
AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

• ListView, which is your typical “list box”
• Spinner, which (more or less) is a drop-down list
• GridView, offering a two-dimensional roster of choices
• ExpandableListView, a limited “tree” widget, supporting two levels in the

hierarchy
• Gallery, a horizontal-scrolling list, principally used for image thumbnails

and many more.

Eclipse users will find these mostly in the “Composite” portion of the Graphical
Layout editor palette, though Spinner is in the “Form Widgets” section and Gallery
is in “Images & Media”.

These all have a common superclass: AdapterView, so named because they partner
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.

Adapting to the Circumstances
In the abstract, adapters provide a common interface to multiple disparate APIs.
More specifically, in Android’s case, adapters provide a common interface to the data
model behind a selection-style widget, such as a listbox. This use of Java interfaces is

153

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



fairly common (e.g., Java/Swing’s model adapters for JTable), and Java is far from
the only environment offering this sort of abstraction (e.g., Flex’s XML data-binding
framework accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection
widget plus converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality it is not that different from other GUI toolkits’ ways
of overriding default display behavior. For example, in Java/Swing, if you want a
JList-backed listbox to actually be a checklist (where individual rows are a
checkbox plus label, and clicks adjust the state of the checkbox), you inevitably wind
up calling setCellRenderer() to supply your own ListCellRenderer, which in turn
converts strings for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)
2. The resource ID of a view to use (such as a built-in system resource ID, as

shown above)
3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.

ADAPTERVIEWS AND ADAPTERS

154

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Lists of Naughty and Nice
The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter() to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

</LinearLayout></LinearLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

packagepackage com.commonsware.android.list;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;

ADAPTERVIEWS AND ADAPTERS

155

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List


publicpublic classclass ListViewDemoListViewDemo extendsextends ListActivity {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

selection=(TextView)findViewById(R.id.selection);
}

@Override
publicpublic void onListItemClick(ListView parent, View v, int position,

long id) {
selection.setText(items[position]);

}
}

With ListActivity, you can set the list adapter via setListAdapter() — in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

ADAPTERVIEWS AND ADAPTERS

156

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 84: The ListViewDemo sample application

The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like. The
value used in the preceding example provides the standard Android list row: big
font, lots of padding, white text.

Clicks versus Selections
One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, Google TV devices are not touchscreens at present. And

ADAPTERVIEWS AND ADAPTERS

157

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based off of the “spinner”
paradigm — including Spinner and Gallery — treat everything as selection events.
Other widgets — like ListView and GridView — treat selection events and click
events differently. For these widgets, selection events are driven by the pointing
device, such as using arrow keys to move a highlight bar up and down a list. Click
events are when the user either “clicks” the pointing device (e.g., presses the center
D-pad button) or taps on something in the widget using the touchscreen.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s selection, or possibly multiple selections.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the
value. You can get your ListView from a ListActivity via getListView(). You can
also declare this via the android:choiceMode attribute in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>/>

ADAPTERVIEWS AND ADAPTERS

158

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist


It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple_list_item_multiple_choice as the row layout:

packagepackage com.commonsware.android.checklist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass ChecklistDemoChecklistDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_multiple_choice,
items));

}
}

What the user sees is the list of words with checkboxes down the right edge:

ADAPTERVIEWS AND ADAPTERS

159

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 85: Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire UI at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.

ADAPTERVIEWS AND ADAPTERS

160

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the
D-pad pops up a selection dialog for the user to choose an item from. You basically
get the ability to select from a list without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you
need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource() method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>

<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>/>
</LinearLayout></LinearLayout>

This is the same view as shown in a previous section, just with a Spinner instead of a
ListView. The Spinner property android:drawSelectorOnTop controls whether the
arrows are drawn on the selector button on the right side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

publicpublic classclass SpinnerDemoSpinnerDemo extendsextends Activity
implementsimplements AdapterView.OnItemSelectedListener {

ADAPTERVIEWS AND ADAPTERS

161

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner


privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);
}

@Override
publicpublic void onItemSelected(AdapterView<?> parent,

View v, int position, long id) {
selection.setText(items[position]);

}

@Override
publicpublic void onNothingSelected(AdapterView<?> parent) {

selection.setText("");
}

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

ADAPTERVIEWS AND ADAPTERS

162

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 86: The SpinnerDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

163

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 87: The same application, with the spinner drop-down list displayed

Grid Your Lions (Or Something Like That…)
As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how many pixels wide each column should
be.

ADAPTERVIEWS AND ADAPTERS

164

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the GridView works much like any other selection widget — use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>

<GridView<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>/>

</LinearLayout></LinearLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

ADAPTERVIEWS AND ADAPTERS

165

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid


packagepackage com.commonsware.android.grid;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.GridViewandroid.widget.GridView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass GridDemoGridDemo extendsextends Activity
implementsimplements AdapterView.OnItemClickListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(newnew ArrayAdapter<String>(thisthis,

R.layout.cell,
items));

g.setOnItemClickListener(thisthis);
}

@Override
publicpublic void onItemClick(AdapterView<?> parent, View v,

int position, long id) {
selection.setText(items[position]);

}
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>/>

ADAPTERVIEWS AND ADAPTERS

166

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

Figure 88: The GridDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

167

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 89: The same application, scrolled to the bottom of the grid

GridView, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out
an entry (e.g., something not in the list) or choose an entry from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.

ADAPTERVIEWS AND ADAPTERS

168

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



In addition, AutoCompleteTextView has a android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter(). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>

<AutoCompleteTextView<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>/>

</LinearLayout></LinearLayout>

The corresponding Java code is:

packagepackage com.commonsware.android.auto;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.AutoCompleteTextViewandroid.widget.AutoCompleteTextView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass AutoCompleteDemoAutoCompleteDemo extendsextends Activity
implementsimplements TextWatcher {
privateprivate TextView selection;
privateprivate AutoCompleteTextView edit;

ADAPTERVIEWS AND ADAPTERS

169

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete


privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(thisthis);

edit.setAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_dropdown_item_1line,
items));

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
selection.setText(edit.getText());

}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start,

int count, int after) {
// needed for interface, but not used

}

@Override
publicpublic void afterTextChanged(Editable s) {

// needed for interface, but not used
}

}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the former, and we update the selection label to match the
AutoCompleteTextView’s current contents.

