
CHAPTER 14

Advanced Service Patterns

In The Busy Coder's Guide to Android Development, we covered how to
create and consume services and covered some basic service patterns.
However, services can certainly do more than what is covered in those
introductory patterns. In this chapter, we will examine some more powerful
options for services, including remote services and using services in the role
of "cron jobs" or "scheduled tasks".

Remote Services

By default, services are used within the application that publishes them.
However, it is possible to expose services for other applications to take
advantage of. These are basically inter-process editions of the binding
pattern and command patterns outlined in The Busy Coder's Guide to
Android Development.

We start with an explanation of the inter-process communication (IPC)
mechanism offered in Android for allowing services to work with clients in
other applications. Then, we move onto the steps to allow a client to
connect to a remote service, before describing how to turn an ordinary
service into a remote one. We then look at how one can implement a
callback system to allow services, through IPC, to pass information back to
clients. After noting the possibility of binder errors, we wrap by examining
other ways to get results from remote services, back to clients, without
going through binding.

263

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

When IPC Attacks!

Services will tend to offer IPC as a means of interacting with activities or
other Android components. Each service declares what methods it is
making available over IPC; those methods are then available for other
components to call, with Android handling all the messy details involved
with making method calls across component or process boundaries.

The guts of this, from the standpoint of the developer, is expressed in AIDL:
the Android Interface Description Language. If you have used IPC
mechanisms like COM, CORBA, or the like, you will recognize the notion of
IDL. AIDL describes the public IPC interface, and Android supplies tools to
build the client and server side of that interface.

With that in mind, let's take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a "language-neutral" syntax. AIDL, on the
other hand, looks a lot like a Java interface. For example, here is some
AIDL:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

As with a Java interface, you declare a package at the top. As with a Java
interface, the methods are wrapped in an interface declaration (interface
IScript { ... }). And, as with a Java interface, you list the methods you are
making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

264

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

• Primitive values (int, float, double, boolean, etc.)

• String and CharSequence

• List and Map (from java.util)

• Any other AIDL-defined interfaces

• Any Java classes that implement the Parcelable interface, which is
Android's flavor of serialization

In the case of the latter two categories, you need to include import
statements referencing the names of the classes or interfaces that you are
using (e.g., import com.commonsware.android.ISomething). This is true even if
these classes are in your own package – you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or
inout can be changed by the service and those changes will be propagated
back to the client. Primitives (e.g., int) can only be in; we included in for
the AIDL for enable() just for illustration purposes.

Also, you cannot throw any exceptions. You will need to catch all
exceptions in your code, deal with them, and return failure indications
some other way (e.g., error code return values).

Name your AIDL files with the .aidl extension and place them in the
proper directory based on the package name.

When you build your project, either via an IDE or via Ant, the aidl utility
from the Android SDK will translate your AIDL into a server stub and a
client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the
service, either directly in the stub, or by routing the stub implementation to
other methods you have already written.

265

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

The mechanics of this are fairly straightforward:

• Create a private instance of the AIDL-generated .Stub class (e.g.,
IScript.Stub)

• Implement methods matching up with each of the methods you
placed in the AIDL

• Return this private instance from your onBind() method in the
Service subclass

Note that AIDL IPC calls are synchronous, and so the caller is blocked until
the IPC method returns. Hence, your services need to be quick about their
work.

We will see examples of service stubs later in this chapter.

A Consumer Economy

Of course, we need to have a client for AIDL-defined services, lest these
services feel lonely.

Bound for Success

To use an AIDL-defined service, you first need to create an instance of your
own ServiceConnection class. ServiceConnection, as the name suggests,
represents your connection to the service for the purposes of making IPC
calls.

Your ServiceConnection subclass needs to implement two methods:

1. onServiceConnected(), which is called once your activity is bound to
the service

2. onServiceDisconnected(), which is called if your connection ends
normally, such as you unbinding your activity from the service

266

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Each of those methods receives a ComponentName, which simply identifies the
service you connected to. More importantly, onServiceConnected() receives
an IBinder instance, which is your gateway to the IPC interface. You will
want to convert the IBinder into an instance of your AIDL interface class, so
you can use IPC as if you were calling regular methods on a regular Java
class (IScript.Stub.asInterface(binder)).

To actually hook your activity to the service, call bindService() on the
activity:

bindService(new Intent("com.commonsware.android.advservice.IScript"),
 svcConn, Context.BIND_AUTO_CREATE);

The bindService() method takes three parameters:

1. An Intent representing the service you wish to invoke

2. Your ServiceConnection instance

3. A set of flags – most times, you will want to pass in
BIND_AUTO_CREATE, which will start up the service if it is not already
running

After your bindService() call, your onServiceConnected() callback in the
ServiceConnection will eventually be invoked, at which time your
connection is ready for use.

Request for Service

Once your service interface object is ready
(IScript.Stub.asInterface(binder)), you can start calling methods on it as
you need to. In fact, if you disabled some widgets awaiting the connection,
now is a fine time to re-enable them.

However, you will want to trap two exceptions. One is DeadObjectException
– if this is raised, your service connection terminated unexpectedly. In this
case, you should unwind your use of the service, perhaps by calling
onServiceDisconnected() manually, as shown above. The other is
RemoteException, which is a more general-purpose exception indicating a

267

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

cross-process communications problem. Again, you should probably cease
your use of the service.

Getting Unbound

When you are done with the IPC interface, call unbindService(), passing in
the ServiceConnection. Eventually, your connection's
onServiceDisconnected() callback will be invoked, at which point you should
null out your interface object, disable relevant widgets, or otherwise flag
yourself as no longer being able to use the service.

You can always reconnect to the service, via bindService(), if you need to
use it again.

Service From Afar

Everything from the preceding two sections could be used by local services.
In fact, that prose originally appeared in The Busy Coder's Guide to Android
Development specifically in the context of local services. However, AIDL
adds a fair bit of overhead, which is not necessary with local services. After
all, AIDL is designed to marshal its parameters and transport them across
process boundaries, which is why there are so many quirky rules about
what you can and cannot pass as parameters to your AIDL-defined APIs.

So, given our AIDL description, let us examine some implementations,
specifically for remote services.

Our sample applications – shown in the AdvServices/RemoteService and
AdvServices/RemoteClient sample projects – convert our Beanshell demo
from The Busy Coder's Guide to Android Development into a remote service.
If you actually wanted to use scripting in an Android application, with
scripts loaded off of the Internet, isolating their execution into a service
might not be a bad idea. In the service, those scripts are sandboxed, only
able to access files and APIs available to that service. The scripts cannot
access your own application's databases, for example. If the script-executing

268

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

service is kept tightly controlled, it minimizes the mischief a rogue script
could possibly do.

Service Names

To bind to a service's AIDL-defined API, you need to craft an Intent that can
identify the service in question. In the case of a local service, that Intent can
use the local approach of directly referencing the service class.

Obviously, that is not possible in a remote service case, where the service
class is not in the same process, and may not even be known by name to
the client.

