

The Busy Coder's Guide to Advanced Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

The Busy Coder's Guide to Advanced Android Development
by Mark L. Murphy

Copyright © 2008-09 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Mar 2009: Version 0.6 ISBN: 978-0-9816780-1-6

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!..ix

Preface..xi

Welcome to the Book!...xi

Prerequisites...xi

Warescription...xii

Book Bug Bounty...xiii

Source Code License..xiv

Creative Commons and the Four-to-Free (42F) Guarantee...................xiv

Lifecycle of a CommonsWare Book..xv

WebView, Inside and Out..1

Friends with Benefits..1

Turnabout is Fair Play..6

Gearing Up..9

Back To The Future..11

Crafting Your Own Views...13

Providing Attribution..13

Tailor Your Buttons...13

The Department of State..14

Spin It Your Way...14

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews..15

Giant Economy-Size Dividers...15

Choosing What Is Selectable...16

Composition for Sections...17

From Head To Toe..24

Control Your Selection...26

Create a Unified Row View..27

Configure the List, Get Control on Selection....................................28

Change the Row...30

Creating Drawables...35

Traversing Along a Gradient..35

A Stitch In Time Saves Nine..39

The Name and the Border...39

Padding and the Box..40

Stretchable Zones...40

Tooling...41

Using Nine-Patch Images..42

Animating Widgets..45

It's Not Just For Toons Anymore...45

A Quirky Translation...46

Mechanics of Translation..46

Imagining a Drawer...47

The Aftermath..47

Introducing DrawerLayout...48

Using the Animation..50

Fading To Black. Or Some Other Color..50

Alpha Numbers...51

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animations in XML...51

Using XML Animations...52

When It's All Said And Done...52

Hit The Accelerator..53

Animate. Set. Match...54

A Chest of Drawers...55

Playing Media..57

Get Your Media On...57

Making Noise..58

Moving Pictures..63

Using the Camera..69

Sneaking a Peek..69

The Permission...70

The SurfaceView...71

The Camera...71

Image Is Everything..73

Asking for a Format...74

Connecting the Camera Button..74

Taking a Picture..75

The Job Queue Pattern..76

Saving the Picture...77

Sensors...81

The Sixth Sense. Or Possibly the Seventh...81

Orienting Yourself..82

Steering Your Phone...85

Do "The Shake"...87

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers..93

Distributed Data...94

SQLite: On-Device, On-Desktop..95

Exporting a Database...95

Loading the Exported Database..98

Examining Your Relationships..101

Contact Permissions..101

Pre-Joined Data...102

The Sample Activity..102

Accessing People...105

Accessing Phone Numbers..106

Accessing Email Addresses..107

Rummaging Through Your Phone Records..107

Come Together, Right Now..108

CursorWrapper...109

Implementing a JoinCursor..110

Using a JoinCursor...114

Using System Services..121

Get Alarmed..121

Meeting the User's Preference..121

Get Set...121

Handling System Events..123

Get Moving, First Thing..123

I Sense a Connection Between Us..123

Feeling Drained..123

Your Own (Advanced) Services..125

Service From Afar..125

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Service Names...126

The Service...127

The Client..129

Servicing the Service..131

Callbacks via AIDL..132

Revising the Client..133

Revising the Service..134

Reusable Components...141

Pick Up a JAR...141

The Android Build Process...142

Integrating JARs into Android...143

Putting Limits on the JAR..143

Crafting an Android-Aware JAR..144

An API with Intent..145

Sending Data in the Intent...145

Callbacks As Intents...145

Serving Your Fellow Bits...145

Pros, Cons, and Other Forms of Navel-Gazing.......................................145

Richness of API...146

Code Duplication..146

Ease of Initial Deployment...147

Intended Form of Integration..147

Testing Your Code..149

Testing Your Instrument..149

Something Incompletely Different..149

Production Applications..151

Making Your Mark...151

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

To Market, To Market..151

Wide Distribution..151

Click Here To Download...151

Let Your Fingers Do the Distributing...151

Late-Breaking Updates..152

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this digital book and its updates – keep tabs on the
Warescription feed off the CommonsWare site to learn when new editions
of this book, or other books in your Warescription, are available.

Each Warescription digital book is licensed for the exclusive use of its
subscriber and is tagged with the subscribers name. We ask that you not
distribute these books. If you work for a firm and wish to have several
employees have access, enterprise Warescriptions are available. Just contact
us at enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license – more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

Some notes for Kindle users:

• You may wish to drop your font size to level 2 for easier reading

• Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

mailto:enterprise@commonsware.com

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Preface

Welcome to the Book!

If you come to this book after having read its companion volume, The Busy
Coder's Guide to Android Development, thanks for sticking with the series!
CommonsWare aims to have the most comprehensive set of Android
development resources (outside of the Open Handset Alliance itself), and
we appreciate your interest.

If you come to this book having learned about Android from other sources,
thanks for joining the CommonsWare community! Android, while aimed at
small devices, is a surprisingly vast platform, making it difficult for any given
book, training, wiki, or other source to completely cover everything one
needs to know. This book will hopefully augment your knowledge of the ins
and outs of Android-dom and make it easier for you to create "killer apps"
that use the Android platform.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

This book assumes you have experience in Android development, whether
from a CommonsWare resource or someplace else. In other words, you
should have:

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/Android/
http://commonsware.com/Android/

• A working Android development environment, whether it is based
on Eclipse, another IDE, or just the command-line tools that
accompany the Android SDK

• A strong understanding of how to create activities and the various
stock widgets available in Android

• A working knowledge of the Intent system, how it serves as a
message bus, and how to use it to launch other activities

• Experience in creating, or at least using, content providers and
services

If you picked this book up expecting to learn those topics, you really need
another source first, since this book focuses on other topics. While we are
fans of The Busy Coder's Guide to Android Development, there are plenty of
other books available covering the Android basics, blog posts, wikis, and, of
course, the main Android site itself. A list of currently-available Android
books can be found on the Android Programming knol.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance. Many chapters will
reference material in The Busy Coder's Guide to Android Development,
usually via the shorthand BCG to Android moniker.

Warescription

This book will be published both in print and in digital form. The digital
versions of all CommonsWare titles are available via an annual subscription
– the Warescription.

The Warescription entitles you, for the duration of your subscription, to
digital forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other digital formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in digital form. That way, your digital books are never out of date
for long, and you can take advantage of new material as it is made available

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/Android/
http://knol.google.com/k/mark-murphy/android-programming
http://code.google.com/android/
http://commonsware.com/Android/

instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, including not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
free four-month Warescription.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample applications that do not work as advertised, in the
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://commonsware.com/warescription.html
http://commonsware.com/trade-in.html

NOTE: Books with version numbers lower than 0.9 are ineligible for the
bounty program, as they are in various stages of completion. We appreciate
bug reports, though, if you choose to share them with us.

We appreciate hearing about "softer" issues as well, such as:

• Places where you think we are in error, but where we feel our
interpretation is reasonable

• Places where you think we could add sample applications, or expand
upon the existing material

• Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code License

The source code samples shown in this book are available for download
from the CommonsWare Web site. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers and
the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition, starting
from the time the edition is published.

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
mailto:bounty@commonsware.com

This edition of this book will be available under the aforementioned
Creative Commons license on December 1, 2012. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Lifecycle of a CommonsWare Book

CommonsWare books generally go through a series of stages.

First are the pre-release editions. These will have version numbers below 0.9
(e.g., 0.2). These editions are incomplete, often times having but a few
chapters to go along with outlines and notes. However, we make them
available to those on the Warescription so they can get early access to the
material.

Release candidates are editions with version numbers ending in ".9" (0.9,
1.9, etc.). These editions should be complete. Once again, they are made
available to those on the Warescription so they get early access to the
material and can file bug reports (and receive bounties in return!).

Major editions are those with version numbers ending in ".0" (1.0, 2.0, etc.).
These will be first published digitally for the Warescription members, but
will shortly thereafter be available in print from booksellers worldwide.

Versions between a major edition and the next release candidate (e.g., 1.1,
1.2) will contain bug fixes plus new material. Each of these editions should
also be complete, in that you will not see any "TBD" (to be done) markers or
the like. However, these editions may have bugs, and so bug reports are
eligible for the bounty program, as with release candidates and major
releases.

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

A book usually will progress fairly rapidly through the pre-release editions
to the first release candidate and Version 1.0 – often times, only a few
months. Depending on the book's scope, it may go through another cycle of
significant improvement (versions 1.1 through 2.0), though this may take
several months to a year or more. Eventually, though, the book will go into
more of a "maintenance mode", only getting updates to fix bugs and deal
with major ecosystem events – for example, a new release of the Android
SDK will necessitate an update to all Android books.

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART I – Advanced Widgets

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 1

WebView, Inside and Out

Android uses the WebKit browser engine as the foundation for both its
Browser application and the WebView embeddable browsing widget. The
Browser application, of course, is something Android users can interact with
directly; the WebView widget is something you can integrate into your own
applications for places where an HTML interface might be useful.

In BCG to Android, we saw a simple integration of a WebView into an Android
activity, with the activity dictating what the browsing widget displayed and
how it responded to links.

Here, we will expand on this theme, and show how to more tightly integrate
the Java environment of an Android application with the Javascript
environment of WebKit.

Friends with Benefits

When you integrate a WebView into your activity, you can control what Web
pages are displayed, whether they are from a local provider or come from
over the Internet, what should happen when a link is clicked, and so forth.
And between WebView, WebViewClient, and WebSettings, you can control a fair
bit about how the embedded browser behaves. Yet, by default, the browser
itself is just a browser, capable of showing Web pages and interacting with
Web sites, but otherwise gaining nothing from being hosted by an Android
application.

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

Except for one thing: addJavascriptInterface().

The addJavascriptInterface() method on WebView allows you to inject a Java
object into the WebView, exposing its methods, so they can be called by
Javascript loaded by the Web content in the WebView itself.

Now you have the power to provide access to a wide range of Android
features and capabilities to your WebView-hosted content. If you can access it
from your activity, and if you can wrap it in something convenient for use by
Javascript, your Web pages can access it as well.

For example, Google's Gears project offers a Geolocation API, so Web pages
loaded in a Gears-enabled browser can find out where the browser is
located. This information could be used for everything from fine-tuning a
search to emphasize local content to serving up locale-tailored advertising.

We can do much of the same thing with Android and
addJavascriptInterface().

In the WebView/GeoWeb1 project, you will find a fairly simple layout (main.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <WebView android:id="@+id/webkit"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

All this does is host a full-screen WebView widget.

Next, take a look at the GeoWebOne activity class:

public class GeoWebOne extends Activity {
 private static String PROVIDER=LocationManager.GPS_PROVIDER;
 private WebView browser;

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://code.google.com/apis/gears/api_geolocation.html
http://code.google.com/apis/gears/

WebView, Inside and Out

 private LocationManager myLocationManager=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE
);

 browser.getSettings().setJavaScriptEnabled(true);
 browser.addJavascriptInterface(new Locater(), "locater");
 browser.loadUrl("file:///android_asset/geoweb1.html");
 }

 @Override
 public void onResume() {
 super.onResume();
 myLocationManager.requestLocationUpdates(PROVIDER, 10000,
 100.0f,
 onLocationChange);
 }

 @Override
 public void onPause() {
 super.onPause();
 myLocationManager.removeUpdates(onLocationChange);
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 // ignore...for now
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 public class Locater {
 public double getLatitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

 return(0);
 }

 return(loc.getLatitude());
 }

 public double getLongitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(0);
 }

 return(loc.getLongitude());
 }
 }
}

This looks a bit like some of the WebView examples in the BCG to Android's
chapter on integrating WebKit. However, it adds three key bits of code:

1. It sets up the LocationManager to provide updates when the device
position changes, routing those updates to a do-nothing
LocationListener callback object

2. It has a Locater inner class that provides a convenient API for
accessing the current location, in the form of latitude and longitude
values

3. It uses addJavascriptInterface() to expose a Locater instance under
the name locater to the Web content loaded in the WebView

The Web page itself is referenced in the source code as
file:///android_asset/geoweb1.html, so the GeoWeb1 project has a
corresponding assets/ directory containing geoweb1.html:

<html>
<head>
<title>Android GeoWebOne Demo</title>
<script language="javascript">
 function whereami() {
 document.getElementById("lat").innerHTML=locater.getLatitude();
 document.getElementById("lon").innerHTML=locater.getLongitude();
 }
</script>
</head>
<body>
<p>

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

You are at:
 (unknown) latitude and

(unknown) longitude.
</p>
<p>Update Location</p>
</body>
</html>

When you click the "Update Location" link, the page calls a whereami()
Javascript function, which in turn uses the locater object to update the
latitude and longitude, initially shown as "(unknown)" on the page.

If you run the application, initially, the page is pretty boring:

Figure 1. The GeoWebOne sample application, as initially launched

However, if you wait a bit for a GPS fix, and click the "Update Location"
link...the page is still pretty boring, but it at least knows where you are:

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

Figure 2. The GeoWebOne sample application, after clicking the Update
Location link

Turnabout is Fair Play

Now that we have seen how Javascript can call into Java, it would be nice if
Java could somehow call out to Javascript. In our example, it would be
helpful if we could expose automatic location updates to the Web page, so it
could proactively update the position as the user moves, rather than wait for
a click on the "Update Location" link.

Well, as luck would have it, we can do that too. This is a good thing,
otherwise, this would be a really weak section of the book.

What is unusual is how you call out to Javascript. One might imagine there
would be an executeJavascript() counterpart to addJavascriptInterface(),
where you could supply some Javascript source and have it executed within
the context of the currently-loaded Web page.

Oddly enough, that is not how this is accomplished.

6

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

Instead, given your snippet of Javascript source to execute, you call loadUrl()
on your WebView, as if you were going to load a Web page, but you put
javascript: in front of your code and use that as the "address" to load.

If you have ever created a "bookmarklet" for a desktop Web browser, you will
recognize this technique as being the Android analogue – the javascript:
prefix tells the browser to treat the rest of the address as Javascript source,
injected into the currently-viewed Web page.

So, armed with this capability, let us modify the previous example to
continuously update our position on the Web page.

The layout for this new project (WebView/GeoWeb2) is the same as before. The
Java source for our activity changes a bit:

public class GeoWebTwo extends Activity {
 private static String PROVIDER="gps";
 private WebView browser;
 private LocationManager myLocationManager=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE
);

 browser.getSettings().setJavaScriptEnabled(true);
 browser.addJavascriptInterface(new Locater(), "locater");
 browser.loadUrl("file:///android_asset/geoweb2.html");
 }

 @Override
 public void onResume() {
 super.onResume();
 myLocationManager.requestLocationUpdates(PROVIDER, 10000,
 100.0f,
 onLocationChange);
 }

 @Override
 public void onPause() {
 super.onPause();
 myLocationManager.removeUpdates(onLocationChange);
 }

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 StringBuilder buf=new StringBuilder("javascript:whereami(");

 buf.append(String.valueOf(location.getLatitude()));
 buf.append(",");
 buf.append(String.valueOf(location.getLongitude()));
 buf.append(")");

 browser.loadUrl(buf.toString());
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 public class Locater {
 public double getLatitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(0);
 }

 return(loc.getLatitude());
 }

 public double getLongitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(0);
 }

 return(loc.getLongitude());
 }
 }
}

Before, the onLocationChanged() method of our LocationListener callback did
nothing. Now, it builds up a call to a whereami() Javascript function,
providing the latitude and longitude as parameters to that call. So, for

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

example, if our location were 40 degrees latitude and -75 degrees longitude,
the call would be whereami(40,-75). Then, it puts javascript: in front of it
and calls loadUrl() on the WebView. The result is that a whereami() function in
the Web page gets called with the new location.

That Web page, of course, also needed a slight revision, to accommodate the
option of having the position be passed in:

<html>
<head>
<title>Android GeoWebTwo Demo</title>
<script language="javascript">
 function whereami(lat, lon) {
 document.getElementById("lat").innerHTML=lat;
 document.getElementById("lon").innerHTML=lon;
 }
</script>
</head>
<body>
<p>
You are at:
 (unknown) latitude and

(unknown) longitude.
</p>
<p>
Update Location</p>
</body>
</html>

The basics are the same, and we can even keep our "Update Location" link,
albeit with a slightly different onClick attribute.

If you build, install, and run this revised sample on a GPS-equipped
Android device, the page will initially display with "(unknown)" for the
current position. After a fix is ready, though, the page will automatically
update to reflect your actual position. And, as before, you can always click
"Update Location" if you wish.

Gearing Up

In these examples, we demonstrate how WebView can interact with Java
code, code that provides a service a little like one of those from Gears.

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

WebView, Inside and Out

Of course, what would be really slick is if we could use Gears itself.

The good news is that Android is close on that front. Gears is actually baked
into Android. However, it is only exposed by the Browser application, not via
WebView. So, an end user of an Android device can leverage Gears-enabled
Web pages.

For example, you could load the Geolocation sample application in your
Android device's Browser application. Initially, you will get the standard
"can we please use Gears?" security prompt:

Figure 3. The Gears security prompt

Then, Gears will fire up the GPS interface (if enabled) and will fetch your
location:

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://code.google.com/apis/gears/samples/hello_world_geolocation.html

WebView, Inside and Out

Figure 4. The Gears Geolocation sample application

Back To The Future

The core Android team has indicated that these sorts of capabilities will
increase in future editions of the Android operating system. This could
include support for more types of plugins, a richer Java-Javascript bridge,
and so on.

You can also expect some improvements coming from the overall Android
ecosystem. For example, the PhoneGap project is attempting to build a
framework that supports creating Android applications solely out of Web
content, using WebView as the front-end, supporting a range of Gears-like
capabilities and more, such as accelerometer awareness.

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://phonegap.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 2

Crafting Your Own Views

One of the classic forms of code reuse is the GUI widget. Since the advent of
Microsoft Windows – and, to some extent, even earlier – developers have
been creating their own widgets to extend an existing widget set. These
range from 16-bit Windows "custom controls" to 32-bit Windows OCX
components to the innumerable widgets available for Java Swing and SWT,
and beyond.