Here we have the results:

ADAPTERVIEWS AND ADAPTERS

170

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 90: The AutoCompleteDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

171

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 91: The same application, after a few matching letters were entered, showing
the auto-complete drop-down

ADAPTERVIEWS AND ADAPTERS

172

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 92: The same application, after the auto-complete value was selected

Galleries, Give Or Take The Art
The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a
horizontally-laid-out listbox. One choice follows the next across the horizontal
plane, with the currently-selected item highlighted. On an Android device, one
rotates through the options through the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough). Compared
to the Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview — given a
collection of photos or icons, the Gallery lets people preview the pictures in the
process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout,
you have a few properties at your disposal:

ADAPTERVIEWS AND ADAPTERS

173

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



1. android:spacing controls the number of pixels between entries in the list
2. android:spinnerSelector controls what is used to indicate a selection – this

can either be a reference to a Drawable (see the resources chapter) or an RGB
value in #AARRGGBB or similar notation

3. android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected child – if
you choose true, be sure that your selector has sufficient transparency to
show the child through the selector, otherwise users will not be able to read
the selection

Note that the Gallery widget is now marked as deprecated, meaning that ideally
you use something else. One likely candidate — ViewPager — will be covered in an
upcoming chapter.

Customizing the Adapter
The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.

ADAPTERVIEWS AND ADAPTERS

174

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView and use the same
list of 25 nonsense words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the nonsense word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"

ADAPTERVIEWS AND ADAPTERS

175

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic


android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of nonsense words. The real fun comes when we override
getView():

packagepackage com.commonsware.android.fancylists.three;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass DynamicDemoDynamicDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",

ADAPTERVIEWS AND ADAPTERS

176

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setListAdapter(newnew IconicAdapter());

}

classclass IconicAdapterIconicAdapter extendsextends ArrayAdapter<String> {
IconicAdapter() {

supersuper(DynamicDemo.this, R.layout.row, R.id.label, items);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

ifif (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

}
}

Our getView() implementation does three things:

• It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

• It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

• It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

ADAPTERVIEWS AND ADAPTERS

177

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Note that we call findViewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findViewById()findViewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findViewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

Figure 93: The DynamicDemo application

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findViewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets

ADAPTERVIEWS AND ADAPTERS

178

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



anywhere in the tree of children of the row’s root View, this could take a fair number
of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to associate
an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching
that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

packagepackage com.commonsware.android.fancylists.five;

importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

classclass ViewHolderViewHolder {
ImageView icon=nullnull;
TextView size=nullnull;

ViewHolder(View row) {
thisthis.icon=(ImageView)row.findViewById(R.id.icon);
thisthis.size=(TextView)row.findViewById(R.id.size);

}
}

ViewHolder holds onto the child widgets, initialized via findViewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project… such as a ViewHolderDemo activity. In this case,
we are only holding onto one widget — the icon – since we will let ArrayAdapter
handle our label for us. In our case, we are holding onto the TextView and
ImageView widgets that we want to populate in getView().

ADAPTERVIEWS AND ADAPTERS

179

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder


Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder==nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);

}

ifif (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
elseelse {

holder.icon.setImageResource(R.drawable.ok);
}

holder.size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled – a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by
ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their corresponding
ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic. Whereas
recycling can give you a 150% performance improvement, adding in a holder
increases the improvement to 175%. Hence, while you may wish to implement
recycling up front when you create your adapter, adding in a holder might be
something you deal with later, when you are working specifically on performance
tuning.

ADAPTERVIEWS AND ADAPTERS

180

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

Figure 94: Sound Settings Screen

It may not look like it, but that is a ListView. However, not all the rows look the
same:

• Some have one line of text (e.g., “Volumes”)
• Some have two lines of text (e.g., “Silent mode” plus “Off”)
• Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)
• Some are headings with totally different text formatting (e.g., “RINGTONE &

NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource – after

ADAPTERVIEWS AND ADAPTERS

181

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



all, we only teach ArrayAdapter how to use one. We will examine how to handle this
scenario in a later chapter.

ADAPTERVIEWS AND ADAPTERS

182

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License


	Table of Contents
	Preface
	Welcome to the Book!
	The Book’s Structure
	The Trails
	Advanced UI
	Home Screen Effects
	Media
	Data Storage and Retrieval
	Security
	Hardware and System Services
	Integration and Introspection
	Scripting Languages
	Unusual Hardware
	Testing
	Tools
	Production
	Tuning Android Applications
	Alternatives for App Development
	Widget Catalog

	Warescription
	Getting Help
	Book Bug Bounty
	Source Code And Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Key Android Concepts
	Android Applications
	Programming Language
	Components
	Activities
	Services
	Content Providers
	Broadcast Receivers
	Widgets, Containers, Resources, and Fragments
	Apps and Packages

	Android Devices
	Types
	The Emulator
	OS Versions and API Levels
	Dalvik
	Processes and Threads

	Don’t Be Scared

	Choosing Your IDE
	Eclipse
	What the ADT Gives You
	MOTODEV Studio for Android

	Alternative IDEs
	IDEs… And This Book
	About App Inventor

	Tutorial #1 - Installing the Tools
	Step #1 - Checking Your Hardware Requirements
	Step #2 - Setting Up Java
	Install the JDK

	Step #3 - Install the Android SDK
	Install the Base Tools
	Install the SDKs and Add-Ons

	Step #4 - Install the ADT for Eclipse
	Step #5 - Install Apache Ant
	Step #6 - Set Up the Emulator
	Step #7 - Set Up the Device
	Windows
	Windows Update
	Standard Android Driver
	Manufacturer-Supplied Driver

	OS X and Linux

	In Our Next Episode…

	Tutorial #2 - Creating a Stub Project
	About Our Tutorial Project
	About the Rest of the Tutorials
	About the Eclipse Instructions
	Step #1: Creating the Project
	Eclipse
	Command Line

	Step #2: Running the Project
	Eclipse
	Command Line

	In Our Next Episode…

	Contents of Android Projects
	Root Contents
	The Sweat Off Your Brow
	Resources
	What You Get Out Of It

	Inside the Manifest
	In The Beginning, There Was the Root, And It Was Good
	An Application For Your Application
	Specifying Versions
	Supporting Multiple Screens
	Other Stuff

	Tutorial #3 - Changing Our Manifest
	Step #1: Supporting Screens
	Eclipse
	Outside of Eclipse

	In Our Next Episode…

	Some Words About Resources
	String Theory
	Plain Strings
	Styled Text
	The Directory Name

	Got the Picture?
	Dimensions
	The Resource That Shall Not Be Named… Yet

	Tutorial #4 - Adjusting Our Resources
	Step #1: Changing the Name
	Eclipse
	Outside of Eclipse

	Step #2: Changing the Icon
	In Our Next Episode…

	The Android User Interface
	The Activity
	Dissecting the Activity
	Using XML-Based Layouts
	What Is an XML-Based Layout?
	XML Layouts and Eclipse
	Why Use XML-Based Layouts?
	Using Layouts from Java


	Basic Widgets
	Common Concepts
	Widgets and Attributes
	Referencing Widgets By ID
	Size

	Assigning Labels
	Eclipse Graphical Layout Editor
	Editing the Text
	Editing the ID

