
AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

• ListView, which is your typical “list box”
• Spinner, which (more or less) is a drop-down list
• GridView, offering a two-dimensional roster of choices
• ExpandableListView, a limited “tree” widget, supporting two levels in the

hierarchy
• Gallery, a horizontal-scrolling list, principally used for image thumbnails

and many more.

Eclipse users will find these mostly in the “Composite” portion of the Graphical
Layout editor palette, though Spinner is in the “Form Widgets” section and Gallery
is in “Images & Media”.

These all have a common superclass: AdapterView, so named because they partner
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.

Adapting to the Circumstances
In the abstract, adapters provide a common interface to multiple disparate APIs.
More specifically, in Android’s case, adapters provide a common interface to the data
model behind a selection-style widget, such as a listbox. This use of Java interfaces is
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fairly common (e.g., Java/Swing’s model adapters for JTable), and Java is far from
the only environment offering this sort of abstraction (e.g., Flex’s XML data-binding
framework accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection
widget plus converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality it is not that different from other GUI toolkits’ ways
of overriding default display behavior. For example, in Java/Swing, if you want a
JList-backed listbox to actually be a checklist (where individual rows are a
checkbox plus label, and clicks adjust the state of the checkbox), you inevitably wind
up calling setCellRenderer() to supply your own ListCellRenderer, which in turn
converts strings for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)
2. The resource ID of a view to use (such as a built-in system resource ID, as

shown above)
3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.
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Lists of Naughty and Nice
The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter() to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

</LinearLayout></LinearLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

packagepackage com.commonsware.android.list;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;

ADAPTERVIEWS AND ADAPTERS
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publicpublic classclass ListViewDemoListViewDemo extendsextends ListActivity {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

selection=(TextView)findViewById(R.id.selection);
}

@Override
publicpublic void onListItemClick(ListView parent, View v, int position,

long id) {
selection.setText(items[position]);

}
}

With ListActivity, you can set the list adapter via setListAdapter() — in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

ADAPTERVIEWS AND ADAPTERS

156

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Figure 84: The ListViewDemo sample application

The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like. The
value used in the preceding example provides the standard Android list row: big
font, lots of padding, white text.

Clicks versus Selections
One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, Google TV devices are not touchscreens at present. And
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some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based off of the “spinner”
paradigm — including Spinner and Gallery — treat everything as selection events.
Other widgets — like ListView and GridView — treat selection events and click
events differently. For these widgets, selection events are driven by the pointing
device, such as using arrow keys to move a highlight bar up and down a list. Click
events are when the user either “clicks” the pointing device (e.g., presses the center
D-pad button) or taps on something in the widget using the touchscreen.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s selection, or possibly multiple selections.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the
value. You can get your ListView from a ListActivity via getListView(). You can
also declare this via the android:choiceMode attribute in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>/>
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It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple_list_item_multiple_choice as the row layout:

packagepackage com.commonsware.android.checklist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass ChecklistDemoChecklistDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_multiple_choice,
items));

}
}

What the user sees is the list of words with checkboxes down the right edge:
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Figure 85: Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire UI at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.
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Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the
D-pad pops up a selection dialog for the user to choose an item from. You basically
get the ability to select from a list without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you
need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource() method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>

<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"

/>/>
</LinearLayout></LinearLayout>

This is the same view as shown in a previous section, just with a Spinner instead of a
ListView. The Spinner property android:drawSelectorOnTop controls whether the
arrows are drawn on the selector button on the right side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

publicpublic classclass SpinnerDemoSpinnerDemo extendsextends Activity
implementsimplements AdapterView.OnItemSelectedListener {
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privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);
}

@Override
publicpublic void onItemSelected(AdapterView<?> parent,

View v, int position, long id) {
selection.setText(items[position]);

}

@Override
publicpublic void onNothingSelected(AdapterView<?> parent) {

selection.setText("");
}

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:
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Figure 86: The SpinnerDemo sample application, as initially launched
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Figure 87: The same application, with the spinner drop-down list displayed

Grid Your Lions (Or Something Like That…)
As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how many pixels wide each column should
be.
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4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the GridView works much like any other selection widget — use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>

<GridView<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>/>

</LinearLayout></LinearLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:
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packagepackage com.commonsware.android.grid;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.GridViewandroid.widget.GridView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass GridDemoGridDemo extendsextends Activity
implementsimplements AdapterView.OnItemClickListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(newnew ArrayAdapter<String>(thisthis,

R.layout.cell,
items));

g.setOnItemClickListener(thisthis);
}

@Override
publicpublic void onItemClick(AdapterView<?> parent, View v,

int position, long id) {
selection.setText(items[position]);

}
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>/>
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With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

Figure 88: The GridDemo sample application, as initially launched
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Figure 89: The same application, scrolled to the bottom of the grid