Android has facilities for creating packaged widgets as well, both for reuse
within your own applications and for wider distribution. Later in this book,
we will discuss how to distribute such reusable code. Here, though, we focus
on the widgets themselves, covering some of the techniques for extending
existing widgets in new and exciting ways, yet leaving them packaged much
like an existing widget.

Providing Attribution

Tailor Your Buttons

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Crafting Your Own Views

The Department of State

Spin It Your Way

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 3

More Fun With ListViews

One of the most important widgets in your toolbelt is the ListView. Some
activities are purely a ListView, to allow the user to sift through a few
choices...or perhaps a few thousand. We already saw in The Busy Coder's
Guide to Android Development how to create "fancy ListViews", where you
have complete control over the list rows themselves. In this chapter, we will
cover some additional techniques you can use to make your ListView widgets
be pleasant for your users to work with.

Giant Economy-Size Dividers

You may have noticed that the preference UI has what behaves a lot like a
ListView, but with a curious characteristic: not everything is selectable:

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

Figure 5. A PreferenceScreen UI

You may have thought that this required some custom widget, or some fancy
on-the-fly View handling, to achieve this effect.

If so, you would have been wrong.

It turns out that any ListView can exhibit this behavior. In this section, we
will see how this is achieved and a reusable framework for creating such a
ListView.

Choosing What Is Selectable

There are two methods in the Adapter hierarchy that let you control what is
and is not selectable in a ListView:

• areAllItemsSelectable() should return true for ordinary ListView
widgets and false for ListView widgets where some items in the
Adapter are selectable and others are not

• isEnabled(), given a position, should return true if the item at that
position should be selectable and false otherwise

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

Given these two, it is "merely" a matter of overriding your chosen Adapter
class and implementing these two methods as appropriate to get the visual
effect you desire.

As one might expect, this is not quite as easy as it may sound.

For example, suppose you have a database of books, and you want to present
a list of book titles for the user to choose from. Furthermore, suppose you
have arranged for the books to be in alphabetical order within each major
book style (Fiction, Non-Fiction, etc.), courtesy of a well-crafted ORDER BY
clause on your query. And suppose you want to have headings, like on the
preferences screen, for those book styles.

If you simply take the Cursor from that query and hand it to a
SimpleCursorAdapter, the two methods cited above will be implemented as
the default, saying every row is selectable. And, since every row is a book,
that is what you want...for the books.

To get the headings in place, your Adapter needs to mix the headings in with
the books (so they all appear in the proper sequence), return a custom View
for each (so headings look different than the books), and implement the two
methods that control whether the headings or books are selectable. There is
no easy way to do this from a simple query.

Instead, you need to be a bit more creative, and wrap your
SimpleCursorAdapter in something that can intelligently inject the section
headings.

Composition for Sections

Jeff Sharkey, author of CompareEverywhere and all-around Android guru,
demonstrated a way of using composition to create a ListView with section
headings. The code presented here is based on his implementation, with a
few alterations. As his original code was released under the GPLv3, bear in
mind that the code presented here is also released under the GPLv3, as

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.jsharkey.org/blog/2008/08/18/separating-lists-with-headers-in-android-09/
http://compare-everywhere.com/
http://www.jsharkey.org/blog/

More Fun With ListViews

opposed to the Apache License 2.0 that most of the book's code uses as a
license.

The pattern is fairly simple:

• Create one Adapter for each section. For example, in the book
scenario described above, you might have one SimpleCursorAdapter
for each book style (one for Fiction, one for Non-Fiction, etc.).

• Put each of those Adapter objects into a container Adapter,
associating each with a heading name.

• Implement, on your container Adapter subclass, a method to return
the View for a heading, much like you might implement getView() to
return a View for a row

• Put the container Adapter in the ListView, and everything flows from
there

You will see this implemented in the ListView/Sections sample project,
which is another riff on the "list of lorem ipsum words" sample you see
scattered throughout the Busy Coder books.

The layout for the screen is just a ListView, because the activity –
SectionedDemo – is just a ListActivity:

<?xml version="1.0" encoding="utf-8"?>
<ListView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="true"
/>

Most of the smarts can be found in SectionedAdapter. This class extends
Adapter and delegates all of the Adapter methods to a list of child Adapter
objects:

package com.commonsware.android.listview;

import android.view.View;

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

import android.view.ViewGroup;
import android.widget.Adapter;
import android.widget.BaseAdapter;
import java.util.ArrayList;
import java.util.List;

abstract public class SectionedAdapter extends BaseAdapter {
 abstract protected View getHeaderView(String caption,
 int index,
 View convertView,
 ViewGroup parent);

 private List<Section> sections=new ArrayList<Section>();
 private static int TYPE_SECTION_HEADER=0;

 public SectionedAdapter() {
 super();
 }

 public void addSection(String caption, Adapter adapter) {
 sections.add(new Section(caption, adapter));
 }

 public Object getItem(int position) {
 for (Section section : this.sections) {
 if (position==0) {
 return(section);
 }

 int size=section.adapter.getCount()+1;

 if (position<size) {
 return(section.adapter.getItem(position-1));
 }

 position-=size;
 }

 return(null);
 }

 public int getCount() {
 int total=0;

 for (Section section : this.sections) {
 total+=section.adapter.getCount()+1; // add one for header
 }

 return(total);
 }

 public int getViewTypeCount() {
 int total=1; // one for the header, plus those from sections

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 for (Section section : this.sections) {
 total+=section.adapter.getViewTypeCount();
 }

 return(total);
 }

 public int getItemViewType(int position) {
 int typeOffset=TYPE_SECTION_HEADER+1; // start counting from here

 for (Section section : this.sections) {
 if (position==0) {
 return(TYPE_SECTION_HEADER);
 }

 int size=section.adapter.getCount()+1;

 if (position<size) {
 return(typeOffset+section.adapter.getItemViewType(position-1));
 }

 position-=size;
 typeOffset+=section.adapter.getViewTypeCount();
 }

 return(-1);
 }

 public boolean areAllItemsSelectable() {
 return(false);
 }

 public boolean isEnabled(int position) {
 return(getItemViewType(position)!=TYPE_SECTION_HEADER);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 int sectionIndex=0;

 for (Section section : this.sections) {
 if (position==0) {
 return(getHeaderView(section.caption, sectionIndex,
 convertView, parent));
 }

 int size=section.adapter.getCount()+1;

 if (position<size) {
 return(section.adapter.getView(position-1,
 convertView,
 parent));
 }

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 position-=size;
 sectionIndex++;
 }

 return(null);
 }

 @Override
 public long getItemId(int position) {
 return(position);
 }

 class Section {
 String caption;
 Adapter adapter;

 Section(String caption, Adapter adapter) {
 this.caption=caption;
 this.adapter=adapter;
 }
 }
}

SectionedAdapter holds a List of Section objects, where a Section is simply a
name and an Adapter holding the contents of that section of the list. You can
give SectionAdapter the details of a Section via addSection() – the sections
will appear in the order in which they were added.

SectionedAdapter synthesizes the overall list of objects from each of the
adapters, plus the section headings:

TBD – diagram

So, for example, the implementation of getView() walks each section and
returns either a View for the section header (if the requested item is the first
one for that section) or the View from the section's adapter (if the requested
item is any other one in this section). The same holds true for getCount()
and getItem().

One thing that SectionedAdapter needs to do, though, is ensure that the pool
of section header View objects is recycled separately from each section's own
pool of View objects. To do this, SectionedAdapter takes advantage of
getViewTypeCount(), by returning the total number of distinct types of View

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

objects from all section Adapters plus one for its own header View pool.
Similarly, getItemViewType() considers the 0th View type to be the header
View pool, with the pools for each Adapter in sequence starting from 1. This
pattern requires that each section Adapter have its View type numbers
starting from 0 and incrementing by 1, but most Adapter classes only use one
View type and do not even implement their own getViewTypeCount() or
getItemViewType(), so this will work most of the time.

To use a SectionedAdapter, SectionedDemo simply creates one, adds in three
sections (with three sets of the lorem ipsum words), and attaches the
SectionedAdapter to the ListView for the ListActivity:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class SectionedDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 adapter.addSection("Original",
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 List<String> list=Arrays.asList(items);

 Collections.shuffle(list);

 adapter.addSection("Shuffled",
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 list));

 list=Arrays.asList(items);

 Collections.shuffle(list);

 adapter.addSection("Re-shuffled",
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 list));

 setListAdapter(adapter);
 }

 SectionedAdapter adapter=new SectionedAdapter() {
 protected View getHeaderView(String caption, int index,
 View convertView,
 ViewGroup parent) {
 TextView result=(TextView)convertView;

 if (convertView==null) {
 result=(TextView)getLayoutInflater()
 .inflate(R.layout.header,
 null);
 }

 result.setText(caption);

 return(result);
 }
 };
}

The result is much as you might expect:

TBD – screenshots

Here, the headers are simple bits of text with an appropriate style applied.
Your section headers, of course, can be as complex as you like.

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

From Head To Toe

Perhaps you do not need section headers scattered throughout your list. If
you only need extra "fake rows" at the beginning or end of your list, you can
use header and footer views.

ListView supports addHeaderView() and addFooterView() methods that allow
you to add View objects to the beginning and end of the list, respectively.
These View objects otherwise behave like regular rows, in that they are part
of the scrolled area and will scroll off the screen if the list is long enough. If
you want fixed headers or footers, rather than put them in the ListView
itself, put them outside the ListView, perhaps using a LinearLayout.

To demonstrate header and footer views, take a peek at
ListView/HeaderFooter, particularly the HeaderFooterDemo class:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.os.SystemClock;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class HeaderFooterDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 long startTime=SystemClock.uptimeMillis();

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 getListView().addHeaderView(buildHeader());
 getListView().addFooterView(buildFooter());
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 private View buildHeader() {
 Button btn=new Button(this);

 btn.setText("Randomize!");
 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 List<String> list=Arrays.asList(items);

 Collections.shuffle(list);

 setListAdapter(new ArrayAdapter<String>(HeaderFooterDemo.this,
 android.R.layout.simple_list_item_1,
 list));
 }
 });

 return(btn);
 }

 private View buildFooter() {
 TextView txt=new TextView(this);

 updateFooter(txt);

 return(txt);
 }

 private void updateFooter(final TextView txt) {
 long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

 txt.setText(String.valueOf(runtime)+" seconds since activity launched");

 txt.postDelayed(new Runnable() {
 public void run() {
 updateFooter(txt);
 }
 }, 1000);
 }
}

Here, we add a header View built via buildHeader(), returning a Button that,
when clicked, will shuffle the contents of the list. We also add a footer View

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

built via buildFooter(), returning a TextView that shows how long the
activity has been running, updated every second. The list itself is the ever-
popular list of lorem ipsum words.

When initially displayed, the header is visible but the footer is not, because
the list is too long:

TBD – screenshot

If you scroll downward, the header will slide off the top, and eventually the
footer will scroll into view:

TBD – screenshot

Control Your Selection

The stock Android UI for a selected ListView row is fairly simplistic: it
highlights the row in orange...and nothing more. You can control the
Drawable used for selection via the android:listSelector and
android:drawSelectorOnTop attributes on the ListView element in your layout.
However, even those simply apply some generic look to the selected row.

It may be you want to do something more elaborate for a selected row, such
as changing the row around to expose more information. Maybe you have
thumbnail photos but only display the photo on the selected row. Or
perhaps you want to show some sort of secondary line of text, like a person's
instant messenger status, only on the selected row. Or, there may be times
you want a more subtle indication of the selected item than having the
whole row show up in some neon color. The stock Android UI for
highlighting a selection will not do any of this for you.

That just means you have to do it yourself. The good news is, it is not very
difficult.

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

Create a Unified Row View

The simplest way to accomplish this is for each row View to have all of the
widgets you want for the selected-row perspective, but with the "extra stuff"
flagged as invisible at the outset. That way, rows initially look "normal"
when put into the list – all you need to do is toggle the invisible widgets to
visible when a row gets selected and toggle them back to invisible when a
row is de-selected.

For example, in the ListView/Selector project, you will find a row.xml layout
representing a row in a list:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <View
 android:id="@+id/bar"
 android:background="#FFFF0000"
 android:layout_width="5px"
 android:layout_height="fill_parent"
 android:visibility="invisible"
 />
 <TextView
 android:id="@+id/label"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:textSize="10pt"
 android:paddingTop="2px"
 android:paddingBottom="2px"
 android:paddingLeft="5px"
 />
</LinearLayout>

There is a TextView representing the bulk of the row. Before it, though, on
the left, is a plain View named bar. The background of the View is set to red
(android:background = "#FFFF0000") and the width to 5px. More importantly,
it is set to be invisible (android:visibility = "invisible"). Hence, when the
row is put into a ListView, the red bar is not seen...until we make the bar
visible.

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

Configure the List, Get Control on Selection

Next, we need to set up a ListView and arrange to be notified when rows are
selected and de-selected. That is merely a matter of calling
setOnItemSelectedListener() for the ListView, providing a listener to be
notified on a selection change. You can see that in the context of a
ListActivity in our SelectorDemo class:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.content.res.ColorStateList;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class SelectorDemo extends ListActivity {
 private static ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new SelectorAdapter(this));
 getListView().setOnItemSelectedListener(listener);
 }

 class SelectorAdapter extends ArrayAdapter {
 SelectorAdapter(Context ctxt) {
 super(ctxt, R.layout.row, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 SelectorWrapper wrapper=null;

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row,
 null);
 wrapper=new SelectorWrapper(convertView);
 wrapper.getLabel().setTextColor(allWhite);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(SelectorWrapper)convertView.getTag();
 }

 wrapper.getLabel().setText(items[position]);

 return(convertView);
 }
 }

 class SelectorWrapper {
 View row=null;
 TextView label=null;
 View bar=null;

 SelectorWrapper(View row) {
 this.row=row;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)row.findViewById(R.id.label);
 }

 return(label);
 }

 View getBar() {
 if (bar==null) {
 bar=row.findViewById(R.id.bar);
 }

 return(bar);
 }
 }

 AdapterView.OnItemSelectedListener listener=new
AdapterView.OnItemSelectedListener() {
 View lastRow=null;

 public void onItemSelected(AdapterView<?> parent,
 View view, int position,
 long id) {
 if (lastRow!=null) {
 SelectorWrapper wrapper=(SelectorWrapper)lastRow.getTag();

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 wrapper.getBar().setVisibility(View.INVISIBLE);
 }

 SelectorWrapper wrapper=(SelectorWrapper)view.getTag();

 wrapper.getBar().setVisibility(View.VISIBLE);
 lastRow=view;
 }

 public void onNothingSelected(AdapterView<?> parent) {
 if (lastRow!=null) {
 SelectorWrapper wrapper=(SelectorWrapper)lastRow.getTag();

 wrapper.getBar().setVisibility(View.INVISIBLE);
 lastRow=null;
 }
 }
 };
}

SelectorDemo sets up a SelectorAdapter, which follow the view-wrapper
pattern established in The Busy Coder's Guide to Android Development. Each
row is created from the layout shown earlier, with a SelectorWrapper
providing access to both the TextView (for setting the text in a row) and the
bar View.

Change the Row

Our AdapterView.OnItemSelectedListener instance keeps track of the last
selected row (lastRow). When the selection changes to another row in
onItemSelected(), we make the bar from the last selected row invisible,
before we make the bar visible on the newly-selected row. In
onNothingSelected(), we make the bar invisible and make our last selected
row be null.

The net effect is that as the selection changes, we toggle the bar off and on
as needed to indicate which is the selected row.

In the layout for the activity's ListView, we turn off the regular highlighting:

<?xml version="1.0" encoding="utf-8"?>
<ListView
 xmlns:android="http://schemas.android.com/apk/res/android"

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

More Fun With ListViews

 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:listSelector="#00000000"
/>

The result is we are controlling the highlight, in the form of the red bar:

TBD – screenshot

Obviously, what we do to highlight a row could be much more elaborate
than what is demonstrated here. At the same time, it needs to be fairly quick
to execute, lest the list appear to be too sluggish.

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART II – Advanced Media

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 4

Creating Drawables

Drawable resources come in all shapes and sizes, and not just in terms of
pixel dimensions. While many Drawable resources will be PNG or JPEG files,
you can easily create other resources that supply other sorts of Drawable
objects to your application. In this chapter, we will examine a few of these
that may prove useful as you try to make your application look its best.

Traversing Along a Gradient

Gradients have long been used to add "something a little extra" to a user
interface, whether it is Microsoft adding them to Office's title bars in the
late 1990's or the seemingly endless number of gradient buttons adorning
"Web 2.0" sites.

And now, you can have gradients in your Android applications as well.

The easiest way to create a gradient is to use an XML file to describe the
gradient. By placing the file in res/drawable/, it can be referenced as a
Drawable resource, no different than any other such resource, like a PNG file.

For example, here is a gradient Drawable resource, active_row.xml, from the
Drawable/Gradient sample project:

<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

 <gradient
 android:startColor="#44FF0000"
 android:endColor="#FFFF0000"
 android:angle="270"
 />
 <padding
 android:top="2px"
 android:bottom="2px"
 />
 <corners android:radius="6px" />
</shape>

A gradient is applied to the more general-purpose <shape> element, in this
case, a rectangle. The gradient is defined as having a start and end color – in
this case, the gradient is an increasing amount of red, with only the alpha
channel varying to control how much the background blends in. The color
is applied in a direction determined by the number of degrees specified by
the android:angle attribute, with 270 representing "down" (start color at the
top, end color at the bottom).

As with any other XML-defined shape, you can control various aspects of
the way the shape is drawn. In this case, we put some padding around the
drawable and round off the corners of the rectangle.