	Notable TextView Attributes

	A Commanding Button
	Eclipse Graphical Layout Editor
	Tracking Button Clicks

	Fleeting Images
	Eclipse Graphical Layout Editor

	Fields of Green. Or Other Colors.
	Eclipse Graphical Layout Editor
	Notable EditText Attributes

	More Common Concepts
	Padding
	Margins

	Colors
	Other Useful Attributes
	Useful Methods


	Debugging Crashes
	Get Thee To a Stack Trace
	The Case of the Confounding Class Cast
	Point Break

	LinearLayout and the Box Model
	Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity

	Eclipse Graphical Layout Editor

	Other Common Widgets and Containers
	Just a Box to Check
	Eclipse Graphical Layout Editor

	Don’t Like Checkboxes? How About Toggles?
	Eclipse Graphical Layout Editor

	Turn the Radio Up
	Eclipse Graphical Layout Editor

	All Things Are Relative
	Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	Example
	Overlap
	Eclipse Graphical Layout Editor

	Tabula Rasa
	Concepts and Properties
	Putting Cells in Rows
	Non-Row Children of TableLayout
	Stretch, Shrink, and Collapse

	Example
	Eclipse Graphical Layout Editor

	Scrollwork
	Eclipse Graphical Layout Editor

	Making Progress with ProgressBars

	Tutorial #5 - Making Progress
	Step #1: Removing The “Hello, World”
	Eclipse
	Outside of Eclipse

	Step #2: Adding a ProgressBar
	Eclipse
	Outside of Eclipse

	Step #3: Seeing the Results
	In Our Next Episode…

	GUI Building, Continued
	Making Your Selection
	Including Includes
	Wrap It Up (In a Container)
	Morphing Widgets
	Preview of Coming Attractions

	AdapterViews and Adapters
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Clicks versus Selections
	Selection Modes
	Clicks versus Selections, Revisited

	Spin Control
	Grid Your Lions (Or Something Like That…)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art
	Customizing the Adapter
	The Single Layout Pattern
	Step #0: Get Things Set Up Simply
	Step #1: Design Your Row
	Step #2: Extend ArrayAdapter
	Step #3: Override the Constructor and getView()

	Optimizing with the ViewHolder Pattern
	Dealing with Multiple Row Layouts


	The WebView Widget
	Role of WebView
	WebView and WebKit
	Adding the Widget
	Loading Content Via a URL
	Supporting JavaScript
	Alternatives for Loading Content
	Listening for Events
	Getting Funky

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	Where to Apply a Style
	The Available Attributes
	Inheriting a Style
	The Possible Values

	Themes: Would a Style By Any Other Name…

	JARs and Library Projects
	The Dalvik VM
	The Easy Part
	The Outer Limits
	OK, So What is a Library Project?
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects
	The Android Support Package
	What’s In There?
	About the Names
	Getting It
	Attaching It To Your Project

	JAR Dependency Management

	Tutorial #6 - Adding a Library
	Step #1: Downloading and Unpacking ActionBarSherlock
	Step #2: Adding the Library to Your Project
	Eclipse
	Outside of Eclipse

	In Our Next Episode…

	Options Menus and the Action Bar
	Terminology
	A Wee Spot O’ History
	Your Action Bar Options
	Pure Native
	ActionBarSherlock
	Installation
	Base Activity Class
	Theme

	What We Will Be Doing

	Setting the Target
	Minding Narrow
	Defining the Resource
	Pondering Our Icons
	Action Layouts

	Applying the Resource
	Responding to Events
	Attaching to Action Layouts
	The Rest of the Sample Activity
	And More to Come

	Tutorial #7 - Adding the Action Bar
	Step #1: Setting Up the Target SDK Version
	Eclipse
	Outside of Eclipse

	Step #2: Setting the Theme and Splitting the Bar
	Eclipse
	Outside of Eclipse

	Step #3: Changing to SherlockFragmentActivity
	Step #4: Defining Some Options
	Eclipse
	Outside of Eclipse

	Step #5: Loading and Responding to Our Options
	In Our Next Episode…

	Android’s Process Model
	When Processes Are Created
	BACK, HOME, and Your Process
	Termination
	Foreground Means “I Love You”
	You and Your Heap

	Activities and Their Lifecycles
	Creating Your Second (and Third and…) Activity
	Defining the Class and Resources
	Augmenting the Manifest

	Warning! Contains Explicit Intents!
	Using Implicit Intents
	Extra! Extra!
	Asynchronicity and Results
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()
	Stick to the Pairs

	When Activities Die
	Walking Through the Lifecycle
	Recycling Activities

	Tutorial #8 - Setting Up An Activity
	Step #1: Creating the Stub Activity Class
	Eclipse
	Outside of Eclipse

	Step #2: Adding the Activity to the Manifest
	Eclipse
	Outside of Eclipse

	Step #3: Launching Our Activity
	In Our Next Episode…

	The Tactics of Fragments
	The Six Questions
	What?
	Where??
	Who?!?
	When?!!?
	WHY?!?!?
	OMGOMGOMG, HOW?!?!??

	Your First Fragment
	The Project
	The Fragment Layout
	The Fragment Class
	The Activity Layout
	The Activity Class
	The Result

	The Fragment Lifecycle Methods
	Your First Dynamic Fragment
	The ListFragment Class
	The Activity Class
	The Result

	Fragments and the Action Bar
	Fragments Within Fragments: Just Say No
	Fragments and Multiple Activities

	Tutorial #9 - Starting Our Fragments
	Step #1: Copy In WebViewFragment
	Eclipse
	Outside of Eclipse

	Step #2: Examining WebViewFragment
	Step #3: Creating AbstractContentFragment
	Eclipse
	Outside of Eclipse

	Step #4: Examining AbstractContentFragment
	In Our Next Episode…

	Swiping with ViewPager
	Swiping Design Patterns
	Paging Fragments
	The Prerequisites
	The Activity Layout
	The Activity
	The PagerAdapter
	The Fragment
	The Result

	Paging Other Stuff
	Indicators
	PagerTitleStrip
	Third-Party Indicators
	Tabs


	Tutorial #10 - Rigging Up a ViewPager
	Step #1: Add a ViewPager to the Layout
	Step #2: Obtaining Our ViewPager
	Step #3: Creating a ContentsAdapter
	Eclipse
	Outside of Eclipse

	Step #4: Setting Up the ViewPager
	In Our Next Episode…

	Resource Sets and Configurations
	What’s a Configuration? And How Do They Change?
	Configurations and Resource Sets
	Coping with Complexity
	Default Change Behavior
	Destroy and Recreate the Activity
	Rebuild the Fragments
	Recreate the Views
	Retain Some Widget State

	Your Options for Configuration Changes
	Do Nothing
	Retain Your Fragments
	Model Fragment

	Add to the Bundle
	Retain Other Objects
	DIY

	Blocking Rotations

	Dealing with Threads
	The Main Application Thread
	Getting to the Background
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Quick Note About Toasts
	A Sample Task
	The Fragment and its AsyncTask
	The Activity and the Results