When you define a service to be used by remote, you need to add an intent-
filter element to your service declaration in the manifest, indicating how
you want that service to be referred to by clients. The manifest for
RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="com.commonsware.android.advservice"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="3"
 android:targetSdkVersion="6" />
 <supports-screens android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:icon="@drawable/cw"
 android:label="@string/app_name">
 <service android:name=".BshService">
 <intent-filter>
 <action android:name="com.commonsware.android.advservice.IScript" />
 </intent-filter>
 </service>
 </application>
</manifest>

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IScript. So long as the client uses this
name to identify the service, it can bind to that service's API.

269

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

In this case, the name is not an implementation, but the AIDL API, as you
will see below. In effect, this means that so long as some service exists on
the device that implements this API, the client will be able to bind to
something.

The Service

Beyond the manifest, the service implementation is not too unusual. There
is the AIDL interface, IScript:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

And there is the actual service class itself, BshService:

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script) {
 executeScriptImpl(script);
 }
 };
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate() {
 super.onCreate();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

270

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 }

 private void executeScriptImpl(String script) {
 try {
 i.eval(script);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }
}

If you have seen the service and Beanshell samples in The Busy Coder's
Guide to Android Development then this implementation will seem familiar.
The biggest thing to note is that the service returns no result and handles
any errors locally. Hence, the client will not get any response back from the
script – the script will just run. In a real implementation, this would be silly,
and we will work to rectify this later in this chapter.

Also note that, in this implementation, the script is executed directly by the
service on the calling thread. One might think this is not a problem, since
the service is in its own process and, therefore, cannot possibly be using the
client's UI thread. However, AIDL IPC calls are synchronous, so the client
will still block waiting for the script to be executed. This too will be
corrected later in this chapter.

The Client

The client – BshServiceDemo out of AdvServices/RemoteClient – is a fairly
straight-forward mashup of the service and Beanshell clients, with two
twists:

package com.commonsware.android.advservice.client;

import android.app.Activity;

271

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

import android.app.AlertDialog;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import com.commonsware.android.advservice.IScript;

public class BshServiceDemo extends Activity {
 private IScript service=null;
 private ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder binder) {
 service=IScript.Stub.asInterface(binder);
 }

 public void onServiceDisconnected(ComponentName className) {
 service=null;
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src);
 }
 catch (android.os.RemoteException e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
 });

 bindService(new Intent("com.commonsware.android.advservice.IScript"),

272

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 svcConn, Context.BIND_AUTO_CREATE);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 unbindService(svcConn);
 }
}

One twist is that the client needs its own copy of IScript.aidl. After all, it is
a totally separate application, and therefore does not share source code
with the service. In a production environment, we might craft and
distribute a JAR file that contains the IScript classes, so both client and
service can work off the same definition (see the upcoming chapter on
reusable components). For now, we will just have a copy of the AIDL.

Then, the bindService() call uses a slightly different Intent, one that
references the name the service is registered under, and that is the glue that
allows the client to find the matching service.

If you compile both applications and upload them to the device, then start
up the client, you can enter in Beanshell code and have it be executed by
the service. Note, though, that you cannot perform UI operations (e.g., raise
a Toast) from the service. If you choose some script that is long-running,
you will see that the Go! button is blocked until the script is complete:

273

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Figure 60. The BshServiceDemo application, running a long script

Servicing the Service

The preceding section outlined two flaws in the implementation of the
Beanshell remote service:

1. The client received no results from the script execution

2. The client blocked waiting for the script to complete

If we were not worried about the blocking-call issue, we could simply have
the executeScript() exported API return some sort of result (e.g., toString()
on the result of the Beanshell eval() call). However, that would not solve
the fact that calls to service APIs are synchronous even for remote services.

Another approach would be to pass some sort of callback object with
executeScript(), such that the server could run the script asynchronously
and invoke the callback on success or failure. This, though, implies that
there is some way to have the activity export an API to the service.

274

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (AdvServices/RemoteServiceEx and
AdvServices/RemoteClientEx).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces and
stub implementations. In the preceding example, we used AIDL to have the
service flesh out the stub implementation and have the client access the
service via the AIDL-defined interface. However, there is nothing magic
about services implementing and clients accessing – it is equally possible to
reverse matters and have the client implement something the service uses
via an interface.

So, for example, we could create an IScriptResult.aidl file:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScriptResult {
 void success(String result);
 void failure(String error);
}

Then, we can augment IScript itself, to pass an IScriptResult with
executeScript():

package com.commonsware.android.advservice;

import com.commonsware.android.advservice.IScriptResult;

// Declare the interface.
interface IScript {
 void executeScript(String script, IScriptResult cb);
}

Notice that we need to specifically import IScriptResult, just like we might
import some "regular" Java interface. And, as before, we need to make sure
the client and the server are working off of the same AIDL definitions, so
these two AIDL files need to be replicated across each project.

275

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

But other than that one little twist, this is all that is required, at the AIDL
level, to have the client pass a callback object to the service: define the
AIDL for the callback and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to
make use of this callback object.

Revising the Client

On the client, we need to implement an IScriptResult. On success(), we
can do something like raise a Toast; on failure(), we can perhaps show an
AlertDialog.

The catch is that we cannot be certain we are being called on the UI thread
in our callback object.

So, the safest way to do that is to make the callback object use something
like runOnUiThread() to ensure the results are displayed on the UI thread:

private final IScriptResult.Stub callback=new IScriptResult.Stub() {
 public void success(final String result) {
 runOnUiThread(new Runnable() {
 public void run() {
 successImpl(result);
 }
 });
 }

 public void failure(final String error) {
 runOnUiThread(new Runnable() {
 public void run() {
 failureImpl(error);
 }
 });
 }
};

private void successImpl(String result) {
 Toast
 .makeText(BshServiceDemo.this, result, Toast.LENGTH_LONG)
 .show();
}

private void failureImpl(String error) {

276

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

 builder
 .setTitle("Exception!")
 .setMessage(error)
 .setPositiveButton("OK", null)
 .show();
}

And, of course, we need to update our call to executeScript() to pass the
callback object to the remote service:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src, callback);
 }
 catch (android.os.RemoteException e) {
 failureImpl(e.toString());
 }
 }
 });

 bindService(new Intent("com.commonsware.android.advservice.IScript"),
 svcConn, Context.BIND_AUTO_CREATE);
}

Revising the Service

The service also needs changing, to both execute the scripts asynchronously
and use the supplied callback object for the end results of the script's
execution.