To use this Drawable in Java code, you can reference it as
R.drawable.active_row. One possible use of a gradient is in custom ListView
row selection, as shown in GradientDemo:

package com.commonsware.android.drawable;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.content.res.ColorStateList;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class GradientDemo extends ListActivity {
 private static ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new GradientAdapter(this));
 getListView().setOnItemSelectedListener(listener);
 }

 class GradientAdapter extends ArrayAdapter {
 GradientAdapter(Context ctxt) {
 super(ctxt, R.layout.row, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 GradientWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row,
 null);
 wrapper=new GradientWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(GradientWrapper)convertView.getTag();
 }

 wrapper.getLabel().setText(items[position]);

 return(convertView);
 }
 }

 class GradientWrapper {
 View row=null;
 TextView label=null;

 GradientWrapper(View row) {
 this.row=row;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)row.findViewById(R.id.label);
 }

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

 return(label);
 }
 }

 AdapterView.OnItemSelectedListener listener=new
AdapterView.OnItemSelectedListener() {
 View lastRow=null;

 public void onItemSelected(AdapterView<?> parent,
 View view, int position,
 long id) {
 if (lastRow!=null) {
 lastRow.setBackgroundColor(0x00000000);
 }

 view.setBackgroundResource(R.drawable.active_row);
 lastRow=view;
 }

 public void onNothingSelected(AdapterView<?> parent) {
 if (lastRow!=null) {
 lastRow.setBackgroundColor(0x00000000);
 lastRow=null;
 }
 }
 };
}

In an earlier chapter, we showed how you can get control and customize
how a selected row appears in a ListView. This time, we apply the gradient
rounded rectangle as the background of the row. We could have
accomplished this via appropriate choices for android:listSelector and
android:drawSelectorOnTop as well.

The result is a selection bar implementing the gradient:

TBD – screenshot

Note that because the list background is black, the red is mixed with black
on the top end of the gradient. If the list background were white, the top
end of the gradient would be red mixed with white, as determined by the
alpha channel specified on the gradient's top color.

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

A Stitch In Time Saves Nine

As you read through the Android documentation, you no doubt ran into
references to "nine-patch" or "9-patch" and wondered what Android had to
do with quilting. Rest assured, you will not need to take up needlework to
be an effective Android developer.

If, however, you are looking to create backgrounds for resizable widgets, like
a Button, you will probably need to work with nine-patch images.

As the Android documentation states, a nine-patch is "a PNG image in
which you define stretchable sections that Android will resize to fit the
object at display time to accommodate variable sized sections, such as text
strings". By using a specially-created PNG file, Android can avoid trying to
use vector-based formats (e.g., SVG) and their associated overhead when
trying to create a background at runtime. Yet, at the same time, Android can
still resize the background to handle whatever you want to put inside of it,
such as the text of a Button.

In this section, we will cover some of the basics of nine-patch graphics,
including how to customize and apply them to your own Android layouts.

The Name and the Border

Nine-patch graphics are PNG files whose names end in .9.png. This means
they can be edited using normal graphics tools, but Android knows to apply
nine-patch rules to their use.

What makes a nine-patch graphic different than an ordinary PNG is a one-
pixel-wide border surrounding the image. When drawn, Android will
remove that border, showing only the stretched rendition of what lies inside
the border. The border is used as a control channel, providing instructions
to Android for how to deal with stretching the image to fit its contents.

TBD – diagram showing image and control area

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.qnm.com/articles/feature64/

Creating Drawables

Padding and the Box

Along the right and bottom sides, you can draw one-pixel-wide black lines
to indicate the "padding box". Android will stretch the image such that the
contents of the widget will fit inside that padding box.

For example, suppose we are using a nine-patch as the background of a
Button. When you set the text to appear in the button (e.g., "Hello, world!"),
Android will compute the size of that text, in terms of width and height in
pixels. Then, it will stretch the nine-patch image such that the text will
reside inside the padding box. What lies outside the padding box forms the
border of the button, typically a rounded rectangle of some form.

TBD – diagram showing image and padding box

Stretchable Zones

To tell Android where on the image to actually do the stretching, draw one-
pixel-wide black lines on the top and left sides of the image. Android will
scale the graphic only in those areas – areas outside the stretchable zones
are not stretched.

Perhaps the most common pattern is the center-stretch, where the middle
portions of the image on both axes are considered stretchable, but the edges
are not:

TBD – diagram showing image and stretchable zones

Here, the stretchable zones will be stretched just enough for the contents to
fit in the padding box. The edges of the graphic are left unstretched.

TBD – diagram showing before and after

Some additional rules to bear in mind:

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

• If you have multiple discrete stretchable zones along an axis (e.g.,
two zones separated by whitespace), Android will stretch both of
them but keep them in their current proportions. So, if the first zone
is twice as wide as the second zone in the original graphic, the first
zone will be twice as wide as the second zone in the stretched
graphic.

• If you leave out the control lines for the padding box, it is assumed
that the padding box and the stretchable zones are one and the
same.

Tooling

To experiment with nine-patch images, you may wish to use the draw9patch
program, found in the tools/ directory of your SDK installation:

TBD – screenshot

While a regular graphics editor would allow you to draw any color on any
pixel, draw9patch limits you to drawing or erasing pixels in the control area.
If you attempt to draw inside the main image area itself, you will be blocked:

TBD – screenshot

On the right, you will see samples of the image in various stretched sizes, so
you can see the impact as you change the stretchable zones and padding
box.

While this is convenient for working with the nine-patch nature of the
image, you will still need some other graphics editor to create or modify the
body of the image itself. For example, the image shown above, from the
Drawable/NinePatch project, is a modified version of a nine-patch graphic
from the SDK's ApiDemos, where the GIMP was used to add the neon green
stripe across the bottom portion of the image.

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

Using Nine-Patch Images

Nine-patch images are most commonly used as backgrounds, as illustrated
by the following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 >
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Horizontal:"
 />
 <SeekBar android:id="@+id/horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Vertical:"
 />
 <SeekBar android:id="@+id/vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 </TableLayout>
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

 <Button android:id="@+id/resize"
 android:layout_width="48px"
 android:layout_height="48px"
 android:text="Hi!"
 android:background="@drawable/button"
 />
 </LinearLayout>
</LinearLayout>

Here, we have two SeekBar widgets, labeled for the horizontal and vertical
axes, plus a Button set up with our nine-patch graphic as its background
(android:background = "@drawable/button").

The NinePatchDemo activity then uses the two SeekBar widgets to let the user
control how large the button should be drawn on-screen, starting from an
initial size of 48px square:

package com.commonsware.android.drawable;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;
import android.widget.SeekBar;

public class NinePatchDemo extends Activity {
 SeekBar horizontal=null;
 SeekBar vertical=null;
 View thingToResize=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 thingToResize=findViewById(R.id.resize);

 horizontal=(SeekBar)findViewById(R.id.horizontal);
 vertical=(SeekBar)findViewById(R.id.vertical);

 horizontal.setMax(272); // 320 less 48 starting size
 vertical.setMax(272); // keep it square @ max

 horizontal.setOnSeekBarChangeListener(h);
 vertical.setOnSeekBarChangeListener(v);
 }

 SeekBar.OnSeekBarChangeListener h=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Creating Drawables

 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(48+progress,
 old.height);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };

 SeekBar.OnSeekBarChangeListener v=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(old.width,
 48+progress);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };
}

The result is an application that can be used much like the right pane of
draw9patch, to see how the nine-patch graphic looks on an actual device or
emulator in various sizes:

TBD – screenshots

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 5

Animating Widgets

Android is full of things that move. You can swipe left and right on the
home screen to view other panels of the desktop. You can drag icons around
on the home screen. You can drag down the notifications area or drag up the
applications drawer. And that is just on one screen!

Of course, it would be nice to employ such animations in your own
application. While this chapter will not cover full-fledged drag-and-drop,
we will cover some of the basic animations and how to apply them to your
existing widgets. Along the way, we will implement a similar sort of "drawer"
container to the application drawer found on the home screen.

It's Not Just For Toons Anymore

Android has a package of classes (android.view.animation) dedicated to
animating the movement and behavior of widgets.

They center around an Animation base class that describes what is to be
done. Built-in animations exist to move a widget (TranslateAnimation),
change the transparency of a widget (AlphaAnimation), revolving a widget
(RotateAnimation), and resizing a widget (ScaleAnimation). There is even a
way to aggregate animations together into a composite Animation called an
AnimationSet. Later sections in this chapter will examine the use of several of
these animations.

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

Given that you have an animation, to apply it, you have two main options:

• You may be using a container that supports animating its contents,
such as a ViewFlipper or TextSwitcher. These are typically subclasses
of ViewAnimator and let you define the "in" and "out" animations to
apply. For example, with a ViewFlipper, you can specify how it flips
between Views in terms of what animation is used to animate "out"
the currently-visible View and what animation is used to animate "in"
the replacement View. Examples of this sort of animation can be
found in The Busy Coder's Guide to Android Development.

• You can simply tell any View to startAnimation(), given the Animation
to apply to itself. This is the technique we will be seeing used in the
examples in this chapter.

A Quirky Translation

Animation takes some getting used to. Frequently, it takes a fair bit of
experimentation to get it all working as you wish. This is particularly true of
TranslateAnimation, as not everything about it is intuitive, even to authors of
Android books.

Mechanics of Translation

The simple constructor for TranslateAnimation takes four parameters
describing how the widget should move: the before and after X offsets from
the current position, and the before and after Y offsets from the current
position. The Android documentation refers to these as fromXDelta,
toXDelta, fromYDelta, and toYDelta.

In Android's pixel-space, an (X,Y) coordinate of (0,0) represents the upper-
left corner of the screen. Hence, if toXDelta is greater than fromXDelta, the
widget will move to the right, if toYDelta is greater than fromYDelta, the
widget will move down, and so on.

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

Imagining a Drawer

Think now about the application drawer on the Android home screen. It is
anchored at the bottom of the screen. If we are to make a similar sort of
drawer, we will want to animate the drawer up from the bottom when it is
opened and back down to the bottom when it is closed. As important, we
need to know how far we want to "open" the drawer, in terms of a target
height for the open drawer.

One way to implement such a drawer is to have a container (e.g., a
LinearLayout) whose contents are absent (GONE) when the drawer is closed
and is present (VISIBLE) when the drawer is open. If we simply toggled
setVisibility() using the aforementioned values, though, the drawer would
wink open and closed immediately, without any sort of animation. So,
instead, we want to:

• Make the drawer visible and animate it up from the bottom of the
screen when we open the drawer

• Animate it down to the bottom of the screen and make the drawer
gone when we close the drawer

Our drawer, in addition to the contents, will also need an ImageButton to
toggle the drawer open and closed. This ImageButton is always visible; the
question is simply whether it is sitting at the bottom of the screen or if it is
sitting atop the open drawer.

The Aftermath

This brings up a key point with respect to TranslateAnimation: the animation
temporarily moves the widget, but if you want the widget to stay where it is
when the animation is over, you have to handle that yourself. Otherwise, the
widget will snap back to its original position when the animation completes.

In the case of the drawer opening, we handle that via the transition from
GONE to VISIBLE. Technically speaking, the drawer is always "open", in that we
are not, in the end, changing its position. But when the body of the drawer

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

is GONE, it takes up no space on the screen; when we make it VISIBLE, it takes
up whatever space it is supposed to.

Later in this chapter, we will cover how to use animation listeners to
accomplish this end for closing the drawer.

Introducing DrawerLayout

With all that said, turn your attention to the Animation/Drawer project and,
in particular, the DrawerLayout class.

This class implements a layout that works as a drawer, anchored to the
bottom of the screen. Clicking a button opens or closes the drawer. The
drawer itself is a LinearLayout, so you can put whatever contents you want in
there. However, this simple implementation assumes there is only one
widget in the LinearLayout besides the tab (ImageButton and a View serving as
the top edge of the drawer).

We use two flavors of TranslateAnimation, one for opening the drawer and
one for closing it.

Here is the opening animation:

anim=new TranslateAnimation(0.0f, 0.0f, targetHeight,
 0.0f);

Our fromXDelta and toXDelta are both 0, since we are not shifting the
drawer's position along the horizontal axis. Our fromYDelta is targetHeight
(representing how big we want the drawer to be), because we want the
drawer to start the animation at the bottom of the screen; our toYDelta is 0
because we want the drawer to be at its "natural" open position at the end of
the animation.

Conversely, here is the closing animation:

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 targetHeight);

It has the same basic structure, except the Y values are reversed, since we
want the drawer to start open and animate to a closed position.

The result is a container that can be closed:

Figure 6. The Drawer sample application, with the drawer closed

...or open:

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

Figure 7. The Drawer sample application, with the drawer open

Using the Animation

When setting up an animation, you also need to indicate how long the
animation should take. This is done by calling setDuration() on the
animation, providing the desired length of time in milliseconds.

When we are ready with the animation, we simply call startAnimation() on
the DrawerLayout itself, causing it to move as specified by the
TranslateAnimation instance.

Fading To Black. Or Some Other Color.

AlphaAnimation allows you to fade a widget in or out by making it less or
more transparent. The greater the transparency, the more the widget
appears to be "fading".

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

Alpha Numbers

You may be used to alpha channels, when used in #AARRGGBB color notation,
or perhaps when working with alpha-capable image formats like PNG.

Similarly, AlphaAnimation allows you to change the alpha channel for an
entire widget, from fully-solid to fully-transparent.

In Android, a float value of 1.0 indicates a fully-solid widget, while a value of
0.0 indicates a fully-transparent widget. Values in between, of course,
represent various amounts of transparency.

Hence, it is common for an AlphaAnimation to either start at 1.0 and
smoothly change the alpha to 0.0 (a fade) or vice versa.

Animations in XML

With TranslateAnimation, we showed how to construct the animation in Java
source code. One can also create animation resources, which define the
animations using XML. This is similar to the process for defining layouts,
albeit much simpler.

For example, there is a second animation project, Animation/FadingDrawer,
which demonstrates a drawer that fades out as it is closed. In there, you will
find a res/anim/ directory, which is where animation resources should
reside. In there, you will find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromAlpha="1.0"
 android:toAlpha="0.0" />

The name of the root element indicates the type of animation (in this case,
alpha for an AlphaAnimation). The attributes specify the characteristics of the
animation, in this case a fade from 1.0 to 0.0 on the alpha channel.

This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in Java.

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

Using XML Animations

To make use of XML-defined animations, you need to inflate them, much as
you might inflate a View or Menu resource. This is accomplished by using the
loadAnimation() static method on the AnimationUtils class:

fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);

Here, we are loading our fade animation, given a Context. This is being put
into an Animation variable, so we neither know nor care that this particular
XML that we are loading defines an AlphaAnimation instead of, say, a
RotateAnimation.

When It's All Said And Done

Sometimes, you need to take action when an animation completes.

For example, when we close the drawer, we want to use a
TranslationAnimation to slide it down from the open position to closed...then
keep it closed. With the system used in DrawerLayout, keeping the drawer
closed is a matter of calling setVisibility() on the contents with GONE.

However, you cannot do that when the animation begins; otherwise, the
drawer is gone by the time you try to animate its motion.

Instead, you need to arrange to have it be gone when the animation ends. To
do that, you use a animation listener.

An animation listener is simply an instance of the AnimationListener
interface, provided to an animation via setAnimationListener(). The listener
will be invoked when the starts, ends, or repeats (the latter courtesy of
CycleInterpolator, discussed later in this chapter). You can put logic in the
onAnimationEnd() callback in the listener to take action when the animation
finishes.

For example, here is the AnimationListener for DrawerLayout:

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

Animation.AnimationListener collapseListener=new Animation.AnimationListener() {
 public void onAnimationEnd(Animation animation) {
 tab.setImageResource(R.drawable.up);
 contents.setVisibility(View.GONE);
 }

 public void onAnimationRepeat(Animation animation) {
 // not needed
 }

 public void onAnimationStart(Animation animation) {
 // not needed
 }
};

All we do is set the ImageButton's image to be the upward-pointing arrow and
setting our content's visibility to be GONE, thereby closing the drawer.

Hit The Accelerator

In addition to the Animation classes themselves, Android also provides a set
of Interpolator classes. These provide instructions for how an animation is
supposed to behave during its operating period.

For example, the AccelerateInterpolator indicates that, during the duration
of an animation, the rate of change of the animation should begin slowly
and accelerate until the end. When applied to a TranslateAnimation, for
example, the sliding movement will start out slowly and pick up speed until
the movement is complete.

There are several implementations of the Interpolator interface besides
AccelerateInterpolator, including:

• AccelerateDecelerateInterpolator, which starts slowly, picks up
speed in the middle, and slows down again at the end

• DecelerateInterpolator, which starts quickly and slows down
towards the end

• LinearInterpolator, the default, which indicates the animation
should proceed smoothly from start to finish

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

• CycleInterpolator, which repeats an animation for a number of
cycles, following the AccelerateDecelerateInterpolator pattern (slow,
then fast, then slow)

To apply an interpolator to an animation, simply call setInterpolator() on
the animation with the Interpolator instance, such as the following line
from DrawerLayout:

anim.setInterpolator(new AccelerateInterpolator(1.0f));

You can also specify one of the stock interpolators via the
android:interpolator attribute in your animation XML file.

Animate. Set. Match.

For the Animation/FadingDrawer project, though, we want the drawer to slide
open, but also fade when it slides closed. This implies two animations
working at the same time (a fade and a slide). Android supports this via the
AnimationSet class.

An AnimationSet is itself an Animation implementation. Following the
composite design pattern, it simply cascades the major Animation events to
each of the animations in the set.

To create a set, just create an AnimationSet instance, add the animations, and
configure the set. For example, here is the logic from the DrawerLayout
implementation in Animation/FadingDrawer:

public void onClick(View view) {
 TranslateAnimation anim=null;
 AnimationSet set=new AnimationSet(true);

 isOpen=!isOpen;

 if (isOpen) {
 tab.setImageResource(R.drawable.down);
 contents.setVisibility(View.VISIBLE);

 anim=new TranslateAnimation(0.0f, 0.0f, targetHeight,
 0.0f);

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Animating Widgets

 }
 else {
 anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 targetHeight);
 anim.setAnimationListener(collapseListener);
 set.addAnimation(fadeOut);
 }

 set.addAnimation(anim);
 set.setDuration(speed);
 set.setInterpolator(new AccelerateInterpolator(1.0f));
 startAnimation(set);
}

If the drawer is to be opened, we set the ImageButton's icon to point
downward, make the contents visible (so we can animate the motion
upwards), and create a TranslateAnimation for the upward movement. If the
drawer is to be closed, we create a TranslateAnimation for the downward
movement, but also add a pre-defined AlphaAnimation (fadeOut) to an
AnimationSet. In either case, we add the TranslateAnimation to the set, give
the set a duration and interpolator, and run the animation.