	Threads and Configuration Changes
	Where Not to Use AsyncTask
	About the AsyncTask Thread Pool
	Threads and Configuration Changes Sans Fragments

	Alternatives to AsyncTask
	And Now, The Caveats

	Requesting Permissions
	Mother, May I?
	New Permissions in Old Applications
	Permissions: Up Front Or Not At All
	Signature Permissions
	Requiring Permissions

	Assets, Files, and Data Parsing
	Packaging Files with Your App
	Raw Resources
	XML Resources
	Assets

	Files and Android
	Internal vs. External
	Standard vs. Cache
	Yours vs. Somebody Else’s

	Working with Internal Storage
	Working with External Storage
	Where to Write
	When to Write
	Letting the User See Your Files

	Linux Filesystems: You Sync, You Win
	StrictMode: Avoiding Janky Code
	XML Parsing Options
	JSON Parsing Options

	Tutorial #11 - Adding Simple Content
	Step #1: Adding Some Content
	Step #2: Create a SimpleContentFragment
	Eclipse
	Outside of Eclipse

	Step #3: Examining SimpleContentFragment
	Step #4: Using SimpleContentFragment
	Step #5: Launching Our Activities, For Real This Time
	In Our Next Episode…

	Tutorial #12 - Displaying the Book
	Step #1: Adding a Book
	Step #2: Defining Our Model
	Eclipse
	Outside of Eclipse

	Step #3: Examining Our Model
	Step #4: Creating a ModelFragment
	Eclipse
	Outside of Eclipse

	Step #5: Examining the ModelFragment
	Step #6: Supplying the Content
	Step #7: Adapting the Content
	Step #8: Going Home, Again
	In Our Next Episode…

	Using Preferences
	Getting What You Want
	Stating Your Preference
	Introducing PreferenceActivity
	What We Are Aiming For
	Defining Your Preferences
	Defining Your Preference Headers
	Creating Your PreferenceFragments
	Creating Your PreferenceActivity

	Types of Preferences
	CheckBoxPreference and SwitchPreference
	EditTextPreference
	RingtonePreference
	ListPreference and MultiSelectListPreference

	Intents for Headers or Preferences

	Tutorial #13 - Using Some Preferences
	Step #1: Adding a StockPreferenceFragment
	Eclipse
	Outside of Eclipse

	Step #2: Defining the Preference XML Files
	Eclipse
	Outside of Eclipse

	Step #3: Creating Our PreferenceActivity
	Eclipse
	Outside of Eclipse

	Step #4: Adding To Our Action Bar
	Eclipse
	Outside of Eclipse

	Step #5: Launching the PreferenceActivity
	Step #6: Loading Our Preferences
	Step #7: Saving the Last-Read Position
	Step #8: Restoring the Last-Read Position
	Step #9: Keeping the Screen On
	In Our Next Episode…

	SQLite Databases
	Introducting SQLite
	Thinking About Schemas
	Start with a Helper
	Employing Your Helper
	Where to Hold a Helper

	Getting Data Out
	Your Query Options
	What Is a Cursor?
	Using the Cursor Manually
	Introducing CursorAdapter
	Getting Data Out, Asynchronously

	The Rest of the CRUD
	The Primary Option: execSQL()
	Alternative Options
	Asynchronous CRUD and UI Updates
	Setting Transaction Bounds

	Hey, What About Hibernate?

	Tutorial #14 - Saving Notes
	Step #1: Adding a DatabaseHelper
	Eclipse
	Outside of Eclipse

	Step #2: Examining DatabaseHelper
	Step #3: Creating a NoteFragment
	Eclipse
	Outside of Eclipse

	Step #4: Examining NoteFragment
	Step #5: Creating the NoteActivity
	Eclipse
	Outside of Eclipse

	Step #6: Loading and Saving Notes
	Step #7: Add Notes to the Action Bar
	Step #8: Support Deleting Notes
	In Our Next Episode…

	Internet Access
	DIY HTTP
	Introducing the Sample
	Asking Permission
	A Task for Updating
	Doing the Internet Thing
	Dealing with the Result
	Running the Sample
	What Android Brings to the Table
	Testing with StrictMode
	What About HttpClient?

	HTTP via DownloadManager
	Using Third-Party JARs

	Intents, Intent Filters, Broadcasts, and Broadcast Receivers
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Responding to Implicit Intents
	Requesting Implicit Intents
	Zero Matches
	One Match
	Many Matches, Default Behavior
	The Chooser Override

	Broadcasts and Receivers
	Sending a Simple Broadcast
	Receiving a Broadcast: In an Activity
	Receiving a Broadcast: Via the Manifest

	Example System Broadcasts
	At Boot Time
	On Battery State Changes
	Sticky Intents and the Battery
	Battery and the Emulator


	Downloading Files
	The Permissions
	The Layout
	Requesting the Download
	Keeping Track of Download Status
	OK, So Why Is This In This Chapter?
	What the User Sees
	Limitations

	Keeping It Local
	Using LocalBroadcastManager
	Reference, Not Value
	Limitations of Local


	Tutorial #15 - Sharing Your Notes
	Step #1: Adding a Share Action Bar Item
	Step #2: Sharing the Note
	Step #3: Tying Them Together
	Step #4: Testing the Result
	In Our Next Episode…

	Services and the Command Pattern
	Why Services?
	Setting Up a Service
	The Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating To Services
	Sending Commands with startService()
	Binding to Services

	Scenario: The Music Player
	The Design
	The Service Implementation
	Using the Service

	Communicating From Services
	Broadcast Intents
	Pending Results
	Messenger
	Notifications

	Scenario: The Downloader
	The Design
	Using the Service
	The Service Implementation
	Receiving the Broadcast


	Tutorial #16 - Updating the Book
	Step #1: Adding a Stub DownloadCheckService
	Eclipse
	Outside of Eclipse

	Step #2: Tying the Service Into the Action Bar
	Step #3: Adding a Stub DownloadCompleteReceiver
	Eclipse
	Outside of Eclipse

	Step #4: Completing the DownloadCheckService
	Step #5: Adding a Stub DownloadInstallService
	Eclipse
	Outside of Eclipse

	Step #6: Completing the DownloadCompleteReceiver
	Step #7: Completing the DownloadInstallService
	Step #8: Updating ModelFragment
	Step #9: Adding a BroadcastReceiver to EmPubLiteActivity
	Step #10: Discussing the Flaws
	In Our Next Episode…

	AlarmManager and the Scheduled Service Pattern
	Scenarios
	Options
	Wake Up… Or Not?
	Repeating… Or Not?
	Inexact… Or Not?
	Absolute Time… Or Not?
	What Happens (Or Not???)