BshService from AdvServices/RemoteServiceEx uses the LinkedBlockingQueue
pattern to manage a background thread. An ExecuteScriptJob wraps up the
script and callback; when the job is eventually processed, it uses the

277

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

callback to supply the results of the eval() (on success) or the message of
the Exception (on failure):

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import java.util.concurrent.LinkedBlockingQueue;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script, IScriptResult cb) {
 executeScriptImpl(script, cb);
 }
 };
 private Interpreter i=new Interpreter();
 private LinkedBlockingQueue<Job> q=new LinkedBlockingQueue<Job>();

 @Override
 public void onCreate() {
 super.onCreate();

 new Thread(qProcessor).start();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 q.add(new KillJob());
 }

 private void executeScriptImpl(String script,
 IScriptResult cb) {
 q.add(new ExecuteScriptJob(script, cb));
 }

 Runnable qProcessor=new Runnable() {

278

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 public void run() {
 while (true) {
 try {
 Job j=q.take();

 if (j.stopThread()) {
 break;
 }
 else {
 j.process();
 }
 }
 catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 class Job {
 boolean stopThread() {
 return(false);
 }

 void process() {
 // no-op
 }
 }

 class KillJob extends Job {
 @Override
 boolean stopThread() {
 return(true);
 }
 }

 class ExecuteScriptJob extends Job {
 IScriptResult cb;
 String script;

 ExecuteScriptJob(String script, IScriptResult cb) {
 this.script=script;
 this.cb=cb;
 }

 void process() {
 try {
 cb.success(i.eval(script).toString());
 }
 catch (Throwable e) {
 Log.e("BshService", "Error executing script", e);

 try {
 cb.failure(e.getMessage());

279

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 }
 catch (Throwable t) {
 Log.e("BshService",
 "Error returning exception to client",
 t);
 }
 }
 }
 }
}

Notice that the service's own API just needs the IScriptResult parameter,
which can be passed around and used like any other Java object. The fact
that it happens to cause calls to be made synchronously back to the remote
client is invisible to the service.

The net result is that the client can call the service and get its results
without tying up the client's UI thread.

You may be wondering why we do not simply use an AsyncTask. The reason
is that remote service methods exposed by AIDL are not invoked on the
main application thread – one of the few places in Android where Android
calls your code from a background thread. An AsyncTask expects to be
created on the main application thread.

The Bind That Fails

Sometimes, a call to bindService() will fail for some reason. The most
common cause will be an invalid Intent – for example, you might be trying
to bind to a Service that you failed to register in the manifest. The
bindService() method returns a boolean value indicating whether or not
there was an immediate problem, so you can take appropriate steps.

For local services, this is usually just a coding problem. For remote services,
though, it could be that the service you are trying to work with has not
been installed on the device. You have two approaches for dealing with this:

1. You can watch for bindService() to return false and assume that
means the service is not installed

280

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

2. You can use introspection to see if the service is indeed installed
before you even try calling bindService()

We will look at introspection techniques later in this book.

If the Binding Is Too Tight

Sometimes, binding is more than you really need.

Sending data to a remote service is easy, even without binding. Just package
some data in Intent extras and use that Intent in a startService() call. The
remote service can grab those extras and operate on that data. This works
best with an IntentService, which does three things to assist with this
pattern:

1. It passes the Intents, with their extras, to your code in
onHandleIntent() on a background thread, so you can take as long as
you want to process them

2. It queues up Intents, so if another one arrives while you are working
on a previous one, there is no problem

3. It automatically shuts down the service when there is no more work
to be done

The biggest issue is getting results back to the client. There is no possibility
of a callback if there is no binding.

Fortunately, Android offers some alternatives that work nicely with this
approach.

Private Broadcasts

The concept of a "private broadcast" may seem like an oxymoron, but it is
something available to you in Android.

281

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Sending a broadcast Intent is fairly easy – create the Intent and call
sendBroadcast(). However, by default, any application could field a
BroadcastReceiver to watch for your broadcast. This may or may not
concern you.

If you feel that "spies" could be troublesome, you can call setPackage() on
your Intent, to limit the distribution of the broadcast. With setPackage(),
only components in the named application will be able to receive the
broadcast. You can even arrange to send the name of the package via an
extra to the remote service, so the service does not need to know the name
of the package in advance.

Pending Results

Another way for a remote service to send data back to your activity is via
createPendingResult(). This is a method on Activity that gives you a
PendingIntent set up to trigger onActivityResult() in your activity. In
essence, this is the underpinnings behind startActivityForResult() and
setResult(). You create the PendingIntent with createPendingResult() and
pass it in an Intent extra to the remote service. The remote service can call
send() on the PendingIntent, supplying an Intent with return data, just like
setResult() would do in an activity started via startActivityForResult(). In
your activity's onActivityResult(), you would get and inspect the returned
Intent.

This works nicely for activities, but this mechanism does not work for other
components. Hence, you cannot use this technique for one service calling
another remote service, for example.

BshService, Revisited

Let us take a closer look at those two techniques, as implemented in
AdvServices/RemoteClientUnbound and AdvServices/RemoteServiceUnbound.
These versions of the Beanshell sample are designed to demonstrate both
private broadcasts and pending results.

282

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

AlarmManager: Making the Services Run On
Time

A common question when doing Android development is "where do I set
up cron jobs?"

The cron utility – popular in Linux – is a way of scheduling work to be done
periodically. You teach cron what to run and when to run it (e.g., weekdays
at noon), and cron takes care of the rest. Since Android has a Linux kernel
at its heart, one might think that cron might literally be available.

While cron itself is not, Android does have a system service named
AlarmManager which fills a similar role. You give it a PendingIntent and a time
(and optionally a period for repeating) and it will fire off the Intent as
needed. By this mechanism, you can get a similar effect to cron.

There is one small catch, though: Android is designed to run on mobile
devices, particularly ones powered by all-too-tiny batteries. If you want
your periodic tasks to be run even if the device is "asleep", you will need to
take a fair number of extra steps, mostly stemming around the concept of
the WakeLock.

The WakefulIntentService Pattern

Most times, if you are bothering to get control on a periodic basis, you will
want to do so even when the device is asleep. For example, if you are
writing an email client, you will want to go get new emails even if the device
is asleep, so the user has all of the emails immediately upon the next time
the device wakes up. You might even want to raise a Notification based
upon the arrived emails.

Alarms that wake up the device are possible, but tricky, so we will examine
AlarmManager in the context of this scenario. And, to make that work, we are
going to use the WakefulIntentService – another of the CommonsWare
Android Components, available as open source for you to use. In particular,
we will be looking at the demo project from the WakefulIntentService

283

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

GitHub project, in addition to the implementation of WakefulIntentService
itself, specifically looking at these from the standpoint of using
AlarmManager for scheduled tasks.

Note that to use WakefulIntentService you will need the WAKE_LOCK
permission in your application, and if you are using the AlarmListener
approach described in this chapter, you will also need the
RECEIVE_BOOT_COMPLETED permission.

Step #1: Create an Alarm Listener

The WakefulIntentService offers an AlarmListener interface. If you create one
and register it properly, the WakefulIntentService will handle much of the
details of arranging to schedule your alarms whenever they need to be
scheduled, plus do the actual periodic work that you need the alarms for.

