

The Busy Coder's Guide to Android Development

by Mark L. Murphy

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2014 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
March 2014: Version 5.7 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ Welcome to the Book! .. xxxiii
◦ The Book’s Structure .. xxxiii
◦ The Trails ... xxxiv
◦ About the Updates .. xxxix
◦ Warescription ... xxxix
◦ Getting Help .. xl
◦ Book Bug Bounty .. xl
◦ Source Code And Its License .. xli
◦ Creative Commons and the Four-to-Free (42F) Guarantee xlii
◦ Acknowledgments ... xlii

• Key Android Concepts
◦ Android Applications .. 1
◦ Android Devices .. 7
◦ Don’t Be Scared .. 10

• Choosing Your IDE
◦ Eclipse .. 11
◦ Android Studio ... 12
◦ Alternative IDEs .. 12
◦ IDEs… And This Book ... 13
◦ About App Inventor .. 13

• Tutorial #1 - Installing the Tools
◦ Step #1 - Checking Your Hardware Requirements 15
◦ Step #2 - Setting Up Java ... 16
◦ Step #3 - Install the Android SDK .. 16
◦ Step #4 - Install the ADT for Eclipse .. 18
◦ Step #5 - Install Apache Ant ... 20
◦ Step #6 - Set Up the Emulator .. 21
◦ Step #7 - Set Up the Device ... 28
◦ In Our Next Episode… .. 31

• Tutorial #2 - Creating a Stub Project
◦ About Our Tutorial Project ... 33
◦ About the Rest of the Tutorials ... 34
◦ About the Eclipse Instructions ... 34
◦ Step #2: Running the Project .. 51

i

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ In Our Next Episode… ... 54
• Contents of Android Projects

◦ Root Contents .. 55
◦ The Sweat Off Your Brow .. 56
◦ Resources .. 56
◦ What You Get Out Of It .. 57

• Inside the Manifest
◦ An Application For Your Application ... 61
◦ Specifying Versions .. 62
◦ Supporting Multiple Screens .. 62
◦ Other Stuff ... 63

• Tutorial #3 - Changing Our Manifest
◦ Step #1: Updating the Package Name 65
◦ Step #2: Supporting Screens ... 67
◦ Step #3: Validating our Minimum and Target SDK Versions ... 70
◦ In Our Next Episode… ... 72

• Some Words About Resources
◦ String Theory ... 73
◦ Got the Picture? ... 77
◦ Dimensions .. 81
◦ The Resource That Shall Not Be Named… Yet 83

• Tutorial #4 - Adjusting Our Resources
◦ Step #1: Changing the Name ... 85
◦ Step #2: Changing the Icon ... 87
◦ Step #3: Running the Result .. 95
◦ In Our Next Episode… .. 96

• The Theory of Widgets
◦ What Are Widgets? ... 97
◦ Size, Margins, and Padding .. 99
◦ What Are Containers? .. 99
◦ The Absolute Positioning Anti-Pattern .. 100

• The Android User Interface
◦ The Activity .. 103
◦ Dissecting the Activity .. 104
◦ Using XML-Based Layouts .. 105

• Basic Widgets
◦ Common Concepts .. 111
◦ Assigning Labels ... 113
◦ A Commanding Button .. 118
◦ Fleeting Images ... 121
◦ Fields of Green. Or Other Colors. .. 126

ii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ More Common Concepts .. 129
◦ Visit the Trails! .. 131

• Debugging Crashes
◦ Get Thee To a Stack Trace .. 134
◦ The Case of the Confounding Class Cast .. 137
◦ Point Break .. 137

• LinearLayout and the Box Model
◦ Concepts and Properties ... 139
◦ Eclipse Graphical Layout Editor .. 143

• Other Common Widgets and Containers
◦ Just a Box to Check ... 145
◦ Don’t Like Checkboxes? How About Toggles? 148
◦ Turn the Radio Up ... 150
◦ All Things Are Relative ... 152
◦ Tabula Rasa .. 159
◦ Scrollwork ... 163
◦ Making Progress with ProgressBars ... 166
◦ Visit the Trails! ... 167

• Tutorial #5 - Making Progress
◦ Step #1: Renaming the Activity Class 169
◦ Step #2: Removing The “Hello, World” .. 170
◦ Step #3: Adding a ProgressBar ... 171
◦ Step #4: Seeing the Results .. 173
◦ In Our Next Episode… .. 174

• GUI Building, Continued
◦ Making Your Selection ... 175
◦ Including Includes .. 175
◦ Wrap It Up (In a Container) .. 177
◦ Morphing Widgets .. 177
◦ Preview of Coming Attractions ... 178

• AdapterViews and Adapters
◦ Adapting to the Circumstances .. 179
◦ Lists of Naughty and Nice .. 181
◦ Clicks versus Selections .. 183
◦ Spin Control ... 187
◦ Grid Your Lions (Or Something Like That…) 190
◦ Fields: Now With 35% Less Typing! ... 193
◦ Customizing the Adapter .. 198
◦ Visit the Trails! .. 206

• The WebView Widget
◦ Role of WebView ... 207

iii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ WebView and WebKit .. 208
◦ Adding the Widget ... 208
◦ Loading Content Via a URL ... 209
◦ Supporting JavaScript ... 211
◦ Alternatives for Loading Content .. 212
◦ Listening for Events .. 213
◦ WebView and Android 4.4 .. 216
◦ Visit the Trails! .. 217

• Defining and Using Styles
◦ Styles: DIY DRY .. 219
◦ Elements of Style .. 221
◦ Themes: Would a Style By Any Other Name… 224

• JARs and Library Projects
◦ The Dalvik VM ... 226
◦ The Easy Part ... 226
◦ The Outer Limits ... 227
◦ OK, So What is a Library Project? .. 228
◦ Creating a Library Project ... 228
◦ Using a Library Project .. 229
◦ Limitations of Library Projects ... 230
◦ The Android Support Package ... 231
◦ JAR Dependency Management ... 233

• Tutorial #6 - Adding a Library
◦ Step #1: Downloading and Unpacking ActionBarSherlock 235
◦ Step #2: Adding the Library to Your Project 236
◦ In Our Next Episode… .. 240

• Options Menus and the Action Bar
◦ Bar Hopping (a.k.a., Terminology) ... 241
◦ Yet Another History Lesson ... 246
◦ Your Action Bar Options ... 247
◦ Setting the Target ... 251
◦ Minding Narrow .. 252
◦ Defining the Resource ... 252
◦ Applying the Resource .. 256
◦ Responding to Events .. 256
◦ Attaching to Action Layouts ... 257
◦ The Rest of the Sample Activity ... 258
◦ Floating Action Bars .. 265
◦ MENU Key, We Hardly Knew Ye ... 268
◦ Visit the Trails! .. 269

• Tutorial #7 - Adding the Action Bar

iv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Step #1: Setting the Theme and Splitting the Bar 271
◦ Step #2: Changing to SherlockFragmentActivity 273
◦ Step #3: Defining Some Options .. 275
◦ Step #4: Loading and Responding to Our Options 278
◦ Step #5: Running the Result .. 279
◦ In Our Next Episode… ... 282

• Android’s Process Model
◦ When Processes Are Created .. 283
◦ BACK, HOME, and Your Process .. 284
◦ Termination .. 285
◦ Foreground Means “I Love You” ... 285
◦ You and Your Heap ... 286

• Activities and Their Lifecycles
◦ Creating Your Second (and Third and…) Activity 288
◦ Warning! Contains Explicit Intents! ... 293
◦ Using Implicit Intents ... 295
◦ Extra! Extra! .. 300
◦ Asynchronicity and Results .. 302
◦ Schroedinger’s Activity .. 302
◦ Life, Death, and Your Activity ... 303
◦ When Activities Die .. 305
◦ Walking Through the Lifecycle .. 306
◦ Recycling Activities .. 309

• Tutorial #8 - Setting Up An Activity
◦ Step #1: Creating the Stub Activity Class .. 311
◦ Step #2: Adding the Activity to the Manifest 313
◦ Step #3: Launching Our Activity ... 315
◦ In Our Next Episode… ... 316

• The Tactics of Fragments
◦ The Six Questions ... 317
◦ Your First Fragment ... 319
◦ The Fragment Lifecycle Methods ... 324
◦ Your First Dynamic Fragment ... 325
◦ Fragments and the Action Bar .. 329
◦ Fragments Within Fragments: Just Say “Maybe” 330
◦ Fragments and Multiple Activities .. 331

• Tutorial #9 - Starting Our Fragments
◦ Step #1: Copy In WebViewFragment .. 333
◦ Step #2: Examining WebViewFragment ... 337
◦ Step #3: Creating AbstractContentFragment 337
◦ Step #4: Examining AbstractContentFragment 339

v

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ In Our Next Episode… ... 339
• Swiping with ViewPager

◦ Swiping Design Patterns ... 341
◦ Paging Fragments .. 342
◦ Paging Other Stuff .. 346
◦ Indicators ... 347
◦ Hosting ViewPager in a Fragment .. 350
◦ Pages and the Action Bar ... 351
◦ ViewPagers and Scrollable Contents .. 354

• Tutorial #10 - Rigging Up a ViewPager
◦ Step #1: Add a ViewPager to the Layout ... 357
◦ Step #2: Obtaining Our ViewPager .. 358
◦ Step #3: Creating a ContentsAdapter ... 359
◦ Step #4: Setting Up the ViewPager ... 360
◦ In Our Next Episode… ... 361

• Resource Sets and Configurations
◦ What’s a Configuration? And How Do They Change? 363
◦ Configurations and Resource Sets .. 364
◦ Screen Size and Orientation ... 365
◦ Coping with Complexity ... 368
◦ Choosing The Right Resource ... 369
◦ Default Change Behavior .. 373
◦ Your Options for Configuration Changes .. 375
◦ Blocking Rotations .. 388

• Dealing with Threads
◦ The Main Application Thread .. 389
◦ Getting to the Background .. 390
◦ Asyncing Feeling .. 391
◦ Alternatives to AsyncTask .. 400
◦ And Now, The Caveats ... 402

• Requesting Permissions
◦ Mother, May I? .. 404
◦ New Permissions in Old Applications .. 405
◦ Permissions: Up Front Or Not At All .. 406
◦ Signature Permissions .. 407
◦ Requiring Permissions .. 407

• Assets, Files, and Data Parsing
◦ Packaging Files with Your App .. 409
◦ Files and Android ... 411
◦ Working with Internal Storage ... 412
◦ Working with External Storage ... 415

vi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Multiple User Accounts ... 419
◦ Linux Filesystems: You Sync, You Win .. 420
◦ StrictMode: Avoiding Janky Code ... 421
◦ XML Parsing Options .. 428
◦ JSON Parsing Options ... 429
◦ Visit the Trails! ... 429

• Tutorial #11 - Adding Simple Content
◦ Step #1: Adding Some Content ... 431
◦ Step #2: Create a SimpleContentFragment 432
◦ Step #3: Examining SimpleContentFragment 433
◦ Step #4: Using SimpleContentFragment .. 433
◦ Step #5: Launching Our Activities, For Real This Time 434
◦ In Our Next Episode… ... 436

• Tutorial #12 - Displaying the Book
◦ Step #1: Adding a Book .. 437
◦ Step #2: Defining Our Model .. 438
◦ Step #3: Examining Our Model ... 440
◦ Step #4: Creating a ModelFragment .. 440
◦ Step #5: Examining the ModelFragment .. 443
◦ Step #6: Supplying the Content ... 444
◦ Step #7: Adapting the Content ... 445
◦ Step #8: Going Home, Again .. 447
◦ In Our Next Episode… .. 448

• Using Preferences
◦ Getting What You Want ... 449
◦ Stating Your Preference ... 450
◦ Introducing PreferenceActivity .. 451
◦ Types of Preferences .. 463
◦ Intents for Headers or Preferences .. 466
◦ Conditional Headers .. 467

• Tutorial #13 - Using Some Preferences
◦ Step #1: Adding a StockPreferenceFragment 476
◦ Step #2: Defining the Preference XML Files 477
◦ Step #3: Creating Our PreferenceActivity .. 479
◦ Step #4: Adding To Our Action Bar ... 480
◦ Step #5: Launching the PreferenceActivity 482
◦ Step #6: Loading Our Preferences ... 486
◦ Step #7: Saving the Last-Read Position ... 488
◦ Step #8: Restoring the Last-Read Position 489
◦ Step #9: Keeping the Screen On .. 489
◦ In Our Next Episode… .. 490

vii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• SQLite Databases
◦ Introducing SQLite .. 491
◦ Thinking About Schemas .. 492
◦ Start with a Helper .. 492
◦ Getting Data Out ... 497
◦ The Rest of the CRUD ... 503
◦ Leveraging ROWID ... 508
◦ Hey, What About Hibernate? .. 509
◦ Visit the Trails! .. 509

• Tutorial #14 - Saving Notes
◦ Step #1: Adding a DatabaseHelper .. 511
◦ Step #2: Examining DatabaseHelper ... 513
◦ Step #3: Creating a NoteFragment ... 514
◦ Step #4: Examining NoteFragment .. 516
◦ Step #5: Creating the NoteActivity ... 516
◦ Step #6: Loading and Saving Notes .. 518
◦ Step #7: Add Notes to the Action Bar ... 521
◦ Step #8: Support Deleting Notes .. 523
◦ In Our Next Episode… .. 531

• Internet Access
◦ DIY HTTP ... 533
◦ HTTP via DownloadManager ... 544
◦ Using Third-Party JARs ... 545
◦ SSL .. 545
◦ Using HTTP Client Libraries ... 546
◦ Visit the Trails ... 566

• Intents, Intent Filters, Broadcasts, and Broadcast Receivers
◦ What’s Your Intent? ... 567
◦ Stating Your Intent(ions) ... 569
◦ Responding to Implicit Intents ... 570
◦ Requesting Implicit Intents .. 572
◦ Broadcasts and Receivers .. 576
◦ Example System Broadcasts .. 578
◦ Downloading Files ... 585
◦ The Order of Things .. 597
◦ Keeping It Local .. 598

• Tutorial #15 - Sharing Your Notes
◦ Step #1: Adding a Share Action Bar Item .. 599
◦ Step #2: Sharing the Note .. 600
◦ Step #3: Tying Them Together .. 601
◦ Step #4: Testing the Result .. 601

viii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ In Our Next Episode… ... 602
• Services and the Command Pattern

◦ Why Services? .. 603
◦ Setting Up a Service .. 604
◦ Communicating To Services .. 606
◦ Scenario: The Music Player .. 608
◦ Communicating From Services .. 611
◦ Scenario: The Downloader .. 613

• Tutorial #16 - Updating the Book
◦ Step #1: Adding a Stub DownloadCheckService 620
◦ Step #2: Tying the Service Into the Action Bar 621
◦ Step #3: Adding a Stub DownloadCompleteReceiver 622
◦ Step #4: Completing the DownloadCheckService 623
◦ Step #5: Adding a Stub DownloadInstallService 627
◦ Step #6: Completing the DownloadCompleteReceiver 628
◦ Step #7: Completing the DownloadInstallService 629
◦ Step #8: Updating ModelFragment .. 631
◦ Step #9: Adding a BroadcastReceiver to EmPubLiteActivity 634
◦ Step #10: Discussing the Flaws .. 638
◦ In Our Next Episode… ... 638

• AlarmManager and the Scheduled Service Pattern
◦ Scenarios .. 639
◦ Options .. 640
◦ A Simple Example .. 642
◦ The Five set…() Varieties .. 644
◦ The Four Types of Alarms .. 646
◦ When to Schedule Alarms ... 646
◦ Get Moving, First Thing ... 648
◦ Archetype: Scheduled Service Polling .. 651
◦ Staying Awake at Work ... 655
◦ Warning: Not All Android Devices Play Nice 658
◦ Debugging Alarms .. 659
◦ WakefulBroadcastReceiver ... 666

• Tutorial #17 - Periodic Book Updates
◦ Step #1: Adding a Stub UpdateReceiver ... 671
◦ Step #2: Scheduling the Alarms .. 673
◦ Step #3: Adding the WakefulIntentService 674
◦ Step #4: Using WakefulIntentService ... 675
◦ Step #5: Completing the UpdateReceiver 676
◦ In Our Next Episode… .. 676

• Notifications

ix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ What’s a Notification? ... 677
◦ Showing a Simple Notification .. 679
◦ Seeking Some Order ... 684
◦ Big (and Rich) Notifications .. 690
◦ Foreground Services ... 697
◦ Disabled Notifications ... 701

• Tutorial #18 - Notifying the User
◦ Step #1: Adding the InstallReceiver .. 703
◦ Step #2: Completing the InstallReceiver .. 705
◦ In Our Next Episode… .. 706

• Large-Screen Strategies and Tactics
◦ Objective: Maximum Gain, Minimum Pain 707
◦ The Fragment Strategy .. 707
◦ Fragment Example: The List-and-Detail Pattern 716
◦ Other European Flavors .. 728
◦ Showing More Pages ... 741
◦ Fragment FAQs .. 745
◦ Screen Size and Density Tactics ... 746
◦ Other Considerations .. 749

• Tutorial #19 - Supporting Large Screens
◦ Step #1: Creating Our Layouts .. 753
◦ Step #2: Loading Our Sidebar Widgets .. 757
◦ Step #3: Opening the Sidebar ... 758
◦ Step #4: Loading Content Into the Sidebar 759
◦ Step #5: Removing Content From the Sidebar 762

• Backwards Compatibility Strategies and Tactics
◦ Think Forwards, Not Backwards .. 765
◦ Aim Where You Are Going ... 767
◦ A Target-Rich Environment .. 767
◦ Lint: It’s Not Just For Belly Buttons ... 769
◦ A Little Help From Your Friends ... 769
◦ Avoid the New on the Old .. 770
◦ Testing .. 774
◦ Keeping Track of Changes ... 774

• Getting Help
◦ Questions. Sometimes, With Answers. .. 777
◦ Heading to the Source ... 778
◦ Getting Your News Fix ... 779

• Introducing GridLayout
◦ Prerequisites ... 781
◦ Issues with the Classic Containers ... 781

x

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ The New Contender: GridLayout ... 783
◦ GridLayout and the Android Support Package 784
◦ Eclipse and GridLayout ... 785
◦ Trying to Have Some Rhythm ... 785
◦ Our Test App .. 786
◦ Replacing the Classics ... 788
◦ Implicit Rows and Columns .. 795
◦ Row and Column Spans .. 797
◦ Should You Use GridLayout? .. 801

• Dialogs and DialogFragments
◦ Prerequisites ... 803
◦ DatePickerDialog and TimePickerDialog .. 803
◦ AlertDialog .. 809
◦ DialogFragments .. 810
◦ DialogFragment: The Other Flavor .. 814
◦ Dialogs: Modal, Not Blocking ... 815

• Advanced ListViews
◦ Prerequisites ... 817
◦ Multiple Row Types, and Self Inflation .. 817
◦ Choice Modes and the Activated Style ... 823
◦ Custom Mutable Row Contents .. 824
◦ From Head To Toe ... 830

• Action Bar Navigation
◦ Prerequisites ... 835
◦ List Navigation ... 835
◦ Tabs (And Sometimes List) Navigation .. 840
◦ Custom Navigation ... 846

• Action Modes and Context Menus
◦ Prerequisites .. 848
◦ Another Wee Spot O’ History .. 848
◦ Manual Action Modes ... 849
◦ Multiple-Modal-Choice Action Modes .. 854
◦ Long-Click To Initiate an Action Mode ... 859
◦ Split Action Modes ... 864
◦ What Came Before: Context Menus .. 866

• ActionBarCompat: The Official Action Bar Backport
◦ Prerequisites .. 869
◦ Using the ActionBarCompat .. 869
◦ Choosing a Backport ... 875

• Other Advanced Action Bar Techniques
◦ Prerequisites ... 877

xi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Action Layouts, Action Views, and Action Providers 877
◦ Searching with SearchView .. 878

• Implementing a Navigation Drawer
◦ Prerequisites ... 885
◦ What is a Navigation Drawer? .. 885
◦ A Simple Navigation Drawer ... 887
◦ Alternative Row Layouts ... 893
◦ Additional Considerations ... 895
◦ What Should Not Be in the Drawer .. 904
◦ Independent Implementations .. 904

• Advanced Uses of WebView
◦ Prerequisites .. 907
◦ Friends with Benefits .. 907
◦ Turnabout is Fair Play .. 913
◦ Navigating the Waters ... 917
◦ Settings, Preferences, and Options (Oh, My!) 918

• The Input Method Framework
◦ Prerequisites ... 919
◦ Keyboards, Hard and Soft ... 919
◦ Tailored To Your Needs .. 920
◦ Tell Android Where It Can Go .. 924
◦ Fitting In .. 926
◦ Jane, Stop This Crazy Thing! .. 928

• Fonts
◦ Prerequisites ... 931
◦ Love The One You’re With .. 931
◦ Here a Glyph, There a Glyph .. 935

• Rich Text
◦ Prerequisites ... 937
◦ The Span Concept .. 937
◦ Loading Rich Text .. 939
◦ Editing Rich Text ... 941
◦ Saving Rich Text .. 946
◦ Manipulating Rich Text ... 947

• Custom Drawables
◦ Prerequisites .. 949
◦ ColorDrawable .. 950
◦ AnimationDrawable ... 950
◦ StateListDrawable .. 953
◦ LayerDrawable ... 955
◦ TransitionDrawable .. 956

xii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ LevelListDrawable ... 957
◦ ScaleDrawable and ClipDrawable .. 958
◦ InsetDrawable ... 967
◦ ShapeDrawable ... 968
◦ BitmapDrawable ... 978
◦ Composite Drawables .. 985
◦ XML Drawables and Eclipse .. 989
◦ A Stitch In Time Saves Nine .. 989

• Animators
◦ Prerequisites .. 999
◦ ViewPropertyAnimator .. 999
◦ The Foundation: Value and Object Animators 1004
◦ Animating Custom Types .. 1007
◦ Hardware Acceleration .. 1008
◦ The Three-Fragment Problem .. 1009

• Legacy Animations
◦ Prerequisites .. 1021
◦ It’s Not Just For Toons Anymore .. 1021
◦ A Quirky Translation .. 1022
◦ Fading To Black. Or Some Other Color. ... 1026
◦ When It’s All Said And Done .. 1028
◦ Loose Fill .. 1029
◦ Hit The Accelerator ... 1029
◦ Animate. Set. Match. ... 1030
◦ Active Animations .. 1031

• Mapping with Maps V2
◦ Prerequisites .. 1033
◦ A Brief History of Mapping on Android .. 1034
◦ Where You Can Use Maps V2 .. 1035
◦ Licensing Terms for Maps V2 ... 1035
◦ What You Need to Start ... 1036
◦ The Book Samples… And You! .. 1039
◦ Setting Up a Basic Map ... 1039
◦ Playing with the Map .. 1046
◦ Placing Simple Markers .. 1051
◦ Seeing All the Markers .. 1054
◦ Flattening and Rotating Markers .. 1056
◦ Sprucing Up Your “Info Windows” ... 1060
◦ Images and Your Info Window ... 1064
◦ Setting the Marker Icon ... 1071
◦ Responding to Taps ... 1072

xiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Dragging Markers ... 1074
◦ The “Final” Limitations ... 1076
◦ A Bit More About IPC .. 1079
◦ Finding the User .. 1080
◦ Drawing Lines and Areas .. 1084
◦ Gestures and Controls ... 1087
◦ Tracking Camera Changes .. 1088
◦ Maps in Fragments and Pagers ... 1090
◦ Animating Marker Movement ... 1095
◦ Maps, of the Indoor Variety ... 1103
◦ Taking a Snapshot of a Map ... 1104
◦ MapFragment vs. MapView ... 1105
◦ Maps and ActionBarSherlock .. 1105
◦ About That AbstractMapActivity Class… .. 1108
◦ Helper Libraries for Maps V2 .. 1112
◦ Problems with Maps V2 at Runtime 1116
◦ Problems with Maps V2 Deployment .. 1116
◦ What Non-Compliant Devices Show ... 1116
◦ Mapping Alternatives .. 1117
◦ News and Getting Help ... 1117

• Crafting Your Own Views
◦ Prerequisites ... 1119
◦ Pick Your Poison .. 1119
◦ Colors, Mixed How You Like Them .. 1121
◦ ReverseChronometer: Simply a Custom Subclass 1131
◦ AspectLockedFrameLayout: A Custom Container 1136
◦ Mirror and MirroringFrameLayout: Draw It Yourself 1139

• Custom Dialogs and Preferences
◦ Prerequisites .. 1149
◦ Your Dialog, Chocolate-Covered ... 1149
◦ Preferring Your Own Preferences, Preferably 1153

• Progress Indicators
◦ Prerequisites ... 1161
◦ Progress Bars .. 1161
◦ ProgressBar and Threads ... 1164
◦ Tailoring Progress Bars ... 1167
◦ Progress Dialogs ... 1175
◦ Title Bar and Action Bar Progress Indicators 1177
◦ Action Bar Refresh-and-Progress Items .. 1179
◦ Direct Progress Indication ... 1182

• Advanced Notifications

xiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Prerequisites .. 1185
◦ Custom Views: or How Those Progress Bars Work 1185
◦ Seeing It In Action .. 1187
◦ How You Really Do Progress Notifications 1192
◦ Life After Delete .. 1195
◦ The Mysterious Case of the Missing Number 1196

• More Fun with Pagers
◦ Prerequisites .. 1197
◦ ViewPager with Action Bar Tabs ... 1197
◦ Using ViewPagerIndicator ... 1201
◦ Columns for Large, Pages for Small ... 1205
◦ Introducing ArrayPagerAdapter ... 1211
◦ Columns for Large Landscape, Pages for the Rest 1214
◦ Adding, Removing, and Moving Pages .. 1219
◦ Inside ArrayPagerAdapter ... 1223

• Focus Management and Accessibility
◦ Prerequisites .. 1237
◦ Prepping for Testing ... 1238
◦ Controlling the Focus ... 1238
◦ Accessibility and Focus .. 1247
◦ Accessibility Beyond Focus ... 1248
◦ Accessibility Beyond Impairment .. 1258

• Miscellaneous UI Tricks
◦ Prerequisites .. 1261
◦ Full-Screen and Lights-Out Modes ... 1261
◦ Offering a Delayed Timeout .. 1272

• Event Buses
◦ Prerequisites .. 1277
◦ A Brief Note About the Sample Apps .. 1277
◦ What Is an Event Bus? .. 1278
◦ Standard Intents as Event Bus ... 1278
◦ LocalBroadcastManager as Event Bus ... 1279
◦ Square’s Otto .. 1289
◦ greenrobot’s EventBus .. 1295

• Home Screen App Widgets
◦ Prerequisites .. 1301
◦ East is East, and West is West… ... 1302
◦ The Big Picture for a Small App Widget ... 1302
◦ Crafting App Widgets ... 1303
◦ Another and Another ... 1310
◦ App Widgets: Their Life and Times ... 1311

xv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Controlling Your (App Widget’s) Destiny .. 1311
◦ Change Your Look .. 1312
◦ One Size May Not Fit All ... 1313
◦ Lockscreen Widgets ... 1320
◦ Preview Images ... 1326
◦ Being a Good Host .. 1328

• Adapter-Based App Widgets
◦ Prerequisites .. 1329
◦ AdapterViews for App Widgets ... 1329
◦ Building Adapter-Based App Widgets 1330

• Content Provider Theory
◦ Prerequisites .. 1345
◦ Using a Content Provider .. 1345
◦ Building Content Providers .. 1353
◦ Issues with Content Providers ... 1359

• Content Provider Implementation Patterns
◦ Prerequisites .. 1361
◦ The Single-Table Database-Backed Content Provider 1361
◦ The Local-File Content Provider .. 1369
◦ The Protected Provider .. 1376
◦ The Stream Provider ... 1378
◦ FileProvider ... 1381
◦ StreamProvider ... 1385

• The Loader Framework
◦ Prerequisites .. 1387
◦ Cursors: Issues with Management .. 1388
◦ Introducing the Loader Framework 1388
◦ Honeycomb… Or Not .. 1390
◦ Using CursorLoader ... 1390
◦ What Else Is Missing? .. 1392
◦ Issues, Issues, Issues ... 1393
◦ Loaders Beyond Cursors ... 1393
◦ What Happens When…? .. 1393

• The ContactsContract Provider
◦ Prerequisites .. 1397
◦ Introducing You to Your Contacts .. 1398
◦ Pick a Peck of Pickled People ... 1399
◦ Spin Through Your Contacts ... 1402
◦ Makin’ Contacts ... 1411

• The CalendarContract Provider
◦ Prerequisites .. 1418

xvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ You Can’t Be a Faker ... 1418
◦ Do You Have Room on Your Calendar? .. 1418
◦ Penciling In an Event .. 1423

• The MediaStore Provider
◦ Prerequisites .. 1425
◦ What Is the MediaStore? ... 1426
◦ MediaStore and “Other” External Storage 1427
◦ How Does My Content Get Indexed? ... 1428
◦ How Do I Retrieve Video from the MediaStore? 1428

• Encrypted Storage
◦ Prerequisites ... 1438
◦ Scenarios for Encryption ... 1438
◦ Obtaining SQLCipher ... 1439
◦ Employing SQLCipher ... 1439
◦ SQLCipher Limitations ... 1442
◦ Passwords and Sessions ... 1443
◦ About Those Passphrases… .. 1443
◦ Encrypted Preferences .. 1451
◦ IOCipher .. 1453

• Packaging and Distributing Data
◦ Prerequisites .. 1455
◦ Packing a Database To Go .. 1455

• Audio Playback
◦ Prerequisites .. 1461
◦ Get Your Media On ... 1461
◦ MediaPlayer for Audio ... 1462
◦ Other Ways to Make Noise ... 1468

• Audio Recording
◦ Prerequisites .. 1471
◦ Recording by Intent .. 1471
◦ Recording to Files ... 1474
◦ Recording to Streams ... 1477
◦ Raw Audio Input .. 1480
◦ Requesting the Microphone ... 1480

• Video Playback
◦ Prerequisites ... 1483
◦ Moving Pictures ... 1483

• Using the Camera via 3rd-Party Apps
◦ Prerequisites ... 1489
◦ Being Specific About Features .. 1489
◦ Still Photos: Letting the Camera App Do It 1490

xvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Scanning with ZXing ... 1492
◦ Videos: Letting the Camera App Do It ... 1493
◦ Directly Working with the Camera .. 1495

• Working Directly with the Camera
◦ Prerequisites ... 1497
◦ Basic CameraFragment Usage .. 1498
◦ Simple Configuration and Usage ... 1499
◦ Core Camera Concepts .. 1506
◦ Advanced CWAC-Camera Features .. 1528

• Media Routes
◦ Prerequisites ... 1537
◦ Terminology .. 1537
◦ A Tale of Three MediaRouters ... 1538
◦ Attaching to MediaRouter ... 1540
◦ User Route Selection with MediaRouteActionProvider 1541
◦ Using Live Audio Routes .. 1558
◦ Using Live Video Routes .. 1558
◦ Using Remote Playback Routes ... 1558

• Supporting External Displays
◦ Prerequisites .. 1577
◦ A History of external displays .. 1577
◦ What is a Presentation? ... 1578
◦ Playing with External Displays ... 1579
◦ Detecting Displays .. 1585
◦ A Simple Presentation ... 1586
◦ A Simpler Presentation .. 1591
◦ Presentations and Configuration Changes 1596
◦ Presentations as Fragments ... 1597
◦ Another Sample Project: Slides .. 1607
◦ Device Support for Presentation ... 1614
◦ Hey, What About Chromecast? .. 1615

• Google Cast and Chromecast
◦ Prerequisites ... 1617
◦ Here a Cast, There a Cast ... 1617
◦ Common Chromecast Development Notes 1619
◦ Your API Choices .. 1619
◦ Senders and Receivers ... 1620
◦ Supported Media Types .. 1621
◦ Cast SDK Dependencies .. 1622
◦ Developing Google Cast Apps .. 1624

• SSL

xviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Prerequisites .. 1625
◦ Basic SSL Operation .. 1625
◦ Certificate Verification .. 1626
◦ About That Man in the Middle ... 1628
◦ Certificate Memorizing ... 1630
◦ Pinning ... 1630
◦ NetCipher .. 1631

• Advanced Permissions
◦ Prerequisites .. 1635
◦ Securing Yourself .. 1635
◦ Signature Permissions ... 1638
◦ The Custom Permission Vulnerability ... 1640

• Restricted Profiles and UserManager
◦ Prerequisites .. 1651
◦ Android Tablets and Multiple User Accounts 1651
◦ Determining What the User Can Do ... 1657
◦ Impacts of Device-Level Restrictions ... 1660
◦ Enabling Custom Restrictions .. 1660
◦ Implicit Intents May Go “Boom” ... 1671
◦ The Future: App Ops? .. 1671

• Tapjacking
◦ Prerequisites .. 1673
◦ What is Tapjacking? ... 1673
◦ Detecting Potential Tapjackers ... 1678
◦ Defending Against Tapjackers .. 1680
◦ Why Is This Being Discussed? .. 1683
◦ What Changed in 4.0.3? .. 1684

• Miscellaneous Security Techniques
◦ Prerequisites ... 1685
◦ Public Key Validation .. 1685
◦ Choosing Your Signing Keysize .. 1700
◦ Avoiding Accidental APIs ... 1701
◦ Other Ways to Expose Data ... 1706

• Accessing Location-Based Services
◦ Prerequisites ... 1709
◦ Location Providers: They Know Where You’re Hiding 1710
◦ Finding Yourself .. 1710
◦ On the Move ... 1712
◦ Are We There Yet? Are We There Yet? Are We There Yet? 1713
◦ Testing… Testing… ... 1714
◦ Alternative Flavors of Updates ... 1715

xix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ The Fused Option ... 1716
• The Fused Location Provider

◦ Prerequisites .. 1717
◦ Why Use the Fused Location Provider? .. 1717
◦ Why Not Use the Fused Location Provider? 1718
◦ Finding Our Location, Once .. 1718
◦ Requesting Location Updates .. 1726
◦ Gaps in the Fused Location Provider .. 1728

• Working with the Clipboard
◦ Prerequisites .. 1729
◦ Using the Clipboard on Android 1.x/2.x .. 1729
◦ Advanced Clipboard on Android 3.x and Higher 1732
◦ Monitoring the Clipboard .. 1737
◦ The Android 4.3 Clipboard Bug ... 1739

• Telephony
◦ Prerequisites .. 1741
◦ Report To The Manager .. 1742
◦ You Make the Call! .. 1742
◦ No, Really, You Make the Call! ... 1745

• Working With SMS
◦ Prerequisites .. 1747
◦ Sending Out an SOS, Give or Take a Letter 1748
◦ Monitoring and Receiving SMS .. 1755
◦ The SMS Inbox .. 1761
◦ Asking to Change the Default .. 1762
◦ SMS and the Emulator ... 1763

• NFC
◦ Prerequisites .. 1765
◦ What Is NFC? .. 1765
◦ To NDEF, Or Not to NDEF ... 1767
◦ NDEF Modalities .. 1767
◦ NDEF Structure and Android’s Translation 1768
◦ The Reality of NDEF .. 1769
◦ Sources of Tags .. 1771
◦ Writing to a Tag .. 1771
◦ Responding to a Tag ... 1779
◦ Expected Pattern: Bootstrap ... 1780
◦ Mobile Devices are Mobile ... 1781
◦ Enabled and Disabled .. 1781
◦ Android Beam ... 1782
◦ Beaming Files ... 1788

xx

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Another Sample: SecretAgentMan ... 1790
◦ Additional Resources ... 1799

• Device Administration
◦ Prerequisites .. 1801
◦ Objectives and Scope .. 1801
◦ Defining and Registering an Admin Component 1802
◦ Going Into Lockdown .. 1808
◦ Passwords and Device Administration .. 1815
◦ Getting Along with Others .. 1819

• PowerManager and WakeLocks
◦ Prerequisites .. 1821
◦ Keeping the Screen On, UI-Style ... 1821
◦ The Role of the WakeLock ... 1822
◦ What WakefulIntentService Does ... 1823

• Push Notifications with GCM
◦ Prerequisites .. 1825
◦ The Precursor: C2DM .. 1826
◦ The Replacement: GCM .. 1826
◦ The Re-Replacement: GCM 2013 .. 1826
◦ The Pieces of Push ... 1827
◦ A Simple Push .. 1833
◦ Message Options and Advanced Features 1847
◦ Re-Registration .. 1848
◦ Pre-Release Features .. 1849
◦ Considering Encryption ... 1851
◦ Issues with GCM ... 1852
◦ Amazon Simple Notification Service and GCM 1853

• Basic Use of Sensors
◦ Prerequisites .. 1855
◦ The Sensor Abstraction Model .. 1855
◦ Considering Rates .. 1856
◦ Reading Sensors ... 1857
◦ Batching Sensor Readings ... 1867

• Other System Settings and Services
◦ Prerequisites ... 1869
◦ Setting Expectations .. 1869
◦ Can You Hear Me Now? OK, How About Now? 1874
◦ The Rest of the Gang ... 1877

• Dealing with Different Hardware
◦ Prerequisites ... 1879
◦ Filtering Out Devices .. 1879

xxi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Runtime Capability Detection .. 1882
◦ Dealing with Device Bugs ... 1883

• Responding to URLs
◦ Prerequisites ... 1885
◦ Manifest Modifications ... 1885
◦ Creating a Custom URL ... 1887
◦ Reacting to the Link .. 1888

• Plugin Patterns
◦ Prerequisites .. 1891
◦ Definitions, Scenarios, and Scope ... 1891
◦ The Keys to Any Plugin System .. 1892
◦ Case Study: DashClock .. 1900
◦ Other Plugin Examples ... 1903

• PackageManager Tricks
◦ Prerequisites .. 1921
◦ Asking Around .. 1921
◦ Preferred Activities ... 1925
◦ Middle Management ... 1930

• Searching with SearchManager
◦ Prerequisites .. 1933
◦ Hunting Season ... 1933
◦ Search Yourself .. 1935
◦ Searching for Meaning In Randomness ... 1942
◦ May I Make a Suggestion? ... 1943
◦ Putting Yourself (Almost) On Par with Google 1947

• Handling System Events
◦ Prerequisites .. 1953
◦ I Sense a Connection Between Us… ... 1953
◦ Feeling Drained ... 1955

• Remote Services and the Binding Pattern
◦ Prerequisites ... 1963
◦ The Binding Pattern .. 1964
◦ When IPC Attacks! .. 1972
◦ Service From Afar ... 1974
◦ Servicing the Service ... 1979
◦ Thinking About Security ... 1985
◦ The “Everlasting Service” Anti-Pattern .. 1985

• Advanced Manifest Tips
◦ Prerequisites ... 1987
◦ Just Looking For Some Elbow Room .. 1987
◦ Using an Alias .. 1994

xxii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Getting Meta (Data) .. 1996
• Miscellaneous Integration Tips

◦ Prerequisites ... 2001
◦ Take the Shortcut ... 2001
◦ Homing Beacons for Intents .. 2008
◦ ShareActionProvider .. 2008

• Reusable Components
◦ Prerequisites .. 2013
◦ Where Do I Find Them? .. 2013
◦ How Are They Packaged? .. 2014
◦ How Do I Create Them? ... 2015
◦ The Future: AAR .. 2018
◦ Other Considerations for Publishing Reusable Code 2018

• The Role of Scripting Languages
◦ Prerequisites ... 2023
◦ All Grown Up ... 2023
◦ Following the Script .. 2024
◦ Going Off-Script .. 2025

• The Scripting Layer for Android
◦ Prerequisites ... 2029
◦ The Role of SL4A ... 2029
◦ Getting Started with SL4A .. 2030
◦ Writing SL4A Scripts ... 2038
◦ Running SL4A Scripts .. 2043
◦ Potential Issues ... 2046

• JVM Scripting Languages
◦ Prerequisites .. 2049
◦ Languages on Languages ... 2049
◦ A Brief History of JVM Scripting .. 2050
◦ Limitations ... 2051
◦ SL4A and JVM Languages ... 2052
◦ Embedding JVM Languages .. 2052
◦ Other JVM Scripting Languages .. 2066

• JUnit and Android
◦ Prerequisites .. 2069
◦ You Get What They Give You .. 2069
◦ Your Test Cases .. 2072
◦ Your Test Suite ... 2077
◦ Running Your Tests .. 2078

• MonkeyRunner and the Test Monkey
◦ Prerequisites ... 2081

xxiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ MonkeyRunner .. 2081
◦ Monkeying Around .. 2083

• Testing with UIAutomator
◦ Prerequisites ... 2085
◦ What Is UIAutomator? .. 2085
◦ Why Choose UIAutomator Over Alternatives? 2085
◦ Creating Some Tests ... 2086
◦ Running Your Tests .. 2095
◦ Finding Your Widgets ... 2096
◦ Limitations of uiautomator .. 2096

• Introducing Gradle
◦ Prerequisites and Warnings ... 2099
◦ The Big Questions .. 2099
◦ Obtaining Gradle .. 2102
◦ Versions of Gradle and Gradle for Android 2103
◦ Gradle Environment Variables .. 2104
◦ Some Brief Words About Maven .. 2104
◦ Learning More About Gradle .. 2104

• Gradle and Legacy Projects
◦ Prerequisites and Warnings ... 2105
◦ “Legacy”? ... 2105
◦ Creating Your Gradle Build File .. 2106
◦ Running a Gradle Build ... 2111
◦ Examining the Gradle File .. 2113

• Gradle and the New Project Structure
◦ Prerequisites and Warnings ... 2121
◦ Objectives of the New Project Structure ... 2122
◦ Terminology .. 2122
◦ Creating a Project in the New Structure .. 2126
◦ What the New Project Structure Looks Like 2126
◦ Configuring the Stock Build Types .. 2129
◦ Adding Build Types .. 2135
◦ Adding Product Flavors and Getting Build Variants 2137
◦ Revisiting the Legacy Gradle File ... 2141

• Gradle and Dependencies
◦ Prerequisites and Warnings ... 2143
◦ “Dependencies”? .. 2144
◦ The Dependencies Block… and the Other Dependencies Block .. 2144
◦ Depending Upon a JAR ... 2144
◦ Depending Upon NDK Binaries ... 2146
◦ Depending Upon an Android Library Project 2146

xxiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Depending Upon Sub-Projects ... 2147
◦ Depending Upon Artifacts .. 2149
◦ Creating Android JARs from Gradle .. 2156
◦ A Property of Transitive (Dependencies) .. 2157
◦ Dependencies By Build Type ... 2157
◦ Dependencies By Flavor ... 2158
◦ Examining Some CWAC Builds ... 2159

• Gradle and Testing
◦ Prerequisites and Warnings .. 2165
◦ JUnit/Instrumentation Testing ... 2166
◦ Other Types of Testing ... 2171

• Advanced Gradle for Android Tips
◦ Prerequisites .. 2173
◦ Supporting AIDL .. 2173
◦ Supporting the NDK ... 2175
◦ Gradle, DRY ... 2181
◦ Automating APK Version Information ... 2186
◦ Adding to BuildConfig ... 2189

• Advanced Emulator Capabilities
◦ Prerequisites .. 2193
◦ x86 Images .. 2193
◦ Hardware Graphics Acceleration .. 2196
◦ Defining New Devices ... 2199
◦ Keyboard Behavior ... 2202
◦ Headless Operation ... 2202

• Using Lint
◦ Prerequisites ... 2203
◦ What It Is .. 2203
◦ When It Runs ... 2204
◦ What to Fix ... 2206
◦ What to Configure ... 2206

• Using Hierarchy View
◦ Prerequisites .. 2211
◦ Launching Hierarchy View .. 2211
◦ Viewing the View Hierarchy .. 2212
◦ ViewServer .. 2215

• Using DDMS
◦ Prerequisites .. 2217
◦ Starting DDMS .. 2217
◦ File Push and Pull .. 2218
◦ Screenshots .. 2219

xxv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Location Updates ... 2219
◦ Placing Calls and Messages ... 2220

• Android Development in IntelliJ IDEA
◦ Prerequisites ... 2223
◦ Creating a New Project .. 2223
◦ Importing an Existing Project ... 2226
◦ Attaching a JAR .. 2236
◦ Accessing Android Tools ... 2238
◦ Run and Debug a Project .. 2240
◦ Editing Android-Specific Files .. 2241
◦ IDEA-Specific Files .. 2243
◦ Using MAT ... 2243

• Signing Your App
◦ Prerequisites ... 2245
◦ Role of Code Signing ... 2245
◦ What Happens In Debug Mode .. 2246
◦ Creating a Production Signing Key .. 2246

• Distribution
◦ Prerequisites ... 2253
◦ Get Ready To Go To Market .. 2253

• Issues with Speed
◦ Prerequisites ... 2259
◦ Getting Things Done ... 2259
◦ Your UI Seems… Janky ... 2260
◦ Not Far Enough in the Background .. 2260
◦ Playing with Speed .. 2261

• Finding CPU Bottlenecks
◦ Prerequisites ... 2263
◦ Traceview .. 2264
◦ Other General CPU Measurement Techniques 2273
◦ UI “Jank” Measurement ... 2275

• Focus On: NDK
◦ Prerequisites ... 2291
◦ The Role of the NDK ... 2292
◦ NDK Installation and Project Setup ... 2295
◦ Writing Your Makefile(s) .. 2299
◦ Building Your Library .. 2300
◦ Using Your Library Via JNI ... 2301
◦ Building and Deploying Your Project ... 2306

• Improving CPU Performance in Java
◦ Prerequisites ... 2309

xxvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Reduce CPU Utilization .. 2309
◦ Reduce Time on the Main Application Thread 2314
◦ Improve Throughput and Responsiveness 2322

• Finding and Eliminating Jank
◦ Prerequisites ... 2325
◦ The Case: ThreePaneDemoBC .. 2325
◦ Are We Janky? .. 2326
◦ Finding the Source of the Jank ... 2326
◦ Where Things Went Wrong .. 2336
◦ Removing the Jank ... 2337

• Issues with Bandwidth
◦ Prerequisites ... 2339
◦ You’re Using Too Much of the Slow Stuff 2340
◦ You’re Using Too Much of the Expensive Stuff 2340
◦ You’re Using Too Much of Somebody Else’s Stuff 2341
◦ You’re Using Too Much… And There Is None 2342

• Focus On: TrafficStats
◦ Prerequisites ... 2343
◦ TrafficStats Basics .. 2343
◦ Example: TrafficMonitor ... 2345
◦ Other Ways to Employ TrafficStats .. 2353

• Measuring Bandwidth Consumption
◦ Prerequisites ... 2355
◦ On-Device Measurement .. 2355
◦ Off-Device Measurement .. 2357
◦ Tactical Measurement in DDMS .. 2359

• Being Smarter About Bandwidth
◦ Prerequisites ... 2363
◦ Bandwidth Savings .. 2363
◦ Bandwidth Shaping ... 2369
◦ Avoiding Metered Connections .. 2372

• Issues with Memory
◦ Prerequisites ... 2375
◦ You Are in a Heap of Trouble .. 2375
◦ Warning: Contains Graphic Images ... 2376
◦ Fragments of Memory ... 2377
◦ In Too Deep (on the Stack) ... 2378

• Finding Memory Leaks with MAT
◦ Prerequisites .. 2381
◦ Setting Up MAT .. 2381
◦ Getting Heap Dumps ... 2382

xxvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Basic MAT Operation .. 2388
◦ Some Leaks and Their MAT Analysis ... 2394

• Issues with Battery Life
◦ Prerequisites ... 2403
◦ You’re Getting Blamed .. 2404
◦ Not All Batteries Are Created Equal ... 2405
◦ Stretching Out the Last mWh .. 2405

• Power Measurement Options
◦ Prerequisites ... 2407
◦ The Qualcomm Tool (That Must Not Be Named) 2408
◦ PowerTutor .. 2409
◦ Battery Screen in Settings Application ... 2413
◦ BatteryInfo Dump ... 2415

• Sources of Power Drain
◦ Prerequisites ... 2419
◦ Screen ... 2420
◦ Disk I/O .. 2421
◦ WiFi and Mobile Data ... 2422
◦ GPS ... 2425
◦ Camera ... 2426
◦ Additional Sources ... 2426

• Addressing Application Size Issues
◦ Prerequisites .. 2429
◦ Java Code, and the 64K Method Limit 2429
◦ Native Code .. 2433
◦ Images ... 2435
◦ APK Expansion Files .. 2437

• The Role of Alternative Environments
◦ Prerequisites ... 2439
◦ In the Beginning, There Was Java… ... 2440
◦ … And It Was OK .. 2440
◦ Bucking the Trend ... 2441
◦ Support, Structure ... 2441
◦ Caveat Developer ... 2442

• HTML5
◦ Prerequisites ... 2443
◦ Offline Applications .. 2443
◦ Web Storage ... 2450
◦ Going To Production ... 2453
◦ Issues You May Encounter .. 2454
◦ HTML5: The Baseline .. 2457

xxviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• PhoneGap
◦ Prerequisites ... 2459
◦ What Is PhoneGap? ... 2459
◦ Using PhoneGap .. 2462
◦ PhoneGap and the Checklist Sample ... 2467
◦ Issues You May Encounter .. 2472
◦ For More Information ... 2475

• Other Alternative Environments
◦ Prerequisites ... 2477
◦ Rhodes .. 2477
◦ Flash, Flex, and AIR ... 2478
◦ JRuby and Ruboto .. 2478
◦ App Inventor .. 2479
◦ Titanium Mobile .. 2481
◦ Other JVM Compiled Languages .. 2482

• Anti-Patterns
◦ Prerequisites ... 2485
◦ Leak Threads… Or Things Attached to Threads 2485
◦ Use Large Heap Unnecessarily .. 2487
◦ Misuse the MENU Button .. 2489
◦ Interfere with Navigation ... 2490
◦ Use android:sharedUserId .. 2492
◦ Implement a “Quit” Button ... 2493
◦ Terminate Your Process ... 2495
◦ Try to Hide from the User .. 2496
◦ Use Multiple Processes .. 2497
◦ Hog System Resources .. 2499

• Widget Catalog: AdapterViewFlipper
◦ Key Usage Tips .. 2501
◦ A Sample Usage ... 2502
◦ Visual Representation ... 2502

• Widget Catalog: CalendarView
◦ Key Usage Tips ... 2503
◦ A Sample Usage ... 2504
◦ Visual Representation ... 2505

• Widget Catalog: DatePicker
◦ Key Usage Tips ... 2507
◦ A Sample Usage ... 2507
◦ Visual Representation ... 2509

• Widget Catalog: ExpandableListView
◦ Key Usage Tips .. 2513

xxix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ A Sample Usage .. 2514
◦ Visual Representation ... 2520

• Widget Catalog: SeekBar
◦ Key Usage Tips ... 2523
◦ A Sample Usage ... 2523
◦ Visual Representation ... 2525

• Widget Catalog: SlidingDrawer
◦ Key Usage Tips ... 2527
◦ A Sample Usage ... 2528
◦ Visual Representation ... 2529

• Widget Catalog: StackView
◦ Key Usage Tips .. 2531
◦ A Sample Usage ... 2532
◦ Visual Representation ... 2533

• Widget Catalog: TabHost and TabWidget
◦ Deprecation Notes ... 2535
◦ Key Usage Tips ... 2535
◦ A Sample Usage ... 2536
◦ Visual Representation ... 2538

• Widget Catalog: TimePicker
◦ Key Usage Tips .. 2541
◦ A Sample Usage .. 2541
◦ Visual Representation ... 2543

• Widget Catalog: ViewFlipper
◦ Key Usage Tips ... 2545
◦ A Sample Usage ... 2546
◦ Visual Representation ... 2547

• Device Catalog: Google TV
◦ Prerequisites ... 2549
◦ What Features and Configurations Does It Use? 2550
◦ What Is Really Different? ... 2551
◦ Getting Your Development Environment Established 2555
◦ How Does Distribution Work? ... 2558
◦ Getting Help ... 2559

• Device Catalog: Kindle Fire
◦ Prerequisites .. 2561
◦ Introducing the Kindle Fire series ... 2561
◦ What Features and Configurations Does It Use? 2562
◦ What Is Really Different? .. 2564
◦ Getting Your Development Environment Established 2569
◦ How Does Distribution Work? ... 2573

xxx

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Amazon Equivalents of Google Services .. 2574
◦ Getting Help with the Kindle Fire .. 2575

• Device Catalog: Barnes & Noble NOOK Tablet
◦ Prerequisites ... 2577
◦ What Features and Configurations Does It Use? 2578
◦ What Is Really Different? .. 2578
◦ Getting Your Development Environment Established 2580
◦ How Does Distribution Work? ... 2582

• Device Catalog: RIM Blackberry Playbook
◦ What Features and Configurations Does It Use? 2583
◦ What Is Really Different? .. 2584
◦ Getting Your Development Environment Established 2585
◦ How Does Distribution Work? ... 2587

• Wrist Wearables
◦ Prerequisites ... 2590
◦ Divvying Up the Wearables Space .. 2590
◦ Example Wrist Wearables .. 2591
◦ Strategic Considerations ... 2594
◦ Tactical Considerations ... 2596
◦ What About Android Wear? ... 2598

• CWAC Libraries
◦ cwac-adapter .. 2601
◦ cwac-camera .. 2601
◦ cwac-colormixer ... 2602
◦ cwac-layouts ... 2602
◦ cwac-merge .. 2602
◦ cwac-pager ... 2603
◦ cwac-presentation ... 2603
◦ cwac-provider .. 2603
◦ cwac-richedit ... 2603
◦ cwac-sacklist .. 2603
◦ cwac-security .. 2604
◦ cwac-strictmodeex .. 2604
◦ cwac-wakeful ... 2604

xxxi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Welcome to the Book!
Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to arguably the world’s most popular smartphone OS in a few short
years. Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

The Book’s Structure
Once upon a time, CommonsWare published a few books on Android development.
What you are reading represents the merger of those separate titles into a single
omnibus title.

To make the equivalent of 2,000+ pages of material manageable, the chapters are
divided into the core chapters and a series of trails.

The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic will
drift into the core — to help illustrate a point, for example — the core chapters
generally are fairly essential.

xxxiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The core chapters are designed to be read in sequence and will interleave both
traditional technical book prose with tutorial chapters (in the style of
CommonsWare’s former Android Programming Tutorials), to give you hands-on
experience with the concepts being discussed. Most of the tutorials can be skipped,
though the first two — covering setting up your SDK environment and creating a
project – everybody should read.

The bulk of the chapters are divided into trails, covering some particular general
topic, from data storage to advanced UI effects to performance measurement and
tuning. Each trail will have several chapters. However, those chapters, and the trails
themselves, are not necessarily designed to be read in any order. Each chapter in the
trails will point out prerequisite chapters or concepts that you will want to have
covered in advance. Hence, these chapters are mostly reference material, for when
you specifically want to learn something about a specific topic.

The core chapters will link to chapters in the trails, to show you where you can find
material related to the chapter you just read. So between the book’s table of
contents, this preface, the search tool in your digital book reader, and the cross-
chapter links, you should have plenty of ways of finding the material you want to
read.

You are welcome to read the entire book front-to-back if you wish. The trails will
appear after the core chapters. Those trails will be in a reasonably logical order,
though you may have to hop around a bit to cover all of the prerequisites.

The Trails
Here is a list of all of the trails and the chapters that pertain to those trails, in order
of appearance (except for those appearing in the list multiple times, where they span
major categories):

Advanced UI

• Introducing GridLayout
• Dialogs and DialogFragments
• Advanced ListViews
• Action Bar Navigation
• Action Modes and Context Menus
• ActionBarCompat: The Official Action Bar Backport
• Other Advanced Action Bar Techniques

PREFACE

xxxiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Implementing a Navigation Drawer
• Advanced Uses of WebView
• The Input Method Framework
• Fonts
• Rich Text
• Custom Drawables
• Animators
• Legacy Animations
• Mapping with Maps V2
• Crafting Your Own Views
• Custom Dialogs and Preferences
• Progress Indicators
• Advanced Notifications
• More Fun with Pagers
• Focus Management and Accessibility
• Miscellaneous UI Tricks
• Event Buses

Home Screen Effects

• Home Screen App Widgets
• Adapter-Based App Widgets

Data Storage and Retrieval

• Content Provider Theory
• Content Provider Implementation Patterns
• The Loader Framework
• The ContactsContract Provider
• The CalendarContract Provider
• The MediaStore Provider
• Encrypted Storage
• Packaging and Distributing Data

Media

• Audio Playback
• Audio Recording
• Video Playback
• Using the Camera via 3rd-Party Apps

PREFACE

xxxv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Working Directly with the Camera
• The MediaStore Provider
• Media Routes
• Supporting External Displays
• Google Cast and ChromeCast

Security

• SSL
• Encrypted Storage
• Advanced Permissions
• Restricted Profiles and UserManager
• Tapjacking
• Miscellaneous Security Techniques

Hardware and System Services

• Accessing Location-Based Services
• The Fused Location Provider
• Working with the Clipboard
• Telephony
• Working With SMS
• NFC
• Device Administration
• PowerManager and WakeLocks
• Push Notifications with GCM
• Basic Use of Sensors
• Other System Settings and Services
• Dealing with Different Hardware

Integration and Introspection

• Responding to URLs
• Plugin Patterns
• PackageManager Tricks
• Searching with SearchManager
• System Events
• Remote Services and the Binding Pattern
• Advanced Manifest Tips
• Miscellaneous Integration Tips

PREFACE

xxxvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Reusable Components

Scripting Languages

• The Role of Scripting Languages
• The Scripting Layer for Android
• JVM Scripting Languages

Testing

• JUnit and Android
• MonkeyRunner and the Test Monkey
• Testing with UIAutomator

Gradle and the New Build System

• Introducing Gradle
• Gradle and Legacy Projects
• Gradle and the New Project Structure
• Gradle and Dependencies
• Gradle and Testing
• Advanced Gradle for Android Tips

Other Tools

• Advanced Emulator Capabilities
• Using Lint
• Using Hierarchy View
• Using DDMS
• Finding CPU Bottlenecks
• Finding Memory Leaks with MAT
• Android Development with IntelliJ IDEA

Production

• Signing Your App
• Distribution

PREFACE

xxxvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tuning Android Applications

• Issues with Speed
• Finding CPU Bottlenecks
• NDK
• Improving CPU Performance in Java
• Finding and Eliminating Jank
• Issues with Bandwidth
• Focus On: TrafficStats
• Measuring Bandwidth Consumption
• Being Smarter About Bandwidth
• Issues with Memory
• Finding Memory Leaks with MAT
• Issues with Battery Life
• Other Power Measurement Options
• Sources of Power Drain
• Addressing Application Size Issues

Alternatives for App Development

• The Role of Alternative Environments
• HTML5
• PhoneGap
• Other Alternative Environments

Miscellaneous Topics

• Anti-Patterns

Widget Catalog

• AdapterViewFlipper
• CalendarView
• DatePicker
• ExpandableListView
• SeekBar
• SlidingDrawer
• StackView
• TabHost
• TimePicker

PREFACE

xxxviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• ViewFlipper

Device Catalog

• Google TV
• Kindle Fire
• Barnes & Noble NOOK Tablet
• RIM Blackberry Playbook
• Wrist Wearables

Appendices

• Appendix A: CWAC Libraries

About the Updates
This book is updated frequently, typically every 6–8 weeks.

Each release has notations to show what is new or changed compared with the
immediately preceding release:

• The Table of Contents shows sections with changes in bold-italic font
• Those sections have changebars on the right to denote specific paragraphs

that are new or modified

Warescription
You (hopefully) are reading this digital book by means of a Warescription.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other titles that CommonsWare may publish during
that subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available. For example, when new releases of the Android SDK
are made available, this book will be quickly updated to be accurate with changes in
the APIs.

PREFACE

xxxix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, you can only download the books if either you have an active
Warescription, or until the book is updated after your Warescription expires. Hence,
please download your updates as they come out. You can find out when new
releases of this book are available via:

1. The commonsguy Twitter feed
2. The CommonsBlog
3. The Warescription newsletter, which you can subscribe to off of your

Warescription page

Subscribers also have access to “office hours” — online chats to help you get answers
to your Android application development questions. You will find a calendar for
these on your Warescription page.

Getting Help
If you have questions about the book examples, visit StackOverflow and ask a
question, tagged with android and commonsware.

If you have general Android developer questions, visit StackOverflow and ask a
question, tagged with android (and any other relevant tags, such as java).

Book Bug Bounty
Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital edition, and
we will extend your Warescription by six months as a bounty for helping us deliver a
better product.

By “concrete” problem, we mean things like:

1. Typographical errors
2. Sample applications that do not work as advertised, in the environment

described in the book
3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

PREFACE

xl

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://twitter.com/commonsguy
http://commonsware.com/blog
https://wares.commonsware.com
http://stackoverflow.com
http://commonsware.com/Android/errata

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License
The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear in mind
that the projects are set up to be built by Eclipse. Many are also set up to be built by
Ant from the command line. However, for command-line builds, you will need to
update the build files to match your local environment. To do this, delete build.xml
in your project directory, then run android update project -p .android update project -p . from that same
directory. See the GitHub repo home page for more details.

If you are using Eclipse, please do NOT import all of the projects from the repo into
your main workspace. There are hundreds of these projects, and they may cause your
Eclipse environment to become very slow, particularly when starting it up. Instead,
import only those specific projects that you want to work with “live” as opposed to
simply reading about them in the book.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

PREFACE

xli

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mailto:bounty@commonsware.com
http://github.com/commonsguy/cw-omnibus
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-omnibus

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 March 2018. Of course, watch the CommonsWare Web site,
as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments
I would like to thank the Android team, not only for putting out a good product, but
for invaluable assistance on the Android Google Groups and StackOverflow.

I would also like to thank the thousands of readers of past editions of this book, for
their feedback, bug reports, and overall support.

Of course, thanks are also out to the overall Android ecosystem, particularly those
developers contributing their skills to publish libraries, write blog posts, answer
support questions, and otherwise contribute to the strength of Android.

Portions of this book are reproduced from work created and shared by the Android
Open Source Project and used according to terms described in the Creative
Commons 2.5 Attribution License.

PREFACE

xlii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Core Chapters

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Key Android Concepts

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Android Applications
This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their device.
That application should have some user interface, and it might have other code
designed to work in the background (multi-tasking).

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

This book assumes that you have some hands-on experience with Android devices,
and therefore you are familiar with buttons like HOME and BACK, the built-in
Settings application, the concept of a home screen and launcher, and so forth. If you
have never used an Android device, you are strongly encouraged to get one (e.g., a
used one on eBay, Craigslist, etc.) and spend some time with it before starting in on
learning Android application development.

1

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Programming Language

The vast majority of Android applications are written exclusively in Java. Hence, that
is what this book will spend most of its time on and will demonstrate with a
seemingly infinite number of examples.

However, there are other options:

• You can write parts of the app in C/C++, for performance gains, porting over
existing code bases, etc.

• You can write an entire app in C/C++, mostly for games using OpenGL for
3D animations

• You can write the guts of an app in HTML, CSS, and JavaScript, using tools
to package that material into an Android application that can be distributed
through the Play Store and similar venues

• And so on

Coverage of these non-Java alternatives will be found in the trails of this book, as the
bulk of this book is focused on Java.

The author assumes that you know Java at this point. If you do not, you will need to
learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

• Language fundamentals (flow control, etc.)
• Classes and objects
• Methods and data members
• Public, private, and protected
• Static and instance scope
• Exceptions
• Threads
• Collections
• Generics
• File I/O
• Reflection
• Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.

KEY ANDROID CONCEPTS

2

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals
http://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
http://en.wikibooks.org/wiki/Java_Programming/Methods
http://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
http://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers
http://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
http://en.wikibooks.org/wiki/Java_Programming/Exceptions
http://en.wikibooks.org/wiki/Java_Programming/Threads_and_Runnables
http://en.wikibooks.org/wiki/Java_Programming/Collections
http://en.wikibooks.org/wiki/Java_Programming/Generics
http://en.wikibooks.org/wiki/Java_Programming/BasicIO
http://en.wikibooks.org/wiki/Java_Programming/Reflection
http://en.wikibooks.org/wiki/Java_Programming/Interfaces

Components

When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

classclass SillyAppSillyApp {
publicpublic staticstatic void main(String[] args) {

System.out.println("Hello World!");
}

}

In other words, the entry point into your application was a public static void
method named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.

However, there are other patterns used elsewhere in Java. For example, you do not
usually write a main() method when writing a Java servlet. Instead, you extend a
particular class supplied by a framework (e.g., HttpServlet) to create a component,
then write some metadata that enumerated your components and tell the
framework when and how to use them (e.g., WEB.XML).

Android apps are closer in spirit to the servlet approach. You will not write a
public static void main() method. Instead, you will create subclasses of some
Android-supplied base classes that define various application components. In
addition, you will create some metadata that tells Android about those subclasses.

There are four types of components, all of which will be covered extensively in this
book:

Activities

The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window or dialog in a desktop application, or
the page in a classic Web app.

Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.

KEY ANDROID CONCEPTS

3

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1: Activity on the screen

Services

Activities are short-lived and can be shut down at any time, such as when the user
presses the BACK button. Services, on the other hand, are designed to keep running,
if needed, independent of any activity, for a short period of time. You might use a
service for checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating. You will also use services for scheduled
tasks (akin to Linux or OS X “cron jobs”) and for exposing custom APIs to other
applications on the device, though the latter is a relatively advanced capability.

Content Providers

Content providers provide a level of abstraction for any data stored on the device
that is accessible by multiple applications. The Android development model
encourages you to make your own data available to other applications, as well as
your own — building a content provider lets you do that, while maintaining a degree
of control over how your data gets accessed.

KEY ANDROID CONCEPTS

4

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Broadcast Receivers

The system, or applications, will send out broadcasts from time to time, for
everything from the battery getting low, to when the screen turns off, to when
connectivity changes from WiFi to mobile data. A broadcast receiver can arrange to
listen for these broadcasts and respond accordingly.

Widgets, Containers, Resources, and Fragments

Most of the focus on Android application development is on the UI layer and
activities. Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas) and
3D (OpenGL) APIs as well for more specialized GUIs.

In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s UI, therefore, is made up of one
or more of these widgets. For example, here we see label (TextView), field
(EditText), and push-button (Button) widgets:

Figure 2: Activity with widgets

If you have more than one widget — which is fairly typical — you will need to tell
Android how those widgets are organized on the screen. To do that, you will use

KEY ANDROID CONCEPTS

5

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

various container classes referred to as layout managers. These will let you put
things in rows, columns, or more complex arrangements as needed.

To describe how the containers and widgets are connected, you will typically create a
layout resource file. Resources in Android refer to things like images, strings, and
other material that your application uses but is not in the form of some
programming language source code. UI layouts are another type of resource. You will
create these layouts either using a structured tool, such as Eclipse’s drag-and-drop
GUI builder, or by hand in XML form.

Sometimes, your UI will work across all sorts of devices: phones, tablets, televisions,
etc. Sometimes, your UI will need to be tailored for different environments. You will
be able to put resources into resource sets that indicate under what circumstances
those resources can be used (e.g., use these for normal-sized screens, but use those
for larger screens).

Sometimes, supporting larger screens means you will want to “snap together” parts
of your smaller-screen UI. For example, Gmail on a tablet will show your list of
labels, the list of conversations in a selected label, and the list of messages in a
selected conversation, all in one activity. However, Gmail on a phone cannot do that,
as there is not enough screen space, so it shows each of those (labels, conversations,
messages) in separate activities. Android supplies a construct called the fragment to
help make it easier for you to implement these sorts of effects.

We will be examining all of these concepts, in much greater detail, as we get deeper
into the book.

Apps and Packages

Given a bucket of source code and a basket of resources, the Android build tools will
give you an application as a result. The application comes in the form of an APK file.
It is that APK file that you will upload to the Play Store or distribute by other means.

Each Android application has a package name. A package name must fulfill three
requirements:

1. It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package.

2. No two applications can exist on a device at the same time with the same
package.

KEY ANDROID CONCEPTS

6

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. No two applications can be uploaded to the Play Store having the same
package.

When you create your Android project — the repository of that source code and
those resources — you will declare what package name is to be used for your app.
Typically, you will pick a package name following the Java package name “reverse
domain name” convention (e.g., com.commonsware.android.foo). That way, the
domain name system ensures that your package name prefix (com.commonsware) is
unique, and it is up to you to ensure that the rest of the package name distinguishes
one of your apps from any other.

Android Devices
There are well in excess of 100 million Android devices in use today, representing
hundreds of different models from dozens of different manufacturers. Android itself
has evolved since Android 1.0 in 2008. Between different device types and different
Android versions, many a media pundit has lobbed the term “fragmentation” at
Android, suggesting that creating apps that run on all these different environments
is impossible.

In reality, it is not that bad. Some apps will have substantial trouble, but most apps
will work just fine if you follow the guidance presented in this book and in other
resources.

Types

Android devices come in all shapes, sizes, and colors. However, there are three
dominant “form factors”:

• the phone
• the tablet
• the television (TV)

You will often hear developers and pundits refer to these form factors, and this book
will do so from time to time as well. However, it is important that you understand
that Android has no built-in concept of a device being a “phone” or a “tablet” or a
“TV”. Rather, Android distinguishes devices based on capabilities and features. So,
you will not see an isPhone() method anywhere, though you can ask Android:

• what is the screen size?

KEY ANDROID CONCEPTS

7

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• does the device have telephony capability?
• etc.

Similarly, as you build your applications, rather than thinking of those three form
factors, focus on what capabilities and features you need. Not only will this help you
line up better with how Android wants you to build your apps, but it will make it
easier for you to adapt to other form factors that will come about such as:

• watches and other types of wearable devices
• airplane seat-back entertainment centers
• in-car navigation and entertainment devices
• and so on

The Emulator

While there are hundreds of millions of Android devices representing hundreds of
models, you probably do not have one of each model. You may only have a single
piece of Android hardware. And if you do not even have that, you most certainly will
want to acquire one before trying to publish an Android app.

To help fill in the gaps between the devices you have and the devices that are
possible, the Android developer tools ship an emulator. The emulator behaves like a
piece of Android hardware, but it is a program you run on your development
machine. You can use this emulator to emulate many different devices, with
different screen sizes and Android OS versions, by creating one or more Android
virtual devices, or AVDs.

In an upcoming chapter, we will discuss how you install the Android developer tools
and how you will be able to create these AVDs and run the emulator.

OS Versions and API Levels

Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards
and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are well-trod

KEY ANDROID CONCEPTS

8

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

paths for how to create apps that will work both on the latest and on previous
versions of Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

At the time of this writing, the API levels of significance to most Android developers
are:

• API Level 10 (Android 2.3.3)
• API Level 15 (Android 4.0.3)
• API Level 16 (Android 4.1)
• API Level 17 (Android 4.2)
• API Level 18 (Android 4.3)

Here, “of significance” refers to API levels that have a reasonable number of Android
devices — 5% or more, as reported by the “Platform Versions” dashboard chart.

The latest API level is 19, representing Android 4.4.

Dalvik

You probably are thinking that Dalvik is a village in Iceland. That, however, is Dalvík.

In terms of Android, Dalvik is a virtual machine (VM). Virtual machines are used by
many programming languages, such as Java, Perl, and Smalltalk. The Dalvik VM is
designed to work much like a Java VM, but optimized for embedded Linux
environments.

So, what really goes on when somebody writes an Android application is:

1. Developers write Java-syntax source code, leveraging class libraries published
by the Android project and third parties.

2. Developers compile the source code into Java VM bytecode, using the javac
compiler that comes with the Java SDK.

KEY ANDROID CONCEPTS

9

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/dashboards/index.html
http://goo.gl/4j7Go

3. Developers translate the Java VM bytecode into Dalvik VM bytecode, which
is packaged with other files into a ZIP archive with the .apk extension (the
APK file).

4. An Android device or emulator runs the APK file, causing the bytecode to be
executed by an instance of a Dalvik VM.

From your standpoint, most of this is hidden by the build tools. You pour Java source
code into the top, and the APK file comes out the bottom.

However, there will be places from time to time where the differences between the
Dalvik VM and the traditional Java VM will affect application developers, and this
book will point out some of them where relevant.

Processes and Threads

When your application runs, it will do so in its own process. This is not significantly
different than any other traditional operating system. Part of Dalvik’s magic is
making it possible for many processes to be running many Android applications at
one time without consuming ridiculous amounts of RAM.

Android will also set up a batch of threads for running your app. The thread that
your code will be executed upon, most of the time, is variously called the “main
application thread” or the “UI thread”. You do not have to set it up, but, as we will
see later in the book, you will need to pay attention to what you do and do not do on
that thread. You are welcome to fork your own threads to do work, and that is fairly
common, though in some places Android handles that for you behind the scenes.

Don’t Be Scared
Yes, this chapter threw a lot of terms at you. We will be going into greater detail on
all of them in this book. However, Android is like a jigsaw puzzle with lots of
interlocking pieces. To be able to describe one concept in detail, we will need to at
least reference some of the others. Hence, this chapter was meant to expose you to
terms, in hopes that they will sound vaguely familiar as we dive into the details.

KEY ANDROID CONCEPTS

10

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choosing Your IDE

Before you go much further in your Android endeavors (or, possibly, endeavours,
depending upon your preferred spelling), you will need to determine what tools you
will use to build your Android applications. Many developers are used to using an
integrated development environment (IDE). Android has excellent support for
Eclipse, and other IDEs offer varying degrees of Android integration. You do not
necessarily have to use an IDE, though, if you do not wish to.

This chapter will outline your options in this area.

Eclipse
Eclipse is an extremely popular IDE, particularly for Java development. It is also
designed to be extensible via an add-in system. To top it off, Eclipse is open source.
That combination made it an ideal choice of IDE to get attention from the core
Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins
for the Eclipse environment. Primary among these is the Android Developer Tools
(ADT) add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to
work with Android projects. For example, with Eclipse, you get:

• New project wizards to create regular Android projects, Android test
projects, etc.

11

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The ability to run an Android project just like you might run a regular Java
application — via the green “run” button in the toolbar — despite the fact
that this really involves pushing the Android application over to an emulator
or device, possibly even starting up the emulator if it is not running

• Tooltip support for Android classes and methods

Eclipse and the ADT also offer preliminary support for drag-and-drop GUI editing.
While this book will also cover the XML files that Eclipse will generate, Eclipse now
lets you assemble those XML files by dragging UI components around on the screen,
adjusting properties as you go.

The next chapter contains a section with instructions on how to set up Eclipse for
Android development, as part of getting an overall Android development
environment established.

Out of all the shortcut key-combinations for Eclipse, two of the most important for
readers of this book, particularly if you are following the tutorials, are:

• <Ctrl>-<Shift>-<O> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

• <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Android Studio
The next-generation IDE from Google is Android Studio, based upon IntelliJ IDEA.
This is still in an “early-access preview” state today and is not recommended for
newcomers to Android development. It should stabilize to a 1.0 (or equivalent)
release in 2014, at which time this book will start to cover it in detail.

Alternative IDEs
Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal
assistance from Google. For example, IntelliJ IDEA has a module for Android –
originally commercial, it is part of the open source community edition of IDEA as
of version 10. Also, NetBeans has support via the NBAndroid add-on, and
reportedly this has advanced substantially in the past few years.

CHOOSING YOUR IDE

12

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/eclipse-cheatsheet/downloads/list

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of what
is accomplished via the ADT can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need. For example, the
author of this book did not use an IDE for Android development until 2011.

IDEs… And This Book
You are welcome to use Eclipse as you work through this book. You are welcome to
use another IDE if you wish. You are even welcome to skip the IDE outright and just
use an editor.

This book is focused primarily on demonstrating Android capabilities and the APIs
for exploiting those capabilities. Hence, the sample code will work with any IDE.
However, this book will cover some Eclipse-specific instructions, since it is so
popular.

About App Inventor
You may also have heard of a tool named App Inventor and wonder where it fits in
with all of this.

App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely drag-
and-drop, both of widgets and application logic, the latter by means of “blocks” that
snap together to form logic chains.

App Inventor was donated by Google to MIT, who has recently re-opened it to the
public.

However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own right,
offers a small portion of the total Android SDK capabilities.

This book does not cover the use of App Inventor.

CHOOSING YOUR IDE

13

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://appinventor.mit.edu/
http://appinventor.mit.edu/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #1 - Installing the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

Step #1 - Checking Your Hardware Requirements
Compiling and building an Android application, on its own, is not especially
hardware-intensive, except for very large projects. However, there are two
commonly-used tools that demand more from your development machine: Eclipse
and the Android emulator. Of the two, the emulator poses the bigger problem.

