrefsFragment to our navigation
graph. The biggest difference is that it is not part of the existing
fragment-to-fragment navigation flow, so we will need to set up a “global action”
to allow MainActivity to display PrefsFragment when requested.
Open up res/navigation/nav_graph.xml and click the add-destination toolbar
button (rectangle with green plus sign in the corner). You should see PrefsFragment as
an option in the destination drop-down:

[image: Android Studio Navigation Editor, Showing Destinations]

Figure 206: Android Studio Navigation Editor, Showing Destinations
Click on PrefsFragment, then drag its tile to some clean spot in the diagram.
Then, right-click over the prefsFragment tile and choose “Add Action” > “Global”
from the context menu. This global action gets represented by an arrow pointing
from nowhere into the tile:

[image: Android Studio Navigation Editor, Showing Global Action]

Figure 207: Android Studio Navigation Editor, Showing Global Action
In the “Attributes” pane, with that arrow selected, you should see attributes
for this global action. Set the “ID” to be editPrefs and leave the rest alone:

[image: Android Studio Navigation Editor, Showing Global Action Attributes]

Figure 208: Android Studio Navigation Editor, Showing Global Action Attributes
Step #5: Navigating to Our Preference Screen
Now, we need to arrange to display that PrefsFragment. The first step is yet
another app bar item, because we love app bar items!
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Icon” button and search for settings:

[image: Vector Asset Wizard, Showing settings Search Results]

Figure 209: Vector Asset Wizard, Showing “settings” Search Results
Choose the “settings” icon and click “OK” to close up the icon selector. Change the
icon’s name to ic_settings. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Open up the res/menu/actions.xml resource file, and switch to
the “Design” sub-tab. Drag a “Menu Item” from the “Palette” view into the Component
Tree, slotting it before the existing “about” item.
In the Attributes view for this new item, assign it an ID of “settings”.
Then, choose “never” for the “showAsAction” option.
Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector.
Click on ic_settings in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “Add new resource” > “New string Value”
in the drop-down towards the top. In the dialog, fill in settings as the
resource name and “Settings” as the resource value. This time, we are not using
the menu_ prefix, as we are going to use this string somewhere else.
Click OK to close the dialog.
Next, in the “All Attributes” section of the “Attributes” pane, find the orderInCategory
attribute and set it to 90. This will place it ahead of the “About” item (whose
orderInCategory is set to 100). And, both will appear after the items added
by the fragments.
Then, switch back to the res/navigation/nav_graph.xml resource. Click on the
prefsFragment item and in the “Label” field fill in @string/settings. This
will have the title of our screen (as shown in our toolbar) match the menu item
that we just added.
Finally, in MainActivity, replace the current onOptionsItemSelected() function
with this:

 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {
 R.id.about -> {
 startActivity(Intent(this, AboutActivity::class.java))
 true
 }
 R.id.settings -> {
 findNavController(R.id.nav_host).navigate(R.id.editPrefs)
 true
 }
 else -> super.onOptionsItemSelected(item)
 }

(from T31-Prefs/ToDo/app/src/main/java/com/commonsware/todo/ui/MainActivity.kt)
This adds a new branch for the
R.id.settings case. There, we retrieve our NavController via findNavController()
and ask to navigate using our new editPrefs action.
At this point, if you run the project, you should see the new Settings app bar item:

[image: ToDo App, Showing Settings Item]

Figure 210: ToDo App, Showing Settings Item
Clicking that will bring up the fairly boring PrefsFragment:

[image: ToDo App, Showing PrefsFragment]

Figure 211: ToDo App, Showing PrefsFragment
Tapping on the “Web service URL” row will bring up a dialog with a field containing
our default value:

[image: ToDo App, Showing the EditTextPreference Dialog]

Figure 212: ToDo App, Showing the EditTextPreference Dialog
Right now, leave the value alone — just click BACK a few times to exit back to the
main screen.
Final Results
Our revised app/build.gradle should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }

 packagingOptions {
 exclude 'META-INF/AL2.0'
 exclude 'META-INF/LGPL2.1'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation "androidx.preference:preference-ktx:1.1.1"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "com.github.jknack:handlebars:4.1.2"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
}

(from T31-Prefs/ToDo/app/build.gradle)
Our new prefs XML resource should contain:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <EditTextPreference
 android:key="@string/web_service_url_key"
 android:selectAllOnFocus="true"
 android:title="@string/pref_url_title"
 app:defaultValue="@string/web_service_url_default" />
</PreferenceScreen>

(from T31-Prefs/ToDo/app/src/main/res/xml/prefs.xml)
Our updated strings resource should look like:

<resources>
 <string name="app_name">ToDo</string>
 <string name="msg_empty">Click the + icon to add a todo item!</string>
 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>
 <string name="menu_about">About</string>
 <string name="is_completed">Item is completed</string>
 <string name="created_on">Created on:</string>
 <string name="menu_edit">Edit</string>
 <string name="desc">Description</string>
 <string name="notes">Notes</string>
 <string name="menu_save">Save</string>
 <string name="menu_add">Add</string>
 <string name="menu_delete">Delete</string>
 <string name="menu_filter">Filter</string>
 <string name="menu_filter_all">All</string>
 <string name="menu_filter_completed">Completed</string>
 <string name="menu_filter_outstanding">Outstanding</string>
 <string name="oops">Sorry! Something went wrong!</string>
 <string name="report_template"><![CDATA[<h1>To-Do Items</h1>
{{#this}}
<h2>{{description}}</h2>
<p>{{#completed}}COMPLETED — {{/completed}}Created on: {{dateFormat createdOn}}</p>
<p>{{notes}}</p>
{{/this}}
]]></string>
 <string name="menu_share">Share</string>
 <string name="pref_url_title">Web service URL</string>
 <string name="web_service_url_key">webServiceUrl</string>
 <string name="web_service_url_default">https://commonsware.com/AndExplore/2.0/items.json</string>
 <string name="settings">Settings</string>
</resources>

(from T31-Prefs/ToDo/app/src/main/res/values/strings.xml)
The new PrefsFragment should contain:

package com.commonsware.todo.ui.prefs

import android.os.Bundle
import androidx.preference.PreferenceFragmentCompat
import com.commonsware.todo.R

class PrefsFragment : PreferenceFragmentCompat() {
 override fun onCreatePreferences(state: Bundle?, rootKey: String?) {
 setPreferencesFromResource(R.xml.prefs, rootKey)
 }
}

(from T31-Prefs/ToDo/app/src/main/java/com/commonsware/todo/ui/prefs/PrefsFragment.kt)
The revised nav_graph navigation resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.ui.roster.RosterListFragment"
 android:label="@string/app_name">
 <action
 android:id="@+id/displayModel"
 app:destination="@id/displayFragment" />
 <action
 android:id="@+id/createModel"
 app:destination="@id/editFragment" >
 <argument
 android:name="modelId"
 android:defaultValue="@null" />
 </action>
 </fragment>
 <fragment
 android:id="@+id/displayFragment"
 android:name="com.commonsware.todo.ui.display.DisplayFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string" />
 <action
 android:id="@+id/editModel"
 app:destination="@id/editFragment" />
 </fragment>
 <fragment
 android:id="@+id/editFragment"
 android:name="com.commonsware.todo.ui.edit.EditFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string"
 app:nullable="true" />
 </fragment>
 <fragment
 android:id="@+id/prefsFragment"
 android:name="com.commonsware.todo.ui.prefs.PrefsFragment"
 android:label="@string/settings" />
 <action android:id="@+id/editPrefs" app:destination="@id/prefsFragment" />
</navigation>

(from T31-Prefs/ToDo/app/src/main/res/navigation/nav_graph.xml)
The updated actions menu resource should look like:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item
 android:id="@+id/settings"
 android:icon="@drawable/ic_settings"
 android:orderInCategory="90"
 android:title="@string/settings"
 app:showAsAction="never" />
 <item
 android:id="@+id/about"
 android:icon="@drawable/ic_about"
 android:orderInCategory="100"
 android:title="@string/menu_about"
 app:showAsAction="never" />
</menu>

(from T31-Prefs/ToDo/app/src/main/res/menu/actions.xml)
And the updated MainActivity should contain:

package com.commonsware.todo.ui

import android.content.Intent
import android.os.Bundle
import android.view.Menu
import android.view.MenuItem
import androidx.appcompat.app.AppCompatActivity
import androidx.navigation.findNavController
import androidx.navigation.fragment.findNavController
import androidx.navigation.ui.AppBarConfiguration
import androidx.navigation.ui.NavigationUI.navigateUp
import androidx.navigation.ui.setupActionBarWithNavController
import com.commonsware.todo.R
import com.commonsware.todo.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {
 private lateinit var appBarConfiguration: AppBarConfiguration

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)
 setSupportActionBar(binding.toolbar)

 supportFragmentManager.findFragmentById(R.id.nav_host)?.findNavController()?.let { nav ->
 appBarConfiguration = AppBarConfiguration(nav.graph)
 setupActionBarWithNavController(nav, appBarConfiguration)
 }
 }

 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 menuInflater.inflate(R.menu.actions, menu)

 return super.onCreateOptionsMenu(menu)
 }

 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {
 R.id.about -> {
 startActivity(Intent(this, AboutActivity::class.java))
 true
 }
 R.id.settings -> {
 findNavController(R.id.nav_host).navigate(R.id.editPrefs)
 true
 }
 else -> super.onOptionsItemSelected(item)
 }

 override fun onSupportNavigateUp() =
 navigateUp(findNavController(R.id.nav_host), appBarConfiguration)
}

(from T31-Prefs/ToDo/app/src/main/java/com/commonsware/todo/ui/MainActivity.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

	app/src/main/res/xml/prefs.xml

	app/src/main/res/values/strings.xml

	app/src/main/java/com/commonsware/todo/ui/prefs/PrefsFragment.kt

	app/src/main/res/navigation/nav_graph.xml

	app/src/main/res/drawable/ic_settings.xml

	app/src/main/res/menu/actions.xml

	app/src/main/java/com/commonsware/todo/ui/MainActivity.kt

Contacting a Web Service
The URL that we collected in the previous tutorial is a Web service
URL from which we can get to-do items… at least, in theory. In reality, it is
a static JSON file pretending to be a Web service. And, since it is a static
JSON file, we cannot implement a full synchronization routine, where we blend
what is on the server and on the client into a unified depiction of what
the state is of all of the to-do items.
However, we can implement a basic import operation. We can let the user request
to import items from the server, and those that do not already exist can be added
to our database and UI. So, in this tutorial, we will work on adding that capability
to the app. Along the way, we will look at libraries for making HTTPS requests
and for parsing JSON.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding Some Dependencies
Android has an HTTPS client API built in, but it is the ancient HttpsURLConnection,
and its API leaves a lot to be desired. Similarly, Android has a couple of JSON
parsers built in, but neither map JSON directly to your own objects — instead, they are classic
manual parsers. None of these are especially popular.
Instead, we will use two more popular options:

	
OkHttp is the most popular HTTPS client
library, by far

	
Moshi is a moderately popular JSON parser,
from the same firm that created OkHttp

So, we need to add those to our list of dependencies. Add these three lines
to the dependencies closure in app/build.gradle:

 implementation "com.squareup.okhttp3:okhttp:4.9.1"
 implementation "com.squareup.moshi:moshi:$moshi_version"
 kapt "com.squareup.moshi:moshi-kotlin-codegen:$moshi_version"

(from T32-Internet/ToDo/app/build.gradle)
Moshi requires some special stuff to work with Kotlin. Specifically, we need
a Kotlin annotation processor, one that will be able to code-generate some
Moshi support classes for us. That is why the third line has kapt instead
of implementation — we are pulling in a compile-time annotation processor,
not adding a runtime dependency directly.
This will give you an error, as moshi_version is not yet defined. As before,
we are using a constant to define the version, so we can have multiple dependencies
with synchronized versions. Add a definition of moshi_version to the ext closure
in the top-level build.gradle file:

 moshi_version = "1.12.0"

(from T32-Internet/ToDo/build.gradle)
Step #2: Requesting a Permission
Our app will be working directly with the Internet. For that, we need permission
from the user.
Requesting permissions from the user starts with a <uses-permission>
element in the manifest, identifying what it is that we want. For some permissions —
those deemed to be “dangerous” — we also need to prompt the user at runtime to
confirm whether they do indeed want to grant us this permission.
The permission that we need for Internet access — android.permission.INTERNET —
is not a dangerous permission. So, all we need is the <uses-permission> element.
So, add this element as a child of the root <manifest> element in AndroidManifest.xml:

 <uses-permission android:name="android.permission.INTERNET" />

(from T32-Internet/ToDo/app/src/main/AndroidManifest.xml)
Step #3: Defining Our Response
Our “Web service” is going to send us JSON that looks like:

[
 {
 "id": "bce0dde0-5eee-0137-c042-38ca3ad2633d",
 "description": "Write a JSON file containing to-do items",
 "completed": true,
 "notes": "Technically, this work was not completed when I wrote this, though it is completed now",
 "created_on": "2019-05-22"
 },
 {
 "id": "f42d74e8-6fd8-4eb1-a4fe-af1c1314573b",
 "description": "Add a third object to this JSON file",
 "completed": false,
 "notes": "",
 "created_on": "2019-05-22"
 }
]

(from items.json)
This resembles our model objects, but it is not quite identical. Moreover,
many times the maintainers of the Web service are not the same developers as those
who maintain the Android app (let alone the iOS app, the Web app, etc.). The
Web service API might change from time to time.
The recommended way of handling this is to treat the Web service data model
as being distinct from the app’s data model, with conversions between them as needed.
This is similar to how we have our Room entities defined separately from our models,
so any changes in Room do not affect our core app logic. As it turns out,
we are going to funnel our server responses into the database, so we will be
focusing more on converting Web service responses into entities that we can attempt
to insert into the database.
With that in mind, right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
ToDoServerItem, and choose “Class” for the kind. Press Enter or Return to create the class.
Then, replace the class declaration with:

@JsonClass(generateAdapter = true)
data class ToDoServerItem(
 val description: String,
 val id: String,
 val completed: Boolean,
 val notes: String,
 @Json(name = "created_on") val createdOn: Instant
)

The properties of ToDoServerItem match that of the JSON that we will receive
from the Web service, with one exception: the JSON has our creation date in
a created_on property, and we would like to use lowerCamelCase formatting for
our Kotlin property. The @Json annotation applied to the createdOn property
tells Moshi that the created_on value in the JSON goes into this createdOn
property on our class.
The @JsonClass annotation applied to ToDoServerItem overall indicates that
we want Moshi to code-generate the code that can fill in a ToDoServerItem
from a matching JSON object.
This will work, with one exception: Moshi knows only about standard Java/Kotlin
primitive types and strings. In particular, Moshi knows nothing about Instant
and knows nothing about how to take a value like "2019-05-22" and convert
it into a Instant. For that, we need to create an adapter class.
So, below ToDoServerItem in the same file, add this code:

private val FORMATTER = DateTimeFormatter.ISO_INSTANT

class MoshiInstantAdapter {
 @ToJson
 fun toJson(date: Instant) = FORMATTER.format(date)

 @FromJson
 fun fromJson(dateString: String): Instant =
 FORMATTER.parse(dateString, Instant::from)
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoServerItem.kt)
A Moshi type adapter is simply a class with two functions:

	One with the @ToJson annotation that takes a data type and returns a string representation
suitable for use in a JSON property

	One with the @FromJson annotation that takes the string representation and returns
the corresponding object in that data type

In this case, we are using DateTimeFormatter to convert a Instant to and
from a string representation, specifically using the representation found in the
Web service’s JSON file.
Step #4: Retrieving the Items
Now, we can add some code that will download the JSON and convert it into
a list of ToDoServerItem objects.
Right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
ToDoRemoteDataSource, and choose “Class” for the kind. Press Enter or Return to create the class.
Then, replace the class contents with:

package com.commonsware.todo.repo

import com.squareup.moshi.JsonAdapter
import com.squareup.moshi.Moshi
import com.squareup.moshi.Types
import java.io.IOException
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.withContext
import okhttp3.OkHttpClient
import okhttp3.Request

class ToDoRemoteDataSource(private val ok: OkHttpClient) {
 private val moshi = Moshi.Builder().add(MoshiInstantAdapter()).build()
 private val adapter: JsonAdapter<List<ToDoServerItem>> = moshi.adapter(
 Types.newParameterizedType(
 List::class.java,
 ToDoServerItem::class.java
)
)

 suspend fun load(url: String) = withContext(Dispatchers.IO) {
 val response = ok.newCall(Request.Builder().url(url).build()).execute()

 if (response.isSuccessful) {
 response.body?.let { adapter.fromJson(it.source()) }
 ?: throw IOException("No response body: $response")
 } else {
 throw IOException("Unexpected HTTP response code: ${response.code}")
 }
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRemoteDataSource.kt)
This class has a load() function that orchestrates our work for downloading
and parsing the JSON. This will involve network I/O, so load() is defined
as a suspend function and it uses withContext(Dispatchers.IO) to use the
coroutine system to run this code on a background thread.
First, we need to download the JSON, and for that, we use OkHttp. Our constructor
gets an OkHttpClient, which is our entry point for using OkHttp. load()
gets the URL of the JSON as a parameter. We then:

	Wrap that URL in an OkHttp Request object (Request.Builder().url(url).build())

	Tell OkHttp to create a Call object representing our request (newCall())

	Execute the HTTP request on the current thread (execute())

This will make the connection to the server and try to download the JSON. We
get a Response object back which (hopefully) contains our JSON along with
other bits of information from the Web service, such as an HTTP response
code (e.g., 200 for an “OK” response). We check to see if the Response
is successful by checking the isSuccessful property. If it was not successful,
we throw an exception indicating the nature of the problem (e.g., our URL
is wrong and we got a 404 response from the server).
We then check to see if the response has a body (body()) — this represents
the JSON itself. If, for some reason, we do not have a body, we throw an
exception to indicate that fact.
Finally, if we have a successful response and it has a body, we need to try to
parse the JSON. For that, we use Moshi. Our ToDoRemoteDataSource has a moshi
property which is a Moshi object, created using Moshi.Builder. In our case,
we teach Moshi how to handle Calendar properties by adding our MoshiInstantAdapter()
to the Moshi instance.
By and large, Moshi is a series of adapter classes. Some we write ourselves, such
as MoshiInstantAdapter(). Some are code-generated for us at compile time, such
as the adapter for ToDoServerItem that we requested via the
@JsonClass(generateAdapter = true) annotation that we placed on the ToDoServerItem
class. And some are code-generated for us at runtime, such as the adapter property
that we have in ToDoRemoteDataSource. That builds a JsonAdapter that knows
how to parse JSON into a List of ToDoServerItem objects. In load(),
we pass our JSON (source() called on the response.body() object) to this JsonAdapter,
and it will return our List of ToDoRemoteDataSource objects… or will throw
an exception is there is some parsing problem.
Kotlin does not use Java-style checked exceptions, but it is obvious that we
have multiple possible exceptions coming from load(). Given that we are attempting
to download data from the Internet, there are lots of ways that this can go wrong,
all of which will lead to exceptions.
Step #5: Updating the Local Items
Now we need to integrate ToDoRemoteDataSource into the rest of the app.
ToDoRepository should be the one to do that, as a repository is supposed
to insulate the GUI code from this sort of external interaction.
So, ToDoRepository needs an instance of ToDoRemoteDataSource. We could have
ToDoRepository create its own instance, but it is better to use Koin — that way,
we can use a mock ToDoRemoteDataSource in testing.
So, in ToDoApp, add these two lines to the existing koinModule declaration:

 single { OkHttpClient.Builder().build() }
 single { ToDoRemoteDataSource(get()) }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
The first line creates a singleton instance of OkHttpClient (using an OkHttpClient.Builder),
while the second line creates a singleton instance of ToDoRemoteDataSource.
Next, add a ToDoRemoteDataSource to the ToDoRepository constructor:

class ToDoRepository(
 private val store: ToDoEntity.Store,
 private val appScope: CoroutineScope,
 private val remoteDataSource: ToDoRemoteDataSource
) {

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
That then requires us to update its corresponding code in the Koin configuration
in ToDoApp, adding a second get() call to pull in the ToDoRemoteDataSource:

 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope")),
 get()
)
 }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
The end goal is that we want to get these new to-do items into our database, if
those items are not there already. More importantly, if they are already
in our database, we want to leave the database alone, as we may have local changes
to the items that we do not want to overwrite. However, our save() function
in ToDoEntity.Store is set up to replace existing items:

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 suspend fun save(vararg entities: ToDoEntity)

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
That is great for user edits, but it is not what we want for our server-defined
items. So, add this importItems() function to ToDoEntity.Store:

 @Insert(onConflict = OnConflictStrategy.IGNORE)
 suspend fun importItems(entities: List<ToDoEntity>)

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
This has two differences when compared with save():

	It uses OnConflictStrategy.IGNORE to say “if this item already exists based on the
primary key, skip the insert operation for that item”

	It uses a List of entities rather than varargs

The function is named importItems(), rather than just import(), because import
is a keyword in Java/Kotlin. While we can still have an import() function, we cannot
have fields or properties named import. To avoid this sort of collision, we are
using importItems as the name of this function instead of import.
To use importItems(), we need a way to map ToDoServerItem objects to ToDoEntity objects.
So, add this toEntity() function to ToDoServerItem:

 fun toEntity(): ToDoEntity {
 return ToDoEntity(
 id = id,
 description = description,
 isCompleted = completed,
 notes = notes,
 createdOn = createdOn
)
 }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoServerItem.kt)
This just does a property-level mapping of the ToDoServerItem to the corresponding
ToDoEntity definition.
Now, we can glue all of this together. Add this importItems() function to ToDoRepository:

 suspend fun importItems(url: String) {
 withContext(appScope.coroutineContext) {
 store.importItems(remoteDataSource.load(url).map { it.toEntity() })
 }
 }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
Here, we:

	Take a URL to our JSON as a parameter

	Use the ToDoRemoteDataSource to get the list of ToDoServerItem objects

	Use map() and toEntity() to convert that list into a list of ToDoEntity objects

	Use importItems() on ToDoEntity.Store to insert any new items into our database, skipping
existing ones

Since both load() and importItems() (on ToDoEntity.Store) are suspend
functions, we use suspend on importItems() in ToDoRepository. And, we use our appScope
so the import will proceed even if the user exits our UI while that import is going on.
So, now our repository knows how to get items and import them into our database.
Step #6: Fixing the Existing Tests
At this point, some of our tests are broken, due to changes to the ToDoRepository
constructor.
In RosterListFragmentTest (in the androidTest/ source set), in the setUp()
function, replace our existing ToDoRepository setup with:

 repo = ToDoRepository(
 db.todoStore(),
 appScope,
 ToDoRemoteDataSource(OkHttpClient())
)

(from T32-Internet/ToDo/app/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)
This creates a valid ToDoRemoteDataSource, using a one-off copy of an OkHttpClient.
Since we are not testing the import process here, these objects will not be used — they
are just here to satisfy the compiler.
Then, in ToDoRepositoryTest (in the androidTest/ source set), add a new property for an
implementation of ToDoRemoteDataSource:

 private val remoteDataSource = ToDoRemoteDataSource(OkHttpClient())

(from T32-Internet/ToDo/app/src/androidTest/java/com/commonsware/todo/repo/ToDoRepositoryTest.kt)
We can use a real implementation of ToDoRemoteDataSource and OkHttpClient
here, as neither of those depend on Android — they work fine in a regular
Kotlin/JVM environment.
Then, modify each underTest in ToDoRepositoryTest to pass that ToDoRemoteDataSource to our ToDoRepository
constructor:

 val underTest = ToDoRepository(db.todoStore(), this, remoteDataSource)

(from T32-Internet/ToDo/app/src/androidTest/java/com/commonsware/todo/repo/ToDoRepositoryTest.kt)
There are three of these, one for each test function.
And, if you run RosterListFragmentTest and ToDoRepositoryTest now, they should pass.
Step #7: Retrieving Our Preference
All through this work, we have been passing around a URL as a parameter.
We are getting the URL from the user in our PrefsFragment, but we need a way
to get that value (or a default value) into our main code. And, since this involves
disk I/O, we should set up another repository with a suspend function that can
handle loading that data for us.
Right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
PrefsRepository, and choose “Class” for the kind. Press Enter or Return to create the class.
Then, replace the class contents with:

package com.commonsware.todo.repo

import android.content.Context
import androidx.preference.PreferenceManager
import com.commonsware.todo.R
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.withContext

class PrefsRepository(context: Context) {
 private val prefs = PreferenceManager.getDefaultSharedPreferences(context)
 private val webServiceUrlKey = context.getString(R.string.web_service_url_key)
 private val defaultWebServiceUrl =
 context.getString(R.string.web_service_url_default)

 suspend fun loadWebServiceUrl(): String = withContext(Dispatchers.IO) {
 prefs.getString(webServiceUrlKey, defaultWebServiceUrl) ?: defaultWebServiceUrl
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt)
Given a Context constructor parameter, we set up three properties:

	
prefs, which is the SharedPreferences object that is used by our PreferenceScreen

	
webServiceUrlKey, which is the name of the preference that we want

	
defaultWebServiceUrl, which is the default URL to use, if the user did not override
it in the PrefsFragment

SharedPreferences gives us read/write access to the preferences. Those preferences
are stored on disk in an XML file. The first time we try reading (or writing)
a preference, the SharedPreferences will load that XML file into memory.
Therefore, the loadWebServiceUrl() function is a suspend function, so we ensure
that loading and parsing that XML happens on a background thread.
To read a preference, you call a typed getter method, such as getString(),
on the SharedPreferences object. This takes two parameters:

	The key under which the preference is stored, which should match the key that
you specified in your PreferenceScreen; and

	The default value to return if the user has not supplied a preference value yet
via PrefsFragment

getString() is marked as potentially returning null. That is because you
could pass null as the default value, in which case getString() will return
null if there is no value for the preference defined yet. getString() should
not return null if you provide a non-null default value… but the Kotlin
compiler has no way of knowing this. Since we need some URL to try, loadWebServiceUrl()
is set up to return String, not String?. So we cannot just return the
String? that we get back from getString(). We could use the Kotlin !! operator
to force the type to be non-nullable. Here, we use the Elvis operator to say
“OK, if getString() returns null unexpectedly, use our default value”.
Then, go into ToDoApp and add another line to our module closure:

 single { PrefsRepository(androidContext()) }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This will make a PrefsRepository available to other components via Koin.
Step #8: Offering the Download Option
At this point, ToDoRepository knows how to import JSON-encoded to-do items
retrieved from a URL, and PrefsRepository knows how to give us that URL.
Now, we need to add a way for the user to trigger this work — in our case, we will
put an option in RosterListFragment for that.
So, let’s update RosterMotor to be able to import our to-do items. First, update
the RosterMotor constructor to take a PrefsRepository along with all of its
other parameters:

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport,
 private val context: Application,
 private val appScope: CoroutineScope,
 private val prefs: PrefsRepository
) : ViewModel() {

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
That will also require us to add another get() to the line in ToDoApp where
we are creating our RosterMotor instances:

 viewModel {
 RosterMotor(
 get(),
 get(),
 androidApplication(),
 get(named("appScope")),
 get()
)
 }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Then, add this function to RosterMotor:

 fun importItems() {
 viewModelScope.launch {
 repo.importItems(prefs.loadWebServiceUrl())
 }
 }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
This just calls loadWebServiceUrl() on our PrefsRepository and passes the result
to importItems() on the ToDoRepository. Since both of those are suspend functions,
that code is wrapped in a viewModelScope coroutine. We do not need to do anything
here to update our viewstate, though — Room will deliver fresh results to us after
the import, the same way it does after EditFragment modifies our data.
Now, we need to arrange to call that importItems() function… triggered by yet
another app bar item.
Right-click over res/drawable/
in the project tree and choose “New” > “Vector Asset” from the context menu.
This brings up the Vector Asset Wizard. There, click the “Icon” button and search for download.
Choose the “cloud download” icon and click “OK” to close up the icon selector. Change
the icon’s name to ic_download. Then,
click “Next” and “Finish” to close up the wizard and set up our icon.
If the icon selector did not open, that may be due to this Arctic Fox bug.
Instead, just close up the Vector Asset wizard, and download
this file
into res/drawable instead. That is the desired icon, already set up for you.
Open up the res/menu/actions_roster.xml resource file, and switch to
the graphical designer. Drag an “Item” from the “Palette” view into the Component
Tree, slotting it after the other items.
In the Attributes view for this new item, assign it an ID of “importItems”.
Then, choose “never” for the “showAsAction” option.
Next,
click on the “O” button next to the “icon” field. This will bring up an
drawable resource selector.
Click on ic_download in the list of drawables, then click
OK to accept that choice of icon.
Then, click the “O” button next to the “title” field. As before, this brings
up a string resource selector. Click on “Add new resource” > “New string Value”
in the drop-down towards the top. In the dialog, fill in menu_import as the
resource name and “Import” as the resource value.
Finally, in RosterListFragment, add another branch to the when in
onOptionsItemSelected() to handle our importItems case:

 R.id.importItems -> {
 motor.importItems()
 return true
 }

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Now, if you run the app, you should see the new “Import” app bar item in the
overflow. If you click it, you will get a couple of new entries in your list
of to-do items, reflecting the JSON shown earlier in this chapter. And, if you
choose “Import” again… nothing will happen, as those items already exist
in the local database, so they are ignored on a subsequent import. This assumes
that your device has Internet access and the author of the book has not accidentally deleted
the “Web service” that we are trying to access.
Final Results
The top-level build.gradle file should look a bit like:

buildscript {
 ext.nav_version = '2.3.5'

 repositories {
 google()
 mavenCentral()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:7.0.2'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.5.21"
 classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

ext {
 koin_version = "3.1.2"
 moshi_version = "1.12.0"
 room_version = "2.3.0"
}

(from T32-Internet/ToDo/build.gradle)
app/build.gradle should contain:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }

 packagingOptions {
 exclude 'META-INF/AL2.0'
 exclude 'META-INF/LGPL2.1'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation "androidx.preference:preference-ktx:1.1.1"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "com.github.jknack:handlebars:4.1.2"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 implementation "com.squareup.okhttp3:okhttp:4.9.1"
 implementation "com.squareup.moshi:moshi:$moshi_version"
 kapt "com.squareup.moshi:moshi-kotlin-codegen:$moshi_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
}

(from T32-Internet/ToDo/app/build.gradle)
The manifest overall should resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.todo">

 <uses-permission android:name="android.permission.INTERNET" />

 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:xlargeScreens="true" />

 <application
 android:name=".ToDoApp"
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ToDo">
 <activity
 android:name=".ui.AboutActivity"
 android:exported="true" />
 <activity
 android:name=".ui.MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider
 android:name="androidx.core.content.FileProvider"
 android:authorities="${applicationId}.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/provider_paths" />
 </provider>
 </application>

</manifest>

(from T32-Internet/ToDo/app/src/main/AndroidManifest.xml)
Our new ToDoServerItem.kt should contain:

package com.commonsware.todo.repo

import android.annotation.SuppressLint
import com.squareup.moshi.FromJson
import com.squareup.moshi.Json
import com.squareup.moshi.JsonClass
import com.squareup.moshi.ToJson
import java.time.Instant
import java.time.format.DateTimeFormatter

@JsonClass(generateAdapter = true)
data class ToDoServerItem(
 val description: String,
 val id: String,
 val completed: Boolean,
 val notes: String,
 @Json(name = "created_on") val createdOn: Instant
) {
 fun toEntity(): ToDoEntity {
 return ToDoEntity(
 id = id,
 description = description,
 isCompleted = completed,
 notes = notes,
 createdOn = createdOn
)
 }
}

private val FORMATTER = DateTimeFormatter.ISO_INSTANT

class MoshiInstantAdapter {
 @ToJson
 fun toJson(date: Instant) = FORMATTER.format(date)

 @FromJson
 fun fromJson(dateString: String): Instant =
 FORMATTER.parse(dateString, Instant::from)
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoServerItem.kt)
ToDoRepository should resemble:

package com.commonsware.todo.repo

import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.withContext

enum class FilterMode { ALL, OUTSTANDING, COMPLETED }

class ToDoRepository(
 private val store: ToDoEntity.Store,
 private val appScope: CoroutineScope,
 private val remoteDataSource: ToDoRemoteDataSource
) {
 fun items(filterMode: FilterMode = FilterMode.ALL): Flow<List<ToDoModel>> =
 filteredEntities(filterMode).map { all -> all.map { it.toModel() } }

 private fun filteredEntities(filterMode: FilterMode) = when (filterMode) {
 FilterMode.ALL -> store.all()
 FilterMode.OUTSTANDING -> store.filtered(isCompleted = false)
 FilterMode.COMPLETED -> store.filtered(isCompleted = true)
 }

 fun find(id: String?): Flow<ToDoModel?> = store.find(id).map { it?.toModel() }

 suspend fun save(model: ToDoModel) {
 withContext(appScope.coroutineContext) {
 store.save(ToDoEntity(model))
 }
 }

 suspend fun delete(model: ToDoModel) {
 withContext(appScope.coroutineContext) {
 store.delete(ToDoEntity(model))
 }
 }

 suspend fun importItems(url: String) {
 withContext(appScope.coroutineContext) {
 store.importItems(remoteDataSource.load(url).map { it.toEntity() })
 }
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt)
ToDoEntity should contain:

package com.commonsware.todo.repo

import androidx.room.*
import kotlinx.coroutines.flow.Flow
import java.time.Instant
import java.util.*