	A Simple Example
	The Four Types of Alarms
	When to Schedule Alarms
	When User First Runs Your App
	On Boot
	After a Force-Stop

	Get Moving, First Thing
	The Permission
	The Receiver Element
	The Receiver Implementation
	New Behavior With Android 3.1

	Archetype: Scheduled Service Polling
	The Main Application Thread Strikes Back
	Examining a Sample

	Staying Awake at Work
	Mind the Gap
	The WakefulIntentService
	The Polling Archetype, Revisited
	How the Magic Works


	Tutorial #17 - Periodic Book Updates
	Step #1: Adding a Stub UpdateReceiver
	Eclipse
	Outside of Eclipse

	Step #2: Scheduling the Alarms
	Step #3: Adding the WakefulIntentService
	Step #4: Using WakefulIntentService
	Step #5: Completing the UpdateReceiver
	In Our Next Episode…

	Notifications
	What’s a Notification?
	Showing a Simple Notification
	Notifications and Foreground Services
	Seeking Some Order
	The Activity-Or-Notification Scenario
	Other Scenarios


	Tutorial #18 - Notifying the User
	Step #1: Adding the InstallReceiver
	Eclipse
	Outside of Eclipse

	Step #2: Completing the InstallReceiver
	In Our Next Episode…

	Large-Screen Strategies and Tactics
	Objective: Maximum Gain, Minimum Pain
	The Fragment Strategy
	Changing Layout
	Changing Fragment Mix
	The Role of the Activity

	Fragment Example: The List-and-Detail Pattern
	Describing the App
	CountriesFragment
	DetailsFragment
	The Activities
	The Results

	Fragment FAQs
	Does Everything Have To Be In a Fragment?
	What If Fragments Are Not Right For Me?
	Do Fragments Work on Google TV?

	Screen Size and Density Tactics
	Dimensions and Units
	Layouts and Stretching
	Drawables That Resize
	Drawables By Density

	Other Considerations
	Small-Screen Devices
	Avoid Full-Screen Backgrounds
	Manifest Elements for Screen Sizes


	Tutorial #19 - Supporting Large Screens
	Step #1: Creating Our Layouts
	Eclipse
	Outside of Eclipse

	Step #2: Loading Our Sidebar Widgets
	Step #3: Opening the Sidebar
	Step #4: Loading Content Into the Sidebar
	Step #5: Removing Content From the Sidebar
	Step #6: Supporting Note Sharing and Deletion

	Backwards Compatibility Strategies and Tactics
	Think Forwards, Not Backwards
	Aim Where You Are Going
	A Target-Rich Environment
	A Little Help From Your Friends
	Avoid the New on the Old
	Java
	@TargetAPI
	Another Example: AsyncTask

	Resources
	Components

	Testing

	Getting Help
	Questions. Sometimes, With Answers.
	Heading to the Source
	Getting Your News Fix

	Dialogs and DialogFragments
	Prerequisites
	DatePickerDialog and TimePickerDialog
	AlertDialog
	DialogFragments

	Advanced ListViews
	Prerequisites
	Multiple Row Types, and Self Inflation
	Our Data Model and Planned UI
	The Basic BaseAdapter
	Requesting Multiple Row Types
	Creating and Recyling the Rows

	Choice Modes and the Activated Style
	Custom Mutable Row Contents
	From Head To Toe

	Action Bar Navigation
	Prerequisites
	List Navigation
	Tabs (And Sometimes List) Navigation
	Custom Navigation

	Action Modes and Context Menus
	Prerequisites
	Another Wee Spot O’ History
	Manual Action Modes
	Choosing Your Trigger
	Starting the Action Mode
	Implementing the Action Mode
	onCreateActionMode()
	onPrepareActionMode()
	onActionItemClicked()
	onDestroyActionMode()


	Multiple-Modal-Choice Action Modes
	Split Action Modes
	What Came Before: Context Menus
	Creating a Context Menu
	Responding to a Context Menu


	Advanced Uses of WebView
	Prerequisites
	Friends with Benefits
	Turnabout is Fair Play
	Navigating the Waters
	Settings, Preferences, and Options (Oh, My!)

	The Input Method Framework
	Prerequisites
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Fonts
	Prerequisites
	Love The One You’re With
	Here a Glyph, There a Glyph

	Rich Text
	Prerequisites
	The Span Concept
	Implementations
	TextView and Spanned
	Available Spans

	Loading Rich Text
	String Resource
	HTML
	From EditText
	Manually

	Editing Rich Text
	RichEditText
	Manually

	Saving Rich Text
	Manipulating Rich Text

	Mapping with MapView
	Prerequisites
	Terms, Not of Endearment
	Piling On
	The Key To It All
	The Bare Bones
	Optional Maps

	Exercising Your Control
	Zoom
	Center

	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	Rugged Terrain
	Maps and Fragments
	Limit Yourself to Android 3.0
	Use onCreateView() and onActivityCreated()
	Host the Fragment in a MapActivity

	Get to the Point
	Getting the Latitude and Longitude
	Getting the Screen Position

	Not-So-Tiny Bubbles
	Options for Pop-up Panels
	Defining a Panel Layout
	Creating a PopupPanel Class
	Showing and Hiding the Panel
	Tying It Into the Overlay

	Sign, Sign, Everywhere a Sign
	Selected States
	Per-Item Drawables
	Changing Drawables Dynamically

	In A New York Minute. Or Hopefully a Bit Faster.
	A Little Touch of Noo Yawk
	Touch Events
	Finding an Item
	Dragging the Item


	Creating Drawables
	Prerequisites
	Traversing Along a Gradient
	State Law
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images


	Animating Widgets and Containers
	Prerequisites
	It’s Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It’s All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Crafting Your Own Views
	Prerequisites
	Pick Your Poison
	Colors, Mixed How You Like Them
	The Layout
	The Attributes
	The Class
	Constructor Flavors
	Using the Attributes
	Saving the State
	The Rest of the Functionality

	Seeing It In Use


	Advanced Notifications
	Prerequisites
	Custom Views: or How Those Progress Bars Work
	Custom Content
	Custom Tickers

	Seeing It In Action
	The Activity
	The IntentService
	The Builder
	The ProgressBar
	The Rest of the Story
	The Results

	Life After Delete
	The Mysterious Case of the Missing Number

	Home Screen App Widgets
	Prerequisites
	East is East, and West is West…
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The Metadata
	The Layout
	The BroadcastReceiver
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget’s) Destiny
	Change Your Look
	One Size May Not Fit All
	Being a Good Host

	Adapter-Based App Widgets
	Prerequisites
	New Widgets for App Widgets
	Preview Images
	Adapter-Based App Widgets
	The AppWidgetProvider
	The RemoteViewsService
	The RemoteViewsFactory
	The Rest of the Story
	The Results


	Audio Playback
	Prerequisites
	Get Your Media On
	MediaPlayer for Audio
	Streaming Limitations