The more RAM you have, the better. 3GB or higher is a very good idea if you intend
to use Eclipse and the emulator together.

A faster CPU is also a good idea. However, the Android emulator only utilizes a
single core from your development machine. Hence, it is the single-core speed that
matters. The best CPU to use is one that can leverage multiple cores to give what
amounts to a faster single core, such as Intel’s Core i7 with Turbo Boost. For an
emulator simulating a larger-screened device (e.g., tablet, television), a Core i7 that
can “boost” up to 3.4GHz makes development much more pleasant. Conversely, a
CPU like a Core 2 Duo with a 2.5GHz clock speed results in a tablet emulator that is
nearly unusable. Smaller screens (e.g., phones) can run acceptably on 2.5GHz and
(slightly) slower CPUs.

15

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com

Step #2 - Setting Up Java
When you write Android applications, you typically write them in Java source code.
That Java source code is then turned into the stuff that Android actually runs
(Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java Web site for Windows and Linux, and presumably
from Apple for OS X. The plain JDK (sans any “bundles”) should suffice. Follow the
instructions supplied by Oracle or Apple for installing it on your machine. At the
time of this writing, Android supports Java 6 and Java 7, though the latter will
require you to configure your IDE to compile your Java code to Java 6 bytecode.

Android also supports the OpenJDK, particularly on Linux environments.

What Android does not support are any other Java compilers, including the GNU
Compiler for Java (GCJ).

Step #3 - Install the Android SDK
The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, plus version-specific SDKs and
related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web site.

The default option at present is for you to download the “ADT Bundle”. This includes
a complete copy of Eclipse, along with the base tools and the latest SDK files. If you
want a temporary Android development environment, this is probably a fine choice.

Otherwise, you will want to click on “Using an Existing IDE” (even if you have not
yet installed Eclipse) and download the ZIP or TGZ file presented to you, unpacking

TUTORIAL #1 - INSTALLING THE TOOLS

16

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/sdk/index.html

it in some likely spot — there is no specific path that is required. Windows users
also have the option of running a self-installing EXE file.

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the previous step,
you will see an androidandroid batch file or shell script. On Windows, you may see an “SDK
Manager.exe” file, perhaps in the root of your ADT bundle installation. In either
case, if you run that, you will be presented with the Android SDK Manager:

Figure 3: Android SDK Manager

At this point, while you have some of the build tools, you may lack the Java files
necessary to compile an Android application. You also lack a few additional build
tools, plus the files necessary to run an Android emulator. The checkboxes indicate
which packages you want to install — by default, it pre-checks a number of them. If
you chose the “ADT Bundle”, some things will already be pre-installed for you.

You will want to check the following items:

1. “SDK Platform” for all Android SDK releases you want to test against — for
this book API 15 (Android 4.0.3) is recommended, along with any others with
which you wish to experiment.

TUTORIAL #1 - INSTALLING THE TOOLS

17

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. “ARM EABI v7a System Image”, if there is an option for that for the API level
you chose. You can also download the “Intel x86 Atom System Image”, if one
is available to you, though setting that up is a bit of an advanced topic.

3. “Documentation for Android SDK” for the latest Android SDK release.
4. “Samples for SDK” for the latest Android SDK release, and perhaps for older

releases if you wish.
5. “Google APIs” for each Android SDK release for which you are downloading

the platform (see first bullet).
6. Android SDK Tools and Platform-tools.
7. Android Support Library (in the Extras group at the bottom of the tree).

Then, click the Install button beneath the tree on the right, which brings up a
license confirmation dialog:

Figure 4: Android SDK Manager Installing Packages

Review and accept the licenses, then click the Install button. At this point, this is a
fine time to go get lunch. Or, perhaps dinner. Unless you have a substantial Internet
connection, downloading all of this data and unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK Manager if you wish,
though we will use it to set up the emulator in a later step of this chapter.

Step #4 - Install the ADT for Eclipse
If you will not be using Eclipse for your Android development, you can skip to the
next section. Similarly, if you downloaded the “ADT Bundle” and therefore already
have a completely-configured Eclipse environment, you can skip to the next section.

TUTORIAL #1 - INSTALLING THE TOOLS

18

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you have not yet installed Eclipse, you will need to do that first. Eclipse can be
downloaded from the Eclipse Web site. The “Eclipse IDE for Java Developers”
package will work fine. Note that the Android tools require Eclipse 3.6 (Helios) or
newer at the time of this writing.

If you already had Eclipse installed, it is a good idea for you to go in and check your
compiler compliance level (Preferences > Java > Compiler). That should be set to 1.6.
Notably, this allows the use of @Override annotations to indicate methods that are
implementing a Java interface, rather than truly overriding a superclass method.
This annotation is very common in Java code in Android projects (including many of
the samples in this book).

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, go
to Help | Install New Software… in the Eclipse main menu. Then, click the Add
button to add a new source of plug-ins. Give it some name (e.g., Android) and
supply the following URL: https://dl-ssl.google.com/android/eclipse/. That
should trigger Eclipse to download the roster of plug-ins available from that site:

Figure 5: Eclipse ADT plug-in installation

Check the checkbox to the left of “Developer Tools” and click the Next button.
Follow the rest of the wizard to review the tools to be downloaded and their

TUTORIAL #1 - INSTALLING THE TOOLS

19

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/downloads/

respective license agreements. When the Finish button is enabled, click it, and
Eclipse will download and install the plug-ins. When done, Eclipse will ask to restart
— please let it.

Then, you need to teach ADT where your Android SDK installation is from the
preceding section. This should occur on your next restart of Eclipse, via a “welcome
wizard”. Otherwise, to do this, choose Window | Preferences from the Eclipse main
menu (or the equivalent Preferences option for OS X). Click on the Android entry in
the list on the left:

Figure 6: Eclipse ADT configuration

Then, click the Browse… button to find the directory where you installed the SDK.
After choosing it, click Apply on the Preferences window, and you should see the
Android SDK versions you installed previously. Then, click OK, and the ADT will be
ready for use.

Step #5 - Install Apache Ant
If you will be doing all of your development from Eclipse, you can skip to the next
section.

TUTORIAL #1 - INSTALLING THE TOOLS

20

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you wish to develop using command-line build tools, you will need to install
Apache Ant. You may have this already from previous Java development work, as it is
fairly common in Java projects. However, you will need Ant version 1.8.1 or higher, so
double-check your current copy (e.g., ant -versionant -version) to ensure you are on the
proper edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site. They have
full installation instructions in the Ant manual, but the basic steps are:

• Unpack the ZIP archive wherever it may make sense on your machine
• Add a JAVA_HOME environment variable, pointing to where your JDK is

installed, if you do not have one already
• Add an ANT_HOME environment variable, pointing to the directory where you

unpacked Ant in the first step above
• Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH (note: Windows users

would add %JAVA_HOME%\bin and %ANT_HOME%\bin)
• Run ant -versionant -version to confirm that Ant is installed properly

Step #6 - Set Up the Emulator
The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development — not only does it mean you
can get started on Android without a device, but the emulator can help test device
configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. From the command line, you can bring up
the AVD Manager via the android avdandroid avd command from your SDK’s tools/ directory.
From Eclipse, you start the AVD Manager via its toolbar button or via the Window |
AVD Manager main menu option. It starts up on a screen listing the AVDs you have
available – initially, the list will be empty:

TUTORIAL #1 - INSTALLING THE TOOLS

21

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/installlist.html

Figure 7: AVD Manager

You will notice that there is a “Device Definitions” tab. This provides a catalog of
device hardware configurations that you can use as the starting point for your
emulator:

Figure 8: AVD Manager, Device Definitions Tab

TUTORIAL #1 - INSTALLING THE TOOLS

22

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For now, though, on the “Android Virtual Devices” tab, click the New… button to
create a new AVD file. This brings up a dialog where you can configure what this
AVD should look and work like:

Figure 9: Adding a New AVD

You need to provide the following:

1. A name for the AVD. Since the name goes into files on your development
machine, you will be limited by filename conventions for your operating
system (e.g., no backslashes on Windows).

2. Which one of the available device templates from the “Device Definitions”
tab you wish to use. Since the emulator runs slower with higher resolution
screens, the Nexus S is a likely candidate — it is a fairly common resolution
that will not be too terribly slow.

3. The Android version you want the emulator to run (a.k.a., the “target”).
Choose one of the SDKs you installed via the drop-down list. Note that in
addition to “pure” Android environments, you will have options based on the
third-party add-ons you selected. For example, you probably have some
options for setting up AVDs containing the Google APIs, and you will need
such an AVD for testing an application that uses Google Maps.

TUTORIAL #1 - INSTALLING THE TOOLS

23

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. The CPU architecture your emulator will emulate. The vast majority of
Android devices have ARM CPUs, while the vast majority of development
machines have x86 CPUs. However, since setting up the x86 emulator
support is a bit complicated, for now, choose ARM. Later on, though, you
really will want to consider an x86 emulator, as they tend to run much faster.

5. Whether or not a hardware keyboard is present. Having this checked can
ease your data entry on the emulator, as your development machine’s
keyboard will act as a keyboard for the emulated device.

6. Whether there should be a portion of the emulator window set aside to
show hardware controls, such as a D-pad. This is usually a good idea,
particularly while you are getting familiar with the Android environment.

7. Values for the memory and internal storage — the defaults are perfectly fine
selections.

8. Details about the SD card the emulator should emulate. Since Android
devices invariably have some form of “external storage”, you probably want to
set up an SD card, by supplying a size in the associated field. However, since
a file will be created on your development machine of whatever size you
specify for the card, you probably do not want to create a 2GB emulated SD
card. 32MB is a nice starting point, though you can go larger if needed.

9. Whether or not “snapshot” mode is enabled. This can speed up restarting
the emulator at the cost of hard disk space. For now, leave it unchecked.

10. Whether or not you wish to use the development machine’s graphics card
(GPU) to accelerate the emulator’s graphics. Usually, this helps emulator
performance, so checking that is worth trying. If you encounter problems
running the emulator, try editing the AVD definition and unchecking this
value.

Click the OK button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click “Start…”. You can skip the
launch options for now and just click Launch. The first time you launch a new AVD,
it will take a long time to start up. The second and subsequent times you start the
AVD, it will come up a bit faster, and usually you only need to start it up once per
day (e.g., when you start development). You do not need to stop and restart the
emulator every time you want to test your application, in most cases. Also, Eclipse
will automatically start an emulator if you do not have one started and you try
running an application.

The emulator will go through a few startup phases, typically first with a plain-text
“ANDROID” label (for pre-Android 4.0) or a blank screen (for Android 4.0+):

TUTORIAL #1 - INSTALLING THE TOOLS

24

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 10: Android emulator, initial startup segment

… then a graphical Android logo:

TUTORIAL #1 - INSTALLING THE TOOLS

25

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 11: Android emulator, secondary startup segment

before eventually landing at the home screen, a welcome page (shown below, for
Android 4.0), or the keyguard:

TUTORIAL #1 - INSTALLING THE TOOLS

26

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 12: Android 4.0 emulator welcome page

If you get the keyguard (shown below), press the MENU button, or slide the lock on
the screen to the right, to get to the emulator’s home screen:

TUTORIAL #1 - INSTALLING THE TOOLS

27

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 13: Android keyguard

Step #7 - Set Up the Device
You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device – maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

The first step to make your device ready for use with development is to go into the
Settings application on the device. What happens now depends a bit on your
Android version:

• On Android 1.x/2.x, go into Applications, then into Development
• On Android 3.0 through 4.1, go into “Developer options” from the main

Settings screen

TUTORIAL #1 - INSTALLING THE TOOLS

28

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• On Android 4.2 and higher, go into About, tap on the build number seven
times, then press BACK, and go into “Developer options” (which was
formerly hidden)

Figure 14: Android 4.0 device development settings

You may need to slide a switch in the upper-right corner of the screen to the “ON”
position to modify the values on this screen.

Generally, you will want to enable USB debugging, so you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the “Stay awake” option to be handy, as it saves you from
having to unlock your phone all of the time while it is plugged into USB.

Note that on Android 4.2.2 and higher devices, before you can actually use the
setting you just toggled, you will be prompted to allow USB debugging with your
specific development machine via a dialog box:

TUTORIAL #1 - INSTALLING THE TOOLS

29

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 15: Allow USB Debugging Dialog

This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the
driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is suitable
for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, the OEM USB Drivers in the developer
documentation may help you find one for download from your device manufacturer.
Note that you may need the model number for your device, instead of the model

TUTORIAL #1 - INSTALLING THE TOOLS

30

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/extras/oem-usb.html

name used for marketing purposes (e.g., GT-P3113 instead of “Samsung Galaxy Tab 2
7.0”).

OS X and Linux

Odds are decent that simply plugging in your device will “just work”. You can see if
Android recognizes your device via running adb devicesadb devices in a shell (e.g., OS X
Terminal), where adb is in your platform-tools/ directory of your SDK. If you get
output similar to the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command did
not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reloadsudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.

The CyanogenMod project maintains a page on their wiki with more on these udev
rules, including rules from a variety of manufacturers and devices.

In Our Next Episode…
… we will create an Android project that will serve as the basis for all our future
tutorials.

TUTORIAL #1 - INSTALLING THE TOOLS

31

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://wiki.cyanogenmod.org/w/UDEV

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #2 - Creating a Stub Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

About Our Tutorial Project
The application we will be building in these tutorials is called EmPubLite. EmPubLite
will be a digital book reader, allowing users to read a digital book like the one that
you are reading right now.

EmPubLite will be a partial implementation of the EmPub reader used for the APK
version of this book. EmPub itself is a fairly extensive application, so EmPubLite will
have only a subset of its features. The main EmPub app, however, will be used
elsewhere in this book to illustrate more advanced Android capabilities.

The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are not
designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing the APK, you
are distributing the book.

33

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/empub
http://github.com/commonsguy/empub

About the Rest of the Tutorials
Of course, you may have little interest in writing a digital book reader app.

The tutorials presented in this book are certainly optional. There is no expectation
that you have to write any code in order to get value from the book. These tutorials
are here simply as a way to help those of you who “learn by doing” have an
opportunity to do just that.

Hence, there are any number of ways that you can use these tutorials:

• You can ignore them entirely. That is not the best answer, but you are
welcome to do it.

• You can read the tutorials but not actually do any of the work. This is the
best low-effort answer, as it is likely that you will learn things from the
tutorials that you might have missed by simply reading the non-tutorial
chapters.

• You can follow along the steps and actually build the EmPubLite app.
• You can download the answers from the book’s GitHub repository. There,

you will find one directory per tutorial, showing the results of having done
the steps in that tutorial. For example, you will find a T2-Project/ directory
containing a copy of the EmPubLite sample app after having completed the
steps found in this tutorial. You can import these projects into Eclipse,
examine what they contain, cross-reference them back to the tutorials
themselves, and run them.

Any of these are valid options — you will need to choose for yourself what you wish
to do.

All that being said, it is a pretty good idea to do at least this tutorial, so you learn
how to create an Android project.

About the Eclipse Instructions
The instructions found in this book assume that you are using the R22.6 version of
the Android developer tools and the ADT plugin for Eclipse. Newer or older
versions may have somewhat different details, though most of what you see here
should be applicable.

TUTORIAL #2 - CREATING A STUB PROJECT

34

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Note that the R22.6 version of the Eclipse new-project wizard is fairly broken. It
generates projects that do not work, in part because the wizard templates add in
some external dependencies that the wizard does not set up. And, we will not be
covering those dependencies for quite some time in the book.

As a result, the Eclipse instructions for Step #1 come in two forms:

• The first walks you through how to use the new-project wizard… before
throwing out the results

• The second shows you how to import an Android project, where we will
choose a fairly blank project as the starting point

Step #1: Creating the Project

First, we need to create the Android project for EmPubLite. You need to decide
whether you are going to work with this project from inside the Eclipse IDE or
through other tools.

Many steps in the tutorials have the same basic instructions regardless of IDE or
toolchain that you wish to use. Some steps, though, have tool-specific instructions.

This step has three sets of instructions:

1. Using the Eclipse new-project wizard (not recommended)
2. Importing a blank project into Eclipse
3. Using command-line tools, for use outside of Eclipse

Just click on the link to jump to the set of instructions that you wish to follow.

Eclipse New-Project Wizard

NOTE: The instructions shown in this section will walk you through the Eclipse
new-project wizard. As was noted above, this wizard is presently rather broken. You
will not use the results of these instructions. If you want to skip this part, feel free
to jump ahead to the “Eclipse Project Import” instructions, which are the “real”
Eclipse instructions until the new-project wizard works better.

From the Eclipse main menu, choose File > New > Project… to bring up the first page
of the “New Project” wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

35

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 16: Eclipse New Project Wizard

Choose “Android Application Project” from the types of projects and click “Next >”
to proceed to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

36

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 17: Eclipse New Android Application Project Wizard, As Initially Launched

Fill in the following items:

• For “Application Name” and “Project Name”, fill in EmPubLite
• For “Package Name”, fill in com.commonsware.empublite
• For “Minimum Required SDK”, choose “API 9: Android 2.3 (Gingerbread)”
• For “Target SDK”, choose “API 15: Android 4.0.3 (IceCreamSandwich)”
• For “Compile With”, choose “API 15: Android 4.0.3 (IceCreamSandwich)” (if

you do not have that version, any higher API level should be fine)

The remaining defaults should be fine, leaving you with a dialog akin to this:

TUTORIAL #2 - CREATING A STUB PROJECT

37

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 18: Eclipse Wizard, With Data

Then, click “Next >” to move to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

38

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 19: Eclipse Wizard, Other Project Settings, As Initially Launched

Here:

• Uncheck “Create custom launcher icon”, as we will do this separately later
• Leave “Create activity” checked
• Leave “Mark this project as a library” unchecked
• Choose where you want the project files to be placed, either by leaving

“Create Project in Workspace” checked, or unchecking it and choosing a
directory on your development machine in which to place the files

• If you are using Eclipse’s working sets, choose your working set (if you do not
know what working sets are in Eclipse, you are not using them, and so you
can safely ignore this option)

TUTORIAL #2 - CREATING A STUB PROJECT

39

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 20: Eclipse Wizard, Other Project Settings, With Data

Then, click “Next >” to move to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

40

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 21: Eclipse New Android Project Wizard, Create Activity Page

Here, you choose which template project you want to use as a starting point. Leave
the “Create Activity” checkbox checked, and choose “BlankActivity” from the
template list.

Then, click “Next >” to move to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

41

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 22: Eclipse New Android Project Wizard, New Blank Activity Page

Fill in the following details:

• For “Activity Name”, fill in EmPubLiteActivity
• For “Layout Name”, fill in main
• For “Fragment Layout Name”, fill in blank_means_blank_plz

Leave the rest of the defaults alone.

TUTORIAL #2 - CREATING A STUB PROJECT

42

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 23: Eclipse New Android Project Wizard, New Blank Activity Page, With Data

At this point, you can click the “Finish” button to complete the wizard. Your new
EmPubLite project should appear in the Eclipse Package Explorer view:

TUTORIAL #2 - CREATING A STUB PROJECT

43

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 24: Eclipse Package Explorer, Showing EmPubLite

As noted previously, the project starts off in a broken state, due to bugs in Eclipse.
It also adds a lot of extra stuff that we do not need or want for this particular
project. As such, these instructions were, unfortunately, useless.

Right-click over the EmPubLite project name in the Package Explorer, and choose
New > Delete from the context menu that appears. In the resulting dialog, check
the “Delete project contents on disk (cannot be undone)” checkbox, then click OK
to delete the project. Then, continue on with the instructions in the next section, to
import a blank Eclipse project.

Eclipse Project Import

First, visit the book’s GitHub repository’s “releases” area and download the
BlankProject.zip file that corresponds with this version of the book. If there is
none for this version of the book, work your way backwards to older versions until
you find one.

Then, unZIP that ZIP archive into some directory on your development machine.
The ZIP archive will expand into a set of files and subdirectories. Most likely, you
will want to place those into an empty existing directory.

TUTORIAL #2 - CREATING A STUB PROJECT

44

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/releases

Then, in Eclipse, choose File > Import from the main menu, to bring up the import
wizard:

Figure 25: Eclipse Import Wizard, First Page

Choose “Existing Android Code Into Workspace” and click the Next button to bring
up the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

45

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 26: Eclipse Import Wizard, Second Page

Click the “Browse…” button towards the upper-right of the wizard, and from there
choose the directory containing the unZIPped version of BlankProject.zip.

This will change the wizard to show the project:

TUTORIAL #2 - CREATING A STUB PROJECT

46

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 27: Eclipse Import Wizard, Second Page, After Directory Selected

Click on “MainActivity” in the table, which will then become editable. Change
MainActivity to be EmPubLite:

TUTORIAL #2 - CREATING A STUB PROJECT

47

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 28: Eclipse Import Wizard, Second Page, After Directory Selected

If you want to have the contents of your chosen directory copied into your Eclipse
workspace, click the “Copy projects into workspace” checkbox. Otherwise, Eclipse
will keep the project files where they are.

If you are using Eclipse’s working sets, choose your working set (if you do not know
what working sets are in Eclipse, you are not using them, and so you can safely
ignore this option).

Then, click Finish. Afterwards, you should be able to find EmPubLite in the Eclipse
Package Explorer:

TUTORIAL #2 - CREATING A STUB PROJECT

48

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 29: Eclipse Package Explorer, Showing EmPubLite from Import

You may encounter some problems, if the imported project is set to build with an
Android SDK that you have not installed. To check your settings for this, right-click
over the EmPubLite entry in the Package Explorer, and choose Properties. In the
Properties dialog, click the Android entry in the list on the left:

TUTORIAL #2 - CREATING A STUB PROJECT

49

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 30: Eclipse Project Properties

If none of the entries in the API level checklist are checked, check the highest one
that you have installed, if that is 15 or higher.

We will need to do some additional work to make this imported project look more
like the one we should have gotten from the new-project wizard, but we will handle
that work in later tutorials.

Note that you can skip over the next section and continue with Step 2, if you do not
want to experiment with creating a new project from the command line.

Command Line

First, choose where you want to create the project on your filesystem.

Then, execute the following command:

android create project -n EmPubLite -t android-15 -p ... -k
com.commonsware.empublite -a EmPubLiteActivity

(replacing the ... with the path to your desired project directory)

TUTORIAL #2 - CREATING A STUB PROJECT

50

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will:

• Create the directory you specified
• Create a bunch of files in that directory, using the package name and activity

name that you supplied

If android create projectandroid create project is not recognized as a command, be sure that you added
your SDK’s tools/ and platform-tools/ directories to your PATH environment
variable (and restarted your command line, if needed).

If you get a complaint that you do not have android-15, either use the SDK Manager
to install the SDK for Android’s API Level 15 (Android 4.0.3) or adjust that parameter
to some SDK that you have (e.g., android-18).

Step #2: Running the Project
Now, we can confirm that our project is set up properly by running it on a device or
emulator. Once again, there are separate sections of instructions below for Eclipse
versus command-line development — please follow the instructions that are
appropriate for you.

Eclipse

Press the Run toolbar button (usually depicted as a white “play” triangle in a green
circle). The first time you run the project, you will see a “Run As” dialog, prompting
you to declare how you want to run the app:

TUTORIAL #2 - CREATING A STUB PROJECT

51

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 31: Eclipse Run As Dialog

Click on “Android Application” and click “OK” to proceed.

At this point, if you have a compatible running emulator or device, the app will be
installed and run on it. Otherwise, Eclipse will start up a suitable emulator, from the
AVDs you created in the previous tutorial, then will install and run the app on it:

Figure 32: Android 4.0.3 Emulator with EmPubLite

TUTORIAL #2 - CREATING A STUB PROJECT

52

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that you will have to unlock your device or emulator to actually see the app
running — it will not unlock automatically for you.

Command Line

First, you need to either attach a device or start up a 4.0.3 emulator (we will add
support for earlier versions of Android in an upcoming tutorial). If you did not
create a 4.0.3 AVD in the first tutorial, and you do not have an Android device
running 4.0.3 or higher, go ahead and create the 4.0.3 emulator AVD.

To start the emulator, execute the android avdandroid avd command to bring up the AVD
Manager:

Figure 33: Android AVD Manager

Highlight the AVD you wish to run, then click “Start…”:

TUTORIAL #2 - CREATING A STUB PROJECT

53

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 34: Android AVD Manager Launch Options

You can, if you wish, just click “Launch” to start up the emulator. Or, you can tailor
the output, such as by checking the “Scale display to real size” checkbox, then filling
in the desired diagonal size of the emulator screen and the dots-per-inch (dpi) of
your development machine’s monitor. Clicking the “?” will bring up an assistant that
will help you calculate your monitor’s dots-per-inch.

Once your emulator is launched, from your project directory, run the ant cleanant clean
debug installdebug install command. This will:

• Clean out any pre-compiled stuff from previous builds
• Create a debug build of your app
• Install that debug build on your emulator

If you navigate to the launcher of the emulator, you will see your EmPubLite icon —
tapping that will bring up the do-nothing stub application.

In Our Next Episode…
… we will modify the AndroidManifest.xml file of our tutorial project.

TUTORIAL #2 - CREATING A STUB PROJECT

54

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Contents of Android Projects

The Android build system is organized around a specific directory tree structure for
your Android project, much like any other Java project. The specifics, though, are
fairly unique to Android — the Android build tools do a few extra things to prepare
the actual application that will run on the device or emulator. Here is a quick primer
on the project structure, to help you make sense of it all, particularly for the sample
code referenced in this book.

Root Contents
When you create a new Android project (e.g., via android create projectandroid create project), you get
several items in the project’s root directory, including:

1. AndroidManifest.xml, which is an XML file describing the application being
built and what components — activities, services, etc. — are being supplied
by that application

2. bin/, which holds the application once it is compiled (note: this directory
will be created when you first build your application)

3. res/, which holds “resources”, such as icons, GUI layouts, and the like, that
get packaged with the compiled Java in the application

4. src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of the
following in Android projects:

1. assets/, which holds other static files you wish packaged with the
application for deployment onto the device

2. gen/, where Android’s build tools will place source code that they generate

55

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. libs/, which holds any third-party Java JARs your application requires
(NOTE: this directory may not be created for you by Eclipse, though it is by
the command-line option, and you can add it yourself to your Eclipse project
when needed)

4. build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

5. proguard.cfg or proguard-project.txt, which are used for integration with
ProGuard for obfuscating your Android code

6. Eclipse project files (e.g., .classpath), if you are using Eclipse

The Sweat Off Your Brow
When you created the project (e.g., via android create projectandroid create project), you supplied the
fully-qualified class name of the “main” activity for the application (e.g.,
com.commonsware.android.SomeDemo). You will then find that your project’s src/
tree already has the package’s directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/
SomeDemoActivity.java). You are welcome to modify this file and add others to the
src/ tree as needed to implement your application, and we will demonstrate that
countless times as we progress through this book.

The first time you compile the project (e.g., via antant), out in the project’s package’s
directory, the Android build chain will create R.java. This contains a number of
constants tied to the various resources you placed out in the res/ directory tree. You
should not modify R.java yourself, letting the Android tools handle it for you. You
will see throughout many of the samples where we reference things in R.java (e.g.,
referring to a layout’s identifier via R.layout.main).

Resources
You will also find that your project has a res/ directory tree. This holds “resources”
— static files that are packaged along with your application, either in their original
form or, occasionally, in a preprocessed form. Some of the subdirectories you will
find or create under res/ include:

1. res/drawable/ for images (PNG, JPEG, etc.)
2. res/layout/ for XML-based UI layout specifications
3. res/menu/ for XML-based menu specifications

CONTENTS OF ANDROID PROJECTS

56

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://proguard.sourceforge.net/

4. res/raw/ for general-purpose files (e.g., an audio clip, a CSV file of account
information)

5. res/values/ for strings, dimensions, and the like
6. res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the drawable resources should only be used on devices
with high-density screens.

We will cover all of these, and more, later in this book.

What You Get Out Of It
When you compile your project (via antant or the IDE), the results go into the bin/
directory under your project root. Specifically:

1. bin/classes/ holds the compiled Java classes
2. bin/classes.dex holds the executable created from those compiled Java

classes
3. bin/yourapp.ap_ holds your application’s resources, packaged as a ZIP file

(where yourapp is the name of your application)
4. bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of your
resources (resources.arsc), any un-compiled resources (such as what you put in
res/raw/) and the AndroidManifest.xml file. If you build a debug version of the
application — which is the default — you will have yourapp-debug.apk as your APK.

CONTENTS OF ANDROID PROJECTS

57

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare what is
inside your application — the activities, the services, and so on. You also indicate
how these pieces attach themselves to the overall Android system; for example, you
indicate which activity (or activities) should appear on the device’s main menu
(a.k.a., launcher).

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android
API demo suite is over 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.cwac.richedit.demo"
android:versionCode="1"
android:versionName="1.0">>

Note the android namespace declaration. You will only use the namespace on many
of the attributes, not the elements (e.g., <manifest>, not <android:manifest>).

The biggest piece of information you need to supply on the <manifest> element is
the package attribute. Here, you can provide the name of the Java package that will
be considered the “base” of your application. Your package is a unique identifier for

59

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your application. A device can only have one application installed with a given
package, and the Play Store will only list one project with a given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see for a version indicator in the
Applications details screen for your app in their Settings application:

Figure 35: Barcode Scanner App Screen in Settings, Showing Version 4.2

Also, the version name is used by the Play Store listing, if you are distributing your
application that way. The version name can be any string value you want. The
android:versionCode, on the other hand, must be an integer, and newer versions
must have higher version codes than do older versions. Android and the Play Store
will compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production, these
attributes will matter greatly.

INSIDE THE MANIFEST

60

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

An Application For Your Application
In your initial project’s manifest, the primary child of the <manifest> element is an
<application> element.

By default, when you create a new Android project, you get a single <activity>
element inside the <application> element:

<?xml version="1.0"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.skeleton"
android:versionCode="1"
android:versionName="1.0">>

<application><application>
<activity<activity

android:name="Now"
android:label="Now">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity will
be displayed. The stock <activity> element sets up your activity to appear in the
launcher, so users can choose to run it. As we’ll see later in this book, you can have
several activities in one project, if you so choose.

The android:name attribute, in this case, has a bare Java class name (Now).
Sometimes, you will see android:name with a fully-qualified class name (e.g.,
com.commonsware.android.skeleton.Now). Sometimes, you will see a Java class
name with a single dot as a prefix (e.g., .Now). Both Now and .Now refer to a Java class
that will be in your project’s package — the one you declared in the package
attribute of the <manifest> element.

INSIDE THE MANIFEST

61

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Specifying Versions
As was noted earlier in this chapter, your manifest already contains some version
information, about your own application’s version. It also contains a <uses-sdk>
element as a child of the <manifest> element to your AndroidManifest.xml file, to
specify what versions of Android you are supporting.

The most important attribute for your <uses-sdk> element is
android:minSdkVersion. This indicates what is the oldest version of Android you are
testing with your application. The value of the attribute is an integer representing
the Android API level. So, if you are only testing your application on Android 2.1 and
newer versions of Android, you would set your android:minSdkVersion to be 7.

You should also specify an android:targetSdkVersion attribute. This indicates what
version of Android you are thinking of as you are writing your code. If your
application is run on a newer version of Android, Android may do some things to try
to improve compatibility of your code with respect to changes made in the newer
Android. In particular, to get the new “Honeycomb” look-and-feel when running on
an Android 3.0 (or higher) device, you need to specify a target SDK version of 11 or
higher:

<uses-sdk<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="11" />/>

Supporting Multiple Screens
Android devices come with a wide range of screen sizes, from 2.8” tiny smartphones
to 46” Google TVs. Android divides these into four buckets, based on physical size
and the distance at which they are usually viewed:

1. Small (under 3”)
2. Normal (3” to around 4.5”)
3. Large (4.5” to around 10”)
4. Extra-large (over 10”)

By default, your application will support small and normal screens. It also will
support large and extra-large screens via some automated conversion code built
into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you

INSIDE THE MANIFEST

62

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

have explicit support for. For example, if you want to support small screens, you will
need the <supports-screens> element. Similarly, if you are providing custom UI
support for large or extra-large screens, you will want to have the
<supports-screens> element. So, while the starting manifest file works, handling
multiple screen sizes is something you will want to think about.

Much more information about providing solid support for all screen sizes, including
samples of the <supports-screens> element, will be found later in this book as we
cover large-screen strategies.

Other Stuff
As we proceed through the book, you will find other elements being added to the
manifest, such as:

• <uses-permission>, to tell the user that you need permission to use certain
device capabilities, such as accessing the Internet

• <uses-feature>, to tell Android that you need the device to have certain
features (e.g., a camera), and therefore your app should not be installed on
devices lacking such features

• <uses-library>, to tell Android that you need the device to support a
certain library in firmware (e.g., Google Maps), and therefore your app
should not be installed on devices lacking that library

These and other elements will be introduced elsewhere in the book.

INSIDE THE MANIFEST

63

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #3 - Changing Our Manifest

As we build EmPubLite, we will need to make a number of changes to our project’s
manifest. In this tutorial, we will take care of a couple of these changes, to show you
how to manipulate the AndroidManifest.xml file. Future tutorials will make yet
more changes.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Updating the Package Name
If you imported the blank project in Eclipse as your starting point in the previous
tutorial, that project will have a different package name than what we want to use.
If, on the other hand, you used the Eclipse new-project wizard or command-line
android create projectandroid create project commands to create your starting point, your package
name is already set, and you can skip ahead to the next section.

Double-click on the AndroidManifest.xml file for your EmPubLite project in the
Eclipse Package Explorer. Double-clicking on the file will bring the file up in
Eclipse’s default editor for that type of file. In the case of AndroidManifest.xml,
this will be a structured editor for manifest settings:

65

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T2-Project
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Figure 36: Eclipse Manifest Editor

In the “Package” field towards the top, replace com.commonsware.android.blank
with com.commonsware.empublite. Then, save your changes, via the “save” icon in
the Eclipse toolbar, via <Ctrl>-<S>, etc. If a dialog appears asking if you want to
update your launch configurations, click Yes.

At this point, you should have some red X marks over your source files, as those
files are expecting to be in the same package as is used for the overall application.
To fix this, right-click over the com.commonsware.android.blank package in the src
folder in Eclipse’s Package Explorer, then choose Refactor > Rename from the
context menu, to bring up the Rename Package dialog:

TUTORIAL #3 - CHANGING OUR MANIFEST

66

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 37: Eclipse Rename Package Dialog

Change the contents of the “New name” field to be com.commonsware.empublite.
Leave everything else alone, and click OK. If a “found problems” dialog appears,
click Continue.

Step #2: Supporting Screens
Our application will restrict its supported screen sizes. Tablets make for ideal ebook
readers. Phones can also be used, but the smaller the phone, the more difficult it
will be to come up with a UI that will let the user do everything that is needed, yet
still have room for more than a sentence or two of the book at a time.

We will get into screen size strategies and their details later in this book. For the
moment, though, we will add a <supports-screens> element to keep our
application off “small” screen devices (under 3” diagonal size).

If you wish to make this change using Eclipse’s structured manifest editor, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

If you skipped over Step #1, then in the Package Explorer view in Eclipse, find the
AndroidManifest.xml entry and double-click on it.

TUTORIAL #3 - CHANGING OUR MANIFEST

67

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 38: Eclipse Package Explorer, Showing EmPubLite

Double-clicking on the file will bring the file up in Eclipse’s default editor for that
type of file. In the case of AndroidManifest.xml, this will be a structured editor for
manifest settings:

Figure 39: Eclipse Manifest Editor

You will notice that there is a series of sub-tabs at the bottom of the editor, labeled
“Manifest”, “Application”, “Permissions”, and so on. These allow you to adjust

TUTORIAL #3 - CHANGING OUR MANIFEST

68

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

different portions of the manifest file. The right-most sub-tab,
“AndroidManifest.xml”, allows you to edit the raw XML of this file directly, if you so
choose. This is a fairly typical pattern with the Eclipse editors: one or more sub-tabs
providing a structured way of editing the data, and the right-most sub-tab providing
raw access to the underlying XML.

In the “Manifest Extras” area of the “Manifest” sub-tab in our open manifest editor,
click the “Add…” button to the right of the extras list, to bring up a dialog of what
sort of extras we can add:

Figure 40: Eclipse Manifest Extras Options

Click on “Supports Screens”, then click “OK” to close the dialog and add a “Supports
Screens” entry in the “Manifest Extras” list. That entry will be pre-selected by the
editor, showing the available configuration options on the right:

Figure 41: Eclipse Supports Screens Options

TUTORIAL #3 - CHANGING OUR MANIFEST

69

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the attributes list on the right may have vertical scrollbar, as there are
several things we can stipulate on the <supports-screens> element, and not all can
fit on the editor at once given the editor’s design.

Using that scrollbar as needed, toggle the “Small screens” value to false and the
“Normal screens”, “Large screens”, and “Xlarge screens” values to true:

Figure 42: Eclipse Supports Screens Options, Adjusted

Then you can save the file, via the main menu, the Save toolbar icon, or <Ctrl>-<S>.

Outside of Eclipse

As a child of the root <manifest> element, add a <supports-screens> element as
follows:

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

Step #3: Validating our Minimum and Target SDK
Versions
If you created your project using the Eclipse new-project wizard, then in the
“Manifest Extras” area of the “Manifest” sub-tab in our open manifest editor, you
should have a Uses Sdk entry. Clicking on that should show that your minimum
SDK version is set to 9 and that your target SDK version is 15 (or whatever you
chose in Tutorial #2):

TUTORIAL #3 - CHANGING OUR MANIFEST

70

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 43: Eclipse Uses Sdk Options

If you created your project via importing the blank project into Eclipse, your values
will be 15 for the minimum SDK version and 19 for the target SDK version,
respectively. Change them to match the 9 and 15 shown above.

If you created your project from the command line, this element may not exist. You
will need to add a <uses-sdk android:minSdkVersion="9"
android:targetSdkVersion="15"/> element to your manifest, as a child of the root
<manifest> element.

The entire manifest file, at this point should look a bit like:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name="EmPubLiteActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

TUTORIAL #3 - CHANGING OUR MANIFEST

71

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

In Our Next Episode…
… we will make some changes to the resources of our tutorial project

TUTORIAL #3 - CHANGING OUR MANIFEST

72

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Words About Resources

It is quite likely that by this point in time, you are “chomping at the bit” to get into
actually writing some code. This is understandable. That being said, before we dive
into the Java source code for our stub project, we really should chat briefly about
resources.

Resources are static bits of information held outside the Java source code. Resources
are stored as files under the res/ directory in your Android project layout. Here is
where you will find all your icons and other images, your externalized strings for
internationalization, and more.

These are not only separate from the Java source code because they are different in
format. They are separate because you can have multiple definitions of a resource, to
use in different circumstances. For example, with internationalization, you will have
strings for different languages. Your Java code will be able to remain largely oblivious
to this, as Android will choose the right resource to use, from all candidates, in a
given circumstance (e.g., choose the Spanish string if the device’s locale is set to
Spanish).

We will cover all the details of these resource sets later in the book. Right now, we
need to discuss the resources in use by our stub project, plus one more.

String Theory
Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization (I18N) and localization (L10N). Even if you are not going to
translate your strings to other languages, it is easier to make corrections if all the
strings are in one spot instead of scattered throughout your source code.

73

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as a
resource. The string element takes a name attribute, which is the unique name for
this string, and a single text element containing the text of the string:

<resources><resources>
<string<string name="quick">>The quick brown fox...</string></string>
<string<string name="laughs">>He who laughs last...</string></string>

</resources></resources>

The only tricky part is if the string value contains a quote or an apostrophe. In those
cases, you will want to escape those values, by preceding them with a backslash (e.g.,
These are the times that try men\'s souls). Or, if it is just an apostrophe, you
could enclose the value in quotes (e.g., "These are the times that try men's
souls.").

For example, our stub project’s strings.xml file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>EmPubLite</string></string>
<string<string name="hello_world">>Hello world!</string></string>
<string<string name="menu_settings">>Settings</string></string>

</resources></resources>

We will reference these string resources from various locations, in our Java source
code and elsewhere. For example, the app_name string resource is used in our
AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"

SOME WORDS ABOUT RESOURCES

74

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name="EmPubLiteActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Here, the android:label attribute of our <application> element refers to the
app_name string resource. This will appear in a few places in our application, notably
in the list of installed applications in Settings. So, if you wish to change how your
application’s name appears in these places, simply adjust the app_name string
resource to suit.

The syntax @string/app_name tells Android “find the string resource named
app_name”. This causes Android to scan the appropriate strings.xml file (or any
other file containing string resources in your res/values/ directory) to try to find
app_name.

Styled Text

Many things in Android can display rich text, where the text has been formatted
using some lightweight HTML markup, such as , <i>, and <u>. Your string
resources support this, simply by using the HTML tags as you would in a Web page:

<resources><resources>
<string<string name="b">>This has bold in it.</string></string>
<string<string name="i">>Whereas this has <i><i>italics</i></i>!</string></string>

</resources></resources>

Unfortunately, the list of supported tags is undocumented. Based on recent Android
implementations, it will mostly be your inline markup rules (e.g., <tt>, <h1>,
<small>, <strike>).

SOME WORDS ABOUT RESOURCES

75

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Directory Name

Our string resources in our stub project are in the res/values/strings.xml file.
This directory (res/values/) means that the string resources in that directory will
be valid for any sort of situation, including any locale for the device. We will need
additional directories, with distinct strings.xml files, to support other languages.
We will cover how to do that later in this book.

String Resources and Eclipse

When you double-click on a string resource file, like res/values/strings.xml, you
will be greeted with a list of all the string resources that have been defined:

Figure 44: Eclipse, Showing String Resources

Clicking on a resource allows you to edit its name and value:

SOME WORDS ABOUT RESOURCES

76

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 45: Eclipse, Editing Existing String Resources

Clicking the “Add…” button to the right of the list of strings brings up a dialog where
you can add another resource to this file, typically a string:

Figure 46: Eclipse, Add String Resource Dialog

Choosing “String” in that dialog and clicking OK will add another (empty) string
resource to the list, where you can fill in the name and value.

You can always click on the strings.xml sub-tab to bring up an XML editor on the
resources if you prefer.

Got the Picture?
Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however; PNG is the overall preferred format. Android also supports

SOME WORDS ABOUT RESOURCES

77

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

some proprietary XML-based image formats, though we will not discuss those at
length until later in the book.

The default directory for these so-called drawable resources is res/drawable/. Any
images found in there can be referenced from Java code or from other places (such
as the manifest), regardless of device characteristics.

However, your stub project does not have a res/drawable/ directory.

Instead, it has directories like res/drawable-mdpi/ and res/drawable-hdpi/.

These refer to distinct resource sets. The suffixes (e.g., -mdpi, -hdpi) are filters,
indicating under what circumstances the images stored in those directories should
be used. Specifically, -ldpi indicates images that should be used on devices with
low-density screens (around 120 dots-per-inch, or “dpi”). The -mdpi suffix indicates
resources for medium-density screens (around 160dpi), -hdpi indicates resources for
high-density screens (around 240dpi). -xhdpi indicates resources extra-high-density
screens (around 320dpi), --xxhdpi indicates extra-extra-high-density screens
(around 480dpi), -xxxhdpi indicates extra-extra-extra-high-density screens (around
640dpi), and so on.

Inside each of those directories, you will see an ic_launcher.png file (along with
perhaps other icons). This is the stock icon that will be used for your application in
the home screen launcher. Each of the images is of the same icon, but the higher-
density icons have more pixels. The objective is for the image to be roughly the same
physical size on every device, using higher densities to have more detailed images.

For example, our EmPubLite tutorial project has res/drawable-hdpi/, res/
drawable-xhdpi/, res/drawable-mdpi/, and res/drawable-ldpi/ directories,
containing stock launcher icons (ic_launcher.png) for some of those densities
(along with perhaps other icons).

Our AndroidManifest.xml file then references our ic_launcher icon:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

SOME WORDS ABOUT RESOURCES

78

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name="EmPubLiteActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Note that the manifest simply refers to @drawable/ic_launcher, telling Android to
find a drawable resource named ic_launcher. The resource reference does not
indicate the file type of the resource — there is no .png in the resource identifier.
This means you cannot have ic_launcher.png and ic_launcher.jpg in the same
project, as they would both be identified by the same identifier. You will need to
keep the “base name” (filename sans extension) distinct for all of your images.

Also, the @drawable/ic_launcher reference does not mention what screen density
to use. That is because Android will choose the right screen density to use, based
upon the device that is running your app. You do not have to worry about it
explicitly, beyond having multiple copies of your icon.

If Android detects that the device has a screen density for which you lack an icon
(e.g., an extra-high-density device with our stub project), Android will take the next-
closest one and scale it. So, for our stub project, Android would take the -hdpi icon
and scale it up to work on an -xhdpi display, such as that found on the Samsung
Galaxy Nexus.

Drawable Resources and Eclipse

Eclipse does not ship with any sort of image editor that you could use for PNG and
JPEG files. Hence, you will find yourself editing these images using other tools

SOME WORDS ABOUT RESOURCES

79

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

outside of Eclipse. Double-clicking on an image in the Package Explorer in Eclipse
should bring up your default editor for that file type.

Using Android System Drawables

Android has many icons and other images that are considered to be part of the SDK,
in addition to many drawables that ship with the OS but are not considered to be
part of the SDK. You are welcome to use these if you wish, though there are some
things that you will wish to consider.

Directly Referencing SDK Drawables

Just as we can reference an @drawable/ic_launcher resource from our own project
in places like the manifest (and, later on, from ImageView and ImageButton widgets),
we can reference an Android system drawable. Instead of @drawable/, though, we
use @android:drawable/, indicating that the icon in question comes from the SDK,
not from our project.

You can find a list of drawables that are part of the Android SDK in, of all places, the
JavaDocs for a strange little android.R.drawable class.

So, for example, ic_menu_share is listed as a constant on that class, and so we can
reference @android:drawable/ic_menu_share anywhere that we would want to use a
drawable resource.

However, there is a risk: device manufacturers are welcome to replace these
drawables with their own artwork. That is not directly a problem, but if you are
using some of your own icons in addition to icons that come from the SDK, you
could get in trouble. Even though your icons might match those you see from the
SDK in the emulator, or on some devices, it is entirely possible that on other devices,
the SDK-supplied icons will look different than your custom ones. Your custom ones
might be grayscale, while the device’s icons are in color, for example.

Hence, you should only directly reference SDK drawables this way in situations
where, even if the device’s drawable is slightly different than you expect, your app
will still look OK.

SOME WORDS ABOUT RESOURCES

80

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/R.drawable.html
http://developer.android.com/reference/android/R.drawable.html

Copying Android System Drawables

You can find the actual artwork for these SDK drawables, and many others, in your
SDK installation itself:

• Go to the directory where you installed the Android SDK
• In there, go into platforms/
• In there, choose an API level (as icons may look different in Android from

OS version to version)
• In there, go into data/res/
• In there, look at the various drawable- directories, such as drawable-hdpi/

These icons are licensed under the Apache License 2.0, the same license that is used
for the rest of Android, and therefore you are welcome to copy them for your own
project, under the terms of that license.

This is a safer approach than directly referencing these system resources, because by
copying them into your project and using your own local copies (with normal
@drawable/ references), you are insulated from any changes that might be made by
device manufacturers. On the other hand, it does require a bit more work, and it will
make your app a tiny bit larger.

Dimensions
Dimensions are used in several places in Android to describe distances, such as a
widget’s size. There are several different units of measurement available to you:

1. px means hardware pixels, whose size will vary by device, since not all
devices have the same “screen density” (the ~4” Galaxy Nexus and the ~10”
Motorola XOOM have almost the same number of pixels in vastly different
sizes)

2. in and mm for inches and millimeters, respectively, based on the actual size of
the screen

3. pt for points, which in publishing terms is 1/72nd of an inch (again, based on
the actual physical size of the screen)

4. dip (or dp) for device-independent pixels — one dip equals one hardware
pixel for a ~160dpi resolution screen, but one dip equals two hardware pixels
on a ~320dpi screen

SOME WORDS ABOUT RESOURCES

81

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. sp for scaled pixels, where one sp equals one dip for normal text zoom
levels, increasing and decreasing as needed based upon the user’s chosen
text zoom level in Settings

Dimension resources, by default, are held in a dimens.xml file in the res/values/
directory that also holds your strings.

To encode a dimension as a resource, add a dimen element to dimens.xml, with a
name attribute for your unique name for this resource, and a single child text
element representing the value:

<resources><resources>
<dimen<dimen name="thin">>10dip</dimen></dimen>
<dimen<dimen name="fat">>1in</dimen></dimen>

</resources></resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
sample above). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

While our stub project does not use dimension resources, we will be seeing them
soon enough.

Dimension Resources and Eclipse

Much like editing string resources, when you double-click on a dimension resource
file (e.g., res/values/dimens.xml), you will be presented with a list of existing
dimensions. Clicking on one will let you change its definition:

Figure 47: Eclipse, Editing Existing Dimension Resources

Clicking the “Add…” button to the right of the list of dimensions brings up a dialog
where you can add another resource to this file, typically a dimension. Choosing

SOME WORDS ABOUT RESOURCES

82

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“Dimension” and clicking “OK” will add an empty dimension resource to the file, for
which you can supply the name and value.

And, as always, you can click on a sub-tab with the name of your file (e.g.,
dimens.xml) to bring up an XML editor on your resources:

Figure 48: Eclipse, Dimension Resources in XML Editor

The Resource That Shall Not Be Named… Yet
Your stub project also has a res/layout/ directory, in addition to the ones described
above. That is for UI layouts, describing what your user interface should look like.
We will get into the details of that type of resource as we start examining our user
interfaces in an upcoming chapter.

SOME WORDS ABOUT RESOURCES

83

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #4 - Adjusting Our Resources

Our EmPubLite project has some initial resources, put there by the Android build
tools when we created the project. However, the defaults are not what we want for
the long term. So, in addition to adding new resources in future tutorials, we will fix
the ones we already have in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Changing the Name
Our application shows up everywhere as “EmPubLite” or “Blank Project”, depending
upon how you created the project:

• In the title bar of our activity
• As the caption under our icon in the home screen launcher
• In the Application list in the Settings app
• And so on

We should change that to be “EmPub Lite”, adding a space for easier reading, and to
illustrate that this is a “lite” version of the full EmPub application.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

85

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Eclipse

In the Package Explorer, open up the res/values/ folder — you should see a
strings.xml file in there:

Figure 49: Eclipse Package Explorer, Showing EmPubLite

Double-click on strings.xml to open it in the string resources editor:

Figure 50: Eclipse String Resources Editor

This shows a list of the defined string resources (denoted by the green S in the
circle) in this file.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

86

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Click the app_name resource, to bring up its details on the right:

Figure 51: Eclipse String Resources Editor with Details

The app_name name for the resource is fine, as that is how this string is referenced
from the manifest. Change the value to be “EmPub Lite” (adding the space).

Outside of Eclipse

Open up res/values/strings.xml in your favorite editor. You will find an element
that looks like:

<string<string name="app_name">>EmPubLite</string></string>

Change the text node in this element to EmPub Lite. Repeat the process for the
title_activity_em_pub_lite resource, if there is one (depending on your tools
version and such, there may not be one). Then save your changes, giving you
something like:

<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="hello_world">>Hello world!</string></string>
<string<string name="menu_settings">>Settings</string></string>

</resources></resources>

Step #2: Changing the Icon
The build tools provide us with a stock icon to use for the launcher — the actual
image used varies by Android tools release. However, we can change it to something
else. For example, we could use the icon portion of the CommonsWare logo:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

87

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 52: CommonsWare

First, download the original image and save it somewhere on your development
machine.

Then, follow the instructions for Eclipse or non-Eclipse users below.

Eclipse

From the Eclipse main menu, choose File > New > Other > Android. In the resulting
dialog, choose “Android Icon Set” and press Next.

Figure 53: Eclipse Icon Set Wizard, First Page

TUTORIAL #4 - ADJUSTING OUR RESOURCES

88

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/molecule.png

The defaults on the first page of the icon set wizard are to create launcher icons,
with a file base name of ic_launcher, to be added to the EmPubLite project. If the
values that you see in the wizard do not match that, adjust the wizard, then press
Next.

Figure 54: Eclipse Icon Set Wizard, Second Page

In the second page of the icon set wizard, click the “Image” button in the
“Foreground” row. This will change the wizard slightly, giving you a space to supply
the path to some image:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

89

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 55: Eclipse Icon Set Wizard, Second Page, Image Mode

Click the “Browse…” button and open the molecule.png file you downloaded above.
That will display the results in the wizard:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

90

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 56: Eclipse Icon Set Wizard, Second Page, Image Mode, Showing Molecule

Click the “None” button in the “Shape” row, to remove the square background. Then,
click Finish. You will be prompted for whether you want to overwrite the existing
images — click “Yes to All”.

You may wind up with a bunch of error markers on your project for all of the new
images in the Package Explorer. If this occurs, choose Project > Clean from the
Eclipse main menu, ensure that EmPubLite is checked in the project list, and choose
OK. This should get rid of those error markers.

If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

91

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 57: EmPubLite with New Icons

Outside of Eclipse

We can use the Android Asset Studio to create launcher icons out of this image, if
you have the Chrome browser.

Visit the Android Asset Studio Web site in Chrome. Then, click the “Launcher icons”
link in the “Icon generators” portion of the home page.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

92

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://j.mp/androidassetstudio
http://j.mp/androidassetstudio

Figure 58: Android Asset Studio, Launcher Icon Generator

Click on the “Image” button in the “Foreground” row. This will bring up a “file open”
dialog — find and open the molecule.png file you downloaded previously.
Automatically, the Studio will generate the icons we need:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

93

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 59: Android Asset Studio with Generated Icons

Click the “Download .ZIP” button to download a ZIP archive file containing all the
generated icons.

If you are having difficulty using the Android Asset Studio, you can download the
icons directly.

If you examine that ZIP file, you will see that it contains a res/ directory with a
series of drawable subdirectories, each containing a copy of ic_launcher.png for a
given screen density. The ZIP file also contains a high-resolution image that we
might use if we planned on uploading this app to Google Play, but we will not need
that for the tutorials.

Copy the four ic_launcher.png files from the ZIP archive’s directories into the
corresponding directories in your project. You may have to copy the whole
drawable-xhdpi/ directory, as that may not already exist in your project. If you are
using Eclipse, you can drag-and-drop into the Package Explorer directly. If you
prefer, you can drag-and-drop into the project as found on your development
machine’s file system, but then you will need to press <F5> on your project in Eclipse
to get it to reflect the changes you made behind Eclipse’s back.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

94

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/ic_launcher.zip
http://misc.commonsware.com/ic_launcher.zip

Step #3: Running the Result
If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

Figure 60: EmPubLite with New Icons

However, Eclipse users may encounter some problems in running the result. When
you wish to run an Android project from Eclipse, you must pay close attention to
what part of the Eclipse UI has the focus. The focus cannot be on an editor for a
resource. So, for example, had you gone back to the string resource editor, done
some changes there, then attempted to run the project, nothing would have
happened.

Instead, the focus has to be pretty much anywhere else for the Run option in the
toolbar to work:

• On the manifest
• On some Java code
• On the Package Explorer

TUTORIAL #4 - ADJUSTING OUR RESOURCES

95

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is a bug, one that will hopefully get fixed someday.

In Our Next Episode…
… we will add a progress indicator to the UI of our tutorial project.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

96

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Theory of Widgets

There is a decent chance that you have already done work with widget-based UI
frameworks. In that case, much of this chapter will be review, though checking out
the section on the absolute positioning anti-pattern should certainly be worthwhile.

There is a chance, though, that your UI background has come from places where you
have not been using a traditional widget framework, where either you have been
doing all of the drawing yourself (e.g., game frameworks) or where the UI is defined
more in the form of a document (e.g., classic Web development). This chapter is
aimed at you, to give you some idea of what we are talking about when discussing
the notion of widgets and containers.

What Are Widgets?
Wikipedia has a nice definition of a widget:

In computer programming, a widget (or control) is an element of a
graphical user interface (GUI) that displays an information arrangement
changeable by the user, such as a window or a text box. The defining
characteristic of a widget is to provide a single interaction point for the
direct manipulation of a given kind of data. In other words, widgets are
basic visual building blocks which, combined in an application, hold all the
data processed by the application and the available interactions on this
data.

(quote from the 7 March 2014 version of the page)

Take, for example, this Android screen:

97

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/GUI_widget

Figure 61: A Sample Android Screen

Ignoring the gray horizontal bars across the top of this screen, we see:

• an icon of a contact “Rolodex” card
• some text (“Phone-only (unsynced..)”)
• a thin horizontal divider line
• another icon, showing a placeholder for a contact photo, in a frame
• two data entry fields
• an icon that looks like a downward-pointing arrowhead in a circle
• another thin horizontal divider line
• another piece of text (“Phone”)
• two more icons, that look like plus and minus signs in circles
• a button (“Home”)
• another data entry field
• two more buttons (“Done” and “Revert”) in some sort of bar across the

bottom

Everything listed above is a widget. The user interface for most Android screens
(“activities”) is made up of one or more widgets.

This does not mean that you cannot do your own drawing. In fact, all the existing
widgets are implemented via low-level drawing routines, which you can use for
everything from your own custom widgets to games.

THE THEORY OF WIDGETS

98

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This also does not mean that you cannot use Web technologies. In fact, we will see
later in this book a widget designed to allow you to embed Web content into an
Android activity.

However, for most non-game applications, your Android user interface will be made
up of several widgets.

Size, Margins, and Padding
Widgets have some sort of size, since a zero-pixel-high, zero-pixel-wide widget is not
especially user-friendly. Sometimes, that size will be dictated by what is inside the
widget itself, such as a label (TextView) having a size dictated by the text in the
label. Sometimes, that size will be dictated by the size of whatever holds the widget
(a “container”, described in the next section), where the widget wants to take up all
remaining width and/or height. Sometimes, that size will be a specific set of
dimensions.

Widgets can have margins. As with CSS, margins provide separation between a
widget and anything adjacent to it (e.g., other widgets, edges of the screen). Margins
are really designed to help prevent widgets from running right up next to each other,
so they are visually distinct. Some developers, however, try to use margins as a way
to hack “absolute positioning” into Android, which is an anti-pattern that we will
examine later in this chapter.

Widgets can have padding. As with CSS, padding provides separation between the
contents of a widget and the widget’s edges. This is mostly used with widgets that
have some sort of background, like a button, so that the contents of the widget (e.g.,
button caption) does not run right into the edges of the button, once again for visual
distinction.

What Are Containers?
Containers are ways of organizing multiple widgets into some sort of structure.
Widgets do not naturally line themselves up in some specific pattern — we have to
define that pattern ourselves.

In most GUI toolkits, a container is deemed to have a set of children. Those children
are widgets, or sometimes other containers. Each container has its basic rule for how
it lays out its children on the screen, possibly customized by requests from the
children themselves.

THE THEORY OF WIDGETS

99

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Common container patterns include:

• put all children in a row, one after the next
• put all children in a column, one below the next
• arrange the children into a table or grid with some number of rows and

columns
• anchor the children to the sides of the container, according to requests made

by those children
• anchor the children to other children in the container, according to requests

made by those children
• stack all children, one on top of the next
• and so on

In the sample activity above, the dominant pattern is a column, with things laid out
from top to bottom. Some of those things are rows, with contents laid out left to
right. However, as it turns out, the area with most of those widgets is scrollable —
you can see a thin scrollbar on the right side of the screen. The “Done” and “Revert”
buttons, along with the scrollable container, are themselves anchored to sides of
their parent container (e.g., the “Done”/“Revert” bar is anchored to the bottom).

Android supplies a handful of containers, designed to handle most common
scenarios, including everything in the list above. You are also welcome to create your
own custom containers, to implement business rules that are not directly supported
by the existing containers.

Note that containers also have size, padding, and margins, just as widgets do.

The Absolute Positioning Anti-Pattern
You might wonder why all of these containers and such are necessary. After all, can’t
you just say that such-and-so widget goes at this pixel coordinate, and this other
widget goes at that pixel coordinate, and so on?

Many developers have taken that approach — known as absolute positioning – over
the years, to their eventual regret.

For example, many of you may have used Windows apps, back in the 1990’s, where
when you would resize the application window, the app would not really react all
that much. You would expand the window, and the UI would not change, except to
have big empty areas to the right and bottom of the window. This is because the

THE THEORY OF WIDGETS

100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

developers simply said that such-and-so widget goes at this pixel coordinate, and
this other widget goes at that pixel coordinate, regardless of the actual window
size.

In modern Web development, you see this in the debate over fixed versus fluid Web
design. The consensus seems to be that fluid designs are better, though frequently
they are more difficult to set up. Fluid Web designs can better handle differing
browser window sizes, whether those window sizes are because the user resized
their browser window manually, or because those window sizes are dictated by the
screen resolution of the device viewing the Web page. Fixed Web designs —
effectively saying that such-and-so element goes at such-and-so pixel coordinate and
so on — tend to be easier to build but adapt more poorly to differing browser
window sizes.

In mobile, particularly with Android, we have a wide range of possible screen
resolutions, from QVGA (320x240) to beyond 1080p (1920x1080), and many values in
between. Moreover, any device manufacturer is welcome to create a device with
whatever resolution they so desire – there are no rules limiting manufacturers to
certain resolutions. Hence, as developers, having the Android equivalent of fluid
Web designs is critical, and the way you will accomplish that is by sensible use of
containers, avoiding absolute positioning. The containers (and, to a lesser extent,
the widgets) will determine how extra space is employed, as the screens get larger
and larger.

THE THEORY OF WIDGETS

101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/
http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android User Interface

The project you created in an earlier tutorial was just the default files generated by
the Android build tools — you did not write any Java code yourself. In this chapter,
we will examine the basic Java code and resources that make up an Android activity.

The Activity
An Android project’s src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the project
(e.g., com.commonsware.android results in src/com/commonsware/android/). If you
checked the checkbox in the Eclipse new-project wizard to create an activity — or if
you used the command-line tools to create your project – you will have, in the
innermost directory, a Java source file representing an activity class.

For the stub project we created earlier in this book, that sample class looks like this:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.app.Activityandroid.app.Activity;
importimport android.view.Menuandroid.view.Menu;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar

103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// if it is present.
getMenuInflater().inflate(R.menu.activity_main, menu);
returnreturn truetrue;

}

}

Dissecting the Activity
Let’s examine this Java code piece by piece:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.app.Activityandroid.app.Activity;
importimport android.view.Menuandroid.view.Menu;

The package declaration needs to be the same as the one you used when creating
the project. And, like any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

Remember that not every Java SE class is available to Android programs! Visit the
Android class reference to see what is and is not available.

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

Activities are public classes, inheriting from the android.app.Activity base class
(or, possibly, from some other class that itself inherits from Activity). You can have
whatever data members you decide that you need, though the initial code has none.

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

The onCreate() method is invoked when the activity is started. We will discuss the
Bundle parameter to onCreate() in a later chapter. For the moment, consider it an
opaque handle that all activities receive upon creation.

The first thing you should do in onCreate() is chain upward to the superclass, so the
stock Android activity initialization can be done. The only other statement in our
stub project’s onCreate() is a call to setContentView(). This is where we tell
Android what the user interface is supposed to be for our activity.

THE ANDROID USER INTERFACE

104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/packages.html

This raises the question: what does R.layout.main mean? Where did this R come
from?

To explain that, we need to start thinking about layout resources and how resources
are referenced from within Java code. We will get to that momentarily.

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar
// if it is present.
getMenuInflater().inflate(R.menu.activity_main, menu);
returnreturn truetrue;

}

The onCreateOptionsMenu() is used in Android to populate the action bar, or the
options menu on older devices. We will discuss the action bar in an upcoming
chapter. For now, just ignore this method.

Now, back to this mysterious R…

Using XML-Based Layouts
As noted earlier, Android uses a series of widgets and containers to describe your
typical user interface. These all inherit from an android.view.View base class, for
things that can be rendered into a standard widget-based activity.

While it is technically possible to create and attach widgets and containers to our
activity purely through Java code, the more common approach is to use an XML-
based layout file. Dynamic instantiation of widgets is reserved for more complicated
scenarios, where the widgets are not known at compile-time (e.g., populating a
column of radio buttons based on data retrieved off the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android
activity contents that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’
relationships to each other — and to containers — encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as such
layout files are stored in the res/layout/ directory inside your Android project (or,

THE ANDROID USER INTERFACE

105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

as we will see later, other layout resource sets, like res/layout-land/ for layouts to
use when the device is held in landscape).

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should behave.
For example, if a Button element has an attribute value of android:textStyle =
"bold", that means that the text appearing on the face of the button should be
rendered in a boldface font style.

For example, here is the res/layout/main.xml file that came with our stub project:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"/>/>

</RelativeLayout></RelativeLayout>

The class name of a widget or container — such as RelativeLayout or TextView –
forms the name of the XML element. Since TextView is an Android-supplied widget,
we can just use the bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as well
(e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace
(xmlns:android="http://schemas.android.com/apk/res/android"). All other
elements will be children of the root and will inherit that namespace declaration.

The attributes are properties of the widget or container, describing what it should
look and work like. For example, the android:layout_centerHorizontal="true"
attribute on the TextView element indicates that the TextView should be centered
within its RelativeLayout parent.

We will get into details about these attributes, their possible values, and their uses,
in upcoming chapters. Note that those attributes in the tools namespace (e.g.,

THE ANDROID USER INTERFACE

106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

tools:context) are there solely to support the Android build tools, Eclipse in
particular, and do not affect the runtime execution of your project.

Android’s SDK ships with a tool (aapt) which uses the layouts. This tool should be
automatically invoked by your Android tool chain (e.g., Eclipse, Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates an R.java source
file within your project’s gen/ directory, allowing you to access layouts and widgets
within those layouts directly from your Java code. In other words, this is where that
magic R value used in setContentView() comes from. We will discuss that a bit
more later in this chapter.

XML Layouts and Eclipse

If you are using Eclipse, and you double-click on the res/layout/main.xml file in
your project, you will not initially see that XML. Instead, you will be taken to the
graphical layout editor:

Figure 62: Eclipse Graphical Layout Editor

The “main.xml” sub-tab will show you the raw XML. The default “Graphical Layout”
sub-tab, though, shows you a preview of what your layout would look like, if it were
to be used for an activity. The “Palette” on the left shows all sorts of widgets and

THE ANDROID USER INTERFACE

107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

containers, which you can drag into the preview area to add an instance of your
chosen widget or container to your layout. Right-clicking over a widget or container
will give you an extensive context menu to configure the item, and the toolbar
immediately above the preview area will let you configure common properties of a
selected widget or container.

We will go into much more detail about using the graphical layout editor in an
upcoming chapter, as we start to work more with specific widgets and containers.

Why Use XML-Based Layouts?

Almost everything you do using XML layout files can be achieved through Java code.
For example, you could use setText() to have a button display a certain caption,
instead of using a property in an XML layout. Since XML layouts are yet another file
for you to keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition,
such as the aforementioned graphical layout editor in Eclipse. Such GUI builders
could, in principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits — that is far simpler if the data is in a structured
format like XML than in a programming language. Moreover, keeping the generated
bits separated out from hand-written code makes it less likely that somebody’s
custom-crafted source will get clobbered by accident when the generated bits get re-
generated. XML forms a nice middle ground between something that is easy for
tool-writers to use and easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
XAML, Adobe’s Flex, Google’s GWT, and Mozilla’s XUL all take a similar approach to
that of Android: put layout details in an XML file and put programming smarts in
source files (e.g., JavaScript for XUL). Many less-well-known GUI frameworks, such
as ZK, also use XML for view definition. While “following the herd” is not necessarily
the best policy, it does have the advantage of helping to ease the transition into
Android from any other XML-centered view description language.

Using Layouts from Java

Given that you have painstakingly set up the widgets and containers for your view in
an XML layout file named main.xml stored in res/layout/, all you need is one
statement in your activity’s onCreate() callback to use that layout, as we saw in our
stub project’s activity:

THE ANDROID USER INTERFACE

108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Extensible_Application_Markup_Language
http://www.adobe.com/products/flex/
http://code.google.com/webtoolkit/
http://www.mozilla.org/projects/xul/
http://www.zkoss.org/

setContentView(R.layout.main);

Here, R.layout.main tells Android to load in the layout (layout) resource (R) named
main.xml (main).

THE ANDROID USER INTERFACE

109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc. Android’s
toolkit is no different in scope, and the basic widgets will provide a good
introduction as to how widgets work in Android activities. We will examine a
number of these in this chapter.

Common Concepts
There are a few core features of widgets that we need to discuss at the outset, before
we dive into details on specific types of widgets.

Widgets and Attributes

As mentioned in a previous chapter, widgets have attributes that describe how they
should behave. In an XML layout file, these are literally XML attributes on the
widget’s element in the file. Usually, there are corresponding getter and setter
methods for manipulating this attribute at runtime from your Java code.

If you visit the JavaDocs for a widget, such as the JavaDocs for TextView, you will see
an “XML Attributes” table near the top. This lists all of the attributes defined
uniquely on this class, and the “Inherited XML Attributes” table that follows lists all
those that the widget inherits from superclasses, such as View. Of course, the
JavaDocs also list the fields, constants, constructors, and public/protected methods
that you can use on the widget itself.

This book does not attempt to explain each and every attribute on each and every
widget. We will, however, cover the most popular widgets and the most commonly-
used attributes on those widgets.

111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

Referencing Widgets By ID

Many widgets and containers only need to appear in the XML layout file and do not
need to be referenced in your Java code. For example, a static label (TextView)
frequently only needs to be in the layout file to indicate where it should appear.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/... as the id value, where the ... represents your
locally-unique name for the widget in question, for the first occurrence of a given id
value in your layout file. The second and subsequent occurrences in the same layout
file should drop the + sign.

Android provides a few special android:id values, of the form @android:id/... —
we will see some of these in various chapters of this book.

To access our identified widgets, use findViewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated by
Android in the R class as R.id.something (where something is the specific widget
you are seeking).

This concept will become important as we try to attach listeners to our widgets (e.g.,
finding out when a checkbox is checked) or when we try referencing widgets from
other widgets in a layout XML file (e.g., with RelativeLayout). All of this will be
covered later in this chapter.

Size

Most of the time, we need to tell Android how big we want our widgets to be.
Occasionally, this will be handled for us — we will see an example of that with
TableLayout in an upcoming chapter. But generally we need to provide this
information ourselves.

To do that, you need to supply android:layout_width and android:layout_height
attributes on your widgets in the XML layout file. These attributes’ values have three
flavors:

1. You can provide a specific dimension, such as 125dip to indicate the widget
should take up exactly a certain size (here, 125 density-independent pixels)

BASIC WIDGETS

112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. You can provide wrap_content, which means the widget should take up as
much room as its contents require (e.g., a TextView label widget’s content is
the text to be displayed)

3. You can provide match_parent, which means the widget should fill up all
remaining available space in its enclosing container

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

Note that you will also see fill_parent. This is an older synonym for match_parent.
match_parent is the recommended value going forward, but fill_parent will
certainly work.

This chapter focuses on individual widgets. Size becomes much more important
when we start combining multiple widgets on the screen at once, and so we will be
spending more time on sizing scenarios in later chapters.

The layout_ prefix on these attributes means that these attributes represent
requests by the widget to its enclosing container. Whether those requests will be
truly honored will depend a bit on what other widgets there are in the container and
what their requests are.

Assigning Labels
The simplest widget is the label, referred to in Android as a TextView. Like in most
GUI toolkits, labels are bits of text not editable directly by users. Typically, they are
used to identify adjacent widgets (e.g., a “Name:” label before a field where one fills
in a name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to
the layout, with an android:text property to set the value of the label itself. If you
need to swap labels based on certain criteria, such as internationalization, you may
wish to use a string resource reference in the XML instead (e.g., @string/label).

For example, in our last tutorial, we still are using the automatically-generated res/
layout/main.xml file, containing, among other things, a TextView:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

BASIC WIDGETS

113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"/>/>

</RelativeLayout></RelativeLayout>

Eclipse Graphical Layout Editor

The TextView widget is available in the “Form Widgets” portion of the Palette in the
Eclipse graphical layout editor:

Figure 63: Form Widgets Palette, TextView in Upper Left

You can drag that TextView from the palette into a layout file in the main editing
area to add the widget to the layout. Or, drag it over the top of some container you
see in the Outline pane of the editor to add it as a child of that specific container:

BASIC WIDGETS

114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 64: Outline Pane

Clicking on the resulting TextView in the Outline pane will set up the Properties
pane with the various attributes of the widget, ready for you to change as needed:

Figure 65: Properties Pane, for a TextView Inside a RelativeLayout

BASIC WIDGETS

115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Editing the Text

The “Text” property will allow you to choose or define a string resource to serve as
the text to be displayed. By default, it brings up a list of existing string resources:

Figure 66: String Resource Chooser

You can highlight one of those resources and click “OK” to use it, or you can click
the “New String…” button to define a brand-new string resource.

Editing the ID

The “Id” property will allow you to change the android:id value of the widget. Be
sure to include the @+id/ prefix, as Android will not add that automatically for you.

Notable TextView Attributes

TextView has numerous other attributes of relevance for labels, such as:

1. android:typeface to set the typeface to use for the label (e.g., monospace)

BASIC WIDGETS

116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

3. android:textColor to set the color of the label’s text, in RGB hex format
(e.g., #FF0000 for red) or ARGB hex format (e.g., #88FF0000 for a translucent
red)

These attributes, like most others, can be modified through the Properties pane.

For example, in the Basic/Label sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/profound"
/>/>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

Figure 67: The LabelDemo Sample Application

BASIC WIDGETS

117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label

A Commanding Button
Android has a Button widget, which is your classic push-button “click me and
something cool will happen” widget. As it turns out, Button is a subclass of
TextView, so everything discussed in the preceding section in terms of formatting
the face of the button still holds.

For example, in the Basic/Button sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button"/>/>

</LinearLayout></LinearLayout>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

BASIC WIDGETS

118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button

Figure 68: Button Widget

Eclipse Graphical Layout Editor

As with the TextView widget, the Button widget is available in the “Form Widgets”
portion of the Palette in the Eclipse graphical layout editor:

BASIC WIDGETS

119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 69: Form Widgets Palette, Button in Upper Right

You can drag that Button from the palette into a layout file in the main editing area
to add the widget to the layout. The Properties pane will then let you adjust the
various attributes of this Button. Since Button inherits from TextView, most of the
options are the same (e.g., “Text”).

Tracking Button Clicks

Buttons are command widgets — when the user presses a button, they expect
something to happen.

To define what happens when you click a Button, you can:

1. Define some method on your Activity that holds the button that takes a
single View parameter, has a void return value, and is public

2. In your layout XML, on the Button element, include the android:onClick
attribute with the name of the method you defined in the previous step

For example, we might have a method on our Activity that looks like:

publicpublic void someMethod(View theButton) {
// do something useful here

}

BASIC WIDGETS

120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button<Button
android:onClick="someMethod"
...

/>/>

This is enough for Android to “wire together” the Button with the click handler.
When the user clicks the button, someMethod() will be called.

Another approach is to skip android:onClick, instead calling
setOnClickListener() on the Button object in Java code. When a Button is used
directly by an activity, this is not typically used — android:onClick is a bit cleaner.
However, when we start to talk about fragments, you will see that android:onClick
does not work that well with fragments, and so we will use setOnClickListener() at
that point.

Fleeting Images
Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView
and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon).

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView<ImageView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/icon"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"/>/>

The result, just using the code-generated activity, is simply the image:

BASIC WIDGETS

121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView

Figure 70: The ImageViewDemo sample application

Eclipse Graphical Layout Editor

The ImageView widget can be found in the “Images & Media” portion of the Palette
in the Graphical Layout editor:

Figure 71: Images & Media Widgets Palette, ImageView in Upper Left

The ImageButton widget is adjacent to the ImageView widget in the Palette.

You can drag these into a layout file, then use the Properties pane to set their
attributes. Like all widgets, you will have an “Id” option to set the android:id value

BASIC WIDGETS

122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for the widget. Two others of importance, though, are more unique to ImageView
and ImageButton:

• “Src” allows you to choose a drawable resource to use as the image to be
displayed

• “Scale Type” opens a drop-down menu where you can choose how the image
is to be scaled:

Figure 72: Scale Types in Eclipse Properties Pane

These values can be seen in the JavaDocs in the ImageView.ScaleType class. The
default (“fitCenter”) simply scales up the image to best fit the available space.