@Entity(tableName = "todos", indices = [Index(value = ["id"])])
data class ToDoEntity(
 val description: String,
 @PrimaryKey
 val id: String = UUID.randomUUID().toString(),
 val notes: String = "",
 val createdOn: Instant = Instant.now(),
 val isCompleted: Boolean = false
) {
 constructor(model: ToDoModel) : this(
 id = model.id,
 description = model.description,
 isCompleted = model.isCompleted,
 notes = model.notes,
 createdOn = model.createdOn
)

 fun toModel(): ToDoModel {
 return ToDoModel(
 id = id,
 description = description,
 isCompleted = isCompleted,
 notes = notes,
 createdOn = createdOn
)
 }

 @Dao
 interface Store {
 @Query("SELECT * FROM todos ORDER BY description")
 fun all(): Flow<List<ToDoEntity>>

 @Query("SELECT * FROM todos WHERE isCompleted = :isCompleted ORDER BY description")
 fun filtered(isCompleted: Boolean): Flow<List<ToDoEntity>>

 @Query("SELECT * FROM todos WHERE id = :modelId")
 fun find(modelId: String?): Flow<ToDoEntity?>

 @Insert(onConflict = OnConflictStrategy.REPLACE)
 suspend fun save(vararg entities: ToDoEntity)

 @Insert(onConflict = OnConflictStrategy.IGNORE)
 suspend fun importItems(entities: List<ToDoEntity>)

 @Delete
 suspend fun delete(vararg entities: ToDoEntity)
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt)
The repaired RosterListFragmentTest should look like:

package com.commonsware.todo.ui.roster

import androidx.test.core.app.ActivityScenario
import androidx.test.espresso.Espresso.onView
import androidx.test.espresso.assertion.ViewAssertions.matches
import androidx.test.espresso.matcher.ViewMatchers.hasChildCount
import androidx.test.espresso.matcher.ViewMatchers.withId
import androidx.test.platform.app.InstrumentationRegistry
import com.commonsware.todo.R
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRemoteDataSource
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.ui.MainActivity
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import kotlinx.coroutines.runBlocking
import okhttp3.OkHttpClient
import org.junit.Before
import org.junit.Test
import org.koin.core.context.loadKoinModules
import org.koin.dsl.module

class RosterListFragmentTest {
 private lateinit var repo: ToDoRepository
 private val items = listOf(
 ToDoModel("this is a test"),
 ToDoModel("this is another test"),
 ToDoModel("this is... wait for it... yet another test")
)

 @Before
 fun setUp() {
 val context = InstrumentationRegistry.getInstrumentation().targetContext
 val db = ToDoDatabase.newTestInstance(context)
 val appScope = CoroutineScope(SupervisorJob())

 repo = ToDoRepository(
 db.todoStore(),
 appScope,
 ToDoRemoteDataSource(OkHttpClient())
)

 loadKoinModules(module {
 single { repo }
 })

 runBlocking { items.forEach { repo.save(it) } }
 }

 @Test
 fun testListContents() {
 ActivityScenario.launch(MainActivity::class.java)

 onView(withId(R.id.items)).check(matches(hasChildCount(3)))
 }
}

(from T32-Internet/ToDo/app/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)
And the fixed ToDoRepositoryTest should contain:

package com.commonsware.todo.repo

import androidx.arch.core.executor.testing.InstantTaskExecutorRule
import androidx.test.ext.junit.runners.AndroidJUnit4
import androidx.test.platform.app.InstrumentationRegistry
import kotlinx.coroutines.flow.collect
import kotlinx.coroutines.flow.first
import kotlinx.coroutines.launch
import kotlinx.coroutines.test.runBlockingTest
import okhttp3.OkHttpClient
import org.hamcrest.Matchers.empty
import org.hamcrest.Matchers.equalTo
import org.hamcrest.collection.IsIterableContainingInOrder.contains
import org.hamcrest.MatcherAssert.assertThat
import org.junit.Rule
import org.junit.Test
import org.junit.runner.RunWith

@RunWith(AndroidJUnit4::class)
class ToDoRepositoryTest {
 @get:Rule
 val instantTaskExecutorRule = InstantTaskExecutorRule()

 private val context = InstrumentationRegistry.getInstrumentation().targetContext
 private val db = ToDoDatabase.newTestInstance(context)
 private val remoteDataSource = ToDoRemoteDataSource(OkHttpClient())

 @Test
 fun canAddItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this, remoteDataSource)
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results.size, equalTo(1))
 assertThat(results[0], empty())

 val testModel = ToDoModel("test model")

 underTest.save(testModel)

 assertThat(results.size, equalTo(2))
 assertThat(results[1], contains(testModel))
 assertThat(underTest.find(testModel.id).first(), equalTo(testModel))

 itemsJob.cancel()
 }

 @Test
 fun canModifyItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this, remoteDataSource)
 val testModel = ToDoModel("test model")
 val replacement = testModel.copy(notes = "This is the replacement")
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results[0], empty())

 underTest.save(testModel)

 assertThat(results[1], contains(testModel))

 underTest.save(replacement)

 assertThat(results[2], contains(replacement))

 itemsJob.cancel()
 }

 @Test
 fun canRemoveItems() = runBlockingTest {
 val underTest = ToDoRepository(db.todoStore(), this, remoteDataSource)
 val testModel = ToDoModel("test model")
 val results = mutableListOf<List<ToDoModel>>()

 val itemsJob = launch {
 underTest.items().collect { results.add(it) }
 }

 assertThat(results[0], empty())

 underTest.save(testModel)

 assertThat(results[1], contains(testModel))

 underTest.delete(testModel)

 assertThat(results[2], empty())

 itemsJob.cancel()
 }
}

(from T32-Internet/ToDo/app/src/androidTest/java/com/commonsware/todo/repo/ToDoRepositoryTest.kt)
The new PrefsRepository should be:

package com.commonsware.todo.repo

import android.content.Context
import androidx.preference.PreferenceManager
import com.commonsware.todo.R
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.withContext

class PrefsRepository(context: Context) {
 private val prefs = PreferenceManager.getDefaultSharedPreferences(context)
 private val webServiceUrlKey = context.getString(R.string.web_service_url_key)
 private val defaultWebServiceUrl =
 context.getString(R.string.web_service_url_default)

 suspend fun loadWebServiceUrl(): String = withContext(Dispatchers.IO) {
 prefs.getString(webServiceUrlKey, defaultWebServiceUrl) ?: defaultWebServiceUrl
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt)
ToDoApp should look like:

package com.commonsware.todo

import android.app.Application
import android.text.format.DateUtils
import com.commonsware.todo.repo.PrefsRepository
import com.commonsware.todo.repo.ToDoDatabase
import com.commonsware.todo.repo.ToDoRemoteDataSource
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import com.commonsware.todo.ui.SingleModelMotor
import com.commonsware.todo.ui.roster.RosterMotor
import com.github.jknack.handlebars.Handlebars
import com.github.jknack.handlebars.Helper
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import okhttp3.OkHttpClient
import org.koin.android.ext.koin.androidApplication
import org.koin.android.ext.koin.androidContext
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.context.startKoin
import org.koin.core.qualifier.named
import org.koin.dsl.module
import java.time.Instant

class ToDoApp : Application() {
 private val koinModule = module {
 single(named("appScope")) { CoroutineScope(SupervisorJob()) }
 single { ToDoDatabase.newInstance(androidContext()) }
 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope")),
 get()
)
 }
 single {
 Handlebars().apply {
 registerHelper("dateFormat", Helper<Instant> { value, _ ->
 DateUtils.getRelativeDateTimeString(
 androidContext(),
 value.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS, 0
)
 })
 }
 }
 single { RosterReport(androidContext(), get(), get(named("appScope"))) }
 single { OkHttpClient.Builder().build() }
 single { ToDoRemoteDataSource(get()) }
 single { PrefsRepository(androidContext()) }
 viewModel {
 RosterMotor(
 get(),
 get(),
 androidApplication(),
 get(named("appScope")),
 get()
)
 }
 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
RosterMotor, should contain:

package com.commonsware.todo.ui.roster

import android.app.Application
import android.content.Context
import android.net.Uri
import androidx.core.content.FileProvider
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.BuildConfig
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.PrefsRepository
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
import java.io.File

private const val AUTHORITY = BuildConfig.APPLICATION_ID + ".provider"

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false,
 val filterMode: FilterMode = FilterMode.ALL
)

sealed class Nav {
 data class ViewReport(val doc: Uri) : Nav()
 data class ShareReport(val doc: Uri) : Nav()
}

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport,
 private val context: Application,
 private val appScope: CoroutineScope,
 private val prefs: PrefsRepository
) : ViewModel() {
 private val _states = MutableStateFlow(RosterViewState())
 val states = _states.asStateFlow()
 private val _navEvents = MutableSharedFlow<Nav>()
 val navEvents = _navEvents.asSharedFlow()
 private var job: Job? = null

 init {
 load(FilterMode.ALL)
 }

 fun load(filterMode: FilterMode) {
 job?.cancel()

 job = viewModelScope.launch {
 repo.items(filterMode).collect {
 _states.emit(RosterViewState(it, true, filterMode))
 }
 }
 }

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

 fun saveReport(doc: Uri) {
 viewModelScope.launch {
 report.generate(_states.value.items, doc)
 _navEvents.emit(Nav.ViewReport(doc))
 }
 }

 fun shareReport() {
 viewModelScope.launch {
 saveForSharing()
 }
 }

 fun importItems() {
 viewModelScope.launch {
 repo.importItems(prefs.loadWebServiceUrl())
 }
 }

 private suspend fun saveForSharing() {
 withContext(Dispatchers.IO + appScope.coroutineContext) {
 val shared = File(context.cacheDir, "shared").also { it.mkdirs() }
 val reportFile = File(shared, "report.html")
 val doc = FileProvider.getUriForFile(context, AUTHORITY, reportFile)

 _states.value.let { report.generate(it.items, doc) }
 _navEvents.emit(Nav.ShareReport(doc))
 }
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
The actions_roster menu resource should resemble:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item
 android:id="@+id/filter"
 android:icon="@drawable/ic_filter"
 android:title="@string/menu_filter"
 app:showAsAction="ifRoom|withText">
 <menu>

 <group
 android:id="@+id/filter_group"
 android:checkableBehavior="single" >
 <item
 android:id="@+id/all"
 android:checked="true"
 android:title="@string/menu_filter_all" />
 <item
 android:id="@+id/completed"
 android:title="@string/menu_filter_completed" />
 <item
 android:id="@+id/outstanding"
 android:title="@string/menu_filter_outstanding" />
 </group>
 </menu>
 </item>
 <item
 android:id="@+id/add"
 android:icon="@drawable/ic_add"
 android:title="@string/menu_add"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/save"
 android:icon="@drawable/ic_save"
 android:title="@string/menu_save"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/share"
 android:icon="@drawable/ic_share"
 android:title="@string/menu_share"
 app:showAsAction="ifRoom|withText" />
 <item
 android:id="@+id/importItems"
 android:icon="@drawable/ic_download"
 android:title="@string/menu_import"
 app:showAsAction="never" />
</menu>

(from T32-Internet/ToDo/app/src/main/res/menu/actions_roster.xml)
The strings resource should look like:

<resources>
 <string name="app_name">ToDo</string>
 <string name="msg_empty">Click the + icon to add a todo item!</string>
 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>
 <string name="menu_about">About</string>
 <string name="is_completed">Item is completed</string>
 <string name="created_on">Created on:</string>
 <string name="menu_edit">Edit</string>
 <string name="desc">Description</string>
 <string name="notes">Notes</string>
 <string name="menu_save">Save</string>
 <string name="menu_add">Add</string>
 <string name="menu_delete">Delete</string>
 <string name="menu_filter">Filter</string>
 <string name="menu_filter_all">All</string>
 <string name="menu_filter_completed">Completed</string>
 <string name="menu_filter_outstanding">Outstanding</string>
 <string name="oops">Sorry! Something went wrong!</string>
 <string name="report_template"><![CDATA[<h1>To-Do Items</h1>
{{#this}}
<h2>{{description}}</h2>
<p>{{#completed}}COMPLETED — {{/completed}}Created on: {{dateFormat createdOn}}</p>
<p>{{notes}}</p>
{{/this}}
]]></string>
 <string name="menu_share">Share</string>
 <string name="pref_url_title">Web service URL</string>
 <string name="web_service_url_key">webServiceUrl</string>
 <string name="web_service_url_default">https://commonsware.com/AndExplore/2.0/items.json</string>
 <string name="settings">Settings</string>
 <string name="menu_import">Import</string>
</resources>

(from T32-Internet/ToDo/app/src/main/res/values/strings.xml)
And RosterListFragment should resemble:

package com.commonsware.todo.ui.roster

import android.content.Intent
import android.net.Uri
import android.os.Bundle
import android.util.Log
import android.view.*
import android.widget.Toast
import androidx.activity.result.contract.ActivityResultContracts
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

private const val TAG = "ToDo"

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private val menuMap = mutableMapOf<FilterMode, MenuItem>()
 private var binding: TodoRosterBinding? = null

 private val createDoc =
 registerForActivityResult(ActivityResultContracts.CreateDocument()) {
 motor.saveReport(it)
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.filterMode == FilterMode.ALL -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty_filtered)
 }
 else -> empty.visibility = View.GONE
 }
 }

 menuMap[state.filterMode]?.isChecked = true
 }
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.navEvents.collect { nav ->
 when (nav) {
 is Nav.ViewReport -> viewReport(nav.doc)
 is Nav.ShareReport -> shareReport(nav.doc)
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 menuMap.apply {
 put(FilterMode.ALL, menu.findItem(R.id.all))
 put(FilterMode.COMPLETED, menu.findItem(R.id.completed))
 put(FilterMode.OUTSTANDING, menu.findItem(R.id.outstanding))
 }

 menuMap[motor.states.value.filterMode]?.isChecked = true

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 R.id.all -> {
 item.isChecked = true
 motor.load(FilterMode.ALL)
 return true
 }
 R.id.completed -> {
 item.isChecked = true
 motor.load(FilterMode.COMPLETED)
 return true
 }
 R.id.outstanding -> {
 item.isChecked = true
 motor.load(FilterMode.OUTSTANDING)
 return true
 }
 R.id.save -> {
 saveReport()
 return true
 }
 R.id.share -> {
 motor.shareReport()
 return true
 }
 R.id.importItems -> {
 motor.importItems()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }

 private fun saveReport() {
 createDoc.launch("report.html")
 }

 private fun viewReport(uri: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_VIEW, uri)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
)
 }

 private fun shareReport(doc: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_SEND)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
 .setType("text/html")
 .putExtra(Intent.EXTRA_STREAM, doc)
)
 }

 private fun safeStartActivity(intent: Intent) {
 try {
 startActivity(intent)
 } catch (t: Throwable) {
 Log.e(TAG, "Exception starting $intent", t)
 Toast.makeText(requireActivity(), R.string.oops, Toast.LENGTH_LONG).show()
 }
 }
}

(from T32-Internet/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/build.gradle

	build.gradle

	app/src/main/AndroidManifest.xml

	app/src/main/java/com/commonsware/todo/repo/ToDoServerItem.kt

	app/src/main/java/com/commonsware/todo/repo/ToDoRemoteDataSource.kt

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

	app/src/main/java/com/commonsware/todo/repo/ToDoRepository.kt

	app/src/main/java/com/commonsware/todo/repo/ToDoEntity.kt

	app/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

	app/src/androidTest/java/com/commonsware/todo/repo/ToDoRepositoryTest.kt

	app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

	app/src/main/res/drawable/ic_download.xml

	app/src/main/res/menu/actions_roster.xml

	app/src/main/res/values/strings.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

Showing a Dialog
When stuff goes wrong, the user might like to know about it.
Roughly speaking, you have three major ways of informing the user of a problem
from your UI… besides simply crashing:

	You can show the error message in the current activity/fragment. This might
be directly in an existing layout, for example. This is good for advisory messages,
but it may be difficult to squeeze in a critical error message along with the
rest of your content.

	You can navigate to a completely different activity/fragment. This can be
a bit jarring for the user.

	You can display a dialog, having it float over top of your current activity
and any fragments.