An AlarmListener needs to implement three methods:

• scheduleAlarms(), which is where you will teach Android when an
alarm is supposed to go off

• sendWakefulWork(), which is where you tell WakefulIntentService
what should occur when an alarm goes off

• getMaxAge(), where you indicate how long of a time between alarms
should elapse before WakefulIntentService assumes that the alarms
were lost and need to be re-scheduled

For example, from the WakefulIntentService demo project, here is an
AlarmListener implementation named AppListener:

package com.commonsware.cwac.wakeful.demo;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Context;
import android.os.SystemClock;
import com.commonsware.cwac.wakeful.WakefulIntentService;

public class AppListener implements WakefulIntentService.AlarmListener {
 public void scheduleAlarms(AlarmManager mgr, PendingIntent pi,

284

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

https://github.com/commonsguy/cwac-wakeful

Advanced Service Patterns

 Context ctxt) {
 mgr.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()+60000,
 AlarmManager.INTERVAL_FIFTEEN_MINUTES, pi);
 }

 public void sendWakefulWork(Context ctxt) {
 WakefulIntentService.sendWakefulWork(ctxt, AppService.class);
 }

 public long getMaxAge() {
 return(AlarmManager.INTERVAL_FIFTEEN_MINUTES*2);
 }
}

Your scheduleAlarms() method will be passed everything you should need to
define when you want to get control again in the future. Mostly, this is in
the form of an AlarmManager, to save you from having to call
getSystemService() on a Context to get an AlarmManager instance.
AlarmManager has three methods for defining when your scheduled tasks
should run:

• setRepeating(), where you stipulate when the first time is you want
your task to run, and how frequently thereafter

• setInexactRepeating(), which does the same thing but gives Android
the flexibility to slightly tweak your schedule for more efficiency

• set(), which is for "one-shot" alarms, where you want a task to run
once at a designated time

The AlarmListener pattern is for use with the first two approaches, not for
one-shot alarms via set().

Each of these methods takes a "type" of alarm. There are four types, based
upon two orthogonal axes of decision:

• Do you want the device to wake up out of sleep mode to perform
the task?

• Do you want to specify the time for the first task in terms of actual
real world time, or simply an amount of time from now?

285

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

There are four values, therefore, you can choose from for the first
parameter:

• ELAPSED_REALTIME indicates you want to specify a time relative to
SystemClock.elapsedRealtime() (a good choice for specifying a time
relative to now), and you do not want to wake up the device for the
alarms

• ELAPSED_REALTIME_WAKEUP is the same as the above one, except that
you do want the device to wake up out of sleep mode

• RTC indicates that you want to specify a time relative to
System.currentTimeMillis() (a good choice for specifying a real-
world time, as you can get a suitable value for this out of a Calendar
object), and you do not want to wake up the device for the alarms

• RTC_WAKEUP is the same as the above one, except that you do want the
device to wake up out of sleep mode

So, in the above sample, we are using setInexactRepeating(), indicating that
we want the first event to occur one minute (60,000 milliseconds) from
now, then recur every 15 minutes or so.

The sendWakefulWork() method is where you indicate to
WakefulIntentService what is to be done when each alarm goes off. Most
times, you will simply turn around and call sendWakefulWork() on
WakefulIntentService itself, identifying your custom subclass of
WakefulIntentService, where your business logic will reside. In the above
sample, our business logic is in AppService, which we will examine shortly.

The getMaxAge() method... takes a bit of explaining, which we will do later
in this chapter. For the moment, take it on faith that a value of twice your
period is a reasonable approach.

Register the AlarmReceiver

The WakefulIntentService library supplies a class named AlarmReceiver. You
will need to add this to your manifest via a <receiver> element, to get

286

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

control when the device wakes up. For example, here is the manifest from
the demo project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.cwac.wakeful.demo"
 android:versionCode="4"
 android:versionName="1.0"
 android:installLocation="auto">

 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"/>

 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"/>

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>

 <application android:label="@string/app_name">
 <receiver android:name="com.commonsware.cwac.wakeful.AlarmReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>

 <meta-data
 android:name="com.commonsware.cwac.wakeful"
 android:resource="@xml/wakeful"/>
 </receiver>

 <service android:name=".AppService">
 </service>

 <activity
 android:label="@string/app_name"
 android:name=".DemoActivity"
 android:theme="@android:style/Theme.NoDisplay">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

Our <receiver> points to the com.commonsware.cwac.wakeful.AlarmReceiver
class and ties it to a BOOT_COMPLETED action. This requires a <uses-permission>

287

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

element to request the RECEIVE_BOOT_COMPLETED permission, so users will
know at install time that we need to get control when the device turns on.

Our <receiver> element also has a <meta-data> element. These elements are
used to supply more information about a component than the manifest
XML calls for. In our case, we are indicating that there is additional data,
known as com.commonsware.cwac.wakeful, available via a wakeful XML
resource (/res/xml/wakeful.xml). That resource contains a single
WakefulIntentService element:

<WakefulIntentService
 listener="com.commonsware.cwac.wakeful.demo.AppListener"
/>

The one attribute in that element, listener, points to our AlarmListener
implementation from the previous step.

Step #2: Do Your Wakeful Work

Our AppService will get control in a method named doWakefulWork(). The
doWakefulWork() method has similar semantics to the onHandleIntent() of a
regular IntentService – we get control in a background thread, and the
service will shut down once the method returns if there is no other
outstanding work. The difference is that WakefulIntentService will keep the
device awake while doWakefulWork() is doing its work.

In this case, AppService just logs a message to LogCat:

package com.commonsware.cwac.wakeful.demo;

import android.content.Intent;
import android.util.Log;
import com.commonsware.cwac.wakeful.WakefulIntentService;

public class AppService extends WakefulIntentService {
 public AppService() {
 super("AppService");
 }

 @Override
 protected void doWakefulWork(Intent intent) {

288

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 Log.i("AppService", "I'm awake! I'm awake! (yawn)");
 }
}

And that's it. Those two steps – plus WakefulIntentService – is all you need
to get control on a periodic basis to do work, waking up the phone as
needed.

Of course, we have not yet scheduled any alarms. To understand how to do
that, we need to first understand when to do that.

When Alarms Come and Go

When your app is initially installed by the user, none of your code is
immediately executed. Hence, you will not have had a chance to register
any alarms. So, the first place you need to think about registering your
alarms is when your launcher activity is executed. In the
WakefulIntentService demo, there is a DemoActivity that does just that:

package com.commonsware.cwac.wakeful.demo;

import android.app.Activity;
import android.os.Bundle;
import android.os.StrictMode;
import android.widget.Toast;
import com.commonsware.cwac.wakeful.WakefulIntentService;

public class DemoActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build());

 WakefulIntentService.scheduleAlarms(new AppListener(),
 this, false);

 Toast.makeText(this, "Alarms active!",
 Toast.LENGTH_LONG).show();

 finish();

289

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 }
}

The scheduleAlarms() method on WakefulIntentService takes an
implementation of your AlarmListener, a Context, and an optional boolean
flag indicating whether or not the alarms should be forced to be scheduled,
even if they probably are already active. By default, this is set to true,
though our DemoActivity has it as false.

So, the first time your activity is executed, the alarms will be scheduled,
following the rules set down in your AlarmListener. In an ideal world, this is
all you would need. If this were an ideal world, though, this part of the book
would not need to be written. Since you are reading it, you can tell that this
is not an ideal world.

So, when else do we need to schedule alarms?

On a Reboot

A Unix-style cron daemon will pick up jobs where it left off after a reboot.
Similarly, Windows "Scheduled Tasks" will resume after a reboot.