A Chest of Drawers

Of course, the drawer implementations demonstrated here are simple book
examples. You are welcome to use them, but there are others out there that
you may consider.

The canonical drawer is the SlidingDrawer in Android itself. Alas, as of the
1.0r2 SDK, this class is internal to Android and should not be used directly
by Android applications. Reportedly, it will be made public as part of a
future SDK release. Plus, the source code is open, so there is nothing
preventing you from cloning it in your own namespace, to give you
something to use before the official one is available.

Also, the community crafts and publishes its own widgets from time to time.
One such drawer, Panel, was implemented by pskink and can be found his
his android-misc-widgets project on Google Code.

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://code.google.com/p/android-misc-widgets/
http://android.git.kernel.org/?p=platform/frameworks/base.git;a=blob;f=core/java/com/android/internal/widget/SlidingDrawer.java

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 6

Playing Media

Pretty much every phone claiming to be a "smartphone" has the ability to at
least play back music, if not video. Even many more ordinary phones are
full-fledged MP3 players, in addition to offering ringtones and whatnot.

Not surprisingly, Android has multimedia support for you, as a developer, to
build your own games, media players, and so on.

This chapter is focused on audio and video playback; other chapters will
tackle media input, including the camera and audio recording.

Get Your Media On

In Android, you have five different places you can pull media clips from –
one of these will hopefully fit your needs:

1. You can package media clips as raw resources (res/raw in your
project), so they are bundled with your application. The benefit is
that you're guaranteed the clips will be there; the downside is that
they cannot be replaced without upgrading the application.

2. You can package media clips as assets (assets/ in your project) and
reference them via file:///android_asset/ URLs in a Uri. The benefit
over raw resources is that this location works with APIs that expect
Uri parameters instead of resource IDs. The downside – assets are
only replaceable when the application is upgraded – remains.

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

3. You can store media in an application-local directory, such as
content you download off the Internet. Your media may or may not
be there, and your storage space isn't infinite, but you can replace
the media as needed.

4. You can store media – or reference media that the user has stored
herself – that is on an SD card. There is likely more storage space on
the card than there is on the device, and you can replace the media
as needed, but other applications have access to the SD card as well.

5. You can, in some cases, stream media off the Internet, bypassing any
local storage, as with the StreamFurious application

Internet streaming is tricky, particularly for video, and is well beyond the
scope of this book. For the T-Mobile G1, the recommended approach for
anything of significant size is to put it on the SD card, as there is very little
on-board flash memory for file storage.

Making Noise

The crux of playing back audio comes in the form of the MediaPlayer class.
With it, you can feed it an audio clip, start/stop/pause playback, and get
notified on key events, such as when the clip is ready to be played or is done
playing.

You have three ways to set up a MediaPlayer and tell it what audio clip to
play:

1. If the clip is a raw resource, use MediaPlayer.create() and provide
the resource ID of the clip

2. If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create()

3. If you have a string path to the clip, just create a MediaPlayer using
the default constructor, then call setDataSource() with the path to
the clip

Next, you need to call prepare() or prepareAsync(). Both will set up the clip
to be ready to play, such as fetching the first few seconds off the file or

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.streamfurious.com/

Playing Media

stream. The prepare() method is synchronous; as soon as it returns, the clip
is ready to play. The prepareAsync() method is asynchronous – more on how
to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback
(with start() picking up playback where pause() paused), and stop() ends
playback. One caveat: you cannot simply call start() again on the
MediaPlayer once you have called stop() – we'll cover a workaround a bit
later in this section.

To see this in action, take a look at the Media/Audio sample project. The
layout is pretty trivial, with three buttons and labels for play, pause, and
stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/play"
 android:src="@drawable/play"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 android:enabled="false"
 />
 <TextView
 android:text="Play"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

 <ImageButton android:id="@+id/pause"
 android:src="@drawable/pause"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 />
 <TextView
 android:text="Pause"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/stop"
 android:src="@drawable/stop"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 />
 <TextView
 android:text="Stop"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
</LinearLayout>

The Java, of course, is where things get interesting:

public class AudioDemo extends Activity
 implements MediaPlayer.OnCompletionListener {

 private ImageButton play;
 private ImageButton pause;
 private ImageButton stop;
 private MediaPlayer mp;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

 play=(ImageButton)findViewById(R.id.play);
 pause=(ImageButton)findViewById(R.id.pause);
 stop=(ImageButton)findViewById(R.id.stop);

 play.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 play();
 }
 });

 pause.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 pause();
 }
 });

 stop.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 stop();
 }
 });

 setup();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (stop.isEnabled()) {
 stop();
 }
 }

 public void onCompletion(MediaPlayer mp) {
 stop();
 }

 private void play() {
 mp.start();

 play.setEnabled(false);
 pause.setEnabled(true);
 stop.setEnabled(true);
 }

 private void stop() {
 mp.stop();
 mp.release();
 setup();
 }

 private void pause() {
 mp.pause();

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

 play.setEnabled(true);
 pause.setEnabled(false);
 stop.setEnabled(true);
 }

 private void loadClip() {
 try {
 mp=MediaPlayer.create(this, R.raw.clip);
 mp.setOnCompletionListener(this);
 }
 catch (Throwable t) {
 goBlooey(t);
 }
 }

 private void setup() {
 loadClip();
 play.setEnabled(true);
 pause.setEnabled(false);
 stop.setEnabled(false);
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }
}

In onCreate(), we wire up the three buttons to appropriate callbacks, then
call setup(). In setup(), we create our MediaPlayer, set to play a clip we
package in the project as a raw resource. We also configure the activity itself
as the completion listener, so we find out when the clip is over. Note that,
since we use the static create() method on MediaPlayer, we have already
implicitly called prepare(), so we do not need to call that separately
ourselves.

The buttons simply work the MediaPlayer and toggle each others' states, via
appropriately-named callbacks. So, play() starts MediaPlayer playback,
pause() pauses playback, and stop() stops playback and resets our
MediaPlayer to play again. The stop() callback is also used for when the
audio clip completes of its own accord.

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

To reset the MediaPlayer, the stop() callback calls release() on the existing
MediaPlayer (to release its resources), then calls setup() again, discarding the
used MediaPlayer and starting a fresh one.

The UI is nothing special, but we are more interested in the audio in this
sample, anyway:

Figure 8. The AudioDemo sample application

Moving Pictures

Video clips get their own widget, the VideoView. Put it in a layout, feed it an
MP4 video clip, and you get playback!

For example, take a look at this layout, from the Media/Video sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <VideoView

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

 android:id="@+id/video"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

The layout is simply a full-screen video player. Whether it will use the full
screen will be dependent on the video clip, its aspect ratio, and whether you
have the device (or emulator) in portrait or landscape mode.

Wiring up the Java is almost as simple:

public class VideoDemo extends Activity {
 private VideoView video;
 private MediaController ctlr;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);

 File clip=new File("/sdcard/test.mp4");

 if (clip.exists()) {
 video=(VideoView)findViewById(R.id.video);
 video.setVideoPath(clip.getAbsolutePath());

 ctlr=new MediaController(this);
 ctlr.setMediaPlayer(video);
 video.setMediaController(ctlr);
 video.requestFocus();
 }
 }
}

The biggest trick with VideoView is getting a video clip onto the device.
While VideoView does support some streaming video, the requirements on
the MP4 file are fairly stringent. If you want to be able to play a wider array
of video clips, you need to have them on the device, preferably on an SD
card.

The crude VideoDemo class assumes there is an MP4 file in /sdcard/test.mp4
on your emulator. To make this a reality:

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

1. Find a clip, such as Aaron Rosenberg's Documentaries and You from
Duke University's Center for the Study of the Public Domain's
Moving Image Contest, which was used in the creation of this book

2. Use mksdcard (in the Android SDK's tools directory) to create a
suitably-sized SD card image (e.g., mksdcard 128M sd.img)

3. Use the -sdcard switch when launching the emulator, providing the
path to your SD card image, so the SD card is "mounted" when the
emulator starts

4. Use the adb push command (or DDMS or the equivalent in your IDE)
to copy the MP4 file into /sdcard/test.mp4

Once there, the Java code shown above will give you a working video player:

Figure 9. The VideoDemo sample application, showing a Creative Commons-
licensed video clip

Tapping on the video will pop up the playback controls:

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.law.duke.edu/cspd/contest/finalists/

Playing Media

Figure 10. The VideoDemo sample application, with the media controls
displayed

The video will scale based on space, as shown in this rotated view of the
emulator (<Ctrl>-<F12>):

Figure 11. The VideoDemo sample application, in landscape mode, with the
video clip scaled to fit

Note that playback may be rather jerky in the emulator, depending on the
power of the PC that is hosting the emulator. For example, on a Pentium-M

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Playing Media

1.6GHz PC, playback in the emulator is extremely jerky, while playback on
the T-Mobile G1 is very smooth.

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 7

Using the Camera

Most Android devices will have a camera, since they are fairly commonplace
on mobile devices these days. You, as an Android developer, can take
advantage of the camera, for everything from snapping tourist photos to
scanning barcodes. For simple operations, the APIs needed to use the
camera are fairly straight-forward, requiring a bit of boilerplate code plus
your own unique application logic.

What is a problem is using the camera with the emulator. The emulator does
not emulate a camera, nor is there a convenient way to pretend there are
pictures via DDMS or similar tools. For the purposes of this chapter, it is
assumed you have access to an actual Android-powered hardware device
and can use it for development purposes.

Sneaking a Peek

First, it is fairly common for a camera-using application to support a preview
mode, to show the user what the camera sees. This will help make sure the
camera is lined up on the subject properly, whether there is sufficient
lighting, etc.

So, let us take a look at how to create an application that shows such a live
preview. The code snippets shown in this section are pulled from the Camera/
Preview sample project.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

The Permission

First, you need permission to use the camera. That way, when end users
install your application off of the Internet, they will be notified that you
intend to use the camera, so they can determine if they deem that
appropriate for your application.

You simply need the CAMERA permission in your AndroidManifest.xml file,
along with whatever other permissions your application logic might require.
Here is the manifest from the Camera/Preview sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.camera"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.CAMERA" />
 <application android:label="@string/app_name">
 <activity android:name=".PreviewDemo"
 android:label="@string/app_name"
 android:configChanges="keyboardHidden|orientation"
 android:screenOrientation="landscape"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Also note a few other things about our PreviewDemo activity as registered in
this manifest:

• We use android:configChanges = "keyboardHidden|orientation" to
ensure we control what happens when the keyboard is hidden or
exposed, rather than have Android rotate the screen for us

• We use android:screenOrientation = "landscape" to tell Android we
are always in landscape mode. This is necessary because of a bit of a
bug in the camera preview logic, such that it works best in landscape
mode.

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

• We use android:theme = "@android:style/Fullscreen" to get rid of
the title bar and status bar, so the preview is truly full-screen (e.g.,
480x320 on a T-Mobile G1).

The SurfaceView

Next, you need a layout supporting a SurfaceView. SurfaceView is used as a
raw canvas for displaying all sorts of graphics outside of the realm of your
ordinary widgets. In this case, Android knows how to display a live look at
what the camera sees on a SurfaceView, to serve as a preview pane.

For example, here is a full-screen SurfaceView layout as used by the
PreviewDemo activity:

<?xml version="1.0" encoding="utf-8"?>
<android.view.SurfaceView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/preview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
</android.view.SurfaceView>

The Camera

The biggest step, of course, is telling Android to use the camera service and
tie a camera to the SurfaceView to show the actual preview. We will also
eventually need the camera service to take real pictures, as will be described
in the next section.

There are three major components to getting picture preview working:

1. The SurfaceView, as defined in our layout

2. A SurfaceHolder, which is a means of controlling behavior of the
SurfaceView, such as its size, or being notified when the surface
changes, such as when the preview is started

3. A Camera, obtained from the open() static method on the Camera class

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

To wire these together, we first need to:

• Get the SurfaceHolder for our SurfaceView via getHolder()

• Register a SurfaceHolder.Callback with the SurfaceHolder, so we are
notified when the SurfaceView is ready or changes

• Tell the SurfaceView (via the SurfaceHolder) that it has the
SURFACE_TYPE_PUSH_BUFFERS type (setType()) – this indicates
something in the system will be updating the SurfaceView and
providing the bitmap data to display

This gives us a configured SurfaceView (shown below), but we still need to
tie in the Camera.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 preview=(SurfaceView)findViewById(R.id.preview);
 previewHolder=preview.getHolder();
 previewHolder.addCallback(surfaceCallback);
 previewHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
}

A Camera object has a setPreviewDisplay() method that takes a SurfaceHolder
and, as you might expect, arranges for the camera preview to be displayed on
the associated SurfaceView. However, the SurfaceView may not be ready
immediately after being changed into SURFACE_TYPE_PUSH_BUFFERS mode. So,
while the previous setup work could be done in onCreate(), you should wait
until the SurfaceHolder.Callback has its surfaceCreated() method called,
then register the Camera:

public void surfaceCreated(SurfaceHolder holder) {
 camera=Camera.open();
 camera.setPreviewDisplay(previewHolder);
}

Next, once the SurfaceView is set up and sized by Android, we need to pass
configuration data to the Camera, so it knows how big to draw the preview.
Since the preview pane is not a fixed size – it might vary based on hardware
– we cannot safely pre-determine the size. It is simplest to wait for our

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

SurfaceHolder.Callback to have its surfaceChanged() method called, when we
are told the size of the surface. Then, we can pour that information into a
Camera.Parameters object, update the Camera with those parameters, and have
the Camera show the preview images via startPreview():

public void surfaceChanged(SurfaceHolder holder,
 int format, int width,
 int height) {
 Camera.Parameters parameters=camera.getParameters();

 parameters.setPreviewSize(width, height);
 camera.setParameters(parameters);
 camera.startPreview();
}

Eventually, the preview needs to stop. In this particular case, that will be as
the activity is being destroyed. It is important to release the Camera at this
time – for many devices, there is only one physical camera, so only one
activity can be using it at a time. Our SurfaceHolder.Callback will be told, via
surfaceDestroyed(), when it is being closed up, and we can stop the preview
(stopPreview()), release the camera (release()), and let go of it (camera =
null) at that point:

public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 camera.release();
 camera=null;
}

If you compile and run the Camera/Preview sample application, you will see,
on-screen, what the camera sees.

Image Is Everything

Showing the preview imagery is nice and all, but it is probably more
important to actually take a picture now and again. The previews show the
user what the camera sees, but we still need to let our application know
what the camera sees at particular points in time.

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

In principle, this is easy. Where things get a bit complicated comes with
ensuring the application (and device as a whole) has decent performance,
not slowing down to process the pictures.

The code snippets shown in this section are pulled from the Camera/Picture
sample project, which builds upon the Camera/Preview sample shown in the
previous section.

Asking for a Format

We need to tell the Camera what sort of picture to take when we decide to
take a picture. The two options are raw and JPEG.

At least, that is the theory.

In practice, the T-Mobile G1 does not support raw output, only JPEG. So, we
need to tell the Camera that we want JPEG output.

That is merely a matter of calling setPictureFormat() on the
Camera.Parameters object when we configure our Camera, using the value JPEG
to indicate that we, indeed, want JPEG:

public void surfaceChanged(SurfaceHolder holder,
 int format, int width,
 int height) {
 Camera.Parameters parameters=camera.getParameters();

 parameters.setPreviewSize(width, height);
 parameters.setPictureFormat(PixelFormat.JPEG);
 camera.setParameters(parameters);
 camera.startPreview();
}

Connecting the Camera Button

Somehow, your application will need to indicate when a picture should be
taken. That could be via widgets on the UI, though in our samples here, the
preview is full-screen.

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

An alternative is to use the camera hardware button. Like every hardware
button other than the Home button, we can find out when the camera
button is clicked via onKeyDown():

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode==KeyEvent.KEYCODE_CAMERA) {
 takePicture();

 return(true);
 }

 return(super.onKeyDown(keyCode, event));
}

Taking a Picture

Once it is time to take a picture, all you need to do is:

• Stop the preview

• Tell the Camera to takePicture()

The takePicture() method takes three parameters, all callback-style objects:

1. A "shutter" callback (Camera.ShutterCallback), which is notified
when the picture has been captured by the hardware but the data is
not yet available – you might use this to play a "camera click" sound

2. Callbacks to receive the image data, either in raw format or JPEG
format

Since the T-Mobile G1 only supports JPEG output, and because we do not
want to fuss with a shutter click, PictureDemo only passes in the third
parameter to takePicture():

private void takePicture() {
 camera.stopPreview();
 camera.takePicture(null, null, photoCallback);
}

The Camera.PictureCallback (photoCallback) needs to implement
onPictureTaken(), which provides the picture data as a byte[], plus the

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

Camera object that took the picture. At this point, it is safe to start up the
preview again.

Plus, of course, it would be nice to do something with that byte array.

The catch is that the byte array is going to be large – the T-Mobile G1 has a 3-
megapixel camera, and future hardware is more likely to have richer
hardware than that. Writing that to flash, or sending it over the network, or
doing just about anything with the data, will be slow. Slow is fine...so long as
it is not on the UI thread.

That means we need to do a little more work.

The Job Queue Pattern

In theory, we could just fork a background thread to save off the image data
or do whatever it is we wanted done with it. However, we could wind up with
several such threads, particularly if we are sending the image over the
Internet and do not have a fast connection to our destination server.

Another pattern is the work queue. We set up one background thread that
simply monitors a job queue for work. When a job appears on the queue, the
thread pops the job off the queue, does whatever the job needs to have done,
then waits for another job. This means work can "stack up" if needed
without having multiple background threads – the thread will catch up
when activity quiets down.