In this chapter, we will explore that third option. If there is a problem when
importing the notes, we will display an error dialog, with options to cancel
or retry the import.
In Android, there are several ways to get the visual effect of a floating
dialog. We will take the most modern option, which is to use a DialogFragment.
As the name suggests, this is a fragment that knows how to render itself as a dialog.
The Navigation component has support for DialogFragment. There is even an option
to get a result from that dialog, such as whether the user opted to retry or
cancel the import. We will leverage that as part of our work here.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Adding a Stub Fragment
We need another fragment!
Rather than being tied to a specific piece of business logic, like displaying a to-do
item, this error fragment can be more “general purpose”. Plus, for our limited needs,
we can skip giving it a viewmodel. So, we can just place it in
the ui sub-package rather than create a brand-new package for it.
Right-click over the
com.commonsware.todo.ui package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
ErrorDialogFragment, and choose “Class” for the kind. Press Enter or Return to create the class.
Then, replace the class declaration with:

package com.commonsware.todo.ui

import androidx.fragment.app.DialogFragment

class ErrorDialogFragment : DialogFragment() {
}

enum class ErrorScenario { Import, None }

Unlike our other fragments, we inherit from DialogFragment this time. Otherwise,
this stub is pretty much like the stubs of the other fragments that we created
several chapters ago.
We also define an ErrorScenario. This is another enum, akin to the FilterMode
that we created earlier. We will use this to allow users of ErrorDialogFragment
to indicate what “scenario” the error is about. This will be important for fragments
that might show multiple error dialogs and need to distinguish one from another for
handling “retry” requests. Import represents an error in importing data, while
None means that there is no current error.
Step #2: Updating the Navigation Graph
Just like our other fragments, we need to add ErrorDialogFragment to our navigation
graph. For now, we will only use ErrorDialogFragment from RosterListFragment, so
we can set up a more conventional action, rather than the global action that
we used for PrefsFragment.
Open up res/navigation/nav_graph.xml and click the add-destination toolbar
button (rectangle with green plus sign in the corner). You should see ErrorDialogFragment as
an option in the destination drop-down. Click on it, then drag its tile to some clean spot in the diagram.
Next, click on the errorDialogFragment tile, if it is not already selected. In the “Attributes” pane,
add three arguments, using the “+” button in the “Arguments” section:

	
title as a string

	
message as a string

	
scenario as an ErrorScenario

For the scenario argument, you will need to choose “Custom Enum…” from
the “Type” drop-down list in the “Add Argument” dialog:

[image: Custom Enum Option in Navigation Argument]

Figure 213: Custom Enum Option in Navigation Argument
That, in turn, will pop up a “Select Class” dialog for you to choose your
desired enum from:

[image: Select Class Dialog]

Figure 214: Select Class Dialog
Choose ErrorScenario from the list and click “OK” to use that for the “Type”.
Then, drag an arrow from the rosterListFragment tile to the errorDialogFragment
tile, to set up an action between them. With that arrow selected, in the “Attributes”
pane, change the “id” to showError.
Finally, build the app, so the Navigation code-generated classes get created.
Step #3: Defining the Dialog Content
We can now start to use those arguments to populate the dialog. There
are a couple of approaches to defining what the dialog contains. We will
take the simplest one: use AlertDialog.Builder to create a standard
Android dialog.
With that in mind, add args and onCreateDialog() to ErrorDialogFragment:

class ErrorDialogFragment : DialogFragment() {
 private val args: ErrorDialogFragmentArgs by navArgs()

 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog {
 return AlertDialog.Builder(requireActivity())
 .setTitle(args.title)
 .setMessage(args.message)
 .setPositiveButton(R.string.retry) { _, _ -> onRetryRequest() }
 .setNegativeButton(R.string.cancel) { _, _ -> }
 .create()
 }

 private fun onRetryRequest() {
 // TODO
 }
}

The args property is like those we have in DisplayFragment and EditFragment, so we
can get the values sent to us by whatever fragment wants to display the dialog.
onCreateDialog() needs to return a Dialog object; AlertDialog is a subclass
of Dialog. Dialog knows how to create floating windows, while AlertDialog
styles one of those in a typical Android fashion.
So, we create an AlertDialog.Builder, configure it, and use build() to create
the AlertDialog to return.
The configuration includes:

	Setting the title and message from our arguments

	Setting the captions of the positive and negative buttons to a pair
of string resources, and tying the positive button click to an onRetryRequest()
stub function

Those string resources do not exist yet, so you will need to add them:

 <string name="cancel">Cancel</string>
 <string name="retry">Retry</string>

(from T33-Dialog/ToDo/app/src/main/res/values/strings.xml)
We will fill in that onRetryRequest() function a bit later in this chapter.
Step #4: Emitting Errors From the Motor
The point behind the dialog is to tell the user when there is a problem in importing
to-do items. That implies that something knows to show the dialog when that occurs.
One way to do that is to have the viewmodel tell its activity or fragment about errors.
In this case, that would be RosterMotor telling RosterListFragment about errors.
So, add these properties to RosterMotor:

 private val _errorEvents = MutableSharedFlow<ErrorScenario>()
 val errorEvents = _errorEvents.asSharedFlow()

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
These are similar to the _navEvents/navEvents pair that we set up earlier.
However, they emit an ErrorScenario instead.
Then, revise importItems() on RosterMotor to be:

 fun importItems() {
 viewModelScope.launch {
 try {
 repo.importItems(prefs.loadWebServiceUrl())
 } catch (ex: Exception) {
 Log.e("ToDo", "Exception importing items", ex)
 _errorEvents.emit(ErrorScenario.Import)
 }
 }
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
Now we wrap our importItems() call on ToDoRepository() in a try/catch
block. If we get an error from the repository, we log it to Logcat using Log.e() and emit
an Import scenario on our new channel.
Step #5: Reacting to Errors
Now we can have RosterListFragment react to those errors and show the dialog.
First, though, we need a title and message to display in the dialog. Add these
two string resources to res/values/strings.xml:

 <string name="import_error_title">Import Failure</string>
 <string name="import_error_message">Something went wrong with the import!</string>

(from T33-Dialog/ToDo/app/src/main/res/values/strings.xml)
Next, in RosterListFragment, add this handleImportError() function:

 private fun handleImportError() {
 findNavController().navigate(
 RosterListFragmentDirections.showError(
 getString(R.string.import_error_title),
 getString(R.string.import_error_message),
 ErrorScenario.Import
)
)
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
This uses the Navigation component to navigate to the ErrorDialogFragment,
using RosterListFragmentDirections and its code-generated showError()
function. We pass showError() our two new strings plus ErrorScenario.Import.
Then, add this block of code to the bottom of onViewCreated() in RosterListFragment:

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.errorEvents.collect { error ->
 when (error) {
 ErrorScenario.Import -> handleImportError()
 }
 }
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
This observes the new errorEvents SharedFlow from our motor and, when we receive an Import
error, calls handleImportError(). This structure sets us up to be able to handle other
types of ErrorScenario, if and when we add any.
Step #6: Responding to Input
So now we are able to display the dialog. However, we still need to find out if the
user clicks the “Retry” button, so we can retry the import operation.
For that, first, add this companion object to ErrorDialogFragment:

 companion object {
 const val KEY_RETRY = "retryRequested"
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/ErrorDialogFragment.kt)
This just sets up a constant. We use a companion object here so other classes — such as
RosterListFragment — have access to the constant while also keeping it tied to
ErrorDialogFragment. If we were only using this constant inside of ErrorDialogFragment,
we could have just used a private const val file-level property, as we have before.
Then, modify onRetryRequest() to be:

 private fun onRetryRequest() {
 findNavController()
 .previousBackStackEntry?.savedStateHandle?.set(KEY_RETRY, args.scenario)
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/ErrorDialogFragment.kt)
This strange construction is how we can get a result out of this dialog
and over to RosterListFragment as the one that displayed the dialog. Here, we:

	Get our NavController, for access to the Navigation component APIs

	Find the BackStackEntry corresponding to whatever it was that displayed this dialog

	Get a SavedStateHandle for that BackStackEntry, where SavedStateHandle is
a bit like a HashMap (key-value store of data)

	Set the KEY_RETRY value in that state to be the ErrorScenario that was passed into
us via the navigation arguments

With this in place, when the user clicks the “Retry” button, we update this SavedStateHandle
with the ErrorScenario that triggered the dialog.
Over on RosterListFragment, we can now find out about changes in the KEY_RETRY
value and use that to retry the import.
First, though, add this clearImportError() function to RosterListFragment:

 private fun clearImportError() {
 findNavController()
 .getBackStackEntry(R.id.rosterListFragment)
 .savedStateHandle
 .set(ErrorDialogFragment.KEY_RETRY, ErrorScenario.None)
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Then, add this block of code to the bottom
of onViewCreated():

 findNavController()
 .getBackStackEntry(R.id.rosterListFragment)
 .savedStateHandle
 .getLiveData<ErrorScenario>(ErrorDialogFragment.KEY_RETRY)
 .observe(viewLifecycleOwner) { retryScenario ->
 when (retryScenario) {
 ErrorScenario.Import -> {
 clearImportError()
 motor.importItems()
 }
 }
 }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
Here, we:

	Get our NavController, for access to the Navigation component APIs

	Find our own BackStackEntry, based upon our destination ID (R.id.rosterListFragment)

	Get the SavedStateHandle for that BackStackEntry

	Observe a LiveData of objects associated with KEY_RETRY, so we find out when
that value changes

	If we get an Import error, clear it, then retry the import using motor.importItems()

LiveData is a bit like StateFlow. It represents a source of states, in this case the states
of our KEY_RETRY value. Our observe() lambda expression will be invoked when that state
changes. LiveData is part of the Jetpack and works with both Java and Kotlin, whereas
StateFlow is a Kotlin-specific construct. Jetpack Navigation works with both Java
and Kotlin, so it uses LiveData for consistency between the two languages.

You can learn more about LiveData in the "Thinking About Threads and LiveData" chapter of
Elements of Android Jetpack!

So, when the user clicks the “Retry” button, the ErrorDialogFragment emits an ErrorScenario,
which RosterListFragment picks up and uses to handle whatever needs to be retried.
clearImportError() addresses the fact that these results are delivered by LiveData.
LiveData intrinsically is a cache. If we do not remove this value from our SavedStateHandle,
we can wind up with the error being re-delivered to us… erroneously:

	Get the error and see the dialog

	Click “Retry”, and wind up getting the error again

	Click “Cancel” to dismiss the dialog

	Navigate to another screen (e.g., choose Settings from the overflow menu)

	Navigate back to RosterListFragment

	When we start observing the LiveData again, we get the error re-delivered to us,
so we retry once more, unexpectedly

remove() on the SavedStateHandle sets our value to None, so we skip over the Import
error logic and avoid this infinite loop.
Step #7: Trying It Out
To see this dialog in action:

	Run the revised app

	Choose Settings from the overflow menu and edit the Web service URL to something
that is invalid (e.g., add an x on the end)

	Choose Import from the overflow menu

At this point, you should get our AlertDialog:

[image: Error Dialog]

Figure 215: Error Dialog
If you click “Retry”, you will get the dialog again right away, as nothing
has changed about our error conditions — we still have the incorrect URL.
If you click “Cancel” and revert the change to the URL that you introduced,
then import again, it should succeed and you should not see the dialog.
We are going to be importing to-do items some more in the next tutorial, so if
you did modify the URL, be sure to change it back to a valid value before continuing.
Final Results
Our completed ErrorDialogFragment should look like:

package com.commonsware.todo.ui

import android.app.Dialog
import android.os.Bundle
import androidx.appcompat.app.AlertDialog
import androidx.fragment.app.DialogFragment
import androidx.navigation.fragment.findNavController
import androidx.navigation.fragment.navArgs
import com.commonsware.todo.R

class ErrorDialogFragment : DialogFragment() {
 companion object {
 const val KEY_RETRY = "retryRequested"
 }

 private val args: ErrorDialogFragmentArgs by navArgs()

 override fun onCreateDialog(savedInstanceState: Bundle?): Dialog {
 return AlertDialog.Builder(requireActivity())
 .setTitle(args.title)
 .setMessage(args.message)
 .setPositiveButton(R.string.retry) { _, _ -> onRetryRequest() }
 .setNegativeButton(R.string.cancel) { _, _ -> }
 .create()
 }

 private fun onRetryRequest() {
 findNavController()
 .previousBackStackEntry?.savedStateHandle?.set(KEY_RETRY, args.scenario)
 }
}

enum class ErrorScenario { Import, None }

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/ErrorDialogFragment.kt)
The updated navigation graph (nav_graph.xml) should resemble:

<?xml version="1.0" encoding="utf-8"?>
<navigation xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/nav_graph.xml"
 app:startDestination="@id/rosterListFragment">

 <fragment
 android:id="@+id/rosterListFragment"
 android:name="com.commonsware.todo.ui.roster.RosterListFragment"
 android:label="@string/app_name">
 <action
 android:id="@+id/displayModel"
 app:destination="@id/displayFragment" />
 <action
 android:id="@+id/createModel"
 app:destination="@id/editFragment" >
 <argument
 android:name="modelId"
 android:defaultValue="@null" />
 </action>
 <action
 android:id="@+id/showError"
 app:destination="@id/errorDialogFragment" />
 </fragment>
 <fragment
 android:id="@+id/displayFragment"
 android:name="com.commonsware.todo.ui.display.DisplayFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string" />
 <action
 android:id="@+id/editModel"
 app:destination="@id/editFragment" />
 </fragment>
 <fragment
 android:id="@+id/editFragment"
 android:name="com.commonsware.todo.ui.edit.EditFragment"
 android:label="@string/app_name" >
 <argument
 android:name="modelId"
 app:argType="string"
 app:nullable="true" />
 </fragment>
 <fragment
 android:id="@+id/prefsFragment"
 android:name="com.commonsware.todo.ui.prefs.PrefsFragment"
 android:label="@string/settings" />
 <action android:id="@+id/editPrefs" app:destination="@id/prefsFragment" />
 <dialog
 android:id="@+id/errorDialogFragment"
 android:name="com.commonsware.todo.ui.ErrorDialogFragment"
 android:label="ErrorDialogFragment" >
 <argument
 android:name="title"
 app:argType="string" />
 <argument
 android:name="message"
 app:argType="string" />
 <argument
 android:name="scenario"
 app:argType="com.commonsware.todo.ui.ErrorScenario" />
 </dialog>
</navigation>

(from T33-Dialog/ToDo/app/src/main/res/navigation/nav_graph.xml)
The strings.xml resource should now contain:

<resources>
 <string name="app_name">ToDo</string>
 <string name="msg_empty">Click the + icon to add a todo item!</string>
 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>
 <string name="menu_about">About</string>
 <string name="is_completed">Item is completed</string>
 <string name="created_on">Created on:</string>
 <string name="menu_edit">Edit</string>
 <string name="desc">Description</string>
 <string name="notes">Notes</string>
 <string name="menu_save">Save</string>
 <string name="menu_add">Add</string>
 <string name="menu_delete">Delete</string>
 <string name="menu_filter">Filter</string>
 <string name="menu_filter_all">All</string>
 <string name="menu_filter_completed">Completed</string>
 <string name="menu_filter_outstanding">Outstanding</string>
 <string name="oops">Sorry! Something went wrong!</string>
 <string name="report_template"><![CDATA[<h1>To-Do Items</h1>
{{#this}}
<h2>{{description}}</h2>
<p>{{#completed}}COMPLETED — {{/completed}}Created on: {{dateFormat createdOn}}</p>
<p>{{notes}}</p>
{{/this}}
]]></string>
 <string name="menu_share">Share</string>
 <string name="pref_url_title">Web service URL</string>
 <string name="web_service_url_key">webServiceUrl</string>
 <string name="web_service_url_default">https://commonsware.com/AndExplore/2.0/items.json</string>
 <string name="settings">Settings</string>
 <string name="menu_import">Import</string>
 <string name="cancel">Cancel</string>
 <string name="retry">Retry</string>
 <string name="import_error_title">Import Failure</string>
 <string name="import_error_message">Something went wrong with the import!</string>
</resources>