Of note, a choice of “center” will center the image in the available space but will not
scale up the image:

BASIC WIDGETS

123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://developer.android.com/reference/android/widget/ImageView.ScaleType.html

Figure 73: The ImageViewDemo Sample, Set to center

A choice of “centerCrop” will scale the image so that its shortest dimension fills the
available space and crops the rest:

BASIC WIDGETS

124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 74: The ImageViewDemo Sample, Set to centerCrop

A choice of “fitXY” will scale the image to fill the space, ignoring the aspect ratio:

Figure 75: The ImageViewDemo Sample, Set to fitXY

BASIC WIDGETS

125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fields of Green. Or Other Colors.
Along with buttons and labels, fields are the third “anchor” of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView attributes (e.g., android:textStyle), EditText
has others that will be useful for you in constructing fields, notably
android:inputType, to describe what sort of input your EditText expects (numbers?
email addresses? phone numbers?). A thorough explanation of android:inputType
and its interaction with input method editors (a.k.a., “soft keyboards”) will be
discussed in an upcoming chapter.

For example, from the Basic/Field sample project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>
<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/field"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:inputType="textMultiLine"
android:text="@string/license"
/>/>

Note that we have android:inputType="textMultiLine", so users will be able to
enter in several lines of text. We also have defined the initial text to be the value of a
license string resource.

The result, once built and installed into the emulator, is:

BASIC WIDGETS

126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field

Figure 76: The FieldDemo sample application

Eclipse Graphical Layout Editor

The Graphical Layout’s Palette has a whole section dedicated primarily to EditText
widgets, named “Text Fields”:

BASIC WIDGETS

127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 77: Text Fields Palette

The first entry is a general-purpose EditText. The rest come pre-configured for
various scenarios, such as a person’s name or a postal address.

You can drag any of these into your layout, then use the Properties pane to configure
relevant attributes. The “Id” and “Text” attributes are the same as found on
TextView, as are many other properties, as EditText inherits from TextView.

Notable EditText Attributes

The “Request Focus” item in the context menu (right-click over the EditText widget)
allows you to indicate that this EditText should be the widget that receives the
focus when this layout is loaded onto the screen. By default, the focus goes to the
focusable widget that is first (i.e., closest to the upper-left corner), but you can
override that using this attribute.

The “Hint” item in the Properties pane allows you to set a “hint” for this EditText.
The “hint” text will be shown in light gray in the EditText widget when the user has
not entered anything yet. Once the user starts typing into the EditText, the “hint”
vanishes. This might allow you to save on screen space, replacing a separate label
TextView.

BASIC WIDGETS

128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The “Input Type” item in the Properties pane allows you to describe what sort of
input you are expecting to receive in this EditText, lining up with many of the types
of fields you can drag from the Palette into the layout:

Figure 78: Text Fields InputType Dialog

More Common Concepts
All widgets, including the ones shown above, extend View. The View base class gives
all widgets an array of useful attributes and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is inside of
them. So, for example, a Button will expand to accommodate the size of its caption.
You can control this size using padding. Adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-
side basis (android:paddingLeft, etc.). Padding can also be set in Java via the
setPadding() method.

The value of any of these is a dimension — a combination of a unit of measure and a
count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, or 2mm is 2
millimeters.

BASIC WIDGETS

129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Margins

By default, widgets are tightly packed, one next to the other. You can control this via
the use of margins, a concept that is reminiscent of the padding described
previously.

The difference between padding and margins comes in terms of the background. For
widgets with a transparent background — like the default look of a TextView —
padding and margins have similar visual effect, increasing the space between the
widget and adjacent widgets. However, for widgets with a non-transparent
background — like a Button — padding is considered inside the background while
margins are outside. In other words, adding padding will increase the space between
the contents (e.g., the caption of a Button) and the edges, while adding margin
increases the empty space between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android:layout_margin. Once again,
the value of any of these is a dimension — a combination of a unit of measure and a
count, such as 5px for 5 pixels.

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses) can
take a ColorStateList, including via the Java setter (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For
example, when you get to selection widgets in an upcoming chapter, you will see
how a TextView has a different text color when it is the selected item in a list
compared to when it is in the list but not selected. This is handled via the default
ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

• Use ColorStateList.valueOf(), which returns a ColorStateList in which
all states are considered to have the same color, which you supply as the
parameter to the valueOf() method. This is the Java equivalent of the
android:textColor approach, to make the TextView always a specific color
regardless of circumstances.

BASIC WIDGETS

130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Create a ColorStateList with different values for different states, either via
the constructor or via an XML drawable resource.

Other Useful Attributes

Some additional attributes on View most likely to be used include:

1. android:visibility, which controls whether the widget is initially visible
2. android:nextFocusDown, android:nextFocusLeft,

android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing device

3. android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to help
people who cannot see the screen navigate the application — this is very
important for widgets like ImageView

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some
widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as mentioned
above, to ensure the proper widget has the focus once your disabling operation is
complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

1. getParent() to find the parent widget or container
2. findViewById() to find a child widget with a certain ID
3. getRootView() to get the root of the tree (e.g., what you provided to the

activity via setContentView())

Visit the Trails!
You can learn more about Android’s input method framework — what you might
think of as soft keyboards — in a later chapter.

BASIC WIDGETS

131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another chapter in the trails covers the use of fonts, to tailor your TextView widgets
(and those that inherit from them, like Button).

Yet another chapter in the trails covers rich text formatting, both for presenting
formatted text in a TextView (e.g., inline boldface) and for collecting formatted text
from the user via a customized EditText.

BASIC WIDGETS

132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Debugging Crashes

Now that we are starting to manipulate layouts and Java code more significantly, the
odds increase that we are going to somehow do it wrong, and our app will crash.

Figure 79: A Crash Dialog on Android 4.0.3

In this chapter, we will cover a few tips on how to debug these sorts of issues.

133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Get Thee To a Stack Trace
If you see one of those “Force Close” or “Has Stopped” dialogs, the first thing you will
want to do is examine the Java stack trace that is associated with this crash. These
are logged to a facility known as LogCat, on your device or emulator.

To view LogCat, you have three choices:

1. Use the adb logcatadb logcat command at the command line (or something that uses
adb logcatadb logcat, such as various colorizing scripts available online)

2. Use the LogCat tab in the standalone Android Device Monitor utility (run
monitormonitor from the command line)

3. Use the LogCat view in Eclipse

There are also LogCat apps on the Play Store, such as aLogCat, that will display the
contents of LogCat. However, for security and privacy reasons, on Jelly Bean and
higher devices, such apps will only be able to show you their LogCat entries, not
those from the system, your app, or anyone else. Hence, for development purposes,
it is better to use one of the other alternatives outlined above.

The LogCat view is available at any time, from pretty much anywhere in Eclipse, by
means of clicking on the LogCat icon in the status bar of your Eclipse window:

Figure 80: Scaled Up Rendition of LogCat Icon

LogCat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e() will log a message at error severity,
causing it to be displayed in red.

DEBUGGING CRASHES

134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 81: Eclipse Window with LogCat View Maximized

By default, when developing your app, if your app crashes, LogCat will display
messages from your app alone, via a filter on the left, with the name of your app’s
package (e.g., com.commonsware.android.skeleton). Switching the filter to “All
messages (no filters)” will show all LogCat messages, regardless of origin.

There is a scrollbar towards the bottom of the main log area that will let you see
more of your stack trace:

DEBUGGING CRASHES

135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 82: Eclipse Window with LogCat View Scrolled Right

Your stack trace will typically consist of two or more “stanzas”. Your own code will
typically be in the last of these. So, in the screenshot above, we have
java.lang.RuntimeException: Unable to start activity..., followed by
Caused by: java.lang.NullPointerException, as a pair of stanzas. The point
where our code crashed shows up in that second stanza (at
com.commonsware.android.skeleton.Now.onCreate(Now.java:31)).

If you double-click on a line in the stack trace corresponding with your code, you
will be taken to a Java editor on that source file and line, so you can see what code
triggered the exception.

If you wish to save one of these stack traces as a file, to attach to an issue in an issue
tracker or something, highlight the lines you want in LogCat (click on the first line,
then <Shift>-click on the last line), then click on the “Export Selected Items to Text
File” icon (looks like a 3.5-inch floppy disk or a classic “save” icon). This will bring up
your platform’s “Save As” dialog, where you can specify where to write out the file.

The icon immediately to the right is the “clear” icon:

DEBUGGING CRASHES

136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 83: LogCat Save and Clear Icons

Clicking it will appear to clear LogCat. It definitely clears your LogCat view, so you
will only see messages logged after you cleared it. Note, though, that this does not
actually clear the logs from the device or emulator.

The Case of the Confounding Class Cast
If you crash, the stack trace might suggest that there is a problem tied to your
resources. One common flavor of this is a ClassCastException when you call
findViewById(). For example, you might call (Button)findViewById(R.id.button),
yet get a ClassCastException: android.widget.LinearLayout as a result,
indicating that while you thought your findViewById() call would return a Button,
it really returned a LinearLayout.

Often times, this is not your fault. Sometimes, the R values get out of sync with pre-
compiled classes from previous builds. This most often occurs just after you change
your mix of resources (e.g., add a new layout).

To resolve this, you need to clean your project. In Eclipse, this is a matter of
selecting the project, then choosing Project > Clean from the Eclipse main menu.
Outside of Eclipse, ant cleanant clean accomplishes much the same thing.

So, if you get a strange crash that seems like it might be related to resources, clean
your project. If the problem goes away, you are set — if the problem persists, you
will need to do a bit more debugging.

Point Break
If you are an experienced Eclipse user, you are welcome to use any of Eclipse’s
standard debugging capabilities with your Android app, such as breakpoints.

DEBUGGING CRASHES

137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Whether you debug on an emulator or on a device (with “USB Debugging” enabled
in Settings), your breakpoints and such should work normally.

Note, however, that if you set up Eclipse to catch all unhandled exceptions, those
exceptions will not be logged to LogCat unless you allow execution to proceed past
the point of the exception. While this may not matter much to you during
development, the LogCat stack trace is often easier for other developers to read,
away from your Eclipse environment. So, if you wish to post a stack trace on an issue
or on a support forum (e.g., StackOverflow), use the LogCat stack trace.

DEBUGGING CRASHES

138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LinearLayout and the Box Model

LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next. This works similarly
to vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers.
Getting the visual representation you want is mostly a matter of identifying where
boxes should nest and what properties those boxes should have, such as alignment
vis-à-vis other boxes.

Concepts and Properties
To configure a LinearLayout, you have four main areas of control besides the
container’s contents: the orientation, the fill model, the weight, the gravity.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just
add the android:orientation property to your LinearLayout element in your XML
layout, setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fill Model

The point behind a LinearLayout — or any of the Android container classes – is to
organize multiple widgets. Part of organizing those widgets is determining how
much space each gets.

LinearLayout takes an “eldest child wins” approach towards allocating space. So, if
we have a LinearLayout with three children, the first child will get its requested
space. The second child will get its requested space, if there is enough room
remaining, and likewise for the third child. So if the first child asks for all the space
(e.g., this is a horizontal LinearLayout and the first child has
android:layout_width="match_parent"), the second and third children will wind
up with zero width.

Weight

But, what happens if we have two or more widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and we want
them to take up the remaining space in the column after all other widgets have been
allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns), you must also set android:layout_weight.
This property indicates what proportion of the free space should go to that widget. If
you set android:layout_weight to be the same non-zero value for a pair of widgets
(e.g., 1), the free space will be split evenly between them. If you set it to be 1 for one
widget and 2 for another widget, the second widget will use up twice the free space
that the first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage
basis. To use this technique for, say, a horizontal layout:

1. Set all the android:layout_width values to be 0 for the widgets in the layout
2. Set the android:layout_weight values to be the desired percentage size for

each widget in the layout
3. Make sure all those weights add up to 100

If you want to have space left over, not allocated to any widget, you can add an
android:weightSum attribute to the LinearLayout, and ensure that the sum of the

LINEARLAYOUT AND THE BOX MODEL

140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_weight attributes of the children are less than that sum. The
children will each get space allocated based upon the ratio of their
android:layout_weight compared to the android:weightSum, not compared to the
sum of the weights. And there will be empty space that takes up the rest of the room
not allocated to the children.

To see android:layout_weight in action, take a look at the Containers/
LinearPercent sample project. Here, we have a res/layout/main.xml file containing
a vertical LinearLayout with three Button widgets as children:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="50"
android:text="@string/fifty_percent"/>/>

<Button<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="30"
android:text="@string/thirty_percent"/>/>

<Button<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="20"
android:text="@string/twenty_percent"/>/>

</LinearLayout></LinearLayout>

Each of the three Button widgets declares its height to be 0dip. However, each also
has an android:layout_weight attribute, with the top Button requesting a weight of
50, the middle Button a weight of 30, and the bottom Button a weight of 20.

The result is that the Button widgets’ heights are allocated based solely upon those
weights:

LINEARLAYOUT AND THE BOX MODEL

141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent

Figure 84: The LinearPercent Sample Application

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a
row of widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Unlike the physical world,
Android has two types of gravity: the gravity of a widget within a LinearLayout, and
the gravity of the contents of a widget or container.

The android:gravity property of some widgets and containers — which also can be
defined via setGravity() in Java — tells Android to slide the contents of the widget
or container in a particular direction. For example, android:gravity="right" says
to slide the contents of the widget to the right; android:gravity="right|bottom"
says to slide the contents of the widget to the right and the bottom.

Here, “contents” varies. TextView supports android:gravity, and the “contents” is
the text held within the TextView. LinearLayout supports android:gravity, and the
“contents” are the widgets inside the container. And so on.

LINEARLAYOUT AND THE BOX MODEL

142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Children of a LinearLayout also have the option of specifying
android:layout_gravity. Here, the child is telling the LinearLayout “if there is
room, please slide me (and me alone) in this direction”. However, this only works in
the direction opposite the orientation of the LinearLayout – the children of a
vertical LinearLayout can use android:layout_gravity to control their
positioning horizontally (left or right), but not vertically.

For a row of widgets, the default is for them to be aligned so their texts are aligned
on the baseline (the invisible line that letters seem to “sit on”), though you may wish
to specify a gravity of center_vertical to center the widgets along the row’s vertical
midpoint.

Eclipse Graphical Layout Editor
The LinearLayout container can be found in the “Layouts” portion of the Palette of
the Eclipse graphical layout editor:

Figure 85: Layouts Palette in Eclipse Graphical Layout Editor

You can drag either the “LinearLayout (Vertical)” or “LinearLayout (Horizontal)” into
a layout XML resource, then start dragging in children to go into the container.

When your LinearLayout is the selected widget, a toolbar will appear over the
preview:

LINEARLAYOUT AND THE BOX MODEL

143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 86: LinearLayout Toolbar in Eclipse Graphical Layout Editor

The left two buttons toggle your LinearLayout between vertical and horizontal
modes. The two immediately to the right of the divider toggle the width and height
between match_parent and wrap_content.

When one of the children of the LinearLayout is the selected widget, the toolbar
changes:

Figure 87: LinearLayout Contents Toolbar in Eclipse Graphical Layout Editor

The left two buttons still toggle the orientation of the LinearLayout. The width and
height buttons to their right toggle the width and height of the selected widget.

The right-most six buttons, from left to right, allow you to:

• Change the margins on the selected widget
• Change the gravity of the selected widget
• Give all widgets in the LinearLayout equal weight
• Give the selected widget all the weight
• Manually assign the weight to the selected widget
• Clear all weights from all widgets in the LinearLayout

The Properties pane for the selected widget also allows you to get to the
LinearLayout container to make adjustments to its attributes.

LINEARLAYOUT AND THE BOX MODEL

144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Common Widgets and
Containers

In the chapter on basic widgets, we left out all of the classic “two-state” widgets,
such as checkboxes and radio buttons. We will examine those and other related
widgets in this chapter.

Beyond LinearLayout, Android supports a range of containers providing different
layout rules. In this chapter, we will look at two other commonly-used containers:
RelativeLayout (a rule-based model) and TableLayout (the grid model), along with
ScrollView and HorizontalScrollView, containers that allow their contents to
scroll. We will examine all of these containers in this chapter as well.

Just a Box to Check
The classic checkbox has two states: checked and unchecked. Clicking the checkbox
toggles between those states to indicate a choice (e.g., “Add rush delivery to my
order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an
ancestor, so you can use TextView properties like android:textColor to format the
widget.

Within Java, you can invoke:

1. isChecked() to determine if the checkbox has been checked
2. setChecked() to force the checkbox into a checked or unchecked state
3. toggle() to toggle the checkbox as if the user clicked upon it

145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox changes.

For example, from the Basic/CheckBox sample project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/unchecked"/>/>

The corresponding CheckBoxDemo.java retrieves and configures the behavior of the
checkbox:

packagepackage com.commonsware.android.checkbox;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;

publicpublic classclass CheckBoxDemoCheckBoxDemo extendsextends Activity implementsimplements
CompoundButton.OnCheckedChangeListener {

CheckBox cb;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangeListener(thisthis);

}

publicpublic void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {

ifif (isChecked) {
cb.setText(R.string.checked);

}
elseelse {

cb.setText(R.string.unchecked);
}

}
}

Note that the activity serves as its own listener for checkbox state changes since it
implements the OnCheckedChangeListener interface (set via
cb.setOnCheckedChangeListener(this)). The callback for the listener is

OTHER COMMON WIDGETS AND CONTAINERS

146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox

onCheckedChanged(), which receives the checkbox whose state has changed and
what the new state is. In this case, we update the text of the checkbox to reflect what
the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown below:

Figure 88: The CheckBoxDemo sample application, with the checkbox unchecked

Figure 89: The same application, now with the checkbox checked

OTHER COMMON WIDGETS AND CONTAINERS

147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse Graphical Layout Editor

The CheckBox widget appears in the “Form Widgets” section of the Palette in the
Graphical Layout editor. You can drag it into the layout and configure it as desired
using the Properties pane. As CheckBox inherits from TextView, most of the settings
are the same as those you would find on a regular TextView.

Don’t Like Checkboxes? How About Toggles?
A similar widget to CheckBox is ToggleButton. Like CheckBox, ToggleButton is a
two-state widget that is either checked or unchecked. However, ToggleButton has a
distinct visual appearance:

Figure 90: The ToggleButtonDemo sample, showing an unchecked ToggleButton

OTHER COMMON WIDGETS AND CONTAINERS

148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 91: The same application, showing the ToggleButton when checked

Otherwise, ToggleButton behaves much like CheckBox. You can put it in a layout file,
as seen in the Basic/ToggleButton sample:

<?xml version="1.0" encoding="utf-8"?>
<ToggleButton<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />/>

You can also set up an OnCheckedChangeListener to be notified when the user
changes the state of the ToggleButton.

Eclipse Graphical Layout Editor

Like CheckBox, the ToggleButton widget appears in the “Form Widgets” section of
the Palette in the Graphical Layout editor. It looks like a button with the word “OFF”
towards the top. You can drag it into the layout and configure it as desired using the
Properties pane.

OTHER COMMON WIDGETS AND CONTAINERS

149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton

Turn the Radio Up
As with other implementations of radio buttons in other toolkits, Android’s radio
buttons are two-state, like checkboxes, but can be grouped such that only one radio
button in the group can be checked at any time.

CheckBox, ToggleButton, and RadioButton all inherit from CompoundButton, which
in turn inherits from TextView. Hence, all the standard TextView properties for font
face, style, color, etc. are available for controlling the look of radio buttons. Similarly,
you can call isChecked() on a RadioButton to see if it is selected, toggle() to
change its checked state, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a RadioGroup.
The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state
is tied, meaning only one button out of the group can be selected at any time. If you
assign an android:id to your RadioGroup in your XML layout, you can access the
group from your Java code and invoke:

1. check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

2. clearCheck() to clear all radio buttons, so none in the group are checked
3. getCheckedRadioButtonId() to get the ID of the currently-checked radio

button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers between the RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup<RadioGroup

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<RadioButton<RadioButton android:id="@+id/radio1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/rock" />/>

<RadioButton<RadioButton android:id="@+id/radio2"

OTHER COMMON WIDGETS AND CONTAINERS

150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/scissors" />/>

<RadioButton<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/paper" />/>

</RadioGroup></RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get:

Figure 92: The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked at the
outset. To preset one of the radio buttons to be checked, use either setChecked() on
the RadioButton or check() on the RadioGroup from within your onCreate()
callback in your activity. Alternatively, you can use the android:checked attribute on
one of the RadioButton widgets in the layout file.

Eclipse Graphical Layout Editor

Both RadioButton and RadioGroup appear in the “Form Widgets” section of the
Palette in the Graphical Layout editor. The RadioButton widget has a radio button
with the text “RadioButton” to the right. The RadioGroup widget looks like three
radio buttons (sans text) side-by-side.

OTHER COMMON WIDGETS AND CONTAINERS

151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Since RadioGroup extends LinearLayout, when you drag it into the layout, you will
get the same sorts of options as a vertical LinearLayout, such as setting the gravity.
Note, though, that dragging a RadioGroup into a layout automatically gives you three
RadioButton child widgets — a departure from any other container in the Palette.
You can configure those RadioButton widgets, delete them, add more, etc.

All Things Are Relative
RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You can
place Widget X below and to the left of Widget Y, or have Widget Z’s bottom edge
align with the bottom of the container, and so on.

This is reminiscent of James Elliot’s RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML
layout file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container

The easiest relations to set up are tying a widget’s position to that of its container:

1. android:layout_alignParentTop says the widget’s top should align with the
top of the container

2. android:layout_alignParentBottom says the widget’s bottom should align
with the bottom of the container

3. android:layout_alignParentLeft says the widget’s left side should align
with the left side of the container

4. android:layout_alignParentRight says the widget’s right side should align
with the right side of the container

5. android:layout_centerHorizontal says the widget should be positioned
horizontally at the center of the container

6. android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

7. android:layout_centerInParent says the widget should be positioned both
horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

OTHER COMMON WIDGETS AND CONTAINERS

152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Note that the padding of the widget is taken into account when performing these
various alignments. The alignments are based on the widget’s overall cell
(combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the identity
of a widget in the container. To do this:

• Put identifiers (android:id attributes) on all elements that you will need to
address

• Reference other widgets using the same identifier value

The first occurrence of an id value should have the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file should drop the
plus sign (@id/widget_a). This allows the build tools to better help you catch typos
in your widget id values — if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time.

For example, if Widget A appears in the RelativeLayout before Widget B, and
Widget A is identified as @+id/widget_a, Widget B can refer to Widget A in one of
its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis-à-vis other widgets:

1. android:layout_above indicates that the widget should be placed above the
widget referenced in the property

2. android:layout_below indicates that the widget should be placed below the
widget referenced in the property

3. android:layout_toLeftOf indicates that the widget should be placed to the
left of the widget referenced in the property

4. android:layout_toRightOf indicates that the widget should be placed to
the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one widget’s
alignment relative to another:

OTHER COMMON WIDGETS AND CONTAINERS

153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. android:layout_alignTop indicates that the widget’s top should be aligned
with the top of the widget referenced in the property

2. android:layout_alignBottom indicates that the widget’s bottom should be
aligned with the bottom of the widget referenced in the property

3. android:layout_alignLeft indicates that the widget’s left should be aligned
with the left of the widget referenced in the property

4. android:layout_alignRight indicates that the widget’s right should be
aligned with the right of the widget referenced in the property

5. android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the “baseline” is that invisible line that text
appears to sit on)

The last one is useful for aligning labels and fields so that the text appears “natural”.
Since fields have a box around them and labels do not, android:layout_alignTop
would align the top of the field’s box with the top of the label, which will cause the
text of the label to be higher on-screen than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the XML
element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process RelativeLayout-
defined rules. That meant you could not reference a widget (e.g., via
android:layout_above) until it had been declared in the XML. This made defining
some layouts a bit complicated. Starting in Android 1.6, Android uses two passes to
process the rules, so you can now safely have forward references to as-yet-undefined
widgets.

Example

With all that in mind, let’s examine a typical “form” with a field, a label, plus a pair
of buttons labeled “OK” and “Cancel”.

Here is the XML layout, pulled from the Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

OTHER COMMON WIDGETS AND CONTAINERS

154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"
android:text="@string/url"/>/>

<EditText<EditText
android:id="@id/entry"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/label"
android:inputType="text"/>/>

<Button<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignRight="@id/entry"
android:layout_below="@id/entry"
android:text="@string/ok"/>/>

<Button<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/ok"
android:layout_toLeftOf="@id/ok"
android:text="@string/cancel"/>/>

</RelativeLayout></RelativeLayout>

First, we open up the RelativeLayout. In this case, we want to use the full width of
the screen (android:layout_width = "match_parent") and only as much height as
we need (android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge
aligned with the left edge of the RelativeLayout
(android:layout_alignParentLeft="true") and that we want its baseline aligned
with the baseline of the yet-to-be-defined EditText. Since the EditText has not
been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of
the label, have the field be aligned with the top of the RelativeLayout, and for the

OTHER COMMON WIDGETS AND CONTAINERS

155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

field to take up the rest of this “row” in the layout. Those are handled by three
properties:

1. android:layout_toRightOf = "@id/label"
2. android:layout_alignParentTop = "true"
3. android:layout_width = "match_parent"

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry") and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be to the
left of the OK button (android:layout_toLeft = "@id/ok") and have its top aligned
with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

Figure 93: The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks — the ability to have
widgets overlap one another. Later children of a RelativeLayout are “higher in the Z
axis” than are earlier children, meaning that later children will overlap earlier
children if they are set up to occupy the same space in the layout.

OTHER COMMON WIDGETS AND CONTAINERS

156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will be clearer with an example. Here is a layout, from the Containers/
RelativeOverlap sample, with a RelativeLayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/big"
android:textSize="120dip"
android:textStyle="bold"/>/>

<Button<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="@string/small"/>/>

</RelativeLayout></RelativeLayout>

The first Button is set to fill the screen. The second Button is set to be centered
inside the parent, but only take up as much space as is needed for its caption.
Hence, the second Button will appear to “float” over the first Button:

OTHER COMMON WIDGETS AND CONTAINERS

157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap

Figure 94: The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller Button does
not also click the bigger Button. Your clicks will be handled by the widget on top in
the case of an overlap like this.

Eclipse Graphical Layout Editor

You will find RelativeLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource.

And, at this point, you can start getting frustrated. To paraphrase an old American
candy commercial, drag-and-drop GUI building and RelativeLayout are two great
tastes that do not taste great together.

The problem is that the complexity of the RelativeLayout rules makes it very
difficult for the Graphical Layout editor to guess what you really mean when you
drag a widget into the RelativeLayout. It will guess as best it can — for example, if
you are dropping the widget near the edge of the RelativeLayout, it will assume you
mean for the widget to be aligned with that edge. However, frequently, it will guess
wrong, forcing you to modify the RelativeLayout XML directly via the other editor
sub-tab or via the Properties pane to get the rules that you want.

OTHER COMMON WIDGETS AND CONTAINERS

158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tabula Rasa
If you like HTML tables, you will like Android’s TableLayout — it allows you to
position your widgets in a grid to your specifications. You control the number of
rows and columns, which columns might shrink or stretch to accommodate their
contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and columns,
plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how many
rows appear in the table.

The number of columns are determined by Android; you control the number of
columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if you have
three rows, one with two widgets, one with three widgets, and one with four
widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget spans.
This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow><TableRow>
<TextView<TextView android:text="URL:" />/>
<EditText<EditText

android:id="@+id/entry"
android:layout_span="3"/>/>

</TableRow></TableRow>

In the above XML layout fragment, the field spans three columns.

OTHER COMMON WIDGETS AND CONTAINERS

159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Ordinarily, widgets are put into the first available column. In the above fragment,
the label would go in the first column (column 0, as columns are counted starting
from 0), and the field would go into a spanned set of three columns (columns 1
through 3). However, you can put a widget into a different column via the
android:layout_column property, specifying the 0-based column the widget belongs
to:

<TableRow><TableRow>
<Button<Button

android:id="@+id/cancel"
android:layout_column="2"
android:text="Cancel" />/>

<Button<Button android:id="@+id/ok" android:text="OK" />/>
</TableRow></TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the
fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to match_parent, so they will fill the same space
that the longest row does.

One pattern for this is to use a plain View as a divider (e.g., <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the “natural” size of the widest
widget in that column (taking spanned columns into account). Sometimes, though,
that does not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of
column numbers. Those columns will be stretched to take up any available space yet
on the row. This helps if your content is narrower than the available space.

OTHER COMMON WIDGETS AND CONTAINERS

160

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Conversely, you can place an android:shrinkColumns property on the TableLayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column — by default, widgets are not word-
wrapped. This helps if you have columns with potentially wordy content that might
cause some columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TableLayout,
again with a column number or comma-delimited list of column numbers. These
columns will start out “collapsed”, meaning they will be part of the table information
but will be invisible. Programmatically, you can collapse and un-collapse columns by
calling setColumnCollapsed() on the TableLayout. You might use this to allow
users to control which columns are of importance to them and should be shown
versus which ones are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a TableLayout
rendition of the “form” we created for RelativeLayout, with the addition of a divider
line between the label/field and the two buttons (found in the Containers/Table
demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1">>

<TableRow><TableRow>
<TextView<TextView android:text="@string/url"/>/>
<EditText<EditText

android:id="@+id/entry"
android:layout_span="3"
android:inputType="text"/>/>

</TableRow></TableRow>

<View<View
android:layout_height="2dip"
android:background="#0000FF"/>/>

<TableRow><TableRow>
<Button<Button

android:id="@+id/cancel"

OTHER COMMON WIDGETS AND CONTAINERS

161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table

android:layout_column="2"
android:text="@string/cancel"/>/>

<Button<Button
android:id="@+id/ok"
android:text="@string/ok"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

When compiled against the generated Java code and run on the emulator, we get:

Figure 95: The TableLayoutDemo sample application

Eclipse Graphical Layout Editor

You will find TableLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource and start
configuring it via the context menu, notably editing the android:stretchColumns
and android:shrinkColumns values.

In addition, the toolbar above the layout will now sport an add-row button:

Figure 96: Eclipse Layout Toolbar for TableLayout

OTHER COMMON WIDGETS AND CONTAINERS

162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking that adds a TableRow child to the TableLayout, though you will not
necessarily see a visible change. However, now if you start dragging in other widgets,
they will go in that row.

Once you have started to populate the row and can select it, you will get some more
toolbar buttons:

Figure 97: Eclipse Layout Toolbar for TableLayout, with Row Selected

The icon immediately to the right of the add-row button will remove the selected
row from the table. On the far right side of the toolbar are buttons to allow you to
toggle the height and width of the row, plus toggle on and off baseline alignment for
the contents of the row (enabled by default).

Scrollwork
Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is
to use scrolling, so only part of the information is visible at one time, the rest
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a
layout that might be too big for some screens, wrap it in a ScrollView, and still use
your existing layout logic. It just so happens that the user can only see part of your
layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the Containers/
Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content">>
<TableLayout<TableLayout

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="0">>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#000000"/>/>

OTHER COMMON WIDGETS AND CONTAINERS

163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll

<TextView<TextView android:text="#000000"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#440000" />/>

<TextView<TextView android:text="#440000"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#884400" />/>

<TextView<TextView android:text="#884400"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#aa8844" />/>

<TextView<TextView android:text="#aa8844"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#ffaa88" />/>

<TextView<TextView android:text="#ffaa88"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#ffffaa" />/>

<TextView<TextView android:text="#ffffaa"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#ffffff" />/>

<TextView<TextView android:text="#ffffff"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
</TableLayout></TableLayout>

</ScrollView></ScrollView>

OTHER COMMON WIDGETS AND CONTAINERS

164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Without the ScrollView, the table would take up at least 560 pixels (7 rows at 80
pixels each, based on the View declarations). There may be some devices with
screens capable of showing that much information, but many will be smaller. The
ScrollView lets us keep the table as-is, but only present part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Figure 98: The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the directional pad, you can scroll up and down to see the remaining
rows. Also note how the right side of the content gets clipped by the scrollbar — be
sure to put some padding on that side or otherwise ensure your own content does
not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView… just
horizontally. This would be good for forms that might be too wide rather than too
tall. Note that ScrollView only scrolls vertically and HorizontalScrollView only
scrolls horizontally.

Also, note that you cannot put scrollable items into a ScrollView. For example, a
ListView widget — which we will see in an upcoming chapter — already knows how
to scroll. You do not need to put a ListView in a ScrollView, and if you were to try,
it would not work very well.

OTHER COMMON WIDGETS AND CONTAINERS

165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse Graphical Layout Editor

The ScrollView and HorizontalScrollView widgets appear in the “Composite”
section of the Palette in the Graphical Layout editor. You can drag one of these into
your layout XML resource, then drag one child into it. A ScrollView or
HorizontalScrollView can only have one child — if you want more than one, wrap
the children in a suitable LinearLayout and put that inside the ScrollView or
HorizontalScrollView.

Making Progress with ProgressBars
If you are going to fork background threads to do work on behalf of the user, you
will want to think about keeping the user informed that work is going on. This is
particularly true if the user is effectively waiting for that background work to
complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range — what
value indicates progress is complete — via setMax(). By default, a ProgressBar
starts with a progress of 0, though you can start from some other position via
setProgress().

If you prefer your progress bar to be indeterminate — meaning that it will show a
general animated effect, rather than a specific amount of progress – use
setIndeterminate(), setting it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via
incrementProgressBy()). You can find out how much progress has been made via
getProgress().

We will see a ProgressBar in action in the next chapter, another one of our
tutorials.

OTHER COMMON WIDGETS AND CONTAINERS

166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Visit the Trails!
The trails portion of the book contains a widget catalog, providing capsule
descriptions and samples for a number of widgets not described elsewhere in this
book.

You might also be interested in GridLayout, which is an alternative to the classic
LinearLayout, RelativeLayout, and TableLayout containers.

OTHER COMMON WIDGETS AND CONTAINERS

167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #5 - Making Progress

When we actually get around to opening the digital book for display, there will be a
slight delay as the HTML and other assets are read into memory. To help assure the
user that their device has not frozen, we will add a ProgressBar to our user interface
in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Renaming the Activity Class
If you created your project using the Eclipse new-project wizard or the command-
line tools, you can skip to the next step in the tutorial.

Otherwise, you will find that your activity’s class name is MainActivity. While that
is a fine default name for an activity, the rest of the tutorials’ steps assume that the
activity name is EmPubLiteActivity, and so we should rename this class.

To do this, right-click over MainActivity.java in the Eclipse Package Explorer and
choose Refactor > Rename from the context menu. In the “New name” field, replace
MainActivity with EmPubLiteActivity, then click Finish.

This not only renames the Java class file, but if you peek at your manifest, you will
see that it also fixed the <activity> element, so the android:name attribute also
contains MainActivity.

169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Step #2: Removing The “Hello, World”
Right now, our user interface consists of a highly-sophisticated “Hello, World” string,
shown in a TextView. While no doubt it is eligible for many design awards, this is
not the user interface we need. So, we need to get rid of it.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/layout/main.xml file in your project in Eclipse’s Package
Explorer. If you do not have such a file, but you have some other layout resource
(e.g., res/layout/activity_main.xml), rename it to main.xml by right-clicking over
the file in the Package Explorer and choosing Refactor > Rename from the right-
mouse menu. Then double-click on the newly-renamed file.

This will bring up our current user interface:

Figure 99: EmPubLiteActivity, in Eclipse

TUTORIAL #5 - MAKING PROGRESS

170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Click on the “Hello World!” string, then press the <Delete> key. You can now save
your file (e.g., <Ctrl>-<S>).

Also, we no longer need the hello_world string resource. To remove it, double-click
on the res/values/strings.xml file, select the hello_world string resource, click
the “Remove…” button, click “Yes” on the confirmation dialog, and save the resulting
file.

Outside of Eclipse

Open res/layout/main.xml in your favorite text editor. If there is no such file, but
you have another layout resource (e.g., activity_main.xml), rename it to main.xml.

In res/layout/main.xml, find and delete the <TextView> element, then save the file.

The resulting XML should look like:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

</RelativeLayout></RelativeLayout>

Also, we no longer need the hello_world string resource. To remove it, open the
res/values/strings.xml file in your favorite text editor. Find the <string> element
that has a name of hello_world, delete that element, and save the file.

The resulting XML should look like:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="menu_settings">>Settings</string></string>

</resources></resources>

Step #3: Adding a ProgressBar
Now that the TextView is out of the way, we can add our ProgressBar in its place.

TUTORIAL #5 - MAKING PROGRESS

171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Go back to res/layout/main.xml in Eclipse. In the “Form Widgets” portion of the
tool palette, you will see three ProgressBar widget representations, in the form of
circles:

Figure 100: The ProgressBar Widget in the Tool Palette

Drag the largest one out of the palette and onto the preview of our activity. You will
see a tooltip pointing out the RelativeLayout rules that the drag-and-drop
operation will apply if you drop the widget in its current location. Slide the
ProgressBar around until you center it and the tooltip shows that it will use
android:layout_centerHorizontal="true" and
android:layout_centerVertical="true". If you wind up with
android:layout_centerInParent="true" instead of those other two settings, that is
fine as well.

TUTORIAL #5 - MAKING PROGRESS

172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are having difficulty centering it, drop it anywhere in the white part of the
preview area. Then, from the toolbar above the preview, press the center-horizontal
and center-vertical toolbar buttons in succession:

Figure 101: The Centering Toolbar Buttons (Third and Fourth from Right)

Then, you can save your file.

Outside of Eclipse

Go back to res/layout/main.xml in your favorite text editor. Delete the <TextView>
element that was there. Replace it with a <ProgressBar> element as a child of the
<RelativeLayout>, as shown below:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

</RelativeLayout></RelativeLayout>

Then, you can save your file.

Step #4: Seeing the Results
If you run the app in a device or emulator, you will see your ProgressBar widget,
sitting there, all alone, waiting for somebody to write more code in support of it:

TUTORIAL #5 - MAKING PROGRESS

173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 102: EmPubLite, With ProgressBar

In Our Next Episode…
… we will attach a third-party library to our tutorial project.

TUTORIAL #5 - MAKING PROGRESS

174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI Building, Continued

If you are using Eclipse, and you have been experimenting with the Graphical Layout
editor and drag-and-drop GUI building, this chapter will cover some other general
features of this editor that you may find useful.

Even if you are not using Eclipse, you may want to at least skim this chapter, as you
will find a few tricks that will be relevant for you as well.

Making Your Selection
Clicking on a widget makes it the selected widget, meaning that the toolbar buttons
will affect that widget (or, sometimes, its container, depending upon the button).
Selected widgets have a thin blue border with blue square “grab handles” for
adjusting its size and position.

Clicking on a container selects it. However, there may or may not be a blue border
— in particular, containers that fill the screen (match_parent for width and height)
do not seem to get the border.

Sometimes, though, you want to select a container that you cannot reach, because
its contents are completely filled with widgets. That occurs with the LinearPercent
sample from a previous chapter – the entire LinearLayout is filled with the three
Button widgets. In these cases, click on the widget in the Outline pane to select it.

Including Includes
Sometimes, you have a widget or a collection of widgets that you want to reuse
across multiple layout XML resources. Android supports the notion of an “include”

175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that allows this. Simply create a dedicated layout XML resource that contains the
widget(s) to reuse, then add them to your main layouts via an <include> element:

<include<include layout="@layout/thing_we_are_reusing" />/>

You can even assign the <include> element a width or height if needed, as if it were
just a widget or container.

Eclipse makes it easy for you to take widgets from an existing layout XML resource
and extract them into a separate layout XML resource, replacing them with an
<include> element. Just select the widget(s) you want to reuse, then right-click over
them and choose “Extract Include” from the context menu. This will bring up a
dialog where you can specify a name to give the new layout XML resource:

Figure 103: Extract as Include Dialog

By default, the tools will search all your layout files for these widgets and replace
them with the <include>, though you can uncheck the checkbox to disable this
behavior and only affect the layout XML resource you are presently editing.

If you are extracting multiple widgets that are not wrapped in their own container,
Eclipse will automatically wrap them in a <merge> element:

<?xml version="1.0" encoding="utf-8"?>
<merge<merge xmlns:android="http://schemas.android.com/apk/res/android">>

<!-- widgets go here -->
</merge></merge>

This is necessary purely from an XML standpoint — you cannot have multiple root
elements in an XML file. When the <merge> is added to another layout via
<include>, the <merge> element itself evaporates, leaving behind its children.

GUI BUILDING, CONTINUED

176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wrap It Up (In a Container)
Sometimes, after you have added a widget to your layout, you later determine that
you really needed it to be in some sort of container. For example, perhaps you
thought you only needed one TextView but later decided to stack two TextView
widgets in a vertical LinearLayout, in which case you somehow need to introduce
this LinearLayout into the mix.

The simplest way to do that is to right-click over the widget that needs a new
container (in the preview pane or the Outline pane) and choose “Wrap In
Container…” from the context menu. This will bring up a dialog allowing you to
choose the class of the container (with a reasonable default pre-selected) and give
the container an android:id value (which, for some strange reason, is mandatory).

Figure 104: Wrap In Container Dialog

Similarly, if a widget is wrapped in a container, where the container is no longer
necessary, “Remove Container” will get rid of the container.

Morphing Widgets
Occasionally, you might configure a widget, only to decide later on that you really
want it to be a different type of widget. For example, perhaps you start with a
CheckBox and later want to switch it to be a ToggleButton.

To do this, right-click over the widget in Eclipse (in the preview pane or the Outline
pane) and choose “Change Widget Type” from the context menu. This will bring up
a dialog box for you to choose a replacement widget class, with a likely candidate
pre-selected for you:

GUI BUILDING, CONTINUED

177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 105: Change Widget Type

After making the selection, Eclipse will alter your element to the new widget type.
Note that you may need to make other changes yourself, for attributes that you no
longer need or now need to add.

Preview of Coming Attractions
At the top of the Graphical Layout editor tab, you will find a series of drop-downs
that allow you to tailor what the preview looks like:

Figure 106: Preview Controls in the Graphical Layout Editor

Eclipse will choose some likely defaults based upon your project settings, but you
are welcome to change them as you see fit. Notable changes include:

• What version of Android is used for the preview (as widget styling changes
from time to time in Android releases)

• What language is used for your string resources?
• What size and resolution of screen is used?
• Is it displayed in portrait or landscape?

These only affect the preview, so they show you (approximately) what your layout
will look like under those conditions, but they do not modify anything about your
layout XML itself.

GUI BUILDING, CONTINUED

178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

• ListView, which is your typical “list box”
• Spinner, which (more or less) is a drop-down list
• GridView, offering a two-dimensional roster of choices
• ExpandableListView, a limited “tree” widget, supporting two levels in the

hierarchy

and many more.

These all have a common superclass: AdapterView, so named because they partner
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.

Adapting to the Circumstances
In the abstract, adapters provide a common interface to multiple disparate APIs.
More specifically, in Android’s case, adapters provide a common interface to the data
model behind a selection-style widget, such as a listbox. This use of Java interfaces is
fairly common (e.g., Java/Swing’s model adapters for JTable), and Java is far from
the only environment offering this sort of abstraction (e.g., Flex’s XML data-binding
framework accepts XML inlined as static data or retrieved from the Internet).

179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s adapters are responsible for providing the roster of data for a selection
widget plus converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality it is not that different from other GUI toolkits’ ways
of overriding default display behavior. For example, in Java/Swing, if you want a
JList-backed listbox to actually be a checklist (where individual rows are a
checkbox plus label, and clicks adjust the state of the checkbox), you inevitably wind
up calling setCellRenderer() to supply your own ListCellRenderer, which in turn
converts strings for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)
2. The resource ID of a view to use (such as a built-in system resource ID, as

shown above)
3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.

ADAPTERVIEWS AND ADAPTERS

180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lists of Naughty and Nice
The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter() to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" >>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>/>

</LinearLayout></LinearLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

packagepackage com.commonsware.android.list;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;

ADAPTERVIEWS AND ADAPTERS

181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List

publicpublic classclass ListViewDemoListViewDemo extendsextends ListActivity {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

selection=(TextView)findViewById(R.id.selection);
}

@Override
publicpublic void onListItemClick(ListView parent, View v, int position,

long id) {
selection.setText(items[position]);

}
}

With ListActivity, you can set the list adapter via setListAdapter() — in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

ADAPTERVIEWS AND ADAPTERS

182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 107: The ListViewDemo sample application

The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like. The
value used in the preceding example provides the standard Android list row: big
font, lots of padding, white text.

Clicks versus Selections
One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, Google TV devices are not touchscreens at present. And
some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.

ADAPTERVIEWS AND ADAPTERS

183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based off of the “spinner”
paradigm — including Spinner — treat everything as selection events. Other
widgets — like ListView and GridView — treat selection events and click events
differently. For these widgets, selection events are driven by the pointing device,
such as using arrow keys to move a highlight bar up and down a list. Click events are
when the user either “clicks” the pointing device (e.g., presses the center D-pad
button) or taps on something in the widget using the touchscreen.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s selection, or possibly multiple selections.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the
value. You can get your ListView from a ListActivity via getListView(). You can
also declare this via the android:choiceMode attribute in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>/>

It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

ADAPTERVIEWS AND ADAPTERS

184

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist

Our activity just uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple_list_item_multiple_choice as the row layout:

packagepackage com.commonsware.android.checklist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass ChecklistDemoChecklistDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_multiple_choice,
items));

}
}

What the user sees is the list of words with checkboxes down the right edge:

ADAPTERVIEWS AND ADAPTERS

185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 108: Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire UI at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.

ADAPTERVIEWS AND ADAPTERS

186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the
D-pad pops up a selection dialog for the user to choose an item from. You basically
get the ability to select from a list without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you
need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource() method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
</LinearLayout></LinearLayout>

This is the same view as shown in a previous section, just with a Spinner instead of a
ListView.

To populate and use the Spinner, we need some Java code:

publicpublic classclass SpinnerDemoSpinnerDemo extendsextends Activity
implementsimplements AdapterView.OnItemSelectedListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

ADAPTERVIEWS AND ADAPTERS

187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);
}

@Override
publicpublic void onItemSelected(AdapterView<?> parent,

View v, int position, long id) {
selection.setText(items[position]);

}

@Override
publicpublic void onNothingSelected(AdapterView<?> parent) {

selection.setText("");
}

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events. This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

ADAPTERVIEWS AND ADAPTERS

188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 109: The SpinnerDemo sample application, as initially launched

Figure 110: The same application, with the spinner drop-down list displayed

ADAPTERVIEWS AND ADAPTERS

189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Grid Your Lions (Or Something Like That…)
As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how wide each column should be, in terms
of some dimension value (e.g., 40dp or @dimen/grid_column_width).

4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the GridView works much like any other selection widget — use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<GridView<GridView
android:id="@+id/grid"

ADAPTERVIEWS AND ADAPTERS

190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid

android:layout_width="match_parent"
android:layout_height="match_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>/>

</LinearLayout></LinearLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

packagepackage com.commonsware.android.grid;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.GridViewandroid.widget.GridView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass GridDemoGridDemo extendsextends Activity
implementsimplements AdapterView.OnItemClickListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(newnew ArrayAdapter<String>(thisthis,

R.layout.cell,
items));

g.setOnItemClickListener(thisthis);
}

ADAPTERVIEWS AND ADAPTERS

191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onItemClick(AdapterView<?> parent, View v,

int position, long id) {
selection.setText(items[position]);

}
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>/>

With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

Figure 111: The GridDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 112: The same application, scrolled to the bottom of the grid

GridView, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out
an entry (e.g., something not in the list) or choose an entry from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextView has an android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

ADAPTERVIEWS AND ADAPTERS

193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter(). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<AutoCompleteTextView<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>/>

</LinearLayout></LinearLayout>

The corresponding Java code is:

packagepackage com.commonsware.android.auto;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.AutoCompleteTextViewandroid.widget.AutoCompleteTextView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass AutoCompleteDemoAutoCompleteDemo extendsextends Activity
implementsimplements TextWatcher {
privateprivate TextView selection;
privateprivate AutoCompleteTextView edit;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",

ADAPTERVIEWS AND ADAPTERS

194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(thisthis);

edit.setAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_dropdown_item_1line,
items));

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
selection.setText(edit.getText());

}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start,

int count, int after) {
// needed for interface, but not used

}

@Override
publicpublic void afterTextChanged(Editable s) {

// needed for interface, but not used
}

}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the first, and we update the selection label to match the
AutoCompleteTextView’s current contents.

Here we have the results:

ADAPTERVIEWS AND ADAPTERS

195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 113: The AutoCompleteDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 114: The same application, after a few matching letters were entered, showing
the auto-complete drop-down

ADAPTERVIEWS AND ADAPTERS

197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 115: The same application, after the auto-complete value was selected

Customizing the Adapter
The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

ADAPTERVIEWS AND ADAPTERS

198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.

Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView) and use the same
list of 25 nonsense words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the nonsense word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

ADAPTERVIEWS AND ADAPTERS

199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of nonsense words. The real fun comes when we override
getView():

ADAPTERVIEWS AND ADAPTERS

200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.fancylists.three;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass DynamicDemoDynamicDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setListAdapter(newnew IconicAdapter());

}

classclass IconicAdapterIconicAdapter extendsextends ArrayAdapter<String> {
IconicAdapter() {

supersuper(DynamicDemo.this, R.layout.row, R.id.label, items);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

ifif (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

}
}

Our getView() implementation does three things:

ADAPTERVIEWS AND ADAPTERS

201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

• It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

• It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

Note that we call findViewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findViewById()findViewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findViewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

Figure 116: The Dynamic Sample Application

ADAPTERVIEWS AND ADAPTERS

202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findViewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number
of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to associate
an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching
that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

packagepackage com.commonsware.android.fancylists.five;

importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

classclass ViewHolderViewHolder {
ImageView icon=nullnull;
TextView size=nullnull;

ADAPTERVIEWS AND ADAPTERS

203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder

ViewHolder(View row) {
thisthis.icon=(ImageView)row.findViewById(R.id.icon);
thisthis.size=(TextView)row.findViewById(R.id.size);

}
}

ViewHolder holds onto the child widgets, initialized via findViewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project… such as a ViewHolderDemo activity. In this case,
we are only holding onto two widgets — the icon and the second label – since we
will let ArrayAdapter handle our first label for us. In our case, we are holding onto
the TextView and ImageView widgets that we want to populate in getView().

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder==nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);

}

ifif (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
elseelse {

holder.icon.setImageResource(R.drawable.ok);
}

holder.size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled – a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by

ADAPTERVIEWS AND ADAPTERS

204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their corresponding
ViewHolder widget caches. We will cover this recycling process in greater detail in a
later chapter.

Note that the getModel() method shown here retrieves our model String for a given
position, by using getListAdapter() (to retrieve our IconicAdapter from the
activity’s ListView) and getItem() (to retrieve the data, held by the adapter,
represented by the position):

privateprivate String getModel(int position) {
returnreturn(((IconicAdapter)getListAdapter()).getItem(position));

}

Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

Figure 117: Sound Settings Screen

ADAPTERVIEWS AND ADAPTERS

205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It may not look like it, but that is a ListView. However, not all the rows look the
same:

• Some have one line of text (e.g., “Volumes”)
• Some have two lines of text (e.g., “Silent mode” plus “Off”)
• Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)
• Some are headings with totally different text formatting (e.g., “RINGTONE &

NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource – after
all, we only teach ArrayAdapter how to use one. We will examine how to handle this
scenario in a later chapter.

Visit the Trails!
To learn more about ListView, you can turn to Advanced ListViews, which covers
other tricks you can do with a ListView.

ADAPTERVIEWS AND ADAPTERS

206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The WebView Widget

HTML has come a long way from Sir Tim Berners-Lee’s original vision of using it to
publish physics papers.

Not surprisingly, displaying HTML, CSS, and JavaScript in mobile applications is
fairly popular, not only for creating full-fledged Web browsers, but for rendering
HTML content from RSS/Atom feeds, from HTML-formatted email messages,
ebooks (like the one you are reading), and so forth.

There are a couple of ways to display HTML in Android, with the most powerful
being the WebView widget, the focus of this chapter.

Role of WebView
If your HTML is fairly limited in scope, such as what you might find in the body of a
status update on Twitter, you can use the static fromHtml() method on the Html
utility class to parse an HTML-formatted string into something that you can put
into a TextView. TextView can render simple formatting like styles (bold, italic, etc.),
font faces (serif, sans serif, etc.), colors, links, and so forth.

However, sometimes your needs for HTML transcend what TextView can handle.
You will not be browsing Facebook using TextView, for example.

In those cases, WebView will be the more appropriate widget, as it can handle a much
wider range of HTML tags. WebView can also handle CSS and JavaScript, which
Html.fromHtml() would simply ignore. WebView can also assist you with common
“browsing” metaphors, such as history list of visited URLs to support backwards and
forwards navigation.

207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On the other hand, WebView is a much more expensive widget to use, in terms of
memory consumption, than is TextView.

WebView and WebKit
The reason for the memory cost of WebView is the fact that WebView is powered by a
fairly complete copy of WebKit. WebKit is an open source Web rendering engine
that forms the heart of major Web browsers, such as Chrome and Safari. While the
version of WebKit that lives in Android is one optimized for mobile use, it still
represents a fairly substantial code base, and rendering complex Web pages takes up
a fair amount of RAM (as anyone with lots of browser tabs on their desktop knows
all too well).

Because WebView is powered by WebKit, content that renders in Chrome and Safari
probably renders the same in WebView. The emphasis on the word “probably” is for a
few reasons:

• As mentioned, WebKit in Android is a mobile-optimized version, which
introduces some differences compared to its desktop brethren

• WebKit, like any software project, has its own upgrade cycles and versioning,
so different browsers (Chrome vs. Safari vs. WebView) will use different
versions of the WebKit engine, introducing some differences

• Android has tweaked WebKit for its own purposes, introducing yet other
potential differences

Adding the Widget
For simple stuff, WebView is not significantly different than any other widget in
Android — pop it into a layout, tell it what URL to navigate to via Java code, and you
are done.

As you can see in the WebKit/Browser1 sample application, here is a simple layout
with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView<WebView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/webkit"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

THE WEBVIEW WIDGET

208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.webkit.org/
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1

As with any other widget, you need to tell it how it should fill up the space in the
layout (in this case, it fills all remaining space).

And, just as with other widgets, you can drag a WebView out of the “Composite”
section of the Eclipse tool palette and into a layout XML resource in the Graphical
Layout editor:

Figure 118: WebView in Eclipse Tool Palette

Note that WebView knows how to scroll its own contents, so you do not need to put it
in a ScrollView or HorizontalScrollView.

Loading Content Via a URL
There are a number of ways to load HTML content into a WebView widget.

The simplest is to use the loadUrl() method, which takes a URL and retrieves its
contents over the Internet. For example, here is the activity source code for the
WebKit/Browser1 sample application:

packagepackage com.commonsware.android.browser1;

THE WEBVIEW WIDGET

209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.WebViewandroid.webkit.WebView;

publicpublic classclass BrowserDemo1BrowserDemo1 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");
}

}

However, we also have to make one change to AndroidManifest.xml, adding a line
where we request permission to access the Internet:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

If we fail to add this permission, the browser will refuse to load pages. We will
discuss more about this “permission” concept in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

THE WEBVIEW WIDGET

210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 119: The Browser1 Sample Application (image from July 2012)

As with a regular Android Web browser, you can pan around the page by dragging it,
while the directional pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar. WebView does not provide any of that — if you want those sorts
of UI features, you will need to implement those yourself (e.g., use an EditText or
AutoCompleteTextView for a browser address bar).

Supporting JavaScript
Now, you may be tempted to replace the URL in the above source code with
something else, such as Google’s home page or something else that relies upon
JavaScript. You will find that such pages do not work especially well by default. That
is because, by default, JavaScript is turned off in WebView widgets.

If you want to enable JavaScript, call getSettings().setJavaScriptEnabled(true);
on the WebView instance. At this point, any JavaScript referenced by your Web page
should work normally.

THE WEBVIEW WIDGET

211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are some fancy tricks you can perform with WebView and JavaScript, such as
having JavaScript call Java code or vice versa. These techniques will be covered in a
later chapter.

Alternatives for Loading Content
Instead of loadUrl(), you can also use loadData(). Here, you supply the HTML for
the WebView to display. You might use this to:

1. display a manual that was installed as a file with your application package
2. display snippets of HTML you retrieved as part of other processing, such as

the description of an entry in an Atom feed
3. generate a whole user interface using HTML, instead of using the Android

widget set

There are two flavors of loadData(). The simpler one allows you to provide the
content, the MIME type, and the encoding, all as strings. Typically, your MIME type
will be text/html and your encoding will be UTF-8 for ordinary HTML.

For example, if you replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

THE WEBVIEW WIDGET

212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 120: The Browser2 sample application

This is also available as a fully-buildable sample, as WebKit/Browser2.

There is also a loadDataWithBaseURL() method. This takes, among other
parameters, the “base URL” to use when resolving relative URLs in the HTML. Any
relative URL (e.g.,) will be interpreted as being
relative to the base URL supplied to loadDataWithBaseURL(). If you find that you
have content that refuses to load properly with loadData(), try
loadDataWithBaseURL() with a null base URL, as sometimes that works better, for
unknown reasons.

Listening for Events
Particularly if you are going to use the WebView as a local user interface (vs. browsing
the Web), you will want to be able to get control at key times, particularly when
users click on links. You will want to make sure those links are handled properly,
either by loading your own content back into the WebView, by submitting an Intent
to Android to open the URL in a full browser, or by some other means. We will
discuss using an Intent to launch a Web browser in a later chapter.

THE WEBVIEW WIDGET

213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2

One hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied callback
object will be notified of a wide range of events, ranging from when parts of a page
have been retrieved (onPageStarted(), etc.) to when you, as the host application,
need to handle certain user- or circumstance-initiated events, such as:

1. onTooManyRedirects()
2. onReceivedHttpAuthRequest()
3. etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle the
request or false if you want default handling (e.g., actually fetch the Web page
referenced by the URL). In the case of a feed reader application, for example, you
will probably not have a full browser with navigation built into your reader, so if the
user clicks a URL, you probably want to use an Intent to ask Android to load that
page in a full browser. But, if you have inserted a “fake” URL into the HTML,
representing a link to some activity-provided content, you can update the WebView
yourself.

For example, let’s amend the first browser example to be an application that, upon a
click, shows the current time.

From WebKit/Browser3, here is the revised Java:

packagepackage com.commonsware.android.webkit;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport android.webkit.WebViewClientandroid.webkit.WebViewClient;
importimport java.util.Datejava.util.Date;

publicpublic classclass BrowserDemo3BrowserDemo3 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);
browser.setWebViewClient(newnew Callback());

loadTime();
}

THE WEBVIEW WIDGET

214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3

void loadTime() {
String page=

"<html><body>"
+ DateUtils.formatDateTime(thisthis, newnew Date().getTime(),

DateUtils.FORMAT_SHOW_DATE
| DateUtils.FORMAT_SHOW_TIME)

+ "</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

privateprivate classclass CallbackCallback extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView view, String url) {

loadTime();

returnreturn(truetrue);
}

}
}

Here, we load a simple Web page into the browser (loadTime()) that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance
of a WebViewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want to just
reload the WebView via loadTime().

Running this activity gives us:

THE WEBVIEW WIDGET

215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 121: The Browser3 Sample Application

Selecting the link and clicking the D-pad center button will “click” the link, causing
us to rebuild the page with the new time.

Note that we are using a DateUtils utility class supplied by Android for formatting
our date and time. The big advantage of using DateUtils is that this class is aware of
the user’s settings for how they prefer to see the date and time (e.g., 12- versus
24-hour mode).

There is also a WebChromeClient that you can register with a WebView via a call to
setWebChromeClient(). This object will be called when various things occur in the
WebView that might pertain to a browser’s “chrome” (i.e., the things outside the
HTML rendering area). For example, onJSAlert() will be called on your
WebChromeClient when JavaScript code calls alert().

WebView and Android 4.4
Historically, WebView has been implemented using a version of WebKit independent
from any other browser efforts by Google, such as Chrome.

THE WEBVIEW WIDGET

216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As of Android 4.4, WebView is now based on Google’s open source Chromium project.
That, in turn, is still based on WebKit.

At a high level, one WebKit-based HTML rendering engine should work similarly to
another WebKit-based HTML rendering engine. However, the expression “the devil
is in the details” certainly applies here, and there are a variety of changes in the way
WebView renders content on Android 4.4 compared to prior versions. Some of these
changes will be suppressed if your app has an android:targetSdkVersion set to 18
or lower.

It is highly recommended that you test your app thoroughly on both pre–4.4 and
4.4+ environments, and again when you eventually raise your
android:targetSdkVersion to 19 or higher.

Visit the Trails!
You can learn more about powerful tricks with WebView, including integrating the
Java and JavaScript environments, in a later chapter.

You can also create apps that run totally in the browser using HTML5, or app
frameworks that use WebView to render their UI, such as PhoneGap.

THE WEBVIEW WIDGET

217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.chromium.org/Home
http://developer.android.com/guide/webapps/migrating.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Defining and Using Styles

If you have done development using modern-day HTML, you will be familiar with
Cascading Style Sheets (CSS). These provide two capabilities:

1. They let you define common characteristics of HTML elements in one place,
applying them wherever as needed, to reduce repetition and simplify
maintenance; and

2. They allow you to configure things about the HTML elements that pure
HTML alone does not support

Android has similar constructs — styles and themes — for achieving similar ends.
Styles and themes are another type of resource, akin to the layouts and strings and
such that we have seen so far. Hence, the syntax of styles and themes is XML, rather
than in CSS notation. However, the concepts and how they are employed are much
like what you see with CSS.

This chapter will briefly explore the concept of styles, how you can create them, and
how you can apply them to your own widgets.

Styles: DIY DRY
The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise wish to keep separate from your layouts
proper. The primary use case is “don’t repeat yourself” (DRY) — if you have a bunch
of widgets that look the same, use a style to use a single definition for “look the
same”, rather than copying the look from widget to widget.

And that paragraph will make a bit more sense if we look at an example, specifically
the Styles/NowStyled sample project. This is a trivial project, with a full-screen

219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled
http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled

button that shows the date and time of when the activity was launched or when the
button was pushed. This time, though, we want to change the way the text on the
face of the button appears, and we will do so using a style.

The res/layout/main.xml file in this project is the same as it was, with the addition
of a style attribute:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/button"
android:text=""
android:layout_width="match_parent"
android:layout_height="match_parent"
style="@style/bigred"

/>/>

Note that the style attribute is part of stock XML and therefore is not in the
android namespace, so it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-v11/ for values resources only to be used on API
Level 11 or higher). The convention is for styles resources to be held in a styles.xml
file, such as the one from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="bigred">>
<item<item name="android:textSize">>30sp</item></item>
<item<item name="android:textColor">>#FFFF0000</item></item>

</style></style>
</resources></resources>

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element
represent values of attributes to be applied to whatever the style is applied towards
— in our example, our Button widget. So, our Button will have a comparatively large
font (android:textSize set to 30sp) and have the text appear in red
(android:textColor set to #FFFF0000).

There are no changes needed elsewhere in the project — nothing needs to be
adjusted in the manifest, in the Java code of the activity, etc. Just defining the style
and applying it to the widget gives us results:

DEFINING AND USING STYLES

220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 122: The Styles/NowStyled sample application

Elements of Style
There are four elements to consider when applying a style:

• Where do you put the style attributes to say you want to apply a style?
• What attributes can you define via a style?
• How do you inherit from a previously-defined style (one of your own or one

from Android)?
• What values can those attributes have in a style definition?

Where to Apply a Style

The style attribute can be applied to a widget, to only affect that widget.

The style attribute can be applied to a container, to affect that container. However,
doing this does not automatically style its children. For example, suppose res/
layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

DEFINING AND USING STYLES

221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_width="match_parent"
android:layout_height="match_parent"
style="@style/bigred">>

<Button<Button
android:id="@+id/button"
android:text=""
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

The resulting UI would not have the Button text in a big red font, despite the style
attribute. The style only affects the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, though then it
is referred to as a “theme”, which will be covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it shows up in the “XML Attributes” or “Inherited
XML Attributes” portions of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to
the LinearLayout as shown above, everything would run fine, just with no visible
results. Despite the fact that LinearLayout has no android:textSize or
android:textColor attribute, there is no compile-time failure nor a runtime
exception.

Also, layout directives, such as android:layout_width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element.

For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>

</resources></resources>

DEFINING AND USING STYLES

222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(note: in some renditions of this book, you may see the <item> element split over
two lines — this is caused by word-wrapping, as this element should be all on one
line)

Here, we are indicating that we want to inherit the Theme.Holo style from within
Android. Hence, in addition to all of our own attribute definitions, we are specifying
that we want all of the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your
attribute definitions will be blended into whatever default style is being applied to
the widget or container.

The Possible Values

Typically, the value that you will give those attributes in the style will be some
constant, like 30sp or #FFFF0000.

Sometimes, though, you want to perform a bit of indirection — you want to apply
some other attribute value from the theme you are inheriting from. In that case, you
will wind up using the somewhat cryptic ?android:attr/ syntax, along with a few
related magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>

</resources></resources>

Here, we are indicating that the value of android:background is not some constant
value, or even a reference to a drawable resource (e.g., @drawable/my_background).
Instead, we are referring to the value of some other attribute —
activatedBackgroundIndicator — from our inherited theme. Whatever the theme
defines as being the activatedBackgroundIndicator is what our background should
be.

This portion of the Android style system is very under-documented, to the point
where Google itself recommends you look at the Android source code listing the
various styles to see what is possible.

DEFINING AND USING STYLES

223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles

This is one place where inheriting a style becomes important. In the example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the
activatedBackgroundIndicator value from Theme.Holo. That value might not exist
in other styles, or it might not have the value we want.

Themes: Would a Style By Any Other Name…
Themes are styles, applied to an activity or application, via an android:theme
attribute on the <activity> or <application> element. If the theme you are
applying is your own, just reference it as @style/..., just as you would in a style
attribute of a widget. If the theme you are applying, though, comes from Android,
typically you will use a value with @android:style/ as the prefix, such as
@android:style/Theme.Dialog or @android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity
itself. For example, here is the definition of @android:style/
Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->

<style<style name="Theme.NoTitleBar.Fullscreen">>
<item<item name="android:windowFullscreen">>true</item></item>
<item<item name="android:windowContentOverlay">>@null</item></item>

</style></style>

It specifies that the activity should take over the entire screen, removing the status
bar on phones (android:windowFullscreen set to true). It also specifies that the
“content overlay” — a layout that wraps around your activity’s content view —
should be set to nothing (android:windowContentOverlay set to @null), having the
effect of removing the title bar.

DEFINING AND USING STYLES

224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARs and Library Projects

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, “third-party libraries” refer to the innumerable JARs
that you can include in a server or desktop Java application — the things that the
Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and what it
provides in its SDK is not precisely the same as any traditional Java SDK. That being
said, many Java third-party libraries still provide capabilities that Android lacks
natively and therefore may be of use to you in your project, for the ones you can get
working with Android’s flavor of Java. This chapter explains what it will take for you
to leverage such libraries and the limitations on Android’s support for arbitrary
third-party code.

You might think that JARs are the primary model of code reuse within Android.
That’s not really the case. The primary model of code reuse within Android is the
Android library project. Many reusable components and frameworks are distributed
as library projects, and we will see several in the course of this book.

The example described in this chapter is the Android Support package, a key piece
of reusable code from Google itself, distributed partly as JARs and partly as an
Android library project.

But first, let’s talk a bit more about Dalvik.

225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dalvik VM
When you are writing Android applications, you are writing Java source code. You
might be thinking that your Android device is running Java bytecode, just as your
Web browser might when it runs a Java applet.

Alas, you would be mistaken.

Android does not have a Java VM. Android has the Dalvik VM.

The Dalvik VM is a virtual machine, along the lines of the Java VM, the Parrot VM
(Perl), Microsoft’s CLR, and so forth. Since each VM has its own bytecode, the Dalvik
VM bytecode is not the same as the Java VM bytecode (or the Parrot VM bytecode,
etc.).

When you build your project, your Java source code is initially compiled using the
standard javacjavac compiler. Then, however, the Java VM bytecodes created by javacjavac
are cross-compiled into Dalvik VM bytecodes, and it is those bytecodes that are
packaged into your APK file and are executed by Android.

Most of the time, you will not notice the difference. Every now and then, though,
you will encounter some issues related to Android’s use of Dalvik, and the most
prominent of these comes when you try repurposing existing Java code.

The Easy Part
You have two choices for integrating third-party Java code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your own
source tree (under src/ in your project), so it can sit alongside your existing code,
then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the
source code, place the JAR in the libs/ directory in your Android project.

And that’s it, at least for Eclipse and Ant. Your JAR will be automatically added to
your build path, and your JAR will be automatically bundled into the APK file that is
your Android application. Note that other IDEs might require other steps – please
consult the documentation for that IDE.

JARS AND LIBRARY PROJECTS

226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also note that the R22 version of the ADT plugin for Eclipse may force you to make
some adjustments to the “Order & Export” portion of your project’s build path. If it
seems like your JAR is not being picked up (e.g., you try referring to classes from the
JAR and you get runtime ClassNotFoundExceptions), then try this recipe:

1. Right-click on the project in Eclipse’s Package Explorer and choose Build
Path > Configure Build Path from the context menu

2. Switch to the “Order and Export” tab
3. Check the “Android Private Libraries” entry in the list, if it is not already

checked

Hence, adding third-party code to your Android application is usually fairly easy.

Getting a library to actually work may be somewhat more complicated, however.

The Outer Limits
Not all available Java code will work well with Android. There are a number of
factors to consider, including:

1. Expected Platform APIs: Does the code assume a newer JVM than the one
Android is based on? Or, does the code assume the existence of Java APIs
that ship with J2SE but not with Android, such as Swing?

2. Size: Existing Java code designed for use on desktops or servers need not
worry too much about on-disk size, or, to some extent, even in-RAM size.
Android, of course, is short on both. Using third-party Java code, particularly
when pre-packaged as JARs, may balloon the size of your application.

3. Performance: Does the Java code effectively assume a much more powerful
CPU than what you may find on many Android devices? Just because a
desktop can run it without issue does not mean your average mobile phone
will handle it well.

4. Interface: Does the Java code assume a console interface? Or is it a pure API
that you can wrap your own interface around?

5. Operating System: Does the Java code assume the existence of certain
console programs? Does the Java code assume it can use a Windows DLL?

6. Language Version: Was the JAR compiled with an older version of Java (1.4.2
or older)? Was the JAR compiled with a different compiler than the official
one from Sun (e.g., GCJ)? Was the JAR compiled with the new Java 7 release
and has Java 7 bytecodes rather than Java 6?

JARS AND LIBRARY PROJECTS

227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

7. Dependencies: Does the Java code depend on other third-party JARs that
might have some of these problems as well? Does the Java code depend upon
third-party libraries (e.g., the org.json JSON library) that are built into
Android, but the third party expects a different version of that library?

One trick for addressing some of these concerns is to use open source Java code, and
actually work with the code to make it more Android-friendly. For example, if you
are only using 10% of the third-party library, maybe it’s worthwhile to recompile the
subset of the project to be only what you need, or at least removing the unnecessary
classes from the JAR. The former approach is safer, in that you get compiler help to
make sure you are not discarding some essential piece of code, though it may be
more tedious to do.

OK, So What is a Library Project?
An Android library project is a special type of Android project designed to share
code and resources between Android application projects. It is specifically aimed at
developers or teams creating multiple applications from the same code base. The
original occurrence of this pattern is the “paid/free” application pair: two
applications, one offered for free, one with richer functionality that requires a
payment. Via a library project, the common portions of those two applications can
be consolidated, even if those “common portions” include things like resources.
Library projects can also be used for reusable components, such as distributing
custom widgets, activities, or frameworks to third parties.

The biggest difference between an Android library project and a JAR is that an
Android library project is designed to distribute resources as well as Java code. If all
you are looking to distribute is Java code, a JAR works just as well as an Android
library project. But if you need to distribute layouts, themes, and the like, an
Android library project is the solution.

Creating a Library Project
An Android library project, in many respects, looks like a regular Android project. It
has source code and resources. It has a manifest. It supports third-party JAR files
(e.g., libs/).

What it does not do, though, is build an APK file. Instead, it represents a basket of
programming assets that the Android build tools know how to blend in with regular
Android projects.

JARS AND LIBRARY PROJECTS

228

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To create a library project in Eclipse, start by creating a normal Android project.
Then, in the project properties window (e.g., right-click on the project and choose
Properties), in the Android area, check the “Is Library” checkbox. Click “Apply”, and
you are done.

Figure 123: Android Library Project Properties, Library Section

To create a library project for use with Ant, you can use the android createandroid create
lib-projectlib-project command. This has the net effect of putting an android.library=true
entry in your project’s project.properties file.

Using a Library Project
Once you have a library project, you can attach it to a regular Android project, so the
regular Android project has access to everything in the library.

To do this in Eclipse, go into the project properties window (e.g., right-click on the
project and choose Properties). Click on the Android entry in the list on the left,
then click the “Add” button in the Library area. This will let you browse to the
directory where your library project resides. You can add multiple libraries and
control their ordering with the “Up” and “Down” buttons, or remove a library with
the “Remove” button.

Figure 124: Android Library Project Consumer Properties, Library Section

JARS AND LIBRARY PROJECTS

229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For developing using Ant, you can use android update projectandroid update project command with the
--library switch. This adds an entry like android.library.reference.1=... to
your project’s project.properties file, where ... is the relative path to your library
project. You can add several such libraries, controlling their ordering via the
numeric suffix at the end of each property name (e.g., 1 in the previous example).

Now, if you build the main project, the Android build tools will:

• Include the src/ directories of the main project and all of the libraries
(libs/) in the source being compiled.

• Include all of the resources of the projects, with the caveat that if more than
one project defines the same resource (e.g., res/layout/main.xml), the
highest priority project’s resource is included. The main project is top
priority, and the priority of the remainder are determined by their order as
defined in Eclipse or project.properties.

This means you can safely reference R. constants (e.g., R.layout.main) in your
library source code, as at compile time it will use the value from the main project’s
generated R class(es).

Limitations of Library Projects
While library projects are useful for code organization and reuse, they do have their
limits, such as:

• As noted above, if more than one project (main plus libraries) defines the
same resource, the higher-priority project’s copy gets used. Generally, that is
a good thing, as it means that the main project can replace resources defined
by a library (e.g., change icons). However, it does mean that two libraries
might collide. It is important to keep your resource names distinct to
minimize the odds of this occurrence.

• While you can define entries in the manifest file for a library, at present, they
are not used.

• Since you are using the source code of the other project, you are subject to
the limitations of its code. For example, if the third-party project is using
@Override annotations on its implementations of interface methods, you
will need to ensure that, in Eclipse, you have the compiler compliance level
set to 1.6 — sometimes, this is set to 1.5, which complains about such
annotations.

JARS AND LIBRARY PROJECTS

230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android Support Package
The Android Support package is distributed by Google, containing classes (in JARs
and an Android library project) that are not part of the Android SDK, but are
available to Android developers.

What’s In There?

You can roughly divide the contents of the Android Support package into two major
areas:

1. “Backports” of capabilities added to newer versions of Android and the
Android SDK, so they can be used on older devices as well. By using the
backported classes, you can get the same abilities on a wider range of devices
than you could if you only used the classes in the Android SDK.

2. New widgets, containers, or other classes that are not going to be in the
Android SDK (for ill-defined reasons) but that Google wishes to make
available for Android developers.

About the Names

What this book refers to as the “Android Support package” has many names.

It was originally referred to as the Android Compatibility Library, at a time when it
only contained backports. Once they started adding in things that were not strictly
related to “compatibility”, they started changing the name to try to be more generic.
Right now, “Android Support” seems to be fairly consistent, either used standalone
or in the form of “Android Support package” or “Android Support library”.

Getting It

You will find the Android Support package in your SDK Manager, in the “Extras”
category towards the bottom of the tree:

JARS AND LIBRARY PROJECTS

231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 125: SDK Manager and Android Support Package

To install it, check the checkbox and click the “Install” button, just as you might
install an SDK itself.

This will add an extras/ directory to wherever your SDK installation resides, and
the Android Support package will go into subdirectories inside of extras/.

Attaching It To Your Project

From Eclipse, you can add the Android Support package to a project by right-
clicking over the project and choosing Android Tools > Add Support library from the
context menu.