In PictureDemo, we have such a work queue set up. The queue itself is a
LinkedBlockingQueue<Job>, where Job is a local base class for all jobs that
should go on the queue:

class Job {
 boolean stopThread() {
 return(false);
 }

 void process() {
 // no-op

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

 }
}

When the activity starts up, we can fire off a Thread on a Runnable that
monitors the job queue for work:

Runnable qProcessor=new Runnable() {
 public void run() {
 while (true) {
 try {
 Job j=q.take();

 if (j.stopThread()) {
 break;
 }
 else {
 j.process();
 }
 }
 catch (InterruptedException e) {
 break;
 }
 }
 }
};

When the activity is shutting down, via onDestroy(), we can pop a KillJob on
the queue, which causes the background thread to fall out of its watch-the-
job-queue loop:

class KillJob extends Job {
 @Override
 boolean stopThread() {
 return(true);
 }
}

And, when we actually take a picture, we can bundle our image data into a
SavePhotoJob and have our background queue deal with doing something
useful with the picture. More on that below.

Saving the Picture

The SavePhotoJob, in principle, could do almost anything. The byte array is
simply the JPEG itself, so the data could be written to a file, transformed,

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Using the Camera

sent to a Web service, converted into a BitmapDrawable for display on the
screen or whatever.

In the case of PictureDemo, we take the simple approach of writing the JPEG
file as photo.jpg in the root of the SD card:

class SavePhotoJob extends Job {
 byte[] jpeg=null;

 SavePhotoJob(byte[] jpeg) {
 this.jpeg=jpeg;
 }

 @Override
 void process() {
 File photo=new File(Environment.getExternalStorageDirectory(),
 "photo.jpg");

 if (photo.exists()) {
 photo.delete();
 }

 try {
 FileOutputStream fos=new FileOutputStream(photo.getPath());

 fos.write(jpeg);
 fos.close();
 }
 catch (java.io.IOException e) {
 Log.e("PictureDemo", "Exception in photoCallback", e);
 }
 }
}

The byte array itself will be garbage collected once we are done saving it, so
there is no explicit "free" operation we need to do to release that memory.

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART III – Advanced System

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 8

Sensors

"Sensors" is Android's overall term for ways that Android can detect
elements of the physical world around it, from magnetic flux to the
movement of the device. Not all devices will have all possible sensors, and
other sensors are likely to be added over time. In this chapter, we will
explore what sensors are theoretically available and how to use a few of
them that work on early Android devices like the T-Mobile G1.

The samples in this chapter assume that you have access to a piece of sensor-
equipped Android hardware, such as a T-Mobile G1. The OpenIntents.org
project has a sensor simulator which you can also use, though the use of this
tool is not covered here.

The author would like to thank Sean Catlin for code samples that helped
clear up confusion surrounding the use of sensors.

The Sixth Sense. Or Possibly the Seventh.

In theory, Android supports the following sensor types:

• An accelerometer, that tells you the motion of the device in space
through all three dimensions

• An ambient light sensor, telling you how bright or dark the
surroundings are

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.openintents.org/en/node/23

Sensors

• A magnetic field sensor, to tell you where magnetic north is (unless
some other magnetic field is nearby, such as from an electrical
motor)

• An orientation sensor, to tell you how the device is positioned in all
three dimensions

• A proximity sensor, to tell you how far the device is from some other
specific object

• A temperature sensor, to tell you the temperature of the surrounding
environment

• A tricorder sensor, to turn the device into "a fully functional
Tricorder"

Clearly, not all of these possible sensors are available today, such as the last
one. What definitely are available today on the T-Mobile G1 are the
accelerometer, the magnetic field sensor, and the orientation sensor.

To access any of these sensors, you need a SensorManager, found in the
android.hardware package. Like other aspects of Android, the SensorManager
is a system service, and as such is obtained via the getSystemService()
method on your Activity or other Context:

sensor=(SensorManager)getSystemService(Context.SENSOR_SERVICE);

Orienting Yourself

In principle, to find out which direction is north, you would use the
magnetic flux sensor and go through a lovely set of calculations to figure out
the appropriate direction.

Fortunately for us, Android did all that as part of the orientation sensor...so
long as the device is held flat in the horizontal plane (e.g., on a level
tabletop).

Akin to the location services, there is no way to ask the SensorManager what
the current value of a sensor is. Instead, you need to hook up a

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

SensorListener and respond to changes in the sensor values. To do this,
simply call registerListener() with your SensorListener and a bitmask of
which sensors you want to hear from. For example, from the Sensor/Compass
sample project, here is where we register our listener:

sensor.registerListener(listener,
 SensorManager.SENSOR_ORIENTATION);

It is important to unregister the listener when the activity closes down;
otherwise, the application will never really terminate and the listener will
get updates indefinitely. To do this, just call unregisterListener() from a
likely location, such as onDestroy():

@Override
public void onDestroy() {
 super.onDestroy();
 sensor.unregisterListener(listener);
}

Your SensorListener implementation will need two methods. The one you
probably will not use that often is onAccuracyChanged(), when you will be
notified as a given sensor's accuracy changes from
SENSOR_STATUS_ACCURACY_HIGH to SENSOR_STATUS_ACCURACY_MEDIUM to
SENSOR_STATUS_ACCURACY_LOW to SENSOR_STATUS_UNRELIABLE.

The one you will use more commonly is onSensorChanged(), where you are
provided a float[] of values for the sensor. The tricky part is determining
what these sensor values mean.

In the case of SENSOR_ORIENTATION, the first of the supplied values represents
the orientation of the device in degrees off of magnetic north. 90 degrees
means east, 180 means south, and 270 means west, just like on a regular
compass.

In Sensor/Compass, we toss out 9 out of every 10 readings and update a
TextView with the 10th reading, so the TextView doesn't get too "twitchy",
changing all the time:

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

private SensorListener listener=new SensorListener() {
 public void onSensorChanged(int sensor, float[] values) {
 if (sensor==SensorManager.SENSOR_ORIENTATION) {
 if (++count==10) {
 degrees.setText(String.valueOf(values[0]));
 count=0;
 }
 }
 }

 public void onAccuracyChanged(int sensor, int accuracy) {
 // unused
 }
};

What you get is a trivial application showing where the top of the phone is
pointing. Note that the sensor seems to take a bit to get initially stabilized,
then will tend to lag actual motion a bit.

Figure 12. The CompassDemo application, showing a T-Mobile G1 pointing
south-by-southeast

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

Steering Your Phone

In television commercials for other mobile devices, you may see them being
used like a steering wheel, often times for playing a driving simulation
game.

Android can do this too. You can see it in the Sensor/Steering sample
application.

In the preceding section, we noted that SENSOR_ORIENTATION returns in the
first value of the float[] the orientation of the phone, compared to
magnetic north, if the device is horizontal. When the device is held like a
steering wheel, the second value of the float[] will change as the device is
"steered".

This sample application is very similar to the Sensor/Compass one shown in
the previous section. The biggest change comes in the SensorListener
implementation:

private SensorListener listener=new SensorListener() {
 public void onSensorChanged(int sensor, float[] values) {
 if (sensor==SensorManager.SENSOR_ORIENTATION) {
 float orientation=values[1];

 if (prevOrientation!=orientation) {
 if (prevOrientation<orientation) {
 steerLeft(orientation,
 orientation-prevOrientation);
 }
 else {
 steerRight(orientation,
 prevOrientation-orientation);
 }

 prevOrientation=values[1];
 }
 }
 }

 public void onAccuracyChanged(int sensor, int accuracy) {
 // unused
 }
};

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

Here, we track the previous orientation (prevOrientation) and call a
steerLeft() or steerRight() method based on which direction the "wheel" is
turned. For each, we provide the new current position of the wheel and the
amount the wheel turned, measured in degrees.

The steerLeft() and steerRight() methods, in turn, simply dump their
results to a "transcript": a TextView inside a ScrollView, set up to
automatically keep scrolling to the bottom:

private void steerLeft(float position, float delta) {
 StringBuffer line=new StringBuffer("Steered left by ");

 line.append(String.valueOf(delta));
 line.append(" to ");
 line.append(String.valueOf(position));
 line.append("\n");
 transcript.setText(transcript.getText().toString()+line.toString());
 scroll.fullScroll(View.FOCUS_DOWN);
}

private void steerRight(float position, float delta) {
 StringBuffer line=new StringBuffer("Steered right by ");

 line.append(String.valueOf(delta));
 line.append(" to ");
 line.append(String.valueOf(position));
 line.append("\n");
 transcript.setText(transcript.getText().toString()+line.toString());
 scroll.fullScroll(View.FOCUS_DOWN);
}

The result is a log of the steering "events" as the device is turned like a
steering wheel. Obviously, a real game would translate these events into
game actions, such as changing your perspective of the driving course.

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

Figure 13. The SteeringDemo application

Do "The Shake"

Another demo you often see with certain other mobile devices is shaking the
device to cause some on-screen effect, such as rolling dice or scrambling
puzzle pieces.

Android can do this as well, as you can see in the Sensor/Shaker sample
application, with our data provided by the accelerometer sensor
(SENSOR_ACCELEROMETER).

What the accelerometer sensor provides is the accleration in each of three
dimensions. At rest, the acceleration is equal to Earth's gravity (or the
gravity of wherever you are, if you are not on Earth). When shaken, the
acceleration should be higher than Earth's gravity – how much higher is
dependent on how hard the device is being shaken. While the individual
axes of acceleration might tell you, at any point in time, what direction the
device is being shaken in, since a shaking action involves frequent constant
changes in direction, what we really want to know is how fast the device is
moving overall – a slow steady movement is not a shake, but something
more aggressive is.

Once again, our UI output is simply a "transcript" TextView as before. This
time, though, we separate out the actual shake-detection logic into a Shaker
class which our ShakerDemo activity references, as shown below:

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

package com.commonsware.android.sensor;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.ScrollView;
import android.widget.TextView;

public class ShakerDemo extends Activity
 implements Shaker.Callback {
 private Shaker shaker=null;
 private TextView transcript=null;
 private ScrollView scroll=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 transcript=(TextView)findViewById(R.id.transcript);
 scroll=(ScrollView)findViewById(R.id.scroll);

 shaker=new Shaker(this, 1.25d, 500, this);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 shaker.close();
 }

 public void shakingStarted() {
 Log.d("ShakerDemo", "Shaking started!");
 transcript.setText(transcript.getText().toString()+"Shaking started\n");
 scroll.fullScroll(View.FOCUS_DOWN);
 }

 public void shakingStopped() {
 Log.d("ShakerDemo", "Shaking stopped!");
 transcript.setText(transcript.getText().toString()+"Shaking stopped\n");
 scroll.fullScroll(View.FOCUS_DOWN);
 }
}

The Shaker takes four parameters:

• A Context, so we can get access to the SensorManager service

• An indication of how hard a shake should qualify as a shake,
expressed as a ratio applied to Earth's gravity, so a value of 1.25

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

means the shake has to be 25% stronger than gravity to be
considered a shake

• An amount of time with below-threshold acceleration, after which
the shake is considered "done"

• A Shaker.Callback object that will be notified when a shake starts
and stops

While in this case, the callback methods (implemented on the ShakerDemo
activity itself) simply log shake events to the transcript, a "real" application
would, say, start an animation of dice rolling when the shake starts and end
the animation shortly after the shake ends.

The Shaker simply converts the three individual acceleration components
into a combined acceleration value (square root of the sum of the squares),
then compares that value to Earth's gravity. If the ratio is higher than the
supplied threshold, then we consider the device to be presently shaking, and
we call the shakingStarted() callback method if the device was not shaking
before. Once shaking ends, and time elapses, we call shakingStopped() on
the callback object and assume that the shake has ended. A more robust
implementation of Shaker would take into account the possibility that the
sensor will not be updated for a while after the shake ends, though in reality,
normal human movement will ensure that there are some sensor updates, so
we can find out when the shaking ends.

package com.commonsware.android.sensor;

import android.content.Context;
import android.hardware.SensorListener;
import android.hardware.SensorManager;
import android.os.SystemClock;
import java.util.ArrayList;
import java.util.List;

public class Shaker {
 private SensorManager sensor=null;
 private long lastShakeTimestamp=0;
 private double threshold=1.0d;
 private long gap=0;
 private Shaker.Callback cb=null;

 public Shaker(Context ctxt, double threshold, long gap,
 Shaker.Callback cb) {

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

 this.threshold=threshold;
 this.gap=gap;
 this.cb=cb;

 sensor=(SensorManager)ctxt.getSystemService(Context.SENSOR_SERVICE);
 sensor.registerListener(listener,
 SensorManager.SENSOR_ACCELEROMETER);
 }

 public void close() {
 sensor.unregisterListener(listener);
 }

 private void isShaking() {
 long now=SystemClock.uptimeMillis();

 if (lastShakeTimestamp==0) {
 lastShakeTimestamp=now;

 if (cb!=null) {
 cb.shakingStarted();
 }
 }
 else {
 lastShakeTimestamp=now;
 }
 }

 private void isNotShaking() {
 long now=SystemClock.uptimeMillis();

 if (lastShakeTimestamp>0) {
 if (now-lastShakeTimestamp>gap) {
 lastShakeTimestamp=0;

 if (cb!=null) {
 cb.shakingStopped();
 }
 }
 }
 }

 public interface Callback {
 void shakingStarted();
 void shakingStopped();
 }

 private SensorListener listener=new SensorListener() {
 public void onSensorChanged(int sensor, float[] values) {
 if (sensor==SensorManager.SENSOR_ACCELEROMETER) {
 double netForce=Math.pow(values[SensorManager.DATA_X], 2.0);

 netForce+=Math.pow(values[SensorManager.DATA_Y], 2.0);
 netForce+=Math.pow(values[SensorManager.DATA_Z], 2.0);

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Sensors

 if (threshold<(Math.sqrt(netForce)/SensorManager.GRAVITY_EARTH)) {
 isShaking();
 }
 else {
 isNotShaking();
 }
 }
 }

 public void onAccuracyChanged(int sensor, int accuracy) {
 // unused
 }
 };
}

All the transcript shows, of course, is when shaking starts and stops:

Figure 14. The ShakerDemo application, showing a pair of shakes

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 9

Databases and Content
Providers

In the abstract, working with SQLite databases and Android-style content
providers is fairly straight-forward. Each supports a CRUD-style interface
(query(), insert(), update(), delete()) using Cursor objects for query results.
While implementing a ContentProvider is no picnic for non-SQLite data
stores, everything else is fairly rote.

In reality, though, databases and content providers cause more than their
fair share of hassles. Mostly, this comes from everything outside of simple
CRUD operations, such as:

• How do we get a database into our application?

• How do we get data into our application on initial install? On an
update?

• Where is the documentation for the built-in Android content
providers?

• How do we deal with joins between data stores, such as merging
contacts with our own database data?

In this chapter, we explore these issues, to show how you can better work
with databases and content providers in the real world.

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

Distributed Data

Some databases used by Android applications naturally start empty. For
example, a "password safe" probably has no passwords when initially
launched by the user, and an expense-tracking application probably does
not have any expenses recorded at the outset.

However, sometimes, there are databases that need to ship with an
application that must be pre-populated with data. For example, you might
be implementing an online catalog, with a database of items for sale
installed with the application and updated as needed via calls to some Web
service. The same structure would hold true for any sort of reference, from
chemicals to word translations to historical sports records.

Unfortunately, there is no way to ship a database with data in it via the
Android APK packaging mechanism. An APK is an executable blob, from
the standpoint of Android and Dalvik. More importantly, it is stored read-
only in a ZIP file, which makes updates to that data doubly impossible.

The next-best option is to ship your data with the application by some other
means and load it into a newly-created database when the application is
first run. This does involve two copies of the data: the original in your
application and the working copy in the database. That may seem wasteful
in terms of space. However, courtesy of ZIP compression, the original copy
may not take up all that much space. Also, you can turn this into a feature,
offering some sort of "reset" mechanism to reload the working database
from the original if needed.

The challenge then becomes how to package the database contents into the
APK and load it into the working database. Ideally, this involves as little
work as possible from the developer, can fit into the existing build system,
and can take advantage of existing database manipulation tools (versus, say,
hand-writing hundreds of SQL INSERT statements).

Note that another possibility exists: package the binary SQLite database file
in the APK (e.g., in res/raw/) and copy it into position using binary streams.

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.reigndesign.com/blog/using-your-own-sqlite-database-in-android-applications/

Databases and Content Providers

This assumes the SQLite database file your development environment
would create is the same as what is expected by the SQLite engine baked
into Android. This can work, but is likely to be more prone to versioning
issues – for example, if your development environment is upgraded to a
newer SQLite that has a slightly different file format.

SQLite: On-Device, On-Desktop

This becomes much simpler when you realize that Android uses SQLite for
the database, and SQLite works on just about every platform you might
need. It is trivial to work with SQLite databases on your development
workstation, even easier than working with databases inside an Android
emulator or device.

The plan, therefore, is to allow developers to create the database to be
"shipped" as a SQLite database, then build tools that package the SQLite
contents into the Android APK and turn it back into a database when the
application needs it.

This allows developers to use whatever tools they want to manipulate the
SQLite database, ranging from typical database management UIs to
specialized conversion scripts to whatever.

To make this plan work, though, we need two bits of code:

1. We need something that extracts the data out of the SQLite
database the developer has prepared and puts it someplace inside
the Android APK

2. We need something that ties in with SQLiteOpenHelper that takes the
APK-packaged data and turns it into an on-device database when the
database is first accessed.

Exporting a Database

Fortunately, the sqlite3 command-line executable that comes standard with
SQLite offers a .dump command to dump the contents of a table as a series of

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

SQL statements: one to create the table, plus the necessary SQL INSERT
statements to populate it. All we need to do is tie this into the build system,
so the act of compiling the APK also deals with the database.

You can find some sample code that handles this in the Database/Packager
sample application. Specifically:

• There is a SQLite database containing data in the db/ project
directory – in this case, it is the database from the
ContentProvider/Constants project from The Busy Coder's Guide to
Android Development

• There is a package_db.rb Ruby script that wraps around the .dump
command to export the data

• There is a change to the build.xml Ant script to use this Ruby script

The Ruby Script

You may or may not be a fan of Ruby. While this sample code shows this
utility as a Ruby script, rest assured that SQLite has interfaces to most
programming languages (though its Java support is not the strongest), so
you can create your own edition of this script in whatever language suits
you.