(from T33-Dialog/ToDo/app/src/main/res/values/strings.xml)
Our RosterMotor should now resemble:

package com.commonsware.todo.ui.roster

import android.app.Application
import android.content.Context
import android.net.Uri
import android.util.Log
import androidx.core.content.FileProvider
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.commonsware.todo.BuildConfig
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.PrefsRepository
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.repo.ToDoRepository
import com.commonsware.todo.report.RosterReport
import com.commonsware.todo.ui.ErrorScenario
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
import java.io.File

private const val AUTHORITY = BuildConfig.APPLICATION_ID + ".provider"

data class RosterViewState(
 val items: List<ToDoModel> = listOf(),
 val isLoaded: Boolean = false,
 val filterMode: FilterMode = FilterMode.ALL
)

sealed class Nav {
 data class ViewReport(val doc: Uri) : Nav()
 data class ShareReport(val doc: Uri) : Nav()
}

class RosterMotor(
 private val repo: ToDoRepository,
 private val report: RosterReport,
 private val context: Application,
 private val appScope: CoroutineScope,
 private val prefs: PrefsRepository
) : ViewModel() {
 private val _states = MutableStateFlow(RosterViewState())
 val states = _states.asStateFlow()
 private val _navEvents = MutableSharedFlow<Nav>()
 val navEvents = _navEvents.asSharedFlow()
 private val _errorEvents = MutableSharedFlow<ErrorScenario>()
 val errorEvents = _errorEvents.asSharedFlow()
 private var job: Job? = null

 init {
 load(FilterMode.ALL)
 }

 fun load(filterMode: FilterMode) {
 job?.cancel()

 job = viewModelScope.launch {
 repo.items(filterMode).collect {
 _states.emit(RosterViewState(it, true, filterMode))
 }
 }
 }

 fun save(model: ToDoModel) {
 viewModelScope.launch {
 repo.save(model)
 }
 }

 fun saveReport(doc: Uri) {
 viewModelScope.launch {
 report.generate(_states.value.items, doc)
 _navEvents.emit(Nav.ViewReport(doc))
 }
 }

 fun shareReport() {
 viewModelScope.launch {
 saveForSharing()
 }
 }

 fun importItems() {
 viewModelScope.launch {
 try {
 repo.importItems(prefs.loadWebServiceUrl())
 } catch (ex: Exception) {
 Log.e("ToDo", "Exception importing items", ex)
 _errorEvents.emit(ErrorScenario.Import)
 }
 }
 }

 private suspend fun saveForSharing() {
 withContext(Dispatchers.IO + appScope.coroutineContext) {
 val shared = File(context.cacheDir, "shared").also { it.mkdirs() }
 val reportFile = File(shared, "report.html")
 val doc = FileProvider.getUriForFile(context, AUTHORITY, reportFile)

 _states.value.let { report.generate(it.items, doc) }
 _navEvents.emit(Nav.ShareReport(doc))
 }
 }
}

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt)
Finally, our revised RosterListFragment should include:

package com.commonsware.todo.ui.roster

import android.content.Intent
import android.net.Uri
import android.os.Bundle
import android.util.Log
import android.view.*
import android.widget.Toast
import androidx.activity.result.contract.ActivityResultContracts
import androidx.fragment.app.Fragment
import androidx.lifecycle.lifecycleScope
import androidx.navigation.fragment.findNavController
import androidx.recyclerview.widget.DividerItemDecoration
import androidx.recyclerview.widget.LinearLayoutManager
import com.commonsware.todo.R
import com.commonsware.todo.databinding.TodoRosterBinding
import com.commonsware.todo.repo.FilterMode
import com.commonsware.todo.repo.ToDoModel
import com.commonsware.todo.ui.ErrorDialogFragment
import com.commonsware.todo.ui.ErrorScenario
import kotlinx.coroutines.flow.collect
import org.koin.androidx.viewmodel.ext.android.viewModel

private const val TAG = "ToDo"

class RosterListFragment : Fragment() {
 private val motor: RosterMotor by viewModel()
 private val menuMap = mutableMapOf<FilterMode, MenuItem>()
 private var binding: TodoRosterBinding? = null

 private val createDoc =
 registerForActivityResult(ActivityResultContracts.CreateDocument()) {
 motor.saveReport(it)
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setHasOptionsMenu(true)
 }

 override fun onCreateView(
 inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?
): View = TodoRosterBinding.inflate(inflater, container, false)
 .also { binding = it }
 .root

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val adapter = RosterAdapter(
 layoutInflater,
 onCheckboxToggle = { motor.save(it.copy(isCompleted = !it.isCompleted)) },
 onRowClick = ::display
)

 binding?.items?.apply {
 setAdapter(adapter)
 layoutManager = LinearLayoutManager(context)

 addItemDecoration(
 DividerItemDecoration(
 activity,
 DividerItemDecoration.VERTICAL
)
)
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.states.collect { state ->
 adapter.submitList(state.items)

 binding?.apply {
 loading.visibility = if (state.isLoaded) View.GONE else View.VISIBLE

 when {
 state.items.isEmpty() && state.filterMode == FilterMode.ALL -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty)
 }
 state.items.isEmpty() -> {
 empty.visibility = View.VISIBLE
 empty.setText(R.string.msg_empty_filtered)
 }
 else -> empty.visibility = View.GONE
 }
 }

 menuMap[state.filterMode]?.isChecked = true
 }
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.navEvents.collect { nav ->
 when (nav) {
 is Nav.ViewReport -> viewReport(nav.doc)
 is Nav.ShareReport -> shareReport(nav.doc)
 }
 }
 }

 viewLifecycleOwner.lifecycleScope.launchWhenStarted {
 motor.errorEvents.collect { error ->
 when (error) {
 ErrorScenario.Import -> handleImportError()
 }
 }
 }

 findNavController()
 .getBackStackEntry(R.id.rosterListFragment)
 .savedStateHandle
 .getLiveData<ErrorScenario>(ErrorDialogFragment.KEY_RETRY)
 .observe(viewLifecycleOwner) { retryScenario ->
 when (retryScenario) {
 ErrorScenario.Import -> {
 clearImportError()
 motor.importItems()
 }
 }
 }
 }

 override fun onDestroyView() {
 binding = null

 super.onDestroyView()
 }

 override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {
 inflater.inflate(R.menu.actions_roster, menu)

 menuMap.apply {
 put(FilterMode.ALL, menu.findItem(R.id.all))
 put(FilterMode.COMPLETED, menu.findItem(R.id.completed))
 put(FilterMode.OUTSTANDING, menu.findItem(R.id.outstanding))
 }

 menuMap[motor.states.value.filterMode]?.isChecked = true

 super.onCreateOptionsMenu(menu, inflater)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.add -> {
 add()
 return true
 }
 R.id.all -> {
 item.isChecked = true
 motor.load(FilterMode.ALL)
 return true
 }
 R.id.completed -> {
 item.isChecked = true
 motor.load(FilterMode.COMPLETED)
 return true
 }
 R.id.outstanding -> {
 item.isChecked = true
 motor.load(FilterMode.OUTSTANDING)
 return true
 }
 R.id.save -> {
 saveReport()
 return true
 }
 R.id.share -> {
 motor.shareReport()
 return true
 }
 R.id.importItems -> {
 motor.importItems()
 return true
 }
 }

 return super.onOptionsItemSelected(item)
 }

 private fun display(model: ToDoModel) {
 findNavController()
 .navigate(RosterListFragmentDirections.displayModel(model.id))
 }

 private fun add() {
 findNavController().navigate(RosterListFragmentDirections.createModel(null))
 }

 private fun saveReport() {
 createDoc.launch("report.html")
 }

 private fun viewReport(uri: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_VIEW, uri)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
)
 }

 private fun shareReport(doc: Uri) {
 safeStartActivity(
 Intent(Intent.ACTION_SEND)
 .setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION)
 .setType("text/html")
 .putExtra(Intent.EXTRA_STREAM, doc)
)
 }

 private fun safeStartActivity(intent: Intent) {
 try {
 startActivity(intent)
 } catch (t: Throwable) {
 Log.e(TAG, "Exception starting $intent", t)
 Toast.makeText(requireActivity(), R.string.oops, Toast.LENGTH_LONG).show()
 }
 }

 private fun handleImportError() {
 findNavController().navigate(
 RosterListFragmentDirections.showError(
 getString(R.string.import_error_title),
 getString(R.string.import_error_message),
 ErrorScenario.Import
)
)
 }

 private fun clearImportError() {
 findNavController()
 .getBackStackEntry(R.id.rosterListFragment)
 .savedStateHandle
 .set(ErrorDialogFragment.KEY_RETRY, ErrorScenario.None)
 }
}

(from T33-Dialog/ToDo/app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt)
What We Changed
The book’s GitLab repository contains
the entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/java/com/commonsware/todo/ui/ErrorDialogFragment.kt

	app/src/main/res/navigation/nav_graph.xml

	app/src/main/res/values/strings.xml

	app/src/main/java/com/commonsware/todo/ui/roster/RosterMotor.kt

	app/src/main/java/com/commonsware/todo/ui/roster/RosterListFragment.kt

Scheduling Work
Sometimes, we need to do work periodically, even at times when the user is not
using the app. Android has many ways to try to accomplish this, and most have problems.
That is because developers have a tendency to abuse this sort of capability (e.g.,
trying to do something every 5 seconds) in ways that drain the battery. Users get
very irritated when their battery level keeps plummeting when they are not using
their device. So, Google has made it increasingly more difficult to do this
sort of background work.
If your needs are fairly casual — do a small bit of work every so often, with
no particular concerns over the precise timing — WorkManager can handle the job.
With WorkManager, we describe the work that we want to do and under what
conditions that it should be done, including timing (e.g., every 15 minutes).
WorkManager takes care of the rest. WorkManager is not guaranteeing anything
about the timing, though, as Android tends to block background work after a while of
the device being idle, to conserve battery. But, for periodic work, WorkManager
is about as good as we can get nowadays, particularly for a purely device-side
solution.
In this tutorial, we will integrate WorkManager, to periodically import the
to-do items from our “Web service”.
This is a continuation of the work we did in the previous tutorial.
The book’s GitLab repository contains
the results of the previous tutorial
as well as
the results of completing the work in this tutorial.
Step #1: Defining a SwitchPreference
We need some way for the user to control whether this sort of periodic import
should be happening. Some users might like it, and some users might not.
(for this sample app, no users should like it, since it will keep importing the
same items over and over… but this is just a book sample)
One way to do that is to have another preference in our settings screen. In particular,
Android offers CheckBoxPreference and SwitchPreference for this sort of on/off
toggle.
We are going to need some string resources, as we did with the EditTextPreference.
So, switch over to res/values/strings.xml and add these two strings:

 <string name="pref_import_title">Import periodically</string>
 <string name="import_key">doPeriodicImport</string>

(from T34-Work/ToDo/app/src/main/res/values/strings.xml)
Then, open res/xml/prefs.xml in Android Studio, switch to the “Code”
view, and replace the XML with:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <EditTextPreference
 android:key="@string/web_service_url_key"
 android:selectAllOnFocus="true"
 android:title="@string/pref_url_title"
 app:defaultValue="@string/web_service_url_default" />
 <SwitchPreference
 android:defaultValue="false"
 android:key="@string/import_key"
 android:title="@string/pref_import_title" />
</PreferenceScreen>

(from T34-Work/ToDo/app/src/main/res/xml/prefs.xml)
This adds a SwitchPreference after our existing EditTextPreference.
As with the EditTextPreference, we have android:key, android:title, and
android:defaultValue attributes. The first two point to our new string resources.
And, we set the default value to false, so the user will need to opt into having
this periodic work occur.
Step #2: Observing Preference Changes
With our preference for the server URL, we do not need to do anything special
right at the moment the user makes a change. We just get the now-current value
of that URL when the user requests an import. With this new preference, though,
we need to find out in real time when the user flips that Switch, so we can either
schedule or cancel our periodic background import work.
To help with that, add this property to PrefsRepository:

 private val importKey = context.getString(R.string.import_key)

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt)
This pulls in the value of the doPeriodicImport string resource that we added
in the previous step.
Then, add this observeImportChanges() function:

 fun observeImportChanges() = channelFlow {
 val listener = SharedPreferences.OnSharedPreferenceChangeListener { _, key ->
 if (importKey == key) {
 offer(prefs.getBoolean(importKey, false))
 }
 }

 prefs.registerOnSharedPreferenceChangeListener(listener)
 awaitClose { prefs.unregisterOnSharedPreferenceChangeListener(listener) }
 }

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt)
SharedPreferences has a listener mechanism to find out when preference values get
changed, such as via our preference screen. You can call registerOnSharedPreferenceChangeListener(),
and your listener will be called with the keys that change as they change.
You can use the key to pull in the latest value for the preference and do something
with it. unregisterOnSharedPreferenceChangeListener() removes the listener.
observeImportChanges() wraps all of those up in a Flow, using the channelFlow()
factory function. Our listener will watch for changes to the preference identified
by our importKey resource. When we get a change, it will offer() that change, causing
it to be emitted by the Flow that we are creating. When the Flow is no longer being
collected, awaitClose() is called, and we unregister our listener.

You can learn more about channelFlow() in the "Bridging to Callback APIs" chapter of
Elements of Kotlin Coroutines!

Step #3: Adding the Dependency
As with the other Jetpack libraries that we have used, we need to add another
dependency to our ever-growing list of dependencies. So, add this line to the
dependencies closure of the app/build.gradle file:

 implementation "androidx.work:work-runtime-ktx:2.6.0"

(from T34-Work/ToDo/app/build.gradle)
This specifically pulls in a KTX version of the WorkManager library, so we can
better integrate WorkManager with Kotlin, specifically with coroutines.
Step #4: Creating a Stub Worker
Right-click over the
com.commonsware.todo.repo package in the java/ directory
and choose “New” > “Kotlin File/Class” from the context menu. For the name, fill in
ImportWorker, and choose “Class” for the kind. Press Enter or Return to create the class.
Then, replace the class declaration with:

package com.commonsware.todo.repo

import android.content.Context
import androidx.work.CoroutineWorker
import androidx.work.WorkerParameters

class ImportWorker(context: Context, params: WorkerParameters) :
 CoroutineWorker(context, params) {

 override suspend fun doWork() = TODO()
}

A “worker” wraps up our code that will do the work as requested by WorkManager.
So, ImportWorker will arrange to import our to-do items from our server.
Specifically, ImportWorker extends CoroutineWorker. A CoroutineWorker is a worker
that knows how to integrate with coroutines. We override a doWork() function
that does the work that we want. doWork() is a suspend function, and WorkManager
can arrange to do that work on a background thread using ordinary coroutines.
The CoroutineWorker constructor needs a Context and a WorkerParameters — the latter
contains information about the work that we are to perform and is used in advanced
WorkManager scenarios.
Right now, our ImportWorker would crash if we ran it, courtesy of the TODO()
function. We will fix that shortly.
Step #5: Injecting Into the Worker
To do the import, we need:

	The PrefsRepository, to get the URL to use; and

	The ToDoRepository, to perform the actual import

Elsewhere in the app, we get those from Koin. However, elsewhere in the app, we
tend to be working with either Koin-defined objects (e.g., repositories) or
common Android/Jetpack classes (Fragment, ViewModel, etc.). A CoroutineWorker
is none of those.
However, Koin still supports classes like CoroutineWorker (and our ImportWorker
subclass). To do this, just add KoinComponent as an interface to ImportWorker:

class ImportWorker(context: Context, params: WorkerParameters) :
 CoroutineWorker(context, params), KoinComponent {

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/ImportWorker.kt)
This lets us use by inject() property delegates to retrieve objects from Koin.
So, add these two properties to ImportWorker to pull in our repositories:

 private val repo: ToDoRepository by inject()
 private val prefs: PrefsRepository by inject()

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/ImportWorker.kt)
At runtime, by inject() will reach into the Koin object manager and retrieve
our desired objects.
Step #6: Doing the Work
To wrap up our ImportWorker implementation, replace the stub doWork() function with this one:

 override suspend fun doWork() = try {
 repo.importItems(prefs.loadWebServiceUrl())

 Result.success()
 } catch (ex: Exception) {
 Log.e("ToDo", "Exception importing items in doWork()", ex)
 Result.failure()
 }

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/ImportWorker.kt)
doWork() now does the same basic thing as our manual import logic in RosterMotor, except
that WorkManager provides the CoroutineScope.
doWork() needs to return a Result object. Result.success() and Result.failure() give
us Result objects representing those statuses, and so our doWork() returns one depending
upon whether or not we had an exception.
So, if WorkManager arranges to call doWork() on our ImportWorker, we will
import the to-do items from our server.
Step #7: Scheduling the Work
Of course, it would be nice if we actually taught WorkManager to call doWork() on our
ImportWorker. Otherwise, ImportWorker will be unused.
We want to teach WorkManager to check for new to-do items every so often. And that check
should be automatic — other than opting into the checks via our new SwitchPreference,
the use should not need to do anything else. So, one place we could add in the
WorkManager configuration would be ToDoApp, as it could watch for changes
in our SwitchPreference and update WorkManager to match.
This means that ToDoApp will not only need to configure Koin but to get objects from Koin.
To do that, we use the same KoinComponent approach that we did with ImportWorker. So,
add the KoinComponent interface to the ToDoApp declaration:

class ToDoApp : Application(), KoinComponent {

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
Now, ToDoApp() can use by inject(), the way ImportWorker did.
Then, add this line above the ToDoApp declaration:

private const val TAG_IMPORT_WORK = "doPeriodicImport"