Outside of Eclipse, you will want to find the android-support-v4.jar file installed
in your extras/ directory tree and add a copy to your project’s libs/ directory.
There is also an android-support-v13.jar and an Android library project associated
with the Android Support package. However, unless specifically mentioned
otherwise, this book will be referring to android-support-v4.jar when it refers to
the Android Support package.

JARS AND LIBRARY PROJECTS

232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JAR Dependency Management
Suppose we have Project A that depends on Library B and Library C, where the B
and C are Android library projects. Further suppose that Project A, Library B, and
Library C all need the Android Support package, so their projects are set up with
access to it (e.g., having android-support-v4.jar in libs/).

You might think that we would somehow wind up with three copies of this support
JAR in our APK. Fortunately, that is not the case. Android recognizes, based on
filename, that these are the same JAR and therefore will only include one.

However, what happens if Google releases an update to the Android Support
package, and you download the update?

Initially, nothing happens, if the support JARs are copied into your projects. If,
however, you copy a fresh JAR into, say, Library C, without updating Library B or
Project A, you will get a build error. Android will detect that while all three projects
refer to the same JAR by name, the JARs themselves are different (based on SHA1
hash), and the build will fail. You will need to ensure that all three projects get the
updated JAR.

The general rule of thumb is:

• Every Android library project needing the JAR should have the latest JAR,
either in its own libs/ directory or because it depends upon another
Android library project needing the JAR

• An Android app that depends upon an Android library project that can
supply the JAR should not have its own copy of that JAR in its own libs/
directory

JARS AND LIBRARY PROJECTS

233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #6 - Adding a Library

We will want to use a library named ActionBarSherlock in our project. This Android
library project gives us a backwards-compatible edition of a UI construct known as
the action bar, which we will examine in greater detail in the next chapter. So, in this
tutorial, we will download and set up ActionBarSherlock.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Downloading and Unpacking
ActionBarSherlock
Visit the ActionBarSherlock site and download the ZIP file (or tarball, if you prefer)
from the home page for the current ActionBarSherlock release (4.3.1 at the time of
this writing).

For the purposes of this tutorial, Eclipse users should take the actionbarsherlock/
directory out of the ZIP file and place it on your desktop. Non-Eclipse users should
take the actionbarsherlock/ directory out of the ZIP file and place it in a directory
parallel to your EmPubLite/ directory.

While the ZIP file will contain other directories, such as actionbarsherlock-i18n/,
you do not need them for these tutorials.

Note that a copy of a compatible version of ActionBarSherlock can be found in the
book’s GitHub repository in its proper place relative to the EmPubLite projects in

235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://actionbarsherlock.com
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

the book. Hence, if you are importing the tutorial answers directly, just import the
repo’s copy of ActionBarSherlock, and you should be set.

NOTE: If your EmPubLite project has an android-support-v4.jar file in its libs/
directory, the build tools will eventually complain about your project having
references to two different copies of that JAR — one from your project and one from
ActionBarSherlock. The one in your project is probably newer than the one from
ActionBarSherlock (which will use whatever JAR was included in libs/ in the
project’s GitHub repo). Copy the android-support-v4.jar from your project’s libs/
directory into the libs/ directory of ActionBarSherlock, so both projects work off of
the same JAR contents. You can learn more about this in the chapter on libraries.

Step #2: Adding the Library to Your Project
Of course, merely downloading ActionBarSherlock does not somehow magically
make it available to us. We need to add it to the EmPubLite project if we want to
take advantage of its capabilities.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

First, we need to create a second Eclipse project, this one to hold ActionBarSherlock.
Since ActionBarSherlock does not ship with Eclipse project files, we will have to load
it from source.

To do that:

• Choose File > New > Project… from the Eclipse main menu
• Choose “Android Project from Existing Code” from the list of project types

and click “Next >”
• Click the “Browse…” button next to the “Root Directory” field, browse to the
actionbarsherlock directory you created above, then click OK

• Check the “Copy projects into workspace” checkbox
• Click “Finish” to create the project

You may see a red error message in the console about “not able to find android–14”.
This is because ActionBarSherlock ships with API Level 14 as the build target; if you

TUTORIAL #6 - ADDING A LIBRARY

236

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

do not have this, you will get this message. However, the Android build tools in
Eclipse will automatically fix up your project to use another available build target,
and so usually there is nothing that you need to do to address this error message.

If you see some red “X” error indicators over the src/ and res/ folders, right-click
over the project and choose Properties from the context menu. In the Properties
window, choose Android, then set the build target to API Level 14 or higher. Click
“OK” to close up the Properties window. Then, from the Eclipse main menu, choose
Project > Clean, ensure the ActionBarSherlock project is checked in the list of
projects, and click “OK”. This should eliminate the error indicators.

If you are still getting errors, and an examination of the ActionBarSherlock code
indicates that the complaints are about @Override annotations on methods that are
implementing an interface, rather than truly overriding a superclass method, you
need to adjust your Eclipse compiler compliance level to be 1.6, instead of 1.5. Even if
you already did this at the workspace level, you may need to do it at a project level.
To do this:

1. Right click over the project name and choose Properties from the context
menu

2. Click on “Java Compiler” in the tree on the left
3. Choose 1.6 from the “Compiler compliance level” drop-down
4. Click “Apply”, then “OK”

Note that if you use the copy of ActionBarSherlock in this book’s GitHub repository,
then you can skip the above steps and just import the project directly into Eclipse
(e.g., File > Import from the main menu).

To add the project as a library on EmPubLite, right-click over the EmPubLite project
and choose Properties from the context menu. In the Properties window, choose
Android, then click “Add…” in the Library group box, towards the bottom, on the
right. In the list of library projects that appears, choose ActionBarSherlock, then
click “OK”. The Library group box should then resemble the following:

TUTORIAL #6 - ADDING A LIBRARY

237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Figure 126: EmPubLite, with ActionBarSherlock Attached

Click “OK” to close up the Properties window.

Then, right-click over the EmPubLite project and choose Build Path > Configure
Build Path from the context menu. In the Order and Export tab, ensure that
“Android Private Libraries” appears and is checked. If this item does not appear at
all, you may be on an earlier version of the ADT plugin, and you should be OK.

TUTORIAL #6 - ADDING A LIBRARY

238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 127: EmPubLite, Android Private Libraries in the Order and Export Tab

If you see error messages in the Eclipse console, complaining about JARs with the
same name and different contents, please read the note at the end of Step #1 of this
tutorial.

Outside of Eclipse

Switch to the ActionBarSherlock project directory and run:

android update lib-project --path .

This will create the build.xml and other necessary files for command-line builds
with ActionBarSherlock.

If you get an error message about missing a build target, run the android list
targets command to list all of the available build targets on your development
machine. Then, run:

android update lib-project --path . --target ...

where the ... is replaced by the name of your newest build target (e.g., android-14).
This is necessary if ActionBarSherlock is shipped with a build target that is

TUTORIAL #6 - ADDING A LIBRARY

239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

unavailable on your development machine. Any build target for API Level 14 or
higher should work fine.

Then, switch to the EmPubLite project directory and run:

android update project --path . --library ../actionbarsherlock

This tells Android to update your project.properties file to contain something
resembling the following:

target=android-15
android.library.reference.1=../actionbarsherlock

In Our Next Episode…
… we will configure the action bar on our tutorial project

TUTORIAL #6 - ADDING A LIBRARY

240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Options Menus and the Action Bar

Like applications for the desktop and some mobile operating systems, Android
supports activities with “application” menus. Some Android devices will have a
dedicated MENU key for popping up the menu; other devices will offer alternate
means for triggering the menu to appear, such as an on-screen soft button.

However, the preferred approach nowadays is to have your menu choices be part of
what Android calls the action bar. The action bar is a strip across the top of your
activity that provides users with ways of performing actions within that activity,
such as toolbar buttons. While the action bar is only native to Android in Android
3.0 and higher, there are ways to get an action bar in Android 2.x devices as well,
through an Android library project known as ActionBarSherlock.

Bar Hopping (a.k.a., Terminology)
Android has had many patterns for various “bars” as part of its UI. So, to help
explain what an action bar is, it helps if we review the history and role of Android’s
various bars.

Android 1.x/2.x

In the beginning, there was the status bar and the title bar.

The status bar was a thin strip across the top of the screen, used for things like the
clock, signal strength, battery charge, and notification icons (for events like new
unread email messages). This bar is technically part of the OS, not your app’s UI.

241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The title bar was a thin gray strip beneath the status bar that, by default, would hold
the name of your application, much like the title bar of a browser might show the
name of a Web site.

Figure 128: Status Bar and Title Bar

Android 3.0–4.1, Tablets

When official support for tablets arrived with Android 3.0 in February 2011, the story
changed.

The status bar was replaced by the system bar, appearing at the bottom of the
screen. This had all of the contents of the old status bar, but also had the soft keys
for BACK, HOME, etc. Android 1.x and 2.x required that devices have off-screen
affordances for those operations; now, device manufacturers could skip those and
have the system bar offer them.

The action bar, by default, appears at the top of your activity, replacing the old title
bar. You can define what goes in the action bar (icon, title, toolbar buttons, etc.).

OPTIONS MENUS AND THE ACTION BAR

242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 129: Action Bar and System Bar

The icon on the far left of the action bar also serves as a toolbar button, if you wish.
A common pattern for using this is take the user back to the “main” or “home”
activity of your application.

Sometimes, the far right side of the action bar will contain a “…” affordance. This is
known as the “action overflow” or “overflow menu”:

OPTIONS MENUS AND THE ACTION BAR

243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 130: Action Bar with Open Overflow Menu

Tapping it will give the user access to actions that might have been toolbar buttons
on a larger screen, but there was insufficient room. Also, low-priority actions may be
tucked into the overflow, rather than clutter up the screen with too many toolbar
buttons.

Android 4.0+, Phones

Phone-sized devices were not supported by Android 3.x. They jumped from Android
2.3 to 4.0, and along the way adopted some of the Android 3.x UI features:

• Phone apps could have an action bar, like their tablet counterparts
• Device manufacturers could skip the BACK, HOME, etc. buttons and let a

partial system bar handle those
• The status bar remained intact from the Android 2.x approach

OPTIONS MENUS AND THE ACTION BAR

244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 131: Status Bar, Action Bar, and System Bar

Android 4.2, Tablets

The Nexus 7, introduced in the summer of 2012, was a 7” tablet that did not follow
the tablet UI structure that all other standard Android tablets used. Instead, it
looked a bit like a really large phone, having a top status bar along with a bottom
system bar solely for the navigation buttons (BACK, HOME, etc.). Apps, as before,
could have an action bar as well.

Initially, it was thought that the Nexus 7 was going to be distinctive in that regard.
Instead, with Android 4.2, Google switched all tablets to this model, restoring the
status bar and relegating the system bar purely for navigation buttons.

OPTIONS MENUS AND THE ACTION BAR

245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 132: Status Bar, Action Bar, and System Bar, on Nexus 7 Emulator

Yet Another History Lesson
Back in the dawn of Android time, referred to by some as “the year 2007”, we had
options menus. These would rise up from the bottom of the screen based on the
user pressing a MENU key:

OPTIONS MENUS AND THE ACTION BAR

246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 133: Legacy Options Menu

This is why you will see references to “options menu” scattered throughout the
Android SDK and in (::cough::) older Android books.

The action bar pattern was first espoused by Google at the 2010 Google I|O
conference. However, at the time, there was no actual implementation of this, except
in scattered apps, and definitely not in the Android SDK.

Android 3.0 — a.k.a., API Level 11 — added the action bar to the SDK, and apps
targeting that API level will get an action bar when running on such devices.

Your Action Bar Options
You have two ways of getting an action bar into your apps. In the long term, you will
be able to simply use Android’s native implementation. In the short term, however,
most likely you will want to use ActionBarSherlock.

OPTIONS MENUS AND THE ACTION BAR

247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Pure Native

As mentioned above, devices running Android 3.0 and higher have support for the
action bar as part of their firmware, and that support is exposed through the
Android SDK. For example, there is an ActionBar class, and you can get an instance
of it for your activity’s action bar via getActionBar().

However, this only works on devices running Android 3.0 and higher. If you try
calling getActionBar() on an older device, you will crash with a VerifyError
runtime exception. VerifyError is Android’s way of telling you “while you compiled
fine, something your compiled code refers to does not exist”.

If your app will only ever run on Android 3.0 or higher devices, using the native
action bar is a fine choice. However, at the time of this writing, relatively few devices
run Android 3.0 and higher. You can find out how many devices are running various
versions of Android via the “Platform Versions” portion of the “Device Dashboard”
section of the Android Developers Web site. This is updated monthly and shows
who is using what, in the form of a table and a pie chart:

Figure 134: Platform Versions Chart from December 2013 (image courtesy of Google)

Until a preponderance of devices runs Android 3.0 or higher, you would be stuck
with the legacy options menus on older devices, and that would be sad.

ActionBarSherlock

You might think that the Android Support package, with its focus on backports,
would have some facility for adding an action bar to apps running on older devices.
Alas, it did not, until August 2013, meaning that there was a ~2.5 year gap where
older devices had no official backport.

OPTIONS MENUS AND THE ACTION BAR

248

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/dashboards/index.html

Various third-party projects implemented action bars to try to fill this gap, and none
has done nearly as well as has ActionBarSherlock.

ActionBarSherlock, in effect, extends the Android Support package, adding a
backported action bar for apps running on devices prior to API Level 14 (Ice Cream
Sandwich). While native action bars became available with API Level 11, there were
enough differences that ActionBarSherlock uses its own implementation from API
Level 13 on down to API Level 7 (Android 2.1).

To use ActionBarSherlock, you need to do a few things, above and beyond what you
would ordinarily need to do to use the native action bar implementation.

Installation

You will need to download ActionBarSherlock, such as by downloading a ZIP file or
by cloning the project’s GitHub repository.

Inside of the ActionBarSherlock distribution is an actionbarsherlock/ directory,
containing an Android library project that you will need to add to your application’s
project as described in a previous chapter. We will go through all the steps of this
process in an upcoming tutorial.

Base Activity Class

You will need to adjust your project to inherit from SherlockActivity or one of its
kin (e.g., SherlockListActivity). This is mostly a matter of adding the Sherlock
prefix and adjusting your imports to refer to the com.actionbarsherlock.app
package instead of android.app.

Theme

You will also need to apply an ActionBarSherlock-flavored theme to your activities,
either on a per-activity basis, or for the application as a whole. The Sherlock theme
that most closely resembles the default theme is Theme.Sherlock.

The ActionBar/ActionBarDemo sample project applies Theme.Sherlock to the whole
application, via an android:theme attribute on the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.inflation"

OPTIONS MENUS AND THE ACTION BAR

249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://actionbarsherlock.com/
https://github.com/JakeWharton/ActionBarSherlock
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo

android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="14"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity

android:name=".ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

NOTE: If you use this sample app, or any other one that uses ActionBarSherlock,
you will need to update its configuration to point to your own copy of
ActionBarSherlock’s Android library project.

What We Will Be Doing

In this book, we will generally be using ActionBarSherlock. Right now, most
developers should still be targeting Android 2.x devices, and that will remain the
case well into 2013. By late 2013, Android 2.x may have a small enough user base that
you could consider dropping ActionBarSherlock… assuming nothing new shows up
that ActionBarSherlock fixes.

For apps that are only targeting API Level 11 or higher, you can elect to skip
ActionBarSherlock and use the pure native action bar implementation. A few
examples in this book — mostly ones that for other reasons only work on API Level
11+ – will go that route.

OPTIONS MENUS AND THE ACTION BAR

250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Setting the Target
Whether you are using ActionBarSherlock or not, you will want to arrange to target
API Level 11 or higher at runtime. That involves setting the
android:targetSdkVersion attribute of the <uses-sdk> element of your manifest.

We see this in the same ActionBar/ActionBarDemo manifest originally shown above:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.inflation"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="14"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity

android:name=".ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Specifically, we have android:targetSdkVersion set to 14. While 11 or higher will
give you an action bar, 14 or higher will solve a particular UI quirk related to menu
choices. Some Android 4.0+ devices, but not all, will show two ways of getting at
overflow menu items if you have your android:targetSdkVersion set to a value
between 11 and 13. You will have the “…” affordance in the action bar itself and a

OPTIONS MENUS AND THE ACTION BAR

251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

second one in the system bar, on devices that have one. Setting
android:targetSdkVersion to 14 or higher seems to resolve this.

Doing nothing else but the preceding steps would give us an action bar, but one with
no toolbar icons or action overflow menu. While perhaps visually appealing, this is
not terribly useful for the user, so we need to do some more work to give the user
actions to perform from the action bar.

Minding Narrow
The native action bar debuted with Honeycomb, which was only available for
tablets. Here, we had lots of room, even with the device in portrait mode.

Once Ice Cream Sandwich (Android 4.0) rolled around, and the native action bar
became available for phones, it was readily apparent that it was too small in portrait
mode to do very much.

To help with this, you can enable a mode for your application (or specific activities)
that gives you a “split” action bar: one at the top of your activity, and another at the
bottom. Your toolbar buttons and the action overflow area will appear at the bottom,
leaving the top available for your icon, application name, and other stuff that we
have not talked about just yet.

To enable this feature, add android:uiOptions="splitActionBarWhenNarrow" to
your <application> or a specific <activity> in the manifest. In the sample
application manifest shown above, you will see this in the <application> element.
In Eclipse’s manifest editor, this appears as the “UI options” field on the Application
tab or in the details for a specific selected activity.

Defining the Resource
The easiest way to get toolbar icons and action overflow items into the action bar is
by way of a menu XML resource. This is called a “menu” resource for historical
reasons, as these resources originally were used for things like the options menu.

You can add a res/menu/ directory to your project and place in there menu XML
resources.

OPTIONS MENUS AND THE ACTION BAR

252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Through Eclipse, if you create a new file in there (e.g., actions.xml), you will be able
to manipulate the menu items using a structured editor, using the “Add” to add a
new item and configuring it via the options on the right:

Figure 135: Eclipse Menu Resource Editor

Or, you can work with the raw XML, such as res/menu/actions.xml from
ActionBar/ActionBarDemo:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/add"
android:actionLayout="@layout/add"
android:icon="@android:drawable/ic_menu_add"
android:showAsAction="ifRoom"
android:title="@string/add"/>/>

<item<item
android:id="@+id/reset"
android:icon="@android:drawable/ic_menu_revert"
android:showAsAction="always|withText"
android:title="@string/reset"/>/>

<item<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"

OPTIONS MENUS AND THE ACTION BAR

253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:showAsAction="never"
android:title="@string/about">>

</item></item>

</menu></menu>

There are four things you will want to configure on every menu item (<item>
element in the XML):

1. The ID of the item (via the Id field in Eclipse or the android:id attribute in
XML). This will create another R.id value, associated with this menu item,
much like the R.id values for our widgets in our layouts. We will use this ID
to determine when the user clicks on one of our toolbar buttons or action
overflow items.

2. The title of the item (via the Title field in Eclipse or the android:title
attribute in XML). If this item winds up in the action overflow menu, or
optionally as part of its toolbar button, this text will appear. Also, this title
will appear as a “tooltip” on the action item in the action bar itself, if the
user long-presses on the icon (something few users know to do). Typically,
you will use a string resource reference (e.g., @string/add), to better support
internationalization.

3. The icon for the item (via the Icon field in Eclipse or the android:icon
attribute in XML). If your item will appear as a toolbar button, this icon is
used with that button.

4. Flags indicating how this item should be portrayed in the action bar (via the
“Show as action” field in Eclipse or the android:showAsAction attribute in
XML). You will choose to have it be always a toolbar button, only be a
toolbar button ifRoom, or have it never be a toolbar button. You can also
elect to append |withText to either always or ifRoom, to indicate that you
want the toolbar button to be both the icon and the title, not just the icon.

Action Layouts

What happens if you want something other than a button to appear in the toolbar?
Suppose you want a field instead?

Fortunately, this is supported. Otherwise, this would be a completely pointless
section of the book.

In addition to the menu item configuration options mentioned above, you can also
specify android:actionLayout (the “Action layout” field in Eclipse). This will be a
reference to a layout XML resource that you want to have inflated into the action bar

OPTIONS MENUS AND THE ACTION BAR

254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

instead of a toolbar button. Obviously, since the action bar is only so big, you will
need to be judicious about your use of space, which is why the res/layout/add.xml
resource, referred to from our “add” item, is just a LinearLayout holding onto a
TextView label and an EditText field:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Word:"
android:textAppearance="@android:style/TextAppearance.Medium"/>/>

<EditText<EditText
android:id="@+id/title"
android:layout_width="0px"
android:layout_weight="1"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:imeActionId="1337"
android:imeOptions="actionDone"
android:inputType="text"
android:width="100sp"/>/>

</LinearLayout></LinearLayout>

Some notable features of our layout include:

1. We add an android:textAppearance attribute to the TextView representing
our “Word:” caption. The android:textAppearance attribute allows us to
define the font type, size, color, and weight (e.g., bold) in one shot. We
specifically use a “magic value” of @android:style/TextAppearance.Medium,
so the caption matches the styling of the “Reset” label on our other menu
item we promoted to the action bar.

2. We specify android:width="100sp" for the EditText widget, to provide
room for other contents within our split action bar.

3. We specify android:inputType="text" on the EditText widget, which,
among other things, will restrict us to a single line of text.

4. We also specify android:imeActionId and android:imeOptions on the
EditText widget to control the “action button” of the soft keyboard, so we
get control when the user presses <Enter> on the soft keyboard. That’s a bit
beyond the scope of what we have covered so far with EditText — if you

OPTIONS MENUS AND THE ACTION BAR

255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

want to learn more about it, you will want to read the chapter on the input
method framework.

So, given our menu resource XML listed earlier in this chapter, we are requesting:

• A custom action view (@layout/add), if there is room, and
• An action overflow item, named @id/reset

Applying the Resource
From your activity, you teach Android about these action bar items by overriding an
onCreateOptionsMenu() method, such as this one from the ActionBarDemoActivity
of the ActionBar/ActionBarDemo sample project:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getSupportMenuInflater().inflate(R.menu.actions, menu);

configureActionItem(menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

Here, we create a MenuInflater and tell it to inflate our menu XML resource
(R.menu.actions) and pour them into the supplied Menu object. We then chain to
the superclass, returning its result. We will discuss that configureActionItem()
method call shortly.

Note that the specific implementations of Menu and MenuInflater will depend upon
whether you are using ActionBarSherlock or not — if you are, you will need to use
the Sherlock versions (com.actionbarsherlock.view.Menu and
com.actionbarsherlock.view.MenuInflater) instead of the standard Android SDK
ones (android.view.Menu and android.view.MenuInflater).

Responding to Events
To find out when the user taps on one of these things, you will need to override
onOptionsItemSelected(), such as the ActionBarDemoActivity implementation
shown below:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

OPTIONS MENUS AND THE ACTION BAR

256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (item.getItemId() == R.id.reset) {
initAdapter();
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

You will be passed a MenuItem (either android.view.MenuItem or
com.actionbarsherlock.view.MenuItem). You can call getItemId() on it and
compare that value to the ones from your menu XML resource (R.id.add and
R.id.reset). If you handle the event, return true; otherwise, return the value of
chaining to the superclass’ implementation of the method.

If you wish to respond to taps on your application icon, on the left of the action bar,
compare getItemId() to android.R.id.home, as that will be the MenuItem used for
that particular toolbar button. Note that if you have your
android:targetSdkVersion set to 14 or higher, you will also need to call
setHomeButtonEnabled(true) on the ActionBar (obtained via a call to
getActionBar() or getSupportActionBar(), depending on whether you are using
ActionBarSherlock), to enable this behavior.

Attaching to Action Layouts
This works nicely for our reset action overflow item. What about that other menu
item, where we requested our custom action view layout?

That is where that configureActionItem() method comes into play, that we called
from onCreateOptionsMenu():

privateprivate void configureActionItem(Menu menu) {
EditText add=

(EditText)menu.findItem(R.id.add).getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(thisthis);
}

Here, we ask the Menu to find the MenuItem object associated with our given item ID
(@id/add). We then retrieve our inflated layout by a call to getActionView(). Finally,
we get at the EditText widget by means of our old standby, findViewById(). Note
that we have to call findViewById() on the inflated layout, not the activity.

OPTIONS MENUS AND THE ACTION BAR

257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Given this widget, we can now configure it as we see fit. In this case, we call
setOnEditorActionListener(), indicating to Android that we want to get control
when the user presses <Enter> or clicks the action button in the lower right corner
of most soft keyboards. We will see what we do on that event shortly.

The Rest of the Sample Activity
So, what is it that we really are doing here in ActionBarDemoActivity?

In many respects, this is reminiscent of the ListActivity demos from an earlier
chapter. We have an array of 25 nonsense words, and we want to display these in a
list. However, in addition, we want to allow the user to add words to the list and
revert the list to its original state.

ActionBarDemoActivity is a SherlockListActivity — an ActionBarSherlock
equivalent of the ListActivity. However, rather than set up our ArrayAdapter
directly in the onCreate() method as some of the other samples have done, we
delegate that work to an initAdapter() method. Moreover, that initAdapter()
method does its work a bit differently than what those other samples did:

privateprivate void initAdapter() {
words=newnew ArrayList<String>();

forfor (String s : items) {
words.add(s);

}

adapter=
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
words);

setListAdapter(adapter);
}

Rather than create the ArrayAdapter straight out of the static items array, we create
a fresh ArrayList and pour the items into it, then create the ArrayAdapter on the
ArrayList. This may seem superfluous, but we will take advantage of this approach
with our action bar items.

When the user clicks the Reset item in the action overflow menu, we call
initAdapter() again, which gives our ListActivity a fresh set of nonsense words to
display:

OPTIONS MENUS AND THE ACTION BAR

258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.reset) {
initAdapter();
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

When the user presses <Enter> or clicks the “Done” button on the soft keyboard
while typing in our EditText, control routes to our activity’s onEditorAction()
method, which is required of a TextView.OnEditorActionListener, which itself is
required because we are supplying the activity as the parameter to
setOnEditorActionListener():

@Override
publicpublic boolean onEditorAction(TextView v, int actionId, KeyEvent event) {

ifif (event == nullnull || event.getAction() == KeyEvent.ACTION_UP) {
adapter.add(v.getText().toString());
v.setText("");

InputMethodManager imm=
(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

returnreturn(truetrue);
}

We know the user has completed entering a word when onEditorAction() is
invoked and the supplied KeyEvent is null or is ACTION_UP (meaning the user lifted
their finger off of the key). At that point, we do three things:

1. We grab the nonsense word out of the field (supplied to us as a TextView
parameter to onEditorAction()) and we add() it to our ArrayAdapter. The
add() method appends this word to the end of the words in our list. This
works because we used an ArrayList for the ArrayAdapter, and ArrayList
objects’ contents can be modified at runtime (unlike static string arrays). A
side effect of calling add() is that the ArrayAdapter will tell its attached
ListView that the contents of the list changed, so the ListView will redraw
itself and our new word appears at the bottom.

2. We clear out the field, so the user knows that we have accepted the new
word.

3. We use the InputMethodManager to hide the soft keyboard, which will not
automatically go away if the user presses <Enter>.

OPTIONS MENUS AND THE ACTION BAR

259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The net result of all of this is that we have an activity with our customized action
bar:

Figure 136: ActionBarDemo, As Initially Launched, on Android 4.3

where the user can also type in a nonsense word into the field:

OPTIONS MENUS AND THE ACTION BAR

260

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 137: ActionBarDemo, With User Data Entry, on Android 4.3

If the user presses <Enter> or clicks that “Done” button in the lower right corner of
the soft keyboard, the nonsense word is added to the end of the list:

OPTIONS MENUS AND THE ACTION BAR

261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 138: ActionBarDemo, With Additional Word, on Android 4.3

Among our action bar items is an “About” one that will always be in the overflow
menu. This will have three possible visual outcomes.

First, on devices without an off-screen MENU key, the overflow menu is represented
by a “…” button, which displays the overflow menu when clicked:

OPTIONS MENUS AND THE ACTION BAR

262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 139: ActionBarDemo, on Android 4.0.3 Large Screen, with Overflow

On Android 4.x devices with an off-screen MENU key, pressing the MENU key will
cause the overflow menu to rise up from the bottom of the screen:

OPTIONS MENUS AND THE ACTION BAR

263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 140: ActionBarDemo, on Android 4.0.3 Normal Screen, with Overflow

Finally, on Android 2.x devices, pressing the MENU key will cause a classic options
menu to appear:

OPTIONS MENUS AND THE ACTION BAR

264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 141: ActionBarDemo, on Android 2.3.3, with Overflow

Floating Action Bars
By default, your action bar (or action bars, if you are using
splitActionBarWhenNarrow) will be separate from the main content area of your
activity. Normally, that is what you want.

But, sometimes, you may want to have the action bar(s) float over the top of your
activity, as can be seen in Google Maps:

OPTIONS MENUS AND THE ACTION BAR

265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 142: Google Maps, with Floating Action Bar (image courtesy of Google)

To accomplish this, you can use FEATURE_ACTION_BAR_OVERLAY, as is illustrated in
the ActionBar/Overlay sample project.

This is nearly identical to the ActionBar/ActionBarDemo sample project, with just a
few changes, mostly in the onCreate() method of our activity:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

getWindow().requestFeature(Window.FEATURE_ACTION_BAR_OVERLAY);

initAdapter();

Drawable d=
getResources().getDrawable(R.drawable.action_bar_background);

getSupportActionBar().setBackgroundDrawable(d);
getSupportActionBar().setSplitBackgroundDrawable(d);

}

In addition to the original logic, we:

• Call requestFeature() on our Window (obtained via a call to getWindow()),
asking for FEATURE_ACTION_BAR_OVERLAY

OPTIONS MENUS AND THE ACTION BAR

266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/Overlay
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/Overlay

• Call setBackgroundDrawable() on our ActionBar (obtained via a call to
getSupportActionBar(), since we are using ActionBarSherlock, supplying a
reference to a drawable resource to use for the background of the floating
action bar

• Call setSplitBackgroundDrawable() on our ActionBar to set the same
drawable resource for the background of the bottom action bar, if and when
one is used

The drawable resource is a ShapeDrawable, defined in XML:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<solid<solid android:color="#AAFFFFFF"/>/>

</shape></shape>

We will discuss ShapeDrawable in much greater detail later in this book . For the
moment, take it on faith that our resource is defining a rectangle, with a translucent
white fill. The alpha channel (AA) for our translucence is important, so the user can
see a bit of our activity underneath the floating action bar.

The result is that our action bars float over the top of the list:

OPTIONS MENUS AND THE ACTION BAR

267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 143: Floating Action Bar

In this case, the effect is not very good, as the words will blend in too strongly with
the overlaid action bars. However, that is a question of organizing the screen content
and using this overlay feature only in cases where you will see good results, such as
in the Google Maps example shown above.

MENU Key, We Hardly Knew Ye
To expand upon the history lessons from earlier in this chapter, all Android 1.x and
2.x devices had a MENU key, used to bring up the options menu. With Android 3.0
and the advent of the system/navigation bar, device manufacturers no longer needed
keys for HOME, BACK, and MENU. And, the action bar incorporated a “…”
affordance for accessing the overflow, for items that would have been in the options
menu and were not promoted to be toolbar buttons in the action bar itself.

Confusion began when we started having devices that had a MENU key and Android
3.0+. A few Android 2.x devices were upgraded to Android 4.0, and hundreds of
millions of Android devices, from manufacturers like Samsung and HTC, shipped
with Android 4.x and a MENU key.

OPTIONS MENUS AND THE ACTION BAR

268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To accommodate this, the device would report whether it had a “permanent menu
key”, and the action bar would choose whether to show the “…” affordance based
upon the existence of this key. Devices with a MENU key would not get the “…”, but
instead would use the MENU key to display the overflow.

This irritated many developers, for much the same reason as why the MENU key
irritated those developers back in Android 1.x/2.x: the existence of a menu was not
very discoverable. Many users would eventually realize that tapping the MENU key
might uncover useful stuff, but not all users would make this connection. However,
now developers could see an obvious alternative, in the form of the “…” affordance,
and so they sought ways to trick the action bar into showing the “…” even on devices
that had a MENU key.

And that was how the world worked… up until Android 4.4.

An unannounced change in Android 4.4 is that the “…” affordance should now
always be shown in the action bar. The MENU key, if it exists, will still work,
showing the overflow. Ideally, it shows the overflow as dropping down from the “…”,
though that is not required. And the Compatibility Definition Document for
Android 4.4 more forcefully suggests that the MENU key is obsolete.

None of this should directly affect your code. However:

• When taking screenshots, bear in mind that they will vary between devices
that have the “…” affordance and those that do not

• When writing documentation, or blog posts, or other instructional material,
try to phrase references to the overflow that will work for both those users
with a “…” affordance and those that do not

Visit the Trails!
In addition to this chapter, you can learn more about navigation options in the
action bar (e.g., tabs) and learn about action modes, which temporarily replace the
action bar with new items for use with contextual operations.

OPTIONS MENUS AND THE ACTION BAR

269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/base.git/+/ea04f3cfc6e245fb415fd352ed0048cd940a46fe%5E%21/
http://source.android.com/compatibility/4.4/android-4.4-cdd.pdf
http://source.android.com/compatibility/4.4/android-4.4-cdd.pdf

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #7 - Adding the Action Bar

Now that we have added ActionBarSherlock to our project, it is time to put it to use,
adding the action bar to our EmPubLite application.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Starting in this tutorial, we will now begin editing Java source files. Eclipse users
should try to remember two useful shortcut key combinations:

• <Ctrl>-<Shift>-<O> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

• <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Step #1: Setting the Theme and Splitting the Bar
In order to use ActionBarSherlock, we need to apply a theme to our activities. As
discussed previously, a theme applies a certain look and feel to the activities, such as
color scheme. We need to use a theme from ActionBarSherlock itself for our action

271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

bar to work. And, since we need the theme for all of our activities, we will set up the
theme application-wide.

Also, over time, we may add enough items to our action bar that, on phones in
portrait mode, things get too crowded. To combat this threat, we will also tell
Android to split our action bar on narrow screens, giving us space at the top and
bottom of the screen for our items.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Back in AndroidManifest.xml, click over to the Application sub-tab of the editor.
Click the “Browse…” button to the right of the Theme field, choose
“Theme.Sherlock.Light.DarkActionBar” from the list, then click OK.

Also, click the “Select…” button next to the “Ui options” field, check the checkbox
next to “splitActionBarWhenNarrow”, and click “OK” to accept that change.

Your Application sub-tab’s “Application Attributes” area should now resemble:

Figure 144: Eclipse Manifest Editor, Application Sub-Tab

You can now save your changes (e.g., <Ctrl>-<S>).

TUTORIAL #7 - ADDING THE ACTION BAR

272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Back in AndroidManifest.xml, add android:theme="@style/
Theme.Sherlock.Light.DarkActionBar" and
android:uiOptions="splitActionBarWhenNarrow" attributes to the <application>
element, replacing any existing attributes with the same name. Your resulting
manifest should resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity

android:name="EmPubLiteActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Step #2: Changing to SherlockFragmentActivity
The final step to simply have an action bar is to have our activity inherit from a
suitable ActionBarSherlock base class. Ordinarily, we might choose
SherlockActivity. However, in a future tutorial, we will start working with

TUTORIAL #7 - ADDING THE ACTION BAR

273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

fragments, and so with that in mind, we will set up EmPubLiteActivity to inherit
from SherlockFragmentActivity.

If you open up EmPubLiteActivity, you will see that our current implementation is
untouched from what Android code-generated for us when we created our project:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.app.Activityandroid.app.Activity;
importimport android.view.Menuandroid.view.Menu;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar
// if it is present.
getMenuInflater().inflate(R.menu.activity_main, menu);
returnreturn truetrue;

}

}

Simply change it from extends Activity to extends SherlockFragmentActivity.
You will need to adjust your imports to import
com.actionbarsherlock.app.SherlockFragmentActivity (Eclipse users can simply
press <Ctrl>-<Shift>-<O> to automatically fix up the imports). Also, delete the
onCreateOptionsMenu() implementation that was code-generated for you.

The result should resemble:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

TUTORIAL #7 - ADDING THE ACTION BAR

274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If Eclipse starts complaining about your having an “inconsistent hierarchy” for
EmPubLiteActivity, that is because your EmPubLite project has a different
android-support-v4.jar file in it than does the ActionBarSherlock library project.
Copy the android-support-v4.jar from your project’s libs/ directory into the
libs/ directory of ActionBarSherlock, so both projects work off of the same JAR
contents. You can learn more about this in the chapter on libraries.

Step #3: Defining Some Options
Of course, our current action bar is very boring.

Very, very boring.

To make it more useful and worthy of its screen space, we need to start adding some
action items. Right now, we will add a couple of low-priority action items, for a help
screen and an “about” screen.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

WARNING: Bugs in the R22.6.1 version of the ADT plugin for Eclipse prevent the
regular Eclipse-specific instructions from working. Make sure that you are on
R22.6.2 or higher. You can check your version of the ADT plugin in Eclipse by
opening up the About dialog (Help > About Eclipse Platform), then clicking on
“Installation Details”, and looking at the Version column values for the “Android…”
add-on entries. All should be 22.6.2 or higher.

Open the res/menu/ folder in your project.

In there, you may find a single file, whose name may vary (main.xml,
activity_main.xml, em_pub_lite.xml, etc.). Whatever it is called, right-click over
it, choose Refactor > Rename from the context menu, and rename it to
options.xml. Then, double-click on this file to open it in an Eclipse resource editor.

If you do not find any file in res/menu/, then right-click over the menu folder and
choose New > Other from the context menu. Choose “Android XML File” in the list

TUTORIAL #7 - ADDING THE ACTION BAR

275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

of possible new-file templates and click Next. In the File field in the next page of
the wizard, fill in options and click Finish.

Click on the code-generated menu item (e.g., action_settings, menu_settings) and
change the following values:

• In “Id”, enter @+id/help
• Delete the 100 from “Order in category”
• In “Icon”, enter @android:drawable/ic_menu_help

If there are no code-generated menu items, click the

Note that there is an unpleasant bug, whereby copy-and-paste in structured editors
like this one is broken, so you will have to type in the values by hand, or paste things
in the XML directly.

Also, click the “Browse…” button to the right of the Title field. Click the “New
String…” button towards the bottom of the dialog, to bring up the string resource
editor:

Figure 145: The String Resource Editor

TUTORIAL #7 - ADDING THE ACTION BAR

276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33965

Fill in Help in the String field and help in the “New R.string.” field, then click “OK”
to define this string resource. Choose the help string resource in the resource
chooser, then click “OK” to use it. Save your file (e.g., <Ctrl>-<S>).

Next, we want to add a new menu item, so click the “Add…” button to the right of
the list of menu options. Note that when you click the “Add…” button, you will
initially be offered to create a child of the currently-selected item — click the “Create
a new element at the top level, in Menu” radio button to be able to create a new
item.

This time, use the following values:

• In “Id”, enter @+id/about
• In “Title”, create a new R.string.about string resource, with a value of About
• In “Icon”, enter @android:drawable/ic_menu_info_details
• In “Show as action”, click the “Select…” button and choose “never” from the

list
• Save your changes (e.g., <Ctrl>-<S>)

Outside of Eclipse

Delete the existing file in res/menu/ and create a new res/menu/options.xml file,
filling in the following XML content:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/help"
android:icon="@android:drawable/ic_menu_help"
android:showAsAction="never"
android:title="@string/help"/>/>

<item<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">>

</item></item>

</menu></menu>

Also, you will need to add string resources for help and about, by adding
appropriate <string> elements to your existing res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

TUTORIAL #7 - ADDING THE ACTION BAR

277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="menu_settings">>Settings</string></string>
<string<string name="help">>Help</string></string>
<string<string name="about">>About</string></string>

</resources></resources>

Step #4: Loading and Responding to Our Options
Simply defining res/menu/options.xml is insufficient. We need to actually tell
Android to use what we defined in that file, and we need to add code to respond to
when the user taps on our items.

To do that, you will need to add a Sherlock-flavored version of
onCreateOptionsMenu() and an onOptionsItemSelected() method to
EmPubLiteActivity, as follows:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

newnew MenuInflater(thisthis).inflate(R.menu.options, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase android.R.id.home:

returnreturn(truetrue);

casecase R.id.about:
returnreturn(truetrue);

casecase R.id.help:
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

NOTE: Copying and pasting this code may or may not work, depending on what you
are using to read the book. For the PDF, some PDF viewers (e.g., Adobe Reader)
should copy the code fairly well; others may do a much worse job.

TUTORIAL #7 - ADDING THE ACTION BAR

278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In onCreateOptionsMenu(), we are inflating res/menu/options.xml and pouring its
contents into the supplied Menu object, which will be used by Android (and
ActionBarSherlock on Android 2.x) to populate our action bar.

In onOptionsItemSelected(), we examine the supplied MenuItem and route to
different branches of a switch statement based upon the item’s ID. In addition to
R.id.about and R.id.help — for the two items we defined in res/menu/
options.xml, we also watch for android.R.id.home, which eventually will be
triggered by a tap on our icon, on the left side of the action bar. We need to do a bit
more work to enable that icon tap, but we will worry about that when we actually
have something to do when the user taps on it.

To get this to compile, you will need to add some imports as well:

importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

(Eclipse users can just use <Ctrl>-<Shift>-<O> to import these, choosing the
“Sherlock” versions of the classes when prompted)

Also, the pasted code may be poorly formatted. Eclipse users can press
<Ctrl>-<Shift>-<F> to format the code into something reasonable.

Step #5: Running the Result
If you run this in a device or emulator, you may see no initial difference. That would
be for devices or emulators that have a MENU button. To display our options, you
would need to press MENU:

TUTORIAL #7 - ADDING THE ACTION BAR

279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 146: EmPubLite, With Options Via the MENU Button

On devices that lack a dedicated MENU button, the action bar will have a “…” icon
somewhere on the split action bar:

TUTORIAL #7 - ADDING THE ACTION BAR

280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 147: EmPubLite, Showing the … Overflow Button

Pressing that brings up a menu showing our items:

TUTORIAL #7 - ADDING THE ACTION BAR

281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 148: EmPubLite, Showing the Overflow Options

In Our Next Episode…
… we will define our first new activity on the tutorial project.

TUTORIAL #7 - ADDING THE ACTION BAR

282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Process Model

So far, we have been treating our activity like it is our entire application. Soon, we
will start to get into more complex scenarios, involving multiple activities and other
types of components, like services and content providers.

But, before we get into a lot of that, it is useful to understand how all of this ties into
the actual OS itself. Android is based on Linux, and Linux applications run in OS
processes. Understanding a bit about how Android and Linux processes inter-relate
will be useful in understanding how our mixed bag of components work within
these processes.

When Processes Are Created
A user installs your app, goes to their home screen’s launcher, and taps on an icon
representing your activity. Your activity dutifully appears on the screen.

Behind the scenes, what happened is that Android created a process. That process
contains:

• A copy of the Dalvik VM, shared among all such processes via Linux copy-
on-write memory sharing

• A copy of the Android framework classes, like Activity and Button, also
shared via copy-on-write memory

• A copy of your own classes, loaded out of your APK
• Any objects created by you or the framework classes, such as the instance of

your Activity subclass

283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BACK, HOME, and Your Process
Suppose, with your activity in the foreground, the user presses BACK.

At this point, the user is telling the OS that she is done with your activity. Control
will return to whatever preceded that activity — in this case, the home screen’s
launcher.

You might think that this would cause your process to be terminated. After all, that
is how most desktop operating systems work. Once the user closes the last window
of the application, the process hosting that application is terminated.

However, that is not how Android works. Android will keep your process around, for
a little while at least. This is done for speed and power: if the user happens to want
to return to your app sooner rather than later, it is more efficient to simply bring up
another copy of your activity again in the existing process than it is to go set up a
completely new copy of the process. This does not mean that your process will live
forever; we will discuss when your process will go away later in this chapter.

Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, there is little difference: the home screen re-appears. Depending
on the home screen implementation there may be a visible difference, as BACK
might return to a launcher whereas HOME might return to something else on the
home screen. However, in general, they feel like very similar operations.

The difference is what happens to your activity.

When the user presses BACK, your foreground activity is destroyed. We will get into
more of what that means in the next chapter. However, the key feature is that the
activity itself — the instance of your subclass of Activity – will never be used again,
and hopefully is garbage collected.

When the user presses HOME, your foreground activity is not destroyed. It remains
in memory. If the user launches your app again from the home screen launcher, and
if your process is still around, Android will simply bring your existing activity
instance back to the foreground, rather than having to create a brand-new one (as is
the case if the user pressed BACK and destroyed your activity).

What HOME literally is doing is bringing the home screen activity back to the
foreground, not otherwise directly affecting your process much.

ANDROID’S PROCESS MODEL

284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Termination
Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other
applications.

How long your process will stick around depends on a variety of factors, including:

• What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

• How much memory the device has
• What is still running inside your process

Going back to the scenario from above, we have an application with a single activity,
where the user can return to the home screen either by pressing BACK or by
pressing HOME. You might think that this has no difference at all on when the
process would be terminated, but that would be incorrect. Pressing HOME would
keep the process around perhaps a bit longer than would pressing BACK.

Why?

When the user presses BACK, your one and only activity is destroyed. When the user
presses HOME, your activity is not destroyed. Android will tend to keep processes
around longer if they have active (i.e., not destroyed) components in them.

The key word there is “tend”. Android’s algorithms for determining when to get rid
of what processes are baked into the OS and are, at best, lightly documented. There
is evidence to suggest that other criteria, such as process age, are also taken into
account, and so there may be times when a process that has an activity running (but
not in the foreground) might be terminated where a process with no running
activity might not. However, in general, processes with active (not destroyed)
components will stick around a bit longer than processes without such components.

Foreground Means “I Love You”
Just because Android terminates processes to free up memory does not mean that it
will terminate just any process to free up memory. A foreground process – the most
common of which is a process that has an activity in the foreground – is the least
likely of all to be terminated. In fact, you can pretty much assume that if Android

ANDROID’S PROCESS MODEL

285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

has to kill off the foreground process, that the phone is very sick and will crash in a
matter of moments.

(and, fortunately, that does not happen very often)

So, if you are in the foreground, you are safe. It is only when you are not in the
foreground that you are at risk of having the process be terminated.

You and Your Heap
Processes take up RAM. A significant chunk of that RAM represents the objects you
create (a.k.a., “the heap”).

Those of you with significant Java backgrounds know that the Java VM loves RAM
(“can’t get enough of it!”). Java VMs routinely grab 64MB or 128MB of heap space
upon creating the process and will grow as big as you wish to let them (e.g., -Xmx
switch to the java command).

Android heap sizes are not that big, because Android is designed to run on mobile
devices with constrained amounts of RAM.

Your heap limit may be as low as 16MB, though values in the 32–48MB range are
more typical with current-generation devices. How much the heap limit will be
depends a bit on what version of Android is on the device. It depends quite a lot,
though, on the screen size, as bigger screens will tend to want to display bigger
bitmap images, and bitmap images can consume quite a bit of RAM.

The key is that the heap is small, and (generally speaking) you cannot adjust it
yourself. It is what it is. Small applications will rarely run into a problem with heap
space, but larger applications might. We will discuss tools and techniques for
measuring and coping with memory problems later in this book.

ANDROID’S PROCESS MODEL

286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activities and Their Lifecycles

An Android application will have multiple discrete UI facets. For example, a
calendar application needs to allow the user to view the calendar, view details of a
single event, edit an event (including adding a new one), and so forth. And on
smaller-screen devices, like most phones, you may not have room to squeeze all of
this on the screen at once.

To handle this, you can have multiple activities. Your calendar application may have
one activity to display the calendar, another to add or edit an event, one to provide
settings for how the calendar should work, another for your online help, etc.

This, of course, implies that one of your activities has the means to start up another
activity. For example, if somebody clicks on an event from the view-calendar activity,
you might want to show the view-event activity for that event. This means that,
somehow, you need to be able to cause the view-event activity to launch and show a
specific event (the one the user clicked upon).

This can be further broken down into two scenarios:

• You know what activity you want to launch, probably because it is another
activity in your own application

• You have a reference to… something (e.g., a Web page), and you want your
users to be able to do… something with it (e.g., view it), but you do not know
up front what the options are

This chapter will cover both of those scenarios.

In addition, frequently it will be important for you to understand when activities are
coming and going from the foreground, so you can automatically save or refresh

287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

data, etc. This is the so-called “activity lifecycle”, and we will examine it in detail as
well in this chapter.

Creating Your Second (and Third and…) Activity
Unfortunately, activities do not create themselves. On the positive side, this does
help keep Android developers gainfully employed.

Hence, given a project with one activity, if you want a second activity, you will need
to add it yourself. The same holds true for the third activity, the fourth activity, and
so on.

The sample we will examine in this section is Activities/Explicit. Our first
activity, ExplicitIntentsDemoActivity, started off as just the default activity code
generated by the build tools. Now, though, its layout contains a Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:textSize="20sp"
android:text="@string/hello"
android:onClick="showOther"/>/>

</LinearLayout></LinearLayout>

That Button is tied to a showOther() method in our activity implementation, which
we will examine shortly.

Defining the Class and Resources

To create your second (or third or whatever) activity, you first need to create the Java
class. Outside of Eclipse, you can just create a new Java source file, containing a
public Java class that extends Activity directly or indirectly.

From Eclipse, you also have the option of using the new-class dialog, which you get
by right-clicking over the Java package you want to contain this activity and
choosing New > Class from the context menu:

ACTIVITIES AND THEIR LIFECYCLES

288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit

Figure 149: The Eclipse New-Class Dialog

Supply your class name (e.g., OtherActivity) and indicate its superclass (e.g.,
com.actionbarsherlock.app.SherlockActivity), then click “Finish” to add the
empty class.

You can then add an onCreate() method to the activity, filling in all the details (e.g.,
setContentView()), just like you did with your first activity. Your new activity may
need a new layout XML resource or other resources, which you would also have to
create.

In Activities/Explicit, our second activity is OtherActivity, with pretty much
the standard bare-bones implementation:

packagepackage com.commonsware.android.exint;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass OtherActivityOtherActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.other);

ACTIVITIES AND THEIR LIFECYCLES

289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

and a similarly simple layout, res/layout/other.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/other"
android:textColor="#FFFF0000"
android:textSize="20sp"/>/>

</LinearLayout></LinearLayout>

Augmenting the Manifest

Simply having an activity implementation is not enough. We also need to add it to
our AndroidManifest.xml file.

If you are using Eclipse, and you bring up the manifest in the editor, you can switch
over to the Application sub-tab and look at the bottom half of the screen at the
“Application Nodes” area:

Figure 150: The Eclipse Manifest Editor Application Nodes

Clicking the “Add…” button will allow you to choose to add “a new element at the
top level, in Application” and add an activity:

ACTIVITIES AND THEIR LIFECYCLES

290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 151: The Eclipse Manifest Editor Add Application Node Dialog

Clicking “OK” will give you a blank entry in the “Application Nodes” list, and you can
fill in the details on the right. The only one that is essential is the “Name”, which will
be the name of your activity — you can pick it out of a list via the “Browse…” button
to the right of the “Name” field.

ACTIVITIES AND THEIR LIFECYCLES

291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 152: The Eclipse Manifest Editor Choose Activity Class Dialog

You can also elect to supply a “Label”, pointing to a string resource which will
populate the gray title bar of your activity. By default, you will inherit the label from
the <application> element.

Outside of Eclipse, adding an activity to the manifest is a matter of adding another
<activity> element to the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.exint"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="ExplicitIntentsDemoActivity"
android:label="@string/app_name">>

ACTIVITIES AND THEIR LIFECYCLES

292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity android:name="OtherActivity"/>/>

</application></application>

</manifest></manifest>

You need the android:name attribute at minimum. Note that we do not include an
<intent-filter> child element, the way the original activity has. For now, take it on
faith that the original activity’s <intent-filter> is what causes it to appear as a
launchable activity in the home screen’s launcher. We will get into more details of
how that <intent-filter> works and when you might want your own in a later
chapter.

Warning! Contains Explicit Intents!
An Intent encapsulates a request, made to Android, for some activity or other
receiver to do something.

If the activity you intend to launch is one of your own, you may find it simplest to
create an explicit Intent, naming the component you wish to launch. For example,
from within your activity, you could create an Intent like this:

newnew Intent(thisthis, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. This activity
would need to be named in your AndroidManifest.xml file.

In Activities/Explicit, ExplicitIntentsDemoActivity has a showOther() method
tied to its Button widget’s onClick attribute. That method will use startActivity()
with an explicit Intent, identifying OtherActivity:

packagepackage com.commonsware.android.exint;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ExplicitIntentsDemoActivityExplicitIntentsDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

ACTIVITIES AND THEIR LIFECYCLES

293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void showOther(View v) {
startActivity(newnew Intent(thisthis, OtherActivity.class));

}
}

Our launched activity shows the button:

Figure 153: The Explicit Intents Demo, As Launched

Clicking the button brings up the other activity:

ACTIVITIES AND THEIR LIFECYCLES

294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 154: The Explicit Intents Demo, After Clicking the Button

Clicking BACK would return us to the first activity. In this respect, the BACK button
in Android works much like the BACK button in your Web browser.

Using Implicit Intents
The explicit Intent approach works fine when the activity to be started is one of
yours.

However, you can also start up activities from the operating system or third-party
apps. In those cases, though, you will not have a Java Class object representing the
other activity in your project, so you cannot use the Intent constructor that takes a
Class.

Instead, you will use what are referred as the “implicit” Intent structure, which
looks an awful lot like how the Web works.

If you have done any work on Web apps, you are aware that HTTP is based on verbs
applied to URIs:

ACTIVITIES AND THEIR LIFECYCLES

295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• We want to GET this image
• We want to POST to this script or controller
• We want to PUT to this REST resource
• Etc.

Android’s implicit Intent model works much the same way, just with a lot more
verbs.

For example, suppose you get a latitude and longitude from somewhere (e.g., body
of a tweet, body of a text message). You decide that you want to display a map on
those coordinates. There are ways that you can embed a Google Map directly in your
app — and we will see how in a later chapter — but that is complicated and assumes
the user wants Google Maps. It would be better if we could create some sort of
generic “hey, Android, display an activity that shows a map for this location” request.

As it turns out, we can, as is illustrated in the Activities/Launch sample project.

We have a LaunchDemo activity that uses a layout containing two EditText widgets
and a Button, among other things:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingLeft="2dip"
android:paddingRight="4dip"
android:text="@string/location"/>/>

<EditText<EditText
android:id="@+id/lat"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"
android:inputType="numberDecimal|numberSigned"
android:hint="@string/lat"/>/>

<EditText<EditText
android:id="@+id/lon"

ACTIVITIES AND THEIR LIFECYCLES

296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch

android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"
android:inputType="numberDecimal|numberSigned"
android:hint="@string/lon"/>/>

</LinearLayout></LinearLayout>

<Button<Button
android:id="@+id/map"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me"/>/>

</LinearLayout></LinearLayout>

The Button is tied to a showMe() method on the activity itself, where we want to
bring up a map on the latitude and longitude entered into the EditText widgets:

packagepackage com.commonsware.android.activities;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass LaunchDemoLaunchDemo extendsextends Activity {
privateprivate EditText lat;
privateprivate EditText lon;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);

}

publicpublic void showMe(View v) {
String _lat=lat.getText().toString();
String _lon=lon.getText().toString();
Uri uri=Uri.parse("geo:"+_lat+","+_lon+"?z=15");

startActivity(newnew Intent(Intent.ACTION_VIEW, uri));
}

}

Just as HTTP uses a verb and a URI, Android uses an action and a Uri. The standard
Uri structure to express a location is one that uses the geo: scheme, followed by the

ACTIVITIES AND THEIR LIFECYCLES

297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

latitude and longitude in decimal degrees, followed by a zoom level from 1 to 21,
with higher values representing tighter levels of zoom (e.g.,
geo:37.760829,-122.416111?z=15). Assembling this as a string is a matter of
concatenation, but afterwards we need to convert it to a Uri via calling Uri.parse().
Then, we can use an action called ACTION_VIEW to try to display a map on that
location.

When launched, the user is presented with our data entry form:

Figure 155: The Launch Demo, As Initially Launched

We can fill in a latitude and longitude, replacing the values displayed as the “hints”
(supplied by the android:hint attributes):

ACTIVITIES AND THEIR LIFECYCLES

298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 156: The Launch Demo, After Data Entry

If the device has one application that responds to an ACTION_VIEW Intent on a geo:
scheme, clicking the “Show Me!” button will bring up a map on that location:

ACTIVITIES AND THEIR LIFECYCLES

299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 157: A Map Showing the Electronic Frontier Foundation

We will discuss what happens if there are no applications set up to handle this
Intent, or if there is more than one, in a later chapter.

Note that previous versions of this book used a simpler geo:latitude,longitude
Uri, but that no longer seems to be supported by the Google Maps application.

Extra! Extra!
Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a ListActivity showing a collection of our model objects
(e.g., books) and we have a separate DetailActivity to show information about a
specific model object. Somehow, DetailActivity needs to know which model object
to show.

One way to accomplish this is via Intent extras.

There is a series of putExtra() methods on Intent to allow you to supply key/value
pairs of data to be bundled into the Intent. While you cannot pass arbitrary objects,
most primitive data types are supported, as are strings and some types of lists.

ACTIVITIES AND THEIR LIFECYCLES

300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=58980

Any activity can call getIntent() to retrieve the Intent used to start it up, and then
can call various forms of get... Extra() (with the ... indicating a data type) to
retrieve any bundled extras.

For example, let’s take a look at the Activities/Extras sample project.

This is mostly a clone of the Activities/Explicit sample from earlier in this
chapter. However, this time, our first activity will pass an extra to the second:

packagepackage com.commonsware.android.extra;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ExtrasDemoActivityExtrasDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE, getString(R.string.other));
startActivity(other);

}
}

We create the Intent as before, but then call putExtra(), supplying a key (a static
string named OtherActivity.EXTRA_MESSAGE) and a value (the R.string.other
string resource). Then, and only then, do we call startActivity().

Our revised OtherActivity then retrieves that extra, along with the inflated
TextView (via findViewById()) and pours that text in:

packagepackage com.commonsware.android.extra;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass OtherActivityOtherActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_MESSAGE="msg";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

ACTIVITIES AND THEIR LIFECYCLES

301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.other);

TextView tv=(TextView)findViewById(R.id.msg);

tv.setText(getIntent().getStringExtra(EXTRA_MESSAGE));
}

}

Visually, the result is the same. Functionally, the text to be shown is passed from one
activity to the next.

Asynchronicity and Results
Note that startActivity() is asynchronous. The other activity will not show up
until sometime after you return control of the main application thread to Android.

Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from the
second. For example, the second activity might be some sort of “chooser”, to allow
the user to pick a file or contact or song or something, and the first activity needs to
know what the user chose. With startActivity() being asynchronous, it is clear
that we are not going to get that sort of result as a return value from
startActivity() itself.

To handle this scenario, there is a separate startActivityForResult() method.
While it too is asynchronous, it allows the newly-started activity to supply a result
(via a setResult() method) that is delivered to the original activity via an
onActivityResult() method. We will examine startActivityForResult() in
greater detail in a later chapter.

Schroedinger’s Activity
An activity, generally speaking, is in one of four states at any point in time:

1. Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

2. Paused: the activity was started by the user, is running, and is visible, but
another activity is overlaying part of the screen. During this time, the user
can see your activity but may not be able to interact with it. This is a

ACTIVITIES AND THEIR LIFECYCLES

302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

relatively uncommon state, as most activities are set to fill the screen, not
have a theme that makes them look like some sort of dialog box.

3. Stopped: the activity was started by the user, is running, but it is hidden by
other activities that have been launched or switched to.

4. Dead: the activity was destroyed, perhaps due to the user pressing the BACK
button.

Life, Death, and Your Activity
Android will call into your activity as the activity transitions between the four states
listed above.

Note that for all of these, you should chain upward and invoke the superclass’
edition of the method, or Android may raise an exception.

onCreate()onCreate() and onDestroy()onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This will get called in two primary situations:

• When the activity is first started (e.g., since a system restart), onCreate()
will be invoked with a null parameter.

• If the activity had been running and you have set up your activity to have
different resources based on different device states (e.g., landscape versus
portrait), your activity will be re-created and onCreate() will be called. We
will discuss this scenario in greater detail later in this book.

Here is where you initialize your user interface and set up anything that needs to be
done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the activity is
shutting down, such as because the activity called finish() (which “finishes” the
activity) or the user presses the BACK button. Hence, onDestroy() is mostly for
cleanly releasing resources you obtained in onCreate() (if any), plus making sure
that anything you started up outside of lifecycle methods gets stopped, such as
background threads.

Bear in mind, though, that onDestroy() may not be called. This would occur in a
few circumstances:

ACTIVITIES AND THEIR LIFECYCLES

303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You crash with an unhandled exception
• The user force-stops your application, such as through the Settings app
• Android has an urgent need to free up RAM (e.g., to handle an incoming

phone call), wants to terminate your process, and cannot take the time to
call all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.

Also, bear in mind that it may take a long time for onDestroy() to be called. It is
called quickly if the user presses BACK to finish the foreground activity. If, however,
the user presses HOME to bring up the home screen, your activity is not
immediately destroyed. onDestroy() will not be called until Android does decide to
gracefully terminate your process, and that could be seconds, minutes, or hours
later.

onStart()onStart(), onRestart()onRestart(), and onStop()onStop()

An activity can come to the foreground either because it is first being launched, or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity, by an incoming phone call).

The onStart() method is called in either of those cases. The onRestart() method is
called in the case where the activity had been stopped and is now restarting.

Conversely, onStop() is called when the activity is about to be stopped. It too may
not be called, for the same reasons that onDestroy() would not be called. However,
onStop() is usually called fairly quickly after the activity is no longer visible, so the
odds that onStop() will be called are even higher than that of onDestroy().

onPause()onPause() and onResume()onResume()

The onResume() method is called just before your activity comes to the foreground,
either after being initially launched, being restarted from a stopped state, or after a
pop-up dialog (e.g., incoming call) is cleared. This is a great place to refresh the UI
based on things that may have occurred since the user last was looking at your
activity. For example, if you are polling a service for changes to some information
(e.g., new entries for a feed), onResume() is a fine time to both refresh the current
view and, if applicable, kick off a background thread to update the view (e.g., via a
Handler).

ACTIVITIES AND THEIR LIFECYCLES

304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Conversely, anything that steals your user away from your activity — mostly, the
activation of another activity — will result in your onPause() being called. Here, you
should undo anything you did in onResume(), such as stopping background threads,
releasing any exclusive-access resources you may have acquired (e.g., camera), and
the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process
at any point. Hence, you should not be relying upon receiving any further events.

So, what is the difference between onPause() and onStop()? If an activity comes to
the foreground that fills the screen, your current foreground activity will be called
with onPause() and onStop(). If, however, an activity comes to the foreground that
does not fill the screen, your current foreground activity will only be called with
onPause().

Stick to the Pairs

If you initialize something in onCreate(), clean it up in onDestroy().

If you initialize something in onStart(), clean it up in onStop().

If you initialize something in onResume(), clean it up in onPause().

In other words, stick to the pairs. For example, do not initialize something in
onStart() and try to clean it up on onPause(), as there are scenarios where
onPause() may be called multiple times in succession (i.e., user brings up a non-full-
screen activity, which triggers onPause() but not onStop(), and hence not
onStart()).

Which pairs of lifecycle methods you choose is up to you, depending upon your
needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy() and
onResume()/onPause()). Just do not mix and match between them.

When Activities Die
So, what gets rid of an activity? What can trigger the chain of events that results in
onDestroy() being called?

First and foremost, when the user presses the BACK button, the foreground activity
will be destroyed, and control will return to the previous activity in the user’s

ACTIVITIES AND THEIR LIFECYCLES

305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

navigation flow (i.e., whatever activity they were on before the now-destroyed
activity came to the foreground).

You can accomplish the same thing by calling finish() from your activity. This is
mostly for cases where some other UI action would indicate that the user is done
with the activity (e.g., the activity presents a list for the user to choose from —
clicking on a list item might close the activity). However, please do not artificially
add your own “exit”, “quit”, or other menu items or buttons to your activity — just
allow the user to use normal Android navigation options, such as the BACK button.

If none of your activities are in the foreground any more, your application’s process
is a candidate to be terminated to free up RAM. As noted earlier, depending on
circumstances, Android may or may not call onDestroy() in these cases (onPause()
and onStop() would have been called when your activities left the foreground).

If the user causes the device to go through a “configuration change”, such as
switching between portrait and landscape, Android’s default behavior is to destroy
your current foreground activity and create a brand new one in its place. We will
cover this more in a later chapter.

And, if your activity has an unhandled exception, your activity will be destroyed,
though Android will not call any more lifecycle methods on it, as it assumes your
activity is in an unstable state.

Walking Through the Lifecycle
To see when these various lifecycle methods get called, let’s examine the
Activities/Lifecycle sample project.

This project is the same as the Activities/Extras project, except that our two
activities no longer inherit from Activity directly. Instead, we introduce a
LifecycleLoggingActivity as a base class and have our activities inherit from it:

packagepackage com.commonsware.android.lifecycle;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass LifecycleLoggingActivityLifecycleLoggingActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ACTIVITIES AND THEIR LIFECYCLES

306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

Log.d(getClass().getSimpleName(), "onCreate()");
}

@Override
publicpublic void onRestart() {

supersuper.onRestart();

Log.d(getClass().getSimpleName(), "onRestart()");
}

@Override
publicpublic void onStart() {

supersuper.onStart();

Log.d(getClass().getSimpleName(), "onStart()");
}

@Override
publicpublic void onResume() {

supersuper.onResume();

Log.d(getClass().getSimpleName(), "onResume()");
}

@Override
publicpublic void onPause() {

Log.d(getClass().getSimpleName(), "onPause()");

supersuper.onPause();
}

@Override
publicpublic void onStop() {

Log.d(getClass().getSimpleName(), "onStop()");

supersuper.onStop();
}

@Override
publicpublic void onDestroy() {

Log.d(getClass().getSimpleName(), "onDestroy()");

supersuper.onDestroy();
}

}

All LifecycleLoggingActivity does is override each of the lifecycle methods
mentioned above and emit a debug line to LogCat indicating who called what.

When we first launch the application, our first batch of lifecycle methods is invoked,
in the expected order:

ACTIVITIES AND THEIR LIFECYCLES

307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-01 11:47:21.437: D/ExplicitIntentsDemoActivity(1473): onCreate()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onResume()

If we click the button on the first activity to start up the second, we get:

04-01 11:47:54.776: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:47:54.877: D/OtherActivity(1473): onCreate()
04-01 11:47:54.947: D/OtherActivity(1473): onStart()
04-01 11:47:54.974: D/OtherActivity(1473): onResume()
04-01 11:47:55.347: D/ExplicitIntentsDemoActivity(1473): onStop()

Notice that our first activity is paused before the second activity starts up, and that
onStop() is delayed on the first activity until after the second activity has appeared.

If we press the BACK button on the second activity, returning to the first activity, we
see:

04-01 11:48:54.807: D/OtherActivity(1473): onPause()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onRestart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onResume()
04-01 11:48:55.257: D/OtherActivity(1473): onStop()
04-01 11:48:55.257: D/OtherActivity(1473): onDestroy()

Notice how, once again, going onto the screen happens in between onPause() and
onStop() of the activity leaving the screen. Also notice that onDestroy() is called
immediately after onStop(), because the activity was finished via the BACK button.

If we now press the HOME button, to bring the home screen activity to the
foreground, we see:

04-01 11:50:30.347: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:50:32.227: D/ExplicitIntentsDemoActivity(1473): onStop()

There is a delay between onPause() and onStop() as the home screen does its
display work, and there is no onDestroy(), because the application is still running

ACTIVITIES AND THEIR LIFECYCLES

308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and nothing finished the activity. Eventually, the device will terminate our process,
and if that happens normally, we would see the onDestroy() LogCat message.

Recycling Activities
Let us suppose that we have three activities, named A, B, and C. A starts up an
instance of B based on some user input, and B later starts up an instance of C
through some more user input.

Our “activity stack” is now A-B-C, meaning that if we press BACK from C, we return
to B, and if we press BACK from B, we return to A.

Now, let’s suppose that from C, we wish to navigate back to A. For example, perhaps
the user pressed the icon on the left of our action bar, and we want to return to the
“home activity” as a result, and in our case that happens to be A. If C calls
startActivity(), specifying A, we wind up with an activity stack that is A-B-C-A.

That’s because starting an activity, by default, creates a new instance of that activity.
So, now we have two independent copies of A.

Sometimes, this is desired behavior. For example, we might have a single
ListActivity that is being used to “drill down” through a hierarchical data set, like
a directory tree. We might elect to keep starting instances of that same
ListActivity, but with different extras, to show each level of that hierarchy. In this
case, we would want independent instances of the activity, so the BACK button
behaves as the user might expect.

However, when we navigate to the “home activity”, we may not want a separate
instance of A.

How to address this depends a bit on what you want the activity stack to look like
after navigating to A.

If you want an activity stack that is B-C-A — so the existing copy of A is brought to
the foreground, but the instances of B and C are left alone — then you can add
FLAG_ACTIVITY_REORDER_TO_FRONT to your Intent used with startActivity():

Intent i=newnew Intent(thisthis, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
startActivity(i);

ACTIVITIES AND THEIR LIFECYCLES

309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If, instead, you want an activity stack that is just A — so if the user presses BACK,
they exit your application — then you would add two flags:
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP:

Intent i=newnew Intent(thisthis, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_SINGLE_TOP);
startActivity(i);

This will finish all activities in the stack between the current activity and the one
you are starting — in our case, finishing C and B.

ACTIVITIES AND THEIR LIFECYCLES

310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #8 - Setting Up An Activity

Of course, it would be nice if those “Help” and “About” menu choices that we added
in the previous tutorial actually did something.

In this tutorial, we will define another activity class, one that will be responsible for
displaying simple content like our help text and “about” details. And, we will arrange
to start up that activity when those action bar items are selected. The activity will
not actually display anything meaningful yet, as that will be the subject of the next
few tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Creating the Stub Activity Class
First, we need to define the Java class for our new activity, SimpleContentActivity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. That will bring up a dialog
box for defining the new class:

Figure 158: Eclipse New Class Activity

Fill in SimpleContentActivity in the “Name” field. Then, click the “Browse…” button
next to the “Superclass” field, and type in Sherlock in the field at the top of the
resulting dialog:

TUTORIAL #8 - SETTING UP AN ACTIVITY

312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 159: Eclipse Superclass Selection Dialog

Choose SherlockFragmentActivity from the list, and click “OK” to close up that
dialog. Then, click “Finish” to close up the new-class dialog. This will create your
new Java class, albeit with no methods. That is OK, as we do not need any methods
at this time.

Outside of Eclipse

Create a src/com/commonsware/empublite/SimpleContentActivity.java source
file, with the following content:

packagepackage com.commonsware.empublite;

importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass SimpleContentActivitySimpleContentActivity extendsextends SherlockFragmentActivity {

}

Step #2: Adding the Activity to the Manifest
If an activity was created in a forest and nobody was there to see it, does the activity
really exist?

TUTORIAL #8 - SETTING UP AN ACTIVITY

313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Or, to be a bit less oblique, simply creating the activity class is insufficient for it to
be used. We also need to add an <activity> element to the manifest, so other parts
of our code can start up the activity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on AndroidManifest.xml in your project, and click over to the
Application sub-tab. Scroll down to the “Application Nodes” list, then click the
“Add…” button adjacent to that list. Choose “Activity” from the list of available items,
and click “OK” to close up the dialog. This adds an empty activity entry in your
manifest:

Figure 160: Manifest Application Nodes, With New Activity

Click the “Browse…” button to the right of the “Name” field. There will be a short
pause while Eclipse scans your project for subclasses of Activity. In a moment, a
list should appear, with SimpleContentActivity in it. Click on
SimpleContentActivity, then click the “OK” button to make this choice. At this
point, you can save your file (e.g., <Ctrl>-<S>).

Outside of Eclipse

Open up the AndroidManifest.xml file in an editor and add an <activity> element,
as a child of the <application> element, with an
android:name="SimpleContentActivity" attribute, to the file. The result should
resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.empublite"

TUTORIAL #8 - SETTING UP AN ACTIVITY

314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity

android:name="EmPubLiteActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity android:name="SimpleContentActivity">>
</activity></activity>

</application></application>

</manifest></manifest>

Step #3: Launching Our Activity
Now that we have declared that the activity exists and can be used, we can start
using it.

Go into EmPubLiteActivity and modify onOptionsItemSelected() to add in some
logic in the R.id.about and R.id.help branches, as shown below:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase android.R.id.home:

returnreturn(truetrue);

casecase R.id.about:
Intent i=newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

TUTORIAL #8 - SETTING UP AN ACTIVITY

315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(truetrue);

casecase R.id.help:
i=newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

In those two branches, we create an Intent, pointing at our new
SimpleContentActivity. Then, we call startActivity() on that Intent. Right now,
both help and about do the same thing — we will add some smarts to have them
load up different content later in this book.

You will need to add an import for android.content.Intent to get this to compile.

If you run this app in a device or emulator, and you choose either the Help or About
menu choices, what appears to happen is that the ProgressBar vanishes. In reality,
what happens is that our SimpleContentActivity appeared, but empty, as we have
not given it a full UI yet.

In Our Next Episode…
… we will begin using fragments in our tutorial project.

TUTORIAL #8 - SETTING UP AN ACTIVITY

316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Tactics of Fragments

Fragments are an optional layer you can put between your activities and your
widgets, designed to help you reconfigure your activities to support screens both
large (e.g., tablets) and small (e.g., phones).

This chapter will cover basic uses of fragments, including supporting fragments on
pre-Android 3.0 devices.

The Six Questions
In the world of journalism, the basics of any news story consist of six questions, the
Five Ws and One H. Here, we will apply those six questions to help frame what we
are talking about with respect to fragments.

What?

Fragments are not activities, though they can be used by activities.

Fragments are not containers (i.e., subclasses of ViewGroup), though typically they
create a ViewGroup.

Rather, you should think of fragments as being units of UI reuse. You define a
fragment, much like you might define an activity, with layouts and lifecycle methods
and so on. However, you can then host that fragment in one or several activities, as
needed.

Functionally, fragments are Java classes, extending from a base Fragment class. As we
will see, there are two versions of the Fragment class, one native to API Level 11 and
one supplied by the Android Support package.

317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Five_Ws
http://en.wikipedia.org/wiki/Five_Ws

Where??

Since fragments are Java classes, your fragments will reside in one of your
application’s Java packages. The simplest approach is to put them in the same Java
package that you used for your project overall and where your activities reside,
though you can refactor your UI logic into other packages if needed.

Who?!?

Typically, you create fragment implementations yourself, then tell Android when to
use them. Some third-party Android library projects may ship fragment
implementations that you can reuse, if you so choose.

When?!!?

Some developers start adding fragments from close to the outset of application
development — that is the approach we will take in the tutorials. And, if you are
starting a new application from scratch, defining fragments early on is probably a
good idea. That being said, it is entirely possible to “retrofit” an existing Android
application to use fragments, though this may be a lot of work. And, it is entirely
possible to create Android applications without fragments at all.

Fragments were introduced with Android 3.0 (API Level 11, a.k.a., Honeycomb).

WHY?!?!?

Ah, this is the big question. If we have managed to make it this far through the book
without fragments, and we do not necessarily need fragments to create Android
applications, what is the point? Why would we bother?

The primary rationale for fragments was to make it easier to support multiple screen
sizes.

Android started out supporting phones. Phones may vary in size, from tiny ones
with less than 3” diagonal screen size (e.g., Sony Ericsson X10 mini), to monsters that
are over 5” (e.g., Samsung Galaxy Note). However, those variations in screen size pale
in comparison to the differences between phones and tablets, or phones and TVs.

Some applications will simply expand to fill larger screen sizes. Many games will
take this approach, simply providing the user with bigger interactive elements,

THE TACTICS OF FRAGMENTS

318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

bigger game boards, etc. The ever-popular Angry Birds game, for example, gives you
bigger birds.

However, another design approach is to consider a tablet screen to really be a
collection of phone screens, side by side.

Figure 161: Tablets vs. Handsets (image courtesy of Android Open Source Project)

The user can access all of that functionality at once on a tablet, whereas they would
have to flip back and forth between separate screens on a phone.

For applications that can fit this design pattern, fragments allow you to support
phones and tablets from one code base. The fragments can be used by individual
activities on a phone, or they can be stitched together by a single activity for a
tablet.