The script is fairly short:

require 'rubygems'
require 'sqlite3'

Dir['db/*'].each do |path|
 db=SQLite3::Database.new(path)

 begin
 db.execute("SELECT name FROM sqlite_master WHERE type='table'") do |row|
 if ARGV.include?(row[0])
 puts `sqlite3 #{path} ".dump #{row[0]}"`
 end
 end
 ensure
 db.close
 end
end

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

It iterates over every file in the db/ directory and opens each as a SQLite
database. It then queries the database for the list of tables (SELECT name FROM
sqlite_master WHERE type = 'table'). Any table matching a table name
passed in on the command line is assumed to be one needing to be
exported, so it prints to stdout the results of the sqlite3 .dump command,
run on that database and table. We use sqlite3 because there does not
appear to be an API call that implements the .dump functionality.

To run this script, you need SQLite3 installed, with sqlite3 in your PATH,
and you need the Ruby interpreter. You also need to run it from the project
directory, with a db/ directory containing one or more database files.

The Ant Script

To take advantage of this Ruby script, we need to inject it into the build
process.

Specifically, the build.xml for Database/Packager contains the following new
Ant target:

<target name="package-db">
 <exec executable="ruby" output="res/raw/packaged_db.txt">
 <arg line="package_db.rb"/>
 <arg line="constants"/>
 </exec>
</target>

We invoke the ruby interpreter, providing it the path to the package_db.rb
Ruby script and the name of the one table needing to be exported
(constants). The results are placed in res/raw/packaged_db.txt.

This Ant task is then tied into the build chain by making the package-res
task depend upon it:

<target name="package-res" depends="package-db">
 <available file="${asset-dir}" type="dir"
 property="res-target" value="and-assets" />
 <property name="res-target" value="no-assets" />
 <antcall target="package-res-${res-target}" />
</target>

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

The net result is that running Ant on this build script will run the Ruby
script, which will dump the specified tables to a set of SQL statements:

BEGIN TRANSACTION;
CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT, value
REAL);
INSERT INTO "constants" VALUES(1,'Gravity, Death Star I',3.53036142541896e-07);
INSERT INTO "constants" VALUES(2,'Gravity, Earth',9.80665016174316);
INSERT INTO "constants" VALUES(3,'Gravity, Jupiter',23.1200008392334);
INSERT INTO "constants" VALUES(4,'Gravity, Mars',3.71000003814697);
INSERT INTO "constants" VALUES(5,'Gravity, Mercury',3.70000004768372);
INSERT INTO "constants" VALUES(6,'Gravity, Moon',1.60000002384186);
INSERT INTO "constants" VALUES(7,'Gravity, Neptune',11.0);
INSERT INTO "constants" VALUES(8,'Gravity, Pluto',0.600000023841858);
INSERT INTO "constants" VALUES(9,'Gravity, Saturn',8.96000003814697);
INSERT INTO "constants" VALUES(10,'Gravity, Sun',275.0);
INSERT INTO "constants" VALUES(11,'Gravity, The Island',4.81516218185425);
INSERT INTO "constants" VALUES(12,'Gravity, Uranus',8.6899995803833);
INSERT INTO "constants" VALUES(13,'Gravity, Venus',8.86999988555908);
COMMIT;

In this case, the constants table is empty, so there are no SQL INSERT
statements. However, you could easily add some rows to the constants table
– perhaps constants not available in Android itself – and ship those along
with the table schema.

Note that build.xml is generated by the Android activitycreator, so on SDK
updates you will probably need to re-establish these changes to the file.
Also, if you use Eclipse, you will need to find the appropriate hooks to
integrate the packaging step into the build process. Of course, there is
nothing to prevent you from manually running .dump on the appropriate
tables, but anything that is not automated can be forgotten, leading to
errors and confusion.

Loading the Exported Database

The other end of his process is to take the raw SQL stores in
res/raw/packaged_db.txt and "inflate" it at runtime into a database. Since
SQLiteOpenHelper is designed to handle such operations, it seems to make
sense to implement this logic as a subclass. You can find such a class –
DatabaseInstaller – in the Database/Packager sample project:

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

import android.content.Context;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import java.io.*;

abstract class DatabaseInstaller extends SQLiteOpenHelper {
 abstract void handleInstallError(Throwable t);

 private Context ctxt=null;

 public DatabaseInstaller(Context context, String name,
 SQLiteDatabase.CursorFactory factory,
 int version) {
 super(context, name, factory, version);

 this.ctxt=context;
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 InputStream stream=ctxt
 .getResources()
 .openRawResource(R.raw.packaged_db);
 InputStreamReader is=new InputStreamReader(stream);
 BufferedReader in=new BufferedReader(is);
 String str;

 while ((str = in.readLine()) != null) {
 if (!str.equals("BEGIN TRANSACTION;") && !str.equals("COMMIT;")) {
 db.execSQL(str);
 }
 }

 in.close();
 }
 catch (IOException e) {
 handleInstallError(e);
 }
 }
}

This class is abstract, expecting subclasses to implement both the
onUpgrade() path from SQLiteOpenHelper and a handleInstallError() callback
in case something fails during onCreate().

Most of the smarts are found in DatabaseInstaller's onCreate()
implementation. Since SQLiteDatabase has no means to execute SQL

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

statements contained in an InputStream, we are stuck opening the
R.raw.packaged_db resource and reading the statements out ourselves, one at
a time.

However, the exported SQL will likely contain BEGIN TRANSACTION; and
COMMIT; statements, since sqlite3 expects that sqlite3 itself would be used
to re-executed the dumped SQL script. Since transactions are handled via
API calls with SQLiteDatabase, we cannot execute BEGIN TRANSACTION; and
COMMIT; statements via execSQL() without getting a "nested transaction"
error. So, we skip those two statements and execute everything else, one line
at a time.

The net result: onCreate() takes our raw SQL and turns it into a table in our
on-device database.

Of course, to really use this, you will need to create a DatabaseInstaller
subclass, such as ConstantsInstaller:

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.util.Log;

class ConstantsInstaller extends DatabaseInstaller {
 public ConstantsInstaller(Context context, String name,
 SQLiteDatabase.CursorFactory factory,
 int version) {
 super(context, name, factory, version);
 }

 void handleInstallError(Throwable t) {
 Log.e("Constants", "Exception installing database", t);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

The rest of this project is largely identical to the ContentProvider/Constants
sample from The Busy Coder's Guide to Android Development.

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

One possible enhancement to DatabaseInstaller is to create our own
transaction around the loop of execSQL() calls. This would improve
performance dramatically, as otherwise, each execSQL() call is its own
transaction. The proof of this is left to the reader as an exercise.

Examining Your Relationships

Android has a built-in contact manager, integrated with the phone dialer.
You can work with the contacts via the Contacts content provider.

However, compared to content providers found in, say, simplified book
examples, the Contacts content provider is rather intimidating. After all,
there are 16 classes and 9 interfaces all involved in accessing this content
provider. This section will attempt to illustrate some of the patterns for
making use of Contacts.

Contact Permissions

Since contacts are privileged data, you need certain permissions to work
with them. Specifically, you need the READ_CONTACTS permission to query and
examine the Contacts content and WRITE_CONTACTS to add, modify, or remove
contacts from the system.

For example, here is the manifest for the Database/Contacts sample
application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.database"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <application android:label="@string/app_name">
 <activity android:name=".ContactsDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 </application>
</manifest>

Pre-Joined Data

While the database underlying the Contacts content provider is private, one
can imagine that it has several tables: one for people, one for their phone
numbers, one for their email addresses, etc. These are tied together by
typical database relations, most likely 1:N, so the phone number and email
address tables would have a foreign key pointing back to the table
containing information about people.

To simplify accessing all of this through the content provider interface,
Android pre-joins queries against some of the tables. For example, one can
query for phone numbers and get the contact name and other data along
with the number, without having to somehow do a join operation yourself.

The Sample Activity

The ContactsDemo activity is simply a ListActivity, though it sports a Spinner
to go along with the obligatory ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

The activity itself sets up a listener on the Spinner and toggles the list of
information shown in the ListView when the Spinner value changes:

package com.commonsware.android.database;

import android.app.ListActivity;
import android.database.Cursor;
import android.os.Bundle;
import android.provider.Contacts;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;
import android.widget.SimpleCursorAdapter;
import android.widget.Spinner;

public class ContactsDemo extends ListActivity
 implements AdapterView.OnItemSelectedListener {
 private static String[] options={"Contact Names",
 "Contact Names & Numbers",
 "Contact Names & Email Addresses"};
 private ListAdapter[] listAdapters=new ListAdapter[3];

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 initListAdapters();

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 options);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 setListAdapter(listAdapters[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 // ignore
 }

 private void initListAdapters() {
 listAdapters[0]=buildNameAdapter();

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 listAdapters[1]=buildPhonesAdapter();
 listAdapters[2]=buildEmailAdapter();
 }

 private ListAdapter buildNameAdapter() {
 String[] PROJECTION=new String[] { Contacts.People._ID,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=managedQuery(Contacts.People.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.People.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME
 },
 new int[] {
 android.R.id.text1
 }));
 }

 private ListAdapter buildPhonesAdapter() {
 String[] PROJECTION=new String[] { Contacts.Phones._ID,
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 };
 Cursor c=managedQuery(Contacts.Phones.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.Phones.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }

 private ListAdapter buildEmailAdapter() {
 String[] PROJECTION=new String[] { Contacts.ContactMethods._ID,
 Contacts.ContactMethods.DATA,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=managedQuery(Contacts.ContactMethods.CONTENT_EMAIL_URI,
 PROJECTION, null, null,
 Contacts.ContactMethods.DEFAULT_SORT_ORDER);

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 return(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME,
 Contacts.ContactMethods.DATA
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }
}

When the activity is first opened, it sets up three Adapter objects, one for
each of three perspectives on the contacts data. The Spinner simply resets
the list to use the Adapter associated with the Spinner value selected.

Accessing People

The first Adapter shows the names of all of the contacts. Since all the
information we seek is in the contact itself, we can use the CONTENT_URI
provider, retrieve all of the contacts in the default sort order, and pour them
into a SimpleCursorAdapter set up to show each person on its own row:

private ListAdapter buildNameAdapter() {
 String[] PROJECTION=new String[] { Contacts.People._ID,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=managedQuery(Contacts.People.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.People.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME
 },
 new int[] {
 android.R.id.text1
 }));
}

Assuming you have some contacts in the database, they will appear when
you first open the ContactsDemo activity, since that is the default perspective:

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

TBD – screenshot

Accessing Phone Numbers

Retrieving a list of contacts by their phone number can be done by querying
the CONTENT_URI content provider:

private ListAdapter buildPhonesAdapter() {
 String[] PROJECTION=new String[] { Contacts.Phones._ID,
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 };
 Cursor c=managedQuery(Contacts.Phones.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.Phones.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
}

Since the documentation for Contacts.Phones shows that it incorporates
Contacts.PeopleColumns and Contacts.PhonesColumns, we know we can get the
phone number and the contact's name in one query, which is why both are
included in our projection of columns to retrieve.

In this case, we still pour the results into a SimpleCursorAdapter, but we use a
two-line layout (android.R.layout.simple_list_item_2) to show both the
name and the phone number:

TBD – screenshot

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

Accessing Email Addresses

Similarly, to get a list of all the email addresses, we can use the
CONTENT_EMAIL_URI content provider, which incorporates the
Contacts.ContactMethodsColumns and Contacts.PeopleColumns, so we can get
access to the contact name as well as the email address itself (DATA):

private ListAdapter buildEmailAdapter() {
 String[] PROJECTION=new String[] { Contacts.ContactMethods._ID,
 Contacts.ContactMethods.DATA,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=managedQuery(Contacts.ContactMethods.CONTENT_EMAIL_URI,
 PROJECTION, null, null,
 Contacts.ContactMethods.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME,
 Contacts.ContactMethods.DATA
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
}

Again, the results are displayed via a two-line SimpleCursorAdapter:

TBD – screenshot

Rummaging Through Your Phone Records

The CallLog content provider in Android gives you access to the calls
associated with your phone: the calls you placed, the calls you received, and
the calls that you missed. This is a much simpler structure than the Contacts
content provider described in the previous section.

The columns available to you can be found in the CallLog.Calls class. The
commonly-used ones include:

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

• NUMBER: the phone number associated with the call

• DATE: when the call was placed, in milliseconds-since-the-epoch
format

• DURATION: how long the call lasted, in seconds

• TYPE: indicating if the call was incoming, outgoing, or missed

These, of course, are augmented by the stock BaseColumns, which
CallLog.Calls inherits from.

So, for example, here is a projection used against the call log, from the
JoinDemo activity in the Database/JoinCursor project:

private static String[] PROJECTION=new String[] { CallLog.Calls._ID,
 CallLog.Calls.NUMBER,
 CallLog.Calls.DATE,
 CallLog.Calls.DURATION
 };

Here is where we get a Cursor on that projection, with the most-recent calls
first in the list:

Cursor c=managedQuery(android.provider.CallLog.Calls.CONTENT_URI,
 PROJECTION, null, null,
 CallLog.Calls.DATE+" DESC");

Unlike contacts, the call log appears unmodifiable by Android applications.
So while you can query the log, you cannot add your own calls, delete calls,
etc.

Also note that, to access the call log, you need the READ_CONTACTS permission.

Come Together, Right Now

If you have multiple tables within a database, and you want a Cursor that
represents a join of those tables, you can accomplish that simply through a
well-constructed query. However, if you have multiple databases, or you
wish to join data in your database with data from a third-party

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

ContentProvider, the join becomes significantly more difficult. You cannot
simply construct a query, since SQLite has no facility (today) to query a
ContentProvider, let alone join a ContentProvider's contents with those from
native tables.

One solution is to do the join at the Cursor itself. Android's Cursors offer a
fairly vanilla interface, and Android even supplies a CursorWrapper class that
can handle much of the effort for us. In this section, we will examine the use
of CursorWrapper to create a JoinCursor, blending data from a SQLite table
with that from the CallLog.

Note that the implementation shown here is for illustrative purposes only. It
may suffer from significant performance issues, particularly memory
consumption, that would need to be addressed in a serious production
application. If you are interested in perhaps pursuing an open source project
to implement a better version of JoinCursor, contact the author.

Also note that there is a CursorJoiner class in the android.database package
in the SDK. A CursorJoiner takes two Cursor objects plus a list of key
columns, using the key columns to join the Cursor values together. This is
more efficient but somewhat less flexible that the implemenation shown
here.

CursorWrapper

As the name suggests, CursorWrapper wraps a Cursor object. Specifically,
CursorWrapper implements the Cursor interface itself and delegates all of the
interface's calls to the wrapped Cursor.

On the surface, this seems pointless. After all, if CursorWrapper simply serves
as a pass-through to the Cursor, why not use the underlying Cursor directly?

The key is not CursorWrapper itself, but rather custom subclasses of
CursorWrapper. You can then override certain Cursor methods, to perform
work in addition to, or perhaps instead of, passing the call to the wrapped
Cursor.

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

mailto:mmurphy@commonsware.com

Databases and Content Providers

In this case, we want to create a CursorWrapper subclass that allows us to
inject additional columns into the results. These columns will be the result
of a join operation between a SQLite table and the CallLog.

Specifically, the Database/JoinCursor project adds "call notes" – a block of
text about a specific call one made. You could use this concept in a contact
management system, for example, to annotate what all was discussed in a
call or otherwise document the call itself. Since CallLog is not modifiable
and has no field for "call notes" anyway, we cannot store such notes in the
CallLog. Instead, we store those notes in a call_notes SQLite table, mapping
the CallLog row _id to the note.

For simplicity, this example will assume that there are 0 or 1 notes per call,
not several. That allows the JoinCursor to simply inject the call note into the
CallLog Cursor results, without having to worry about dealing with several
possible notes. We do, however, need to deal with the case where the call
does not yet have a note.

Implementing a JoinCursor

A JoinCursor is a relatively complex class. Some of that complexity is due to
repeated boilerplate code, and some is due to the problem being solved.

What we need the JoinCursor to do is:

• Override Cursor-related methods that involve the columns

• Check to see if there is a note for the current row

• Adjust the results of the method to accomodate the possibility (or
reality) of a note

You can see an implementation of this in the JoinCursor class in the
Database/JoinCursor project:

import android.content.ContentValues;
import android.database.Cursor;
import android.database.CursorWrapper;
import java.util.LinkedHashMap;

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

import java.util.Map;

class JoinCursor extends CursorWrapper {
 private I_JoinHandler join=null;
 private JoinCache cache=new JoinCache(100);

 JoinCursor(Cursor main, I_JoinHandler join) {
 super(main);

 this.join=join;
 }

 public int getColumnCount() {
 return(super.getColumnCount()+join.getColumnNames().length);
 }

 public int getColumnIndex(String columnName) {
 for (int i=0;i<join.getColumnNames().length;i++) {
 if (columnName.equals(join.getColumnNames()[i])) {
 return(super.getColumnCount()+i);
 }
 }

 return(super.getColumnIndex(columnName));
 }

 public int getColumnIndexOrThrow(String columnName) {
 for (int i=0;i<join.getColumnNames().length;i++) {
 if (columnName.equals(join.getColumnNames()[i])) {
 return(super.getColumnCount()+i);
 }
 }

 return(super.getColumnIndexOrThrow(columnName));
 }

 public String getColumnName(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 return(join.getColumnNames()[columnIndex-super.getColumnCount()]);
 }

 return(super.getColumnName(columnIndex));
 }

 public byte[] getBlob(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsByteArray(join.getColumnNames()[offset]));
 }

 return(super.getBlob(columnIndex));
 }

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 public double getDouble(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsDouble(join.getColumnNames()[offset]));
 }

 return(super.getDouble(columnIndex));
 }

 public float getFloat(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsFloat(join.getColumnNames()[offset]));
 }

 return(super.getFloat(columnIndex));
 }

 public int getInt(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsInteger(join.getColumnNames()[offset]));
 }

 return(super.getInt(columnIndex));
 }

 public long getLong(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsLong(join.getColumnNames()[offset]));
 }

 return(super.getLong(columnIndex));
 }

 public short getShort(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsShort(join.getColumnNames()[offset]));
 }

 return(super.getShort(columnIndex));

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 }

 public String getString(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.getAsString(join.getColumnNames()[offset]));
 }

 return(super.getString(columnIndex));
 }

 public boolean isNull(int columnIndex) {
 if (columnIndex>=super.getColumnCount()) {
 ContentValues extras=cache.get(join.getCacheKey(this));
 int offset=columnIndex-super.getColumnCount();

 return(extras.get(join.getColumnNames()[offset])==null);
 }

 return(super.isNull(columnIndex));
 }

 public boolean requery() {
 cache.clear();

 return(super.requery());
 }

 class JoinCache extends LinkedHashMap<String, ContentValues> {
 private int capacity=100;

 JoinCache(int capacity) {
 super(capacity+1, 1.1f, true);
 this.capacity=capacity;
 }

 protected boolean removeEldestEntry(Entry<String, ContentValues> eldest) {
 return(size()>capacity);
 }

 ContentValues get(String key) {
 ContentValues result=super.get(key);

 if (result==null) {
 result=join.getJoin(JoinCursor.this);
 put(key, result);
 }

 return(result);
 }
 }
}

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

JoinCursor, when instantiated, gets both the Cursor to wrap and an
I_JoinHandler instance. The join handler is responsible for getting the extra
columns for a given row:

import android.content.ContentValues;
import android.database.Cursor;
import java.util.Map;

public interface I_JoinHandler {
 String[] getColumnNames();
 String getCacheKey(Cursor c);
 ContentValues getJoin(Cursor c);
}

Most of JoinCursor is then using the I_JoinHandler information to adjust the
results of various Cursor methods. For example:

• getColumnCount() returns the sum of the Cursor's column count and
the number of extra columns returned by the join handler

• getColumnIndex() and kin need to search through the join handler's
columns as well as the Cursor's to find the match, if any

• getInt(), isNull(), and kin need to support retrieving values from
both the Cursor and the join handler

To improve performance, JoinCursor keeps a cache of the extra values for
requested rows, using an "LRU cache"-style LinkedHashMap and an inner
JoinCache class. The JoinCache keeps the ContentValues returned by
I_JoinHandler on a getJoin() call, representing the extra columns (if any) for
that particular Cursor row. Since we are caching data, however, we need to
flush that cache sometimes; in this case, we override requery() to flush the
cache if the Cursor itself is being proactively updated.