On the other hand, AlarmManager in Android is wiped clean, starting with
zero scheduled alarms. The argument that we have been given is that the
core Android team does not want apps to schedule alarms and "forget"
about them, causing them to pile up and slow down the device. While this
is a noble objective, it does cause some annoyance, as we need to get
control at boot time and arrange to reschedule the alarms.

After Being Force-Stopped

Users can go into the Settings application, find your application, and click a
"Force Stop" button. When they do this, your app moves into a "stoppped"
state. Nothing of your code will run again – including any BroadcastReceiver
components that you have defined – until the user proactively runs one of
your activities again, typically from the launcher. Hence, any user that

290

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

force-stops your app will cause you to not receive any scheduled alarms
ever again, as the existing alarms are removed and you will not be able to
get control again at boot time.

This is why we are looking at scheduling the alarms every time the
DemoActivity runs. Not only might it be the very first time the user has
launched our activity, but it might be the very first time the user has
launched our activity after being force-stopped.

Fortunately, WakefulIntentService handles these scenarios for you, so long
as you call scheduleAlarms() whenever your app is launched. This is where
getMaxAge() comes into play – if WakefulIntentService detects that an alarm
has not gone off in the number of milliseconds you return from
getMaxAge(), it assumes that the user force-stopped your application and it
schedules the alarms again.

The "Wakeful" of WakefulIntentService

Now, let us take a look "under the covers" to see how WakefulIntentService
actually keeps the device awake long enough for doWakefulWork() to do its,
um, wakeful work.

Concept of WakeLocks

Most of the time in Android, you are developing code that will run while
the user is actually using the device. Activities, for example, only really
make sense when the device is fully awake and the user is tapping on the
screen or keyboard.

Particularly with scheduled background tasks, though, you need to bear in
mind that the device will eventually "go to sleep". In full sleep mode, the
display, main CPU, and keyboard are all powered off, to maximize battery
life. Only on a low-level system event, like an incoming phone call, will
anything wake up.

291

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Another thing that will partially wake up the phone is an Intent raised by
the AlarmManager. So long as broadcast receivers are processing that Intent,
the AlarmManager ensures the CPU will be running (though the screen and
keyboard are still off). Once the broadcast receivers are done, the
AlarmManager lets the device go back to sleep.

You can achieve the same effect in your code via a WakeLock, obtained via the
PowerManager system service. When you acquire a "partial WakeLock"
(PARTIAL_WAKE_LOCK), you prevent the CPU from going back to sleep until
you release said WakeLock. By proper use of a partial WakeLock, you can ensure
the CPU will not get shut off while you are trying to do background work,
while still allowing the device to sleep most of the time, in between alarm
events.

However, using a WakeLock is a bit tricky, particularly when responding to
an alarm Intent, as we will see in the next few sections.

The WakeLock Problem

For a _WAKEUP alarm, the AlarmManager will arrange for the device to stay
awake, via a WakeLock, for as long as the BroadcastReceiver's onReceive()
method is executing. For some situations, that may be all that is needed.
However, onReceive() is called on the main application thread, and Android
will kill off the receiver if it takes too long.

Your natural inclination in this case is to have the BroadcastReceiver
arrange for a Service to do the long-running work on a background thread,
since BroadcastReceiver objects should not be starting their own threads.
Perhaps you would use an IntentService, which packages up this "start a
Service to do some work in the background" pattern. And, given the
preceding section, you might try acquiring a partial WakeLock at the
beginning of the work and release it at the end of the work, so the CPU will
keep running while your IntentService does its thing.

This strategy will work...some of the time.

292

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

The problem is that there is a gap in WakeLock coverage, as depicted in the
following diagram:

Figure 61. The WakeLock gap

The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after onReceive() ends.
As a result, there is a window of time between the end of onReceive() and
when your IntentService can acquire its own WakeLock. During that window,
the device might fall back asleep. Sometimes it will, sometimes it will not.

What you need to do, instead, is arrange for overlapping WakeLock instances.
You need to acquire a WakeLock in your BroadcastReceiver, during the
onReceive() execution, and hold onto that WakeLock until the work is
completed by the IntentService:

293

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Figure 62. The WakeLock overlap

Then you are assured that the device will stay awake as long as the work
remains to be done.

WakefulIntentService and WakeLocks

By now, you have noticed that the WakefulIntentService recipe does not
have you manage your own WakeLock. That is because WakefulIntentService
handles it for you. One reason why WakefulIntentService exists is to manage
that WakeLock, because WakeLocks suffer from one major problem: they are
not Parcelable, and therefore cannot be passed in an Intent extra. Hence,
for our BroadcastReceiver and our WakefulIntentService to use the same
WakeLock, they have to be shared via a static data member... which is icky.
WakefulIntentService is designed to hide this icky part from you, so you do
not have to worry about it.

Inside WakefulIntentService

With all that behind us, now we can take a look at some pieces of how
WakefulIntentService performs its magic.

294

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

scheduleAlarms()

Our DemoActivity called scheduleAlarms(). The job of scheduleAlarms() is to
get your AlarmListener to schedule the alarms, if it appears that this is
necessary:

public static void scheduleAlarms(AlarmListener listener,
 Context ctxt) {
 scheduleAlarms(listener, ctxt, true);
}

public static void scheduleAlarms(AlarmListener listener,
 Context ctxt,
 boolean force) {
 SharedPreferences prefs=ctxt.getSharedPreferences(NAME, 0);
 long lastAlarm=prefs.getLong(LAST_ALARM, 0);

 if (lastAlarm==0 || force ||
 (System.currentTimeMillis()>lastAlarm &&
 System.currentTimeMillis()-lastAlarm>listener.getMaxAge())) {
 AlarmManager mgr=(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
 Intent i=new Intent(ctxt, AlarmReceiver.class);
 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0,
 i, 0);

 listener.scheduleAlarms(mgr, pi, ctxt);
 }
}

The scheduleAlarms() method will think that scheduling alarms is necessary
if:

• You forced it via passing true to the force parameter, or

• If it cannot find the last time the alarm went off, via a value stored
in a service-specific SharedPreferences object, or

• If the last time the alarm went off is longer than your desired
maximum age, suggesting that perhaps the user force-stopped your
app

In principle, we could just always schedule the alarms. If you call
setRepeating() (or kin) on AlarmManager for a PendingIntent, any existing
alarm for an equivalent PendingIntent is replaced. Here, "equivalent" means
that the underlying Intent has the same action, component, categories, and
MIME type.

295

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

The downside of always scheduling the alarms is that if you use
setRepeating(), the alarm will next go off at your designated time, which
may be far sooner than the existing alarm would call for. For example,
suppose that you want to get control once per day. If you call
setRepeating() or setInexactRepeating() every time the user launches your
main activity, you will trigger the alarm to go off each of those times, in
addition to the once per day. Using setRepeating() with a specific time of
the day (e.g., 3am) will not have that effect, but setRepeating() with "do the
first one a minute from now" would.