Details on using fragments to support large screen sizes is a topic for a later chapter
in this book. This chapter is focused on the basic mechanics of setting up and using
fragments.

OMGOMGOMG, HOW?!?!??

Well, answering that question is what the rest of this chapter is for, plus coverage of
more advanced uses of fragments elsewhere in this book.

Your First Fragment
In many ways, it is easier to explain fragments by looking at an implementation,
more so than trying to discuss them as abstract concepts. So, in this section, we will

THE TACTICS OF FRAGMENTS

319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

take a look at the Fragments/Static sample project. This is a near-clone of the
Activities/Lifecycle sample project from the previous chapter. However, we have
converted the launcher activity from one that will host widgets directly itself to one
that will host a fragment, which in turn manages widgets.

The Project

We have two choices with fragments: use the native ones in API Level 11, or use a
backport supplied by the Android Support package. So this sample can work on
older versions of Android, we will use the Android Support package, adding it to the
project.

We also add in ActionBarSherlock. That is not strictly required to use fragments,
whether those are native API Level 11 fragments or are ones from the Android
Support package. However, you may want to have an action bar in addition to
fragments, in which case you would want to use ActionBarSherlock if you are using
the backported fragments implementation. Also, using fragments with
ActionBarSherlock requires some minor changes to your code, which this project
will illustrate.

The Fragment Layout

Our fragment is going to manage our UI, so we have a res/layout/mainfrag.xml
layout file containing our Button:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/showOther"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/hello"
android:textSize="20sp"/>/>

Note, though, that we do not use the android:onClick attribute. We will explain
why we dropped that attribute from the previous editions of this sample shortly.

The Fragment Class

The project has a ContentFragment class that will use this layout and handle the
Button. This class extends SherlockFragment — the Fragment implementation from
ActionBarSherlock, which itself inherits from android.support.v4.app.Fragment

THE TACTICS OF FRAGMENTS

320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

from the Android Support package. If you wish to use the native API Level 11
fragments, you would inherit from android.app.Fragment instead.

As with activities, there is no constructor on a typical Fragment subclass. The
primary method you override, though, is not onCreate() (though, as we will see
later in this chapter, that is possible). Instead, the primary method to override is
onCreateView(), which is responsible for returning the UI to be displayed for this
fragment:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.mainfrag, container, falsefalse);

result.findViewById(R.id.showOther).setOnClickListener(thisthis);

returnreturn(result);
}

We are passed a LayoutInflater that we can use for inflating a layout file, the
ViewGroup that will eventually hold anything we inflate, and the Bundle that was
passed to the activity’s onCreate() method. While we are used to framework classes
loading our layout resources for us, we can “inflate” a layout resource at any time
using a LayoutInflater. This process reads in the XML, parses it, walks the element
tree, creates Java objects for each of the elements, and stitches the results together
into a parent-child relationship.

Here, we inflate res/layout/mainfrag.xml, telling Android that its contents will
eventually go into the ViewGroup but not to add it right away. While there are
simpler flavors of the inflate() method on LayoutInflater, this one is required in
case the ViewGroup happens to be a RelativeLayout, so we can process all of the
positioning and sizing rules appropriately.

We also use findViewById() to find our Button widget and tell it that we, the
fragment, are its OnClickListener. ContentFragment must then implement the
View.OnClickListener interface to make this work. We do this instead of
android:onClick to route the Button click events to the fragment, not the activity.

Since we implement the View.OnClickListener interface, we need the
corresponding onClick() method implementation:

@Override
publicpublic void onClick(View v) {

THE TACTICS OF FRAGMENTS

321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

((StaticFragmentsDemoActivity)getActivity()).showOther(v);
}

Any fragment can call getActivity() to find the activity that hosts it. In our case,
the only activity that will possibly host this fragment is
StaticFragmentsDemoActivity, so we can cast the result of getActivity() to
StaticFragmentsDemoActivity, so that we can call methods on our activity. In
particular, we are telling the activity to show the other activity, by means of calling
the showOther() method that we saw in the original Activities/Lifecycle sample
(and will see again shortly).

That is really all that is needed for this fragment. However, ContentFragment also
overrides many other fragment lifecycle methods, and we will examine these later in
this chapter.

The Activity Layout

Originally, the res/layout/main.xml used by the activity was where we had our
Button widget. Now, the Button is handled by the fragment. Instead, our activity
layout needs to account for the fragment itself.

In this sample, we are going to use a static fragment. Static fragments are easy to add
to your application: just use the <fragment> element in a layout file, such as our
revised res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.sfrag.ContentFragment"/>/>

Here, we are declaring our UI to be completely comprised of one fragment, whose
implementation (com.commonsware.android.sfrag.ContentFragment) is identified
by the android:name attribute on the <fragment> element. Instead of android:name,
you can use class, though most of the Android documentation has now switched
over to android:name.

Eclipse users can drag a fragment out of the “Layouts” section of the graphical editor
tool palette, if desired, rather than setting up the <fragment> element directly in the
XML.

THE TACTICS OF FRAGMENTS

322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Activity Class

StaticFragmentsDemoActivity — our new launcher activity — looks identical to
the previous version, with the exception of the class name:

packagepackage com.commonsware.android.sfrag;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass StaticFragmentsDemoActivityStaticFragmentsDemoActivity extendsextends
LifecycleLoggingActivity {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE,
getString(R.string.other));

startActivity(other);
}

}

However, there is one change hidden in the new LifecycleLoggingActivity. We no
longer inherit from Activity, but instead inherit from SherlockFragmentActivity:

packagepackage com.commonsware.android.sfrag;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass LifecycleLoggingActivityLifecycleLoggingActivity extendsextends SherlockFragmentActivity {

There are three primary possible base classes for your fragment-powered activities:

1. If you are using native API Level 11 fragments and action bar, you can inherit
from the ordinary Activity class as you normally would.

2. If you are using the Android Support package for your fragments but are not
using ActionBarSherlock (e.g., you are skipping an action bar on pre-API
Level 11 devices), you would inherit from
android.support.v4.app.FragmentActivity. This is the fragment-capable
activity base class supplied by the Android Support package.

THE TACTICS OF FRAGMENTS

323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. If you are using ActionBarSherlock, inherit from
SherlockFragmentActivity.

The Result

Visually, there is no difference between this version and the previous one, except
that we now have an action bar:

Figure 162: A Static Fragment on Android 2.3.3

The Fragment Lifecycle Methods
Fragments have lifecycle methods, just like activities do. In fact, they support most
of the same lifecycle methods as activities:

• onCreate()
• onStart() (but not onRestart())
• onResume()
• onPause()
• onStop()
• onDestroy()

THE TACTICS OF FRAGMENTS

324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By and large, the same rules apply for fragments as do for activities with respect to
these lifecycle methods (e.g., onDestroy() may not be called).

In addition to those and the onCreateView() method we examined earlier in this
chapter, there are four other lifecycle methods that you can elect to override if you
so choose.

onAttach() will be called first, even before onCreate(), letting you know that your
fragment has been attached to an activity. You are passed the Activity that will host
your fragment.

onActivityCreated() will be called after onCreate() and onCreateView(), to
indicate that the activity’s onCreate() has completed. If there is something that you
need to initialize in your fragment that depends upon the activity’s onCreate()
having completed its work, you can use onActivityCreated() for that initialization
work.

onDestroyView() is called before onDestroy(). This is the counterpart to
onCreateView() where you set up your UI. If there are things that you need to clean
up specific to your UI, you might put that logic in onDestroyView().

onDetach() is called after onDestroy(), to let you know that your fragment has been
disassociated from its hosting activity.

Your First Dynamic Fragment
Static fragments are fairly simple, once you have the Fragment implementation: just
add the <fragment> element to where you want to have the fragment appear in your
activity’s layout.

That simplicity, though, does come with some costs. We will review some of those
limitations in the next chapter.

Those limitations can be overcome by the use of dynamic fragments. Rather than
indicating to Android that you wish to use a fragment by means of a <fragment>
element in a layout, you will use a FragmentTransaction to add a fragment at
runtime from your Java code.

With that in mind, take a look at the Fragments/Dynamic sample project.

THE TACTICS OF FRAGMENTS

325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic

This is the same project as the one for static fragments, except this time we will
adjust OtherActivity to use a dynamic fragment, specifically a ListFragment.

The ListFragment Class

ListFragment serves the same role for fragments as ListActivity does for activities.
It wraps up a ListView for convenient use. So, to have a more interesting
OtherActivity, we start with an OtherFragment that is a ListFragment, designed to
show our favorite 25 nonsense words as seen in previous examples.

However, since we are using ActionBarSherlock in this project, we need to use
SherlockListFragment, to ensure that we will work well with the replacement
action bar.

Just as a ListActivity does not need to call setContentView(), a ListFragment
does not need to override onCreateView(). By default, the entire fragment will be
comprised of a single ListView. And just as ListActivity has a setListAdapter()
method to associate an Adapter with the ListView, so too does ListFragment:

packagepackage com.commonsware.android.dfrag;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport com.actionbarsherlock.app.SherlockListFragmentcom.actionbarsherlock.app.SherlockListFragment;

publicpublic classclass OtherFragmentOtherFragment extendsextends SherlockListFragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setListAdapter(newnew ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1, items));

}

We call setListAdapter() in onActivityCreated(). In principle, we could call it
any time after onCreateView() is processed, such as in onResume().

THE TACTICS OF FRAGMENTS

326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This class also overrides many fragment lifecycle methods, logging their results, akin
to our other Fragment and LifecycleLoggingActivity.

The Activity Class

Now, OtherActivity no longer needs to load a layout — we have removed res/
layout/other.xml from the project entirely. Instead, we will use a
FragmentTransaction to add our fragment to the UI:

packagepackage com.commonsware.android.dfrag;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass OtherActivityOtherActivity extendsextends LifecycleLoggingActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==
nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew OtherFragment()).commit();
}

}
}

To work with a FragmentTransaction, you need the FragmentManager. This object
knows about all of the fragments that exist in your activity. If you are using the
native API Level 11 edition of fragments, you can get your FragmentManager by
calling getFragmentManager(). If you are using the Android Support package, as we
are here, you need to call getSupportFragmentManager() instead.

Given a FragmentManager, you can start a FragmentTransaction by calling
beginTransaction(), which returns the FragmentTransaction object.
FragmentTransaction operates on the builder pattern, so most methods on
FragmentTransaction return the FragmentTransaction itself, so you can chain a
series of method calls one after the next.

We call two methods on our FragmentTransaction: add() and commit(). The add()
method, as you might guess, indicates that we want to add a fragment to the UI. We
supply the actual fragment object, in this case by creating a new OtherFragment. We
also need to indicate where in our layout we want this fragment to reside. Had we
loaded a layout, we could drop this fragment in any desired container. In our case,
since we did not load a layout, we supply android.R.id.content as the ID of the

THE TACTICS OF FRAGMENTS

327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

container to hold our fragment’s View. Here, android.R.id.content identifies the
container into which the results of setContentView() would go — it is a container
supplied by Activity itself and serves as the top-most container for our content.

Just calling add() is insufficient. We then need to call commit() to make the
transaction actually happen.

You might be wondering why we are trying to find a fragment in our
FragmentManager before actually creating the fragment. We do that to help deal with
configuration changes, and we will be exploring that further in the next chapter.

The Result

Our OtherActivity looks identical to the Selection/List sample from an earlier
chapter, except that it sports the action bar courtesy of our ActionBarSherlock
implementation:

Figure 163: A Dynamic Fragment on Android 4.0.3

THE TACTICS OF FRAGMENTS

328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fragments and the Action Bar
Fragments can add items to the action bar by calling setHasOptionsMenu(true)
from onActivityCreated() (or any earlier lifecycle method). This indicates to the
activity that it needs to call onCreateOptionsMenu() and onOptionsItemSelected()
on the fragment.

The Fragments/ActionBar sample application demonstrates this. This is the same as
the ActionBar/ActionBarDemo sample from the chapter on the action bar, just with
the activity converted into a dynamic fragment.

In onActivityCreated() of ActionBar fragment, we call setHasOptionsMenu(true):

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);
setHasOptionsMenu(truetrue);

ifif (adapter == nullnull) {
initAdapter();

}
}

(we will discuss that setRetainInstance(true) call in a later chapter)

That will trigger our fragment’s onCreateOptionsMenu() and
onOptionsItemSelected() methods to be called at the appropriate time:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);

configureActionItem(menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.reset) {
initAdapter();
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

THE TACTICS OF FRAGMENTS

329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBar

Here, we initialize our action bar from the R.menu.actions menu XML resource,
including setting up our EditText widget, plus the logic to respond to the reset
action overflow item.

Our activity does not need to do anything special to allow the fragment to
contribute to the action bar — it just sets up the dynamic fragment:

packagepackage com.commonsware.android.abf;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass ActionBarFragmentActivityActionBarFragmentActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew ActionBarFragment()).commit();
}

}
}

Fragments Within Fragments: Just Say “Maybe”
Historically, one major limitation with fragments is that they could not contain
other fragments. In most cases, this does not pose a major problem. However, there
will be times when you might trip over this limitation, such as when using a
ViewPager, as will be described in a later chapter.

Android 4.2 — and a new edition of the Android Support package also released in
November 2012 — added support for nested fragments. Whereas an activity works
with fragments via a FragmentManager obtained via getFragmentManager() or
getSupportFragmentManager(), fragments can work with nested fragments via a call
to getChildFragmentManager().

However, Android 3.0 through 4.1 have a version of fragments that does not have
getChildFragmentManager(). Hence, you have two options:

1. Use the Android Support package’s backport of fragments, until such time as
you can drop support for Android 4.1 and earlier (perhaps 2015), or

2. Do not use nested fragments for the time being.

THE TACTICS OF FRAGMENTS

330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see how getChildFragmentManager() works in the chapter on ViewPager.

Fragments and Multiple Activities
A fragment should handle functionality purely within the fragment itself. Anything
outside the fragment should be the responsibility of the calling activity. For example,
if the user taps on an item in a ListFragment, and the effects of that event might go
beyond what is inside the ListFragment itself, the ListFragment should forward the
event to the hosting activity, so it can perhaps perform additional steps (e.g., launch
an activity, update another fragment hosted by the activity).

As we will see in a later chapter, it is entirely possible — perhaps even likely — that
some of our fragments will be hosted by multiple different activities. For example,
we might have a fragment that is hosted in one case by an activity designed for
larger screens (e.g., tablets) and in another case by an activity designed for smaller
screens (e.g., phones).

In these cases, the fragment does not know at compile time which activity class will
be hosting it at runtime. For those cases, you have two major options:

1. Have the activities implement a common interface, and have the fragment
cast the result of calling getActivity() to that interface, so it can call
methods on the hosting activity without knowing its exact implementation.

2. Have the activities supply a listener object, with a common interface, to the
fragment via a setter, and have the fragment use that listener for raising
events and so on.

We will see much more on this subject when we get into large-screen strategies in a
later chapter.

THE TACTICS OF FRAGMENTS

331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #9 - Starting Our Fragments

Much of the content of a digital book to be viewed in EmPubLite will be in the form
of HTML and related assets (CSS, images, etc.). Hence, we will eventually need to
render our content in a WebView widget, for best results with semi-arbitrary HTML
content.

To do this, we will set up fragments for the bits of content:

• each chapter
• other material, like our “help” and “about” pages

Right now, we will focus on just setting up some of the basic classes for these
fragments — we will load them up with content and display them over the next few
tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Copy In WebViewFragment
Android has, as of Android 3.0, a WebViewFragment class. Just as ListFragment wraps
a ListView in a Fragment, WebViewFragment wraps a WebView in a Fragment.

333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

However, for unclear reasons, WebViewFragment was not put in the Android Support
package. Nor does ActionBarSherlock contain a SherlockWebViewFragment.

Fortunately, Android is open source.

So, we will incorporate a slightly-modified version of the open source
WebViewFragment into our application, to use as the basis for our fragments showing
book content.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in WebViewFragment in
the “Name” field. Then, click the “Browse…” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Click “Finish” on the new-class
dialog to create the mostly-empty WebViewFragment.

Then, with the newly-created WebViewFragment open in the editor, replace its entire
contents with the following:

/*
* Copyright (C) 2010 The Android Open Source Project
* Portions Copyright (c) 2012 CommonsWare, LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

//package android.webkit;
packagepackage com.commonsware.empublite;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;

TUTORIAL #9 - STARTING OUR FRAGMENTS

334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

/**
* A fragment that displays a WebView.
* <p>
* The WebView is automatically paused or resumed when the
* Fragment is paused or resumed.
*/

publicpublic classclass WebViewFragmentWebViewFragment extendsextends SherlockFragment {
privateprivate WebView mWebView;
privateprivate boolean mIsWebViewAvailable;

publicpublic WebViewFragment() {
}

/**
* Called to instantiate the view. Creates and returns the
* WebView.
*/

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

ifif (mWebView != nullnull) {
mWebView.destroy();

}

mWebView=newnew WebView(getActivity());
mIsWebViewAvailable=truetrue;
returnreturn mWebView;

}

/**
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
*/

@TargetApi(11)
@Override
publicpublic void onPause() {

supersuper.onPause();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();

}
}

/**
* Called when the fragment is no longer resumed. Pauses
* the WebView.

TUTORIAL #9 - STARTING OUR FRAGMENTS

335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

*/
@TargetApi(11)
@Override
publicpublic void onResume() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();

}

supersuper.onResume();
}

/**
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/

@Override
publicpublic void onDestroyView() {

mIsWebViewAvailable=falsefalse;
supersuper.onDestroyView();

}

/**
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/

@Override
publicpublic void onDestroy() {

ifif (mWebView != nullnull) {
mWebView.destroy();
mWebView=nullnull;

}
supersuper.onDestroy();

}

/**
* Gets the WebView.
*/

publicpublic WebView getWebView() {
returnreturn mIsWebViewAvailable ? mWebView : nullnull;

}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/WebViewFragment.java source file, with
the content shown in the code listing above.

TUTORIAL #9 - STARTING OUR FRAGMENTS

336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #2: Examining WebViewFragment
The implementation of WebViewFragment we just created is almost identical to the
one you will find in the Android open source project. Here are the highlights:

• onCreateView(), when first run, will create a new WebView object via its
constructor, holding onto it as mWebView. onCreateView() also has an
optimization to speed things up in situations such as when the screen is
rotated, but the details of this are beyond the scope of this chapter.

• onPause() and onResume() invoke their corresponding methods on the
WebView object. However, onPause() and onResume() were only added to the
Android SDK with API Level 11. Since we want to use WebViewFragment on
older devices, we use some tricks to make sure we only call onPause() and
onResume() on the WebView when we are running on API Level 11 or higher.
We will discuss the particular techniques shown here in an upcoming
chapter on backwards compatibility.

• onDestroyView() sets a flag to indicate that we should no longer be using
the WebView — this flag is used by the getWebView() method that provides
the WebView to subclasses of WebViewFragment.

• onDestroy() calls destroy() on the WebView, to proactively clean up some
memory that it holds

Also, please forgive the erroneous JavaDoc comments for the onPause() and
onResume() methods, which are flipped. That is the way the code appears in the
Android Open Source Project, and those flaws were left intact in the backport of this
class.

Step #3: Creating AbstractContentFragment
WebViewFragment is nice, but it is mostly just a manager of various lifecycle
behaviors. We need to further customize the way we use that WebView widget, so we
will add those refinements in another class, AbstractContentFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

TUTORIAL #9 - STARTING OUR FRAGMENTS

337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
AbstractContentFragment in the “Name” field. Then, click the “Browse…” button
next to the “Superclass” field and find WebViewFragment to set as the superclass —
but make sure you choose the one in the com.commonsware.empublite package, not
the one in android.webkit. Then, click “Finish” on the new-class dialog to create the
AbstractContentFragment class.

Then, with the newly-created AbstractContentFragment open in the editor, replace
its entire contents with the following:

packagepackage com.commonsware.empublite;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

abstractabstract publicpublic classclass AbstractContentFragmentAbstractContentFragment extendsextends WebViewFragment {
abstractabstract String getPage();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setRetainInstance(truetrue);

}

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

getWebView().getSettings().setJavaScriptEnabled(truetrue);
getWebView().getSettings().setSupportZoom(truetrue);
getWebView().getSettings().setBuiltInZoomControls(truetrue);
getWebView().loadUrl(getPage());

returnreturn(result);
}

}

TUTORIAL #9 - STARTING OUR FRAGMENTS

338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Create a src/com/commonsware/empublite/AbstractContentFragment.java source
file, with the content shown in the code listing above.

Step #4: Examining AbstractContentFragment
AbstractContentFragment has but two methods:

• onCreate(), where we call setRetainInstance(true) — the utility of this
will be examined in greater detail in an upcoming chapter.

• onCreateView(), where we chain to the superclass (to have it create the
WebView), then configure it to accept JavaScript and support zoom
operations. We then have it load some content, retrieved in the form of a
URL from an abstract getPage() method. Finally, we return what the
superclass returned from onCreateView() — effectively, we are simply
splicing in our own configuration logic.

In Our Next Episode…
… we will set up horizontal swiping of book chapters in our tutorial project.

TUTORIAL #9 - STARTING OUR FRAGMENTS

339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Swiping with ViewPager

Android, over the years, has put increasing emphasis on UI design and having a fluid
and consistent user experience (UX). While some mobile operating systems take
“the stick” approach to UX (forcing you to abide by certain patterns or be forbidden
to distribute your app), Android takes “the carrot” approach, offering widgets and
containers that embody particular patterns that they espouse. The action bar, for
example, grew out of this and is now the backbone of many Android activities.

Another example is the ViewPager, which allows the user to swipe horizontally to
move between different portions of your content. However, ViewPager is not
distributed as part of the firmware, but rather via the Android Support package,
alongside the backport of the fragments framework. Hence, even though ViewPager
is a relatively new widget, you can use it on Android 1.6 and up.

This chapter will focus on where you should apply a ViewPager and how to set one
up.

Swiping Design Patterns
In 2012, Google released the Android Design Web site as an adjunct to the existing
developer documentation. This site outlines many aspects of UI and UX design for
Android, from recommended sizing to maintaining platform fidelity instead of
mimicking another mobile operating system.

They have a page dedicated to “swipe views”, where they outline the scenario for
using horizontal swiping: moving from peer to peer in sequence in a collection of
content:

• Email messages in a folder or label

341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/index.html
http://developer.android.com/design/patterns/swipe-views.html

• Chapters in an ebook
• Tabs in a collection of tabs

The primary way to implement this pattern in Android is the ViewPager.

Paging Fragments
The simplest way to use a ViewPager is to have it page fragments in and out of the
screen based on user swipes. Android has some built-in support for using fragments
inside of ViewPager that make it fairly easy to use.

To see this in action, this section will examine the ViewPager/Fragments sample
project.

The Prerequisites

The project has a dependency on the Android Support package, in order to be able
to use ViewPager. And, as do most of this book’s samples from this point forward, it
also depends upon ActionBarSherlock, so we can have an action bar while still
supporting Android 2.1 and beyond.

The Activity Layout

The layout used by the activity just contains the ViewPager. Note that since
ViewPager is not in the android.widget package, we need to fully-qualify the class
name in the element:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/
res/android"

android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

The Activity

As you see, the ViewPagerFragmentDemoActivity itself is blissfully small:

packagepackage com.commonsware.android.pager;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;

SWIPING WITH VIEWPAGER

342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments

importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass ViewPagerFragmentDemoActivityViewPagerFragmentDemoActivity extendsextends
SherlockFragmentActivity {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(newnew SampleAdapter(getSupportFragmentManager()));
}

}

All we do is load the layout, retrieve the ViewPager via findViewById(), and provide
a SampleAdapter to the ViewPager via setAdapter().

The PagerAdapter

AdapterView classes, like ListView, work with Adapter objects, like ArrayAdapter.
ViewPager, however, is not an AdapterView, despite adopting many of the patterns
from AdapterView. ViewPager, therefore, does not work with an Adapter, but instead
with a PagerAdapter, which has a slightly different API.

Android ships two PagerAdapter implementations in the Android Support package:
FragmentPagerAdapter and FragmentStatePagerAdapter. The former is good for
small numbers of fragments, where holding them all in memory at once will work.
FragmentStatePagerAdapter is for cases where holding all possible fragments to be
viewed in the ViewPager would be too much, where Android will discard fragments
as needed and hold onto the (presumably smaller) states of those fragments instead.

For the moment, we will focus on FragmentPagerAdapter.

Our SampleAdapter inherits from FragmentPagerAdapter and implements two
required callback methods:

• getCount(), to indicate how many pages will be in the ViewPager, and
• getItem(), which returns a Fragment for a particular position within the
ViewPager (akin to getView() in a classic Adapter)

packagepackage com.commonsware.android.pager;

importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;

SWIPING WITH VIEWPAGER

343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
publicpublic SampleAdapter(FragmentManager mgr) {

supersuper(mgr);
}

@Override
publicpublic int getCount() {

returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

}

Here, we say that there will be 10 pages total, each of which will be an instance of an
EditorFragment.

The Fragment

EditorFragment will host a full-screen EditText widget, for the user to enter in a
chunk of prose, as is defined in the res/layout/editor.xml resource:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:inputType="textMultiLine"
android:gravity="left|top"
/>/>

We want to pass the position number of the fragment within the ViewPager, simply
to customize the hint displayed in the EditText before the user types in anything.
With normal Java objects, you might pass this in via the constructor, but it is not a
good idea to implement a constructor on a Fragment. Instead, the recipe is to create
a static factory method (typically named newInstance()) that will create the
Fragment and provide the parameters to it by updating the fragment’s “arguments”
(a Bundle):

staticstatic EditorFragment newInstance(int position) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

SWIPING WITH VIEWPAGER

344

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(frag);
}

In onCreateView() we inflate our R.layout.editor resource, get the EditText from
it, get our position from our arguments, format a hint containing the position (using
a string resource), and setting the hint on the EditText:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(String.format(getString(R.string.hint), position + 1));

returnreturn(result);
}

The Result

When initially launched, the application shows the first fragment:

Figure 164: A ViewPager on Android 4.0.3

SWIPING WITH VIEWPAGER

345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, you can horizontally swipe to get to the next fragment:

Figure 165: A ViewPager in Use on Android 4.0.3

Swiping works in both directions, so long as there is another fragment in your
desired direction.

Paging Other Stuff
You do not have to use fragments inside a ViewPager. A regular PagerAdapter
actually hands View objects to the ViewPager. The supplied fragment-based
PagerAdapter implementations get the View from a fragment and use that, but you
are welcome to create your own PagerAdapter that eschews fragments.

Hence, if you want ViewPager to page things other than fragments, the solution is
to not use FragmentPagerAdapter or FragmentStatePagerAdapter, but instead
create your own implementation of the PagerAdapter interface, one that avoids the
use of fragments.

We will see an example of this in a later chapter, where we also examine how to have
more than one page of the ViewPager be visible at a time.

SWIPING WITH VIEWPAGER

346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Indicators
By itself, there is no visual indicator of where the user is within the set of pages
contained in the ViewPager. In many instances, this will be perfectly fine, as the
pages themselves will contain cues as to position. However, even in those cases, it
may not be completely obvious to the user how many pages there are, which
directions for swiping are active, etc.

Hence, you may wish to attach some other widget to the ViewPager that can help
clue the user into where they are within “page space”.

PagerTitleStrip and PagerTabStrip

The primary built-in indicator options available to use are PagerTitleStrip and
PagerTabStrip. As the name suggests, PagerTitleStrip is a strip that shows titles of
your pages. PagerTabStrip is much the same, but the titles are formatted somewhat
like tabs, and they are clickable (switching you to the clicked-upon page), whereas
PagerTitleStrip is non-interactive.

To use either of these, you first must add it to your layout, inside your ViewPager, as
shown in the res/layout/main.xml resource of the ViewPager/Indicator sample
project, a clone of the ViewPager/Fragments project that adds a PagerTabStrip to
our UI:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/
res/android"

android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<android.support.v4.view.PagerTabStrip<android.support.v4.view.PagerTabStrip
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>/>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

Here, we set the android:layout_gravity of the PagerTabStrip to top, so it appears
above the pages. You could similarly set it to bottom to have it appear below the
pages.

SWIPING WITH VIEWPAGER

347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator

Our SampleAdapter needs another method: getPageTitle(), which will return the
title to display in the PagerTabStrip for a given position:

packagepackage com.commonsware.android.pager2;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
Context ctxt=nullnull;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(EditorFragment.getTitle(ctxt, position));
}

}

Here, we call a static getTitle() method on EditorFragment. That is a refactored
bit of code from our former onCreateView() method, where we create the string for
the hint — we will use the hint text as our page title:

packagepackage com.commonsware.android.pager2;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass EditorFragmentEditorFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";

staticstatic EditorFragment newInstance(int position) {

SWIPING WITH VIEWPAGER

348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

staticstatic String getTitle(Context ctxt, int position) {
returnreturn(String.format(ctxt.getString(R.string.hint), position + 1));

}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(getTitle(getActivity(), position));

returnreturn(result);
}

}

Figure 166: A ViewPager and PagerTabStrip on Android 4.0.3

SWIPING WITH VIEWPAGER

349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that PagerTabStrip was added after the original version of the Android
Support package. If you are encountering problems finding PagerTabStrip, you may
be using an older copy of the Android Support package (e.g., one that may have
shipped with ActionBarSherlock).

Third-Party Indicators

If you want something else for your indicators, besides a strip of page titles, you
might wish to check out the ViewPagerIndicator library, brought to you by the
author of ActionBarSherlock. This library contains a series of widgets that serve in
the same role as PagerTitleStrip, with different looks. We will look at one such
indicator, TabPageIndicator, later in this book.

Hosting ViewPager in a Fragment
Classically, the primary restriction on ViewPager was that you could not both have
ViewPager be in a fragment and have ViewPager host fragments as its pages. You
could do one or the other, but not both simultaneously.

As noted in a previous chapter, Android 4.2 natively, and the latest Android Support
package backport, does support nested fragments. Now you can have ViewPager be
in a fragment and host fragments as its pages. However, it requires a minor
modification to the way we set up our PagerAdapter, as is illustrated in the
ViewPager/Nested sample project. This is the same project as ViewPager/Indicator,
with the twist that the pages are fragments and the ViewPager is inside a fragment.

Our activity now implements the standard add-the-fragment-if-it-does-not-exist
pattern that we have seen previously:

packagepackage com.commonsware.android.pagernested;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;

publicpublic classclass ViewPagerIndicatorActivityViewPagerIndicatorActivity extendsextends FragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==
nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew PagerFragment()).commit();

SWIPING WITH VIEWPAGER

350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://viewpagerindicator.com/
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Nested
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Nested

}
}

}

This loads a PagerFragment, which contains most of the logic from our original
activity:

packagepackage com.commonsware.android.pagernested;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass PagerFragmentPagerFragment extendsextends Fragment {
@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.pager, container, falsefalse);
ViewPager pager=(ViewPager)result.findViewById(R.id.pager);

pager.setAdapter(buildAdapter());

returnreturn(result);
}

privateprivate PagerAdapter buildAdapter() {
returnreturn(newnew SampleAdapter(getActivity(), getChildFragmentManager()));

}
}

The biggest difference is that our call to the constructor of SampleAdapter no longer
uses getSupportFragmentManager(). Instead, it uses getChildFragmentManager().
This allows SampleAdapter to use fragments hosted by PagerFragment, rather than
ones hosted by the activity as a whole.

No other code changes are required, and from the user’s standpoint, there is no
visible difference.

Pages and the Action Bar
Fragments that are pages inside a ViewPager can participate in the action bar,
supplying items to appear as toolbar buttons, in the overflow menu, etc. This is not
significantly different than how any fragment participates in the action bar:

SWIPING WITH VIEWPAGER

351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Call setHasOptionsMenu() early in the fragment lifecycle (e.g.,
onCreateView()) to state that the fragment wishes to contribute to the
action bar contents

• Override onCreateOptionsMenu() and onOptionsItemSelected(), much as
you would with an activity

ViewPager and FragmentManager will manage the contents of the action bar, based
upon the currently-visible page. That page’s contributions will appear in the action
bar, then will be removed when the user switches to some other page.

To see this in action, take a look at the ViewPager/ActionBar sample project. This is
the same as the ViewPager/Indicator project from before, except:

• In onCreateView(), for even-numbered page positions (0, 2, etc.), we call
setHasOptionsMenu(true):

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);

position=getArguments().getInt(KEY_POSITION, -1);
editor.setHint(getTitle(getActivity(), position));

ifif ((position % 2)==0) {
setHasOptionsMenu(truetrue);

}

returnreturn(result);
}

• In onCreateOptionsMenu(), we inflate a res/menu/actions.xml menu
resource:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

Normally, we would also implement onOptionsItemSelected(), to find out when
the action bar item was tapped, though this is skipped in this sample.

SWIPING WITH VIEWPAGER

352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/ActionBar

The result is that when we have an even-numbered page position — equating to an
odd-numbered title and hint — we have items in the action bar:

Figure 167: A ViewPager, PagerTabStrip, and Action Bar Item on Android 4.1

…but as soon as we swipe to an odd-numbered page position — equating to an even-
numbered title and hint — our action bar item is removed, as that fragment did not
call setHasOptionsMenu(true):

SWIPING WITH VIEWPAGER

353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 168: A ViewPager and PagerTabStrip, Sans Action Bar Item on Android 4.1

ViewPagers and Scrollable Contents
There are other things in Android that can be scrolled horizontally, besides a
ViewPager:

• HorizontalScrollView
• WebView, for content that is wider than the width of the screen
• the deprecated Gallery widget
• maps from many mapping engines, such as Google Maps
• various third-party widgets

The challenge then comes in terms of dealing with horizontal swipe events. The
ideal situation is for you to be able to swipe horizontally on the material inside the
page, until you hit some edge (e.g., end of the HorizontalScrollView), then have
swipe events move you to the adjacent page.

You can assist ViewPager in handling this scenario by subclassing it and overriding
the canScroll() method. This will be called on a horizontal swipe, and it is up to
you to indicate if the contents can be scrolled (returning true) or not (returning
false). If the built-in logic is insufficient, tailoring canScroll() to your particular
needs can help.

SWIPING WITH VIEWPAGER

354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see an example of this later in the book, when we put some maps into a
ViewPager.

SWIPING WITH VIEWPAGER

355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #10 - Rigging Up a ViewPager

A ViewPager is a fairly slick way to present a digital book. You can have individual
chapters be accessed by horizontal swiping, with the prose within a chapter accessed
by scrolling vertically. While not offering “page-at-a-time” models used by some
book reader software, it is much simpler to set up.

So, that’s the approach we will use with EmPubLite. Which means, among other
things, that we need to add a ViewPager to the app.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Add a ViewPager to the Layout
Right now, the layout for EmPubLiteActivity just has a ProgressBar. We need to
augment that to have our ViewPager as well, set up such that we can show either the
ProgressBar (while we load the book) or the ViewPager as needed.

Unfortunately, this is the sort of change that the Eclipse drag-and-drop GUI building
is not particularly well-suited for. Hence, even Eclipse users are going to have to dive
into the layout XML this time.

357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T10-ViewPager
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Open up res/layout/main.xml (and, if you are using Eclipse, switch to the
“main.xml” sub-tab of the editor, to see the raw XML). As a child of the
<RelativeLayout>, after the <ProgressBar>, add a
<android.support.v4.view.ViewPager> element as follows:

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

This adds the ViewPager, also having it fill the parent, but with the visibility initially
set to gone, meaning that the user will not see it.

The entire layout should now resemble:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

Step #2: Obtaining Our ViewPager
We will be referencing the ViewPager from a few places in the activity, so we may as
well get a reference to it and hold onto it in a data member, for easy access.

Add a data member to EmPubLiteActivity:

privateprivate ViewPager pager=nullnull;

TUTORIAL #10 - RIGGING UP A VIEWPAGER

358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will also need to add an import for android.support.v4.view.ViewPager to get
this to compile.

Then, in onCreate(), after the call to setContentView(R.layout.main), use
findViewById() to retrieve the ViewPager and store it in the pager data member:

pager=(ViewPager)findViewById(R.id.pager);

If you are using Eclipse, you will see a warning that pager is not used – do not worry,
as we will be using it soon enough.

Step #3: Creating a ContentsAdapter
A ViewPager needs a PagerAdapter to populate its content, much like a ListView
needs a ListAdapter. We cannot completely construct a PagerAdapter yet, as we
still need to learn how to load up our book content from files. But, we can get part-
way towards having a useful PagerAdapter now.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in ContentsAdapter in
the “Name” field. Then, click the “Browse…” button next to the “Superclass” field and
find FragmentStatePagerAdapter to set as the superclass. Then, click “Finish” on the
new-class dialog to create the ContentsAdapter class.

This will immediately show an error in the Eclipse editor, as
FragmentStatePagerAdapter requires a public constructor, and we do not have one
yet. So, add the following constructor implementation to the class:

publicpublic ContentsAdapter(SherlockFragmentActivity ctxt) {
supersuper(ctxt.getSupportFragmentManager());

}

This simply chains to the superclass, supplying the requisite FragmentManager
instance, culled from our parent activity.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will need to import com.actionbarsherlock.app.SherlockFragmentActivity
for this to compile.

Outside of Eclipse

Create a src/com/commonsware/empublite/ContentsAdapter.java source file, with
the following content:

packagepackage com.commonsware.empublite;

importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentStatePagerAdapterandroid.support.v4.app.FragmentStatePagerAdapter;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass ContentsAdapterContentsAdapter extendsextends FragmentStatePagerAdapter {
publicpublic ContentsAdapter(SherlockFragmentActivity ctxt) {

supersuper(ctxt.getSupportFragmentManager());
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn nullnull;
}

@Override
publicpublic int getCount() {

returnreturn 0;
}

}

Step #4: Setting Up the ViewPager
Let’s add a few more lines to the bottom of onCreate() of EmPubLiteActivity, to set
up ContentsAdapter and attach it to the ViewPager:

adapter=newnew ContentsAdapter(thisthis);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

This will require a new data member:

privateprivate ContentsAdapter adapter=nullnull;

It will also require an import for android.view.View.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What we are doing is creating our ContentsAdapter instance, associating it with the
ViewPager, and toggling the visibility of the ProgressBar (making it GONE) and the
ViewPager (making it VISIBLE).

The net effect, if you run this modified version of the app, is that we no longer see
the ProgressBar. Instead, we have a big blank area, taken up by our empty
ViewPager:

Figure 169: EmPubLite, With Empty ViewPager

The ViewPager is empty simply because our ContentsAdapter returned 0 from
getCount(), indicating that there are no pages to be displayed.

In Our Next Episode…
… we will finish our “help” and “about” screens in our tutorial project.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Resource Sets and Configurations

Devices sometimes change while users are using them, in ways that our application
will care about:

• The user might rotate the screen from portrait to landscape, or vice versa
• The user might put the device in a car or desk dock, or remove it from such a

dock
• The user might put the device in a “netbook dock” that adds a full QWERTY

keyboard, or remove it from such a dock
• The user might switch to a different language via the Settings application,

returning to our running application afterwards
• And so on

In all of these cases, it is likely that we will want to change what resources we use.
For example, our layout for a portrait screen may be too tall to use in landscape
mode, so we would want to substitute in some other layout.

This chapter will explore how to provide alternative resources for these different
scenarios — called “configuration changes” — and will explain what happens to our
activities when the user changes the configuration while we are in the foreground.

What’s a Configuration? And How Do They
Change?
Different pieces of Android hardware can have different capabilities, such as:

• Different screen sizes
• Different screen densities (dots per inch)

363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Different number and capabilities of cameras
• Different mix of radios (GSM? CDMA? GPS? Bluetooth? WiFi? NFC?

something else?)
• And so on

Some of these, in the eyes of the core Android team, might drive the selection of
resources, like layouts or drawables. Different screen sizes might drive the choice of
layout. Different screen densities might drive the choice of drawable (using a higher-
resolution image on a higher-density device). These are considered part of the
device’s “configuration”.

Other differences — ones that do not drive the selection of resources — are not part
of the device’s configuration but merely are “features” that some devices have and
other devices do not. For example, cameras and Bluetooth and WiFi are features.

Some parts of a configuration will only vary based on different devices. A screen will
not change density on the fly, for example. But some parts of a configuration can be
changed during operation of the device, such as orientation (portrait vs. landscape)
or language. When a configuration switches to something else, that is a
“configuration change”, and Android provides special support for such events to help
developers adjust their applications to match the new configuration.

Configurations and Resource Sets
One set of resources may not fit all situations where your application may be used.
One obvious area comes with string resources and dealing with internationalization
(I18N) and localization (L10N). Putting strings all in one language works fine —
probably at least for the developer — but only covers one language.

That is not the only scenario where resources might need to differ, though. Here are
others:

1. Screen orientation: is the screen in a portrait orientation? Landscape? Is the
screen square and, therefore, does not really have an orientation?

2. Screen size: is this something sized like a phone? A tablet? A television?
3. Screen density: how many dots per inch does the screen have? Will we need a

higher-resolution edition of our icon so it does not appear too small?
4. Touchscreen: does the device have a touchscreen? If so, is the touchscreen

set up to be used with a stylus or a finger?

RESOURCE SETS AND CONFIGURATIONS

364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. Keyboard: what keyboard does the user have (QWERTY, numeric, neither),
either now or as an option?

6. Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource directories,
with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you would create
two folders, res/values-en/ and res/values-es/, where the value after the hyphen
is the ISO 639–1 two-letter code for the language you want. Your English-language
strings would go in res/values-en/strings.xml and the Spanish ones in res/
values-es/strings.xml. Android will choose the proper file based on the user’s
device settings.

An even better approach is for you to consider some language to be your default,
and put those strings in res/values/strings.xml. Then, create other resource
directories for your translations (e.g., res/values-es/strings.xml for Spanish).
Android will try to match a specific language set of resources; failing that, it will fall
back to the default of res/values/strings.xml. This way, if your app winds up on a
device with a language that you do not expect, you at least serve up strings in your
chosen default language. Otherwise, if there is no such default, you will wind up
with a ResourceNotFoundException, and your application will crash.

This, therefore, is the bedrock resource set strategy: have a complete set of resources
in the default directory (e.g., res/layout/), and override those resources in other
resource sets tied to specific configurations as needed (e.g., res/layout-land/).

Screen Size and Orientation
Perhaps the most important resource set qualifiers that we have not yet seen are the
ones related to screen size and orientation. Here, “orientation” refers to how the
device is being held: portrait or landscape.

Orientation is fairly easy, as you can just use -port or -land as resource set qualifiers
to restrict resources in a directory to a specific orientation. The convention is to put
landscape resources in a -land directory (e.g., res/layout-land/) and to put

RESOURCE SETS AND CONFIGURATIONS

365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1

portrait resource in the default directory (e.g., res/layout/). However, this is merely
a convention, and you are welcome to use -port if you prefer.

Screen size is a bit more complicated, simply because the available approaches have
changed over the years.

The Original: Android-Defined Buckets

Way back in the beginning, with Android 1.0, all screen sizes were created equal…
mostly because there was only one screen size, and that mostly because there was
only one device.

Android 1.5, however, introduced three screen sizes and associated resource set
qualifiers, with a fourth (-xlarge) added later:

• -small for screens at or under 3” in diagonal size
• -normal for screens between 3” and 5” in diagonal size
• -large for screens between 5” and 10” in diagonal size
• -xlarge for screens at or over 10” in diagonal size

So, a res/layout-small/ directory would hold resources related to small-screen
devices. The convention was to put -normal resources in default directories (e.g.,
res/layout/) and use the resource set qualifiers for the other buckets as needed. For
maximum backwards compatibility, though, Android will “cheat” in one case: if you
have a -large resource set, but no -xlarge resource set, an -xlarge device will use
-large instead of the default set.

The Modern: Developer-Defined Buckets

The problem with the classic size buckets is that they were fairly inflexible. What if
you think that so-called “phablets”, like the Samsung Galaxy Note series, should have
layouts more like phones, while larger tablets, such as the 8.9” Kindle Fire HD,
should have layouts more like 10” tablets? That was not possible given the fixed
buckets.

Android 3.2 gave us more control. We can have our own buckets for screen size,
using the somewhat-confusing -swNNNdp resource set qualifier. Here, the NNN is
replaced by you with a value, measured in dp, for the shortest width of the screen.
“Shortest width” basically means the width of the screen when the device is held in
portrait mode. Hence, rather than measuring based on diagonal screen size, as with

RESOURCE SETS AND CONFIGURATIONS

366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the classic buckets, your custom buckets are based on the linear screen size of the
shortest screen side.

For example, suppose that you wish to consider a dividing line between resources to
be at the 7” point — 7” and smaller devices would get one set of layouts, while larger
devices would get a different set of layouts. 7” tablets usually have a shortest width of
around 3.5” to 3.75”. Since 1 dp is 1/160th of an inch, those shortest widths equate to
560–600 dp. Hence, you might set up a -sw600dp resource set for your larger layouts,
and put the smaller layouts in a default resource set.

Mashups: Width and Height Buckets

Using -swNNNdp does not address orientation, as the shortest width is the same
regardless of whether the device is held in portrait or landscape. Hence, you would
need to add -swNNNdp-land as a resource set for landscape resources for your chosen
dividing line.

An alternative is to use -wNNNdp or -hNNNdp. These resource set qualifiers work much
like -swNNNdp, particularly in terms of what NNN means. However, whereas -swNNNdp
refers to the shortest width, -wNNNdp refers the current width, and -hNNNdp refers to
the current height. Hence, these change with orientation changes.

About That API Level

-swNNNdp, -wNNNdp, and -hNNNdp were added in API Level 13. Hence, older devices
will ignore any resource sets with those qualifiers.

In principle, this might seem like a big problem, for those developers still supporting
older devices.

In practice, it is less of an issue than you might expect, simply because the vast
majority of those older devices were phones, not tablets. The only Android 2.x
tablets that sold in any significant quantity were three 7” models:

• the original Kindle Fire
• the original Barnes & Noble NOOK series
• the original Samsung Galaxy Tab

Of those, only the Galaxy Tab had the then-Android Market (now the Play Store).
Hence, if you are only distributing via the Play Store, you might be in position to
simply ignore pre-API Level 13 tablets. Use -swNNNdp to create your dividing line for

RESOURCE SETS AND CONFIGURATIONS

367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

larger devices, and the Galaxy Tab will simply use the layouts for your smaller
devices.

If this concerns you, or you are also supporting the Kindle Fire and early NOOKs,
you can use layout aliases to minimize code duplication. For example, suppose that
you have a res/layout/main.xml that you wanted to have different versions for
phones and tablets, and you want to use -swNNNdp for your dividing line as to where
the tablet layouts get used, but you also want to have the older tablets, like the
Galaxy Tab, use the following recipe:

• Put your tablet-sized layouts in res/layout/, but with different filenames
(e.g., res/layout/main_to_be_used_for_tablets.xml)

• In res/values-swNNNdp/layouts.xml, for your chosen value of NNN, put
aliases (via <item> elements) for the original names (via the name attribute)
pointing to the resources you want to use for -swNNNdp devices:

<resources><resources>
<item<item name="main" type="layout">>@layout/main_to_be_used_for_tablets</item></item>

</resources></resources>

• In res/values-large/layouts.xml, put those same aliases

Now, both older and newer devices, when referencing the same resource name, will
get routed to the right layouts for their screen size.

Coping with Complexity
Where things start to get complicated is when you need to use multiple disparate
criteria for your resources.

For example, suppose that you have drawable resources that are locale-dependent,
such as a stop sign. You might want to have resource sets of drawables tied to
language, so you can substitute in different images for different locales. However,
you might also want to have those images vary by density, using higher-resolution
images on higher-density devices, so the images all come out around the same
physical size.

To do that, you would wind up with directories with multiple resource set qualifiers,
such as:

• res/drawable-ldpi/

RESOURCE SETS AND CONFIGURATIONS

368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• res/drawable-mdpi/
• res/drawable-hdpi/
• res/drawable-xhdpi/
• res/drawable-en-rUK-ldpi/
• res/drawable-en-rUK-mdpi/
• res/drawable-en-rUK-hdpi/
• res/drawable-en-rUK-xhdpi/
• And so on

(with the default language being, say, US English, using a US stop sign)

Once you get into these sorts of situations, though, a few rules come into play, such
as:

1. The configuration options (e.g., -en) have a particular order of precedence,
and they must appear in the directory name in that order. The Android
documentation outlines the specific order in which these options can
appear. For the purposes of this example, screen size is more important than
screen orientation, which is more important than screen density, which is
more important than whether or not the device has a keyboard.

2. There can only be one value of each configuration option category per
directory.

3. Options are case sensitive

For example, you might want to have different layouts based upon screen size and
orientation. Since screen size is more important than orientation in the resource
system, the screen size would appear in the directory name ahead of the orientation,
such as:

• res/layout-sw600dp-land/
• res/layout-sw600dp/
• res/layout-land/
• res/layout/

Choosing The Right Resource
Given that you can have N different definitions of a resource, how does Android
choose the one to use?

RESOURCE SETS AND CONFIGURATIONS

369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

First, Android tosses out ones that are specifically invalid. So, for example, if the
language of the device is -ru, Android will ignore resource sets that specify other
languages (e.g., -zh). The exceptions to this are density qualifiers and screen size
qualifiers — we will get to those exceptions later.

Then, Android chooses the resource set that has the desired resource and has the
most important distinct qualifier. Here, by “most important”, we mean the one that
appears left-most in the directory name, based upon the directory naming rules
discussed above. And, by “distinct”, we mean where no other resource set has that
qualifier.

If there is no specific resource set that matches, Android chooses the default set —
the one with no suffixes on the directory name (e.g., res/layout/).

With those rules in mind, let’s look at some scenarios, to cover the base case plus
the aforementioned exceptions.

Scenario #1: Something Simple

Let’s suppose that we have a main.xml file in:

• res/layout-land/
• res/layout/

When we call setContentView(R.layout.main), Android will choose the main.xml
in res/layout-land/ if the device is in landscape mode. That particular resource set
is valid in that case, and it has the most important distinct qualifier (-land). If the
device is in portrait mode, though, the res/layout-land/ resource set does not
qualify, and so it is tossed out. That leaves us with res/layout/, so Android uses
that main.xml version.

Scenario #2: Disparate Resource Set Categories

It is possible, though bizarre, for you to have a project with main.xml in:

• res/layout-en/
• res/layout-land/
• res/layout/

In this case, if the device’s locale is set to be English, Android will choose res/
layout-en/, regardless of the orientation of the device. That is because -en is a more

RESOURCE SETS AND CONFIGURATIONS

370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

important resource set qualifier — “Language and region” appears higher in the
“Table 2. Configuration qualifier names” from the Android documentation than does
“Screen orientation” (for -land). If the device is not set for English, though, Android
will toss out that resource set, at which point the decision-making process is the
same as in Scenario #1 above.

Scenario #3: Multiple Qualifiers

Now let’s envision a project with main.xml in:

• res/layout-en/
• res/layout-land-v11/
• res/layout/

You might think that res/layout-land-v11/ would be the choice, as it is more
specific, matching on two resource set qualifiers versus the one or none from the
other resource sets.

(in fact, the author of this book thought this was the choice for many years)

In this case, though, language is more important than either screen orientation or
Android API level, so the decision-making process is the similar to Scenario #2
above: Android chooses res/layout-en/ for English-language devices, res/
layout-land-v11/ for landscape API Level 11+ devices, or res/layout/ for
everything else.

Scenario #4: Multiple Qualifiers, Revisited

Let’s change the resource mix, so now we have a project with main.xml in:

• res/layout-land-night/
• res/layout-land-v11/
• res/layout/

Here, while -land is the most important resource set qualifier, it is not distinct — we
have more than one resource set with -land. Hence, we need to check which is the
next-most-important resource set qualifier. In this case, that is -night, as night
mode is a more important category than is Android API level, and so Android will
choose res/layout-land-night/ if the device is in night mode. Otherwise, it will
choose res/layout-land-v11/ if the device is running API Level 11 or higher. If the

RESOURCE SETS AND CONFIGURATIONS

371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

device is not in night mode and is not running API Level 11 or higher, Android will
go with res/layout/.

Scenario #5: Screen Density

Now, let’s look at the first exception to the rules: screen density.

Android will always accept a resource set that contains a screen density, even if it
does not match the density of the device. If there is an exact density match, of course,
Android uses it. Otherwise, it will use what it feels is the next-best match, based
upon how far off it is from the device’s actual density and whether the other density
is higher or lower than the device’s actual density.

The reason for this is that for drawable resources, Android will downsample or
upsample the image automatically, so the drawable will appear to be the right size,
even though you did not provide an image in that specific density.

The catch is two-fold:

1. Android applies this logic to all resources, not just drawables, so even if there
is no exact density match on, say, a layout, Android will still choose a
resource from another density bucket for the layout

2. As a side-effect of the previous bullet, if you include a density resource set
qualifier, Android will ignore any lower-priority resource set qualifiers

So, now let’s pretend that our project has main.xml in:

• res/layout-mdpi/
• res/layout-nonav/
• res/layout/

Android will choose res/layout-mdpi/, even for -hdpi devices that do not have a
“non-touch navigation method”. While -mdpi does not match -hdpi, Android will
still choose -mdpi. If we were dealing with drawables resources, Android would
upsample the -mdpi image.

Scenario #6: Screen Sizes

If you have resource sets tied to screen size, Android will choose the one that is
closest to the actual screen size yet smaller than the actual screen size. Resource sets
for screen sizes larger than the actual screen size are ignored.

RESOURCE SETS AND CONFIGURATIONS

372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This works for -swNNNdp, -wNNNdp, and -hNNNdp for all devices. On -large or -xlarge
devices, Android applies the same logic for the classic screen size qualifiers (-small,
-normal, -large, -xlarge). However, Android does not apply this logic for -small or
-normal devices — a -normal device will not load a -small resource.

Now let’s pretend that our project has main.xml in:

• res/layout-normal/
• res/layout-land/
• res/layout/

Android will choose res/layout-normal/ if the device is not -small. Otherwise,
Android will choose res/layout-land/ if the device is landscape. If all else fails,
Android will choose res/layout/.

Similarly, if we have:

• res/layout-w320dp/
• res/layout-land/
• res/layout/

Android will choose res/layout-w320dp/ for devices whose current screen width is
320dp or higher. Otherwise, Android will choose res/layout-land/ if the device is
landscape. If all else fails, Android will choose res/layout/.

Default Change Behavior
When you call methods in the Android SDK that load a resource (e.g., the
aforementioned setContentView(R.layout.main)), Android will walk through those
resource sets, find the right resource for the given request, and use it.

But what happens if the configuration changes after we asked for the resource? For
example, what if the user was holding their device in portrait mode, then rotates the
screen to landscape? We would want a -land version of our layouts, if such versions
exist. And, since we already requested the resources, Android has no good way of
handing us revised resources on the fly… except by forcing us to re-request those
resources.

So, this is what Android does, by default, to our foreground activity, when the
configuration changes on the fly.

RESOURCE SETS AND CONFIGURATIONS

373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Destroy and Recreate the Activity

The biggest thing that Android does is destroy and recreate our activity. In other
words:

• Android calls onPause(), onStop(), and onDestroy() on our original
instance of the activity

• Android creates a brand new instance of the same activity class, using the
same Intent that was used to create the original instance

• Android calls onCreate(), onStart(), and onResume() of the new activity
instance

• The new activity appears on the screen

This may seem… invasive. You might not expect that Android would wipe out a
perfectly good activity, just because the user flicked her wrist and rotated the screen
of her phone. However, this is the only way Android has that guarantees that we will
re-request all our resources.

Rebuild the Fragments

If your activity is using fragments, the new instance of the activity will contain the
same fragments that the old instance of the activity does. This includes both static
and dynamic fragments.

By default, Android destroys and recreates the fragments, just as it destroys and
recreates the activities. However, as we will see, we do have an option to tell Android
to retain certain dynamic fragment instances — for those, it will have the new
instance use the same fragment instances as were used by the old activity, instead of
creating new instances from scratch.

Recreate the Views

Regardless of whether or not Android recreates all of the fragments, it will call
onCreateView() of all of the fragments (plus call onDestroyView() on the original
set of fragments). In other words, Android recreates all of the widgets and
containers, to pour them into the new activity instance.

RESOURCE SETS AND CONFIGURATIONS

374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Retain Some Widget State

Android will hold onto the “instance state” of some of the widgets we have in our
activity and fragments. Mostly, it holds onto obviously user mutable state, such as:

• What has been typed into an EditText
• Whether a CompoundButton, like a CheckBox or RadioButton, is checked or

not
• Etc.

Android will collect this information from the widgets of the old activity instance,
carry that data forward to the new activity instance, and update the new set of
widgets to have that same state.

Your Options for Configuration Changes
As noted, a configuration change is fairly invasive on your activity, replacing it
outright with all new content (albeit with perhaps some information from the old
activity’s widgets carried forward into the new activity’s widgets).

Hence, you have several possible approaches for handling configuration changes in
any given activity.

Do Nothing

The easiest thing to do, of course, is to do nothing at all. If all your state is bound up
in stuff Android handles automatically, you do not need to do anything more than
the defaults.

For example, the ViewPager/Fragments demo from the preceding chapter works
correctly “out of the box”. All of our “state” is tied up in EditText widgets, which
Android handles automatically. So, we can type in stuff in a bunch of those widgets,
rotate the screen (e.g., via <Ctrl>-<F11> in the emulator on a Windows or Linux
PC), and our entered text is retained.

Alas, there are plenty of cases where the built-in behavior is either incomplete or
simply incorrect, and we will need to do more work to make sure that our
configuration changes are handled properly.

RESOURCE SETS AND CONFIGURATIONS

375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Retain Your Fragments

The best approach nowadays for handling these sorts of configuration changes is to
have Android retain a dynamic fragment.

Here, “retain” means that Android will keep the same fragment instance across the
configuration change, detaching it from the original hosting activity and attaching it
to a new hosting activity. Since it is the same fragment instance, anything contained
inside that instance is itself retained and, therefore, is not lost when the activity is
destroyed and recreated.

To see this in action, take a look at the ConfigChange/Fragments sample project.

The business logic for this demo (and for all the other demos in this chapter) is that
we want to allow the user to pick a contact out of the roster of contacts found on
their device or emulator. We will do that by having the user press a “Pick” button, at
which time we will display an activity that will let the user pick the contact and
return the result to us. Then, we will enable a “View” button, and let the user view
the details of the selected contact. The key is that our selected contact needs to be
retained across configuration changes — otherwise, the user will rotate the screen,
and the activity will appear to forget about the chosen contact.

The activity itself just loads the dynamic fragment, following the recipe seen
previously in this book:

packagepackage com.commonsware.android.rotation.frag;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass RotationFragmentDemoRotationFragmentDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew RotationFragment()).commit();
}

}
}

RESOURCE SETS AND CONFIGURATIONS

376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments

The reason for checking for the fragment’s existence should now be clearer. Since
Android will automatically recreate (or retain) our fragments across configuration
changes, we do not want to create a second copy of the same fragment when we
already have an existing copy.

The fragment is going to use an R.layout.main layout resource, with two
implementations. One, in res/layout-land/, will be used in landscape:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/pick"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"

/>/>
<Button<Button android:id="@+id/view"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/view"
android:enabled="false"

/>/>
</LinearLayout></LinearLayout>

The portrait edition, in res/layout/, is identical save for the orientation of the
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/pick"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"

/>/>
<Button<Button android:id="@+id/view"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/view"

RESOURCE SETS AND CONFIGURATIONS

377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:enabled="false"
/>/>

</LinearLayout></LinearLayout>

Here is the complete implementation of RotationFragment:

packagepackage com.commonsware.android.rotation.frag;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.ContactsContractandroid.provider.ContactsContract;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass RotationFragmentRotationFragment extendsextends SherlockFragment implementsimplements
View.OnClickListener {

staticstatic finalfinal int PICK_REQUEST=1337;
Uri contact=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
setRetainInstance(truetrue);

View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.pick).setOnClickListener(thisthis);

View v=result.findViewById(R.id.view);

v.setOnClickListener(thisthis);
v.setEnabled(contact != nullnull);

returnreturn(result);
}

@Override
publicpublic void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == PICK_REQUEST) {

ifif (resultCode == Activity.RESULT_OK) {
contact=data.getData();
getView().findViewById(R.id.view).setEnabled(truetrue);

}
}

}

@Override
publicpublic void onClick(View v) {

RESOURCE SETS AND CONFIGURATIONS

378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (v.getId() == R.id.pick) {
pickContact(v);

}
elseelse {

viewContact(v);
}

}

publicpublic void pickContact(View v) {
Intent i=

newnew Intent(Intent.ACTION_PICK,
ContactsContract.Contacts.CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);
}

publicpublic void viewContact(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW, contact));

}
}

In onCreateView(), we hook up the “Pick” button to a pickContact() method.
There, we call startActivityForResult() with an ACTION_PICK Intent, indicating
that we want to pick something from the ContactsContract.Contacts.CONTENT_URI
collection of contacts. We will discuss ContactsContract in greater detail later in
this book. For the moment, take it on faith that Android has such an ACTION_PICK
activity, one that will display to the user the list of available contacts:

RESOURCE SETS AND CONFIGURATIONS

379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 170: ACTION_PICK of a Contact

If the user picks a contact, control returns to our activity, with a call to
onActivityResult(). onActivityResult() is passed:

• the unique ID we supplied to startActivityForResult(), to help identify
this result from any others we might be receiving

• RESULT_OK if the user did pick a contact, or RESULT_CANCELED if the user
abandoned the pick activity

• an Intent containing the result from the pick activity, which, in this case,
will contain a Uri representing the selected contact, retrieved via getData()

We store that Uri in a data member, plus we enable the “View” button, which, when
clicked, will bring up an ACTION_VIEW activity on the selected contact via its Uri:

RESOURCE SETS AND CONFIGURATIONS

380

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 171: ACTION_VIEW of a Contact

Up in onCreateView(), we called setRetainInstance(true). This tells Android to
keep this fragment instance across configuration changes. Hence, we can pick a
contact in portrait mode, then rotate the screen (e.g., <Ctrl>-<F11> in the emulator
on Windows or Linux), and view the contact in landscape mode. Even though the
activity and the buttons were replaced as a result of the rotation, the fragment was
not, and the fragment held onto the Uri of the selected contact.

Note that setRetainInstance() only works with dynamic fragments, not static
fragments. Static fragments are always recreated when the activity is itself destroyed
and recreated.

Model Fragment

A variation on this theme is the “model fragment”. While fragments normally are
focused on supplying portions of the UI to a user, that is not really a requirement. A
model fragment is one that simply uses setRetainInstance(true) to ensure that it
sticks around as configurations change. This fragment then holds onto any model
data that its host activity needs, so as that activity gets destroyed and recreated, the
model data stick around in the model fragment.

RESOURCE SETS AND CONFIGURATIONS

381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is particularly useful for data that might not otherwise have a fragment home.
For example, imagine an activity whose UI consists entirely of a ViewPager, (like the
tutorial app). Even though that ViewPager might hold fragments, there will be many
pages in most pagers. It may be simpler to add a separate, UI-less model fragment
and have it hold the activity’s data model for the ViewPager. This allows the activity
to still be destroyed and recreated, and even allows the ViewPager to be destroyed
and recreated, while still retaining the already-loaded data.

Add to the Bundle

However, you may not be using fragments, in which case setRetainInstance(true)
will not be available to you. In that case, you will have to turn to some alternative
approaches.

The best of those is to use onSaveInstanceState() and onRestoreInstanceState().

You can override onSaveInstanceState() in your activity. It is passed a Bundle, into
which you can store data that should be maintained across the configuration
change. The catch is that while Bundle looks a bit like it is a HashMap, it actually
cannot hold arbitrary data types, which limits the sort of information you can retain
via onSaveInstanceState(). onSaveInstanceState() is called around the time of
onPause() and onStop().

The widget state maintained automatically by Android is via the built-in
implementation of onSaveInstanceState(). If you override it yourself, typically you
will want to chain to the superclass to get this inherited behavior, in addition to
putting things into the Bundle yourself.

That Bundle is passed back to you in two places:

• onCreate()
• onRestoreInstanceState()

Since onCreate() is called in many cases other than due to a configuration change,
frequently the passed-in Bundle is null. onRestoreInstanceState(), on the other
hand, is only called when there is a Bundle to be used.

To see how this works, take a look at the ConfigChange/Bundle sample project.

Here, RotationBundleDemo is an activity with all the same core business logic as was
in our fragment in the preceding demo. Since the activity will be destroyed and

RESOURCE SETS AND CONFIGURATIONS

382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle

recreated on a configuration change, we override onSaveInstanceState() and
onRestoreInstanceState() to retain our contact, if one was selected prior to the
configuration change:

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

ifif (contact != nullnull) {
outState.putString("contact", contact.toString());

}
}

@Override
protectedprotected void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

String contactUri=state.getString("contact");

ifif (contactUri != nullnull) {
contact=Uri.parse(contactUri);
viewButton.setEnabled(truetrue);

}
}

The big benefit of this approach is that onSaveInstanceState() is used for another
scenario, beyond configuration changes.

Suppose, while the user is using one of your activities, a text message comes in. The
user taps on the notification and goes into the text messaging client, while your
activity is paused and stopped. While texting, the other party sends over a URL in
one of the messages. The user taps on that URL to open up a Web browser. And,
right at that moment, a phone call comes in.

Android may not have enough free RAM to handle launching the browser and the
phone applications, because too many things are happening at once. Hence,
Android may terminate your process, to free up RAM. Yet, it is entirely possible that
the user could return to your activity via the BACK button.

If the user does return to your activity via BACK, Android will fork a fresh process
for your application, will create a new instance of your activity, and will supply to
that activity the Bundle from onSaveInstanceState() of the old activity. This way,
you can help retain context from what the user had been doing, despite your entire
process having been gone for a while.

RESOURCE SETS AND CONFIGURATIONS

383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fragments and a Bundle

Fragments also have an onSaveInstanceState() method that they can override. It
works just like the Activity equivalent — you can store data in the supplied Bundle
that will be supplied back to you later on. The biggest difference is that there is no
onRestoreInstanceState() method — instead, you are handed the Bundle in other
lifecycle methods:

• onCreate()
• onCreateView()
• onActivityCreated()

We can see this in the ConfigChange/FragmentBundle sample project. This is
effectively a mashup of the previous two samples: fragments, but using
onSaveInstanceState() instead of setRetainInstance(true).

Our RotationFragment now has an onSaveInstanceState() method that looks a lot
like the one from the ConfigChange/Bundle sample’s activity:

@Override
publicpublic void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

ifif (contact != nullnull) {
outState.putString("contact", contact.toString());

}
}

Our onCreateView() method examines the passed-in Bundle, and if it is not null
tries to obtain our contact from it:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle state) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.pick).setOnClickListener(thisthis);

View v=result.findViewById(R.id.view);

v.setOnClickListener(thisthis);

ifif (state != nullnull) {
String contactUri=state.getString("contact");

ifif (contactUri != nullnull) {
contact=Uri.parse(contactUri);

RESOURCE SETS AND CONFIGURATIONS

384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/FragmentBundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/FragmentBundle

}
}

v.setEnabled(contact != nullnull);

returnreturn(result);
}

This does not allow our fragment to hold onto arbitrary data, the way
setRetainInstance(true) does. However, as with onSaveInstanceState() at the
activity level, there are scenarios that onSaveInstanceState() handles that retained
fragments will not, such as terminating your process due to low memory, yet the
user later uses BACK to return to what should have been your activity (and its
fragments).

Retain Other Objects

The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s
because this callback is also used in cases where your whole process might be
terminated (e.g., low memory), so the data to be saved has to be something that can
be serialized and has no dependencies upon your running process.

For some activities, that limitation is not a problem. For others, though, it is more
annoying. Take an online chat, for example. You have no means of storing a socket in
a Bundle, so by default, you will have to drop your connection to the chat server and
re-establish it. That not only may be a performance hit, but it might also affect the
chat itself, such as you appearing in the chat logs as disconnecting and
reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of
onSaveInstanceState() for “light” changes like a rotation. Your activity’s
onRetainNonConfigurationInstance() callback can return an Object, which you
can retrieve later via getLastNonConfigurationInstance(). The Object can be just
about anything you want — typically, it will be some kind of “context” object
holding activity state, such as running threads, open sockets, and the like. Your
activity’s onCreate() can call getLastNonConfigurationInstance() – if you get a
non-null response, you now have your sockets and threads and whatnot.

The biggest limitation is that you do not want to put in the saved context anything
that might reference a resource that will get swapped out, such as a Drawable loaded
from a resource.

RESOURCE SETS AND CONFIGURATIONS

385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The second-biggest limitation is that you do not want to put in the saved context
anything that has a reference back to your original activity instance. Otherwise, the
new activity will hold an indirect reference back to the old activity, and the old
activity will not be able to be garbage-collected.

The general strategy, therefore, is to use onSaveInstanceState() for everything that
it can handle, since it covers other scenarios beyond configuration changes. Use
onRetainNonConfigurationInstance() for everything else.

To see this approach, take a look at the ConfigChange/Retain sample project.

This is the same as the previous sample, except that RotationRetainDemo
implements onRetainNonConfigurationInstance(), returning the Uri that
represents our selected contact:

@Override
publicpublic Object onRetainNonConfigurationInstance() {

returnreturn(contact);
}

In onCreate(), we call getLastNonConfigurationInstance(). This will either be
null or our Uri from a preceding instance. In either case, we store the value in
contact and use it:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
contact=(Uri)getLastNonConfigurationInstance();
viewButton.setEnabled(contact != nullnull);

}

DIY

In a few cases, even onRetainNonConfigurationInstance() is insufficient, because
transferring and re-applying the state would be too complex or too slow. Or, in some
cases, the hardware will get in the way, such as when trying to use the Camera for
taking pictures — a concept we will cover later in this book.

If you are completely desperate, you can tell Android to not destroy and recreate the
activity on a configuration change… though this has its own set of consequences. To
do this:

RESOURCE SETS AND CONFIGURATIONS

386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Retain
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Retain

• Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus allowing
Android to handle for you

• Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

For example, take a look at the ConfigChange/DIY sample project.

In AndroidManifest.xml, we add the android:configChanges attribute to the
<activity> element, indicating that we want to handle several configuration
changes ourselves:

<activity<activity
android:name="RotationDIYDemo"
android:configChanges="keyboardHidden|orientation|screenSize"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

Many recipes for this will have you handle orientation and keyboardHidden.
However, nowadays, you need to also handle screenSize and smallestScreenSize,
if you have your android:targetSdkVersion set to 13 or higher. Note that this will
require your build target to be set to 13 or higher.

Hence, for those particular configuration changes, Android will not destroy and
recreate the activity, but instead will call onConfigurationChanged(). In the
RotationDIYDemo implementation, this simply toggles the orientation of the
LinearLayout to match the orientation of the device:

@Override
publicpublic void onConfigurationChanged(Configuration newConfig) {

supersuper.onConfigurationChanged(newConfig);

LinearLayout container=(LinearLayout)findViewById(R.id.container);

ifif (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
container.setOrientation(LinearLayout.HORIZONTAL);

}

RESOURCE SETS AND CONFIGURATIONS

387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY

elseelse {
container.setOrientation(LinearLayout.VERTICAL);

}
}

Since the activity is not destroyed during a configuration change, we do not need to
worry at all about the Uri of the selected contact — it is not going anywhere.

The problem with this implementation is twofold:

1. We are not handling all possible configuration changes. If the user, say, puts
the device into a car dock, Android will destroy and recreate our activity, and
we will lose our selected contact.

2. We might forget some resource that needs to be changed due to a
configuration change. For example, if we start translating the strings used by
the layouts, and we include locale in android:configChanges, we not only
need to update the LinearLayout but also the captions of the Button
widgets, since Android will not do that for us automatically.

It is these two problems that are why Google does not recommend the use of this
technique unless absolutely necessary.

Blocking Rotations
No doubt that you have seen some Android applications that simply ignore any
attempt to rotate the screen. Many games work this way, operating purely in
landscape mode, regardless of how the device is positioned.

To do this, add android:screenOrientation="landscape", or possibly
android:screenOrientation="portrait", to your manifest.

Ideally, you choose landscape, as some devices (e.g., Google TV) can only be
landscape.

Also note that Android still treats this as a configuration change, despite the fact
that there is no visible change to the user. Hence, you still need to use one of the
aforementioned techniques to handle this configuration change, along with any
others (e.g., dock events, locale changes).

RESOURCE SETS AND CONFIGURATIONS

388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dealing with Threads

Users like snappy applications. Users do not like applications that feel sluggish.

The way to help your application feel snappy is to use the standard threading
capabilities built into Android. This chapter will go through the issues involved with
thread management in Android and will walk you through some of the options for
keeping the user interface crisp and responsive.

The Main Application Thread
When you call setText() on a TextView, you probably think that the screen is
updated with the text you supply, right then and there.

You would be mistaken.

Rather, everything that modifies the widget-based UI goes through a message queue.
Calls to setText() do not update the screen — they just place a message on a queue
telling the operating system to update the screen. The operating system pops these
messages off of this queue and does what the messages require.

The queue is processed by one thread, variously called the “main application thread”
and the “UI thread”. So long as that thread can keep processing messages, the screen
will update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(), onClick(), onListItemClick(), and similar methods are
all called on the main application thread. While your code is executing in these
methods, Android is not processing messages on the queue, and so the screen does
not update, user input is not handled, and so on.

389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This, of course, is bad. So bad, that if you take more than a few seconds to do work
on the main application thread, Android may display the dreaded “Application Not
Responding” dialog (ANR for short), and your activity may be killed off.

Hence, you want to make sure that all of your work on the main application thread
happens quickly. This means that anything slow should be done in a background
thread, so as not to tie up the main application thread. This includes things like:

1. Internet access, such as sending data to a Web service or downloading an
image

2. Significant file operations, since flash storage can be remarkably slow at
times

3. Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java,
plus all of the wrappers and control structures you would expect, such as the
java.util.concurrent class package.

However, there is one big limitation: you cannot modify the UI from a background
thread. You can only modify the UI from the main application thread. If you call
setText() on a TextView from a background thread, your application will crash,
with an exception indicating that you are trying to modify the UI from a “non-UI
thread” (i.e., a thread other than the main application thread).

This is a pain.

Getting to the Background
Hence, you need to get long-running work moved into background threads, but
those threads need to do something to arrange to update the UI using the main
application thread.

There are various facilities in Android for helping with this.

Some are high-level frameworks for addressing this issue for major functional areas.
The pre-eminent example of this is the Loader framework for retrieving information
from databases, and we will examine this in a later chapter.

DEALING WITH THREADS

390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sometimes, there are asynchronous options built into other Android operations. For
example, when we discuss SharedPreferences in a later chapter, we will see that we
can persist changes to those preferences synchronously or asynchronously.

And, there are a handful of low-level solutions for solving this problem, ones that
you can apply for your own custom business logic.

Asyncing Feeling
One popular approach for handling this threading problem is to use AsyncTask.
With AsyncTask, Android will handle all of the chores of coordinating separate work
done on a background thread versus on the UI thread. Moreover, Android itself
allocates and removes that background thread. And, it maintains a small work
queue, further accentuating the “fire and forget” feel to AsyncTask.

The Theory

Theodore Levitt is quoted as saying, with respect to marketing: “People don’t want
to buy a quarter-inch drill, they want a quarter-inch hole”. Hardware stores cannot
sell holes, so they sell the next-best thing: devices (drills and drill bits) that make
creating holes easy.

Similarly, Android developers who have struggled with background thread
management do not strictly want background threads — they want work to be done
off the UI thread, so users are not stuck waiting and activities do not get the dreaded
“application not responding” (ANR) error. And while Android cannot magically
cause work to not consume UI thread time, Android can offer things that make such
background operations easier and more transparent. AsyncTask is one such
example.

To use AsyncTask, you must:

1. Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

2. Override one or more AsyncTask methods to accomplish the background
work, plus whatever work associated with the task that needs to be done on
the UI thread (e.g., update progress)

3. When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

DEALING WITH THREADS

391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What you do not have to do is:

1. Create your own background thread
2. Terminate that background thread at an appropriate time
3. Call all sorts of methods to arrange for bits of processing to be done on the

UI thread

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data
types:

1. The type of information that is needed to process the task (e.g., URLs to
download)

2. The type of information that is passed within the task to indicate progress
3. The type of information that is passed when the task is completed to the

post-task code

What makes this all the more confusing is that the first two data types are actually
used as varargs, meaning that an array of these types is used within your AsyncTask
subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This
will be called by AsyncTask on a background thread. It can run as long as it needs to
in order to accomplish whatever work needs to be done for this specific task. Note,
though, that tasks are meant to be finite – using AsyncTask for an infinite loop is not
recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first
of the three data types listed above — the data needed to process the task. So, if your
task’s mission is to download a collection of URLs, doInBackground() will receive
those URLs to process.