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This sets up a constant String that we will reference shortly.
Next, add this function to ToDoApp:

 private fun scheduleWork() {
 val prefs: PrefsRepository by inject()
 val appScope: CoroutineScope by inject(named("appScope"))
 val workManager = WorkManager.getInstance(this)

 appScope.launch {
 prefs.observeImportChanges().collect {
 if (it) {
 val constraints = Constraints.Builder()
 .setRequiredNetworkType(NetworkType.CONNECTED)
 .build()
 val request =
 PeriodicWorkRequestBuilder<ImportWorker>(15, TimeUnit.MINUTES)
 .setConstraints(constraints)
 .addTag(TAG_IMPORT_WORK)
 .build()

 workManager.enqueueUniquePeriodicWork(
 TAG_IMPORT_WORK,
 ExistingPeriodicWorkPolicy.REPLACE,
 request
)
 } else {
 workManager.cancelAllWorkByTag(TAG_IMPORT_WORK)
 }
 }
 }
 }

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
This will require an extension function for collect():

import kotlinx.coroutines.flow.collect

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
We use by inject() to obtain our PrefsRepository and our appScope-named
CoroutineScope. We then get a WorkManager instance via the getInstance()
factory method.
Then, we use appScope to launch() a coroutine that calls collect() on the
Flow returned by observeImportChanges() on PrefsRepository. Each time
the SwitchPreference changes, our collect() lambda expression will be executed.
In there, we branch based on the Boolean value that we get, scheduling the work
if it is true (i.e., the switch was checked) and canceling the work if it is
false (i.e., the switch was unchecked).
To schedule the work, we need to establish some constraints, telling WorkManager
any requirements of our environment that should be met before bothering to have
us do the work. For that, we use Constraints.Builder. Our one constraint is that
we need an Internet connection, so we can reach our server. To specify that, we use
setRequiredNetworkType(NetworkType.CONNECTED) on the Constraints.Builder to say
that we need an active network connection. We then build() the resulting Constraints.
There are other possible constraints that we could set (e.g., the device must be idle),
but this all that we need.
We then create a PeriodicWorkRequest using a PeriodicWorkRequestBuilder.
A PeriodicWorkRequest represents what should be done and when it should be done.
In our case, we are saying that:

	Every 15 minutes ((15, TimeUnit.MINUTES))

	…and if the constraints are met (setConstraints(constraints))

	…invoke doWork() on our ImportWorker

	…and tag this work using that TAG_IMPORT_WORK value that we defined a moment ago

Then, to actually schedule the work, we call enqueueUniquePeriodicWork() on the
WorkManager instance. Here, “enqueue” means that we want to add this PeriodicWorkRequest to the
roster of work to be performed, and “unique” means “if there is already some work
with our unique name, resolve it using the supplied policy”. In our case, the unique
name is that same TAG_IMPORT_WORK value (though it could be something else if we
wanted), and the policy is REPLACE (so if we try scheduling a duplicate piece of work,
cancel the existing one).
Canceling the work when the switch is toggled off is much simpler: just call
cancelAllWorkByTag() supplying the tag used in the PeriodicWorkRequestBuilder.
Finally, modify onCreate() of ToDoApp to call scheduleWork() after
configuring Koin:

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }

 scheduleWork()
 }

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
The net effect is that when the app starts up, we start watching for changes
in the SwitchPreference, and we schedule or cancel work based on those changes.
Note that observeImportChanges() does not emit the existing value of the
SwitchPreference, only changes while the app is running. That’s fine, because
WorkManager periodic requests are durable and live after our process is terminated,
so we only need to teach WorkManager about changes in what we want the work to be.
Step #8: Trying It Out
Start by clearing out all to-do items, deleting them one at a time or uninstalling
and reinstalling the app. This will help make it easier for you to see the results.
If you run the app and tap on the “Settings” overflow menu item, you will see
our two preferences. In the previous tutorial, we had you temporarily put a bad
URL in the “Web service URL” preference — if you did not fix that, do so now.
Then, toggle the “Import periodically” switch to the on position, and use back
navigation to return to the to-do roster. You should see imported to-do items,
as WorkManager will do our work immediately, then again every 15 minutes (or thereabouts).
If you delete the imported items, exit out of the app, and return to the app
later, if enough time elapsed and you had an Internet connection, you should see
the imported items again, as our ImportWorker was asked to do its work again.
At this point, go back into “Settings” and uncheck the SwitchPreference, as you
really do not need to be making lots of requests for the same set of to-do items.
In a real app and a real Web service, the mix of to-do items might be changing
(e.g., the user used a desktop Web browser to add or remove items), and so importing
every so often might make sense.
Final Results
Our final res/values/strings.xml file should look like:

<resources>
 <string name="app_name">ToDo</string>
 <string name="msg_empty">Click the + icon to add a todo item!</string>
 <string name="msg_empty_filtered">Click the + icon to add a todo item, or change your filter to show other items</string>
 <string name="menu_about">About</string>
 <string name="is_completed">Item is completed</string>
 <string name="created_on">Created on:</string>
 <string name="menu_edit">Edit</string>
 <string name="desc">Description</string>
 <string name="notes">Notes</string>
 <string name="menu_save">Save</string>
 <string name="menu_add">Add</string>
 <string name="menu_delete">Delete</string>
 <string name="menu_filter">Filter</string>
 <string name="menu_filter_all">All</string>
 <string name="menu_filter_completed">Completed</string>
 <string name="menu_filter_outstanding">Outstanding</string>
 <string name="oops">Sorry! Something went wrong!</string>
 <string name="report_template"><![CDATA[<h1>To-Do Items</h1>
{{#this}}
<h2>{{description}}</h2>
<p>{{#completed}}COMPLETED — {{/completed}}Created on: {{dateFormat createdOn}}</p>
<p>{{notes}}</p>
{{/this}}
]]></string>
 <string name="menu_share">Share</string>
 <string name="pref_url_title">Web service URL</string>
 <string name="web_service_url_key">webServiceUrl</string>
 <string name="web_service_url_default">https://commonsware.com/AndExplore/2.0/items.json</string>
 <string name="settings">Settings</string>
 <string name="menu_import">Import</string>
 <string name="cancel">Cancel</string>
 <string name="retry">Retry</string>
 <string name="import_error_title">Import Failure</string>
 <string name="import_error_message">Something went wrong with the import!</string>
 <string name="pref_import_title">Import periodically</string>
 <string name="import_key">doPeriodicImport</string>
</resources>

(from T34-Work/ToDo/app/src/main/res/values/strings.xml)
And our updated res/xml/prefs.xml should resemble:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <EditTextPreference
 android:key="@string/web_service_url_key"
 android:selectAllOnFocus="true"
 android:title="@string/pref_url_title"
 app:defaultValue="@string/web_service_url_default" />
 <SwitchPreference
 android:defaultValue="false"
 android:key="@string/import_key"
 android:title="@string/pref_import_title" />
</PreferenceScreen>

(from T34-Work/ToDo/app/src/main/res/xml/prefs.xml)
The revised PrefsRepository should contain:

package com.commonsware.todo.repo

import android.content.Context
import android.content.SharedPreferences
import androidx.preference.PreferenceManager
import com.commonsware.todo.R
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.channels.awaitClose
import kotlinx.coroutines.flow.channelFlow
import kotlinx.coroutines.withContext

class PrefsRepository(context: Context) {
 private val prefs = PreferenceManager.getDefaultSharedPreferences(context)
 private val webServiceUrlKey = context.getString(R.string.web_service_url_key)
 private val defaultWebServiceUrl =
 context.getString(R.string.web_service_url_default)
 private val importKey = context.getString(R.string.import_key)

 suspend fun loadWebServiceUrl(): String = withContext(Dispatchers.IO) {
 prefs.getString(webServiceUrlKey, defaultWebServiceUrl)
 ?: defaultWebServiceUrl
 }

 fun observeImportChanges() = channelFlow {
 val listener = SharedPreferences.OnSharedPreferenceChangeListener { _, key ->
 if (importKey == key) {
 offer(prefs.getBoolean(importKey, false))
 }
 }

 prefs.registerOnSharedPreferenceChangeListener(listener)
 awaitClose { prefs.unregisterOnSharedPreferenceChangeListener(listener) }
 }
}

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt)
The latest app/build.gradle should resemble:

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'androidx.navigation.safeargs.kotlin'
 id 'kotlin-kapt'
}

android {
 compileSdk 31

 defaultConfig {
 applicationId "com.commonsware.todo"
 minSdk 21
 targetSdk 31
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }

 buildFeatures {
 viewBinding true
 }

 compileOptions {
 coreLibraryDesugaringEnabled true
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 kotlinOptions {
 jvmTarget = '1.8'
 }

 packagingOptions {
 exclude 'META-INF/AL2.0'
 exclude 'META-INF/LGPL2.1'
 }
}

dependencies {
 implementation 'androidx.core:core-ktx:1.6.0'
 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
 implementation "androidx.recyclerview:recyclerview:1.2.1"
 implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
 implementation "androidx.preference:preference-ktx:1.1.1"
 implementation "androidx.work:work-runtime-ktx:2.6.0"
 implementation 'com.google.android.material:material:1.4.0'
 implementation "io.insert-koin:koin-android:$koin_version"
 implementation "com.github.jknack:handlebars:4.1.2"
 implementation "androidx.room:room-runtime:$room_version"
 implementation "androidx.room:room-ktx:$room_version"
 implementation "com.squareup.okhttp3:okhttp:4.9.1"
 implementation "com.squareup.moshi:moshi:$moshi_version"
 kapt "com.squareup.moshi:moshi-kotlin-codegen:$moshi_version"
 kapt "androidx.room:room-compiler:$room_version"
 coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
 testImplementation 'junit:junit:4.13.2'
 testImplementation "org.mockito:mockito-inline:3.12.1"
 testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
 testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
 androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
 androidTestImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.5.1'
}

(from T34-Work/ToDo/app/build.gradle)
Our new ImportWorker should look like:

package com.commonsware.todo.repo

import android.content.Context
import android.util.Log
import androidx.work.CoroutineWorker
import androidx.work.WorkerParameters
import org.koin.core.component.KoinComponent
import org.koin.core.component.inject

class ImportWorker(context: Context, params: WorkerParameters) :
 CoroutineWorker(context, params), KoinComponent {

 private val repo: ToDoRepository by inject()
 private val prefs: PrefsRepository by inject()

 override suspend fun doWork() = try {
 repo.importItems(prefs.loadWebServiceUrl())

 Result.success()
 } catch (ex: Exception) {
 Log.e("ToDo", "Exception importing items in doWork()", ex)
 Result.failure()
 }
}

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/repo/ImportWorker.kt)
And our altered ToDoApp should contain:

package com.commonsware.todo

import android.app.Application
import android.text.format.DateUtils
import androidx.work.*
import com.commonsware.todo.repo.*
import com.commonsware.todo.report.RosterReport
import com.commonsware.todo.ui.SingleModelMotor
import com.commonsware.todo.ui.roster.RosterMotor
import com.github.jknack.handlebars.Handlebars
import com.github.jknack.handlebars.Helper
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.SupervisorJob
import kotlinx.coroutines.flow.collect
import kotlinx.coroutines.launch
import okhttp3.OkHttpClient
import org.koin.android.ext.koin.androidApplication
import org.koin.android.ext.koin.androidContext
import org.koin.android.ext.koin.androidLogger
import org.koin.androidx.viewmodel.dsl.viewModel
import org.koin.core.component.KoinComponent
import org.koin.core.component.inject
import org.koin.core.context.startKoin
import org.koin.core.qualifier.named
import org.koin.dsl.module
import java.time.Instant
import java.util.concurrent.TimeUnit

private const val TAG_IMPORT_WORK = "doPeriodicImport"

class ToDoApp : Application(), KoinComponent {
 private val koinModule = module {
 single(named("appScope")) { CoroutineScope(SupervisorJob()) }
 single { ToDoDatabase.newInstance(androidContext()) }
 single {
 ToDoRepository(
 get<ToDoDatabase>().todoStore(),
 get(named("appScope")),
 get()
)
 }
 single {
 Handlebars().apply {
 registerHelper("dateFormat", Helper<Instant> { value, _ ->
 DateUtils.getRelativeDateTimeString(
 androidContext(),
 value.toEpochMilli(),
 DateUtils.MINUTE_IN_MILLIS,
 DateUtils.WEEK_IN_MILLIS, 0
)
 })
 }
 }
 single { RosterReport(androidContext(), get(), get(named("appScope"))) }
 single { OkHttpClient.Builder().build() }
 single { ToDoRemoteDataSource(get()) }
 single { PrefsRepository(androidContext()) }
 viewModel {
 RosterMotor(
 get(),
 get(),
 androidApplication(),
 get(named("appScope")),
 get()
)
 }
 viewModel { (modelId: String) -> SingleModelMotor(get(), modelId) }
 }

 override fun onCreate() {
 super.onCreate()

 startKoin {
 androidLogger()
 androidContext(this@ToDoApp)
 modules(koinModule)
 }

 scheduleWork()
 }

 private fun scheduleWork() {
 val prefs: PrefsRepository by inject()
 val appScope: CoroutineScope by inject(named("appScope"))
 val workManager = WorkManager.getInstance(this)

 appScope.launch {
 prefs.observeImportChanges().collect {
 if (it) {
 val constraints = Constraints.Builder()
 .setRequiredNetworkType(NetworkType.CONNECTED)
 .build()
 val request =
 PeriodicWorkRequestBuilder<ImportWorker>(15, TimeUnit.MINUTES)
 .setConstraints(constraints)
 .addTag(TAG_IMPORT_WORK)
 .build()

 workManager.enqueueUniquePeriodicWork(
 TAG_IMPORT_WORK,
 ExistingPeriodicWorkPolicy.REPLACE,
 request
)
 } else {
 workManager.cancelAllWorkByTag(TAG_IMPORT_WORK)
 }
 }
 }
 }
}

(from T34-Work/ToDo/app/src/main/java/com/commonsware/todo/ToDoApp.kt)
What We Changed
The entire result of having completed this tutorial.
In particular, it contains the changed files:

	app/src/main/res/values/strings.xml

	app/src/main/res/xml/prefs.xml

	app/src/main/java/com/commonsware/todo/repo/PrefsRepository.kt

	app/build.gradle

	app/src/main/java/com/commonsware/todo/repo/ImportWorker.kt

	app/src/main/java/com/commonsware/todo/ToDoApp.kt

Copyright Notice and Terms
Copyright © 2008-2021 CommonsWare, LLC. All Rights Reserved.
The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare, LLC.
All other trademarks referenced in this book are trademarks of their respective firms.
The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the information contained herein.
OEBPS/T31-02.png
& nav_graph.xmi

Destinations
HOST

[h activity_ma
GRAPH

0 rosterListFr
0 displayFrag
0 editFragme

Q& — 0% ® =+ |4

&

placeholder
Empty destination

DisplayFragment

Fragment | =

EditFragment
Fragment
PrefsFragment

Fragment

T

OEBPS/DroidSansMono.otf

OEBPS/T31-01.png
frerruiiag

prewr

OEBPS/T31-04.png
Attributes. o -
- editPrefs

id JeditPre
destination prefsFragment ~

Animations

‘enterAnim

exitAnim

popEnterAnim

POpEXitAnim
Argument Default Values
Pop Behavior

popUpTo 10ne -~
popUpTolnclusi... &
Launch Options

launchsingleTop | &

OEBPS/T31-03.png
prefsFragment

OEBPS/T31-05.png
Select Icon [<]
I
[OJE - I < I O]

admin panel s app setings al power sefings sefings setings applic sefings backu

<> R

£ el setings etherr setings input setings input«

R0

Y Gg

setings remonsetings systen setrgsvoice video setngs

These icons are available under the Apache License Version 2.0 »

oK Cancel

OEBPS/T31-08.png
Web service URL

OEBPS/T31-07.png
save

O complete Share

O outstanding Settings

third About

OEBPS/T31-09.png
852 @ van

Web service URL

https://commonsware.com
/AndExplore/2.0/items json|

CANCEL 0K

OEBPS/T19-01.png
These icons are available under the Apache License Version 2.0

ol Cancel

OEBPS/T19-02.png
Atributes. Qe

Declared Atrbutes. .
Common Atrbutes
. @suingimeny_save |
con @ dawablefc_save |
snowksacion » iRoomwnText
vesie Ll
——
]
AN Atrbutes

& abmasescsn

, ceme @
1

' embes @

@ fawablec_save |

OEBPS/T07-03.png
Find: _Retactoring Preview
¥ Resource reference in code 1 130
+ v mepp lusag
* & RostrListFragmentkt 1 <o

& RosterListFragment 1 <2
+ i onCreateView 1 v

16): View? = nfter flate(R layoutactivity_main, continer,false)
DoRefactor | Cancel

OEBPS/T07-02.png
Rename Layout Resource "activity_main’ and its usages to:

Search in comments and strings

Scope
Project Files -

2 I8 | Preview | Cancel

OEBPS/T07-05.png
Search for: oncreate
onConfigurationChanged(newConfig: Configuration): Unit
onContexthemSelected(item: Menultem!): Boolean
onCreate(savedinstanceState: Bundie?): Unit
onCreateAnimation(transit: Int, enter: Boolean, nextAnim: Int): A
onCreateAnimator(wansit Int, enter: Boolean, nextAnim: Int): An
onCreateContextMenu(menu: ContextMen, v: View!, menulnfc
" “)Dnansmnu(menu Menu!, inflater: Menulinflater!): Un

 onDestroy(: Unit
 onDestroyOptionsMenu(: Unit

+ onDestroyView(: Unit

 onDetach(: Unit

* onGetLayoutinfater(savedinstanceState: Bundie?): Layoutinfiat
 onHiddenChanged(hidden: Boolean): Unit

2 suniaeay Aty sis A rhaeds svadnsaadi

Copy JavaDoc - SelectNone | Cancel

OEBPS/T07-04.png
FileDescriptor, writer: PrintWiiter!, args:
- findFragmentByWho(who: String): Fragment!
getAllowEnterTransitionOverlap(): Boolean
* getAllowRetumTransitionOverlap(: Boolean
getAnimatingAway(): View!
getAnimator(: Animator!
- getContext0: Context?
* getEnterTransition(: Any?
getEnterTransitionCallback(: SharedElementCallback!
» getExitTransition(: Any?
getExitTransitionCallback(): SharedElementCallback!
* getLayoutinfater(savedFragmentState: Bundie?): Layoutinfiater
« getLifecycle(: Lifecycle

[Copy JavaDoc B | selectNone | Cancel

OEBPS/T03-Manifest-01.png
A " 6
AL verstone"1.0” encostmeeutr 877 i

“aanirest packagecon oo

FRR e ot enir ot con/ s andr ot

<ampttcation
: rarotatatlockupe-true”

Srarots Leonetpaap/ e ouncher™

Srarotar e et
- vitort e R
L ppereaRetc e

el e ey e Appheme™s
i SEEEtty mrota: e Rty

acRion anirtd:nams-sndrota. ntan action WAL />

<catugory androtd:namesandrota. ntent catogory. LUNCH

OEBPS/T07-07.png
val binding - ActiyManBindng g ActtvityMainBinding. inflate(LayoutInflater)

OEBPS/T07-06.png
Sval property = Ustor(1, 2, 3).filter { num -> num %
2

“fun someFun(arg: Int) = priat(arg)
“fun anotherFun(a: Int = 18, b: Tnt = 5): Int {
0 vl vartable it = a+'b

7 return vartable 2

5

10 tun yetAnotherfun() {

OEBPS/T07-01.png
New Kotlin Class/File
@& Name

& File
@ Interface
% Sealed Interface
& Data Class
& Enum class
& Sealed Class
& Annotation

OEBPS/T19-03.png
Buy a copy of _Exploring Android_

See https://wares.commonsware.com

OEBPS/T2-Project-18.png
‘our Virtual Devi

Vil deies allow o testyourappcation
ithout hin 5w the Byl deces

opriorkize whichdeicestotest your splcaton
e T e o
the Androld ond Google ly ecotem.

OEBPS/T2-Project-16.png
Hello World!

OEBPS/T20-09.png
o
[m]
(m]
[m]
[m]
©
t=)
[m]

Testitem

this

fong
list

Click the + icon to add a todo item!
of

items

OEBPS/T2-Project-17.png
© Coldboot: snapshot ¢
doesn't exist

OEBPS/T2-Project-12.png
+ a Gradle Scripts
build.gradle (Project: ToDo)
build.gradle (Vodule: app)

“1gradle. properties (Global Properties)
gradle-wrapper.properties (Gradle Vers
proguard-rules.pro (ProGuard Rules for
“1gradle. properties (Project Properties)

settings.gradle (Project Settings)
Z1local.properties (SDK Location)

OEBPS/T2-Project-13.png
1 Project ~ o & -
IstufffCommonsWare/books/AndE

> b gradie
5 gitignore
build.gradle
Zigradle. properties
gradlew
gradlew.bat
local properties
settings.gradle
» 1l External Libraries
» 7 Scratches and Consoles

OEBPS/T2-Project-10.png
Allow USB debugging?

The computer's RSA key fingerprint is:
BN S6eTH EC SRR A0 TEARER JAREFD

Always allow from this computer

CANCEL OK

OEBPS/T2-Project-11.png

OEBPS/T20-03.png
Filled ~ All -

@ A 0O &
N
a v ¢ ¢
sl o e]

K LY 8@

sdaphonle okt s01 g s Rone s adlaphous 360 Buese
+ i (g Y

i @ = Y

s damati gopas eoteid loayadh loansion

N +9 o4 J

N

o e i ks S plta s s h

postadd sporis kabadd

These icons are available under the Apache License Version 2.0 »

oK Cancel

OEBPS/T20-04.png
Click the + icon to add a todo item!

OEBPS/T20-01.png

OEBPS/T20-02.png
placeholder text

OEBPS/t7-17.png
ToDo has stopped

C Open app again

OEBPS/T20-07.png
O Description

Notes

OEBPS/t7-18.png

OEBPS/T20-08.png
O estiem

Click the + icon to add a todo item!

OEBPS/T2-Project-09.png
& Developer options

On

Picture color mode

USB debugging
Revoke USB debugging authorizations

8ug report shortout

Select mock location app

Enable view attribute inspection

Select debug app

OEBPS/T20-05.png
Update Argument

Name modelld
Type String <
Array (m]

Nullable O

Default Value

[TTE | cCancel

OEBPS/T20-06.png
A rostertissragn,

aspiayrragment

8% @

eausragment

OEBPS/T20-10.png
Select Icon [<]
Filled ~ | All -

g 0O

aubdelele delete delete forever delele outine delete Sweep

These icons are available under the Apache License Version 2.0
oK Cancel

OEBPS/T20-11.png
O testitem

Notes

OEBPS/T17-19.png
B1Q] 0Pl «R- S/gpTimm- | SO n -

ausw, ssia o oo
“ m
Layout

o

e o

OEBPS/T17-18.png

OEBPS/T17-17.png

OEBPS/T17-16.png
‘Common Attributes

Teew 0
0

Ftext

OEBPS/T17-15.png

OEBPS/T17-13.png

OEBPS/T17-12.png
et

OEBPS/T29-01.png

OEBPS/T1-Started-03.png
Welcome

M

OEBPS/T1-Started-02.png
Verify Setti
kg Verify settings

Iyouwant o review or change anyof your stallaionsetings, ik revious.

et setiogs:

Aokt SOK Bl Toos 203

Aokt sokPttorn 29

Aokt SOk lttorm Tools

Aokt soKTacs

soxsatch Appler v

Sourcesor Andeid 29

ancel

OEBPS/T1-Started-05.png
(X select Ui Theme

owin ot

prei, nce

OEBPS/T1-Started-04.png
§x mstall Type

‘Choos thetypeofsetupyouwantfor Andrid s

© standard
You can astomizestllatonsctings nd components nstalled.

oo, [T o

OEBPS/T1-Started-07.png
Emulator Settings
» 2

i have detacted ha your ysem ca untheAndrld emltor na cclrsed erfrmance mose.

Lounbased sysems supportitul machine cclcation thouh th KVM ket bsed Vil
e afouse packsge

i (e)

OEBPS/T1-Started-06.png
‘Allow Google o collect anonymous usage data for Android Studio and itsrelated tools—
such as how you use features and resources, and how you configure plugins. This data
helps improve Android Studio and i collected in accordance with Gooale's Privacy Policy.

OEBPS/T1-Started-09.png
Import Android Studio Settings From...

Config or installation folder:

® Do notimport settings

oK

OEBPS/T17-22.png
Add Argument

Name modelld
Type String -
Array (]

Nullable [

Default Value

OEBPS/T1-Started-08.png
 Andadsiudo

prjecs
tomize Welcome to Android Studio

Loar Androidstuso

B o

Newproj Open Gattromucs

OEBPS/T17-21.png
Add Argument

Name
Type <inferred type> -
Array (]

Nullable O

Default Value

OEBPS/T17-20.png
Attributes =
displayFragment

id displayFragment
label @string/app_name
name DisplayFragment (~

Arguments i+

Actions +
Deep Links +

OEBPS/T08-10.png
placeholder text

OEBPS/T17-23.png
Buy a copy of _Exploring Q
Android_

Created on: 0 minutes ago, 4:42 PM

See https://wares.commonsware.com

OEBPS/T29-06.png
O complete About

O oustanding

™

OEBPS/T29-04.png
147 P

Downloads New folder

Show intemal storage

<>

5 testhtml f5ce1561-a561
2198 May7

OEBPS/T29-05.png
About

O complete Save

O oustanding

i

OEBPS/T29-02.png
+ vt o v
s Provew
S Open Transiatons Edo Nne o
Retrence @smngien_save
e Contguason: ot
Vale: Py

JSp—

[y

OEBPS/T18-01.png

OEBPS/T29-03.png
147 P

Downloads

Modified Vv

<>

<5 testhtml
2198 May 7

OEBPS/T08-05.png

OEBPS/T08-03.png

OEBPS/T08-04.png
Qe — [k Ao > 4

Q- [Search existing destinations

Create new destination

placeholder
Empty destination

RosterListFragment
Fragment

todo_roster
Activity

OEBPS/T08-09.png
<androidx.fragment.app.FragmentContainerView
androtd: 1d="g+1d/nav_hos:
androtd: nane="androtdx.navigatton. fragnent.NavostFragnent"
androtc -
androtd:layout_hetght:
‘app:defaul tNaviiost-

‘app:navGraph="@navigation/nav_graph” />

OEBPS/udf.png
Ul actions.
rigger calls

Async responses
trigger view states

Calls trigger
async requests

Async requests
trigger responses

OEBPS/T08-01.png
New Resource File

Flename: |

Resaurce ype: Vs
Rootalement rcscuces

Oiectonyname: vlues
Aviaie quaters:

% Networ Cose
 Locae

2 Layou Diecton

£ SmalestScrsen Wit
2 Scron wan

i Serean Heigrt
asae

@ Rato

Jetitrien

= Noting o show

cancer

OEBPS/T18-02.png
cduFragment

roserisrragment asplyfragment

_/’ vl

OEBPS/t6-10.png
® Q CPus- =R~ ©ApTheme- ©Deluit(snus)- o e
aves, isHAL €]
2 DecamaAubus ¢ -
- Favow
Consmet Vg

OEBPS/T18-03.png
Select Icon [<]

B / = @ I)

cedicard edt editawibues edtlocaton editroad

‘These icons are available under the Apache License Version 2.0 #
oK Cancel

OEBPS/T18-04.png

OEBPS/T18-05.png
Attributes Q & —

3 edit
+ Declared Attributes =
+ Common Attributes
id edit
il 0
icon m 0
'showAsAction | 0
i Select all Clear all U
T 0
] always 0
» 1 O never
ifRoom
(] collapseActionView
withText

Apply

OEBPS/T18-06.png
Adribuses Qe

ea
v Declared Atrbutes. =
oo g Common Atrbutes.
P ot
we @siingimeny_edit |
on £ awabiete_edt |
showksacion = RoompwitText
vatie]
cnae e

OEBPS/T18-07.png
Write an app for somebody in my
‘community

Created on: 0 minutes ago, 8:08 AM

Talk to some people at non-profit
organizations to see what they need!

OEBPS/T18-08.png

OEBPS/T18-09.png

OEBPS/T24-01.png
| '=ToDo ':app

5| = Project +

§ = ToDO_ ~/stufiiComm
g e

» ek

build

src
androidTest
main
test

Resource Manager

OEBPS/T24-02.png
Move
Member
@& class ExampleUniTest

© To package: -
Filename: ExampleUnitTestkt
Update package directive
Destination directory:
Leave in same source root -
Tofile: 1onswareftodo/ui/ExampleUnitTest kt

Search references.
Search in comments and strings [Search for text occurrences
Delete empty source files

I8 | Preview | | Cancel

OEBPS/T24-03.png
Rename class co.commonswiare odo epo,SngleModelMotoTest and s usages o
JlSingitiodeivioworresd

Search in comments and strings.

‘Search for text occurrences
Rename variables

Rename inheritors
Scope.

Project Files

Cancel Help

OEBPS/T24-04.png
4 class SingleModelMotorTest {
@Test
< fun addition_1isCorrect() {
assertEquals(expected: 4, actual: 2 + 2)
}
}

OEBPS/T18-10.png

OEBPS/T18-11.png
| Name

OEBPS/T18-12.png
F-Na

OEBPS/T24-09.png
i N
o — | S—aas o 1o} :app:tostiots . —

OEBPS/T24-05.png
Run: < SingleModelMotorTest

> vio u Qur »
 SingleModelMotorTest (corm.cormr 4ms
o + addition_isCorrect ams

TODO cs CheckStyle 4 Build

OEBPS/T24-06.png
@ class SingleModelMotorTest {
@Test
(1 fun addition_1isCorrect() {
assertEquals(expected: 4, actual: 2 + 2)

}
}

OEBPS/T24-07.png
fe | ietesmeete £
VEBn T irac e stmmisin i

o e s o st g

OEBPS/T24-08.png
€ class SingleModelMotorTest {
@Test
[+ fun addition_isCorrect() {
assertEquals(expected: 5, actual: 2 + 2)

}
}

OEBPS/T18-13.png
‘Common Attributes

inputType P textPersonName
hint

OEBPS/T18-14.png
Selectall Clear

textPersonName
O date
) textUri
O textShortMessage %
U textLongMessage
 textAutoCorrect desc
O none
) numberSigned
O textisiblePassword
textWebEditText Fibutes
O textMuliLine
O textNoSuggestions
textFilier
CJ number e/WidgetAf | ~

apeso ¥

] textPhonetic
C textCapSentences.
I textPassword
CJ textAutoComplete |(@androia: -
) textimeMuliLine
O textPostalAddress.
() numberDecimal |
) tetEmailAddress -
CJ numberPassword
textCapWords
CJ phone.
textEmailSubject L}
[texiCapCharacters ™ @andr

1910153 914 39390

Apply Qevent Log

OEBPS/T30-01.png
share Filed ~ Al -

B @B < |

folder shared mobile screer screenshare share siop screen'st

These icons are available under the Apache License Version 2.0

OK Cancel

OEBPS/t6-20.png
Split @ Design

OEBPS/T18-15.png

OEBPS/T30-02.png

OEBPS/T18-16.png

OEBPS/T30-03.png
& AndroidManitest.aml

androtd:name="con. conmonsware. todo. ui. AboutAct ivity"
< <activity
android:name="con. connonsware. todo.ui.MainActivity" >
- <intent-filter
« <action
android:nane="android. intent.action.MAIN* />
« <category
android:name="android. intent.category.LAUNCHER" />
* <provider
android:authorities="con.comonsware. todo. provider"
exported="false"
granturiPermissions="true"
android:name="androidx.core.content.FileProvider" />
- <service
android:exported="false"
androtd:name="androidx. roon.MultiInstanceInvalidat or

Texi| Merged Manifest

OEBPS/T18-17.png
Buy a copy of _Exploring Android_

See https://wares commonsware.com

OEBPS/T30-04.png
[

Resarce e (znd

Souceset man

& Nenwok Code
Slocale
B Layou Diocton

Smalest Sreen Wi
@ Sccen wian

1 Screen Hoighe

asie

wRao

2 Onentaion

Chosen qalers:

(T3 cocel e

OEBPS/t6-19.png
758 P

ToDo

placeholder text

OEBPS/t6-17.png
New String Value [<]
Resource name: msg_empty
Resouce v
Source set: main src/main/ies -

File name: strings.xml -

Create the resource in directories:

values
values-night

EEE cocel

OEBPS/t6-16.png
New String Value (<]

T —

Resource value:
Source set: main src/main/res -
File name: strings.xml -

Create the resource in directories:

values
values-night

BT cancel

OEBPS/t6-15.png
+ e a0 v
s Proven
o

waoaan

OEBPS/t6-14.png
Attributes Q& -
#> <unnamed>

id

Declared Attributes T
Layout

Transforms

Common Attributes

text Hello World!