AlarmReceiver

The WakefulIntentService-supplied AlarmReceiver will get control when the
device powers on (via our manifest entry) and when the alarm goes off. At
those times, onReceive() will be called:

 @Override
 public void onReceive(Context ctxt, Intent intent) {
 AlarmListener listener=getListener(ctxt);

 if (listener!=null) {
 if (intent.getAction()==null) {
 SharedPreferences
prefs=ctxt.getSharedPreferences(WakefulIntentService.NAME, 0);

 prefs
 .edit()
 .putLong(WakefulIntentService.LAST_ALARM, System.currentTimeMillis())
 .commit();

 listener.sendWakefulWork(ctxt);
 }
 else {
 WakefulIntentService.scheduleAlarms(listener, ctxt, true);
 }
 }
 }

If the Intent that was broadcast does not have an action, we assume this is
the broadcast from AlarmManager, and so we call sendWakefulWork() on your
AlarmListener after updating our private SharedPreferences to note that the
alarm went off (for use by scheduleAlarms()). If, however, the action is not-

296

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

null, that means we are being started from the BOOT_COMPLETED broadcast, in
which case we call scheduleAlarms() on your AlarmListener.

Where does the AlarmListener object come from? A private getListener()
method that takes advantage of the <meta-data> from the manifest:

@SuppressWarnings("unchecked")
private WakefulIntentService.AlarmListener getListener(Context ctxt) {
 PackageManager pm=ctxt.getPackageManager();
 ComponentName cn=new ComponentName(ctxt, getClass());

 try {
 ActivityInfo ai=pm.getReceiverInfo(cn,
 PackageManager.GET_META_DATA);
 XmlResourceParser xpp=ai.loadXmlMetaData(pm,
 WAKEFUL_META_DATA);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("WakefulIntentService")) {
 String clsName=xpp.getAttributeValue(null, "listener");
 Class<AlarmListener> cls=(Class<AlarmListener>)Class.forName(clsName);

 return(cls.newInstance());
 }
 }

 xpp.next();
 }
 }
 catch (NameNotFoundException e) {
 Log.e(getClass().getName(), "Cannot find own info???", e);
 }
 catch (XmlPullParserException e) {
 Log.e(getClass().getName(), "Malformed metadata resource XML", e);
 }
 catch (IOException e) {
 Log.e(getClass().getName(), "Could not read resource XML", e);
 }
 catch (ClassNotFoundException e) {
 Log.e(getClass().getName(), "Listener class not found", e);
 }
 catch (IllegalAccessException e) {
 Log.e(getClass().getName(), "Listener is not public or lacks public
constructor", e);
 }
 catch (InstantiationException e) {
 Log.e(getClass().getName(), "Could not create instance of listener", e);
 }

297

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

 return(null);
}

To read data from a <meta-data> element, you use PackageManager to get
information about your BroadcastReceiver via getReceiverInfo() and the
ActivityInfo object it returns. You can ask the ActivityInfo object to get
you the metadata for a given name via the loadXmlMetaData() method,
which returns an XmlResourceParser. This is an implementation of the
XmlPullParser interface, so you can start iterating over the parse events until
you encounter your desired element. In this case, we scan for the start-tag
event for the WakefulIntentService element, then read out the listener
attribute, use Class.forName() to find the class, and call newInstance() on
the Class object to create an instance of your AlarmListener.

An alternative approach would be to have you subclass AlarmReceiver and
override getListener(), and you are certainly welcome to do that if the
<meta-data> approach causes you difficulty.

So, the net of AlarmReceiver is that we allow you to schedule your alarms (if
the device is freshly booted) or we allow you to do your wakeful work (if the
alarm is from AlarmManager).

Command Processing

AlarmReceiver, when triggered by AlarmManager, detects that there is no
supplied action and, in that case, passes control to WakefulIntentService via
sendWakefulWork(). You can call this method yourself from other, non-alarm
scenarios where you want work to be done that can be completed without
the device falling asleep.

There are two flavors of sendWakefulWork(). Both take a Context – the
difference is in the second parameter. One takes a Class object, identifying
the WakefulIntentService subclass that should be invoked to do the wakeful
work. This is a convenience method, wrapping around the other flavor of
sendWakefulWork() that takes an Intent.

298

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

Either flavor of sendWakefulWork() on WakefulIntentService eventually routes
to a getLock() method:

static final String NAME="com.commonsware.cwac.wakeful.WakefulIntentService";
static final String LAST_ALARM="lastAlarm";
private static volatile PowerManager.WakeLock lockStatic=null;

synchronized private static PowerManager.WakeLock getLock(Context context) {
 if (lockStatic==null) {
 PowerManager
mgr=(PowerManager)context.getSystemService(Context.POWER_SERVICE);

 lockStatic=mgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
 NAME);
 lockStatic.setReferenceCounted(true);
 }

 return(lockStatic);
}

public static void sendWakefulWork(Context ctxt, Intent i) {
 getLock(ctxt.getApplicationContext()).acquire();
 ctxt.startService(i);
}

The getLock() implementation lazy-creates our WakeLock by getting the
PowerManager, creating a new partial WakeLock, and setting it to be reference
counted (meaning if it is acquired several times, it takes a corresponding
number of release() calls to truly release the lock). If we have already
retrieved the WakeLock in a previous invocation, we reuse the same lock.

Back in AlarmReceiver, up until this point, the CPU was running because
AlarmManager held a partial WakeLock. Now, the CPU is running because both
AlarmManager and WakefulIntentService hold a partial WakeLock.

Then, sendWakefulWork() starts up our service and exits. Since this is the
only thing onReceive() was doing in AlarmReceiver, onReceive() exits.
Notably, AlarmReceiver does not release the WakeLock it acquired via
sendWakefulWork(). This is important, as we need to ensure that the service
can get its work done while the CPU is running. Had we released the
WakeLock before returning, it is possible that the device would fall back
asleep before our service had a chance to acquire a fresh WakeLock. This is
one of the keys of using WakeLock successfully – as needed, use overlapping

299

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

WakeLock instances to ensure constant coverage as you pass from component
to component.

Now, our service will start up and be able to do something, while the CPU is
running due to our acquired WakeLock.

So, WakefulIntentService will now get control, under an active WakeLock.
Since it is an IntentService subclass, onHandleIntent() is called. Here, we
just route control to the subclass' implementation of an abstract
doWakefulWork() method, ensuring that we release the WakeLock when the
work is done, even if a RuntimeException is raised:

@Override
final protected void onHandleIntent(Intent intent) {
 try {
 doWakefulWork(intent);
 }
 finally {
 getLock(this.getApplicationContext()).release();
 }
}

As a result, each piece of work that gets sent to the WakefulIntentService
will acquire a WakeLock via sendWakefulWork() and will release that WakeLock
when doWakefulWork() ends. Once that WakeLock is fully released, the device
can fall back asleep.

Background Data Setting

Users can check or uncheck a checkbox in the Settings application that
indicates if they want applications to use the Internet in the background.
Services employing AlarmManager should honor this setting.

To find out whether background data is allowed, use the
ConnectivityManager system service and call getBackgroundDataSetting(). For
example, your alarm-triggered BroadcastReceiver could check this before
bothering to arrange for the IntentService (or WakefulIntentService) to do
work.