DEALING WITH THREADS

392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The doInBackground() method must return a value of the third data type listed
above — the result of the background work.

You may wish to override onPreExecute(). This method is called, from the UI
thread, before the background thread executes doInBackground(). Here, you might
initialize a ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the UI
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss
the ProgressBar and make use of the work done in the background, such as
updating the contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground()
calls the task’s publishProgress() method, the object(s) passed to that method are
provided to onProgressUpdate(), but in the UI thread. That way,
onProgressUpdate() can alert the user as to the progress that has been made on the
background work. The onProgressUpdate() method will receive a varargs of the
second data type from the above list — the data published by doInBackground() via
publishProgress().

A Quick Note About Toasts

In the sample app that follows, we use a Toast to let the user know some work has
been completed.

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently-
active Activity, so if the user is busy writing the next Great Programming Guide,
they will not have keystrokes be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it.
You get no acknowledgment from them, nor does the message stick around for a
long time to pester the user. Hence, the Toast is mostly for advisory messages, such
as indicating a long-running background task is completed, the battery has dropped
to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() method that
accepts a String (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other Context) plus a duration. The
duration is expressed in the form of the LENGTH_SHORT or LENGTH_LONG constants to

DEALING WITH THREADS

393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

indicate, on a relative basis, how long the message should remain visible. Once your
Toast is configured, call its show() method, and the message will be displayed.

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and varargs, it is
not too bad.

To see an AsyncTask in action, this section will examine the Threads/AsyncTask
sample project.

The Fragment and its AsyncTask

We have a SherlockListFragment, named AsyncDemoFragment:

packagepackage com.commonsware.android.async;

importimport java.util.ArrayListjava.util.ArrayList;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.actionbarsherlock.app.SherlockListFragmentcom.actionbarsherlock.app.SherlockListFragment;

publicpublic classclass AsyncDemoFragmentAsyncDemoFragment extendsextends SherlockListFragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate ArrayList<String> model=nullnull;
privateprivate ArrayAdapter<String> adapter=nullnull;
privateprivate AddStringTask task=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);

ifif (model == nullnull) {
model=newnew ArrayList<String>();
task=newnew AddStringTask();
task.execute();

}

adapter=

DEALING WITH THREADS

394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask

newnew ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1,
model);

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);

}

@Override
publicpublic void onDestroy() {

ifif (task != nullnull) {
task.cancel(falsefalse);

}

supersuper.onDestroy();
}

classclass AddStringTaskAddStringTask extendsextends AsyncTask<Void, String, Void> {
@Override
protectedprotected Void doInBackground(Void... unused) {

forfor (String item : items) {
ifif (!isCancelled()) {

publishProgress(item);
SystemClock.sleep(400);

}
}

returnreturn(nullnull);
}

@Override
protectedprotected void onProgressUpdate(String... item) {

adapter.add(item[0]);
}

@Override
protectedprotected void onPostExecute(Void unused) {

ifif (!isCancelled()) {
Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)

.show();
}

task=nullnull;
}

}
}

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words to an
ArrayAdapter, we simulate having to work to create these words in the background
using AddStringTask, our AsyncTask implementation.

DEALING WITH THREADS

395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In onActivityCreated(), we call setRetainInstance(true), so Android will retain
this fragment across configuration changes, such as a screen rotation. We then
examine a model data member. If it is null, we know that this is the first time our
fragment has been used, so we initialize it to be an ArrayList of String values,
plus kick off our AsyncTask (the AddStringTask inner class, described below),
saving the AddStringTask in a task data member. We then set up the adapter and
attach it to the ListView, also preventing the ListView scrollbars from fading away
as is their norm.

In the declaration of AddStringTask, we use the generics to set up the specific types
of data we are going to leverage. Specifically:

1. We do not need any configuration information in this case, so our first type
is Void

2. We want to pass each string “generated” by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

3. We do not have any results, strictly speaking (beyond the updates), so our
third type is Void

The doInBackground() method is invoked in a background thread. Hence, we can
take as long as we like. In a production application, we would be, perhaps, iterating
over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 400
milliseconds to simulate real work being done. We also call isCancelled() on each
pass, to see if our task has been cancelled, skipping the work if it has so we can
clean up this background thread.

Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says we
need to accept a varargs of the first data type, which is why our method parameter is
Void....

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we have to return an object of the third
data type. Since that data type is Void, our returned object is null.

The onProgressUpdate() method is called on the UI thread, and we want to do
something to let the user know we are progressing on loading up these strings. In
this case, we simply add the string to the ArrayAdapter, so it gets appended to the
end of the list.

DEALING WITH THREADS

396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The onProgressUpdate() method receives a String... varargs because that is the
second data type in our class declaration. Since we are only passing one string per
call to publishProgress(), we only need to examine the first entry in the varargs
array.

The onPostExecute() method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real system, there
may be some ProgressBar to dismiss or some animation to stop. Here, we simply
raise a Toast and set task to null, if our task has not been cancelled (checked via
another call to isCancelled()).

Since we elected to have no results, we should not need any parameters. The
contract with AsyncTask says we have to accept a single value of the third data type.
Since that data type is Void, our method parameter is Void unused.

To use AddStringTask, we simply create an instance and call execute() on it. That
starts the chain of events eventually leading to the background thread doing its
work.

If AddStringTask required configuration parameters, we would have not used Void
as our first data type, and the constructor would accept zero or more parameters of
the defined type. Those values would eventually be passed to doInBackground().

Our fragment also has an onDestroy() method that calls cancel() on the
AsyncTask if it is still outstanding (task is not null). This work of cancelling the
task and checking to see if the task is cancelled exists for two reasons:

1. Efficiency, as we should skip any serious work that is not needed if our task
itself is not needed

2. To avoid a crash if we attempt to raise a Toast on a destroyed activity, such
as the user launching the activity, then pressing BACK before we complete
the background work and display the Toast

The Activity and the Results

AsyncDemo is a SherlockFragmentActivity with the standard recipe for kicking off
an instance of a dynamic fragment:

packagepackage com.commonsware.android.async;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

DEALING WITH THREADS

397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass AsyncDemoAsyncDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew AsyncDemoFragment()).commit();
}

}
}

If you build, install, and run this project, you will see the list being populated in “real
time” over a few seconds, followed by a Toast indicating completion.

Threads and Configuration Changes

One problem with the default destroy-and-create cycle that activities go through on
a configuration change comes from background threads. If the activity has started
some background work — through an AsyncTask, for example – and then the
activity is destroyed and re-created, somehow the AsyncTask needs to know about
this. Otherwise, the AsyncTask might well send updates and final results to the old
activity, with the new activity none the wiser. In fact, the new activity might start up
the background work again, wasting resources.

That is why, in the sample above, we are retaining the fragment instance. The
fragment instance holds onto its data model (in this case, the ArrayList of nonsense
words) and knows not to kick off a new AsyncTask just because the configuration
changed. Moreover, we retain that data model, so the new ListView created due to
the configuration change can work with a new adapter backed by the old data
model, so we do not lose our existing set of nonsense words.

We also have to be very careful not to try referring to the activity (via getActivity()
on the fragment) from our background thread (doInBackground()). Because,
suppose that during the middle of the doInBackground() processing, the user
rotates the screen. The activity we work with will change on the fly, on the main
application thread, independently of the work being done in the background. The
activity returned by getActivity() may not be in a useful state for us while this
configuration change is going on.

DEALING WITH THREADS

398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, it is safe for us to use getActivity() from onPostExecute(), and even
from onProgressUpdate().

Why?

Most callback methods in Android are driven by messages on the message queue
being processed by the main application thread. Normally, this queue is being
processed whenever the main application thread is not otherwise busy, such as
running our code.

However, when a configuration change occurs, like a screen rotation, that no longer
holds true.

Android guarantees that, while on the main application thread, getActivity() will
return a valid Activity. Moreover, once the configuration change starts, no
messages on the message queue will be processed until after onCreate() of the
hosting activity (and onActivityCreated() of the fragment) have completed their
work.

Where Not to Use AsyncTask

AsyncTask, particularly in conjunction with a dynamic fragment, is a wonderful
solution for most needs for a background thread.

The key word in that sentence is “most”.

AsyncTask manages a thread pool, from which it pulls the threads to be used by task
instances. Thread pools assume that they will get their threads back after a
reasonable period of time. Hence, AsyncTask is a poor choice when you do not know
how long you need the thread (e.g., thread listening on a socket for a chat client,
where you need the thread until the user exits the client).

About the AsyncTask Thread Pool

Moreover, the thread pool that AsyncTask manages has varied in size.

In Android 1.5, it was a single thread.

In Android 1.6, it was expanded to support many parallel threads, probably more
than you will ever need.

DEALING WITH THREADS

399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In Android 4.0, it has shrunk back to a single thread, if your
android:targetSdkVersion is set to 13 or higher. This was to address concerns
about:

• Forking too many threads and starving the CPU
• Developers thinking that there is an ordering dependency between forked

tasks, when with the parallel execution there is none

If you wish, starting with API Level 11, you can supply your own Executor (from the
java.util.concurrent package) that has whatever thread pool you wish, so you can
manage this more yourself. In addition to the serialized, one-at-a-time Executor,
there is a built-in Executor that implements the old thread pool, that you can use
rather than rolling your own. We will examine this more in a later chapter on
dealing with backwards-compatibility issues.

Alternatives to AsyncTask
There are other ways of handling background threads without using AsyncTask:

• You can employ a Handler, which has a handleMessage() method that will
process Message objects, dispatched from a background thread, on the main
application thread

• You can supply a Runnable to be executed on the main application thread to
post() on any View, or to runOnUiThread() on Activity

• You can supply a Runnable, plus a delay period in milliseconds, to
postDelayed() on any View, to run the Runnable on the main application
thread after at least that number of millisecond has elapsed

Of these, the Runnable options are the easiest to use.

These can also be used to allow the main application thread to postpone work, to be
done later on the main application thread. For example, you can use postDelayed()
to set up a lightweight polling “loop” within an activity, without needing the
overhead of an extra thread, such as the one created by Timer and TimerTask. To see
how this works, let’s take a peek at the Threads/PostDelayed sample project.

This project contains a single activity, named PostDelayedDemo:

packagepackage com.commonsware.android.post;

importimport android.app.Activityandroid.app.Activity;

DEALING WITH THREADS

400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/PostDelayed
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/PostDelayed

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass PostDelayedDemoPostDelayedDemo extendsextends Activity implementsimplements Runnable {
privateprivate staticstatic finalfinal int PERIOD=5000;
privateprivate View root=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
root=findViewById(android.R.id.content);

}

@Override
publicpublic void onResume() {

supersuper.onResume();

run();
}

@Override
publicpublic void onPause() {

root.removeCallbacks(thisthis);

supersuper.onPause();
}

@Override
publicpublic void run() {

Toast.makeText(PostDelayedDemo.this, "Who-hoo!", Toast.LENGTH_SHORT)
.show();

root.postDelayed(thisthis, PERIOD);
}

}

We want to display a Toast every five seconds. To do this, in onCreate(), we get our
hands on the container for an activity’s UI, known as android.R.id.content, via
findViewById(). Then, in onResume(), we call a run() method on our activity, which
displays the Toast and calls postDelayed() to schedule itself (as an implementation
of Runnable) to be run again in PERIOD milliseconds. While our activity is in the
foreground, the Toast will appear every PERIOD milliseconds as a result. Once
something else comes to the foreground — such as by the user pressing BACK —
our onPause() method is called, where we call removeCallbacks() to “undo” the
postDelayed() call.

DEALING WITH THREADS

401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And Now, The Caveats
Background threads, while eminently possible using AsyncTask and kin, are not all
happiness and warm puppies. Background threads not only add complexity, but they
have real-world costs in terms of available memory, CPU, and battery life.

To that end, there is a wide range of scenarios you need to account for with your
background thread, including:

1. The possibility that users will interact with your activity’s UI while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need to
communicate this to the background thread. Android includes many classes
in the java.util.concurrent package that will help you communicate safely
with your background thread.

2. The possibility that the activity will be killed off while background work is
going on. For example, after starting your activity, the user might have a call
come in, followed by a text message, followed by a need to look up a
contact… all of which might be sufficient to kick your activity out of memory.

3. The possibility that your user will get irritated if you chew up a lot of CPU
time and battery life without giving any payback. Tactically, this means using
ProgressBar or other means of letting the user know that something is
happening. Strategically, this means you still need to be efficient at what you
do — background threads are no panacea for sluggish or pointless code.

4. The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the Internet,
the device might lose connectivity. Alerting the user of the problem via a
Notification and shutting down the background thread may be your best
option.

DEALING WITH THREADS

402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Requesting Permissions

In the late 1990’s, a wave of viruses spread through the Internet, delivered via email,
using contact information culled from Microsoft Outlook. A virus would simply
email copies of itself to each of the Outlook contacts that had an email address. This
was possible because, at the time, Outlook did not take any steps to protect data
from programs using the Outlook API, since that API was designed for ordinary
developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data by
requiring that a user explicitly grant rights for other programs to access the contact
information. Those rights could be granted on a case-by-case basis or all at once at
install time.

Android is no different, in that it requires permissions for applications to read or
write contact data. Android’s permission system is useful well beyond contact data,
and for content providers and services beyond those supplied by the Android
framework.

You, as an Android developer, will frequently need to ensure your applications have
the appropriate permissions to do what you want to do with other applications’
data. This chapter covers this topic.

You may also elect to require permissions for other applications to use your data or
services, if you make those available to other Android components. This will be
discussed later in this book.

403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mother, May I?
Requesting the use of other applications’ data or services requires the
uses-permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct children of
the root manifest element.

The uses-permission element takes a single attribute, android:name, which is the
name of the permission your application requires:

<uses-permission<uses-permission android:name="android.permission.ACCESS_LOCATION" />/>

The stock system permissions all begin with android.permission and are listed in
the Android SDK documentation for Manifest.permission. Third-party
applications may have their own permissions, which hopefully they have
documented for you. Here are some of the permissions we will see in this book:

1. INTERNET, if your application wishes to access the Internet through any
means, from raw Java sockets through the WebView widget

2. WRITE_EXTERNAL_STORAGE, for writing data to external storage
3. ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining

where the device is
4. CALL_PHONE, to allow the application to place phone calls directly, without

user intervention

Permissions are confirmed at the time the application is installed — the user will be
prompted to confirm it is OK for your application to do what the permission calls
for.

REQUESTING PERMISSIONS

404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 172: Permission Confirmation Screen, on Android 4.0.3

Hence, it is important for you to ask for as few permissions as possible and to justify
those you ask for, so users do not elect to skip installing your application because
you ask for too many unnecessary permissions. Note that users are not asked to
confirm permissions when loading an application via USB, such as during
development.

If you do not have the desired permission and try to do something that needs it, you
should get a SecurityException informing you of the missing permission. Note that
you will only fail on a permission check if you forgot to ask for the permission — it is
impossible for your application to be running and not have been granted your
requested permissions.

New Permissions in Old Applications
Sometimes, Android introduces new permissions that govern behavior that formerly
did not require permissions. WRITE_EXTERNAL_STORAGE is one example – originally,
applications could write to external storage without any permission at all. Android
1.6 introduced WRITE_EXTERNAL_STORAGE, required before you can write to external
storage. However, applications that were written before Android 1.6 could not

REQUESTING PERMISSIONS

405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

possibly request that permission, since it did not exist at the time. Breaking those
applications would seem to be a harsh price for progress.

What Android does is “grandfather” in certain permissions for applications
supporting earlier SDK versions.

In particular, if you have <uses-sdk android:minSdkVersion="3"> in your manifest,
saying that you support Android 1.5, your application will automatically request
WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE, even if you do not explicitly
request those permissions. People installing your application on an Android 1.5
device will see these requests.

Eventually, when you drop support for the older version (e.g., switch to <uses-sdk
android:minSdkVersion="4">), Android will no longer automatically request those
permissions. Hence, if your code really does need those permissions, you will need to
ask for them yourself.

Permissions: Up Front Or Not At All
The permission system in Android is not especially flexible. Notably, you have to ask
for all permissions you might ever need up front, and the user has to agree to all of
them or abandon the installation of your app.

This means:

1. You cannot create optional permissions, ones the user could say “no, thanks”
to, that your application could react to dynamically

2. You cannot request new permissions after installation, so even if a
permission is only needed for some lightly-used feature, you have to ask for
it anyway

Hence, it is important as you come up with the feature list for your app that you
keep permissions in mind. Every additional permission that your request is a filter
that will cost you some portion of your prospective audience. Certain combinations
— such as INTERNET and READ_CONTACTS — will have a stronger effect, as users fear
what the combination can do. You will need to decide for yourself if the additional
users you will get from having the feature will be worth the cost of requiring the
permissions the feature needs to operate.

REQUESTING PERMISSIONS

406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Signature Permissions
Some permissions listed in the SDK you can request but will not get. These
permissions, such as BRICK, require your application to be signed by the same
signing key as is used to sign the firmware. We will discuss these signing keys and
how they work in a later chapter.

Some permissions, like REBOOT, require that your application either be signed with
the firmware’s signing key or that your application be pre-installed on the firmware.

Unfortunately, the Android developer documentation does not tell you the
requirements for any given permission. To find out, you will need to examine the
platform’s AndroidManifest.xml file and find your permission in there. For example,
here is one edition’s definition of the BRICK and REBOOT permissions:

<!-- Required to be able to disable the device (very dangerous!). -->
<permission<permission android:name="android.permission.BRICK"

android:label="@string/permlab_brick"
android:description="@string/permdesc_brick"
android:protectionLevel="signature" />/>

<!-- Required to be able to reboot the device. -->
<permission<permission android:name="android.permission.REBOOT"

android:label="@string/permlab_reboot"
android:description="@string/permdesc_reboot"
android:protectionLevel="signatureOrSystem" />/>

The BRICK permission has an android:protectionLevel of signature, meaning the
app requesting the permission must have the same signing key as does the firmware.
Instead, the REBOOT permission has signatureOrSystem, meaning that the app could
just be installed as part of the firmware to hold this permission.

Requiring Permissions
The XML elements shown from Android’s own manifest are <permission> elements.
These define new permissions to the system.

You can use <permission> elements to define your own custom permissions for use
with your own apps. This would be important if you are planning on allowing third-
party applications to integrate with yours and possibly retrieve data that you are
storing. The user probably should “get a vote” on whether that data sharing is
allowed. To do that, you could define a permission and declare that one or more of

REQUESTING PERMISSIONS

407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

your components (e.g., activities) are protected by that permission. Only third
parties that request the permission via <uses-permission> will be able to use those
components.

We will get into this scenario in greater detail in a later chapter.

REQUESTING PERMISSIONS

408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Assets, Files, and Data Parsing

Android offers a few structured ways to store data, notably SharedPreferences and
local SQLite databases. And, of course, you are welcome to store your data “in the
cloud” by using an Internet-based service. We will get to all of those topics shortly.

Beyond that, though, Android allows you to work with plain old ordinary files, either
ones baked into your app (“assets”) or ones on so-called internal or external storage.

To make those files work — and to consume data off of the Internet — you will
likely need to employ a parser. Android ships with several choices for XML and JSON
parsing, in addition to third-party libraries you can attempt to use.

This chapter focuses on assets, files, and parsers.

Packaging Files with Your App
Let’s suppose you have some static data you want to ship with the application, such
as a list of words for a spell-checker. Somehow, you need to bundle that data with
the application, in a way you can get at it from Java code later on, or possibly in a
way you can pass to another component (e.g., WebView for bundled HTML files).

There are three main options here: raw resources, XML resources, and assets.

Raw Resources

One way to deploy a file like a spell-check catalog is to put the file in the res/raw
directory, so it gets put in the Android application .apk file as part of the packaging
process as a raw resource.

409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To access this file, you need to get yourself a Resources object. From an activity, that
is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than a
path, openRawResource() expects an integer identifier for the file as packaged. This
works just like accessing widgets via findViewById() – if you put a file named
words.xml in res/raw, the identifier is accessible in Java as R.raw.words.

Since you can only get an InputStream, you have no means of modifying this file.
Hence, it is really only useful for static reference data. Moreover, since it is
unchanging until the user installs an updated version of your application package,
either the reference data has to be valid for the foreseeable future, or you will need
to provide some means of updating the data. The simplest way to handle that is to
use the reference data to bootstrap some other modifiable form of storage (e.g., a
database), but this makes for two copies of the data in storage. An alternative is to
keep the reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For example, if
your application ships a file of URLs, you could have a second file that tracks URLs
added by the user or reference URLs that were deleted by the user.

XML Resources

If, however, your file is in an XML format, you are better served not putting it in res/
raw/, but rather in res/xml/. This is a directory for XML resources – resources
known to be in XML format, but without any assumptions about what that XML
represents.

To access that XML, you once again get a Resources object by calling
getResources() on your Activity or other Context. Then, call getXml() on the
Resources object, supplying the ID value of your XML resource (e.g., R.xml.words).
This will return an XmlResourceParser, which implements the XmlPullParser
interface. We will discuss how to use this parser, and the performance advantage of
using XML resources, later in this chapter.

As with raw resources, XML resources are read-only at runtime.

Assets

Your third option is to package the data in the form of an asset. You can create an
assets/ directory at the root of your project directory, then place whatever files you
want in there. Those are accessible at runtime by calling getAssets() on your

ASSETS, FILES, AND DATA PARSING

410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activity or other Context, then calling open() with the path to the file (e.g.,
assets/foo/index.html would be retrieved via open("foo/index.html")). As with
raw resources, this returns an InputStream on the file’s contents. And, as with all
types of resources, assets are read-only at runtime.

One benefit of using assets over raw resources is the file://android_asset/ Uri
prefix. You can use this to load an asset into a WebView. For example, for an asset
located in assets/foo/index.html within your project, calling
loadUrl("file://android_asset/foo/index.html") will load that HTML into the
WebView.

Note that assets are compressed when the APK is packaged. Unfortunately, this
compression mechanism has a 1MB file size limit. If you wish to package an asset
that is bigger than 1MB, you either need to give it a file extension that will not be
compressed (e.g., .mp3) or actually store a ZIP file of the asset (to avoid the
automatic compression) and decompress it yourself at runtime, using the standard
java.util.zip classes.

Files and Android
On the whole, Android just uses normal Java file I/O for local files. You will use the
same File and InputStream and OutputWriter and other classes that you have used
time and again in your prior Java development work.

What is distinctive in Android is where you read and write. Akin to writing a Java
Web app, you do not have read and write access to arbitrary locations. Instead, there
are only a handful of directories to which you have any access, particularly when
running on production hardware.

Internal vs. External

Internal storage refers to your application’s portion of the on-board, always-available
flash storage. External storage refers to storage space that can be mounted by the
user as a drive in Windows (or, possibly with some difficulty, as a volume in OS X or
Linux).

On Android 1.x and 2.x, the big advantage of external storage is size. Some Android
devices have very little internal storage (tens or hundreds of MB) that all apps must
share. External storage, on the other hand, typically is on the order of GB of

ASSETS, FILES, AND DATA PARSING

411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

available free space. On Android 3.0+, internal and external storage are usually
implemented via the same filesystem partition, and therefore both tend to be large.

However, on Android 1.x and 2.x, external storage is not always available – if it is
mounted as a drive or volume on a host desktop or notebook, your app will not have
access to external storage. We will examine this limitation in a bit more detail later
in this chapter. This is not usually a problem on Android 3.0+.

Standard vs. Cache

On both internal and external storage, you have the option of saving files as a cache,
or on a more permanent basis. Files located in a cache directory may be deleted by
the OS or third-party apps to free up storage space for the user. Files located outside
of cache will remain unless manually deleted.

Yours vs. Somebody Else’s

Internal storage is on a per-application basis. Files you write to in your own internal
storage cannot be read or written to by other applications… normally. Users who
“root” their phones can run apps with superuser privileges and be able to access your
internal storage. Most users do not root their phones, and so only your app will be
able to access your internal storage files.

Files on external storage, though, are visible to all applications and the user. Anyone
can read anything stored there, and any application that requests to can write or
delete anything it wants.

Working with Internal Storage
You have a few options for manipulating the contents of your app’s portion of
internal storage.

One possibility is to use openFileInput() and openFileOutput() on your Activity
or other Context to get an InputStream and OutputStream, respectively. However,
these methods do not accept file paths (e.g., path/to/file.txt), just simple
filenames.

If you want to have a bit more flexibility, getFilesDir() and getCacheDir() return a
File object pointing to the roots of your files and cache locations on internal

ASSETS, FILES, AND DATA PARSING

412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

storage, respectively. Given the File, you can create files and subdirectories as you
see fit.

To see how this works, take a peek at the Files/ReadWrite sample project.

This application implements an EditorFragment, containing a full-screen EditText,
hosted by a FilesDemoActivity as a static fragment. There is a CheckBox in the
action bar to toggle between using internal and external storage:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/location"
android:actionLayout="@layout/action_location"
android:showAsAction="always">>

</item></item>
<item<item

android:id="@+id/save"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="always|withText"
android:title="@string/save">>

</item></item>
<item<item

android:id="@+id/saveBackground"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="never"
android:title="@string/saveBackground">>

</item></item>

</menu></menu>

We get at that CheckBox in onCreateOptionsMenu() of EditorFragment, storing it in
a data member of the fragment:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);
external=(CheckBox)menu.findItem(R.id.location).getActionView();

}

When they go to work with the file (e.g., press a Save toolbar button), we use a
getTarget() method to return a File object pointing at the file to be manipulated.
In the case where the CheckBox is unchecked — meaning we are to use internal
storage — getTarget() uses getFilesDir():

privateprivate File getTarget() {
File root=nullnull;

ASSETS, FILES, AND DATA PARSING

413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Files/ReadWrite
http://github.com/commonsguy/cw-omnibus/tree/master/Files/ReadWrite

ifif (external != nullnull && external.isChecked()) {
root=getActivity().getExternalFilesDir(nullnull);

}
elseelse {

root=getActivity().getFilesDir();
}

returnreturn(newnew File(root, FILENAME));
}

Note that the CheckBox may not yet exist, depending on the timing of
onCreateOptionsMenu() and onResume(). That timing varies a bit by Android
version.

Methods like load() then load that File by using standard Java file I/O:

privateprivate String load(File target) throwsthrows IOException {
String result="";

trytry {
InputStream in=newnew FileInputStream(target);

ifif (in != nullnull) {
trytry {

InputStreamReader tmp=newnew InputStreamReader(in);
BufferedReader reader=newnew BufferedReader(tmp);
String str;
StringBuilder buf=newnew StringBuilder();

whilewhile ((str=reader.readLine()) != nullnull) {
buf.append(str);
buf.append("\n");

}

result=buf.toString();
}
finallyfinally {

in.close();
}

}
}
catchcatch (java.io.FileNotFoundException e) {

// that's OK, we probably haven't created it yet
}

returnreturn(result);
}

The files stored in internal storage are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to this space.
However, bear in mind that some users “root” their Android phones, gaining

ASSETS, FILES, AND DATA PARSING

414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

superuser access. These users will be able to read and write whatever files they wish.
As a result, please consider application-local files to be secure against malware but
not necessarily secure against interested users.

Working with External Storage
On most Android 1.x devices and some early Android 2.x devices, external storage
came in the form of a micro SD card or the equivalent. On the remaining Android
2.x devices, external storage was part of the on-board flash, but housed in a separate
partition from the internal storage. On most Android 3.0+ devices, external storage
is now simply a special directory in the partition that holds internal storage.

Devices will have at least 1GB of external storage free when they ship to the user.
That being said, many devices have much more than that, but the available size at
any point could be smaller than 1GB, depending on how much data the user has
stored.

Where to Write

If you have files that are tied to your application that are simply too big to risk
putting in internal storage, or if the user should be able to download the files off
their device at will, you can use getExternalFilesDir(), available on any activity or
other Context. This will give you a File object pointing to an automatically-created
directory on external storage, unique for your application. While not secure against
other applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area. This method was added in API Level 8. This method takes
one parameter — typically null — that indicates a particular type of file you are
trying to save (or, later, load).

For example, the aforementioned getTarget() method of EditorFragment uses
getExternalFilesDir() if the user has checked the CheckBox in the action bar:

privateprivate File getTarget() {
File root=nullnull;

ifif (external != nullnull && external.isChecked()) {
root=getActivity().getExternalFilesDir(nullnull);

}
elseelse {

root=getActivity().getFilesDir();
}

ASSETS, FILES, AND DATA PARSING

415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(newnew File(root, FILENAME));
}

There is also getExternalCacheDir(), which returns a File pointing at a directory
that contains files that you would like to have, but if Android or a third-party app
clears the cache, your app will continue to function normally.

Android 4.4 (API Level 19) added two new methods, getExternalCacheDirs() and
getExternalFileDirs(), the plural versions of the classic methods. These return an
array of File objects, representing one or more places where your app can work with
external storage. The first element in the array will be the same File object returned
by the singular versions of the methods (e.g., getExternalFilesDir()). The other
elements in the array, if any, will represent app-specific directories on alternative
external storage locations, like removable cards. The Android Support package has a
ContextCompat class containing static versions of getExternalCacheDirs() and
getExternalFileDirs(), so you can use the same code on API Level 4 and above,
though the backport will only ever return one directory in the array.

If you have files that belong more to the user than to your app — pictures taken by
the camera, downloaded MP3 files, etc. — a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class. This
will give you a File object pointing to a directory set aside for a certain type of file,
based on the type you pass into getExternalStoragePublicDirectory(). For
example, you can ask for DIRECTORY_MOVIES, DIRECTORY_MUSIC, or
DIRECTORY_PICTURES for storing MP4, MP3, or JPEG files, respectively. These files
will be left behind when your application is uninstalled. This method was also added
in API Level 8.

You will also find a getExternalStorageDirectory() method on Environment,
pointing to the root of the external storage. This is no longer the preferred approach
— the methods described above help keep the user’s files better organized. However,
if you are supporting older Android devices, you may need to use
getExternalStorageDirectory(), simply because the newer options may not be
available to you.

Relevant Permissions

On all relevant Android versions prior to Android 4.4 (API Level 19), if you want to
write to external storage, you need to hold the WRITE_EXTERNAL_STORAGE permission.
And, on those versions, you do not need a permission to read from external storage.

ASSETS, FILES, AND DATA PARSING

416

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On Android 4.4 and up, the rules are a bit different:

• To read or write in the directory trees rooted at getExternalFilesDir() and
getExternalCacheDir(), you do not need a permission

• To write to anywhere else on external storage, you need
WRITE_EXTERNAL_STORAGE

• To read from anywhere else on external storage, you need either
WRITE_EXTERNAL_STORAGE (if you already have that) or
READ_EXTERNAL_STORAGE (if not)

Hence, so long as your android:minSdkVersion is less than 19, you need to take the
most conservative approach:

• If you are writing anywhere on external storage, request the
WRITE_EXTERNAL_STORAGE permission

• If you are only reading, but from anywhere on external storage, request the
READ_EXTERNAL_STORAGE permission

Note that you might get paths to external storage locations from third-party apps,
typically in the form of a Uri. If you are handling Uri values from third-party apps,
you should request READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE, in case the
third-party app hands you a Uri pointing to external storage.

For example, here is the sample app’s manifest, complete with the
<uses-permission> element for WRITE_EXTERNAL_STORAGE:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.frw"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="14"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

<application<application
android:icon="@drawable/ic_launcher"

ASSETS, FILES, AND DATA PARSING

417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity

android:name=".FilesDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

When to Write

Also, external storage may be tied up by the user having mounted it as a USB storage
device. You can use getExternalStorageState() (a static method on Environment)
to determine if external storage is presently available or not. On Android 3.0 and
higher, this should be much less of an issue, as they changed how the external
storage is used by the host PC — originally, this used USB Mass Storage Mode (think
thumb drives) and now uses the USB Media Transfer Protocol (think MP3 players).
With MTP, both the Android device and the PC it is connected to can have access to
the files simultaneously; Mass Storage Mode would only allow the host PC to have
access to the files if external storage is mounted.

Nowadays, you can use getStorageState() on the Environment class (or
getStorageState() on the EnvironmentCompat class from the Android Support
package) to find out the state of external storage, for the particular File passed as a
parameter.

Letting the User See Your Files

The switch to MTP has one side-effect for Android developers: files you write to
external storage may not be automatically visible to the user. At the time of this
writing, the only files that will show up on the user’s PC will be ones that have been
indexed by the MediaStore. While the MediaStore is typically thought of as only
indexing “media” (images, audio files, video files, etc.), it was given the added role in
Android 3.0 of maintaining an index of all files for the purposes of MTP.

ASSETS, FILES, AND DATA PARSING

418

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your file that you place on external storage will not be indexed automatically simply
by creating it and writing to it. Eventually, it will be indexed, though it may be quite
some time for an automatic indexing pass to take place.

To force Android to index your file, you can use scanFile() on
MediaScannerConnection:

String[] paths={pathToYourNewFileOnExternalStorage};
MediaScannerConnection.scanFile(thisthis, paths, nullnull, nullnull);

The third parameter to scanFile() is an array of MIME types, to line up with the
array of paths in the second parameter. If your file is some form of media, and you
know the MIME type, supplying that will ensure that your media will be visible as
appropriate to the right apps (e.g., images in the Gallery app). Otherwise, Android
will try to infer a MIME type from the file extension.

Limits on External Storage Open Files

Many Android devices will have a per-process limit of 1024 open files, on any sort of
storage. This is usually not a problem for developers.

On some devices — including probably all that are running Android 4.2 and higher
— there is a global limit of 1024 open files on external storage. In other words, all
running apps combined can only open 1024 files simultaneously on external storage.

This means that it is important for you to minimize how many open files on external
storage you have at a time. Having a few open files is perfectly reasonable; having a
few hundred open files is not.

Multiple User Accounts
On Android 4.1 and earlier, each Android device was assumed to be used by just one
person.

On Android 4.2 and higher, though, it is possible for a tablet owner to set up
multiple user accounts. Each user gets their own section of internal and external
storage for files, databases, SharedPreferences, and so forth. From your standpoint,
it is as if the users are really on different devices, even though in reality it is all the
same hardware.

ASSETS, FILES, AND DATA PARSING

419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, this means that paths to internal and external storage now may vary by
user. Hence, it is very important for you to use the appropriate methods, outlined in
this chapter, for finding locations on internal storage (e.g., getFilesDir()) and
external storage (e.g., getExternalFilesDir()).

Some blog posts, StackOverflow answers, and the like will show the use of hard-
coded paths for these locations (e.g., /sdcard or /mnt/sdcard for the root of external
storage). Hard-coding such paths was never a good idea. And, as of Android 4.2,
those paths are simply wrong and will not work.

On Android 4.2 (and perhaps future versions), for the original user of the device,
internal storage will wind up in the same location as before, but external storage will
use a different path. For the second and subsequent users defined on the device,
both internal and external storage will reside in different paths. The various
methods, like getFilesDir(), will handle this transparently for you.

Note that, at the time of this writing, multiple accounts are not available on the
emulators, only on actual tablets. Phones usually will not have multiple-account
support, under the premise that tablets are more likely to be shared than are
phones.

Linux Filesystems: You Sync, You Win
Android is built atop a Linux kernel and uses Linux filesystems for holding its files.
Classically, Android used YAFFS (Yet Another Flash File System), optimized for use
on low-power devices for storing data to flash memory. Many devices still use YAFFS
today.

YAFFS has one big problem: only one process can write to the filesystem at a time.
For those of you into filesystems, rather than offering file-level locking, YAFFS has
partition-level locking. This can become a bit of a bottleneck, particularly as
Android devices grow in power and start wanting to do more things at the same
time like their desktop and notebook brethren.

Android 3.0 switched to ext4, another Linux filesystem aimed more at desktops/
notebooks. Your applications will not directly perceive the difference. However, ext4
does a fair bit of buffering, and it can cause problems for applications that do not
take this buffering into account. Linux application developers ran headlong into this
in 2008–2009, when ext4 started to become popular. Android developers will need
to think about it now… for your own file storage.

ASSETS, FILES, AND DATA PARSING

420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are using SQLite or SharedPreferences, you do not need to worry about this
problem. Android (and SQLite, in the case of SQLite) handle all the buffering issues
for you. If, however, you write your own files, you may wish to contemplate an extra
step as you flush your data to disk. Specifically, you need to trigger a Linux system
call known as fsync(), which tells the filesystem to ensure all buffers are written to
disk.

If you are using java.io.RandomAccessFile in a synchronous mode, this step is
handled for you as well, so you will not need to worry about it. However, Java
developers tend to use FileOutputStream, which does not trigger an fsync(), even
when you call close() on the stream. Instead, you call getFD().sync() on the
FileOutputStream to trigger the fsync(). Note that this may be time-consuming,
and so disk writes should be done off the main application thread wherever
practical, such as via an AsyncTask.

This is why, in EditorFragment, our save() implementation looks like this:

privateprivate void save(String text, File target) throwsthrows IOException {
FileOutputStream fos=newnew FileOutputStream(target);
OutputStreamWriter out=newnew OutputStreamWriter(fos);

out.write(text);
out.flush();
fos.getFD().sync();
out.close();

}

StrictMode: Avoiding Janky Code
Users are more likely to like your application if, to them, it feels responsive. Here, by
“responsive”, we mean that it reacts swiftly and accurately to user operations, like
taps and swipes.

Conversely, users are less likely to be happy with you if they perceive that your UI is
“janky” — sluggish to respond to their requests. For example, maybe your lists do
not scroll as smoothly as they would like, or tapping a button does not yield the
immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be obvious
where you should be applying them. A full-scale performance analysis, using
Traceview or similar Android tools, is certainly possible. However, there are a few
standard sorts of things that developers do, sometimes quite by accident, on the
main application thread that will tend to cause sluggishness:

ASSETS, FILES, AND DATA PARSING

421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Flash I/O, both for internal and external storage
2. Network I/O

However, even here, it may not be obvious that you are performing these operations
on the main application thread. This is particularly true when the operations are
really being done by Android’s code that you are simply calling.

That is where StrictMode comes in. Its mission is to help you determine when you
are doing things on the main application thread that might cause a janky user
experience.

StrictMode works on a set of policies. There are presently two categories of policies:
VM policies and thread policies. The former represent bad coding practices that
pertain to your entire application, notably leaking SQLite Cursor objects and kin.
The latter represent things that are bad when performed on the main application
thread, notably flash I/O and network I/O.

Each policy dictates what StrictMode should watch for (e.g., flash reads are OK but
flash writes are not) and how StrictMode should react when you violate the rules,
such as:

1. Log a message to LogCat
2. Display a dialog
3. Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on StrictMode
from onCreate() of your first activity. This will set up normal operation, reporting
all violations by simply logging to LogCat. However, you can set your own custom
policies via Builder objects if you so choose.

However, do not use StrictMode in production code. It is designed for use when you
are building, testing, and debugging your application. It is not designed to be used
in the field.

In FilesDemoActivity, in addition to loading R.layout.main with our
EditorFragment statically defined, we configure StrictMode, if and only if we are
building a debug version of the app and are on a version of Android that supports
StrictMode:

packagepackage com.commonsware.android.frw;

importimport android.os.Buildandroid.os.Build;

ASSETS, FILES, AND DATA PARSING

422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.StrictModeandroid.os.StrictMode;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass FilesDemoActivityFilesDemoActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ifif (BuildConfig.DEBUG
&& Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {

StrictMode.setThreadPolicy(buildPolicy());
}

}

privateprivate StrictMode.ThreadPolicy buildPolicy() {
returnreturn(newnew StrictMode.ThreadPolicy.Builder().detectAll()

.penaltyLog().build());
}

}

Here, we are asking to flag all faults (detectAll()), logging any violations to LogCat
(penaltyLog()).

If we press the “Save” action bar item, instead of going to the menu and using “Save
in Background”, we will do disk I/O on the main application thread and generate
StrictMode violations as a result:

04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=5 ms: android.os.StrictMode$StrictModeDiskReadViolation:
policy=31 violation=2
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode.
java:1089)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.open(BlockGuardOs.java:106)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.IoBridge.open(IoBridge.java:390)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.<init>(FileOutputStream.java:88)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.<init>(FileOutputStream.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:106)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)
04-19 11:13:41.522: D/StrictMode(1443): at

ASSETS, FILES, AND DATA PARSING

423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenuItemSelected(FragmentActiv
ity.java:357)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWin
dow.java:950)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:149
)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder
.java:874)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.
java:490)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuItemView.onClick(ActionMenuItem
View.java:108)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View.performClick(View.java:3511)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View$PerformClick.run(View.java:14105)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.handleCallback(Handler.java:605)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.dispatchMessage(Handler.java:92)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Looper.loop(Looper.java:137)
04-19 11:13:41.522: D/StrictMode(1443): at
android.app.ActivityThread.main(ActivityThread.java:4424)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invokeNative(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invoke(Method.java:511)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.ja
va:784)

ASSETS, FILES, AND DATA PARSING

424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)
04-19 11:13:41.522: D/StrictMode(1443): at
dalvik.system.NativeStart.main(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=2 ms: android.os.StrictMode$StrictModeDiskWriteViolation:
policy=31 violation=1
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onWriteToDisk(StrictMode.j
ava:1063)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.write(BlockGuardOs.java:190)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.IoBridge.write(IoBridge.java:447)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.write(FileOutputStream.java:187)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.OutputStreamWriter.flushBytes(OutputStreamWriter.java:167)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.OutputStreamWriter.flush(OutputStreamWriter.java:158)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:110)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenuItemSelected(FragmentActiv
ity.java:357)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWin
dow.java:950)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:149

ASSETS, FILES, AND DATA PARSING

425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder
.java:874)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.
java:490)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuItemView.onClick(ActionMenuItem
View.java:108)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View.performClick(View.java:3511)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View$PerformClick.run(View.java:14105)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.handleCallback(Handler.java:605)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.dispatchMessage(Handler.java:92)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Looper.loop(Looper.java:137)
04-19 11:13:41.522: D/StrictMode(1443): at
android.app.ActivityThread.main(ActivityThread.java:4424)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invokeNative(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invoke(Method.java:511)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.ja
va:784)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)
04-19 11:13:41.522: D/StrictMode(1443): at
dalvik.system.NativeStart.main(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=1 ms: android.os.StrictMode$StrictModeDiskWriteViolation:
policy=31 violation=1
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onWriteToDisk(StrictMode.j
ava:1063)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.fsync(BlockGuardOs.java:96)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileDescriptor.sync(FileDescriptor.java:71)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:111)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)

ASSETS, FILES, AND DATA PARSING

426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenuItemSelected(FragmentActiv
ity.java:357)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWin
dow.java:950)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:149
)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder
.java:874)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.
java:490)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuItemView.onClick(ActionMenuItem
View.java:108)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View.performClick(View.java:3511)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View$PerformClick.run(View.java:14105)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.handleCallback(Handler.java:605)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.dispatchMessage(Handler.java:92)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Looper.loop(Looper.java:137)
04-19 11:13:41.522: D/StrictMode(1443): at
android.app.ActivityThread.main(ActivityThread.java:4424)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invokeNative(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invoke(Method.java:511)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.ja
va:784)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)

ASSETS, FILES, AND DATA PARSING

427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-19 11:13:41.522: D/StrictMode(1443): at
dalvik.system.NativeStart.main(Native Method)

While wordy, and logged only at debug severity, this is enough to point out where in
your code the violation occurred — in our case, in onOptionsItemSelected() of
EditorFragment.

Note that StrictMode will also report leaked open files. For example, if you create a
FileOutputStream on a File and fail to close() it later, when the FileOutputStream
(and related objects) are garbage-collected, StrictMode will report to you the fact
that you failed to close the stream. This is very useful to help you make sure that you
are not leaking open files that may contribute to exhausting the 1,024 open file limit
on external storage.

XML Parsing Options
Android supports a fairly standard implementation of the Java DOM and SAX APIs.
If you have existing experience with these, or if you have code that already leverages
them, feel free to use them.

Android also bakes in the XmlPullParser from the xmlpull.org site. Like SAX, the
XmlPullParser is an event-driven interface, compared to the DOM that builds up a
complete data structure and hands you that result. Unlike SAX, which relies on a
listener and callback methods, the XmlPullParser has you pull events off a queue,
ignoring those you do not need and dispatching the rest as you see fit to the rest of
your code.

The primary reason the XmlPullParser was put into Android was for XML-encoded
resources. While you write plain-text XML during development, what is packaged in
your APK file is a so-called “binary XML” format, where angle brackets and
quotation marks and such are replaced by bitfields. This helps compression a bit,
but mostly this conversion is done to speed up parsing. Android’s XML resource
parser can parse this “binary XML” approximately ten times faster than it can parse
the equivalent plain-text XML. Hence, anything you put in an XML resource (res/
xml/) will be parsed similarly quickly.

For plain-text XML content, the XmlPullParser is roughly equivalent, speed-wise, to
SAX. All else being equal, lean towards SAX, simply because more developers will be
familiar with it from classic Java development. However, if you really like the
XmlPullParser interface, feel free to use it.

ASSETS, FILES, AND DATA PARSING

428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xmlpull.org

You are welcome to try a third-party XML parser JAR, but bear in mind that there
may be issues when trying to get it working in Android.

JSON Parsing Options
Android has bundled the org.json classes into the SDK since the beginning, for use
in parsing JSON. These classes have a DOM-style interface: you hand JSONObject a
hunk of JSON, and it gives you an in-memory representation of the completely
parsed result. This is handy but, like the DOM, a bit of a performance hog.

API Level 11 added JSONReader, based on Google’s GSON parser, as a “streaming”
parser alternative. JSONReader is much more reminiscent of the XmlPullParser, in
that you pull events out of the “reader” and process them. This can have significant
performance advantages, particularly in terms of memory consumption, if you do
not need the entire JSON data structure. However, this is only available on API Level
11 and higher.

Because JSONReader is a bit “late to the party”, there has been extensive work on
getting other JSON parsers working on Android. The best third-party option today is
Jackson. Jackson offers a few APIs, and the streaming API reportedly works very
nicely on Android with top-notch performance.

Visit the Trails!
In addition to this chapter, you can learn more about accessing multimedia files via
the MediaStore and learn more about the impacts of multiple user accounts on
tablets.

ASSETS, FILES, AND DATA PARSING

429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://jackson.codehaus.org/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #11 - Adding Simple Content

Now that we have seen how to work with assets, we can start putting them to use, by
defining some “help” and “about” HTML files and displaying them in their respective
activities.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Adding Some Content
Your project should already have an assets/ folder. If not, create one. In Eclipse, you
would do this by right-clicking over the project in the Package Explorer, choosing
New > Folder from the context menu, filling in the name assets in the dialog, and
clicking “Finish”.

In assets/, create a misc/ sub-folder — Eclipse users would use the same technique
as above, but start by right-clicking over the assets/ folder instead of the project.

In assets/misc/, create two files, about.html and help.html. Eclipse users can
create files by right-clicking over the folder, choosing New > File from the context
menu, supplying the name of the file, and clicking “Finish”. The actual HTML
content of these two files does not matter, so long as you can tell them apart when

431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T10-ViewPager
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

looking at them. If you prefer, you can download sample about.html and help.html
files from the application’s GitHub repository, via the links.

Eclipse users should note that the default behavior of double-clicking on an HTML
file in the IDE is to open it in some Eclipse-supplied internal browser. This is not
especially useful. If you right-click over the file and choose Open With > Text Editor,
from that point forward that specific file will be opened in an editor pane you can
use to add or edit the HTML you want to have.

Step #2: Create a SimpleContentFragment
Now, we need to arrange to load this content. WebViewFragment and
AbstractContentFragment are fine and all, but neither know how to actually load
anything. In AbstractContentFragment, this is handled by getPage(), which is an
abstract method. So, let’s create a SimpleContentFragment subclass of
AbstractContentFragment that knows how to load files out of our project’s assets.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
SimpleContentFragment in the “Name” field. Then, click the “Browse…” button next
to the “Superclass” field and find AbstractContentFragment to set as the superclass.
Then, click “Finish” on the new-class dialog to create the SimpleContentFragment
class.

Then, replace its contents with the following:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SimpleContentFragmentSimpleContentFragment extendsextends AbstractContentFragment {
privateprivate staticstatic finalfinal String KEY_FILE="file";

protectedprotected staticstatic SimpleContentFragment newInstance(String file) {
SimpleContentFragment f=newnew SimpleContentFragment();

Bundle args=newnew Bundle();

TUTORIAL #11 - ADDING SIMPLE CONTENT

432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/about.html
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/about.html
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/help.html
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/help.html

args.putString(KEY_FILE, file);
f.setArguments(args);

returnreturn(f);
}

@Override
String getPage() {

returnreturn(getArguments().getString(KEY_FILE));
}

}

Outside of Eclipse

Create a src/com/commonsware/empublite/SimpleContentFragment.java source
file, with the content shown above.

Step #3: Examining SimpleContentFragment
SimpleContentFragment does indeed override our getPage() abstract method. What
it returns is a value out of the “arguments” Bundle supplied to the fragment —
specifically the string identified as KEY_FILE.

SimpleContentFragment sets up those arguments via a newInstance() static factory
method. This method creates an instance of SimpleContentFragment, takes a
passed-in String (pointing to the file to load), puts it in a Bundle identified as
KEY_FILE, hands the Bundle to the fragment as its arguments, and returns the
newly-created SimpleContentFragment.

This means that anyone wanting to use SimpleContentFragment should use the
factory method, to provide the path to the content to load.

Step #4: Using SimpleContentFragment
Now, we need to use this fragment in an activity somewhere. We already set up a
stub SimpleContentActivity for this purpose, but we left its implementation
completely empty.

Now, open up SimpleContentActivity and fill in the following Java:

packagepackage com.commonsware.empublite;

TUTORIAL #11 - ADDING SIMPLE CONTENT

433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass SimpleContentActivitySimpleContentActivity extendsextends SherlockFragmentActivity {
publicpublic staticstatic finalfinal String EXTRA_FILE="file";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==

nullnull) {
String file=getIntent().getStringExtra(EXTRA_FILE);
Fragment f=SimpleContentFragment.newInstance(file);
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content, f).commit();
}

}
}

In onCreate(), we follow the standard recipe for defining our fragment if (and only
if) we were started new, rather than restarted after a configuration change, by seeing
if the fragment already exists. If we do need to add the fragment, we retrieve a string
extra from the Intent used to launch us (identified as EXTRA_FILE), create an
instance of SimpleContentFragment using that value from the extra, and execute a
FragmentTransaction to add the SimpleContentFragment to our UI.

Step #5: Launching Our Activities, For Real This
Time
Now, what remains is to actually supply that EXTRA_FILE value, which we are not
doing presently when we start up SimpleContentActivity from EmPubLiteActivity.

Modify onOptionsItemSelected() of EmPubLiteActivity to look like this:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase android.R.id.home:

returnreturn(truetrue);

casecase R.id.about:
Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE,
"file:///android_asset/misc/about.html");

startActivity(i);

TUTORIAL #11 - ADDING SIMPLE CONTENT

434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(truetrue);

casecase R.id.help:
i=newnew Intent(thisthis, SimpleContentActivity.class);
i.putExtra(SimpleContentActivity.EXTRA_FILE,

"file:///android_asset/misc/help.html");

startActivity(i);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

You are adding the two putExtra() calls in the R.id.about and R.id.help branches
of the switch statement. In both cases, we are using a quasi-URL with the prefix
file:///android_asset/. This points to the root of our project’s assets/ folder.
WebView knows how to interpret these URLs, to load files out of our assets directly.

Now, if you run the application and choose “Help” from the action bar overflow, you
will see your help content on-screen:

Figure 173: EmPubLite Help Screen

TUTORIAL #11 - ADDING SIMPLE CONTENT

435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Pressing BACK and choosing “About” from the action bar overflow will bring up your
about content:

Figure 174: EmPubLite About Screen

In Our Next Episode…
… we will display the actual content of our book in our tutorial project.

TUTORIAL #11 - ADDING SIMPLE CONTENT

436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #12 - Displaying the Book

At this point, you are probably wondering when we are ever going to have our digital
book reader let us read a digital book.

Now, in this tutorial, your patience will be rewarded.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Adding a Book
First, we need a book. Expecting you to write a book as part of this tutorial would
seem to be a bit excessive. So, instead, we will use an already-written book: The War
of the Worlds, by H. G. Wells, as distributed by Project Gutenberg.

EDITOR’S NOTE: We realize that this choice of book may be seen as offensive by
Martians, as it depicts them as warlike invaders with limited immune systems.
Please understand that this book is a classic of Western literature and reflects the
attitude of the times. If you have any concerns about this material, please contact us
at martians-so-do-not-exist@commonsware.com.

437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T12-Book
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock
http://www.gutenberg.org/ebooks/36
http://www.gutenberg.org/ebooks/36
http://www.gutenberg.org

Download http://misc.commonsware.com/WarOfTheWorlds.zip and unpack its
contents (a book/ directory of files) into your assets/ folder of your project. Eclipse
users can drag this book/ directory into the Package Explorer and drop it in assets/
to copy the files to the proper location. You should wind up with assets/book/ and
files inside of there.

In that directory, you will find some HTML and CSS files with the prose of the book,
plus a contents.json file with metadata. We will examine this metadata in greater
detail in the next section.

Step #2: Defining Our Model
That contents.json file contains a bit of metadata about the contents of the book:
the book’s title and a roster of its “chapters”:

{
"title": "The War of the Worlds",
"chapters": [

{
"file": "0.htm",
"title": "Book One: Chapters 1-9"

},
{

"file": "1.htm",
"title": "Book One: Chapters 10-14"

},
{

"file": "2.htm",
"title": "Book One: Chapters 14-17"

},
{

"file": "3.htm",
"title": "Book Two: Chapters 1-7"

},
{

"file": "4.htm",
"title": "Book Two: Chapters 7-10"

},
{

"file": "5.htm",
"title": "Project Gutenberg"

}
]

}

In the case of this book from Project Gutenberg, the assets/book/ directory
contains five HTML files which EmPubLite will consider as “chapters”, even though

TUTORIAL #12 - DISPLAYING THE BOOK

438

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/WarOfTheWorlds.zip

each of those HTML files contains multiple chapters from the source material. You
are welcome to reorganize that HTML if you wish, updating contents.json to
match.

We need to load contents.json into memory, so EmPubLite knows how many
chapters to display and where those chapters can be found. We will pour
contents.json into a BookContents model object, leveraging the org.json parsing
classes.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in BookContents in the
“Name” field. Leave the “Superclass” field alone, as BookContents has no explicit
superclass. Then, click “Finish” on the new-class dialog to create the BookContents
class.

Then, with BookContents open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass BookContentsBookContents {
JSONObject raw=nullnull;
JSONArray chapters;

BookContents(JSONObject raw) {
thisthis.raw=raw;
chapters=raw.optJSONArray("chapters");

}

int getChapterCount() {
returnreturn(chapters.length());

}

String getChapterFile(int position) {
JSONObject chapter=chapters.optJSONObject(position);

returnreturn(chapter.optString("file"));
}

TUTORIAL #12 - DISPLAYING THE BOOK

439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String getTitle() {
returnreturn(raw.optString("title"));

}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/BookContents.java source file, with the
content shown above.

Step #3: Examining Our Model
Our BookContents constructor takes a JSONObject parameter. This will be supplied
by some other code that we have not yet written, and it will contain the entire
contents.json structure. JSONObject behaves a bit like the XML DOM, in that it
holds the entire parsed content in memory.

BookContents is partially a wrapper around the JSONObject, offering getters for
specific bits of information, notably:

• getChapterCount() to identify the number of chapters (i.e., the size of the
JSONArray created from our chapters array in the JSON)

• getChapterFile(), to return the relative path within assets/book/ that
represents our “chapter” of HTML

• getTitle() to retrieve the book title out of the object

Step #4: Creating a ModelFragment
Something has to load that BookContents, ideally in the background, since reading
an asset and parsing the JSON will take time.

Something has to hold onto that BookContents, so it can be used from
EmPubLiteActivity and the various chapter fragments in the ViewPager.

In our case, we will use the “model fragment” approach outlined in a previous
chapter, with a new class, cunningly named ModelFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

TUTORIAL #12 - DISPLAYING THE BOOK

440

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in ModelFragment in
the “Name” field. Then, click the “Browse…” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Then, click “Finish” on the new-class
dialog to create the ModelFragment class.

Finally, paste in the following definition for ModelFragment:

packagepackage com.commonsware.empublite;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.content.Contextandroid.content.Context;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass ModelFragmentModelFragment extendsextends SherlockFragment {
privateprivate BookContents contents=nullnull;
privateprivate ContentsLoadTask contentsTask=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);
deliverModel();

}

synchronizedsynchronized privateprivate void deliverModel() {
ifif (contents != nullnull) {

((EmPubLiteActivity)getActivity()).setupPager(contents);
}
elseelse {

ifif (contents == nullnull && contentsTask == nullnull) {
contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}

}
}

@TargetApi(11)
staticstatic publicpublic <T> void executeAsyncTask(AsyncTask<T, ?, ?> task,

TUTORIAL #12 - DISPLAYING THE BOOK

441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

T... params) {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
}
elseelse {

task.execute(params);
}

}

privateprivate classclass ContentsLoadTaskContentsLoadTask extendsextends AsyncTask<Context, Void, Void> {
privateprivate BookContents localContents=nullnull;
privateprivate Exception e=nullnull;

@Override
protectedprotected Void doInBackground(Context... ctxt) {

trytry {
StringBuilder buf=newnew StringBuilder();
InputStream json=ctxt[0].getAssets().open("book/contents.json");
BufferedReader in=

newnew BufferedReader(newnew InputStreamReader(json));
String str;

whilewhile ((str=in.readLine()) != nullnull) {
buf.append(str);

}

in.close();

localContents=newnew BookContents(newnew JSONObject(buf.toString()));
}
catchcatch (Exception e) {

thisthis.e=e;
}

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void arg0) {

ifif (e == nullnull) {
ModelFragment.this.contents=localContents;
ModelFragment.this.contentsTask=nullnull;
deliverModel();

}
elseelse {

Log.e(getClass().getSimpleName(), "Exception loading contents",
e);

}
}

}
}

TUTORIAL #12 - DISPLAYING THE BOOK

442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that Eclipse is going to complain that a non-existent setupPager() is being
called, but we will fix that later in this chapter.

Outside of Eclipse

Create a src/com/commonsware/empublite/ModelFragment.java source file, with the
content shown above.

Step #5: Examining the ModelFragment
The point behind ModelFragment is to load our data (asynchronously) and hold onto
it, using the retained-fragment pattern.

The catch is that even though we are retaining the fragment and holding onto the
model data, the activity housing this fragment will still be destroyed and recreated
on a configuration change, like a screen rotation. So, the first time our fragment is
used, we need to load the content; the second and subsequent times the fragment is
used, we need to simply hand over the already-loaded content. Combine that with
the (slight) possibility that the user might rotate the screen before we completed
loading the content the first time, and things can get a wee bit complicated.

ModelFragment overrides onActivityCreated(), to get control once
EmPubLiteActivity has created the ViewPager and so on. Here, we call
setRetainInstance(true), so the work we do to load the BookContents does not
evaporate, and we call a deliverModel() method.

The deliverModel() method is responsible for determining if we have our model
data, handing that over to the activity (via setupPager()) if we do, or starting a
ContentsLoadTask if we do not.

Starting a ContentsLoadTask is delegated to a static executeAsyncTask() method
that is designed to work around the limitation established in API Level 14, where
AsyncTask becomes serialized, with only one task executing at a time. While we only
have one task at the moment, that will change soon enough. And, while we have our
android:targetSdkVersion set to 11, and therefore the serialized AsyncTask
behavior should not take effect (that requires a value of 14 or higher), it is good form
to start addressing this sooner rather than later. The details of what
executeAsyncTask() is doing and how it is doing it will be covered in a later
chapter.

TUTORIAL #12 - DISPLAYING THE BOOK

443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You may notice that we are calling executeAsyncTask() with a parameter of
getActivity().getApplicationContext(). getApplicationContext() returns a
singleton Context object (actually an instance of an Application). This is useful in
cases where we need a Context that will be around all the time. It is unsafe for us to
reference an Activity in a background thread, as the Activity could conceivably be
destroyed while the thread is in operation. The Application will not be destroyed so
long as our process is running, so it is safer to use from a background thread.

The ContentsLoadTask itself is an AsyncTask, much akin to others we have seen so
far in this book. In doInBackground(), we read in assets/book/contents.json by
means of an AssetManager (obtained from the Context via getAssets()) and its
open() method. This returns an InputStream, which we stream into a
StringBuilder. We then parse that as JSON using JSONObject, passing the result
into a BookContents instance.

In onPostExecute(), we take advantage of the fact that this is called on the main
application thread, meaning we are not executing anything else on the main
application thread at the time. So, it is safe for us to update our contents and
contentsTask data members, plus trigger a call to deliverModel(), which will pass
the BookContents along to the EmPubLiteActivity. If something went wrong during
the JSON load, and we had an exception, doInBackground() saves that in a data
member of the ContentsLoadTask. onPostExecute() could arrange to display the
error message to the user — for simplicity, we are only logging it to LogCat at the
moment.

Step #6: Supplying the Content
Now, we need to add that missing setupPager() method on EmPubLiteActivity.
Define the method, taking a BookContents as a parameter, and returning void:

void setupPager(BookContents contents) {
}

Move these four lines from onCreate() to setupPager():

adapter=newnew ContentsAdapter(thisthis);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

TUTORIAL #12 - DISPLAYING THE BOOK

444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finally, pass the BookContents to the ContentsAdapter constructor as the second
parameter, despite the fact that Eclipse will complain because we have not
implemented that yet (we will shortly). You should wind up with a setupPager()
that resembles:

void setupPager(BookContents contents) {
adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

}

We also need to add some code to set up the ModelFragment — it will not magically
appear on its own. So, the first time we create an EmPubLiteActivity, we want to
create our ModelFragment. To do that, define a static data member named MODEL in
EmPubLiteActivity:

privateprivate staticstatic finalfinal String MODEL="model";

Then, modify onCreate() to see if we already have the fragment before creating one:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentByTag(MODEL) == nullnull) {
getSupportFragmentManager().beginTransaction()

.add(newnew ModelFragment(), MODEL)

.commit();
}

setContentView(R.layout.main);

pager=(ViewPager)findViewById(R.id.pager);
}

Step #7: Adapting the Content
Finally, we need to update ContentsAdapter to actually use the BookContents and
display the prose on the screen.

First, add a BookContents data member to ContentsAdapter:

privateprivate BookContents contents=nullnull;

TUTORIAL #12 - DISPLAYING THE BOOK

445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, add the BookContents parameter to the constructor, assigning it to the new
data member:

publicpublic ContentsAdapter(SherlockFragmentActivity ctxt,
BookContents contents) {

supersuper(ctxt.getSupportFragmentManager());

thisthis.contents=contents;
}

Next, update getCount() to use the getChapterCount() of our BookContents:

@Override
publicpublic int getCount() {

returnreturn(contents.getChapterCount());
}

Finally, modify getItem() to retrieve the relative path for a given chapter from the
BookContents and create a SimpleContentFragment on the complete
file:///android_asset path to the file in question:

@Override
publicpublic Fragment getItem(int position) {

String path=contents.getChapterFile(position);

returnreturn(SimpleContentFragment.newInstance("file:///android_asset/book/"
+ path));

}

If you run the result in a device or emulator, you will see the book content appear:

TUTORIAL #12 - DISPLAYING THE BOOK

446

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 175: EmPubLite, With Content

Swiping left and right will take you to the other chapters in the book.

Step #8: Going Home, Again
We can now take advantage of the icon in the action bar (a.k.a., the “app icon”),
using it to bring us back to the first chapter. While the first chapter in our book is
not very distinctive compared to the other chapters, you might have a table of
contents or a cover or something as the first “chapter”.

The big thing that you need to do to support this is add one line to our
android.R.id.home portion of the switch() in onOptionsItemSelected(), telling
the ViewPager to go back to the first page:

casecase android.R.id.home:
pager.setCurrentItem(0, falsefalse);
returnreturn(truetrue);

You also need to teach the action bar to support taps on this “app icon”, by adding
this line to the bottom of your onCreate() of EmPubLiteActivity:

TUTORIAL #12 - DISPLAYING THE BOOK

447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getSupportActionBar().setHomeButtonEnabled(truetrue);

If you run this on a device or emulator, swipe to some later chapter, then tap the
icon in the upper-left corner, you will be returned to the first chapter.

In Our Next Episode…
… we will allow the user to manipulate some preferences in our tutorial project.

TUTORIAL #12 - DISPLAYING THE BOOK

448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Preferences

Android has many different ways for you to store data for long-term use by your
activity. The simplest ones to use are SharedPreferences and simple files.

Android allows activities and applications to keep preferences, in the form of key/
value pairs (akin to a Map), that will hang around between invocations of an activity.
As the name suggests, the primary purpose is for you to store user-specified
configuration details, such as the last feed the user looked at in your feed reader, or
what sort order to use by default on a list, or whatever. Of course, you can store in
the preferences whatever you like, so long as it is keyed by a String and has a
primitive value (boolean, String, etc.)

Preferences can either be for a single activity or shared among all activities in an
application. Other components, such as services, also can work with shared
preferences.

Getting What You Want
To get access to the preferences, you have three APIs to choose from:

• getPreferences() from within your Activity, to access activity-specific
preferences

• getSharedPreferences() from within your Activity (or other application
Context), to access application-level preferences

• getDefaultSharedPreferences(), on PreferenceManager, to get the shared
preferences that work in concert with Android’s overall preference
framework

449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The first two take a security mode parameter — the right answer here is
MODE_PRIVATE, so no other applications can access the file. The
getSharedPreferences() method also takes a name of a set of preferences —
getPreferences() effectively calls getSharedPreferences() with the activity’s class
name as the preference set name. The getDefaultSharedPreferences() method
takes the Context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a series
of getters to access named preferences, returning a suitably-typed result (e.g.,
getBoolean() to return a boolean preference). The getters also take a default value,
which is returned if there is no preference set under the specified key.

Unless you have a good reason to do otherwise, you are best served using the third
option above — getDefaultSharedPreferences() — as that will give you the
SharedPreferences object that works with a PreferenceActivity by default, as will
be described later in this chapter.

Stating Your Preference
Given the appropriate SharedPreferences object, you can use edit() to get an
“editor” for the preferences. This object has a set of setters that mirror the getters on
the parent SharedPreferences object. It also has:

1. remove() to get rid of a single named preference
2. clear() to get rid of all preferences
3. apply() or commit() to persist your changes made via the editor

The last one is important — if you modify preferences via the editor and fail to save
the changes, those changes will evaporate once the editor goes out of scope.
commit() is a blocking call, while apply() works asynchronously. Ideally, use
apply() where possible, though it was only added in Android 2.3, so it may not be
available to you if you are aiming to support earlier versions of Android than that.

Conversely, since the preferences object supports live changes, if one part of your
application (say, an activity) modifies shared preferences, another part of your
application (say, a service) will have access to the changed value immediately.

USING PREFERENCES

450

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing PreferenceActivity
You could roll your own activity to collect preferences from the user. On the whole,
this is a bad idea. Instead, use preference XML resources and a PreferenceActivity.

Why?

One of the common complaints about Android developers is that they lack
discipline, not following any standards or conventions inherent in the platform. For
other operating systems, the device manufacturer might prevent you from
distributing apps that violate their human interface guidelines. With Android, that
is not the case — but this is not a blanket permission to do whatever you want.
Where there is a standard or convention, please follow it, so that users will feel more
comfortable with your app and their device.

Using a PreferenceActivity for collecting preferences is one such convention.

The linchpin to the preferences framework and PreferenceActivity is yet another
set of XML data structures. You can describe your application’s preferences in XML
files stored in your project’s res/xml/ directory. Given that, Android can present a
pleasant UI for manipulating those preferences, which are then stored in the
SharedPreferences you get back from getDefaultSharedPreferences().

To see how all of this works, take a look at the Prefs/FragmentsBC sample project.

What We Are Aiming For

This project’s main activity hosts a TableLayout, into which we will load the values
of five preferences:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/checkbox"/>/>

<TextView<TextView
android:id="@+id/checkbox"
style="@style/value"/>/>

USING PREFERENCES

451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/FragmentsBC
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/FragmentsBC

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/ringtone"/>/>

<TextView<TextView
android:id="@+id/ringtone"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/checkbox2"/>/>

<TextView<TextView
android:id="@+id/checkbox2"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/text"/>/>

<TextView<TextView
android:id="@+id/text"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/list"/>/>

<TextView<TextView
android:id="@+id/list"
style="@style/value"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

The above layout is used by PreferenceContentsFragment, which populates the
right-hand column of TextView widgets at runtime in onResume(), pulling the values
from the default SharedPreferences for our application:

USING PREFERENCES

452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.preffragsbc;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass PreferenceContentsFragmentPreferenceContentsFragment extendsextends SherlockFragment {
privateprivate TextView checkbox=nullnull;
privateprivate TextView ringtone=nullnull;
privateprivate TextView checkbox2=nullnull;
privateprivate TextView text=nullnull;
privateprivate TextView list=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.content, parent, falsefalse);

checkbox=(TextView)result.findViewById(R.id.checkbox);
ringtone=(TextView)result.findViewById(R.id.ringtone);
checkbox2=(TextView)result.findViewById(R.id.checkbox2);
text=(TextView)result.findViewById(R.id.text);
list=(TextView)result.findViewById(R.id.list);

returnreturn(result);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(getActivity());

checkbox.setText(Boolean.valueOf(prefs.getBoolean("checkbox",
falsefalse)).toString());

ringtone.setText(prefs.getString("ringtone", "<unset>"));
checkbox2.setText(Boolean.valueOf(prefs.getBoolean("checkbox2",

falsefalse)).toString());
text.setText(prefs.getString("text", "<unset>"));
list.setText(prefs.getString("list", "<unset>"));

}
}

The main activity, FragmentsDemo, simply loads res/layout/main.xml, which
contains a <fragment> element pointing at PreferenceContentsFragment. It also
defines an options menu, which we will examine later in this section.

USING PREFERENCES

453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The result is an activity showing the default values of the preferences when it is first
run, since we have not set any values yet:

Figure 176: Activity Showing Preference Values

We will also have two flavors of a PreferenceActivity, to collect the preferences
from the user. Those preferences will be divided into two “preference headers”,
following the two-pane preference UI adopted with Android 3.0:

USING PREFERENCES

454

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 177: Android 4.0 PreferenceActivity, on Tablet

On a phone-sized screen, those panes become two separate screens, the first
showing the list of headers:

USING PREFERENCES

455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 178: Android 4.0 PreferenceActivity, on Phone

and the second showing the contents of a specific header:

USING PREFERENCES

456

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 179: Android 4.0 PreferenceActivity, on Phone, Showing Second Preference
Header

On Android 1.x and 2.x, where preference headers do not exist, we will instead show
all of the preferences in one long list:

USING PREFERENCES

457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 180: Android 2.3.3 PreferenceActivity

Defining Your Preferences

First, you need to tell Android what preferences you are trying to collect from the
user.

To do this, you will need to add a res/xml/ directory to your project, if one does not
already exist. Then, for each preference header, you will want an XML file in res/
xml/ to contain the definition of the preferences you want to appear in that header.

The root element of this XML file will be <PreferenceScreen>, and it will contain
child elements, one per preference.

For example, here is the second preference header’s preferences, from res/xml/
preference2.xml:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<CheckBoxPreference<CheckBoxPreference
android:key="checkbox2"
android:summary="@string/pref5summary"
android:title="@string/pref5title"/>/>

USING PREFERENCES

458

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</PreferenceScreen></PreferenceScreen>

There is a single <CheckBoxPreference> element inside the <PreferenceScreen>,
allowing the user to toggle a boolean value via a CheckBox widget.

Each preference element has three attributes at minimum:

1. android:key, which is the key you use to look up the value in the
SharedPreferences object via methods like getInt()

2. android:title, which is a few words identifying this preference to the user
3. android:summary, which is a short sentence explaining what the user is to

supply for this preference

We will examine more preference elements later in this chapter.

Defining Your Preference Headers

There is another XML resource you will need to define, one containing details about
your preference headers. In this sample project, that is found in res/xml/
preference_headers.xml:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

<header<header
android:fragment="com.commonsware.android.preffragsbc.EditPreferences$First"
android:summary="@string/header1summary"
android:title="@string/header1title">>

</header></header>
<header<header

android:fragment="com.commonsware.android.preffragsbc.EditPreferences$Second"
android:summary="@string/header2summary"
android:title="@string/header2title">>

</header></header>

</preference-headers></preference-headers>

Here, your root element is <preference-headers>, containing a series of <header>
elements. Each <header> contains at least three attributes:

1. android:fragment, which identifies the Java class implementing the
PreferenceFragment to use for this header, as is described in the next
section

2. android:title, which is a few words identifying this header to the user

USING PREFERENCES

459

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. android:summary, which is a short sentence explaining what the user will
find inside of this header

You can, if you wish, include one or more <extra> child elements inside the
<header> element. These values will be put into the “arguments” Bundle that your
PreferenceFragment can retrieve via getArguments().

Creating Your PreferenceFragments

Preference XML, on API Level 11 and higher, is loaded by an implementation of
PreferenceFragment. The mission of PreferenceFragment is to call
addPreferencesFromResource() in onCreate(), supplying the resource ID of the
preference XML to load for a particular preference header (e.g., R.xml.preference2).

There are two ways you can go about doing this. One is to create a dedicated
PreferenceFragment subclass per preference header. The other is to create a single
reusable PreferenceFragment implementation that can load up the preference XML
for any preference header.

This sample app takes the former approach. Our FragmentActivity implementation
— named EditPreferences — has a pair of static inner classes representing the
preference fragments:

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

ifif (First.class.getName().equals(fragmentName)
|| Second.class.getName().equals(fragmentName)) {

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
publicpublic staticstatic classclass FirstFirst extendsextends PreferenceFragment {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
}

}

Each of those PreferenceFragment implementations has an onCreate() method
that calls addPreferencesFromResource() for its specific preferences.

USING PREFERENCES

460

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will illustrate the other approach, of creating a reusable PreferenceFragment,
later in this chapter.

Creating Your PreferenceActivity

In an ideal world, the Android Support package would have an implementation of
PreferenceActivity that uses preference headers and supports older versions of
Android. In an ideal world, authors of Android books would have great hair. Hence,
it is not an ideal world.

This causes some difficulty, insofar as API Level 11’s PreferenceActivity would
really like to use preference headers, and previous API levels do not support them at
all.

Hence, we have to get a bit creative in our EditPreferences implementation of
PreferenceActivity:

packagepackage com.commonsware.android.preffragsbc;

importimport java.util.Listjava.util.List;
importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;
importimport com.actionbarsherlock.app.SherlockPreferenceActivitycom.actionbarsherlock.app.SherlockPreferenceActivity;

publicpublic classclass EditPreferencesEditPreferences extendsextends SherlockPreferenceActivity {
@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {
addPreferencesFromResource(R.xml.preferences);
addPreferencesFromResource(R.xml.preferences2);

}
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void onBuildHeaders(List<Header> target) {

loadHeadersFromResource(R.xml.preference_headers, target);
}

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

ifif (First.class.getName().equals(fragmentName)
|| Second.class.getName().equals(fragmentName)) {

returnreturn(truetrue);

USING PREFERENCES

461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

returnreturn(falsefalse);
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
publicpublic staticstatic classclass FirstFirst extendsextends PreferenceFragment {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
}

}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
publicpublic staticstatic classclass SecondSecond extendsextends PreferenceFragment {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences2);
}

}
}

Our onCreate() entry point is called no matter what version of Android we are
running on. However, for API Level 11+, there is a different callback,
onBuildHeaders(), that we use to supply the preference headers, via a call to
loadHeadersFromResource().

onBuildHeaders() will only be called on API Level 11 and higher. Hence, there is no
danger in having that method exist on older devices — it will simply be ignored.

However, on older devices, we must arrange to set up the preferences some other
way. The original way to define preferences for a PreferenceActivity was to call
addPreferencesFromResource(), once for each preference XML file, identifying the
preferences to load. Hence, we have a pair of addPreferencesFromResource() calls
in onCreate() to load our preference XML.