Using a JoinCursor

To use a JoinCursor, of course, you need an implementation of
I_JoinHandler, such as this one from the JoinDemo activity:

I_JoinHandler join=new I_JoinHandler() {
 String[] columns={NOTE_ID, NOTE};

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 public String[] getColumnNames() {
 return(columns);
 }

 public String getCacheKey(Cursor c) {
 return(String.valueOf(c.getInt(c.getColumnIndex(CallLog.Calls._ID))));
 }

 public ContentValues getJoin(Cursor c) {
 String[] args={getCacheKey(c)};
 Cursor j=getDb().rawQuery("SELECT _ID, note FROM call_notes WHERE
call_id=?", args);
 ContentValues result=new ContentValues();

 j.moveToFirst();

 if (j.isAfterLast()) {
 result.put(columns[0], -1);
 result.put(columns[1], (String)null);
 }
 else {
 result.put(columns[0], j.getInt(0));
 result.put(columns[1], j.getString(1));
 }

 j.close();

 return(result);
 }
};

The columns are a fixed pair (the note's ID and the note itself). These are
retrieved via getJoin() from the call_notes SQLite table. The call notes
themselves are keyed by the call's own _id, which is also used as the key for
the JoinCursor's cache of results. The net effect is that we only ever retrieve a
note once for a given call, at least until a requery(). And, if there is no note
for the call, we use a null note to indicate that we are, indeed, note-free for
this call.

The note information is then used by our CursorAdapter subclass
(CallPlusAdapter) and its associated ViewWrapper, also found in the JoinDemo
activity:

class CallPlusAdapter extends CursorAdapter {
 CallPlusAdapter(Cursor c) {
 super(JoinDemo.this, c);
 }

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 @Override
 public void bindView(View row, Context ctxt,
 Cursor c) {
 ViewWrapper wrapper=(ViewWrapper)row.getTag();

 wrapper.update(c);
 }

 @Override
 public View newView(Context ctxt, Cursor c,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();

 View row=inflater.inflate(R.layout.row, null);
 ViewWrapper wrapper=new ViewWrapper(row);

 row.setTag(wrapper);
 wrapper.update(c);

 return(row);
 }
}

class ViewWrapper {
 View base;
 TextView number=null;
 TextView duration=null;
 TextView time=null;
 ImageView icon=null;

 ViewWrapper(View base) {
 this.base=base;
 }

 TextView getNumber() {
 if (number==null) {
 number=(TextView)base.findViewById(R.id.number);
 }

 return(number);
 }

 TextView getDuration() {
 if (duration==null) {
 duration=(TextView)base.findViewById(R.id.duration);
 }

 return(duration);
 }

 TextView getTime() {
 if (time==null) {
 time=(TextView)base.findViewById(R.id.time);
 }

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 return(time);
 }

 ImageView getIcon() {
 if (icon==null) {
 icon=(ImageView)base.findViewById(R.id.note);
 }

 return(icon);
 }

 void update(Cursor c) {
 getNumber().setText(c.getString(c.getColumnIndex(CallLog.Calls.NUMBER)));
 getTime().setText(FORMAT.format(c.getInt(c.getColumnIndex(CallLog.Calls.DATE
))));
 getDuration().setText(c.getString(c.getColumnIndex(CallLog.Calls.DURATION))
+" seconds");

 String note=c.getString(c.getColumnIndex(NOTE));

 if (note!=null && note.length()>0) {
 getIcon().setVisibility(View.VISIBLE);
 }
 else {
 getIcon().setVisibility(View.GONE);
 }
 }
}

Mostly, we are populating a row to go in a ListView based off of the call data
(e.g., duration). However, if there is a non-null note, we also display an icon
in the row, indicating that a note is available.

The JoinDemo activity itself is just a ListActivity, using the CallPlusAdapter
and the CallLog Cursor we saw in the previous section:

import android.app.ListActivity;
import android.content.ContentValues;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.provider.CallLog;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.CursorAdapter;
import android.widget.ImageView;

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

import android.widget.ListView;
import android.widget.TextView;
import java.text.SimpleDateFormat;

public class JoinDemo extends ListActivity {
 public static String NOTE="_NOTE";
 private static String NOTE_ID="NOTE_ID";
 private static String[] PROJECTION=new String[] { CallLog.Calls._ID,
 CallLog.Calls.NUMBER,
 CallLog.Calls.DATE,
 CallLog.Calls.DURATION
 };
 private static SimpleDateFormat FORMAT=new SimpleDateFormat("MM/d h:mm a");
 private Cursor cursor=null;
 private int noteColumn=-1;
 private int idColumn=-1;
 private int noteIdColumn=-1;
 private SQLiteDatabase db=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Cursor c=managedQuery(android.provider.CallLog.Calls.CONTENT_URI,
 PROJECTION, null, null,
 CallLog.Calls.DATE+" DESC");

 cursor=new JoinCursor(c, join);
 noteColumn=cursor.getColumnIndex(NOTE);
 idColumn=cursor.getColumnIndex(CallLog.Calls._ID);
 noteIdColumn=cursor.getColumnIndex(NOTE_ID);
 setListAdapter(new CallPlusAdapter(cursor));
 }

 @Override
 public void onResume() {
 super.onResume();

 cursor.requery();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (db!=null) {
 db.close();
 }
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 cursor.moveToPosition(position);

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

 String note=cursor.getString(noteColumn);

 if (note==null || note.length()==0) {
 Intent i=new Intent(this, NoteEditor.class);

 i.putExtra(NOTE, note);
 i.putExtra("call_id", cursor.getInt(idColumn));
 i.putExtra("note_id", cursor.getInt(noteIdColumn));
 startActivityForResult(i, 1);
 }
 else {
 Intent i=new Intent(this, NoteActivity.class);

 i.putExtra(NOTE, note);
 startActivity(i);
 }
 }

When the user clicks on a row, depending on whether there is a note, we
either spawn a NoteEditor (to create a new note) or a NoteActivity (to view
an existing note). In a real implementation of this functionality, of course,
we would allow users to edit existing notes, delete notes, and the like, all of
which is skipped in this simplified sample application.

Visually, the activity does not look like much, but you will see the note icon
on calls containing notes (with some phone numbers smudged for privacy):

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Databases and Content Providers

Figure 15. The JoinCursor sample application, showing one call with a note

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 10

Using System Services

Get Alarmed

Meeting the User's Preference

Get Set

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 11

Handling System Events

Get Moving, First Thing

I Sense a Connection Between Us...

Feeling Drained

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 12

Your Own (Advanced) Services

In The Busy Coder's Guide to Android Development, we covered how to
create and consume services. Now, we can get into some more interesting
facets of service implementations, notably remote services, so your service
can serve activities outside of your application.

Service From Afar

Remote services are nothing particularly special.

No, really.

Services, in general, expose some sort of API, perhaps through AIDL, to
consuming clients (activities, other services, etc.). A remote service just
means the service in question is running in some other process than the
consumer of that service.

AIDL is designed to marshal its parameters and transport them across
process boundaries, which is why there are so many quirky rules about what
you can and cannot pass as parameters to your AIDL-defined APIs. With
AIDL handling the cross-process smarts for you, implementing a remote
service is not significantly different than implementing a local service.

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

The trick – and, of course, there is always a trick – is in determining how to
connect to the remote service from the client.

Our sample applications – shown in the AdvServices/RemoteService and
AdvServices/RemoteClient sample projects – convert our Beanshell demo
from The Busy Coder's Guide to Android Development into a remote service.
If you actually wanted to use scripting in an Android application, with
scripts loaded off of the Internet, isolating their execution into a service
might not be a bad idea. In the service, those scripts are sandboxed, only
able to access files and APIs available to that service. The scripts cannot
access your own application's databases, for example. If the script-executing
service is kept tightly controlled, it minimizes the mischief a rogue script
could possibly do.

Service Names

To bind to a service's AIDL-defined API, you need to craft an Intent that can
identify the service in question. In the case of a local service, that Intent can
use the local approach of directly referencing the service class.

Obviously, that is not possible in a remote service case, where the service
class is not in the same process, and may not even be known by name to the
client.

When you define a service to be used by remote, you need to add an intent-
filter element to your service declaration in the manifest, indicating how
you want that service to be referred to by clients. The manifest for
RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.advservice"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name">
 <service android:name=".BshService">
 <intent-filter>
 <action android:name="com.commonsware.android.advservice.IScript" />
 </intent-filter>

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

 </service>
 </application>
</manifest>

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IScript. So long as the client uses this
name to identify the service, it can bind to that service's API.

In this case, the name is not an implementation, but the AIDL API, as you
will see below. In effect, this means that so long as some service exists on the
device that implements this API, the client will be able to bind to
something.

The Service

Beyond the manifest, the service implementation is not too unusual. There
is the AIDL interface, IScript:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

And there is the actual service class itself, BshService:

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script) {
 executeScriptImpl(script);
 }
 };
 private Interpreter i=new Interpreter();

 @Override

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

 public void onCreate() {
 super.onCreate();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 }

 private void executeScriptImpl(String script) {
 try {
 i.eval(script);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }
}

If you have seen the service and Beanshell samples in then this
implementation will seem familiar. The biggest thing to note is that the
service returns no result and handles any errors locally. Hence, the client
will not get any response back from the script – the script will just run. In a
real implementation, this would be silly, and we will work to rectify this
later in this chapter.

Also note that, in this implementation, the script is executed directly by the
service on the calling thread. One might think this is not a problem, since
the service is in its own process and, therefore, cannot possibly be using the
client's UI thread. However, AIDL IPC calls are synchronous, so the client
will still block waiting for the script to be executed. This too will be
corrected later in this chapter.

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

The Client

The client – BshServiceDemo out of AdvServices/RemoteClient – is a fairly
straight-forward mashup of the service and Beanshell clients, with two
twists:

package com.commonsware.android.advservice.client;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import com.commonsware.android.advservice.IScript;

public class BshServiceDemo extends Activity {
 private IScript service=null;
 private ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder binder) {
 service=IScript.Stub.asInterface(binder);
 }

 public void onServiceDisconnected(ComponentName className) {
 service=null;
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src);
 }
 catch (android.os.RemoteException e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
 });

 bindService(new Intent(IScript.class.getName()),
 svcConn, Context.BIND_AUTO_CREATE);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 unbindService(svcConn);
 }
}

One twist is that the client needs its own copy of IScript.aidl. After all, it is
a totally separate application, and therefore does not share source code with
the service. In a production environment, we might craft and distribute a
JAR file that contains the IScript classes, so both client and service can work
off the same definition (see the upcoming chapter on reusable
components). For now, we will just have a copy of the AIDL.

Then, the bindService() call uses a slightly different Intent, one that
references the name of the AIDL interface's class implementation. That
happens to be the name the service is registered under, and that is the glue
that allows the client to find the matching service.

If you compile both applications and upload them to the device, then start
up the client, you can enter in Beanshell code and have it be executed by the
service. Note, though, that you cannot perform UI operations (e.g., raise a
Toast) from the service. If you choose some script that is long-running, you
will see that the Go! button is blocked until the script is complete:

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

Figure 16. The BshServiceDemo application, running a long script

Servicing the Service

The preceding section outlined two flaws in the implementation of the
Beanshell remote service:

1. The client received no results from the script execution

2. The client blocked waiting for the script to complete

If we were not worried about the blocking-call issue, we could simply have
the executeScript() exported API return some sort of result (e.g., toString()
on the result of the Beanshell eval() call). However, that would not solve the
fact that calls to service APIs are synchronous even for remote services.

Another approach would be to pass some sort of callback object with
executeScript(), such that the server could run the script asynchronously
and invoke the callback on success or failure. This, though, implies that
there is some way to have the activity export an API to the service.

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (AdvServices/RemoteServiceEx and
AdvServices/RemoteClientEx).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces and
stub implementations. In the preceding example, we used AIDL to have the
service flesh out the stub implementation and have the client access the
service via the AIDL-defined interface. However, there is nothing magic
about services implementing and clients accessing – it is equally possible to
reverse matters and have the client implement something the service uses
via an interface.

So, for example, we could create an IScriptResult.aidl file:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScriptResult {
 void success(String result);
 void failure(String error);
}

Then, we can augment IScript itself, to pass an IScriptResult with
executeScript():

package com.commonsware.android.advservice;

import com.commonsware.android.advservice.IScriptResult;

// Declare the interface.
interface IScript {
 void executeScript(String script, IScriptResult cb);
}

Notice that we need to specifically import IScriptResult, just like we might
import some "regular" Java interface. And, as before, we need to make sure
the client and the server are working off of the same AIDL definitions, so
these two AIDL files need to be replicated across each project.

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

But other than that one little twist, this is all that is required, at the AIDL
level, to have the client pass a callback object to the service: define the AIDL
for the callback and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to
make use of this callback object.

Revising the Client

On the client, we need to implement an IScriptResult. On success(), we can
do something like raise a Toast; on failure(), we can perhaps show an
AlertDialog.

The catch is that we cannot be certain we are being called on the UI thread
in our callback object.

So, the safest way to do that is to make the callback object use something
like runOnUiThread() to ensure the results are displayed on the UI thread:

 builder
 .setTitle("Exception!")
 .setMessage(error)
 .setPositiveButton("OK", null)
 .show();
}

private final IScriptResult.Stub callback=new IScriptResult.Stub() {
 public void success(final String result) {
 runOnUiThread(new Runnable() {
 public void run() {
 successImpl(result);
 }
 });
 }

 public void failure(final String error) {

The work of actually showing the Toast or AlertDialog are delegated to
successImpl() and failureImpl() methods:

@Override
public void onDestroy() {

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

 super.onDestroy();

 unbindService(svcConn);
}

private void successImpl(String result) {
 Toast
 .makeText(BshServiceDemo.this, result, Toast.LENGTH_LONG)
 .show();
}

private void failureImpl(String error) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

And, of course, we need to update our call to executeScript() to pass the
callback object to the remote service:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src, callback);
 }
 catch (android.os.RemoteException e) {
 failureImpl(e.toString());
 }
 }
 });

 bindService(new Intent(IScript.class.getName()),
 svcConn, Context.BIND_AUTO_CREATE);
}

Revising the Service

The service also needs changing, to both execute the scripts asynchronously
and use the supplied callback object for the end results of the script's
execution.

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

As was demonstrated in the chapter on Camera, BshService from AdvServices/
RemoteServiceEx uses the LinkedBlockingQueue pattern to manage a
background thread. An ExecuteScriptJob wraps up the script and callback;
when the job is eventually processed, it uses the callback to supply the
results of the eval() (on success) or the message of the Exception (on
failure):

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import java.util.concurrent.LinkedBlockingQueue;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script, IScriptResult cb) {
 executeScriptImpl(script, cb);
 }
 };
 private Interpreter i=new Interpreter();
 private LinkedBlockingQueue<Job> q=new LinkedBlockingQueue<Job>();

 @Override
 public void onCreate() {
 super.onCreate();

 new Thread(qProcessor).start();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 q.add(new KillJob());
 }

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

 private void executeScriptImpl(String script,
 IScriptResult cb) {
 q.add(new ExecuteScriptJob(script, cb));
 }

 Runnable qProcessor=new Runnable() {
 public void run() {
 while (true) {
 try {
 Job j=q.take();

 if (j.stopThread()) {
 break;
 }
 else {
 j.process();
 }
 }
 catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 class Job {
 boolean stopThread() {
 return(false);
 }

 void process() {
 // no-op
 }
 }

 class KillJob extends Job {
 @Override
 boolean stopThread() {
 return(true);
 }
 }

 class ExecuteScriptJob extends Job {
 IScriptResult cb;
 String script;

 ExecuteScriptJob(String script, IScriptResult cb) {
 this.script=script;
 this.cb=cb;
 }

 void process() {
 try {
 cb.success(i.eval(script).toString());

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Your Own (Advanced) Services

 }
 catch (Throwable e) {
 Log.e("BshService", "Error executing script", e);

 try {
 cb.failure(e.getMessage());
 }
 catch (Throwable t) {
 Log.e("BshService",
 "Error returning exception to client",
 t);
 }
 }
 }
 }
}

Notice that the service's own API just needs the IScriptResult parameter,
which can be passed around and used like any other Java object. The fact
that it happens to cause calls to be made synchronously back to the remote
client is invisible to the service.