300

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

You can also register a BroadcastReceiver to watch for the
ACTION_BACKGROUND_DATA_SETTING_CHANGED broadcast, also defined on
ConnectivityManager. For example, you could elect to completely cancel your
alarm if the background data setting is flipped to false.

The "Everlasting Service" Anti-Pattern

One anti-pattern that is all too prevalent in Android is the "everlasting
service". Such a service is started via startService() and never stops – the
component starting it does not stop it and it does not stop itself via
stopSelf().

Why is this an anti-pattern?

• The service takes up memory all of the time. This is bad in its own
right if the service is not continuously delivering sufficient value to
be worth the memory.

• Users, fearing services that sap their device's CPU or RAM, may
attack the service with so-called "task killer" applications or may
terminate the service via the Settings app, thereby defeating your
original goal.

• Android itself, due to user frustration with sloppy developers, will
terminate services it deems ill-used, particularly ones that have run
for quite some time.

Occasionally, an everlasting service is the right solution. Take a VOIP client,
for example. A VOIP client usually needs to hold an open socket with the
VOIP server to know about incoming calls. The only way to continuously
watch for incoming calls is to continuously hold open the socket. The only
component capable of doing that would be a service, so the service would
have to continuously run.

However, in the case of a VOIP client, or a music player, the user is the one
specifically requesting the service to run forever. By using
startForeground(), a service can ensure it will not be stopped due to old age
for cases like this.

301

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

Advanced Service Patterns

As a counter-example, imagine an email client. The client wishes to check
for new email messages periodically. The right solution for this is the
AlarmManager pattern described earlier in this chapter. The anti-pattern
would have a service running constantly, spending most of its time waiting
for the polling period to elapse (e.g., via Thread.sleep()). There is no value
to the user in taking up RAM to watch the clock tick. Such services should
be rewritten to use AlarmManager.

Most of the time, though, it appears that services are simply leaked. That is
one advantage of using AlarmManager and an IntentService – it is difficult to
leak the service, causing it to run indefinitely. In fact, IntentService in
general is a great implementation to use whenever you use the command
pattern, as it ensures that the service will shut down eventually. If you use a
regular service, be sure to shut it down when it is no longer actively
delivering value to the user.

302

http://commonsware.com/AdvAndroid

Free excerpt from _The Busy Coder's Guide
to Advanced Android Development_.

Copyright (c) 2011 CommonsWare, LLC.
All Rights Reserved

	The Busy Coder's Guide to Advanced Android Development

	Welcome to the Book!
	Prerequisites
	Getting Help
	Warescription
	Errata and the Book Bug Bounty
	Source Code
	Creative Commons and the Four-to-Free (42F) Guarantee
	Lifecycle of a CommonsWare Book
	WebView, Inside and Out
	Friends with Benefits
	Turnabout is Fair Play

	Crafting Your Own Views
	Pick Your Poison
	Colors, Mixed How You Like Them
	The Layout
	The Attributes
	The Class
	Seeing It In Use

	More Fun With ListViews
	Giant Economy-Size Dividers
	Choosing What Is Selectable
	Introducing MergeAdapter
	Lists via Merges
	How MergeAdapter Does It

	From Head To Toe
	Control Your Selection
	Create a Unified Row View
	Configure the List, Get Control on Selection
	Change the Row

	Stating Your Selection

	Creating Drawables
	Traversing Along a Gradient
	State Law
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images

	Home Screen App Widgets
	East is East, and West is West...
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The Metadata
	The Layout
	The BroadcastReceiver
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget's) Destiny
	Change Your Look
	One Size May Not Fit All
	Advanced App Widgets on Android 3.x
	New Widgets for App Widgets
	Preview Images
	Adapter-Based App Widgets

	Being a Good Host

	Interactive Maps
	Get to the Point
	Getting the Latitude and Longitude
	Getting the Screen Position

	Not-So-Tiny Bubbles
	Options for Pop-up Panels
	Defining a Panel Layout
	Creating a PopupPanel Class
	Showing and Hiding the Panel
	Tying It Into the Overlay

	Sign, Sign, Everywhere a Sign
	Selected States
	Per-Item Drawables
	Changing Drawables Dynamically

	In A New York Minute. Or Hopefully a Bit Faster.
	A Little Touch of Noo Yawk
	Touch Events
	Finding an Item
	Dragging the Item

	Creating Custom Dialogs and Preferences
	Your Dialog, Chocolate-Covered
	Basic AlertDialog Setup
	Handling Color Changes
	State Management

	Preferring Your Own Preferences, Preferably
	The Constructor
	Creating the View
	Dealing with Preference Values
	Using the Preference

	Advanced Fragments and the Action Bar
	About the Sample App
	What the User Sees
	The Data Model (Such As It Is and What There Is Of It)

	Dynamic Fragments
	Fragments and Panes
	Fragments and Activities
	Running a FragmentTransaction

	Action Bar Navigation Options
	Tabs Mode
	"List" Mode

	Dialog Fragments
	"Lights Out"
	Leveraging the Home Icon
	And All The Rest
	PersistentListFragment
	ContentFragment
	ItemsActivity

	Other Bits of Goodness
	Custom Navigation Mode
	Dynamic Menus

	More On Retained Instances
	The Activity
	The Fragment
	What We Really Should Be Doing

	Action Modes
	Saying Goodbye to Context Menus
	Manual Action Modes
	Choosing Your Trigger
	Starting the Action Mode
	Implementing the Action Mode

	Multiple-Modal-Choice Action Modes

	Animating Widgets
	It's Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It's All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Using the Camera
	Sneaking a Peek
	The Permission and the Feature
	The SurfaceView
	The Camera

	Image Is Everything
	Asking for a Camera. Maybe.
	Getting the Camera
	Asking for a Format
	Taking a Picture
	Using AsyncTask

	Maintaining Your Focus
	All the Bells and Whistles

	Playing Media
	Get Your Media On
	Making Noise
	Streaming Limitations

	Moving Pictures
	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator

	Handling System Events
	Get Moving, First Thing
	The Permission
	The Receiver Element
	The Receiver Implementation
	New Behavior With Android 3.1

	I Sense a Connection Between Us...
	Feeling Drained
	Sticky Intents and the Battery
	Battery and the Emulator
	Other Power Triggers

	Advanced Service Patterns
	Remote Services
	When IPC Attacks!
	A Consumer Economy
	Service From Afar
	Servicing the Service
	The Bind That Fails
	If the Binding Is Too Tight

	AlarmManager: Making the Services Run On Time
	The WakefulIntentService Pattern
	When Alarms Come and Go
	The "Wakeful" of WakefulIntentService
	Inside WakefulIntentService
	Background Data Setting

	The "Everlasting Service" Anti-Pattern

	Using System Settings and Services
	Setting Expectations
	Basic Settings
	Secure Settings

	Can You Hear Me Now? OK, How About Now?
	Attaching SeekBars to Volume Streams

	Putting Stuff on the Clipboard
	Using the Clipboard on Android 1.x/2.x
	Advanced Clipboard on Android 3.x