However, we do not want to go through that code block if we are on API Level 11+, as
we will wind up with duplicated preferences: one set from the
addPreferencesFromResource() calls and one set from the onBuildHeaders() logic.
Hence, we wrap the addPreferencesFromResource() calls in a version guard block.
The android.os.Build class has an inner class named VERSION, which itself has a
static data member named SDK_INT, which returns the API level that the device is
running. We can compare this to Build.VERSION_CODES.HONEYCOMB to see if we are

USING PREFERENCES

462

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

on API Level 11 or something older, and only use addPreferencesFromResource() if
we are on older devices.

We will see this version guard block technique in greater detail in a later chapter.

But, the net result is that our PreferenceActivity loads up the preferences to show
to the user, using the preference header style on API Level 11 and up, and using a
single list of preferences on older versions of Android.

We also need to have an isValidFragment() method, that will return true if the
supplied fragment name is one we should be showing in this PreferenceActivity,
false otherwise. This will only be called on Android 4.4+. However, we need to set
up the project build target (e.g., Project > Preferences > Android in Eclipse) to API
Level 19 or higher. Failing to have this method will cause your app to crash on
Android 4.4+ devices, when the user tries to bring up one of your
PreferenceFragments.

Types of Preferences
There are a variety of subclasses of Preference in the Android SDK for use with
PreferenceActivity. This section will outline the major ones as of Android 4.0.3.

CheckBoxPreference and SwitchPreference

The sample application shown above has a pair of CheckBoxPreference elements,
one per preference XML file. A CheckBoxPreference is an “inline” preference, in that
the widget the user interacts with (in this case, a CheckBox) is part of the preference
screen itself, rather than contained in a separate dialog.

SwitchPreference is functionally equivalent to CheckBoxPreference, insofar as both
collect boolean values from the user. The difference is that SwitchPreference uses a
Switch widget that the user slides left and right to toggle between “on” and “off”
states.

EditTextPreference

EditTextPreference, when tapped by the user, pops up a dialog that contains an
EditText widget. You can configure this widget via attributes on the
<EditTextPreference> element — in addition to standard preference attributes like

USING PREFERENCES

463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:key, you can include any attribute understood by EditText, such as
android:inputType.

The value stored in the SharedPreferences is a string.

RingtonePreference

RingtonePreference pops up a dialog with a list of ringtones installed on the device
or emulator. However, note that the Android emulator does not come with any
ringtones at the present time.

In addition to the standard preference attributes, you can include
android:showDefault, indicating that the list should contain a “Default ringtone”
option. If the user chooses this ringtone, they are effectively choosing the same
ringtone that they have set up for incoming phone calls.

You can also use android:showSilent, which allows the user to choose a “Silence”
pseudo-ringtone, to indicate not to play any ringtone.

For example, res/xml/preferences.xml from the sample project contains a
RingtonePreference:

<RingtonePreference<RingtonePreference
android:key="ringtone"
android:showDefault="true"
android:showSilent="true"
android:summary="@string/pref2summary"
android:title="@string/pref2title"/>/>

The value stored in the SharedPreferences is a string, specifically the string
representation of a Uri pointing to a ContentProvider that can serve up the
ringtone for playback. The use of ContentProvider will be covered in a later chapter,
and playing back media like ringtones will be covered in another later chapter.

ListPreference and MultiSelectListPreference

Visually, a ListPreference looks just like RingtonePreference, except that you
control what goes into the list. You do this by specifying a pair of string-array
resources in your preference XML.

String resources hold individual strings; string array resources hold a collection of
strings. Typically, you will find string array resources in res/values/arrays.xml and

USING PREFERENCES

464

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

related resource sets for translation. The <string-array> element has the name
attribute to identify the resource, along with child <item> elements for the
individual strings in the array.

For example, the sample application profiled in this chapter has a pair of string array
resources in res/values/arrays.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string-array<string-array name="cities">>
<item><item>Philadelphia</item></item>
<item><item>Pittsburgh</item></item>
<item><item>Allentown/Bethlehem</item></item>
<item><item>Erie</item></item>
<item><item>Reading</item></item>
<item><item>Scranton</item></item>
<item><item>Lancaster</item></item>
<item><item>Altoona</item></item>
<item><item>Harrisburg</item></item>

</string-array></string-array>
<string-array<string-array name="airport_codes">>

<item><item>PHL</item></item>
<item><item>PIT</item></item>
<item><item>ABE</item></item>
<item><item>ERI</item></item>
<item><item>RDG</item></item>
<item><item>AVP</item></item>
<item><item>LNS</item></item>
<item><item>AOO</item></item>
<item><item>MDT</item></item>

</string-array></string-array>
</resources></resources>

One of these (cities) will be the values the user sees in the list, and is associated
with our preference via the android:entries attribute. The other (airport_codes)
will be the corresponding values stored in the SharedPreferences as a string, and is
associated with our preference via the android:entryValues attribute:

<ListPreference<ListPreference
android:dialogTitle="@string/listdialogtitle"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:key="list"
android:summary="@string/pref4summary"
android:title="@string/pref4title"/>/>

We also use android:dialogTitle to provide the caption for the dialog:

USING PREFERENCES

465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 181: ListPreference on Android 4.0.3

When the user chooses a value (e.g., “Allentown/Bethlehem”), the corresponding
value out of the other string array resource is stored in the SharedPreferences (e.g.,
“ABE”).

MultiSelectListPreference works much the same way, except:

• The list contains checkboxes, not radio buttons
• The user can check multiple items
• The result is stored in a “string set” in the SharedPreferences, retrieved via
getStringSet()

• It is only available on API Level 11 and higher

Intents for Headers or Preferences
If you have the need to collect some preferences that are beyond what the standard
preferences can handle, you have some choices.

USING PREFERENCES

466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One is to create a custom Preference. Extending DialogPreference to create your
own Preference implementation is not especially hard. However, it does constrain
you to something that can fit in a dialog.

Another option is to specify an <intent> element as a child of a <header> element.
When the user taps on this header, your specified Intent is used with
startActivity(), giving you a gateway to your own activity for collecting things
that are beyond what the preference UI can handle. For example, you could have the
following <header>:

<header<header android:icon="@drawable/something"
android:title="Fancy Stuff"
android:summary="Click here to transcend your

plane of existence">>
<intent<intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />/>

</header></header>

Then, so long as you have an activity with an <intent-filter> specifying your
desired action (com.commonsware.android.MY_CUSTOM_ACTION), that activity will get
control when the user taps on the associated header.

Conditional Headers
The two-tier, headers-and-preferences approach is fine and helps to organize large
rosters of preferences. However, it does tend to steer developers in the direction of
displaying headers all of the time. For many apps, that is rather pointless, because
there are too few preferences to collect to warrant having more than one header.

One alternative approach is to use the headers on larger devices, but skip them on
smaller devices. That way, the user does not have to tap past a single-item
ListFragment just to get to the actual preferences to adjust.

This is a wee bit tricky to implement. However, you have two options for how to
accomplish it.

(The author would like to thank Richard Le Mesurier, whose question on this topic
spurred the development of this section and its samples)

Option #1: Do Not Define the Headers

The basic plan in the first approach is to have smarts in onBuildHeaders() to handle
this. onBuildHeaders() is the callback that Android invokes on our

USING PREFERENCES

467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PreferenceActivity to let us define the headers to use in the master-detail pattern.
If we want to have headers, we would supply them here; if we want to skip the
headers, we would instead fall back to the classic (and, admittedly, deprecated)
addPreferencesFromResource() method to load up some preference XML.

There is an isMultiPane() method on PreferenceActivity, starting with API Level
11, that will tell you if the activity will render with two fragments (master+detail) or
not. In principle, this would be ideal to use. Unfortunately, it does not seem to be
designed to be called from onBuildHeaders(). Similarly,
addPreferencesFromResource() does not seem to be callable from
onBuildHeaders(). Both are due to timing: onBuildHeaders() is called in the
middle of the PreferenceActivity onCreate() processing.

So, we have to do some fancy footwork.

By examining the source code to PreferenceActivity, you will see that the logic
that drives the single-pane vs. dual-pane UI decision boils down to:

onIsHidingHeaders() || !onIsMultiPane()

If that expression returns true, we are in single-pane mode; otherwise, we are in
dual-pane mode. onIsHidingHeaders() will normally return false, while
onIsMultiPane() will return either true or false based upon screen size.

So, we can leverage this information in a PreferenceActivity to conditionally load
our headers, as seen in the EditPreferences class in the Prefs/SingleHeader
sample project:

packagepackage com.commonsware.android.pref1header;

importimport java.util.Listjava.util.List;
importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockPreferenceActivitycom.actionbarsherlock.app.SherlockPreferenceActivity;

publicpublic classclass EditPreferencesEditPreferences extendsextends SherlockPreferenceActivity {
privateprivate boolean needResource=falsefalse;

@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (needResource
|| Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {

USING PREFERENCES

468

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/preference/PreferenceActivity.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/preference/PreferenceActivity.java
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader

addPreferencesFromResource(R.xml.preferences);
}

}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void onBuildHeaders(List<Header> target) {

ifif (onIsHidingHeaders() || !onIsMultiPane()) {
needResource=truetrue;

}
elseelse {

loadHeadersFromResource(R.xml.preference_headers, target);
}

}

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

returnreturn(StockPreferenceFragment.class.getName().equals(fragmentName));
}

}

Here, if we are in dual-pane mode, onBuildHeaders() populates the headers as
normal. If, though, we are in single-pane mode, we skip that step and make note
that we need to do some more work in onCreate().

Then, in onCreate(), if we did not load our headers, or if we are on API Level 10 or
below, we use the classic addPreferencesFromResource() method.

The net result is that on Android 3.0+ tablets, we get the dual-pane, master-detail
look with our one header, but on smaller devices (regardless of version), we roll
straight to the preferences themselves.

Note that this sample application uses a single PreferenceFragment
implementation, named StockPreferenceFragment:

packagepackage com.commonsware.android.pref1header;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

publicpublic classclass StockPreferenceFragmentStockPreferenceFragment extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

int res=
getActivity().getResources()

.getIdentifier(getArguments().getString("resource"),
"xml",
getActivity().getPackageName());

USING PREFERENCES

469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

addPreferencesFromResource(res);
}

}

StockPreferenceFragment does what it is supposed to: call
addPreferencesFromResource() in onCreate() with the resource ID of the
preferences to load. However, rather than hard-coding a resource ID, as we normally
would, we look it up at runtime.

The <extra> elements in our preference header XML supply the name of the
preference XML to be loaded:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

<header<header

android:fragment="com.commonsware.android.pref1header.StockPreferenceFragment"
android:summary="@string/header1summary"
android:title="@string/header1title">>
<extra<extra

android:name="resource"
android:value="preferences"/>/>

</header></header>

</preference-headers></preference-headers>

We get that name via the arguments Bundle
(getArguments().getString("resource")).

To look up a resource ID at runtime, we can use the Resources object, available from
our activity via a call to getResources(). Resources has a method,
getIdentifier(), that will return a resource ID given three pieces of information:

1. The base name of the resource (in our case, the value retrieved from the
<extra> element)

2. The type of the resource (e.g., "xml")
3. The package holding the resource (in our case, our own package, retrieved

from our activity via getPackageName())

Note that getIdentifier() uses reflection to find this value, and so there is some
overhead in the process. Do not use getIdentifier() in a long loop – cache the
value instead.

USING PREFERENCES

470

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The net is that StockPreferenceFragment loads the preference XML described in
the <extra> element, so we do not need to create separate PreferenceFragment
implementations per preference header.

Option #2: Go Directly to the Fragment

The advantage of the above approach is that it works with Android’s own logic of
whether to display the master-detail fragments or just one at a time. However, that
logic — the fact that onIsHidingHeaders() || !onIsMultiPane() determines the
look of the activity — is not documented, and therefore may change in future
Android releases.

Another option is to launch your PreferenceActivity in such a way that tells
Android to skip showing the headers. On the plus side, this approach is better
documented and therefore perhaps more stable. However, it requires you to have
your own rules for whether or not the master-detail perspective is likely to be seen.

To see how this works, take a look at the Prefs/SingleHeader2 sample project.

To determine whether or not we wish to show the preference headers, we use a
boolean resource, R.bool.suppressHeaders, defined both in res/values/bools.xml:

<resources><resources>

<bool<bool name="suppressHeader">>true</bool></bool>

</resources></resources>

and in res/values-large/bools.xml:

<resources><resources>

<bool<bool name="suppressHeader">>false</bool></bool>

</resources></resources>

Our EditPreferences class is the same implementation as in the original sample for
this chapter, except that we only load up the single XML resource’s worth of
preferences:

packagepackage com.commonsware.android.pref1header;

importimport java.util.Listjava.util.List;
importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;

USING PREFERENCES

471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader2
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader2

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockPreferenceActivitycom.actionbarsherlock.app.SherlockPreferenceActivity;

publicpublic classclass EditPreferencesEditPreferences extendsextends SherlockPreferenceActivity {
@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (Build.VERSION.SDK_INT<Build.VERSION_CODES.HONEYCOMB) {
addPreferencesFromResource(R.xml.preferences);

}
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void onBuildHeaders(List<Header> target) {

loadHeadersFromResource(R.xml.preference_headers, target);
}

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

returnreturn(StockPreferenceFragment.class.getName().equals(fragmentName));
}

}

However, there is a change in our main activity (FragmentsDemo). Before, when the
user chose the “Settings” action bar overflow item, we would just call
startActivity() to bring up EditPreferences. Now, we delegate that work to an
editPrefs() method on FragmentsDemo, which will have the smarts to control how
we bring up the EditPreferences activity:

privateprivate void editPrefs() {
Intent i=newnew Intent(thisthis, EditPreferences.class);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB
&& getResources().getBoolean(R.bool.suppressHeader)) {

i.putExtra(PreferenceActivity.EXTRA_NO_HEADERS, truetrue);
i.putExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT,

StockPreferenceFragment.class.getName());

Bundle b=newnew Bundle();

b.putString("resource", "preferences");

i.putExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT_ARGUMENTS, b);
}

startActivity(i);
}

USING PREFERENCES

472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If we are on API Level 10 or below, where we do not have preference fragments, we
start up EditPreferences as before. If R.bool.suppressHeaders is false – as it will
be on -large and -xlarge screens — we also start up EditPreferences as before.
But, if R.bool.suppressHeaders is true, then we will add three extras to our Intent:

• EXTRA_NO_HEADERS, set to true, to indicate that we do not want the headers
to be displayed

• EXTRA_SHOW_FRAGMENT, set to the fully-qualified class name of the
PreferenceFragment to be displayed, here obtained by calling getName() on
the Class object for StockPreferenceFragment

• EXTRA_SHOW_FRAGMENT_ARGUMENTS, set to a Bundle containing the same
values that would ordinarily be loaded from the <extra> elements in the
preference header XML resource (in our case, the name of the preference
XML resource to load)

Those three extras will be automatically handled by PreferenceActivity (on API
Level 11+) and will have the effect of directly taking the user to our one-and-only
fragment, bypassing the headers.

USING PREFERENCES

473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #13 - Using Some Preferences

Now that we have the core reading functionality working, we can start to add other
features for the user.

One common thing in Android applications is to collect preferences from the user,
tailoring the way the app behaves. In the case of EmPubLite, we will initially track
two preferences:

• Whether the user wants to return to the book on the same chapter (page in
the ViewPager) that they were on when they last were reading the book

• Whether the user wants us to keep the screen on, so they do not have to
keep tapping the screen to prevent Android’s automatic sleep mode from
kicking in

In this tutorial, we will collect and use these two preferences.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T12-Book
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T13-Prefs
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Step #1: Adding a StockPreferenceFragment
In the preceding chapter, we saw StockPreferenceFragment, which simply loads a
<PreferenceScreen> bit of XML for us. This is simpler than rolling our own custom
PreferenceFragment implementations, so let’s use it.

If you wish to make this change using Eclipse’s structured resource editor, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
StockPreferenceFragment in the “Name” field. Click the “Browse…” button next to
the “Superclass” field and find PreferenceFragment to set as the superclass. Then,
click “Finish” on the new-class dialog to create the StockPreferenceFragment class.

Then, with StockPreferenceFragment open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

@TargetApi(11)
publicpublic classclass StockPreferenceFragmentStockPreferenceFragment extendsextends PreferenceFragment {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

int res=getActivity()
.getResources()
.getIdentifier(getArguments().getString("resource"),

"xml",
getActivity().getPackageName());

addPreferencesFromResource(res);
}

}

TUTORIAL #13 - USING SOME PREFERENCES

476

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Create a src/com/commonsware/empublite/StockPreferenceFragment.java source
file, with the content shown above.

Step #2: Defining the Preference XML Files
We need two XML files to define what preferences we wish to collect. One will
define the preference headers (the left column of the two-pane tablet preference UI).
The other will define the preferences that we wish to collect for the one header we
will define.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/values/strings.xml file in your Package Explorer. Use the
“Add…” button to define a new string resource, with a name of prefdesc and a value
of Settings for use of EmPubLite. Then, use the “Add…” button again to define
another string resource, with a name of preftitle and a value of Display and
Navigation. Repeat the process with four more string resources:

• lastpositionsummary = Save the last chapter you were viewing and
open up on that chapter when re-opening the app

• lastpositiontitle = Save Last Position
• keepscreenon_summary = Keep the screen powered on while the reader
is in the foreground

• keepscreenon_title = Keep Screen On

Right-click over the res/ folder, and choose New > Folder from the context menu.
Fill in xml as the folder name, then click “Finish” to create the folder.

Right-click over the xml/ folder, and choose New > File from the context menu. Fill
in preference_headers.xml as the name, then click “Finish” to create the file. Switch
to the preference_headers.xml sub-tab of the newly-opened editor and paste in the
following:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

TUTORIAL #13 - USING SOME PREFERENCES

477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<header<header
android:fragment="com.commonsware.empublite.StockPreferenceFragment"
android:summary="@string/prefdesc"
android:title="@string/preftitle">>
<extra<extra

android:name="resource"
android:value="pref_display"/>/>

</header></header>

</preference-headers></preference-headers>

Note that while the code listing may show the root element wrapping onto a second
line, it really should be all on one line.

Right-click over the xml folder, and choose New > File from the context menu. Fill in
pref_display.xml as the name, then click “Finish” to create the file. Switch to the
pref_display.xml sub-tab of the newly-opened editor and paste in the following:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:empub="http://schemas.android.com/apk/res-auto">>

<CheckBoxPreference<CheckBoxPreference
android:defaultValue="false"
android:key="saveLastPosition"
android:summary="@string/lastpositionsummary"
android:title="@string/lastpositiontitle"/>/>

<CheckBoxPreference<CheckBoxPreference
android:defaultValue="false"
android:key="keepScreenOn"
android:summary="@string/keepscreenon_summary"
android:title="@string/keepscreenon_title"/>/>

</PreferenceScreen></PreferenceScreen>

Note that while the code listing may show the root element wrapping onto a second
line, it really should be all on one line.

Outside of Eclipse

Add six new <string> elements to res/values/strings.xml:

<string<string name="prefdesc">>Settings for use of EmPubLite</string></string>
<string<string name="preftitle">>Display and Navigation</string></string>
<string<string name="lastpositiontitle">>Save Last Position</string></string>
<string<string name="lastpositionsummary">>Save the last chapter you were viewing and
open up on that chapter when re-opening the app</string></string>
<string<string name="keepscreenon_summary">>Keep the screen powered on while the reader
is in the foreground</string></string>
<string<string name="keepscreenon_title">>Keep Screen On</string></string>

TUTORIAL #13 - USING SOME PREFERENCES

478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, create a res/xml/ directory in your project. In there, create a
preference_headers.xml file with the XML from the first code listing in the
“Eclipse” section above. Also create a pref_display.xml file with the XML from the
second code listing in the “Eclipse” section above.

Step #3: Creating Our PreferenceActivity
We now need an implementation of SherlockPreferenceActivity to load our
preference XML, using just pref_display.xml on pre-API Level 11 devices and using
the full set of XML on API Level 11+ devices. We will use an implementation nearly
identical to the one shown in the previous chapter.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in Preferences in the
“Name” field. Click the “Browse…” button next to the “Superclass” field and find
SherlockPreferenceActivity to set as the superclass. Then, click “Finish” on the
new-class dialog to create the Preferences class.

Then, with Preferences open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport java.util.Listjava.util.List;
importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockPreferenceActivitycom.actionbarsherlock.app.SherlockPreferenceActivity;

publicpublic classclass PreferencesPreferences extendsextends SherlockPreferenceActivity {
@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (Build.VERSION.SDK_INT<Build.VERSION_CODES.HONEYCOMB) {
addPreferencesFromResource(R.xml.pref_display);

}
}

TUTORIAL #13 - USING SOME PREFERENCES

479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void onBuildHeaders(List<Header> target) {

loadHeadersFromResource(R.xml.preference_headers, target);
}

}

Eclipse will complain about addPreferencesFromResource() being deprecated –
despite the fact that we are only using it on older Android API levels – if we do not
have the @SuppressWarnings("deprecation") annotation on the onCreate()
method.

Eclipse may also complain that onBuildHeaders() uses
loadHeadersFromResource(), which is only available on API Level 11 and higher.
That is why we have the @TargetApi(Build.VERSION_CODES.HONEYCOMB) annotation
attached to onBuildHeaders(), to indicate that we are aware of this. In this case,
since onBuildHeaders() is only ever called on API Level 11 or higher, there is no need
to check Build.VERSION.SDK_INT to confirm this fact.

Then, open up AndroidManifest.xml in Eclipse and switch to the “Application” sub-
tab. Scroll down to the “Application Nodes” list and click the “Add…” button,
choosing to add a new activity. Click the “Browse…” button next to “Name” and pick
the Preferences class. Then save your changes (e.g., <Ctrl>-<S>).

Outside of Eclipse

Create a src/com/commonsware/empublite/Preferences.java source file, with the
content shown above.

Also, add the following element as a child of the <application> element in your
AndroidManifest.xml file:

<activity<activity android:name="Preferences">>
</activity></activity>

Step #4: Adding To Our Action Bar
Of course, having this activity does us no good if we cannot start it up, so we need to
add another hook to our action bar configuration for that.

TUTORIAL #13 - USING SOME PREFERENCES

480

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/menu/options.xml file in your project. Click the “Add…”
button to add a new menu item. Give it the following details:

• Id of @+id/settings
• Title of @string/settings (using the “Browse…” button to define a new

string, with a value of Settings)
• Icon of @android:drawable/ic_menu_preferences
• “Show as action” of never

Figure 182: Settings Menu Item

Use the “Up” and “Down” buttons to move this new menu item to be the first one in
the list.

TUTORIAL #13 - USING SOME PREFERENCES

481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Add the following XML element to res/menu/options.xml as the first child of the
<menu> root element:

<item<item
android:id="@+id/settings"
android:icon="@android:drawable/ic_menu_preferences"
android:showAsAction="never"
android:title="@string/settings">>

</item></item>

You will also need to add a settings string resource, with a value of Settings.

Step #5: Launching the PreferenceActivity
The only thing yet needed to allow the user to get to the preferences is to add
another case to the switch() statement in onOptionsItemSelected() of
EmPubLiteActivity:

casecase R.id.settings:
startActivity(newnew Intent(thisthis, Preferences.class));
returnreturn(truetrue);

Now, if you run this in an emulator or device, you will see the new option in the
action bar overflow:

TUTORIAL #13 - USING SOME PREFERENCES

482

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 183: EmPubLite, With Revised Action Bar

Choosing the “Settings” option brings up the list of preference headings:

TUTORIAL #13 - USING SOME PREFERENCES

483

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 184: Our Preference Headings

Tapping on the “Display and Navigation” heading brings up our two preferences:

TUTORIAL #13 - USING SOME PREFERENCES

484

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 185: Our Preferences

On a tablet, we see the headings and the selected headings’ worth of preferences at
the same time:

TUTORIAL #13 - USING SOME PREFERENCES

485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 186: The Entire PreferenceActivity, On a Tablet

Step #6: Loading Our Preferences
Collecting those preferences is one thing. Actually using them requires yet more
work.

Our first step is to load our SharedPreferences object. This will read the persisted
preferences and make them available to us for examination (and, as we will see,
modification). Any changes made to those preferences — say, from the Preferences
activity — will be automatically reflected in the loaded SharedPreferences.

However, since the persisted preferences are persisted — meaning that they are
stored in a file — we need to try to load them in the background. Our
ModelFragment already has some load-the-data-in-the-background logic, so we can
extend that to set up the SharedPreferences.

Open up ModelFragment and add two more data members to the class:

privateprivate SharedPreferences prefs=nullnull;
privateprivate PrefsLoadTask prefsTask=nullnull;

TUTORIAL #13 - USING SOME PREFERENCES

486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will need to define that PrefsLoadTask as follows:

privateprivate classclass PrefsLoadTaskPrefsLoadTask extendsextends AsyncTask<Context, Void, Void> {
SharedPreferences localPrefs=nullnull;

@Override
protectedprotected Void doInBackground(Context... ctxt) {

localPrefs=PreferenceManager.getDefaultSharedPreferences(ctxt[0]);
localPrefs.getAll();

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void arg0) {

ModelFragment.this.prefs=localPrefs;
ModelFragment.this.prefsTask=nullnull;
deliverModel();

}
}

Here, we call getDefaultSharedPreferences() in doInBackground(). We also call
getAll() on the SharedPreferences object, to make sure that it is fully loaded from
disk, in case Android has an optimization that lazy-loads the preference data on first
use. In onPostExecute(), we store the resulting SharedPreferences in a data
member, clear our prefsTask data member (indicating that we are done with the
load), and call deliverModel().

The deliverModel() method will also need to be adjusted, to hand over the
SharedPreferences to the EmPubLiteActivity:

synchronizedsynchronized privateprivate void deliverModel() {
ifif (prefs != nullnull && contents != nullnull) {

((EmPubLiteActivity)getActivity()).setupPager(prefs, contents);
}
elseelse {

ifif (prefs == nullnull && prefsTask == nullnull) {
prefsTask=newnew PrefsLoadTask();
executeAsyncTask(prefsTask,

getActivity().getApplicationContext());
}

ifif (contents == nullnull && contentsTask == nullnull) {
contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}

}
}

TUTORIAL #13 - USING SOME PREFERENCES

487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we initialize either or both of our tasks if we do not have our data (e.g., when
deliverModel() is first called), and we only pass the data to the activity when we
have both the BookContents and the SharedPreferences.

Of course, setupPager() in EmPubLiteActivity needs to be updated to match:

void setupPager(SharedPreferences prefs, BookContents contents) {
thisthis.prefs=prefs;

adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

}

This will require a SharedPreferences data member to be added to
EmPubLiteActivity as well:

privateprivate SharedPreferences prefs=nullnull;

Step #7: Saving the Last-Read Position
The one preference is to restore our current page in the ViewPager when the user
later re-opens the app. To make that work, we need to start saving the current page
as the user leaves the app. And, we may as well use our freshly-minted
SharedPreferences to store this value.

We need a key under which we will store this value in the SharedPreferences, so
add a new static data member to EmPubLiteActivity:

privateprivate staticstatic finalfinal String PREF_LAST_POSITION="lastPosition";

Then, add the following implementation of onPause() to EmPubLiteActivity:

@Override
publicpublic void onPause() {

ifif (prefs != nullnull) {
int position=pager.getCurrentItem();
prefs.edit().putInt(PREF_LAST_POSITION, position).apply();

}
supersuper.onPause();

}

TUTORIAL #13 - USING SOME PREFERENCES

488

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we check to see that we have the SharedPreferences loaded — odds are that
we do, but we cannot be certain. If we do have access to the SharedPreferences, we
find out the current position within the ViewPager via getCurrentItem() (e.g., 0 for
the first page). We then obtain a SharedPreferences.Editor and use it to save this
position value in the SharedPreferences, keyed as PREF_LAST_POSITION, using
apply() to persist the changes. Since this project has API Level 9 as the minimum
SDK version, it is safe for us to use apply() instead of the older synchronous
commit().

Step #8: Restoring the Last-Read Position
Now that we are saving this position data, we can start to use it.

Our preference XML has our key to the “Save Last Position” preference, but we need
it in Java code as well, so add another static data member to EmPubLiteActivity:

privateprivate staticstatic finalfinal String PREF_SAVE_LAST_POSITION="saveLastPosition";

Add the following lines to setupPager() in EmPubLiteActivity:

ifif (prefs.getBoolean(PREF_SAVE_LAST_POSITION, falsefalse)) {
pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));

}

Here, we check to see if the user has enabled having us restore the last-saved
position (defaulting to false). If the user has, we retrieve the last-saved position
(defaulting to 0, or the first page), and call setCurrentItem() on the ViewPager to
shift to that particular page.

If you run this in a device or emulator, check the “Save Last Position” preference
checkbox, flip ahead a couple of chapters, exit the app via the BACK button, and go
back into the app, you will see that you are taken back to the chapter you were last
reading.

Step #9: Keeping the Screen On
Our other preference is whether or not the screen should stay on, without user
input, while we are reading the book. The bare-bones implementation of this
requires just two lines of additional code.

TUTORIAL #13 - USING SOME PREFERENCES

489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, we need to define another static data member on EmPubLiteActivity, this
time with the key for our keep-screen-on preference:

privateprivate staticstatic finalfinal String PREF_KEEP_SCREEN_ON="keepScreenOn";

Then, add one more line to setupPager() in EmPubLiteActivity:

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));

setKeepScreenOn(), called on any View, will keep the screen lit and active without
continuous user input, so long as that View is on the screen.

This approach is somewhat limited, in that we are only setting this during the call to
setupPager(). If the user changes the preference value, that change would only take
effect when the activity was restarted (e.g., user rotates the screen, user exits the app
via BACK and returns later).

The simplest way for us to have this take more immediate effect is to realize that
EmPubLiteActivity will be paused and stopped when the Preferences activity is on
the screen, and will be started and resumed when the user is done adjusting
preferences. So, we can simply override onResume() to also update the screen-on
setting:

@Override
publicpublic void onResume() {

supersuper.onResume();
ifif (prefs != nullnull) {

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));
}

}

Of course, we may not have the SharedPreferences yet, when the app is first
starting up, so we avoid making any changes in that case.

If you run this on a device (note: not an emulator), you can play with this preference
and see the changes in the screen’s behavior.

In Our Next Episode…
… we will allow the user to write, save, and delete notes for the currently-viewed
chapter, using a database.

TUTORIAL #13 - USING SOME PREFERENCES

490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SQLite Databases

Besides SharedPreferences and your own file structures, the third primary means of
persisting data locally on Android is via SQLite. For many applications, SQLite is the
app’s backbone, whether it is used directly or via some third-party wrapper.

This chapter will focus on how you can directly work with SQLite to store relational
data.

Introducing SQLite
SQLite is a very popular embedded database, as it combines a clean SQL interface
with a very small memory footprint and decent speed. Moreover, it is public domain,
so everyone can use it. Lots of firms (Adobe, Apple, Google, Symbian) and open
source projects (Mozilla, PHP, Python) all ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface, it is
fairly straightforward to use for people with experience in other SQL-based
databases. However, its native API is not JDBC, and JDBC might be too much
overhead for a memory-limited device like a phone, anyway. Hence, Android
programmers have a different API to learn — the good news being is that it is not
that difficult.

This chapter will cover the basics of SQLite use in the context of working on
Android. It by no means is a thorough coverage of SQLite as a whole. If you want to
learn more about SQLite and how to use it in environments other than Android, a
fine book is The Definitive Guide to SQLite by Michael Owens.

491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org
http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730

Thinking About Schemas
SQLite is a typical relational database, containing tables (themselves consisting of
rows and columns), indexes, and so on. Your application will need its own set of
tables and so forth for holding whatever data you wish to hold. This structure is
generally referred to as a “schema”.

It is likely that your schema will need to change over time. You might add new tables
or columns in support of new features. Or, you might significantly reorganize your
data structure and wind up dropping some tables while moving the data into new
ones.

As a result, when you ship an update to your application to your users, not only will
your Java code change, but the expectations of that Java code will change as well,
with respect to what your database schema will look like. Version 1 of your app will
use your original schema, but by the time you ship, say, version 5 of the app, you
might need an adjusted schema.

Android has facilities to assist you with handling changing database schemas,
mostly centered around the SQLiteOpenHelper class.

Start with a Helper
SQLiteOpenHelper is designed to consolidate your code related to two very common
problems:

1. What happens the very first time when your app is run on a device after it is
installed? At this point, we do not yet have a database, and so you will need
to create your tables, indexes, starter data, and so on.

2. What happens the very first time when an upgraded version of your app is
run on a device, where the upgraded version is expecting a newer database
schema? Your database will still be on the old schema from the older edition
of the app. You will need to have a chance to alter the database schema to
match the needs of the rest of your app.

SQLiteOpenHelper wraps up the logic to create and upgrade a database, per your
specifications, as needed by your application. You will need to create a custom
subclass of SQLiteOpenHelper, implementing three methods at minimum:

SQLITE DATABASES

492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. The constructor, chaining upward to the SQLiteOpenHelper constructor. This
takes the Context (e.g., an Activity), the name of the database, an optional
cursor factory (typically, just pass null), and an integer representing the
version of the database schema you are using (typically start at 1 and
increment from there).

2. onCreate(), called when there is no database and your app needs one, which
passes you a SQLiteDatabase object, pointing at a newly-created database,
that you use to populate with tables and initial data, as appropriate.

3. onUpgrade(), called when the schema version you are seeking does not
match the schema version of the database, which passes you a
SQLiteDatabase object and the old and new version numbers, so you can
figure out how best to convert the database from the old schema to the new
one.

To see how all this SQLite stuff works in practice, we will examine the Database/
Constants sample application. This application pulls a bunch of gravitational
constants from the SensorManager class, puts them in a database table, displays
them in a SherlockListFragment, and allows the user to add new ones via the
action bar.

First, we need a SQLiteOpenHelper subclass, here named DatabaseHelper.

The DatabaseHelper constructor chains to the superclass and supplies the name of
the database (held in a DATABASE_NAME static data member) and the version number
of our database schema (held in SCHEMA):

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";
privateprivate staticstatic finalfinal int SCHEMA=1;
staticstatic finalfinal String TITLE="title";
staticstatic finalfinal String VALUE="value";
staticstatic finalfinal String TABLE="constants";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, SCHEMA);

}

We also need an onCreate() method, which will be called and passed a
SQLiteDatabase object when a database needs to be newly created. Below you will
see the DatabaseHelper implementation of onCreate(), though we will get into how
it is using the SQLiteDatabase object more later in this chapter:

@Override
publicpublic void onCreate(SQLiteDatabase db) {

SQLITE DATABASES

493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT, value REAL);");

ContentValues cv=newnew ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Earth");
cv.put(VALUE, SensorManager.GRAVITY_EARTH);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Jupiter");
cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Mars");
cv.put(VALUE, SensorManager.GRAVITY_MARS);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Mercury");
cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Moon");
cv.put(VALUE, SensorManager.GRAVITY_MOON);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Neptune");
cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Pluto");
cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Saturn");
cv.put(VALUE, SensorManager.GRAVITY_SATURN);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Sun");
cv.put(VALUE, SensorManager.GRAVITY_SUN);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, The Island");
cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Uranus");
cv.put(VALUE, SensorManager.GRAVITY_URANUS);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Venus");

SQLITE DATABASES

494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

cv.put(VALUE, SensorManager.GRAVITY_VENUS);
db.insert(TABLE, TITLE, cv);

}

Suffice it to say for the moment that it is creating a constants table and inserting
several rows into it, all wrapped in a transaction.

We also need onUpgrade()… even though it should never be called right now:

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException("How did we get here?");

}

After all, right now, we only have one version of our schema (1) and therefore will
have no need to upgrade. If, in the future, we change SCHEMA to a higher value (e.g.,
2), and we upgrade our app on a device that had previously been run with our earlier
schema, then we will be called with onUpgrade(). We are passed the old and new
schema versions, so we know what needs to be upgraded.

Bear in mind that users do not necessarily have to take on each of your application
updates, and so you might find that a user skipped a schema version:

• You release an app on Monday, with schema version 1
• A user installs your app on Tuesday and runs it, creating a database via
onCreate()

• You release an upgraded app on Wednesday, with schema version 2
• You release yet another upgrade on Thursday, with schema version 3
• The user installs your upgrade, now needing a schema version 3 database

instead of the version 1 presently on the device, triggering a call to
onUpgrade()

There are two other methods you can elect to override in your SQLiteOpenHelper, if
you feel the need:

• You can override onOpen(), to get control when somebody opens this
database. Usually, this is not required.

• Android 3.0 introduced onDowngrade(), which will be called if the code
requests an older schema than what is in the database presently. This is the
converse of onUpgrade() — if your version numbers differ, one of these two
methods will be invoked. Since normally you are moving forward with
updates, you can usually skip onDowngrade().

SQLITE DATABASES

495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Employing Your Helper

To use your SQLiteOpenHelper subclass, create and hold onto an instance of it.
Then, when you need a SQLiteDatabase object to do queries or data modifications,
ask your SQLiteOpenHelper to getReadableDatabase() or getWriteableDatabase(),
depending upon whether or not you will be changing its contents.

For example, the ConstantsFragment from the sample app creates a DatabaseHelper
instance in onActivityCreated() and holds onto it in a data member:

publicpublic classclass ConstantsFragmentConstantsFragment extendsextends SherlockListFragment implementsimplements
DialogInterface.OnClickListener {

privateprivate DatabaseHelper db=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setHasOptionsMenu(truetrue);
setRetainInstance(truetrue);

db=newnew DatabaseHelper(getActivity());
newnew LoadCursorTask().execute();

}

When you are done with the database (e.g., your activity is being closed), simply call
close() on your SQLiteOpenHelper to release your connection, as
ConstantsFragment does (among other things) in onDestroy():

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

((CursorAdapter)getListAdapter()).getCursor().close();
db.close();

}

Where to Hold a Helper

For trivial apps, like the one profiled in this chapter, holding a SQLiteOpenHelper in
a data member of your one-and-only activity is fine.

If, however, you have multiple components — such as multiple activities – all
needing to use the database, you are much better served having a singleton instance
of your SQLiteOpenHelper, compared to having each activity have its own instance.

SQLITE DATABASES

496

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The reason is threading.

You really should do your database I/O on background threads. Opening a database
is cheap, but working with it (queries, inserts, etc.) is not. The SQLiteDatabase
object managed by SQLiteOpenHelper is thread-safe… so long as all threads are using
the same instance.

For singleton objects that depend upon a Context, like SQLiteOpenHelper, rather
than create the object using a garden-variety Context like an Activity, you really
should create it with an Application. There is a singleton instance of a Context, in
the form of the Application subclass, created in your process moments after it is
started. You can retrieve this singleton by calling getApplicationContext() on any
other Context. The advantage of using Application is memory leaks: if you put a
SQLiteOpenHelper in a singleton, and use, say, an Activity to create it, then the
Activity might not be able to be garbage-collected, because the SQLiteOpenHelper
keeps a strong reference to it. Since Application is itself a singleton (and, hence, is
“pre-leaked”, so to speak), the risks of a memory leak diminish significantly.

So, instead of:

db=newnew DatabaseHelper(getActivity());

in a fragment, with db as a data member, you might have:

db=newnew DatabaseHelper(getActivity().getApplicationContext());

with db as a static data member, shared by multiple activities or other components.
We will examine this pattern in greater detail later in this book.

Getting Data Out
One popular thing to do with a database is to get data out of it. Android has a few
ways you can execute a query on a SQLiteDatabase (from your SQLiteOpenHelper),
along with some classes, like CursorAdapter, to help you use the results you get
back.

Your Query Options

In most cases, your simplest option for executing a query is to call rawQuery() on
the SQLiteDatabase. This takes two parameters:

SQLITE DATABASES

497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• A SQL SELECT statement (or anything else that returns a result set),
optionally with ? characters in the WHERE clause (or ORDER BY or similar
clauses) representing parameters to be bound at runtime

• An optional String array of the parameters to be used to replace the ?
characters in the query

If you do not use the ? position parameter syntax in your query, you are welcome to
pass null as the second parameter to rawQuery().

The nice thing about rawQuery() is that any valid SQL syntax works, so long as it
returns a result set. You are welcome to use joins, sub-selects, and so on without
issue.

There are two other query options — query() and SQLiteQueryBuilder. These both
build up a SQL SELECT statement from its component parts (e.g., name of the table
to query, WHERE clause and positional parameters). These are more cumbersome to
use, particularly with complex SELECT statements. Mostly, they would be used in
cases where, for one reason or another, you do not know the precise query at
compile time and find it easier to use these facilities to construct the query from
parts at runtime.

For example, ConstantsFragment has a doQuery() method that uses rawQuery():

privateprivate Cursor doQuery() {
String query=

String.format("SELECT _id, %s, %s FROM %s ORDER BY %s",
DatabaseHelper.TITLE, DatabaseHelper.VALUE,
DatabaseHelper.TABLE, DatabaseHelper.TITLE);

returnreturn(db.getReadableDatabase().rawQuery(query, nullnull));
}

What Is a Cursor?

All three of these give you a Cursor when you are done. In Android, a Cursor
represents the entire result set of the query — all the rows and all the columns that
the query returned. In this respect, it is reminiscent of a “client-side cursor” from
toolkits like ODBC, JDBC, etc.

As such, a Cursor can be quite the memory hog. Please close() the Cursor when
you are done with it, to free up the heap space it consumes and make that memory
available to the rest of your application.

SQLITE DATABASES

498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Cursor Manually

With the Cursor, you can:

1. Find out how many rows are in the result set via getCount()
2. Iterate over the rows via moveToFirst(), moveToNext(), and isAfterLast()
3. Find out the names of the columns via getColumnNames(), convert those into

column numbers via getColumnIndex(), and get values for the current row
for a given column via methods like getString(), getInt(), etc.

For example, here we iterate over a fictitious widgets table’s rows:

Cursor result=
db.rawQuery("SELECT _id, name, inventory FROM widgets", nullnull);

whilewhile (result.moveToNext()) {
int id=result.getInt(0);
String name=result.getString(1);
int inventory=result.getInt(2);

// do something useful with these
}

result.close();

Introducing CursorAdapter

Another way to use a Cursor is to wrap it in a CursorAdapter. Just as ArrayAdapter
adapts arrays, CursorAdapter adapts Cursor objects, making their data available to
an AdapterView like a ListView.

The easiest way to set one of these up is to use SimpleCursorAdapter, which extends
CursorAdapter and provides some boilerplate logic for taking values out of columns
and putting them into row View objects for a ListView (or other AdapterView). The
sample app does just that:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@SuppressWarnings("deprecation")
@Override
publicpublic void onPostExecute(Void arg0) {

SimpleCursorAdapter adapter;

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
adapter=

newnew SimpleCursorAdapter(
getActivity(),

SQLITE DATABASES

499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

R.layout.row,
constantsCursor,
newnew String[] {

DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value },
0);

}
elseelse {

adapter=
newnew SimpleCursorAdapter(

getActivity(),
R.layout.row,
constantsCursor,
newnew String[] {

DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value });
}

setListAdapter(adapter);
}

Here, we are telling SimpleCursorAdapter to take rows out of a Cursor named
constantsCursor, turning each into an inflated R.layout.row ViewGroup, in this
case, a RelativeLayout holding a pair of TextView widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:textSize="20sp"
android:textStyle="bold"/>/>

</RelativeLayout></RelativeLayout>

SQLITE DATABASES

500

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For each row in the Cursor, the columns named title and value (represented by
TITLE and VALUE constants on DatabaseHelper) are to be poured into their
respective TextView widgets (R.id.title and R.id.value).

We use two different versions of the SimpleCursorAdapter constructor because one
was deprecated in API Level 11. We use the Build class to detect which API level we
are on and choose the right constructor accordingly. We will go into this technique
in greater detail in a later chapter.

Note, though, that if you are going to use CursorAdapter or its subclasses (like
SimpleCursorAdapter), your result set of your query must contain an integer
column named _id that is unique for the result set. This “id” value is then supplied
to methods like onListItemClick(), to identify what item the user clicked upon in
the AdapterView. Note that this requirement is on the result set in the Cursor, so if
you have a suitable column in a table that is not named _id, you can rename it in
your query (e.g., SELECT key AS _id, ...). We will see one workaround for this
later in this chapter.

Also note that you cannot close() the Cursor used by a CursorAdapter until you no
longer need the CursorAdapter. That is why we do not close the Cursor until
onDestroy() of the fragment:

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

((CursorAdapter)getListAdapter()).getCursor().close();
db.close();

}

We retrieve the Cursor from the CursorAdapter, which we get by calling
getListAdapter() on the fragment.

Getting Data Out, Asynchronously

Ideally, queries are done on a background thread, as they may take some time.

One approach for doing that is to use an AsyncTask. In the sample application,
ConstantsFragment kicks off a LoadCursorTask in onActivityCreated() (shown
above). LoadCursorTask is responsible for doing the query (via the doQuery()
method shown above) and putting the results in the ListView inside the fragment
(using the SimpleCursorAdapter shown above):

SQLITE DATABASES

501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate classclass LoadCursorTaskLoadCursorTask extendsextends AsyncTask<Void, Void, Void> {
privateprivate Cursor constantsCursor=nullnull;

@Override
protectedprotected Void doInBackground(Void... params) {

constantsCursor=doQuery();
constantsCursor.getCount();

returnreturn(nullnull);
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@SuppressWarnings("deprecation")
@Override
publicpublic void onPostExecute(Void arg0) {

SimpleCursorAdapter adapter;

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
adapter=

newnew SimpleCursorAdapter(
getActivity(),
R.layout.row,
constantsCursor,
newnew String[] {

DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value },
0);

}
elseelse {

adapter=
newnew SimpleCursorAdapter(

getActivity(),
R.layout.row,
constantsCursor,
newnew String[] {

DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value });
}

setListAdapter(adapter);
}

}

We execute the actual query in doInBackground(), holding onto it in a data member
of the LoadCursorTask. We also call getCount() on the Cursor, to force it to actually
perform the query — rawQuery() returns the Cursor, but the query is not actually
executed until we do something that needs the result set.

onPostExecute() then wraps it in a SimpleCursorAdapter and attaches it to the
ListView via setListAdapter() on our SherlockListFragment.

SQLITE DATABASES

502

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This way, the UI will not be frozen while the query is being executed, yet we only
update the UI from the main application thread.

Also note that the first time we try using the SQLiteOpenHelper is in our
background thread. SQLiteOpenHelper will not try creating our database (e.g., for a
new app install) until we call getReadableDatabase() or getWritableDatabase().
Hence, onCreate() (or, later, onUpgrade()) of our SQLiteOpenHelper will wind up
being called on the background thread as well, meaning that the time spent creating
(or upgrading) the database also does not freeze the UI.

The Rest of the CRUD
To get data out of a database, it is generally useful to put data into it in the first
place. The sample app starts by loading in data when the database is created (in
onCreate() of DatabaseHelper), plus has an action bar item to allow the user to add
other constants as needed.

In this section, we will examine in further detail how we manipulate the database,
for both the write aspects of CRUD (create-read-update-delete) and for DDL
operations (creating tables, creating indexes, etc.).

The Primary Option: execSQL()

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the data definition language (DDL) statement you wish
to apply against the database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in
the DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT, value REAL);");

This will create a table, named constants, with a primary key column named _id
that is an auto-incremented integer (i.e., SQLite will assign the value for you when
you insert rows), plus two data columns: title (text) and value (a float, or “real” in
SQLite terms). SQLite will automatically create an index for you on your primary
key column — you could add other indexes here via some CREATE INDEX statements,
if you wanted.

SQLITE DATABASES

503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Most likely, you will create tables and indexes when you first create the database, or
possibly when the database needs upgrading to accommodate a new release of your
application. If you do not change your table schemas, you might never drop your
tables or indexes, but if you do, just use execSQL() to invoke DROP INDEX and DROP
TABLE statements as needed.

Alternative Options

For inserts, updates, and deletes of data, you have two choices. You can always use
execSQL(), just like you did for creating the tables. The execSQL() method works for
any SQL that does not return results, so it can handle INSERT, UPDATE, DELETE, etc.
just fine.

Your alternative is to use the insert(), update(), and delete() methods on the
SQLiteDatabase object, which eliminate much of the SQL syntax required to do
basic operations.

For example, here we insert() a new row into our constants table, again from
onCreate() of DatabaseHelper:

ContentValues cv=newnew ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert(TABLE, TITLE, cv);

These methods make use of ContentValues objects, which implement a Map-esque
interface, albeit one that has additional methods for working with SQLite types. For
example, in addition to get() to retrieve a value by its key, you have
getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column as the
“null column hack”, and a ContentValues with the initial values you want put into
this row. The “null column hack” is for the case where the ContentValues instance is
empty — the column named as the “null column hack” will be explicitly assigned
the value NULL in the SQL INSERT statement generated by insert(). This is required
due to a quirk in SQLite’s support for the SQL INSERT statement.

The update() method takes the name of the table, a ContentValues representing
the columns and replacement values to use, an optional WHERE clause, and an
optional list of parameters to fill into the WHERE clause, to replace any embedded
question marks (?). Since update() only replaces columns with fixed values, versus

SQLITE DATABASES

504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ones computed based on other information, you may need to use execSQL() to
accomplish some ends. The WHERE clause and parameter list works akin to the
positional SQL parameters you may be used to from other SQL APIs.

The delete() method works akin to update(), taking the name of the table, the
optional WHERE clause, and the corresponding parameters to fill into the WHERE
clause.

Asynchronous CRUD and UI Updates

Just as querying a database should be done on a background thread, so should
modifying a database. This is why it is important to make the first time you request
a SQLiteDatabase from a SQLiteOpenHelper be on a background thread, in case
onCreate() or onUpgrade() are needed.

The same thing holds true if you need to update the database during normal
operation of your app. For example, the sample application has an “add” action bar
item in the upper-right corner of the screen:

Figure 187: The ConstantsBrowser Sample

Clicking on that brings up a dialog — a technique we will discuss later in this book:

SQLITE DATABASES

505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 188: The ConstantsBrowser Sample, Add Constant Dialog

If the user fills in a constant and clicks the “OK” button, we need to insert a new
record in the database. That is handled via an InsertTask:

privateprivate classclass InsertTaskInsertTask extendsextends AsyncTask<ContentValues, Void, Void> {
privateprivate Cursor constantsCursor=nullnull;

@Override
protectedprotected Void doInBackground(ContentValues... values) {

db.getWritableDatabase().insert(DatabaseHelper.TABLE,
DatabaseHelper.TITLE, values[0]);

constantsCursor=doQuery();
constantsCursor.getCount();

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void arg0) {

((CursorAdapter)getListAdapter()).changeCursor(constantsCursor);
}

}

The InsertTask is supplied a ContentValues object with our title and value, just
as we used in onCreate() of DatabaseHelper. In doInBackground(), we get a

SQLITE DATABASES

506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

writable database from DatabaseHelper and perform the insert() call, so the
database I/O does not tie up the main application thread.

However, in doInBackground(), we also call doQuery() again. This retrieves a fresh
Cursor with the new roster of constants… including the one we just inserted. As with
LoadCursorTask, we execute doQuery() in doInBackground() to keep the database
I/O off the main application thread.

Then, in onPostExecute(), we can safely update the UI with the new Cursor. We do
this by calling changeCursor() on our CursorAdapter, retrieved from the fragment
via getListAdapter(). changeCursor() will swap out our old Cursor in our
SimpleCursorAdapter with the new one, automatically updating the ListView along
the way.

Setting Transaction Bounds

By default, each SQL statement executes in its own transaction — this is fairly
typical behavior for a SQL database, and SQLite is no exception.

There are two reasons why you might want to have your own transaction bounds,
larger than a single statement:

1. The classic “we have a series of operations that need to succeed or fail as a
whole” rationale, for maintaining data integrity

2. Performance, as each database transaction involves disk I/O, and one large
transaction will be much faster than lots of little transactions

The basic recipe for your own transactions is:

trytry {
db.beginTransaction();

// several SQL statements in here

db.setTransactionSuccessful();
}
finallyfinally {

db.endTransaction();
}

beginTransaction() marks the fact that you want a transaction.
setTransactionSuccessful() indicates that you want the transaction to commit.
However, the actual COMMIT or ROLLBACK does not occur until endTransaction(). In

SQLITE DATABASES

507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the normal case, setTransactionSuccessful() does get called, and
endTransaction() performs a COMMIT. If, however, one of your SQL statements fails
(e.g., violates a foreign key constraint), the setTransactionSuccessful() call is
skipped, so endTransaction() will do a ROLLBACK.

You might wonder why we did not bother with a transaction in onCreate() method
of DatabaseHelper, given the latter reason. That is because onCreate() is called
within a transaction set up by SQLiteOpenHelper itself, so you do not need your
own.

Leveraging ROWID
The _id requirement of CursorAdapter is annoying. However, SQLite provides us
with a workaround: ROWID.

Quoting the SQLite documentation:

In SQLite, every row of every table has an 64-bit signed integer ROWID.
The ROWID for each row is unique among all rows in the same table. You
can access the ROWID of an SQLite table using one the special column
names ROWID, _ROWID_, or OID… If a table contains a column of type
INTEGER PRIMARY KEY, then that column becomes an alias for the
ROWID. You can then access the ROWID using any of four different names,
the original three names described above or the name given to the
INTEGER PRIMARY KEY column. All these names are aliases for one
another and work equally well in any context.

With that in mind, if you want to query SQLite and use the results in a
CursorAdapter, but you do not have your own INTEGER PRIMARY KEY column, you
can just include ROWID in your query, renaming it to _id to satisfy CursorAdapter.

The Database/ConstantsROWID sample application demonstrates this. It is a clone of
the Database/Constants project shown earlier in this chapter, but it skips its own
_id column and uses ROWID instead.

There are only two changes of significance. First, DatabaseHelper no longer has _id
in the schema used with execSQL() in onCreate():

db.execSQL("CREATE TABLE constants (title TEXT, value REAL);");

SQLITE DATABASES

508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org/autoinc.html
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID

Second, the doQuery() method in ConstantsFragment queries on ROWID, but uses the
SQL AS keyword to rename it as _id:

privateprivate Cursor doQuery() {
String query=

String.format("SELECT ROWID AS _id, %s, %s FROM %s ORDER BY %s",
DatabaseHelper.TITLE, DatabaseHelper.VALUE,
DatabaseHelper.TABLE, DatabaseHelper.TITLE);

returnreturn(db.getReadableDatabase().rawQuery(query, nullnull));
}

Since nothing else in the project used the old _id value, nothing else needs to
change.

Hey, What About Hibernate?
Those of you with significant Java backgrounds outside of Android are probably
pounding your head against your desk right about now. Outside of a few
conveniences like SQLiteOpenHelper and CursorAdapter, Android’s approach to
database I/O feels a bit like classic JDBC. Java developers, having experienced the
pain of raw JDBC, created various wrappers around it, the most prominent of which
is an ORM (object-relational mapper) called Hibernate.

Alas, Hibernate is designed for servers, not mobile devices. It is a little bit
heavyweight, and it is designed for use with JDBC, not Android’s SQLite classes.

Android did not include any sort of ORM in the beginning for two main reasons:

1. To keep the firmware size as small as possible, as smaller firmware can lead
to less-expensive devices

2. To eliminate the ORM overhead (e.g., reflection), which would have been too
much for early Android versions on early Android devices

The Android ecosystem has come up with alternatives, such as ORMLite and
greenDAO. So, if you are used to using an ORM, you may want to investigate these
sorts of solutions — they just are not built into Android itself.

Visit the Trails!
If you are interested in exposing your database contents to a third-party application,
you may wish to read up on ContentProvider.

SQLITE DATABASES

509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ormlite.com/sqlite_java_android_orm.shtml
http://greendao-orm.com/

The trails also have chapters on encrypted databases using SQLCipher and shipping
pre-packaged databases with your app.

SQLITE DATABASES

510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #14 - Saving Notes

It would be nice if the user could add some personal notes to the chapter that she is
reading, whether that serves as commentary, points to be researched, complaints
about the author’s hair (or lack thereof), or whatever.

So, in this chapter, we will add a new fragment and new activity to allow the user to
add notes per chapter, via a large EditText widget. Those notes will be stored in a
SQLite database.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Adding a DatabaseHelper
The first step for working with SQLite is to add an implementation of
SQLiteOpenHelper, which we will do here, named DatabaseHelper.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T13-Prefs
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T14-Database
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Eclipse

Open res/values/strings.xml and add a new string resource, named
on_upgrade_error, with a value of This should not be called.

Then, right click over the com.commonsware.empublite package in the src/ folder of
your project, and choose New > Class from the context menu. Fill in DatabaseHelper
in the “Name” field. Click the “Browse…” button next to the “Superclass” field and
find SQLiteOpenHelper to set as the superclass. Then, click “Finish” on the new-class
dialog to create the DatabaseHelper class.

Then, with DatabaseHelper open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.os.AsyncTaskandroid.os.AsyncTask;

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="empublite.db";
privateprivate staticstatic finalfinal int SCHEMA_VERSION=1;
privateprivate staticstatic DatabaseHelper singleton=nullnull;
privateprivate Context ctxt=nullnull;

synchronizedsynchronized staticstatic DatabaseHelper getInstance(Context ctxt) {
ifif (singleton == nullnull) {

singleton=newnew DatabaseHelper(ctxt.getApplicationContext());
}

returnreturn(singleton);
}

privateprivate DatabaseHelper(Context ctxt) {
supersuper(ctxt, DATABASE_NAME, nullnull, SCHEMA_VERSION);
thisthis.ctxt=ctxt;

}

@Override
publicpublic void onCreate(SQLiteDatabase db) {

trytry {
db.beginTransaction();
db.execSQL("CREATE TABLE notes (position INTEGER PRIMARY KEY, prose

TEXT);");
db.setTransactionSuccessful();

}
finallyfinally {

TUTORIAL #14 - SAVING NOTES

512

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

db.endTransaction();
}

}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException(

ctxt.getString(R.string.on_upgrade_error));
}

}

Outside of Eclipse

Create a src/com/commonsware/empublite/DatabaseHelper.java source file, with
the content shown above. Also, add a new string resource, named
on_upgrade_error, with a value of This should not be called.

Step #2: Examining DatabaseHelper
Our initial version of DatabaseHelper has a few things:

• It has the constructor, supplying to the superclass the name of the database
file (DATABASE_NAME) and the revision number of our schema
(SCHEMA_VERSION). It also holds onto the supplied Context for use later in
this chapter. Note that the constructor is private, as we are using the
singleton pattern, so only DatabaseHelper should be able to create
DatabaseHelper instances.

• It has the onCreate() method, invoked the first time we run the app on a
device or emulator, to let us populate the database. Here, we use execSQL()
to define a notes with a position column (indicating our chapter) and a
prose column (what the user types in as the note). We wrap this in our own
transaction for illustration purposes, though in this case, since there is only
one SQL statement, it is not strictly necessary.

• It has the onUpgrade() method, needed because SQLiteOpenHelper is
abstract, so our app will not compile without an implementation. Until we
revise our schema, though, this method should never be called, so we raise a
RuntimeException in the off chance that it is called unexpectedly.

• It has a static DatabaseHelper singleton instance and a getInstance()
method to lazy-initialize it.

As noted in the chapter on databases, it is important to ensure that all threads are
accessing the same SQLiteDatabase object, for thread safety. That usually means you

TUTORIAL #14 - SAVING NOTES

513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

hold onto a single SQLiteOpenHelper object. And, in our case, we might want to get
at this database from more than one activity. Hence, we go with the singleton
approach, so everyone works with the same DatabaseHelper instance.

Step #3: Creating a NoteFragment
Having a database is nice and all, but we need to work on the UI to allow users to
enter notes. To do that, we will start with a NoteFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the res/layout/ directory in your project, and choose New > File
from the context menu. Give the file a name of editor.xml. Then, in the Graphical
Layout sub-tab of the Eclipse layout editor, click on the “Text Fields” section of the
tool palette, and drag a “Multiline Text” widget into the layout. Give it an ID of @+id/
editor. Change the “Layout height” and “Layout width” to be match_parent. Add or
change the Gravity to be top|left. Finally, add or change the Hint to be a new string
resource (named hint) with a value of Enter notes here.

Then, right click over the com.commonsware.empublite package in the src/ folder of
your project, and choose New > Class from the context menu. Fill in NoteFragment
in the “Name” field. Click the “Browse…” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Then, click “Finish” on the new-class
dialog to create the NoteFragment class.

Then, with NoteFragment open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

TUTORIAL #14 - SAVING NOTES

514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass NoteFragmentNoteFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate EditText editor=nullnull;

staticstatic NoteFragment newInstance(int position) {
NoteFragment frag=newnew NoteFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
int position=getArguments().getInt(KEY_POSITION, -1);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}

}

Outside of Eclipse

Create a src/com/commonsware/empublite/NoteFragment.java source file, with the
content shown in the code listing in the “Eclipse” section above.

Then, create a res/layout/editor.xml file with the following XML:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="left|top"
android:hint="@string/hint"
android:inputType="textMultiLine"/>/>

You will also need to add a new <string> element in your res/values/strings.xml
file, with a name of hint and a value like Enter notes here.

TUTORIAL #14 - SAVING NOTES

515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #4: Examining NoteFragment
Our NoteFragment is fairly straightforward and is reminiscent of the
SimpleContentFragment we created in Tutorial #11.

NoteFragment has a newInstance() static factory method. This method creates an
instance of NoteFragment, takes a passed-in int (identifying the chapter for which
we are creating a note), puts it in a Bundle identified as KEY_POSITION, hands the
Bundle to the fragment as its arguments, and returns the newly-created
NoteFragment.

In onCreateView(), we inflate the R.layout.editor resource that we defined and get
our hands on our EditText widget for later use.

Step #5: Creating the NoteActivity
Having a fragment without displaying it is fairly pointless, so we need something to
load a NoteFragment. Particularly for phones, the simplest answer is to create a
NoteActivity for that, paralleling the relationship between SimpleContentFragment
and SimpleContentActivity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in NoteActivity in the
“Name” field. Click the “Browse…” button next to the “Superclass” field and find
SherlockFragmentActivity to set as the superclass. Then, click “Finish” on the new-
class dialog to create the NoteActivity class.

Then, with NoteActivity open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

TUTORIAL #14 - SAVING NOTES

516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass NoteActivityNoteActivity extendsextends SherlockFragmentActivity {
publicpublic staticstatic finalfinal String EXTRA_POSITION="position";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

int position=getIntent().getIntExtra(EXTRA_POSITION, -1);

ifif (position>=0) {
Fragment f=NoteFragment.newInstance(position);

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content, f).commit();

}
}

}
}

As you can see, this is a fairly trivial activity. In onCreate(), if we are being created
anew, we execute a FragmentTransaction to add a NoteFragment to our activity,
pouring it into the full screen (android.R.id.content). Here,
android.R.id.content identifies the container into which the results of
setContentView() would go — it is a container supplied by Activity itself and serves
as the top-most container for our content.

However, we expect that we will be passed an Intent extra with the position
(EXTRA_POSITION), which we pass along to the NoteFragment factory method.

You will also need to add a new activity node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to NoteActivity, following the same
approach that we used for other activities in this application.

Outside of Eclipse

Create a src/com/commonsware/empublite/NoteActivity.java source file, with the
content shown in the code listing in the “Eclipse” section above. Also add the
corresponding <activity> element in the manifest:

<activity<activity android:name="NoteActivity"/>/>

TUTORIAL #14 - SAVING NOTES

517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #6: Loading and Saving Notes
So, we have a database, a fragment, and an activity. If we started up the activity, the
user could type in some notes… which would not be stored, nor loaded, from the
database. Hence, we have a bit more work to do before we let the user into this UI.

In addition, since database I/O can be slow, we really need to ensure that we are
loading and saving our notes asynchronously. In particular, we need to allow the
NoteFragment to load a note, yet get that note’s prose back via some sort of
asynchronous mechanism, rather than having some sort of blocking call.

In this tutorial, we will isolate much of the database-handling logic on the
DatabaseHelper, beyond what is required by the SQLiteOpenHelper abstract class.

To that end, let us first set up an interface, NoteListener, defined as an inner
interface of DatabaseHelper:

interfaceinterface NoteListenerNoteListener {
void setNote(String note);

}

For the asynchronous work, we can use our good friend AsyncTask. First, let us load
a note from the database, by defining a GetNoteTask as an inner class of our
DatabaseHelper:

privateprivate classclass GetNoteTaskGetNoteTask extendsextends AsyncTask<Integer, Void, String> {
privateprivate NoteListener listener=nullnull;

GetNoteTask(NoteListener listener) {
thisthis.listener=listener;

}

@Override
protectedprotected String doInBackground(Integer... params) {

String[] args= { params[0].toString() };

Cursor c=
getReadableDatabase().rawQuery("SELECT prose FROM notes WHERE

position=?",
args);

c.moveToFirst();

ifif (c.isAfterLast()) {
returnreturn(nullnull);

}

TUTORIAL #14 - SAVING NOTES

518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String result=c.getString(0);

c.close();

returnreturn(result);
}

@Override
publicpublic void onPostExecute(String prose) {

listener.setNote(prose);
}

}

This is a regular inner class, not a static inner class, which should cause you to pause
for a moment — a regular inner class can be dangerous with configuration changes.
However, in this case, this is an inner class of our DatabaseHelper, which is a
singleton and will be unaffected directly by any configuration changes.

GetNoteTask will need two pieces of data:

• the position (i.e., chapter) whose notes we need to load, which will be
supplied as an Integer to doInBackground() by way of execute(), and

• a NoteListener that we can supply the loaded prose to, which GetNoteTask
takes in its constructor

Our doInBackground() gets a readable database from DatabaseHelper and proceeds
to use rawQuery() to retrieve the prose, given the position, returning null if there is
no such note (e.g., the user is trying to edit the note for a chapter for the first time).
The prose is returned by doInBackground() and supplied to onPostExecute(),
which turns around and calls setNote() on our NoteListener to pass it along to the
UI on the main application thread.

Similarly, we will need a SaveNoteTask as an inner class of DatabaseHelper:

privateprivate classclass SaveNoteTaskSaveNoteTask extendsextends AsyncTask<Void, Void, Void> {
privateprivate int position;
privateprivate String note=nullnull;

SaveNoteTask(int position, String note) {
thisthis.position=position;
thisthis.note=note;

}

@Override
protectedprotected Void doInBackground(Void... params) {

String[] args= { String.valueOf(position), note };

TUTORIAL #14 - SAVING NOTES

519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getWritableDatabase().execSQL("INSERT OR REPLACE INTO notes (position,
prose) VALUES (?, ?)",

args);

returnreturn(nullnull);
}

}

In this case, we need both the position and the note to be saved, which
SaveNoteTask collects in its constructor. In doInBackground(), we use SQLite’s
INSERT OR REPLACE SQL statement to either INSERT a new note or UPDATE an
existing note, based on the supplied position. We could avoid this by tracking
whether or not we had a note from our GetNoteTask and using the insert() and
update() methods on SQLiteDatabase, but the INSERT OR REPLACE approach is a bit
more concise in this case.

To invoke those tasks, we can create methods on DatabaseHelper:

void getNoteAsync(int position, NoteListener listener) {
ModelFragment.executeAsyncTask(newnew GetNoteTask(listener), position);

}

void saveNoteAsync(int position, String note) {
ModelFragment.executeAsyncTask(newnew SaveNoteTask(position, note));

}

These methods use the static executeAsyncTask() method on ModelFragment that
uses execute() or executeOnExecutor() as appropriate.

Over in NoteFragment, we need to use our new getNoteAsync() method to load the
note for use in our EditText. To that end, add the following statement to the
onCreateView() in NoteFragment, just before the return:

DatabaseHelper.getInstance(getActivity()).getNoteAsync(position,
thisthis);

Here, we retrieve our singleton DatabaseHelper and tell it to load our note, passing
the results to ourself as the NoteListener.

For that to work, though, we will need to add implements
DatabaseHelper.NoteListener to the class declaration:

publicpublic classclass NoteFragmentNoteFragment extendsextends SherlockFragment implementsimplements
DatabaseHelper.NoteListener {

That, in turn, requires us to implement setNote():

TUTORIAL #14 - SAVING NOTES

520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void setNote(String note) {

editor.setText(note);
}

The net result is that we load our note, asynchronously, into our EditText.

However, we also need to save our notes. The simplest UI approach for this is to
automatically save the notes when the fragment is no longer in the foreground, by
implementing onPause(). So, add the following onPause() implementation to
NoteFragment:

@Override
publicpublic void onPause() {

int position=getArguments().getInt(KEY_POSITION, -1);

DatabaseHelper.getInstance(getActivity())
.saveNoteAsync(position, editor.getText().toString());

supersuper.onPause();
}

All we do is retrieve our position and ask our DatabaseHelper to save the note
asynchronously, supplying the note prose itself from the EditText widget.

Step #7: Add Notes to the Action Bar
Now, we can let our user actually start working with the notes, by giving them a way
to get to the NoteActivity.

Specifically, we can add a notes entry to our res/menu/options.xml resource, to
have a new toolbar button appear on our main activity’s action bar:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/notes"
android:icon="@android:drawable/ic_menu_edit"
android:showAsAction="ifRoom|withText"
android:title="@string/notes">>

</item></item>
<item<item

android:id="@+id/settings"
android:icon="@android:drawable/ic_menu_preferences"
android:showAsAction="never"
android:title="@string/settings">>

</item></item>

TUTORIAL #14 - SAVING NOTES

521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<item<item
android:id="@+id/help"
android:icon="@android:drawable/ic_menu_help"
android:showAsAction="never"
android:title="@string/help">>

</item></item>
<item<item

android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">>

</item></item>

</menu></menu>

Eclipse users can add this via the structured editor for res/menu/options.xml,
following the instructions used for other action bar items.

Note that this menu definition requires a new string resource, named notes, with a
value like Notes.

Then, in EmPubLiteActivity, add the following case to the switch statement in
onOptionsItemSelected():

casecase R.id.notes:
Intent i=newnew Intent(thisthis, NoteActivity.class);
i.putExtra(NoteActivity.EXTRA_POSITION, pager.getCurrentItem());
startActivity(i);
returnreturn(truetrue);

Note that depending on where you place this, you will need to remove one existing
declaration of Intent i from one of the case blocks, whichever comes second.

Here, we get the currently-viewed position from the ViewPager and pass that as the
EXTRA_POSITION extra to NoteActivity.

If you build and run the app on a device or emulator, you will see the new toolbar
button in the action bar:

TUTORIAL #14 - SAVING NOTES

522

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 189: The New Action Bar Item

Tapping that will bring up the notes for whatever chapter you are on. Entering in
some notes and pressing BACK to exit the activity will save those notes, which you
will see again if you tap the action bar toolbar button again. If you change the notes,
pressing BACK will save the changed notes in the database, to be viewed again later
when you go back into the notes for that chapter.

Step #8: Support Deleting Notes
So, we can now add and edit notes. However, the only way we can “delete” a note is
to blank out the EditText. While that works, it would be nice to offer a cleaner
delete option.

First, we need to add some more logic to DatabaseHelper to delete notes. As with
getting and saving notes, this will involve an AsyncTask and a method to execute an
instance of that task.

With that in mind, add the following inner class to DatabaseHelper:

privateprivate classclass DeleteNoteTaskDeleteNoteTask extendsextends AsyncTask<Integer, Void, Void> {
@Override

TUTORIAL #14 - SAVING NOTES

523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

protectedprotected Void doInBackground(Integer... params) {
String[] args= { params[0].toString() };

getWritableDatabase().execSQL("DELETE FROM notes WHERE position=?",
args);

returnreturn(nullnull);
}

}

Here, given the position (supplied as an Integer to doInBackground()), we execute a
DELETE statement to get rid of it. This could also have been implemented using the
delete() method on SQLiteDatabase.

Then, add a deleteNoteAsync() method to DatabaseHelper, to invoke our
DeleteNoteTask:

void deleteNoteAsync(int position) {
ModelFragment.executeAsyncTask(newnew DeleteNoteTask(), position);

}

Our full DatabaseHelper at this point should look like:

packagepackage com.commonsware.empublite;

importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.os.AsyncTaskandroid.os.AsyncTask;

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="empublite.db";
privateprivate staticstatic finalfinal int SCHEMA_VERSION=1;
privateprivate staticstatic DatabaseHelper singleton=nullnull;
privateprivate Context ctxt=nullnull;

synchronizedsynchronized staticstatic DatabaseHelper getInstance(Context ctxt) {
ifif (singleton == nullnull) {

singleton=newnew DatabaseHelper(ctxt.getApplicationContext());
}

returnreturn(singleton);
}

privateprivate DatabaseHelper(Context ctxt) {
supersuper(ctxt, DATABASE_NAME, nullnull, SCHEMA_VERSION);
thisthis.ctxt=ctxt;

}

@Override

TUTORIAL #14 - SAVING NOTES

524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onCreate(SQLiteDatabase db) {
trytry {

db.beginTransaction();
db.execSQL("CREATE TABLE notes (position INTEGER PRIMARY KEY, prose

TEXT);");
db.setTransactionSuccessful();

}
finallyfinally {

db.endTransaction();
}

}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException(

ctxt.getString(R.string.on_upgrade_error));
}

void getNoteAsync(int position, NoteListener listener) {
ModelFragment.executeAsyncTask(newnew GetNoteTask(listener), position);

}

void saveNoteAsync(int position, String note) {
ModelFragment.executeAsyncTask(newnew SaveNoteTask(position, note));

}

void deleteNoteAsync(int position) {
ModelFragment.executeAsyncTask(newnew DeleteNoteTask(), position);

}

interfaceinterface NoteListenerNoteListener {
void setNote(String note);

}

privateprivate classclass GetNoteTaskGetNoteTask extendsextends AsyncTask<Integer, Void, String> {
privateprivate NoteListener listener=nullnull;

GetNoteTask(NoteListener listener) {
thisthis.listener=listener;

}

@Override
protectedprotected String doInBackground(Integer... params) {

String[] args= { params[0].toString() };

Cursor c=
getReadableDatabase().rawQuery("SELECT prose FROM notes WHERE

position=?",
args);

c.moveToFirst();

ifif (c.isAfterLast()) {

TUTORIAL #14 - SAVING NOTES

525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(nullnull);
}

String result=c.getString(0);

c.close();

returnreturn(result);
}

@Override
publicpublic void onPostExecute(String prose) {

listener.setNote(prose);
}

}

privateprivate classclass SaveNoteTaskSaveNoteTask extendsextends AsyncTask<Void, Void, Void> {
privateprivate int position;
privateprivate String note=nullnull;

SaveNoteTask(int position, String note) {
thisthis.position=position;
thisthis.note=note;

}

@Override
protectedprotected Void doInBackground(Void... params) {

String[] args= { String.valueOf(position), note };

getWritableDatabase().execSQL("INSERT OR REPLACE INTO notes (position,
prose) VALUES (?, ?)",

args);

returnreturn(nullnull);
}

}

privateprivate classclass DeleteNoteTaskDeleteNoteTask extendsextends AsyncTask<Integer, Void, Void> {
@Override
protectedprotected Void doInBackground(Integer... params) {

String[] args= { params[0].toString() };

getWritableDatabase().execSQL("DELETE FROM notes WHERE position=?",
args);

returnreturn(nullnull);
}

}
}

Next, let’s create a new resource, res/menu/notes.xml, to configure the action bar
for the activity hosting our NoteFragment:

TUTORIAL #14 - SAVING NOTES

526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/delete"
android:icon="@android:drawable/ic_menu_delete"
android:showAsAction="ifRoom|withText"
android:title="@string/delete">>

</item></item>

</menu></menu>

This simply defines a single action bar item, with an ID of delete.

Eclipse users can right-click over the res/menu/ directory and choose New > File
from the context menu, filling in notes.xml as the file name. Then, use the
structured resource editor to add a new menu resource, with an ID of delete, an
icon of @android:drawable/ic_menu_delete, and a title that consists of a new
delete string resource (with a value of Delete). Also, mark this new item as
ifRoom|withText for the “Show as action” item.

To let Android know that our NoteFragment wishes to participate in the action bar,
we need to call setHasOptionsMenu(true) at some point. The easiest place to put
that would be in our onCreateView() implementation in NoteFragment:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
int position=getArguments().getInt(KEY_POSITION, -1);

editor=(EditText)result.findViewById(R.id.editor);
DatabaseHelper.getInstance(getActivity()).getNoteAsync(position,

thisthis);

setHasOptionsMenu(truetrue);

returnreturn(result);
}

That will trigger a call to onCreateOptionsMenu(), which we will need to add to
NoteFragment:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.notes, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

TUTORIAL #14 - SAVING NOTES

527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This just inflates our new resource for use in the options menu.