Fext
contentDescrip....

textAppedfince @android:style/T ~
alpha

All Attributes

OEBPS/t6-13.png
Component Tree o —
L. ConstraintLayout

OEBPS/T24-10.png
class MainDispatcherRule(paused: Boolean) : TestWatcher() {
val dispatcher - TesiCorouineDispacher =

().apply { Lt (paused) pauseDispatcher() }

overrtde fun starting(description: Description?) {
super . starting(description)

Dispatchers. sethatn(dtspatcher)
¥

overrtde fun finished(description: Description?) {
super . finished(description)

Dispatchers.. ()

d\lu!(mr.h()
¥

}

OEBPS/t6-12.png
Q& -

“

Declared Attributes e
Layout
Constraint Widget

o v

| ¥
LR I

L§

[

-0 [+

OEBPS/FirstProject-03.png
e

OEBPS/FirstProject-07.png
§ Android virtua Device (VD)

VertyCntgrtion

[T e ———— [l e——
@ oo owor

gio po—

OEBPS/FirstProject-06.png
X component installer

Instaling Requsted omponents
Sonsuth Pomepmmasyinsrodsak

TRCeL 08 Aeom Systen asge (syste.1ages androLs 2;efaulx86)

Preparing “Install. Tntel 186 Aton Systen Taage (revision: 7).
Doumicasing htpaL/J0\-Sonpe. om/ anaroL8 gL ory by 1y

Donrlondag 465 01 nec s G5 114/ sk
st gt comfandroepskantys maniro s 2510 5.
LY R ———

OEBPS/FirstProject-04.png
ere———

OEBPS/t5-1.png
—Empadewn
e ey Y o et e~ e e e

OEBPS/T09-20.png
oo wp v

e o oo Proven

G s same

OEBPS/T09-21.png
New string Value

Resource name: menu_about

Resource value: | Abouf

Source set: main -

File name: strings.xml S

Create the resource in directories:

values "
®
=]

OEBPS/T11-01.png
& ToDoModel kt
package com.commonsware.todo

]

2o

3 ‘ iata class ToDoModel I
4

OEBPS/nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Preface

 		
 What We Are Building

 		
 Installing the Tools

 		
 Creating a Starter Project

 		
 Modifying the Manifest

 		
 Changing Our Icon

 		
 Adding a Library

 		
 Constructing a Layout

 		
 Integrating Fragments

 		
 Wiring In Navigation

 		
 Setting Up the App Bar

 		
 Setting Up an Activity

 		
 Defining a Model

 		
 Setting Up a Repository

 		
 Inverting Our Dependencies

 		
 Incorporating a ViewModel

 		
 Populating Our RecyclerView

 		
 Tracking the Completion Status

 		
 Displaying an Item

 		
 Editing an Item

 		
 Saving an Item

 		
 Adding and Deleting Items

 		
 Interlude: So, What’s Wrong?

 		
 Refactoring Our Code

 		
 Getting a Room (And Some Coroutines)

 		
 Completing the Reactive Architecture

 		
 Testing a Motor

 		
 Testing the Repository

 		
 Testing a UI

 		
 Tracking Our Load Status

 		
 Filtering Our Items

 		
 Generating a Report

 		
 Sharing the Report

 		
 Collecting a Preference

 		
 Contacting a Web Service

 		
 Showing a Dialog

 		
 Scheduling Work

 		
 Copyright Notice and Terms

OEBPS/T09-24.png
placeholder text

OEBPS/T09-22.png
CostButon
Menu tom
Search tom
o

out

OEBPS/T09-23.png
placeholder text

OEBPS/T09-17.png
Attributes Q& -
=l about
Declared Attributes e
Transforms
Common Attributes

id about

e
icon m

'showAsAction ~

visible. =)

enabled a

checkable a

All Attrigfutes

OEBPS/T09-18.png
Attributes Q8 —
I about

» Declared Attributes o=
» Transforms

* Common Attributes
id about
title Item
icon m
showAsAction ™

Select all Clear

Q|

& always

never

ifRoom
collapseActionView
withText

Apply

OEBPS/T09-15.png
& actions xml

palete Qs -
CastButon
Menu tem
Search lem
Swich flem
Menu
Group
Component Tree s -

menu

OEBPS/T09-16.png
& actions.xmi

Paene as-
CastButon
Menu fem
Search lem
Swich lem
Menu
Group
Component Tree: .

OEBPS/T09-19.png
Adtributes Q& —
= about
Declared Attributes -
Transforms
Common Attributes

All Attributes

OEBPS/T09-10.png
Asset Studio

§f configure Vector Asset

AssetType: © CipAt) Loca fl (SVG, PSD)
Neme: ic_andioid_black 24dp

cipAt

size u wxu @

coor N

Opacity: 100%

Enable auto mioring for RTL layout

Vector Drawable Preview

Cancel

Help

OEBPS/T09-13.png
New Menu Resource

Enter a new file name

| actions.xml

OEBPS/t6-9.png

OEBPS/T09-14.png
—— s o

OEBPS/t6-8.png

OEBPS/T09-11.png
info Filed ~ Al M

@

‘perm device |

These icons are available under the Apache License Version 2.0

B3 | cencel

OEBPS/t6-7.png

OEBPS/T09-12.png
Chosen qualtrs:

Noting oshow

OEBPS/cover.jpg
Exploring
Android

Mark L. Murphy ©¢ /

OEBPS/t6-6.png

OEBPS/T28-10.png
Click the + icon to add a todo item, or change
your ilter to show other items

OEBPS/t6-5.png

OEBPS/t6-3.png

OEBPS/t6-2.png
Palette.
Common
Text
Buttons
Widgets
Layouts
Containers
Helpers
Google
Legacy

TextView

‘™ Button
 ImageView
RecyclerView

I FragmentContaine...
w0 ScrollView

-o Switch

OEBPS/t6-1.png

OEBPS/T28-07.png
Al

corplee Completed O

O outstanding Outstanding O

OEBPS/T28-08.png
Attributes.

+ empty

id empty
+ Declared Attributes
* Layout

Constraint Widget

8 |~

« -

8 [v|-e» «e-[8

i—o »

OEBPS/T28-05.png
Component Tree

v G filter
v = menu

3 group

Cadd

OEBPS/T28-06.png
Component Tree

menu
v Gifilter
v = menu

v I filter_group

5 add

OEBPS/T28-03.png
Aributes Qs
fter

Dectared Atributes +
‘Common Atrbutes.

P e

we @suingmen_ier |

con cramabierc_fer |

nowksacion » iRoomtText
vste e
cnae e
creciate @
Al Atrbutes
o s
creciape @
reded @
caes @
- arawableic_tier |

OEBPS/T28-01.png
Select Icon [~}

e - M-

LOGE o 0CE
EooggErx

A & & W oo =

ferbandw fitercenterfoc fiterdrama fllerfiames fiterhar fiter st

0 & X &

fliernone fiteritsnit fitervintage movie fiter photo fiter

These icons are available under the Apache License Version 2.0 »
oK Cancel

OEBPS/T28-02.png

OEBPS/T09-06.png
Palette. s
Common = HorizontalScrollView

= i NestedScrollView
sutons | 1 ViewPager

= CardView
Widgets | i AppBarL ayout

Loypuls [BottomAppBar
Containers] NavigationView
Google | BottomNavigationView

PP = Toolbar

= TabLayout

OEBPS/T09-07.png
frc_ 11

R Q6 -8 3 P =8- haiien: Covmhimen o
e eve s AL
Jra o
§ e e
| Sy
£ Comnes < Contiien
v Nowgasoriew
§ comeeae =
 Jpr
i
:
i

OEBPS/T09-04.png
WS cotoroont
<2xal verston="1
<resources>

® <color name="colorPrinary">#009633</color>

Resauces Cuson name="colorPrinaryDark">#007968</color>

name="colorAccent">#FFC107</color>

os>

encoding="utf

”

OEBPS/T09-05.png
<tten aames"colorPrimary>gcolor/colorPrimery</iten>
Guon tame="colorPr tnaryDark">ecolor/ColorPr narybarke/ttem>
1ame="calorAccent>ecolor/colorAccent</ Ltem>

OEBPS/T09-08.png

OEBPS/T28-09.png
Attributes
#b empty

» foregroundG... ®

foregroundTint &#

foregroundTi...
freezesText

bottom

clip_horizon...

center
clip_vertical
start

right
center_hori...
fill
fill_horizontal
top

left
center_verti...
fill_vertical
end

OEBPS/T09-09.png
& Qi OPowl- «R- ©AmThome - ©Detauk fons) © Antuses

San - Santpurom
Ena - Enacrpuem

o wam 5

Commen At

OEBPS/T17-08.png
layout_width wrap_content ~/0

OEBPS/T17-07.png
Pick s Resource
+ 5 Mae Todoa -
bl o M
Teonseo)

[y
. Pr———

< e s
g esances 1200w)
e

=

v
Ic_chck_ccle
Gorawanite_creck
Vecor

P

OEBPS/T17-06.png
Select Icon (<]

check Filled ~ | All -

v 0 @ © &

Check checkbox checkboxoutl checkcircle checkcicie oL checkioom

-] T = @

factcheck indeteminate ibrary add che network check laylist add ch radio buton

O A

radio buton ur - spelicheck

These icons are available under the Apache License Version 2.0

oK Cancel

OEBPS/FirstProject-11.png
A [=app ~|[LIOWXGA | »

OEBPS/T17-05.png
< ToDo

OEBPS/T09-02.png

OEBPS/T17-04.png
s en s
< [ry—

OEBPS/T09-03.png
<7xml verston: utf-8" 2>
<resources>
B <color name="colorPrimary">#009688</color>

M <color name="colorPrimaryDark">#80796B</color>
W <color name="colorAccent">#FFC107</color>
</resources>

OEBPS/T17-03.png
displayFragment.

A ostestagment

Preview

Unavaabie

OEBPS/FirstProject-16.png
Actions.
> =

v Vv vy

Duplicate
Wipe Data
Cold Boot Now
Show on Disk
View Details
Delete
Stop

r

OEBPS/T17-02.png
Daje el

displayFragment

Preview
Unavailable

A rostertistFragment

Preview
Unavailable

OEBPS/T09-01.png

OEBPS/T17-01.png
ons Q& - [o> 4

- Create new destination

placeholder
Empty destination

DisplayFragment
Fragment

RosterListFragment
Fragment

. activity_about

OEBPS/results-3.png
Buy a copy of _Exploring Android_ 9
Created on: 0 minutes ago, 5:19 PM
See https://wares.commonsware.com

OEBPS/results-4.png
Buy a copy of _Exploring Android_

See https://wares.commonsware.com

OEBPS/T17-09.png
[v

OEBPS/results-1.png
Click the + icon to add a todo item!

OEBPS/results-2.png
Buy a copy of _Exploring Android_

O complete all of the tuorials

[write an app for somebody in my community

OEBPS/T17-11.png
© Dottt (envus)-

'
i

OEBPS/T17-10.png
New Dimension Value

Resource name:
Resource value:
Source set:

File name:

main src/main/res

dimens.xml

Create the resource in directories:

values

4

OEBPS/LiberationSans-Regular.ttf

OEBPS/bookxref.png

OEBPS/T04-Resources-10.png
Contim lcon Path

P omire
<2xnl verston="1.0" encodtng="utf-¢
<resources>

<color nane="tc_launcher_backgr
</resources>

OEBPS/T04-Resources-11.png
ToDo

OEBPS/T15-05.png
Attributes Q&
desc

id desc
Declared Attributes i
Layout
Constraint Widget

8 |+

8 |~
Constraints

" Start . EndOf isCompleted (8dp)
" End - EndOf parent

“\. Top — TopOf parent

“L. Bottom . BottomOf parent

layout_width Odp -
layout_height | wrap_content ~
visibity >

visibility >

OEBPS/T2-Project-08.png
& Developer options

On

Take bug report

Desktop backup password
C 1 ren't currently protected

Stay awake

Enable Bluetooth HCI snoop log

OEM unlocking

Running services

Picture color mode

OEBPS/T15-06.png
class RosterAdapter : ListAdapter<ToDol
¥ Implement members
© Make RosterAdapter’ ‘abstract »

@ Safe delete 'RosterAdapter >

Add Parcelable Implementation »
Create test >

OEBPS/T15-03.png
Attributes Qs -
~ isCompleted

id isCompleted

Declared Attributes -
~ Layout

Constraint Widget

Constraints
"L Start . StartOf parent (¢
“L. Top — TopOf parent
“L. Bottom — BottomOf parent (%

layout_width ' wrap_content
layout_height | wrap_content
visibilty S
#visibility S

‘

“«

OEBPS/T15-04.png

OEBPS/T04-Resources-09.png

OEBPS/T15-01.png
L

OEBPS/T15-02.png

OEBPS/T04-Resources-07.png
2 B [——

61 220 132 3DDC84

OEBPS/T04-Resources-08.png

OEBPS/T15-07.png
] Copy JavaDoc SelectNone | = Cancel

OEBPS/T15-08.png
Buy a copy of _Exploring Android_

0] Complete allof the uorials

(0] Write an 3pp fo somebody inmy commurity

OEBPS/T21-01.png
Project ~
v mToDo -/stuff/CommonsWare/books/AndExplo

> gradie

> b idea

 wmapp
> build

s libs
v msrc

» s androidTest

v b main

v Iz assels
i abouthtm!

£ repo
v oui
£ display
£ edit
£ roster
& AboutActivity
& DisplayFragment
& EditFragment
& MainActivity
% RosterAdapterkt
& RosterListFragment
& RosterMotor
& RosterRowHolder
& SingleModelMotor

OEBPS/T04-Resources-05.png

OEBPS/T04-Resources-06.png

OEBPS/T04-Resources-03.png
S

OEBPS/T21-03.png
Project ~
v wapp
» = build

wlibs
v msrc

» mmandroidTest

e main

¥ h:assets
i abouthtml

v Earepo
& ToDoModel
& ToDoRepository
v i
v tadisplay
& DisplayFragment
v enedit
& EditFragment
v txroster
% RosterAdapterkt
& RosterListFragment
& RosterMotor
& RosterRowHolder
& AboutActivity
& MainActivity
& SingleModelMotor
& ToDoApp

OEBPS/T04-Resources-04.png

OEBPS/T21-02.png
Member
B class ToDoRepository

‘ToDoRepository kt

= (ToDo.app) . Jappisrcimainfavalcomicommonswarefodoirepo -
Tofie: Viavalcomicommonswareiodo/ToDoRepository ki

9 Search references.
9 Search in comments and strings 9 Search fortext occurences.
9 Delete empty source fles

B B pevew | Cancol

OEBPS/T04-Resources-01.png

OEBPS/T04-Resources-02.png
b - oo Nakgue Cose s Gecer By un oo VS Mot

s e M
P
T o
e Copy Roterence.
S 0 pase.
= P
ot
| e senre
I = o
3 The. frs
" o e Show image Thumboads
i rmmiertt | BomrCode
i S .
8 o sl
] HOOB-1E . Ry AR Tosts

mrvor & e
o T v o
& o s S
o St oo T
=kl o ey
foorim o s
i

S s o Gt

o = Ao e Oy

oo & CEoe Honder b

% Kot
sy & Sogeen
% e koDt Bk e

 hcvy :

s,

+ Foomen .

+ oo ,

4 oo

 UiComconen :
st s o :
v

OEBPS/T10-01.png
Emor Actvey

Aty Name

2 Garea a ayous il

acoy_n2
[r——
Paciagename

—

OEBPS/T10-07.png

OEBPS/T10-08.png

OEBPS/T10-09.png

OEBPS/T10-02.png
New Androld Actiity

Enpry Actvty

Aty ame.

[Rboscavty

P ——

oy st
[r——
Paciagename

R —

SoucoLanpusge
Koo

OEBPS/T10-04.png

OEBPS/T10-05.png
(@

OEBPS/T10-10.png
Attributes. Qo

@ about

id about

» Declared Attributes +
* Layout

Constraint Widget

Constraints
L. Start — StartOf parent
“L.End — EndOf parent
. Top — BottomOf toolbar (0dp)
“L. Bottom — BottomOf parent (

layout width Odp -
layout_height Odp -
visibity =

visibilty -

OEBPS/T10-11.png
Name

Gradle Source Sets
o aidl

assets

wjni

iz resources.
s
1w shaders

New Directory

OEBPS/T10-12.png
About This App

“This app is cool!

No,really — this app is awesome!

OK, this app isnit all that much. But, hey, its mine!

OEBPS/T27-01.png

OEBPS/T27-02.png
Palette
Common
Text

' Buttons

Layouts
Containers
Google
 Legacy

O View
m ImageView

® WebView

3 VideoView

4 CalendarView

C ProgressBar

= ProgressBar (Horizontal)
= SeekBar

2, SeekBar (Discrete)

* RatingBar

_ SearchView

== TextureView

OEBPS/T33-3.png
Import Failure

Something went wrong with the import!

CANCEL RETRY

OEBPS/T33-2.png
Select Class [<]

Search by Name Project
(] Include non-project items

ErrorScenario (com.common re.todo
®&FilterMode (com.commonsware.todo.repo)

OK Cancel

OEBPS/T33-1.png
Name

Type

Array
Nullable

Default Value

Add Argument

<inferred type>

Float

Long

Boolean

String

Resource Reference
Custom Parcelable...