	The Rest of the Gang

	Content Provider Theory
	Using a Content Provider
	Pieces of Me
	Getting a Handle
	The Database-Style API
	The File System-Style API

	Building Content Providers
	First, Some Dissection
	Next, Some Typing
	Implementing the Database-Style API
	Implementing the File System-Style API

	Issues with Content Providers

	Content Provider Implementation Patterns
	The Single-Table Database-Backed Content Provider
	Step #1: Create a Provider Class
	Step #2: Supply a Uri
	Step #3: Declare the "Columns"
	Step #4: Update the Manifest

	The Local-File Content Provider
	Step #1: Create the Provider Class
	Step #2: Update the Manifest
	Using this Provider

	Loaders
	Cursors: Issues with Management
	Introducing the Loader Framework
	LoaderManager
	LoaderCallbacks
	Loader

	Honeycomb... Or Not
	Using CursorLoader
	Using SQLiteCursorLoader
	Inside SQLiteCursorLoader
	AbstractCursorLoader
	SQLiteCursorLoader

	What Else Is Missing?
	Issues, Issues, Issues
	Loaders Beyond Cursors
	SharedPreferencesLoader

	The Contacts Content Provider
	Introducing You to Your Contacts
	ContentProvider Recap
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Dealing with API Versions
	Accessing People
	Accessing Phone Numbers
	Accessing Email Addresses

	Makin' Contacts

	The CalendarContract Content Provider
	You Can't Be a Faker
	Do You Have Room on Your Calendar?
	The Collections
	Calendar Permissions
	Querying for Events

	Penciling In an Event

	Searching with SearchManager
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness
	May I Make a Suggestion?
	SearchRecentSuggestionsProvider
	Custom Suggestion Providers
	Integrating Suggestion Providers

	Putting Yourself (Almost) On Par with Google
	Implement a Suggestions Provider
	Augment the Metadata
	Convince the User
	The Results

	Introspection and Integration
	Would You Like to See the Menu?
	Give Users a Choice
	Asking Around
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components

	Get In the Loop
	The Manifest
	The Main Activity
	The Test Activity
	The Results

	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Your Own Private URL
	Manifest Modifications
	Creating a Custom URL
	Reacting to the Link

	Homing Beacons for Intents

	Tapjacking
	What is Tapjacking?
	World War Z (Axis)
	Enter the Jackalope
	Thinking Like a Malware Author

	Detecting Potential Tapjackers
	Who Holds a Permission?
	Who is Running?
	Combining the Two: TJDetect

	Defending Against Tapjackers
	Filtering Touch Events
	Detect-and-Warn

	Why Is This Being Discussed?

	Working With SMS
	Sending Out an SOS, Give or Take a Letter
	Sending Via the SMS Client
	Sending SMS Directly
	Inside the Sender Sample

	You Can't Get There From Here
	Receiving SMS
	Working With Existing Messages

	More on the Manifest
	Just Looking For Some Elbow Room
	Configuring Your App to Reside on External Storage
	What the User Sees
	What the Pirate Sees
	What Your App Sees...When the Card is Removed
	Choosing Whether to Support External Storage

	Using an Alias

	Device Configuration
	The Happy Shiny Way
	Settings.System
	WifiManager

	The Dark Arts
	Settings.Secure
	System Properties

	Automation, Both Shiny and Dark

	Push Notifications with C2DM
	Pieces of Push
	The Account
	The Android App
	Your Server
	Google's Server
	Google's On-Device Code
	Google's Client Code

	Getting From Here to There
	Permissions for Push
	Registering an Interest
	Push It Real Good
	Getting Authenticated
	Sending a Notification
	About the Message

	A Controlled Push
	Message Parameters
	Notable Message Responses

	The Right Way to Push

	NFC
	What Is NFC?
	...Compared to RFID?
	...Compared to QR Codes?

	To NDEF, Or Not to NDEF
	NDEF Modalities
	NDEF Structure and Android's Translation
	The Reality of NDEF
	Some Tags are Read-Only
	Some Tags Can't Be Read-Only
	Some Tags Need to be Formatted
	Tags Have Limited Storage
	NDEF Data Structures Are Documented Elsewhere
	Availability of NFC-Capable Android Devices

	Sources of Tags
	Writing to a Tag
	Getting a URL
	Detecting a Tag
	Reacting to a Tag
	Writing to a Tag

	Responding to a Tag
	Expected Pattern: Bootstrap
	Mobile Devices are Mobile
	Additional Resources

	Google TV
	What Features and Configurations Does It Use?
	Screen Size and Density
	Input Devices
	Other Hardware

	What Is Really Different?
	The Emulator
	CPU and NDK
	Overscan
	Ethernet
	Location
	Media Keys
	Channels and Listings
	User Base

	Getting Your Development Environment Established
	Installing the SDK Add-On
	Getting KVM Set Up
	Creating the Emulator
	Connecting to Physical Devices

	How Does Distribution Work?
	Getting Your App on Google TV
	Supporting Only Google TV
	Avoiding Google TV

	Kindle Fire
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	The Menu Bar
	Nothing Googly
	Sideloading Limitations

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?
	Amazon AppStore
	Alternatives

	The Role of Scripting Languages
	All Grown Up
	Following the Script
	Your Expertise
	Your Users' Expertise
	Crowd-Developing

	Going Off-Script
	Security
	Performance
	Cross-Platform Compatibility
	Maturity...On Android

	The Scripting Layer for Android
	The Role of SL4A
	On-Device Development

	Getting Started with SL4A
	Installing SL4A
	Installing Interpreters
	Running Supplied Scripts

	Writing SL4A Scripts
	Editing Options
	Calling Into Android
	Browsing the API

	Running SL4A Scripts
	Background
	Shortcuts
	Other Alternatives

	Potential Issues
	Security...From Scripts
	Security...From Other Apps

	JVM Scripting Languages
	Languages on Languages
	A Brief History of JVM Scripting
	Limitations
	Android SDK Limits
	Wrong Bytecode
	Age

	SL4A and JVM Languages
	Embedding JVM Languages
	Architecture for Embedding
	Inside the InterpreterService
	BeanShell on Android
	Rhino on Android

	Other JVM Scripting Languages
	Groovy
	Jython

	Reusable Components
	Pick Up a JAR
	The JAR Itself
	Resources
	Assets
	Manifest Entries
	AIDL Interfaces
	Permissions
	Other Source Code
	Your API
	Documentation
	Licensing

	A Private Library
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects

	Picking Up a Parcel
	Binary-Only Library Projects
	Resource Naming Conventions
	Parcel Distribution

	Testing
	You Get What They Give You
	Erecting More Scaffolding
	Testing Real Stuff
	ActivityInstrumentationTestCase
	AndroidTestCase
	Other Alternatives

	Monkeying Around

	Getting Ready for Production
	Making Your Mark
	Role of Code Signing
	What Happens In Debug Mode
	Creating a Production Signing Key
	Signing with the Production Key
	Two Types of Key Security
	Related Keys

	Get Ready To Go To Market
	Versioning
	Package Name
	Icon and Label
	Logging
	Testing
	EULA