GridView, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out
an entry (e.g., something not in the list) or choose an entry from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.
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In addition, AutoCompleteTextView has a android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter(). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>

<AutoCompleteTextView<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>/>

</LinearLayout></LinearLayout>

The corresponding Java code is:

packagepackage com.commonsware.android.auto;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.AutoCompleteTextViewandroid.widget.AutoCompleteTextView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass AutoCompleteDemoAutoCompleteDemo extendsextends Activity
implementsimplements TextWatcher {
privateprivate TextView selection;
privateprivate AutoCompleteTextView edit;

ADAPTERVIEWS AND ADAPTERS

169

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete


privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(thisthis);

edit.setAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_dropdown_item_1line,
items));

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
selection.setText(edit.getText());

}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start,

int count, int after) {
// needed for interface, but not used

}

@Override
publicpublic void afterTextChanged(Editable s) {

// needed for interface, but not used
}

}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the former, and we update the selection label to match the
AutoCompleteTextView’s current contents.

Here we have the results:
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Figure 90: The AutoCompleteDemo sample application, as initially launched
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Figure 91: The same application, after a few matching letters were entered, showing
the auto-complete drop-down
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Figure 92: The same application, after the auto-complete value was selected

Galleries, Give Or Take The Art
The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a
horizontally-laid-out listbox. One choice follows the next across the horizontal
plane, with the currently-selected item highlighted. On an Android device, one
rotates through the options through the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough). Compared
to the Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview — given a
collection of photos or icons, the Gallery lets people preview the pictures in the
process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout,
you have a few properties at your disposal:
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1. android:spacing controls the number of pixels between entries in the list
2. android:spinnerSelector controls what is used to indicate a selection – this

can either be a reference to a Drawable (see the resources chapter) or an RGB
value in #AARRGGBB or similar notation

3. android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected child – if
you choose true, be sure that your selector has sufficient transparency to
show the child through the selector, otherwise users will not be able to read
the selection

Note that the Gallery widget is now marked as deprecated, meaning that ideally
you use something else. One likely candidate — ViewPager — will be covered in an
upcoming chapter.

Customizing the Adapter
The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.
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Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView and use the same
list of 25 nonsense words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the nonsense word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
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android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of nonsense words. The real fun comes when we override
getView():

packagepackage com.commonsware.android.fancylists.three;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass DynamicDemoDynamicDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
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"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setListAdapter(newnew IconicAdapter());

}

classclass IconicAdapterIconicAdapter extendsextends ArrayAdapter<String> {
IconicAdapter() {

supersuper(DynamicDemo.this, R.layout.row, R.id.label, items);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

ifif (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

}
}

Our getView() implementation does three things:

• It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

• It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

• It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

ADAPTERVIEWS AND ADAPTERS

177

Excerpt from "The Busy Coder's Guide to Android Development" Version 3.8 
Copyright (c) 2012 CommonsWare, LLC -- Licensed as Creative Commons Attribution Non-Commercial Share Alike 3.0 License



Note that we call findViewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findViewById()findViewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findViewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

Figure 93: The DynamicDemo application

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findViewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets
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anywhere in the tree of children of the row’s root View, this could take a fair number
of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to associate
an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching
that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

packagepackage com.commonsware.android.fancylists.five;

importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

classclass ViewHolderViewHolder {
ImageView icon=nullnull;
TextView size=nullnull;

ViewHolder(View row) {
thisthis.icon=(ImageView)row.findViewById(R.id.icon);
thisthis.size=(TextView)row.findViewById(R.id.size);

}
}

ViewHolder holds onto the child widgets, initialized via findViewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project… such as a ViewHolderDemo activity. In this case,
we are only holding onto one widget — the icon – since we will let ArrayAdapter
handle our label for us. In our case, we are holding onto the TextView and
ImageView widgets that we want to populate in getView().
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Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder==nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);

}

ifif (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
elseelse {

holder.icon.setImageResource(R.drawable.ok);
}

holder.size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled – a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by
ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their corresponding
ViewHolder widget caches.

Using a holder helps performance, but the effect is not as dramatic. Whereas
recycling can give you a 150% performance improvement, adding in a holder
increases the improvement to 175%. Hence, while you may wish to implement
recycling up front when you create your adapter, adding in a holder might be
something you deal with later, when you are working specifically on performance
tuning.
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Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

Figure 94: Sound Settings Screen

It may not look like it, but that is a ListView. However, not all the rows look the
same:

• Some have one line of text (e.g., “Volumes”)
• Some have two lines of text (e.g., “Silent mode” plus “Off”)
• Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)
• Some are headings with totally different text formatting (e.g., “RINGTONE &

NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource – after
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all, we only teach ArrayAdapter how to use one. We will examine how to handle this
scenario in a later chapter.
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