The net result is that the client can call the service and get its results
without tying up the client's UI thread.

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

PART IV – Advanced Development

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 13

Reusable Components

In the world of Java outside of Android, reusable components rule the roost.
Whether they are simple JARs, are tied in via inversion-of-control (IoC)
containers like Spring, or rely on enterprise service buses like Mule, reusable
Java components are a huge portion of the overall Java ecosystem. Even full-
fledged applications, like Eclipse or NetBeans, are frequently made up of a
number of inter-locking components, many of which are available for others
to use in their own applications.

In an ideal world, Android will evolve similarly, particularly given its reliance
upon the Java programming language. This begs the question: what are the
best ways to package code into a reusable component? Or, perhaps more
basic: what are the possibilities for making reusable components? In this
chapter, we will review two techniques introduced in BCG to Android –
Intents and services – plus describe how you can create a good old-
fashioned JAR containing Android-specific code.

Pick Up a JAR

A Java JAR is simplicity incarnate: a ZIP archive of classes compiled to
bytecode, plus an optional manifest or other resources. While the JAR as a
packaging method is imperfect – dealing with dependencies can be no fun –
it is still a very easy way to bundle Java logic into a discrete item that can be
uploaded, downloaded, installed, integrated, and used.

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

http://www.netbeans.org/
http://www.eclipse.org/
http://www.mulesource.org/
http://www.springframework.org/

Reusable Components

The challenge with Android, though, is that an Android application does
not use traditional JVM bytecodes, but rather bytecodes for the Dalvik VM.
There is a whole step in the build process that deals with converting JVM
bytecodes to Dalvik ones. At first glance, this might seem to make creating
an Android JAR more difficult. In reality, it is not significantly more
different than creating a JAR designed to plug into some other large
framework, such as an IoC container or a rich client engine like Eclipse RCP.

But first, it helps to understand how an Android application is built, before
we translate that process to build a JAR of Android code.

The Android Build Process

Roughly speaking, these are the steps that take a set of Java source files and
related resources and create an APK:

1. Run aapt to create R.java and related files, so you can access your
resources by identifier from within Java source code

2. Run aidl to create stubs and interfaces for any AIDL you have
created for use by your services

3. Run the javac compiler, for whatever version of Java you have
installed on your development machine, to create JVM bytecode for
your classes

4. Run dx to convert the JVM bytecode into Dalvik VM bytecode,
creating bin/classes.dex as output

5. Run aapt again, in a different mode, to package the resources and
assets

6. Run apkbuilder to bundle everything up into an APK file

You can see these steps in action by examining the Ant build.xml file for an
Android project, as generated by activitycreator or other sources.

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Reusable Components

Integrating JARs into Android

Let's suppose you have a JAR containing Java code, whether that code is
specifically for Android or not. As described in BCG for Android, all you
need to do is drop that JAR in the libs/ folder of your project (or import it
into your Eclipse project, etc.), and it will magically be available to your
code.

In terms of the build process, the javac step will add the JARs in libs/ to the
classpath, dx will convert the JARs' bytecodes and pour the results into the
overall classes.dex file for the application, and apkbuilder will package it all
up.

Conversely, the other steps in the build process largely ignore the existence
of JARs in libs/:

• The aapt command does not inspect JARs for resources, let alone
package any such resources

• The aidl command does not inspect JARs for any AIDL files that
require code generation

Putting Limits on the JAR

How the Android build process works with third-party JARs suggests some
limitations on how we construct a JAR specifically for use with Android:

• We cannot package any resources, such as layouts or images, inside
the JAR, at least not while expecting the Android build process to do
something with them automatically.

• We must generate our AIDL interfaces and stubs ourselves while
building our JAR. This should not come as a surprise, as we will need
those classes anyway as part of building our AIDL implementations
and test code that uses them.

The limit on resources does not mean we cannot put resources in our JARs,
but merely that we need to provide instructions to those using those JARs to

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Reusable Components

manually extract those resources and put them in their own projects' res/
directory trees. Of course, you could then package those resources
separately, rather than pile them all into a single JAR file.

Crafting an Android-Aware JAR

With all that in mind, here is how to create a Java project that builds a JAR
that uses Android and serves as a reusable component, but does not
represent an Android application:

1. Create a plain old ordinary Java project, not one created by
activitycreator or the equivalent Android operation in Eclipse. In
other words, initially, pretend that your project has nothing at all to
do with Android.

2. If you are using AIDL, arrange for your project's build process to run
the aidl command. For example, you might paste in the necessary
portions of an Android project's build.xml file into your own
project's build.xml file – just enough to run AIDL and generate your
interfaces and stubs. If you are not using AIDL, you can safely skip
this step.

3. Arrange to have android.jar from your Android SDK installation be
part of the bootclasspath during your javac compile step. As one
might expect, android.jar represents the public API of Android.
Including it in the compile step is what allows your code to reference
Android classes, constants, and whatnot. The reason for putting it in
bootclasspath is unclear, but that is how Android application
projects do it, so it is probably safest if you follow their lead.

And that is pretty much it. Everything else should be normal for building a
JAR for any Java project (e.g., running the jar command to package the
classes into the JAR itself). You do not need to worry about any of the other
steps in the typical Android build process.

[[TBD: example]]

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Reusable Components

An API with Intent

Sending Data in the Intent

Callbacks As Intents

Serving Your Fellow Bits

(mostly covered in to-be-written remote services chapter)

Pros, Cons, and Other Forms of Navel-Gazing

So, which approach should you take? Just a JAR? A BrodcastReceiver? A
service? Or maybe some hybrid of these approaches? Which of these will a
"reuser" (developer reusing your component) find best?

Well, that depends.

There are any number of criteria upon which you can judge those three core
techniques. Below, we examine a few such criteria, in hopes of illustrating

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Reusable Components

the benefits and the detriments of each approach, so you can apply the same
sort of analysis for the criteria that are important to you.

Richness of API

One criterion is the richness of the API. In other words, how "natural" is it
for somebody to reuse your reusable component? Does it feel like it is simply
part of the Android API or other Java development? Or does the architecture
of the potential component system leave reusers feeling constrained?

For fine-grained interactions, the JAR is tough to beat. You can publish
whole class libraries this way, without being limited to certain data types or
having to jump through hoops for each method you want to expose. Your
component is just another set of Java classes a reuser can code against.

The service model does let you expose a Java API, but connecting to the
service via AIDL is asynchronous, meaning the API might not yet be ready
for use when you want to use it. The Intent "extras" API actually allows a
somewhat richer set of data to be passed along with the request, but it is
somewhat more awkward if you need to get responses back.

You might also consider some form of hybrid, putting your own rich Java
API wrapper around the service AIDL or Intent-based IPC scheme. This
gives your reusers the best of both words

Code Duplication

With space at a premium on some devices, minimizing code duplication
may be worth considering. An ordinary JAR, used by several applications,
must be bundled with each of those applications – there is no shared
classpath for common JARs. As a result, one JAR can wind up consuming
several times its "natural" size in actual footprint, if several copies are baked
into several applications.

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Reusable Components

Conversely, a service – whether accessed via AIDL or by a set of Intents – can
support several applications while only being installed once.

Ease of Initial Deployment

Unfortunately, Android's packaging mechanism runs a bit counter to the
benefits of a single service described in the previous section.

Applications are installed on a per-APK basis. There is no "package
manager" in the sense you see in Linux, or a .msi file like you might see on
Windows, that let's you bundle up several components to be installed at
once.

A remote service intended for use among several applications must be
packaged and deployed as its own application. End users have to know that
they need to not only install the main application but also install any
support services that are not already installed. This can cause a fair amount
of confusion, because end users are used to installing and running
applications, not installing applications and ignoring them (since they are
not meant for direct use). Also, end users are used to installing applications
and having an associated icon appear in their launcher, yet there may not be
a point for a remote service to offer any sort of UI, let alone appear in the
launcher.

Until this issue is rectified in one form or fashion, it will generally be simpler
to deploy a JAR baked into the application reusing it, whether that JAR
exposes a class library or a local service.

Intended Form of Integration

Most of the time, reusable components are meant to be specifically reused
by other developers, who code to an API, whether that API is expressed as a
Java class or an IPC method or an Intent to be raised.

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Reusable Components

However, Android does offer an introspection engine, allowing one activity
to find other activities that can perform useful operations upon a piece of
content. For example, you might create a PDF file viewer, since none are
built into Android; Android email clients might then be able to use an
Intent to trigger your activity to view a PDF attachment. To make this work,
though, you need to implement an Intent receiver, either as an activity or as
a BroadcastReceiver, so you can provide your functionality to other
applications this way. The benefit is that you can add value to existing
applications without those applications specifically integrating your code.

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 14

Testing Your Code

Testing Your Instrument

Something Incompletely Different

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

CHAPTER 15

Production Applications

Making Your Mark

(code signing)

To Market, To Market

Wide Distribution

Click Here To Download

Let Your Fingers Do the Distributing

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Production Applications

Late-Breaking Updates

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

Class...

AccelerateDecelerateInterpolator....................53

AccelerateInterpolator......................................53

Activity...82

Adapter..16-18, 21, 22, 105

AdapterView.OnItemSelectedListener............30

AlertDialog...133

AlphaAnimation...............................45, 50-52, 55

Animation..45, 46, 52-54

AnimationListener..52

AnimationSet...45, 54, 55

AnimationUtils..52

BaseColumns...108

BitmapDrawable...78

BroadcastReceiver..148

BrodcastReceiver..145

BshService..127, 135

BshServiceDemo..129

Button..25, 39, 40, 43

CallLog...107, 109, 110, 117

CallLog.Calls...107, 108

CallPlusAdapter..115, 117

Camera...71-76, 135

Camera.Parameters.....................................73, 74

Camera.PictureCallback...................................75

Camera.ShutterCallback...................................75

ConstantsInstaller...100

Contacts..101, 102, 107

Contacts.ContactMethodsColumns...............107

Contacts.PeopleColumns.........................106, 107

Contacts.Phones..106

Contacts.PhonesColumns...............................106

ContactsDemo..102, 105

ContentProvider..109

ContentValues..114

Context..52, 82, 88

Cursor.......................................17, 108-110, 114, 117

CursorAdapter..115

CursorJoiner...109

CursorWrapper...109, 110

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

CycleInterpolator..52, 54

DatabaseInstaller..98-101

DecelerateInterpolator......................................53

Drawable..26, 35, 36

DrawerLayout..................................48, 50, 52, 54

Exception..135

ExecuteScriptJob..135

GeoWebOne..2

GradientDemo...36

HeaderFooterDemo..24

I_JoinHandler...114

ImageButton....................................47, 48, 53, 55

InputStream...100

Intent.....................................xii, 130, 141, 146-148

Interpolator..53, 54

IScript...127, 130, 132

IScriptResult.......................................132, 133, 137

Job..76

JoinCache..114

JoinCursor.....................................109, 110, 114, 115

JoinDemo......................................108, 114, 115, 117

KillJob..77

LinearInterpolator...53

LinearLayout...24, 47, 48

LinkedBlockingQueue...............................76, 135

LinkedHashMap...114

List..21

ListActivity................................18, 22, 28, 102, 117

ListView. 15-18, 22, 24, 26-28, 30, 36, 38, 102, 103,
117

Locater...4

LocationListener...4, 8

LocationManager..4

Media/Audio...59

MediaPlayer.....................................58, 59, 62, 63

Menu..52

NinePatchDemo..43

NoteActivity..119

NoteEditor..119

PictureDemo..75, 76, 78

PreviewDemo...70, 71

RemoteService...126

RotateAnimation...45, 52

Runnable..77

SavePhotoJob...77

ScaleAnimation...45

ScrollView...86

Section..21

SectionAdapter..21

SectionedAdapter...................................18, 21, 22

SectionedDemo..18, 22

SeekBar..43

SelectorAdapter...30

SelectorDemo..28, 30

SelectorWrapper...30

SensorListener...83, 85

SensorManager...82, 88

Shaker...87-89

Shaker.Callback...89

ShakerDemo..87, 89

SimpleCursorAdapter.....................17, 18, 105-107

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

Spinner...102, 103, 105

SQLiteDatabase...99, 100

SQLiteOpenHelper...............................95, 98, 99

SurfaceHolder...71, 72

SurfaceHolder.Callback...............................72, 73

SurfaceView..71, 72

TextSwitcher..46

TextView...............................26, 27, 30, 83, 86, 87

Thread..77

Toast...130, 133

TranslateAnimation..............45-48, 50, 51, 53, 55

TranslationAnimation.......................................52

Uri..57, 58

VideoDemo...64

VideoView...63, 64

View...........16-18, 21, 22, 24, 25, 27, 30, 46, 48, 52

ViewAnimator...46

ViewFlipper...46

ViewWrapper..115

WebSettings...1

WebView...1, 2, 4, 7, 9, 10

WebViewClient..1

Command......................................

aapt..142, 143

activitycreator.....................................98, 142, 144

adb push..65

aidl...142-144

apkbuilder...142, 143

draw9patch..41, 44

dx...142, 143

jar..144

javac...142-144

mksdcard...65

ruby..97

sqlite3...95, 97, 100

Method...

addFooterView()...24

addHeaderView()..24

addJavascriptInterface().............................2, 4, 6

addSection()...21

areAllItemsSelectable().....................................16

bindService()..130

buildFooter()...26

buildHeader()..25

create()...62

delete()...93

eval()...131, 135

execSQL()..100, 101

executeScript()....................................131, 132, 134

failure()...133

failureImpl()...133

getColumnCount()...114

getColumnIndex()..114

getCount()..21

getHolder()..72

getInt()..114

getItem()...21

getItemViewType()..22

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

getJoin()..114, 115

getSystemService()..82

getView()...18, 21

getViewTypeCount()....................................21, 22

handleInstallError()...99

insert()...93

isEnabled()...16

isNull()..114

loadAnimation()..52

loadUrl()..7, 9

onAccuracyChanged()......................................83

onAnimationEnd()..52

onCreate()......................................62, 72, 99, 100

onDestroy()..77, 83

onItemSelected()...30

onKeyDown()..75

onLocationChanged()...8

onNothingSelected()...30

onPictureTaken()..75

onSensorChanged()..83

onUpgrade()..99

open()...71

pause()...59, 62

play()..62

prepare()..58, 59, 62

prepareAsync()..58, 59

query()...93

registerListener()...83

release()..63, 73

requery()...114, 115

runOnUiThread()...133

setAnimationListener()....................................52

setDataSource()...58

setDuration()...50

setInterpolator()...54

setOnItemSelectedListener()...........................28

setPictureFormat()..74

setPreviewDisplay()..72

setType()..72

setup()..62, 63

setVisibility()...47, 52

shakingStarted()...89

shakingStopped()...89

start()...59

startAnimation()...46, 50

startPreview()..73

steerLeft()..86

steerRight()...86

stop()..59, 62, 63

stopPreview()...73

success()..133

successImpl()..133

surfaceChanged()..73

surfaceCreated()..72

surfaceDestroyed()..73

takePicture()..75

toString()...131

unregisterListener()..83

update()...93

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

Keyword Index

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition

	The Busy Coder's Guide to Advanced Android Development

	Welcome to the Book!
	Prerequisites
	Warescription
	Book Bug Bounty
	Source Code License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Lifecycle of a CommonsWare Book
	WebView, Inside and Out
	Friends with Benefits
	Turnabout is Fair Play
	Gearing Up
	Back To The Future

	Crafting Your Own Views
	Providing Attribution
	Tailor Your Buttons
	The Department of State
	Spin It Your Way

	More Fun With ListViews
	Giant Economy-Size Dividers
	Choosing What Is Selectable
	Composition for Sections

	From Head To Toe
	Control Your Selection
	Create a Unified Row View
	Configure the List, Get Control on Selection
	Change the Row

	Creating Drawables
	Traversing Along a Gradient
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretchable Zones
	Tooling
	Using Nine-Patch Images

	Animating Widgets
	It's Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Drawer
	The Aftermath
	Introducing DrawerLayout
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It's All Said And Done
	Hit The Accelerator
	Animate. Set. Match.
	A Chest of Drawers

	Playing Media
	Get Your Media On
	Making Noise
	Moving Pictures

	Using the Camera
	Sneaking a Peek
	The Permission
	The SurfaceView
	The Camera

	Image Is Everything
	Asking for a Format
	Connecting the Camera Button
	Taking a Picture
	The Job Queue Pattern
	Saving the Picture

	Sensors
	The Sixth Sense. Or Possibly the Seventh.
	Orienting Yourself
	Steering Your Phone
	Do "The Shake"

	Databases and Content Providers
	Distributed Data
	SQLite: On-Device, On-Desktop
	Exporting a Database
	The Ruby Script
	The Ant Script

	Loading the Exported Database

	Examining Your Relationships
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Accessing People
	Accessing Phone Numbers
	Accessing Email Addresses

	Rummaging Through Your Phone Records
	Come Together, Right Now
	CursorWrapper
	Implementing a JoinCursor
	Using a JoinCursor

	Using System Services
	Get Alarmed
	Meeting the User's Preference
	Get Set

	Handling System Events
	Get Moving, First Thing
	I Sense a Connection Between Us...
	Feeling Drained

	Your Own (Advanced) Services
	Service From Afar
	Service Names
	The Service
	The Client

	Servicing the Service
	Callbacks via AIDL
	Revising the Client
	Revising the Service

	Reusable Components
	Pick Up a JAR
	The Android Build Process
	Integrating JARs into Android
	Putting Limits on the JAR
	Crafting an Android-Aware JAR

	An API with Intent
	Sending Data in the Intent
	Callbacks As Intents

	Serving Your Fellow Bits
	Pros, Cons, and Other Forms of Navel-Gazing
	Richness of API
	Code Duplication
	Ease of Initial Deployment
	Intended Form of Integration

	Testing Your Code
	Testing Your Instrument
	Something Incompletely Different

	Production Applications
	Making Your Mark
	To Market, To Market
	Wide Distribution
	Click Here To Download
	Let Your Fingers Do the Distributing
	Late-Breaking Updates