	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator


	Video Playback
	Prerequisites
	Moving Pictures

	Content Provider Theory
	Prerequisites
	Using a Content Provider
	Pieces of Me
	Getting a Handle
	The Database-Style API
	Makin’ Queries
	Adapting to the Circumstances
	Give and Take

	The File System-Style API

	Building Content Providers
	First, Some Dissection
	Next, Some Typing
	Implementing the Database-Style API
	Implement onCreate()
	Implement query()
	Implement insert()
	Implement update()
	Implement delete()
	Implement getType()
	Update the Manifest
	Add Notify-On-Change Support

	Implementing the File System-Style API

	Issues with Content Providers

	Content Provider Implementation Patterns
	Prerequisites
	The Single-Table Database-Backed Content Provider
	Step #1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step #2: Supply a Uri
	Step #3: Declare the “Columns”
	Step #4: Update the Manifest

	The Local-File Content Provider
	Step #1: Create the Provider Class
	onCreate()
	openFile()
	getType()
	All Those Other Ones

	Step #2: Update the Manifest
	Using this Provider


	The Loader Framework
	Prerequisites
	Cursors: Issues with Management
	Introducing the Loader Framework
	LoaderManager
	LoaderCallbacks
	Loader

	Honeycomb… Or Not
	Using CursorLoader
	Using SQLiteCursorLoader
	Inside SQLiteCursorLoader
	AbstractCursorLoader
	loadInBackground()
	deliverResult()
	onStartLoading()
	onCanceled()
	onStopLoading()
	onReset()

	SQLiteCursorLoader

	What Else Is Missing?
	Issues, Issues, Issues
	Loaders Beyond Cursors
	SharedPreferencesLoader
	Usage
	Implementation Notes


	What Happens When…?
	… the Data Behind the Loader Changes?
	… the Configuration Changes?
	… the Activity is Destroyed?
	… the Activity is Stopped?


	The ContactsContract Provider
	Prerequisites
	Introducing You to Your Contacts
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Dealing with API Versions
	Accessing Contact Information

	Makin’ Contacts

	The CalendarContract Provider
	Prerequisites
	You Can’t Be a Faker
	Do You Have Room on Your Calendar?
	The Collections
	Calendar Permissions
	Querying for Events

	Penciling In an Event

	Encrypted Storage
	Prerequisites
	Scenarios for Encryption
	Obtaining SQLCipher
	Employing SQLCipher
	SQLCipher Limitations
	Passwords and Sessions


	Packaging and Distributing Data
	Prerequisites
	Packing a Database To Go
	Create and Pack the Database
	Unpack the Database, With a Little Help(er)
	Upgrading Sans Java
	Limitations


	Push Notifications with C2DM
	Prerequisites
	Pieces of Push
	The Account
	The Android App
	Your Server
	Google’s Server
	Google’s On-Device Code
	Google’s Client Code

	Getting From Here to There
	Permissions for Push
	Registering an Interest
	Push It Real Good
	Getting Authenticated
	Sending a Notification
	About the Message

	A Controlled Push
	Message Parameters
	Notable Message Responses

	The Right Way to Push

	Advanced Permissions
	Prerequisites
	Securing Yourself
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere
	Requiring Standard System Permissions

	Signature Permissions
	Firmware-Only Permissions
	Your Own Signature Permissions


	Tapjacking
	Prerequisites
	What is Tapjacking?
	World War Z (Axis)
	Enter the Jackalope
	Thinking Like a Malware Author

	Detecting Potential Tapjackers
	Who Holds a Permission?
	Who is Running?
	Combining the Two: TJDetect

	Defending Against Tapjackers
	Filtering Touch Events
	Implementing the Filter
	The User Experience and the Hoped-For Security
	The Flaws
	Availability

	Detect-and-Warn

	Why Is This Being Discussed?
	What Changed in 4.0.3?

	Accessing Location-Based Services
	Prerequisites
	Location Providers: They Know Where You’re Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing… Testing…

	Working with the Clipboard
	Prerequisites
	Using the Clipboard on Android 1.x/2.x
	Advanced Clipboard on Android 3.x
	Copying Rich Data to the Clipboard
	Pasting Rich Data from the Clipboard
	ClipData and Drag-and-Drop


	Telephony
	Prerequisites
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	Working With SMS
	Prerequisites
	Sending Out an SOS, Give or Take a Letter
	Sending Via the SMS Client
	Sending SMS Directly
	Inside the Sender Sample

	You Can’t Get There From Here
	Receiving SMS
	Working With Existing Messages


	Using the Camera
	Prerequisites
	Letting the Camera App Do It
	The Implementation
	The Caveats

	Scanning with ZXing
	Directly Working with the Camera

	NFC
	Prerequisites
	What Is NFC?
	… Compared to RFID?
	… Compared to QR Codes?

	To NDEF, Or Not to NDEF
	NDEF Modalities
	NDEF Structure and Android’s Translation
	The Reality of NDEF
	Some Tags are Read-Only
	Some Tags Can’t Be Read-Only
	Some Tags Need to be Formatted
	Tags Have Limited Storage
	NDEF Data Structures Are Documented Elsewhere

	Sources of Tags
	Writing to a Tag
	Getting a URL
	Detecting a Tag
	Reacting to a Tag
	Getting the Shared URL
	Creating the Byte Array
	Creating the NDEF Record and Message

	Writing to a Tag

	Responding to a Tag
	Expected Pattern: Bootstrap
	Mobile Devices are Mobile
	Android Beam
	The Fragment
	Requesting the Beam
	Sending the Beam
	Receiving the Beam
	The Scenarios

	Additional Resources

	Device Administration
	Prerequisites
	Objectives and Scope
	Defining and Registering an Admin Component
	The Metadata
	The Manifest
	The Receiver
	The Demand for Device Domination

	Going Into Lockdown
	Mandating Quality of Security
	Getting Along with Others

	PowerManager and WakeLocks
	Prerequisites
	Keeping the Screen On, UI-Style
	The Role of the WakeLock
	What WakefulIntentService Does

	Other System Settings and Services
	Prerequisites
	Setting Expectations
	Basic Settings
	Secure Settings

	Can You Hear Me Now? OK, How About Now?
	Attaching SeekBars to Volume Streams

	The Rest of the Gang

	Dealing with Different Hardware
	Prerequisites
	Filtering Out Devices
	uses-feature
	uses-configuration
	uses-library

	Runtime Capability Detection
	Features
	Libraries
	Other Capabilities

	Dealing with Device Bugs

	Responding to URLs
	Prerequisites
	Manifest Modifications
	Creating a Custom URL
	Reacting to the Link

	Plugin Patterns
	Plugins by Remote
	RemoteViews, Beyond App Widgets
	Thinking About Plugins
	A Sample Implementation
	Finding Available Plugins
	Responding to the Call for Plugins
	Requesting RemoteViews
	Responding with RemoteViews
	Dealing with Android 3.1+
	The Permission Scheme

	Other Plugin Features and Issues

	ContentProvider Plugins
	The Problem: Permission Creep
	A Solution: ContentProvider Proxies
	Examining a Sample
	Provider
	Consumer

	Limitations of the Approach


	PackageManager Tricks
	Prerequisites
	Asking Around
	Preferred Activities
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components


	Searching with SearchManager
	Prerequisites
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness
	May I Make a Suggestion?
	SearchRecentSuggestionsProvider
	Custom Suggestion Providers
	Integrating Suggestion Providers

	Putting Yourself (Almost) On Par with Google
	Implement a Suggestions Provider
	Augment the Metadata
	Convince the User
	The Results


	Handling System Events
	Prerequisites
	I Sense a Connection Between Us…
	Feeling Drained
	Sticky Intents and the Battery
	Battery and the Emulator
	Other Power Triggers


	Remote Services and the Binding Pattern
	Prerequisites
	The Binding Pattern
	What the Service Does
	What the Client Does

	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	A Consumer Economy
	Bound for Success
	Request for Service
	Getting Unbound

	Service From Afar
	Service Names
	The Service
	The Client

	Servicing the Service
	Callbacks via AIDL
	Revising the Client
	Revising the Service

	The Bind That Fails
	The Results

	The “Everlasting Service” Anti-Pattern

	Advanced Manifest Tips
	Prerequisites
	Just Looking For Some Elbow Room
	Configuring Your App to Reside on External Storage
	What the User Sees
	What the Pirate Sees
	What Your App Sees… When the Card is Removed
	Choosing Whether to Support External Storage

	Using an Alias

	Miscellaneous Integration Tips
	Prerequisites
	Would You Like to See the Menu?
	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Homing Beacons for Intents

	Reusable Components
	Prerequisites
	Pick Up a JAR
	The JAR Itself
	Resources
	Packaging and Installing
	Naming
	ID Lookup
	Customizing and Overriding

	Assets
	Manifest Entries
	AIDL Interfaces
	Permissions
	Other Source Code
	Your API
	Public versus Non-Public
	Flexibility versus Maintainability

	Documentation
	Licensing
	Your License
	Third-Party License Impacts


	A Private Library
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects


	The Role of Scripting Languages
	Prerequisites
	All Grown Up
	Following the Script
	Your Expertise
	Your Users’ Expertise
	Crowd-Developing

	Going Off-Script
	Security
	Performance
	Cross-Platform Compatibility
	Maturity… On Android


	The Scripting Layer for Android
	Prerequisites
	The Role of SL4A
	On-Device Development

	Getting Started with SL4A
	Installing SL4A
	Installing Interpreters
	Running Supplied Scripts

	Writing SL4A Scripts
	Editing Options
	Calling Into Android
	Browsing the API

	Running SL4A Scripts
	Background
	Shortcuts
	Other Alternatives

	Potential Issues
	Security… From Scripts
	Security… From Other Apps


	JVM Scripting Languages
	Prerequisites
	Languages on Languages
	A Brief History of JVM Scripting
	Limitations
	Android SDK Limits
	Wrong Bytecode
	Age

	SL4A and JVM Languages
	Embedding JVM Languages
	Architecture for Embedding
	Asynchronous
	Security

	Inside the InterpreterService
	The Interpreter Interface
	Loading Interpreters and Executing Scripts
	Delivering Results
	Packaging the InterpreterService
	Using the InterpreterService

	BeanShell on Android
	What is BeanShell?
	Getting BeanShell Working on Android
	Integrating BeanShell

	Rhino on Android
	What is Rhino?
	Getting Rhino Working on Android
	Integrating Rhino


	Other JVM Scripting Languages
	Groovy
	Jython


	Google TV
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Input Devices
	Other Hardware

	What Is Really Different?
	The Emulator
	CPU and NDK
	Overscan
	Ethernet
	Location
	Media Keys
	Channels and Listings
	User Base

	Getting Your Development Environment Established
	Installing the SDK Add-On
	Getting KVM Set Up
	Creating the Emulator
	Connecting to Physical Devices

	How Does Distribution Work?
	Getting Your App on Google TV
	Supporting Only Google TV
	Avoiding Google TV

	Getting Help

	Kindle Fire
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	The Menu Bar
	Nothing Googly
	Sideloading Limitations

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?
	Amazon AppStore
	Alternatives


	Barnes & Noble NOOK Tablet
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	Status/System Bar and Navigation Norms
	Nothing Googly
	No Side-loading
	Toasts to the Top
	Unsupported APIs

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?

	RIM Blackberry Playbook
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	Navigation
	Nothing Googly
	BARs as Packages
	Unsupported APIs
	Package Name Length

	Getting Your Development Environment Established
	Checking and Repackaging Your App
	Eclipse Plugin
	Online Repackager
	Command-Line Tools

	Playbook Simulator
	Developing on Hardware

	How Does Distribution Work?
	Blackberry App World
	Alternatives


	WIMM One
	Prerequisites
	What Can This Thing Really Do?
	What Are You Really Writing?
	Micro Apps
	Activity, Singular
	ViewTray
	Dialogs

	Watchfaces

	What Are You Not Allowed To Do?
	Consume Excess Battery
	Assume an Internet Connection
	Have Gonzo Navigation
	Use Unsupported Classes

	Getting Your Development Environment Established
	Deploying the SDK Add-On
	Setting Up the Emulator
	Connecting to a Physical Device

	How Does Distribution Work?
	WIMM Store
	Sideloading
	Bundling

	Example: QR Code Keeper
	The Components
	Inside the Manifest
	Initializing the Activity
	Loading the Content
	Syncing the Data
	Receiving the NETWORK_AVAILABLE Broadcast
	Examining the Results
	Considering What We Left Out

	Getting Help

	SONY SmartWatch Accessory
	Prerequisites
	What Can This Thing Really Do?
	What Are You Really Writing?
	Getting Your Development Environment Established
	How Does Distribution Work?
	Example: WatchAuth
	The ExtensionReceiver
	The ExtensionService
	The RegistrationInformation
	The ControlExtension
	Getting the Size
	Rendering the UI
	Responding to Touch Events

	The Permission
	Highlights of the Business Logic
	The Result

	Getting Help

	JUnit and Android
	Prerequisites
	You Get What They Give You
	Eclipse
	Command Line

	Your Test Cases
	POJTCs (Plain Old JUnit Test Cases)
	ActivityInstrumentationTestCase2
	AndroidTestCase
	Other Test Cases

	Your Test Suite
	Running Your Tests
	Eclipse
	Command Line


	MonkeyRunner and the Test Monkey
	Prerequisites
	MonkeyRunner
	Writing a MonkeyRunner Script
	Executing MonkeyRunner

	Monkeying Around

	Using Hierarchy View
	Prerequisites
	Launching Hierarchy View
	Viewing the View Hierarchy
	ViewServer

	Using DDMS
	Prerequisites
	Starting DDMS
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages

	Signing Your App
	Prerequisites
	Role of Code Signing
	What Happens In Debug Mode
	Creating a Production Signing Key
	Signing with the Production Key
	Two Types of Key Security
	Related Keys


	Distribution
	Prerequisites
	Get Ready To Go To Market
	Versioning
	Package Name
	Icon and Label
	Logging
	Testing
	EULA


	Issues with Speed
	Prerequisites
	Getting Things Done
	Your UI Seems… Janky
	Not Far Enough in the Background
	Playing with Speed

	Finding CPU Bottlenecks
	Prerequisites
	Traceview
	What Is Traceview?
	Collecting Trace Data
	Debug Class
	DDMS
	Performance While Tracing

	Displaying Trace Data
	Eclipse/DDMS
	Standalone Traceview

	Interpreting Trace Data

	Other General CPU Measurement Techniques
	Logging
	FPS Calculations


	Focus On: NDK
	Prerequisites
	The Role of the NDK
	Dalvik: Secure, Yes; Speedy, Not So Much
	Going Native
	Speed
	Porting

	Knowing Your Limits
	Android APIs
	Cross-Platform Compatibility
	Maturity
	Available Expertise


	NDK Installation and Project Setup
	Installing the NDK
	Prerequisites
	Download and Unpack
	Environment Variables

	Setting Up an NDK Project
	Writing Your C/C++ Code


	Writing Your Makefile(s)
	Android.mk
	Application.mk

	Building Your Library
	Using Your Library Via JNI
	Building and Deploying Your Project

	Improving CPU Performance in Java
	Prerequisites
	Reduce CPU Utilization
	Standard Java Optimizations
	Avoid Excessive Synchronization
	Avoid Floating-Point Math
	Don’t Assume Built-In Algorithms are Best

	Support Hardware-Accelerated Graphics
	Minimize IPC
	Remote Bound Service
	Remote Content Provider
	Remote OS Operation

	Android-Specific Java Optimizations

	Reduce Time on the Main Application Thread
	Generate Less Garbage
	View Recycling
	Background Threads
	Asynchronous BroadcastReceiver Operations
	Saving SharedPreferences

	Improve Throughput and Responsiveness
	Minimize Disk Writes
	Set Thread Priority
	Do the Work Some Other Time


	Issues with Bandwidth
	Prerequisites
	You’re Using Too Much of the Slow Stuff
	You’re Using Too Much of the Expensive Stuff
	You’re Using Too Much of Somebody Else’s Stuff
	You’re Using Too Much… And There Is None

	Focus On: TrafficStats
	Prerequisites
	TrafficStats Basics
	Device Statistics
	Per-Application Statistics
	Interpreting the Results

	Example: TrafficMonitor
	TrafficRecord
	TrafficSnapshot
	TrafficMonitorActivity
	Using TrafficMonitor

	Other Ways to Employ TrafficStats
	In Production
	During Testing


	Measuring Bandwidth Consumption
	Prerequisites
	On-Device Measurement
	Yourself, via TrafficStats
	Existing Android Applications

	Off-Device Measurement
	Wireshark
	Networking Hardware


	Being Smarter About Bandwidth
	Prerequisites
	Bandwidth Savings
	Classic HTTP Solutions
	GZip Encoding
	If-Modified-Since / If-None-Match
	Binary Payloads
	Minification

	Push versus Poll
	Thumbnails and Tiles
	Collaborative Bandwidth

	Bandwidth Shaping
	Driven by Preferences
	Budgets
	Connectivity
	Windows

	Driven by Other Usage


	Issues with Memory
	Prerequisites
	You Are in a Heap of Trouble
	Warning: Contains Graphic Images
	In Too Deep (on the Stack)

	Focus On: MAT
	Prerequisites
	Setting Up MAT
	Getting Heap Dumps
	From DDMS
	DDMS Perspective
	Standalone DDMS

	From Code
	Automating Heap Dumps in Testing


	Basic MAT Operation
	Loading Your Dump
	Finding Your Objects
	Getting Back to Your Roots
	Identifying What Else is Floating Around

	Some Leaks and Their MAT Analysis
	Widget in Static Data Member
	Leaked Thread
	All Sorts of Bugs
	Leaks Via Configuration Changes
	Leaks from Unregistered System Listeners

	What MAT Won’t Tell You


	Issues with Battery Life
	Prerequisites
	You’re Getting Blamed
	Stretching Out the Last mWh

	Focus On: MDP and Trepn
	Prerequisites
	What Are You Talking About?
	What’s an MDP?
	What’s a Trepn?
	The Big Problem: Cost

	Running Trepn Tests
	Recording Application States
	Examining Trepn Results
	On-Device
	Off-Device


	Other Power Measurement Options
	Prerequisites
	PowerTutor
	Battery Screen in Settings Application
	BatteryInfo Dump

	The Role of Alternative Environments
	Prerequisites
	In the Beginning, There Was Java…
	… And It Was OK
	Bucking the Trend
	Support, Structure
	Caveat Developer

	HTML5
	Prerequisites
	Offline Applications
	What Does It Mean?
	How Do You Use It?
	About the Sample App
	“Installing” Checklist on Your Phone
	Examining the HTML
	Examining the Manifest


	Web Storage
	What Does It Mean?
	How Do You Use It?
	Web SQL Database

	Going To Production
	Testing
	Signing and Distribution
	Updates

	Issues You May Encounter
	Android Device Versions
	Screen Sizes and Densities
	Limited Platform Integration
	Performance and Battery
	Look and Feel
	Distribution

	HTML5: The Baseline

	PhoneGap
	Prerequisites
	What Is PhoneGap?
	What Do You Write In?
	What Features Do You Get?
	What Do Apps Look Like?
	How Does Distribution Work?
	What About Other Platforms?
	How Is It Licensed?

	Using PhoneGap
	Installation
	Creating and Installing Your Project
	PhoneGap/Build

	PhoneGap and the Checklist Sample
	Sticking to the Standards
	Adding PhoneGap APIs
	Set up Device-Ready Event Handler
	Use What PhoneGap Gives You


	Issues You May Encounter
	Security
	Screen Sizes and Densities
	Look and Feel

	For More Information

	Other Alternative Environments
	Prerequisites
	Rhodes
	Flash, Flex, and AIR
	JRuby and Ruboto
	Mono for Android
	App Inventor
	Titanium Mobile
	Other JVM Compiled Languages

	Widget Catalog: DatePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: SlidingDrawer
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TabHost and TabWidget
	Deprecation Notes
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TimePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: ViewFlipper
	Key Usage Tips
	A Sample Usage
	Visual Representation