If the user taps on that toolbar button, onOptionsItemSelected() will be called, so
we will need to add that as well to NoteFragment:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.delete) {
int position=getArguments().getInt(KEY_POSITION, -1);

isDeleted=truetrue;
DatabaseHelper.getInstance(getActivity())

.deleteNoteAsync(position);

((NoteActivity)getActivity()).closeNotes();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

Here, if the user tapped the delete item, we update an isDeleted data member to
track that our note is now deleted, plus use the new deleteNoteAsync() method on
DatabaseHelper to actually get rid of the note. We also call a closeNotes() method
on our hosting activity to indicate that we are no longer needed on the screen (since
the note is deleted).

For this to build, we will need to add isDeleted to NoteFragment as a data member:

privateprivate boolean isDeleted=falsefalse;

The reason for tracking isDeleted is for onPause(), so when our fragment leaves the
foreground, we do not inadvertently save it again. So, update onPause() to only do
its work if isDeleted is false:

@Override
publicpublic void onPause() {

ifif (!isDeleted) {
int position=getArguments().getInt(KEY_POSITION, -1);

DatabaseHelper.getInstance(getActivity())
.saveNoteAsync(position, editor.getText().toString());

}

supersuper.onPause();
}

TUTORIAL #14 - SAVING NOTES

528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The complete NoteFragment, at this point, should look like:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

publicpublic classclass NoteFragmentNoteFragment extendsextends SherlockFragment implementsimplements
DatabaseHelper.NoteListener {

privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate EditText editor=nullnull;
privateprivate boolean isDeleted=falsefalse;

staticstatic NoteFragment newInstance(int position) {
NoteFragment frag=newnew NoteFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
int position=getArguments().getInt(KEY_POSITION, -1);

editor=(EditText)result.findViewById(R.id.editor);
DatabaseHelper.getInstance(getActivity()).getNoteAsync(position,

thisthis);

setHasOptionsMenu(truetrue);

returnreturn(result);
}

@Override
publicpublic void onPause() {

ifif (!isDeleted) {
int position=getArguments().getInt(KEY_POSITION, -1);

DatabaseHelper.getInstance(getActivity())
.saveNoteAsync(position, editor.getText().toString());

}

TUTORIAL #14 - SAVING NOTES

529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onPause();
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.notes, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.delete) {
int position=getArguments().getInt(KEY_POSITION, -1);

isDeleted=truetrue;
DatabaseHelper.getInstance(getActivity())

.deleteNoteAsync(position);

((NoteActivity)getActivity()).closeNotes();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

@Override
publicpublic void setNote(String note) {

editor.setText(note);
}

}

However, we also need to implement closeNotes() on NoteActivity, as we are
trying to call that from onOptionsItemSelected():

void closeNotes() {
finish();

}

Here, we just call finish() to get rid of the activity and return us to
EmPubLiteActivity.

If you run this in a device or emulator, and you go into the notes, you will see our
delete toolbar button:

TUTORIAL #14 - SAVING NOTES

530

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 190: The New Action Bar Item

Tapping that toolbar button will delete the note (if there is one) and close the
activity, returning you to the book.

In Our Next Episode…
… we will allow the user to share a chapter’s notes with somebody else.

TUTORIAL #14 - SAVING NOTES

531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Internet Access

The expectation is that most, if not all, Android devices will have built-in Internet
access. That could be WiFi, cellular data services (EDGE, 3G, etc.), or possibly
something else entirely. Regardless, most people — or at least those with a data plan
or WiFi access — will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to
make use of this Internet access. Some offer high-level access, such as the integrated
WebKit browser component (WebView) we saw in an earlier chapter. If you want, you
can drop all the way down to using raw sockets. Or, in between, you can leverage
APIs — both on-device and from 3rd-party JARs — that give you access to specific
protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit
component and Internet-access APIs, as busy coders should be trying to reuse
existing components versus rolling one’s own on-the-wire protocol wherever
possible.

DIY HTTP
In many cases, your only viable option for accessing some Web service or other
HTTP-based resource is to do the request yourself. The Google-endorsed API for
doing this nowadays in Android is to use the classic java.net classes for HTTP
operation, centered around HttpUrlConnection. There is quite a bit of material on
this already published, as these classes have been in Java for a long time. The focus
here is in showing how this works in an Android context.

533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note, however, that you may find it easier to use some HTTP client libraries that
handle various aspects of the Internet access for you, as will be described later in
this chapter.

Introducing the Sample

In this section, we will take a look at the Internet/Weather sample project. This
project does several things:

• It requests our location from LocationManager, specifically using GPS
• It retrieves the weather for our location from the US National Weather

Service (NWS) for the latitude and longitude we get from LocationManager
• It parses the XML received from the NWS, generates a Web page in response,

and displays that Web page in a WebView widget

Later in this book, we will examine the LocationManager portion of this sample. For
the moment, we will focus on the Internet access.

Asking Permission

To do anything with the Internet (or a local network) from your app, you need to
hold the INTERNET permission. This includes cases where you use things like WebView
— if your process needs network access, you need the INTERNET permission.

Hence, the manifest for our sample project contains the requisite
<uses-permission> declaration:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

A Task for Updating

We have an activity (WeatherDemo) which follows the standard load-the-dynamic-
fragment pattern seen throughout this book, this time setting up WeatherFragment:

packagepackage com.commonsware.android.weather;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass WeatherDemoWeatherDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

INTERNET ACCESS

534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew WeatherFragment()).commit();
}

}
}

Eventually, when we get a GPS fix, the onLocationChanged() method of
WeatherFragment will be called — we will get into the details of how this occurs later
in this book when we cover LocationManager. Suffice it to say that it happens, and
more importantly, it happens on the main application thread.

We do not want to do Internet access on the main application thread, as we have no
idea if it will complete quickly.

So, we set up an AsyncTask, named FetchForecastTask, and execute an instance of
it:

@Override
publicpublic void onLocationChanged(Location location) {

FetchForecastTask task=newnew FetchForecastTask();

task.execute(location);
}

The Location object supplied to onLocationChanged() will contain, among other
things, our latitude (getLatitude()) and longitude (getLongitude()) in decimal
degrees as Java double values.

The doInBackground() of FetchForecastTask is where we can do all the
downloading and parsing of our Web service call:

@Override
protectedprotected String doInBackground(Location... locs) {

String page=nullnull;

trytry {
Location loc=locs[0];
String url=

String.format(template, loc.getLatitude(),
loc.getLongitude());

page=generatePage(buildForecasts(getForecastXML(url)));
}
catchcatch (Exception e) {

INTERNET ACCESS

535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis.e=e;
}

returnreturn(page);
}

@Override
protectedprotected void onPostExecute(String page) {

ifif (e == nullnull) {
getWebView().loadDataWithBaseURL(nullnull, page, "text/html",

"UTF-8", nullnull);
}
elseelse {

Log.e(getClass().getSimpleName(), "Exception fetching data", e);
Toast.makeText(getActivity(),

String.format(getString(R.string.error),
e.toString()), Toast.LENGTH_LONG)

.show();
}

}
}

}

We need to synthesize a URL to access that NWS REST endpoint for getting a
forecast based upon latitude and longitude. A template of that URL is held in a
string resource named R.string.url (too long to reprint here) and is stored in a
data member named template up in onCreate():

template=getActivity().getString(R.string.url);

We use the String.format() method to pour our latitude and longitude from the
Location object into the template to get a fully-qualified URL (fortunately, floating-
point numbers do not need to be URL-encoded).

We then execute a series of methods, defined on the fragment, to handle the actual
Web service call:

• getForecastXML() makes the HTTP request and retrieves the XML from the
NWS REST endpoint

• buildForecasts() parses that XML into a series of Forecast objects
• generatePage() takes the Forecast objects and crafts a Web page to display

the forecast

However, these might fail with an Exception (e.g., no connectivity, malformed
XML). If one does, we hold onto the Exception in a data member of
FetchForecastTask, so we can use it in onPostExecute() on the main application
thread.

INTERNET ACCESS

536

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Doing the Internet Thing

The getForecastXML() method uses a fairly typical recipe for fetching data off the
Internet from an HTTP URL using HttpUrlConnection:

privateprivate String getForecastXML(String path) throwsthrows IOException {
BufferedReader reader=nullnull;
URL url=newnew URL(path);
HttpURLConnection c=(HttpURLConnection)url.openConnection();

trytry {
reader=

newnew BufferedReader(newnew InputStreamReader(c.getInputStream()));

StringBuilder buf=newnew StringBuilder();
String line=nullnull;

whilewhile ((line=reader.readLine()) != nullnull) {
buf.append(line + "\n");

}

returnreturn(buf.toString());
}
finallyfinally {

ifif (reader != nullnull) {
reader.close();

}

c.disconnect();
}

}

We create a connection for the URL, then execute the request and use a
StringBuilder to get the response back as a String. If this fails for any reason, it
will raise an Exception, which will be caught by FetchForecastTask.

Dealing with the Result

The buildForecasts() method uses the DOM to parse the rather bizarre XML
format returned by the NWS REST endpoint:

privateprivate ArrayList<Forecast> buildForecasts(String raw)
throwsthrows Exception {

ArrayList<Forecast> forecasts=newnew ArrayList<Forecast>();
DocumentBuilder builder=

DocumentBuilderFactory.newInstance().newDocumentBuilder();
Document doc=builder.parse(newnew InputSource(newnew StringReader(raw)));
NodeList times=doc.getElementsByTagName("start-valid-time");

INTERNET ACCESS

537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

forfor (int i=0; i < times.getLength(); i++) {
Element time=(Element)times.item(i);
Forecast forecast=newnew Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());

}

NodeList temps=doc.getElementsByTagName("value");

forfor (int i=0; i < temps.getLength(); i++) {
Element temp=(Element)temps.item(i);
Forecast forecast=forecasts.get(i);

forecast.setTemp(Integer.valueOf(temp.getFirstChild().getNodeValue()));
}

NodeList icons=doc.getElementsByTagName("icon-link");

forfor (int i=0; i < icons.getLength(); i++) {
Element icon=(Element)icons.item(i);
Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());
}

returnreturn(forecasts);
}

(using SAX might be faster in this case — the proof of this is left as an exercise to
the reader)

That XML is converted into a series of Forecast objects, representing the triple of
time, projected temperature, and a code identifying the projected weather. That
code maps to a series of icons up on the NWS Web site.

The generatePage() method takes those Forecast objects and generates a trivial
HTML page with a table containing the results.

Back in our FetchForecastTask, onPostExecute() loads that HTML into a WebView
via loadDataWithBaseURL(). The WebView comes from our parent class,
WebViewFragment, a port of the native WebViewFragment from Android that works on
Android 2.x and ActionBarSherlock, as the native WebViewFragment only exists on
API Level 11 and higher:

importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;

INTERNET ACCESS

538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

/**
* A fragment that displays a WebView.
* <p>
* The WebView is automatically paused or resumed when the
* Fragment is paused or resumed.
*/

publicpublic classclass WebViewFragmentWebViewFragment extendsextends SherlockFragment {
privateprivate WebView mWebView;
privateprivate boolean mIsWebViewAvailable;

publicpublic WebViewFragment() {
}

/**
* Called to instantiate the view. Creates and returns the
* WebView.
*/

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

ifif (mWebView != nullnull) {
mWebView.destroy();

}

mWebView=newnew WebView(getActivity());
mIsWebViewAvailable=truetrue;
returnreturn mWebView;

}

/**
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
*/

@TargetApi(11)
@Override
publicpublic void onPause() {

supersuper.onPause();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();

}
}

/**
* Called when the fragment is no longer resumed. Pauses
* the WebView.
*/

@TargetApi(11)
@Override

INTERNET ACCESS

539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onResume() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

mWebView.onResume();
}

supersuper.onResume();
}

/**
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/

@Override
publicpublic void onDestroyView() {

mIsWebViewAvailable=falsefalse;
supersuper.onDestroyView();

}

/**
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/

@Override
publicpublic void onDestroy() {

ifif (mWebView != nullnull) {
mWebView.destroy();
mWebView=nullnull;

}
supersuper.onDestroy();

}

/**
* Gets the WebView.
*/

publicpublic WebView getWebView() {
returnreturn mIsWebViewAvailable ? mWebView : nullnull;

}
}

(and, as noted in Tutorial #9, where WebViewFragment was introduced, the flawed
comments came from the original Android open source code from which this
fragment was derived)

If we encountered an Exception, though, onPostExecute() logs the stack trace to
LogCat, plus displays a Toast to let the user know of our difficulty.

INTERNET ACCESS

540

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Running the Sample

When you run the sample, initially it will appear as though the forecast is heavy fog,
or perhaps a blizzard:

Figure 191: The Weather Demo, As Initially Launched

That is because Android is waiting on a GPS fix. If you are running on an actual
piece of Android hardware with an enabled GPS receiver (and you live within the
area covered by the US National Weather Service’s REST API), you should get a
forecast shortly.

If you are testing on an emulator, you can fake a GPS fix via DDMS. In Eclipse, go to
the DDMS perspective, click on your emulator in the Devices tool, then click on the
Emulator Control tool and scroll down to the Location Controls:

INTERNET ACCESS

541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 192: The DDMS Perspective, with Location Controls

Here, you can fill in a longitude and latitude (pay attention to the order!), then click
“Send”. The fields are filled in by default with the location of the Google
headquarters in Mountain View, CA, so simply clicking “Send” will bring up the
weather forecast for the Googleplex:

INTERNET ACCESS

542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 193: The Weather Demo, With Actual Weather

What Android Brings to the Table

Google has augmented HttpUrlConnection to do more stuff to help developers.
Notably:

• It automatically uses GZip compression on requests, adding the appropriate
HTTP header and automatically decompressing any compressed responses
(added in Android 2.3)

• It uses Server Name Indication to help work with several HTTPS hosts
sharing a single IP address

• API Level 13 (Android 4.0) added an HttpResponseCache implementation of
the java.net.ResponseCache base class, that can be installed to offer
transparent caching of your HTTP requests.

Testing with StrictMode

StrictMode, mentioned in the chapter on files, can also report on performing
network I/O on the main application thread. More importantly, on Android 4.0 and

INTERNET ACCESS

543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Server_Name_Indication

higher, the emulator will, by default, crash your app if you try to perform network
I/O on the main application thread.

Hence, it is generally a good idea to test your app, either using StrictMode yourself
or using a suitable emulator, to make sure that you are not performing network I/O
on the main application thread.

What About HttpClient?

Android also contains a mostly-complete copy of version 4.0.2beta of the Apache
HttpClient library. Many developers use this, as they prefer the richer API offered by
this library over the somewhat more clunky approach used by java.net. And, truth
be told, this was the more stable option prior to Android 2.3.

There are a few reasons why this is no longer recommended, for Android 2.3 and
beyond:

• The core Android team is better able to add capabilities to the java.net
implementation while maintaining backwards compatibility, because its API
is more narrow.

• The problems previously experienced on Android with the java.net
implementation have largely been fixed.

• The Apache HttpClient project continuously evolves its API. This means that
Android will continue to fall further and further behind the latest-and-
greatest from Apache, as Android insists on maintaining the best possible
backwards compatibility and therefore cannot take on newer-but-different
HttpClient versions.

That being said, you are welcome to use HttpClient if you are not concerned about
these limitations.

HTTP via DownloadManager
If your objective is to download some large file, you may be better served by using
the DownloadManager added to Android 2.3, as it handles a lot of low-level
complexities for you. For example, if you start a download on WiFi, and the user
leaves the building and the device fails over to some form of mobile data, you need
to reconnect to the server and either start the download again or use some content
negotiation to pick up from where you left off. DownloadManager handles that.

INTERNET ACCESS

544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://hc.apache.org/httpcomponents-client-ga/index.html
http://hc.apache.org/httpcomponents-client-ga/index.html

However, DownloadManager is dependent upon some broadcast Intent objects, a
technique we have not discussed yet, so we will delay covering DownloadManager
until the next chapter.

Using Third-Party JARs
To some extent, the best answer is to not write the code yourself, but rather use
some existing JAR that handles both the Internet I/O and any required data parsing.
This is commonplace when accessing public Web services — either because the firm
behind the Web service has released a JAR, or because somebody in the community
has released a JAR for that Web service.

Examples include:

• Using JTwitter to access Twitter’s API
• Using Amazon’s JAR to access various AWS APIs, including S3, SimpleDB,

and SQS
• Using the Dropbox SDK for accessing DropBox folders and files

However, beyond the classic potential JAR problems, you may encounter another
when it comes to using JARs for accessing Internet services: versioning. For example:

• JTwitter bundles the org.json classes in its JAR, which will be superseded by
Android’s own copy, and if the JTwitter version of the classes have a different
API, JTwitter could crash.

• Libraries dependent upon HttpClient might be dependent upon a version
with a different API (e.g., 4.1.1) than is in Android (4.0.2 beta).

Try to find JARs that have been tested on Android and are clearly supported as such
by their author. Lacking that, try to find JARs that are open source, so you can tweak
their implementation if needed to add Android support.

Later in this chapter, we will review another class of third-party JARs, ones that are
more general-purpose than things like JTwitter, but still offer to simplify HTTP
processing.

SSL
Of course, if you are thinking about HTTP, you really should be thinking about
HTTPS — SSL-encrypted HTTP operations.

INTERNET ACCESS

545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.winterwell.com/software/jtwitter.php
http://aws.amazon.com/sdkforandroid/
https://www.dropbox.com/developers/start/setup#android

Normally, SSL “just works”, by using an https:// URL. Hence, typically, there is
little that you need to do to enable simple encryption.

However, there are other aspects of SSL to consider, including:

• What if the server is not using an SSL certificate that Android will honor,
such as a self-signed certificate?

• What about man-in-the-middle attacks, hacked certificate authorities, and
the like?

The trails contain a chapter dedicated to SSL that you are encouraged to read, so
that this chapter does not get crazy-long.

Using HTTP Client Libraries
Often times, writing Internet access code is a pain in various body parts.

Not surprisingly, there are a variety of third-party libraries designed to assist with
this. Some are designed to provide access to a specific API, such as JTwitter for
accessing Twitter’s API. However, others are more general-purpose, designed to
make writing HTTP operations a bit easier, by handling things like:

• Retries (e.g., device failed over from WiFi to mobile data mid-transaction)
• Threading (e.g., handling doing the Internet work on a background thread

for you)
• Data parsing and marshaling, for well-known formats (e.g., JSON)

In this section, we will look at three libraries, published by Square, that exemplify
this approach: OkHTTP, Retrofit, and Picasso. Later, we will see other libraries that
you might wish to investigate, including Google’s own Volley HTTP client API.

OkHTTP

OkHTTP uses a modified clone of the standard HttpUrlConnection to offer many
performance improvements. Most notable is its support for SPDY, a Google
sponsored enhanced version of HTTP, going beyond classic HTTP “keep-alive”
support to allow for many requests and responses to be delivered over the same
socket connection. Many Google APIs are served by SPDY-capable servers, and SPDY
support is available for others to use as well.

INTERNET ACCESS

546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.winterwell.com/software/jtwitter.php
http://square.github.io/okhttp/
http://en.wikipedia.org/wiki/SPDY

Beyond that, OkHTTP wraps up common HTTP performance-improvement
patterns, such as GZIP compression, response caching, and connection pooling. It
also is more aware of “real world” connection issues, like mis-configured proxy
servers and the like.

Using OkHTTP is mostly a matter of dropping its JAR into your project’s libs/
directory, creating an instance of OkHttpClient, and using its open() method to
open a connection to a URL. open() will return an HttpUrlConnection, which you
use the same as you would normally, except that OkHTTP’s implementation adds
the aforementioned features.

Also, if you had been using Apache’s HttpClient, and you wanted to stick with that
API, there is an optional okhttp-apache that offers an HttpClient-compatible API,
but one that uses the OkHTTP engine under the covers.

As a simple incremental improvement over classic HTTP client code, OkHTTP is
fairly easy to use. However, you are still stuck with the HttpUrlConnection or
HttpClient APIs, handling things like request generation and response processing
yourself. Square’s other two HTTP client libraries — Retrofit and Picasso — layer
atop of OkHTTP to help address usability issues for specific scenarios.

Note that OkHTTP is used as the standard implementation of HttpUrlConnection in
Android 4.4 and higher.

Retrofit

Many times, when working with HTTP requests, our needs are fairly simple: just
retrieve some JSON (or other structured data, such as XML) from some Web service,
or perhaps upload some JSON to that Web service.

Retrofit is designed to simplify this, by handling the data parsing and marshaling for
us, along with the HTTP operations and (optionally) background threading. We are
left with a fairly natural-looking Java API to send/receive Java objects to/from the
Web service. Retrofit accomplishes this through the cunning use of annotations,
reflection, and, where available, OkHTTP itself.

To demonstrate Retrofit, let’s review the HTTP/Retrofit sample project. This project
has a single activity, with a single fragment, that will download the latest 30
questions in the android tag from StackOverflow, displaying them in a ListView.
Tapping on an entry in the list will bring up the user’s default Web browser on that
particular question.

INTERNET ACCESS

547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://square.github.io/retrofit/
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Retrofit
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Retrofit

Note that StackOverflow happens to use JSON as its data format, which works nicely
with Retrofit, as JSON is its default data format. However, you can supply your own
conversion logic, to convert data to/from other formats, such as XML or Protocol
Buffers.

Note that the sample app uses native fragments, and therefore will only run on API
Level 11 and higher devices. It should be possible to backport this to use the Android
Support package’s edition of fragments — the proof of this is left as an exercise to
the reader.

Downloading and Installing Retrofit

Retrofit is available as a small JAR from the aforementioned Retrofit Web site. By
default, it uses Google’s Gson for its JSON parsing, so you will need to download that
JAR as well. If you also have OkHTTP in your project, Retrofit will automatically use
it, falling back to standard Android HTTP APIs if OkHTTP is unavailable.

The combination of these JARs totals around 500KB, mostly coming from Gson and
OkHTTP. For most apps, this will not be a major issue, but if APK size is important
to you, you need to keep in mind the footprint that these JARs consume.

Creating Your Data Model

You need to create Java classes that mirror the JSON that you wish to get back from
HTTP operations performed against the targeted Web service.

In our case, we are going to use a specific endpoint of the StackExchange API,
referred to as /questions after the distinguishing portion of the path. The
documentation for this endpoint can be found in the StackExchange API
documentation.

We will examine the URL for the endpoint a bit later in this section.

The results we get for issuing a GET request for the URL is a JSON structure (here
showing a single question, to keep the listing short):

{
"items": [

{
"question_id": 17196927,
"creation_date": 1371660594,
"last_activity_date": 1371660594,

INTERNET ACCESS

548

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://square.github.io/retrofit/
http://code.google.com/p/google-gson/
https://api.stackexchange.com/docs/questions
https://api.stackexchange.com/docs/questions

"score": 0,
"answer_count": 0,
"title": "ksoap2 failing when in 3G",
"tags": [

"android",
"ksoap2",
"3g"

],
"view_count": 2,
"owner": {

"user_id": 773259,
"display_name": "SparK",
"reputation": 513,
"user_type": "registered",
"profile_image": "http://www.gravatar.com/avatar/

511b37f7c313984e624dd76e8cb9faa6?d=identicon&r=PG",
"link": "http://stackoverflow.com/users/773259/spark"

},
"link": "http://stackoverflow.com/questions/17196927/

ksoap2-failing-when-in-3g",
"is_answered": falsefalse

}
],
"quota_remaining": 9991,
"quota_max": 10000,
"has_more": truetrue

}

NOTE: Some of the longer URLs will word-wrap in the book, but they are on a
single line in the actual JSON. Honest.

We get back a JSON object, where our questions are found under the name of items.
items is a JSON array of JSON objects, where each JSON object represents a single
question, with fields like title and link. The question JSON object has an
embedded owner JSON object with additional information.

We do not necessarily need all of this information. In fact, for this first version of the
sample, all we really need are the title and link of each entry in the items array.

The key is that, by default, the data members in our Java data model must exactly
match the JSON keys for the JSON objects.

So, we have an Item class, representing the information from an individual entry in
the items array:

packagepackage com.commonsware.android.retrofit;

publicpublic classclass ItemItem {
String title;

INTERNET ACCESS

549

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String link;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

The toString() implementation is there so we can toss our Item array into an
ArrayAdapter without needing to write a getView() method to pull the title out
manually.

However, our Web service does not return the items array directly. items is the key
in a JSON object that is the actual JSON returned by StackExchange. So, we need
another Java class that contains the data members we need from that outer JSON
object, here named SOQuestions (for lack of a better idea for a name…):

packagepackage com.commonsware.android.retrofit;

importimport java.util.Listjava.util.List;

publicpublic classclass SOQuestionsSOQuestions {
List<Item> items;

}

Having an items data member that is a List of Item tells Retrofit that we are
expecting the JSON object to be used for SOQuestions to have a JSON array, named
items, where each element in that array should get mapped to Item objects.

Creating Your Service Interface

The next thing we need is to tell Retrofit more about where this JSON is coming
from. To do this, we need to create a Java interface with some specific Retrofit-
supplied annotations, documenting:

• the HTTP operations that we wish to perform
• the path (and, if needed, query parameters) to apply an HTTP operation to
• the per-request data to configure the HTTP operation, such as the dynamic

portions of the path for a REST-style API, or additional query parameters to
attach to the URL

• what object should be used for pouring the HTTP response into

For example, let’s take a look at StackOverflowInterface, our interface for making a
query of StackExchange’s API to get questions from StackOverflow:

INTERNET ACCESS

550

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.retrofit;

importimport retrofit.Callbackretrofit.Callback;
importimport retrofit.http.GETretrofit.http.GET;
importimport retrofit.http.Queryretrofit.http.Query;

publicpublic interfaceinterface StackOverflowInterfaceStackOverflowInterface {
@GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
void questions(@Query("tagged") String tags, Callback<SOQuestions> cb);

}

Each method in the interface should have an annotation identifying the HTTP
operation to perform, such as @GET or @POST. The parameter to the annotation is the
path for the request and any fixed query parameters. In our case, we are using the
path documented by StackExchange for retrieving questions (/2.1/questions), plus
some fixed query parameters:

• order for whether the results should be ascending (asc) or descending
(desc)

• sort to indicate how the questions should be sorted, such as creation to
sort by time when the question was posted

• site to indicate what StackExchange site we are querying (e.g.,
stackoverflow)

The method name can be whatever you want.

If you have additional query parameters that vary dynamically, you can use the
@Query annotation on String parameters to have them be added to the end of the
URL. In our case, the tagged query parameter will be added with whatever the tags
parameter is to our question() method.

Similarly, you can use {name} placeholders for path segments, and replace those at
runtime via @Path-annotated parameters to the method.

To get results back, and indicate the data type for those results, you have two
choices:

1. Have the method return the data type you wish, in which case when we
eventually call this method, the HTTP operation will be performed
synchronously, blocking our method call

2. Pass a Callback parameter, declared with the desired data type (e.g.,
SOQuestions), in which case when we eventually call this method, the HTTP
operation will be performed on a background thread, with the results

INTERNET ACCESS

551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

delivered to us asynchronously via a custom Callback implementation that
we will supply.

In this case, we are electing to let Retrofit handle the threading for us, so we supply
a Callback and have the method return void.

Curiously, we will never create an implementation of the StackOverflowInterface
ourselves. Instead, Retrofit generates one for us, with code that implements our
requested behaviors.

Creating the RestAdapter

To use this generated StackOverflowInterface, and to actually perform these
operations, we need to create an instance of a RestAdapter. Usually, you will do this
via a RestAdapter.Builder, to configure what you want done.

The biggest thing you will provide to RestAdapter.Builder is the server tied to
these HTTP operations. Calling setEndpoint() allows you to specify the scheme,
host, and port to be attached to the rest of the URL, coming from your interface.
For example, we need to make our requests of the
https://api.stackexchange.com server, so we have:

RestAdapter restAdapter=
newnew RestAdapter.Builder().setEndpoint("https://api.stackexchange.com")

.build();

Other methods on RestAdapter.Builder include:

• setConverter(), if your payloads are not in JSON format, but something
else

• setExecutors(), to provide Executor objects (e.g., instances of
ThreadPoolExecutor) to be used for requests and callbacks

• setLog() and setDebug() for controlling log output

When you are done configuring the RestAdapter.Builder, call build() to get the
resulting RestAdapter.

Making Requests

Given a configured RestAdapter, you can retrieve an implementation of your API
interface by calling the create() method:

INTERNET ACCESS

552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

StackOverflowInterface so=
restAdapter.create(StackOverflowInterface.class);

You can then use the resulting interface-typed object no differently than you would
any other Java object, despite the fact that you never wrote an implementation of
that interface yourself.

In our case, we can call the questions() method, supplying the tag (or tags) from
which we wish to receive recent questions:

so.questions("android", thisthis);

The second parameter to questions() is an implementation of Callback, to receive
asynchronous results from our HTTP GET request. Callback requires two methods,
success() and failure(). success() takes two parameters: the data type you
indicated in the interface (e.g., SOQuestions) representing the parsed results of the
HTTP request, and a Response object containing other information from the HTTP
response, such as headers:

publicpublic void success(SOQuestions questions, Response response) {

We will take a look at the success() implementation shortly.

failure() takes a single parameter, an instance of RetrofitError, which is an
Exception providing details of something that went wrong in the HTTP request
(e.g., authorization was denied). You can handle that no differently than you might
other exceptions from elsewhere in your app, to let the user know that something
went wrong. In this case, we take the crude-but-easy approach of showing a Toast
and logging the details to LogCat:

@Override
publicpublic void failure(RetrofitError exception) {

Toast.makeText(getActivity(), exception.getMessage(),
Toast.LENGTH_LONG).show();

Log.e(getClass().getSimpleName(),
"Exception from Retrofit request to StackOverflow", exception);

}

The Rest of the Story

Our app’s manifest is unremarkable, other than requesting the INTERNET permission
via <uses-permission>.

INTERNET ACCESS

553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On the surface, our main activity (MainActivity) also seems boilerplate, with a
standard onCreate() implementation to load a QuestionsFragment dynamically into
the main content area:

packagepackage com.commonsware.android.retrofit;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
QuestionsFragment.Contract {

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew QuestionsFragment()).commit();

}
}

@Override
publicpublic void showItem(Item item) {

startActivity(newnew Intent(Intent.ACTION_VIEW, Uri.parse(item.link)));
}

}

However, it implements an interface named QuestionsFragment.Contract, supplied
by QuestionsFragment. That interface requires an implementation of a showItem()
method. That method will be called when the user indicates that she wishes to view
one of the questions shown by the QuestionsFragment. In our case, we just launch
an activity to view the Web page indicated by the Item link data member, populated
by Retrofit from the StackExchange REST API.

That Contract interface is defined as an inner interface of the QuestionsFragment
class:

interfaceinterface ContractContract {
void showItem(Item item);

}

This is the contract pattern, espoused by Jake Wharton of ActionBarSherlock fame.
The fragment defines an interface, which is the “contract” that all hosting activities
of that fragment must implement. This requirement is enforced by the superclass,
ContractListFragment:

INTERNET ACCESS

554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

*/

// derived from https://gist.github.com/JakeWharton/2621173

packagepackage com.commonsware.android.retrofit;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.ListFragmentandroid.app.ListFragment;

publicpublic classclass ContractListFragmentContractListFragment<T> extendsextends ListFragment {
privateprivate T contract;

@SuppressWarnings("unchecked")
@Override
publicpublic void onAttach(Activity activity) {

supersuper.onAttach(activity);

trytry {
contract=(T)activity;

}
catchcatch (ClassCastException e) {

throwthrow newnew IllegalStateException(activity.getClass()
.getSimpleName()

+ " does not implement contract interface for "
+ getClass().getSimpleName(), e);

}
}

@Override
publicpublic void onDetach() {

supersuper.onDetach();

contract=nullnull;
}

publicpublic finalfinal T getContract() {
returnreturn(contract);

}
}

onAttach() is called when the fragment has been attached to an activity, whether
that is from when the activity was initially created, after a configuration change, or
whenever. In those cases, we cast the activity to be the contract interface (provided
via the data type in the declaration), raising an exception if the cast fails. Subclasses
can then access the contract object via the getContract() method.

QuestionsFragment itself extends from a ContractListFragment, tailoring it to its
own Contract interface:

INTERNET ACCESS

555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass QuestionsFragmentQuestionsFragment extendsextends
ContractListFragment<QuestionsFragment.Contract> implementsimplements
Callback<SOQuestions> {

QuestionsFragment is also our implementation of the Retrofit Callback interface, as
was described earlier in this section.

The onCreateView() of QuestionsFragment lets the superclass handle the UI setup,
but also:

• Marks this as a retained fragment, as we are performing asynchronous
operations and want a stable platform for those background threads to
communicate back to our UI layer

• Kicks off the request to retrieve the StackOverflow questions, using Retrofit

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

setRetainInstance(truetrue);

RestAdapter restAdapter=
newnew RestAdapter.Builder().setEndpoint("https://api.stackexchange.com")

.build();
StackOverflowInterface so=

restAdapter.create(StackOverflowInterface.class);

so.questions("android", thisthis);

returnreturn(result);
}

The success() Callback method calls setListAdapter(), wrapping the items array
in a simple ItemsAdapter:

classclass ItemsAdapterItemsAdapter extendsextends ArrayAdapter<Item> {
ItemsAdapter(List<Item> items) {

supersuper(getActivity(), android.R.layout.simple_list_item_1, items);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
TextView title=(TextView)row.findViewById(android.R.id.text1);

title.setText(Html.fromHtml(getItem(position).title));

INTERNET ACCESS

556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(row);
}

}

The ItemsAdapter uses Html.fromHtml() to populate the ListView rows, not
because StackOverflow hands back titles with HTML tags, but because
StackOverflow hands back titles with HTML entity references, and Html.fromHtml()
should handle many of those.

In addition to the failure() implementation shown previously, the only remaining
method is onListItemClick(), where we retrieve the clicked-upon Item and pass
that to the Contract via showItem(), to cause the question to be shown to the user:

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

getContract().showItem(((ItemsAdapter)getListAdapter()).getItem(position));
}

The net result is that when we run our application, we see a list of recently-asked
Android questions on StackOverflow:

Figure 194: The Retrofit Demo App

INTERNET ACCESS

557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Picasso

Sometimes, what you want to download is not JSON, or XML, or any sort of
structured data.

Sometimes, it is an image.

For example, StackOverflow users have avatars. In our sample app, it might be nice
to display the avatar of the user who asked the question.

Picasso is a library from Square that is designed to help with asynchronously loading
images, whether those images come from HTTP requests, local files, a
ContentProvider, etc. In addition to doing the loading asynchronously, Picasso
simplifies many operations on those images, such as:

• Caching the results in memory (or optionally on disk for HTTP requests)
• Displaying placeholder images while the real images are being loaded, and

displaying error images if there was a problem in loading the image (e.g.,
invalid URL)

• Transforming the image, such as resizing or cropping it to fit a certain
amount of space

• Loading the images directly into an ImageView of your choice, even handling
cases where that ImageView is recycled (e.g., part of a row in a ListView,
where the user scrolled while an image for that ImageView was still loading,
and now another image is destined for that same ImageView when the row
was recycled)

The HTTP/Picasso sample application extends the Retrofit one to download the
avatar image of the person asking the question, displaying it in the ListView along
with the question title.

Downloading and Installing Picasso

Picasso can be downloaded as a small JAR from the aforementioned Web site. It has
no hard dependencies. However, if OkHTTP happens to be available, Picasso will use
it, when you request to load the image from a Web server.

INTERNET ACCESS

558

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://square.github.io/picasso/
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Picasso
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Picasso
http://square.github.io/picasso/

Updating the Model

Our original data model did not include information about the owner. Hence, we
need to augment our data model, so Retrofit pulls that information out of the
StackExchange JSON and makes it available to us.

To that end, we now have an Owner class, holding onto the one piece of information
we need about the owner: the URL to the avatar (a.k.a., “profile image”):

packagepackage com.commonsware.android.picasso;

importimport com.google.gson.annotations.SerializedNamecom.google.gson.annotations.SerializedName;

publicpublic classclass OwnerOwner {
@SerializedName("profile_image") String profileImage;

}

The JSON key for this in the StackExchange API is profile_image, and underscores
are not the conventional way of separating words in a Java data member. Java
samples usually use “camelCase” instead. The default behavior of Retrofit would
require us to name our data member profile_image to match the JSON.

However, under the covers, Retrofit is using Google’s Gson to do the mapping from
JSON to objects. Gson supports a @SerializedName annotation, to indicate the JSON
key to use for this data member. This allows us to give the data member the more
natural name of profileImage, by using @SerializedName("profile_image") to
teach Gson how to populate it properly.

(The author would like to thank Alec Holmes for his assistance with the Gson
support)

Our Item class now has an Owner, named owner, since the owner data is in the owner
key of an item’s JSON object:

packagepackage com.commonsware.android.picasso;

publicpublic classclass ItemItem {
String title;
Owner owner;
String link;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

INTERNET ACCESS

559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Those two changes are sufficient for Retrofit to give us our URL to be able to
download the image.

Requesting the Images

Using Picasso is extremely simple, as it offers a fluent interface that allows us to set
up a request in a single Java statement.

The statement begins with a call to the static with() method on the Picasso class,
where we supply a Context (such as our activity) for Picasso to use. The statement
ends with a call to into(), indicating the ImageView into which Picasso should load
an image. In between those calls, we can chain other calls, as with() and most other
methods on a Picasso object return the Picasso object itself.

So, we can do something like:

Picasso.with(getActivity()).load(item.owner.profileImage)
.resize(size, size).centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

Here, we:

• Indicate that we want to load() an image found at a certain URL, identified
by the profile_image data member of the Owner inside an Item referred to
as item

• Say that we want to resize() the image to a particular size (more on this in
a bit)

• Specify that the image should be resized using centerCrop() rules, to center
the image within the desired size (if it is smaller on one or both axes) and to
crop the image (if it is larger on one or both axes)

• Indicate that we want to put a certain drawable resource as the
placeholder() image to show in the ImageView while the loading is going on
in the background

• State that we want to show a certain drawable resource in the ImageView in
case of an error() when the image was being loaded

And that’s it. Picasso will go off, download the image, and pour it into the ImageView
when it is ready (and resized).

INTERNET ACCESS

560

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Rest of the Story

That bit of Picasso code is in a new getView() method on our ItemsAdapter:

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
Item item=getItem(position);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

Picasso.with(getActivity()).load(item.owner.profileImage)
.resize(size, size).centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

TextView title=(TextView)row.findViewById(R.id.title);

title.setText(Html.fromHtml(getItem(position).title));

returnreturn(row);
}

We have created our own row layout (res/layout/row.xml), consisting of an
ImageView and a TextView. We have ArrayAdapter inflate or recycle our row, retrieve
the Item for this row, retrieve the ImageView out of the row, use Picasso to start
loading the real image, fill in the HTML-entity-aware text into the TextView, and
then return our updated row. By the time we return the row, Picasso will have
already loaded the placeholder image, which is what the user will initially see, while
we download the real image.

The size that we are using comes from our new ItemsAdapter constructor:

ItemsAdapter(List<Item> items) {
supersuper(getActivity(), R.layout.row, R.id.title, items);

size=
getActivity().getResources()

.getDimensionPixelSize(R.dimen.icon);
}

The ImageView is sized to be 48dp square. The images coming from StackExchange
presently are 32x32 pixels. We are having Picasso handle the resizing for us, so we
need to indicate how many pixels per side we want the image to be. To know that,
we need to convert 48dp to pixels.

The 48dp value is held in a dimension resource (R.dimen.icon). The row layout uses
that dimension resource for the ImageView height and width. In the constructor, we

INTERNET ACCESS

561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

also retrieve that dimension value, converted by Android to pixels based on the
actual screen density. The size data member is initialized in the constructor for
performance, as the size will be the same for all rows, so there is no sense in going
through the calculations for each individual row.

The result is that we now have icons next to each of our question titles:

Figure 195: The Picasso Demo App

Ion

One complaint regarding the combination of Retrofit and Picasso is that you need
two libraries. Picasso knows images, but cannot perform non-image HTTP requests,
and Retrofit knows REST but not images.

Ion is a library that covers both, so let’s see how it can be used, via the HTTP/Ion
sample application. This is a port of the Retrofit/Picasso sample app, replacing those
libraries with Ion.

INTERNET ACCESS

562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/koush/ion
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Ion
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Ion

Getting the Questions

In the revised QuestionsFragment, in onCreateView(), we use Ion to retrieve the
questions as a JsonObject:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

setRetainInstance(truetrue);

Ion.with(getActivity(),
"https://api.stackexchange.com/2.1/questions?"

+ "order=desc&sort=creation&site=stackoverflow&"
+ "tagged=android").asJsonObject().setCallback(thisthis);

returnreturn(result);
}

Ion, like Picasso, uses a fluent, builder-style interface. The static with() method on
the Ion class takes a Context and the URL (or Uri) of the data to be retrieved. We
then cascade onto the return value:

• a call to asJsonObject(), indicating that we want Ion to convert the JSON
into a Gson JsonObject

• a call to setCallback(), indicating where the JsonObject should be
delivered

The setCallback() call takes a FutureCallback as a parameter; we implement that
interface on the QuestionsFragment itself. That, in turn requires that we implement
onCompleted():

@Override
publicpublic void onCompleted(Exception e, JsonObject json) {

ifif (e != nullnull) {
Toast.makeText(getActivity(), e.getMessage(), Toast.LENGTH_LONG)

.show();
Log.e(getClass().getSimpleName(),

"Exception from Retrofit request to StackOverflow", e);
}

ifif (json != nullnull) {
JsonArray items=json.getAsJsonArray("items");
ArrayList<JsonObject> normalized=newnew ArrayList<JsonObject>();

INTERNET ACCESS

563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

forfor (int i=0; i < items.size(); i++) {
normalized.add(items.get(i).getAsJsonObject());

}

setListAdapter(newnew ItemsAdapter(normalized));
}

}

We are passed an Exception if there was a problem, or the JsonObject if we did
indeed receive results. If we have an Exception, we show the message via a Toast
and log it to LogCat. If we have a JsonObject, we convert the JsonArray of items
into an ArrayList of JsonObjects, so that we can use ArrayAdapter (which
understands java.util.List but not JsonArray, as the Gson authors did not
implement the List interface on JsonArray).

Getting the Avatars

That means that ItemsAdapter is now an ArrayAdapter of JsonObject, rather than
an ArrayAdapter of a custom Item class. Our getView() method therefore must also
be updated, both to grab the title and avatar URL from the JsonObject representing
a question, and to use Ion to retrieve the avatar image:

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
JsonObject item=getItem(position);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

Ion.with(icon)
.placeholder(R.drawable.owner_placeholder)
.resize(size, size)
.centerCrop()
.error(R.drawable.owner_error)
.load(item.getAsJsonObject("owner").get("profile_image")

.getAsString());

TextView title=(TextView)row.findViewById(R.id.title);

title.setText(Html.fromHtml(item.get("title").getAsString()));

returnreturn(row);
}

With Gson, get() on a JsonObject returns a JsonElement, which in turn can be
coerced into various data types, such as using getAsString() to coerce it into a
String. For example, we use that when populating the TextView with the question’s
title.

INTERNET ACCESS

564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To retrieve the avatar and populate the ImageView with it, we use Ion much in the
same fashion as we used Picasso. We use a different version of the static with()
method, one that takes our ImageView as a parameter. The rest of the fluent API is
similar to Picasso’s:

• placeholder() and error() indicate drawables to use when the image is
loading or if an HTTP error was encountered, respectively

• resize() and centerCrop() allow us to crop the image to the desired size
• load() supplies the URL from which to retrieve the image, here obtained by

driving down into Gson data structures to get the profile_image URL of the
owner of this question

Visually, the result is the same as the Picasso example.

Other Candidate Libraries

There are plenty of other libraries that similarly try to help simplify Android HTTP
operations, including:

• android-async-http
• android-json-rpc
• Android-Universal-Image-Loader
• basic-http-client
• http-request
• ImageLoader
• OpenS
• Smart Image View

and countless others.

Hey, What About Volley?

At the Google I|O 2013 conference, there was a session about Volley, an HTTP client
library created by Google and used by internal apps, such as the Play Store. Volley
can be thought of as a superset of Retrofit plus Picasso, minus Picasso’s non-HTTP
image loading facilities.

On the plus side, Volley is such a superset and therefore a single code base can be
used to replace multiple libraries. Also, given Volley’s use by Google, one imagines
that this code has been applied to the widest range of possible devices.

INTERNET ACCESS

565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://loopj.com/android-async-http/
http://code.google.com/p/android-json-rpc/
https://github.com/nostra13/Android-Universal-Image-Loader
http://code.google.com/p/basic-http-client/
https://github.com/kevinsawicki/http-request
https://github.com/novoda/ImageLoader
http://dinote.wordpress.com/opens-asynchronous-android-httprequest/
http://loopj.com/android-smart-image-view/
http://www.youtube.com/watch?v=yhv8l9F44qo

However, Volley is distributed as just a dump of source code. There is no packaging
of the code into a JAR. There is no documentation beyond that I|O video. There is
no support mechanism, except perhaps via ad-hoc social media inquiries and
general support sites (e.g., StackOverflow).

If you are a fairly expert developer, and wish to experiment with Volley, there are
plenty of others with a similar interest, and perhaps the community will build up its
own knowledge base and be able to support Volley users. Otherwise, you may be
better served sticking with libraries that have more packaging, documentation, and
support structures.

Visit the Trails
As noted earlier, there is a chapter on SSL that you should read, if you run into
trouble using SSL in Android or want to improve your security further than you get
with just stock SSL handling.

INTERNET ACCESS

566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/volley/
http://stackoverflow.com/questions/tagged/android-volley

Intents, Intent Filters, Broadcasts, and
Broadcast Receivers

We have seen Intent objects briefly, in our discussion of having multiple activities in
our application. However, we really did not dive into too much of the details about
those Intent objects, and they can be used in other ways besides starting up an
activity. In this chapter, we will examine Intent and their filters, plus another
channel of the Intent message bus: the broadcast Intent.

What’s Your Intent?
When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol — HTTP – he
set up a system of verbs plus addresses in the form of URLs. The address indicated a
resource, such as a Web page, graphic, or server-side program. The verb indicated
what should be done: GET to retrieve it, POST to send form data to it for processing,
etc.

An Intent is similar, in that it represents an action plus context. There are more
actions and more components to the context with Intent than there are with HTTP
verbs and resources, but the concept is still the same.

Just as a Web browser knows how to process a verb+URL pair, Android knows how
to find activities or other application logic that will handle a given Intent.

Pieces of Intents

The two most important pieces of an Intent are the action and what Android refers
to as the “data”. These are almost exactly analogous to HTTP verbs and URLs — the
action is the verb, and the “data” is a Uri, such as http://commonsware.com

567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

representing an HTTP URL to some balding guy’s Web site. Actions are constants,
such as ACTION_VIEW (to bring up a viewer for the resource) or ACTION_EDIT (to edit
the resource).

If you were to create an Intent combining ACTION_VIEW with a content Uri of
http://commonsware.com, and pass that Intent to Android via startActivity(),
Android would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an Intent, besides the action and “data”
Uri, such as:

1. Categories. Your “main” activity will be in the LAUNCHER category, indicating
it should show up on the launcher menu. Other activities will probably be in
the DEFAULT or ALTERNATIVE categories.

2. A MIME type, indicating the type of resource you want to operate on.
3. A component, which is to say, the class of the activity that is supposed to

receive this Intent.
4. “Extras”, which is a Bundle of other information you want to pass along to

the receiver with the Intent, that the recipient might want to take advantage
of. What pieces of information a given recipient can use is up to the
recipient and (hopefully) is well-documented.

You will find rosters of the standard actions, categories, and extras in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your Intent, Android has no
doubt where the Intent is supposed to be routed to — it will launch the named
activity. This might be OK if the target recipient (e.g., the activity to be started) is in
your application. It definitely is not recommended for invoking functionality in
other applications. Component names, by and large, are considered private to the
application and are subject to change. Actions, Uri templates, and MIME types are
the preferred ways of identifying capabilities you wish third-party code to supply.

If you do not specify the target component, then Android has to figure out what
recipients are eligible to receive the Intent. For example, Android will take the
Intent you supply to startActivity() and find the activities that might support it.
Note the use of the plural “activities”, as a broadly-written intent might well resolve
to several activities. That is the… ummm… intent (pardon the pun), as you will see
later in this chapter. This routing approach is referred to as implicit routing.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

568

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basically, there are three rules, all of which must be true for a given activity to be
eligible for a given Intent:

• The activity must support the specified action
• The activity must support the stated MIME type (if supplied)
• The activity must support all of the categories named in the Intent

The upshot is that you want to make your Intent specific enough to find the right
recipient, and no more specific than that.

This will become clearer as we work through some examples throughout this
chapter.

Stating Your Intent(ions)
All Android components that wish to be started via an Intent must declare Intent
filters, so Android knows which intents should go to that component. A common
approach for this is to add one or more <intent-filter> elements to your
AndroidManifest.xml file, inside the element for the component that should
respond to the Intent.

For example, all of the sample projects in this book have an <intent-filter> on an
<activity> that looks like this:

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>
<category<category android:name="android.intent.category.LAUNCHER"/>/>

</intent-filter></intent-filter>

Here, we declare that this activity:

1. Is the main activity for this application
2. It is in the LAUNCHER category, meaning it gets an icon in anything that thinks

of itself as a “launcher”, such as the home screen

You are welcome to have more than one action or more than one category in your
Intent filters. That indicates that the associated component (e.g., activity) handles
multiple different sorts of Intent patterns.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to Implicit Intents
We saw in the chapter on multiple activities how one activity can start another via
an explicit Intent, identifying the particular activity to be started:

startActivity(newnew Intent(thisthis, OtherActivity.class));

In that case, OtherActivity does not need an <intent-filter> in the manifest. It
will automatically respond when somebody explicitly identifies it as the desired
activity.

However, what if you want to respond to an implicit Intent, one that focuses on an
action string and other values? Then you will need an <intent-filter> in the
manifest.

For example, take a look at the Intents/FauxSender sample project.

Here, we have an activity, FauxSender, set up to respond to an ACTION_SEND Intent,
specifically for content that has the MIME type of text/plain:

<activity<activity
android:name="FauxSender"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

</activity></activity>

The call to startActivity() will always add the DEFAULT category if no other
category is specified, which is why our <intent-filter> also filters on that category.

Hence, if somebody on the system calls startActivity() on an ACTION_SEND Intent
with a MIME type of text/plain, our FauxSender activity might get control. We will
explain the use of the term “might” in the next section.

The documentation for ACTION_SEND indicates that a standard extra on the Intent is
EXTRA_TEXT, representing the text to be sent. There might also be an EXTRA_SUBJECT,
representing a subject line, if the “send” operation might have such a concept, such
as an email client.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND

FauxSender can retrieve those extras and make use of them:

packagepackage com.commonsware.android.fsender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass FauxSenderFauxSender extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

ifif (TextUtils.isEmpty(msg)) {
msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);

}

ifif (TextUtils.isEmpty(msg)) {
Toast.makeText(thisthis, R.string.no_message_supplied,

Toast.LENGTH_LONG).show();
}
elseelse {

Toast.makeText(thisthis, msg, Toast.LENGTH_LONG).show();
}

finish();
}

}

Here, we use TextUtils.isEmpty() to detect if an extra is either null or has an
empty string as its value. If EXTRA_TEXT is supplied, we show it in a Toast.
Otherwise, we use EXTRA_SUBJECT if it is supplied, and if that is also missing, we
show a stock message from a string resource.

The activity then immediately calls finish() from onCreate() to get rid of itself.
That, coupled with android:theme="@android:style/Theme.NoDisplay" in the
<activity> element, means that the activity will have no user interface, beyond the
Toast. If run from the launcher, you will still see the launcher behind the Toast:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 196: FauxSender, Showing EXTRA_TEXT

Requesting Implicit Intents
To send something via ACTION_SEND, you first set up the Intent, containing whatever
information you want to send in EXTRA_TEXT, such as this code from the
FauxSenderTest activity:

Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
i.putExtra(Intent.EXTRA_TEXT, theMessage);

(where theMessage is a passed-in parameter to the method containing this code
fragment)

If we call startActivity() on this Intent directly, there are three possible
outcomes, described in the following sections.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Zero Matches

It is possible, though unlikely, that there are no activities at all on the device that
will be able to handle this Intent. In that case, we crash with an
ActivityNotFoundException. This is a RuntimeException, which is why we do not
have to keep wrapping all our startActivity() calls in try/catch blocks. However,
if we might start something that does not exist, we really should catch that
exception… or avoid the call in the first place. Detecting up front whether there will
be any matches for our activity is a topic that will be discussed later in this book.

Note that the odds of an ActivityNotFoundException climb substantially on
Android 4.3+ tablets, when a restricted profile is in use, as will be discussed later in
this book.

One Match

It is possible that there will be exactly one matching activity. In that case, the
activity in question starts up and takes over the foreground. This is what we see with
the explicit Intent.

Many Matches, Default Behavior

It is possible that there will be more than one matching activity. In that case, by
default, the user will be presented with a so-called “chooser” dialog box:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 197: A Chooser Dialog

The user can tap on either of those two items in the list to have that particular
activity be the one to process this event. And, if the user checks the “Use by default
for this action” checkbox, and we invoke the same basic Intent again (same action,
same MIME type, same categories, same Uri scheme), whatever the user chooses
now will be used again automatically, bypassing the chooser.

The Chooser Override

For many Intent patterns, the notion of the user choosing a default makes perfect
sense. For example, if the user installs another Web browser, until they check that
checkbox, every time they go to view a Web page, they will be presented with a
chooser, to choose among the installed browsers. This can get annoying quickly.

However, ACTION_SEND is one of those cases where the default checkbox is usually
inappropriate. Just because the user on Monday chose to send something via
Bluetooth and accidentally checked that checkbox does not mean that every day
thereafter, they always want every ACTION_SEND to go via Bluetooth, instead of Gmail
or Email or Facebook or Twitter or any other ACTION_SEND-capable apps they may
have installed.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can elect to force a chooser to display, regardless of the state of that checkbox.
To do this, instead of calling startActivity() on the Intent directly, you wrap the
Intent in another Intent returned by the createChooser() static method on Intent
itself:

void sendIt(String theMessage) {
Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
i.putExtra(Intent.EXTRA_TEXT, theMessage);

startActivity(Intent.createChooser(i,
getString(R.string.share_title)));

}

The second parameter to createChooser() is a message to appear at the top of the
dialog box:

Figure 198: Your Tailored Chooser Dialog

Notice the lack of the default checkbox — not only must the user make a choice
now, but also they cannot make a default choice for the future, either.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Broadcasts and Receivers
One channel of the Intent message bus is used to start activities. A second channel
of the Intent message bus is used to send broadcasts. As the name suggests, a
broadcast Intent is one that — by default – is published to any and all applications
on the device that wish to tune in.

Sending a Simple Broadcast

The simplest way to send a broadcast Intent is to create the Intent you want, then
call sendBroadcast().

That’s it.

At that point, Android will scan through everything set up to tune into a broadcast
matching your Intent, typically filtering just on the action string. Anyone set up to
receive this broadcast will, indeed, receive it, using a BroadcastReceiver.

Receiving a Broadcast: In an Activity

To receive such a broadcast in an activity, you will need to do four things.

First, you will need to create an instance of your own subclass of
BroadcastReceiver. The only method you need to (or should) implement is
onReceive(), which will be passed the Intent that was broadcast, along with a
Context object that, in this case, you will typically ignore.

Second, you will need to create an instance of an IntentFilter object, describing
the sorts of broadcasts you want to receive. Most of these filters are set up to watch
for a single broadcast Intent action, in which case the simple constructor suffices:

newnew IntentFilter(ACTION_CAMERA_BUTTON)

Third, you will need to call registerReceiver(), typically from onResume() of your
activity or fragment, supplying your BroadcastReceiver and your IntentFilter.

Fourth, you will need to call unregisterReceiver(), typically from onPause() of
your activity or fragment, supplying the same BroadcastReceiver instance you
provided to registerReceiver().

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

576

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In between the calls to registerReceiver() and unregisterReceiver(), you will
receive any broadcasts matching the IntentFilter.

The biggest downside to this approach is that some activity has to register the
receiver. Sometimes, you want to receive broadcasts even when there is no activity
around. To do that, you will need to use a different technique: registering the
receiver in the manifest.

Receiving a Broadcast: Via the Manifest

You can also tell Android about broadcasts you wish to receive by adding a
<receiver> element to your manifest, identifying the class that implements your
BroadcastReceiver (via the android:name attribute), plus an <intent-filter> that
describes the broadcast(s) you wish to receive.

The good news is that this BroadcastReceiver will be available for broadcasts
occurring at any time. There is no assumption that you have an activity already
running that called registerReceiver().

The bad news is that the instance of the BroadcastReceiver used by Android to
process a broadcast will live for only so long as it takes to execute the onReceive()
method. At that point, the BroadcastReceiver is discarded. Hence, it is not safe for
a manifest-registered BroadcastReceiver to do anything that needs to run after
onReceive() itself processes, such as forking a thread.

More bad news: onReceive() is called on the main application thread — the same
main application thread that handles the UI of all of your activities. And, you are
subject to the same limitations as are your activity lifecycle methods and anything
else called on the main application thread:

• Any time spent in onReceive() will freeze your UI, if you happen to have a
foreground activity

• If you spend too long in onReceive(), Android will terminate your
BroadcastReceiver without waiting for onReceive() to complete

This makes using a manifest-registered BroadcastReceiver a bit tricky. If the work
to be done is very quick, just implement it in onReceive(). Otherwise, you will
probably need to pair this BroadcastReceiver with a component known as an
IntentService, which we will examine in the next chapter.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Example System Broadcasts
There are many, many broadcasts sent out by Android itself, which you can tune
into if you see fit. Many, but not all, of these are documented on the Intent class.
The values in the “Constants” table that have “Broadcast Action” leading off their
description are action strings used for system broadcasts. There are other such
broadcast actions scattered around the SDK, though, so do not assume that they are
all documented on Intent.

The following sections will examine two of these broadcasts, to see how the
BroadcastReceiver works in action.

At Boot Time

A popular request is to have code get control when the device is powered on. This is
doable but somewhat dangerous, in that too many on-boot requests slow down the
device startup and may make things sluggish for the user.

In order to be notified when the device has completed its system boot process, you
will need to request the RECEIVE_BOOT_COMPLETED permission. Without this, even if
you arrange to receive the boot broadcast Intent, it will not be dispatched to your
receiver.

As the Android documentation describes it:

Though holding this permission does not have any security implications, it
can have a negative impact on the user experience by increasing the
amount of time it takes the system to start and allowing applications to
have themselves running without the user being aware of them. As such,
you must explicitly declare your use of this facility to make that visible to
the user.

We also need to register our BroadcastReceiver in the manifest — by the time an
activity would call registerReceiver(), the boot will have long since occurred.

For example, let us examine the Intents/OnBoot sample project.

In our manifest, we request the needed permission and register our
BroadcastReceiver, along with an activity:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBoot
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBoot

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sysevents.boot"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver android:name=".OnBootReceiver">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

<activity<activity
android:name="BootstrapActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

OnBootReceiver simply logs a message to LogCat:

packagepackage com.commonsware.android.sysevents.boot;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnBootReceiverOnBootReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

Log.d(getClass().getSimpleName(), "Hi, Mom!");

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

To test this on Android 3.0 and earlier, simply install the application and reboot the
device — you will see the message appear in LogCat.

However, on Android 3.1 and higher, the user must first manually launch some
activity before any manifest-registered BroadcastReceiver objects will be used.
Hence, if you were to just install the application and reboot the device, nothing
would happen. The little BootstrapActivity is merely there for the user to launch,
so that the ACTION_BOOT_COMPLETED BroadcastReceiver will start working.

On Battery State Changes

One theme with system events is to use them to help make your users happier by
reducing your impacts on the device while the device is not in a great state. Most
applications are impacted by battery life. Dead batteries run no apps. Hence,
knowing the battery level may be important for your app.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging (e.g., the
device is now plugged into AC power). You simply need to register to receive this
Intent when it is broadcast, then take appropriate steps.

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver. There are separate
ACTION_BATTERY_LOW and ACTION_BATTERY_OK broadcasts that you can receive from a
manifest-registered receiver, but they are broadcast far less frequently, only when the
battery level falls below or rises above some undocumented “low” threshold.

To demonstrate ACTION_BATTERY_CHANGED, take a peek at the Intents/OnBattery
sample project.

In there, you will find a res/layout/batt.xml resource containing a ProgressBar, a
TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBattery
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBattery

<ProgressBar<ProgressBar
android:id="@+id/bar"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<TextView<TextView
android:id="@+id/level"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
android:textSize="16pt"/>/>

<ImageView<ImageView
android:id="@+id/status"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

This layout is used by a BatteryFragment, which registers to receive the
ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in onPause():

packagepackage com.commonsware.android.battmon;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.BatteryManagerandroid.os.BatteryManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass BatteryFragmentBatteryFragment extendsextends SherlockFragment {
privateprivate ProgressBar bar=nullnull;
privateprivate ImageView status=nullnull;
privateprivate TextView level=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.batt, parent, falsefalse);

bar=(ProgressBar)result.findViewById(R.id.bar);
status=(ImageView)result.findViewById(R.id.status);
level=(TextView)result.findViewById(R.id.level);

returnreturn(result);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter f=newnew IntentFilter(Intent.ACTION_BATTERY_CHANGED);

getActivity().registerReceiver(onBattery, f);
}

@Override
publicpublic void onPause() {

getActivity().unregisterReceiver(onBattery);

supersuper.onPause();
}

BroadcastReceiver onBattery=newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {

int pct=
100 * intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 1)

/ intent.getIntExtra(BatteryManager.EXTRA_SCALE, 1);

bar.setProgress(pct);
level.setText(String.valueOf(pct));

switchswitch (intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1)) {
casecase BatteryManager.BATTERY_STATUS_CHARGING:

status.setImageResource(R.drawable.charging);
breakbreak;

casecase BatteryManager.BATTERY_STATUS_FULL:
int plugged=

intent.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);

ifif (plugged == BatteryManager.BATTERY_PLUGGED_AC
|| plugged == BatteryManager.BATTERY_PLUGGED_USB) {

status.setImageResource(R.drawable.full);
}
elseelse {

status.setImageResource(R.drawable.unplugged);
}
breakbreak;

defaultdefault:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

582

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

status.setImageResource(R.drawable.unplugged);
breakbreak;

}
}

};
}

The key to ACTION_BATTERY_CHANGED is in the “extras”. Many extras are packaged in
the Intent, to describe the current state of the battery, such as the following
constants defined on the BatteryManager class:

• EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD
• EXTRA_LEVEL, which is the proportion of battery life remaining as an integer,

specified on the scale described by the EXTRA_SCALE value
• EXTRA_PLUGGED, which will indicate if the device is plugged into AC power

(BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)
• EXTRA_SCALE, which indicates the maximum possible value of level (e.g., 100,

indicating that level is a percentage of charge remaining)
• EXTRA_STATUS, which will tell you if the battery is charging

(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

• EXTRA_TECHNOLOGY, which indicates what sort of battery is installed (e.g.,
"Li-Ion")

• EXTRA_TEMPERATURE, which tells you how warm the battery is, in tenths of a
degree Celsius (e.g., 213 is 21.3 degrees Celsius)

• EXTRA_VOLTAGE, indicating the current voltage being delivered by the battery,
in millivolts

In the case of BatteryFragment, when we receive an ACTION_BATTERY_CHANGED
Intent, we do three things:

1. We compute the percentage of battery life remaining, by dividing the level
by the scale

2. We update the ProgressBar and TextView to display the battery life as a
percentage

3. We display an icon, with the icon selection depending on whether we are
charging (status is BATTERY_STATUS_CHARGING), full but on the charger
(status is BATTERY_STATUS_FULL and plugged is BATTERY_PLUGGED_AC or
BATTERY_PLUGGED_USB), or are not plugged in

If you plug this into a device, it will show you the device’s charge level:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 199: The Battery Monitor

Sticky Intents and the Battery

Android has a notion of “sticky broadcast Intents”. Normally, a broadcast Intent
will be delivered to interested parties and then discarded. A sticky broadcast Intent
is delivered to interested parties and retained until the next matching Intent is
broadcast. Applications can call registerReceiver() with an IntentFilter that
matches the sticky broadcast, but with a null BroadcastReceiver, and get the sticky
Intent back as a result of the registerReceiver() call.

This may sound confusing. Let’s look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to get
information about the battery delivered to you. You can also, though, get the latest
battery information without registering a receiver. Just create an IntentFilter to
match ACTION_BATTERY_CHANGED (as shown above) and call registerReceiver()
with that filter and a null BroadcastReceiver. The Intent you get back from
registerReceiver() is the last ACTION_BATTERY_CHANGED Intent that was broadcast,
with the same extras. Hence, you can use this to get the current (or near-current)
battery status, rather than having to bother registering an actual
BroadcastReceiver.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

584

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Battery and the Emulator

Your emulator does not really have a battery. If you run this sample application on
an emulator, you will see, by default, that your device has 50% fake charge remaining
and that it is being charged. However, it is charged infinitely slowly, as it will not
climb past 50%… at least, not without help.

While the emulator will only show fixed battery characteristics, you can change
what those values are, through the highly advanced user interface known as telnettelnet.

You may have noticed that your emulator title bar consists of the name of your AVD
plus a number, frequently 5554. That number is not merely some engineer’s favorite
number. It is also an open port, on your emulator, to which you can telnettelnet into, on
localhost (127.0.0.1) on your development machine.

There are many commands you can issue to the emulator by means of telnettelnet . To
change the battery level, use power capacity NN, where NN is the percentage of
battery life remaining that you wish the emulator to return. If you do that while you
have an ACTION_BATTERY_CHANGED BroadcastReceiver registered, the receiver will
receive a broadcast Intent, informing you of the change.

You can also experiment with some of the other power subcommands (e.g., power
ac on or power ac off), or other commands (e.g., geo, to send simulated GPS fixes,
just as you can do from DDMS).

Downloading Files
Android 2.3 introduced a DownloadManager, designed to handle a lot of the
complexities of downloading larger files, such as:

1. Determining whether the user is on WiFi or mobile data, and if so, whether
the download should occur

2. Handling when the user, previously on WiFi, moves out of range of the
access point and “fails over” to mobile data

3. Ensuring the device stays awake while the download proceeds

DownloadManager itself is less complicated than the alternative of writing all of it
yourself. However, it does present a few challenges. In this section, we will examine
the Internet/Download sample project, one that uses DownloadManager.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Download
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Download

The Permissions

To use DownloadManager, you will need to hold the INTERNET permission. You will
also need the WRITE_EXTERNAL_STORAGE permission, as DownloadManager can only
download to external storage.

For example, here is the manifest for the Internet/Download application, where we
request these two permissions:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.downmgr"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<activity<activity

android:name=".DownloadDemo"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Note that the manifest also has android:minSdkVersion="9", because that was the
API level in which the DownloadManager was introduced.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Layout

Our sample application has a simple layout, consisting of three buttons:

1. One to kick off a download
2. One to query the status of a download
3. One to display a system-supplied activity containing the roster of

downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button

android:id="@+id/start"
android:text="@string/start_download"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"

/>/>
<Button<Button

android:id="@+id/query"
android:text="@string/query_status"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:enabled="false"

/>/>
<Button<Button android:id="@+id/view"

android:text="@string/view_log"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"

/>/>
</LinearLayout></LinearLayout>

Requesting the Download

To kick off a download, we first need to get access to the DownloadManager. This is a
so-called “system service”. You can call getSystemService() on any activity (or other
Context), provide it the identifier of the system service you want, and receive the
system service object back. However, since getSystemService() supports a wide
range of these objects, you need to cast it to the proper type for the service you
requested.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, for example, here is the onCreateView() method of the DownloadFragment, in
which we get the DownloadManager:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
mgr=

(DownloadManager)getActivity().getSystemService(Context.DOWNLOAD_SERVICE);

View result=inflater.inflate(R.layout.main, parent, falsefalse);

query=result.findViewById(R.id.query);
query.setOnClickListener(thisthis);
start=result.findViewById(R.id.start);
start.setOnClickListener(thisthis);

result.findViewById(R.id.view).setOnClickListener(thisthis);

returnreturn(result);
}

Most of these managers have no close() or release() or goAwayPlease() sort of
methods — you can just use them and let garbage collection take care of cleaning
them up.

Given the manager, we can now call an enqueue() method to request a download.
The name is relevant — do not assume that your download will begin immediately,
though often times it will. The enqueue() method takes a DownloadManager.Request
object as a parameter. The Request object uses the builder pattern, in that most
methods return the Request itself, so you can chain a series of calls together with
less typing.

For example, the top-most button in our layout is tied to a startDownload() method
in DownloadFragment, shown below:

privateprivate void startDownload(View v) {
Uri uri=Uri.parse("http://commonsware.com/misc/test.mp4");

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
.mkdirs();

DownloadManager.Request req=newnew DownloadManager.Request(uri);

req.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI
| DownloadManager.Request.NETWORK_MOBILE)

.setAllowedOverRoaming(falsefalse)

.setTitle("Demo")

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

588

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.setDescription("Something useful. No, really.")

.setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
"test.mp4");

lastDownload=mgr.enqueue(req);

We are downloading a sample MP4 file, and we want to download it to the external
storage area. To do the latter, we are using getExternalStoragePublicDirectory()
on Environment, which gives us a directory suitable for storing a certain class of
content. In this case, we are going to store the download in the
Environment.DIRECTORY_DOWNLOADS, though we could just as easily have chosen
Environment.DIRECTORY_MOVIES, since we are downloading a video clip. Note that
the File object returned by getExternalStoragePublicDirectory() may point to a
not-yet-created directory, which is why we call mkdirs() on it, to ensure the
directory exists.

We then create the DownloadManager.Request object, with the following attributes:

1. We are downloading the specific URL we want, courtesy of the Uri supplied
to the Request constructor

2. We are willing to use either mobile data or WiFi for the download
(setAllowedNetworkTypes()), but we do not want the download to incur
roaming charges (setAllowedOverRoaming())

3. We want the file downloaded as test.mp4 in the downloads area on the
external storage (setDestinationInExternalPublicDir())

We also provide a name (setTitle()) and description (setDescription()), which
are used as part of the notification drawer entry for this download. The user will see
these when they slide down the drawer while the download is progressing.

The enqueue() method returns an ID of this download, which we hold onto for use
in querying the download status.

Keeping Track of Download Status

If the user presses the Query Status button, we want to find out the details of how
the download is progressing. To do that, we can call query() on the
DownloadManager. The query() method takes a DownloadManager.Query object,
describing what download(s) you are interested in. In our case, we use the value we
got from the enqueue() method when the user requested the download:

privateprivate void queryStatus(View v) {
Cursor c=

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mgr.query(newnew DownloadManager.Query().setFilterById(lastDownload));

ifif (c == nullnull) {
Toast.makeText(getActivity(), R.string.download_not_found,

Toast.LENGTH_LONG).show();
}
elseelse {

c.moveToFirst();

Log.d(getClass().getName(),
"COLUMN_ID: "

+ c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
Log.d(getClass().getName(),

"COLUMN_BYTES_DOWNLOADED_SO_FAR: "
+

c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)));
Log.d(getClass().getName(),

"COLUMN_LAST_MODIFIED_TIMESTAMP: "
+

c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMESTAMP)));
Log.d(getClass().getName(),

"COLUMN_LOCAL_URI: "
+

c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
Log.d(getClass().getName(),

"COLUMN_STATUS: "
+ c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));

Log.d(getClass().getName(),
"COLUMN_REASON: "

+ c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

Toast.makeText(getActivity(), statusMessage(c), Toast.LENGTH_LONG)
.show();

c.close();
}

}

The query() method returns a Cursor, containing a series of columns representing
the details about our download. There is a series of constants on the
DownloadManager class outlining what is possible. In our case, we retrieve (and
dump to LogCat):

1. The ID of the download (COLUMN_ID)
2. The amount of data that has been downloaded to date

(COLUMN_BYTES_DOWNLOADED_SO_FAR)
3. What the last-modified timestamp is on the download

(COLUMN_LAST_MODIFIED_TIMESTAMP)
4. Where the file is being saved to locally (COLUMN_LOCAL_URI)
5. What the actual status is (COLUMN_STATUS)

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

6. What the reason is for that status (COLUMN_REASON)

Note that COLUMN_LOCAL_URI may be unavailable, if the user has deleted the
downloaded file between when the download completed and the time you try to
access the column.

There are a number of possible status codes (e.g., STATUS_FAILED,
STATUS_SUCCESSFUL, STATUS_RUNNING). Some, like STATUS_FAILED, may have an
accompanying reason to provide more details.

Note that you really should close this Cursor when you are done with it. StrictMode,
for example, will complain if you do not.

OK, So Why Is This In This Chapter?

To find out about the results of the download, we need to register a
BroadcastReceiver, to watch for two actions used by DownloadManager:

1. ACTION_DOWNLOAD_COMPLETE, to let us know when the download is done
2. ACTION_NOTIFICATION_CLICKED, to let us know if the user taps on the

Notification displayed on the user’s device related to our download

So, in onResume() of our fragment, we register a single BroadcastReceiver for both
of those events:

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter f=
newnew IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE);

f.addAction(DownloadManager.ACTION_NOTIFICATION_CLICKED);

getActivity().registerReceiver(onEvent, f);
}

That BroadcastReceiver is unregistered in onPause():

@Override
publicpublic void onPause() {

getActivity().unregisterReceiver(onEvent);

supersuper.onPause();
}

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The BroadcastReceiver implementation examines the action string of the incoming
Intent (via a call to getAction() and either displays a Toast (for
ACTION_NOTIFICATION_CLICKED) or enables the start-download Button:

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (DownloadManager.ACTION_NOTIFICATION_CLICKED.equals(i.getAction())) {
Toast.makeText(ctxt, R.string.hi, Toast.LENGTH_LONG).show();

}
elseelse {

start.setEnabled(truetrue);
}

}
};

What the User Sees

The user, upon launching the application, sees our three pretty buttons:

Figure 200: The Download Demo Sample, As Initially Launched

Clicking the first disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see, given the
poor contrast between Android’s icon and Android’s status bar):

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 201: The Download Demo Sample, Downloading

Sliding down the notification drawer shows the user the progress in the form of a
ProgressBar widget:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 202: The DownloadManager Notification

Tapping on the entry in the notification drawer returns control to our original
activity, where they see a Toast, raised by our BroadcastReceiver.

If they tap the middle button during the download, a different Toast will appear
indicating that the download is in progress:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 203: The Download Demo, Showing Download Status

Additional details are also dumped to LogCat, visible via DDMS or adb logcatadb logcat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 2
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: 0

Once the download is complete, tapping the middle button will indicate that the
download is, indeed, complete, and final information about the download is emitted
to LogCat:

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12
12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 8
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: 0

Tapping the bottom button brings up the activity displaying all downloads,
including both successes and failures:

Figure 204: The DownloadManager Results

And, of course, the file is downloaded. In the emulator, our chosen location maps to
/mnt/sdcard/Downloads/test.mp4.

Limitations

DownloadManager works with HTTP URLs, but not HTTPS (SSL) URLs, on Android
2.3. Android 3.0 and newer appear to support HTTPS.

If you display the list of all downloads, and your download is among them, it is a
really good idea to make sure that some activity (perhaps one of yours) is able to
respond to an ACTION_VIEW Intent on that download’s MIME type. Otherwise, when

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the user taps on the entry in the list, they will get a Toast indicating that there is
nothing available to view the download. This may confuse users. Alternatively, use
setVisibleInDownloadsUi() on your request, passing in false, to suppress it from
this list.

The Order of Things
Another variation on the broadcast Intent is the ordered broadcast.

Normally, if you broadcast an Intent, and there are 10 registered
BroadcastReceivers that match that Intent, all 10 will receive the broadcast, in
indeterminate order, and possibly in parallel (particularly on multi-core devices).

With an ordered broadcast, the behavior shifts a bit:

• Only one BroadcastReceiver at a time will receive the broadcast
• The order in which the BroadcastReceivers receive the broadcast is

(somewhat) controlled by their developers
• A BroadcastReceiver can “abort” the broadcast, preventing other receivers

in the chain from receiving it

Sending an ordered broadcast is merely a matter of calling
sendOrderedBroadcast().

Receiving an ordered broadcast, at its core, is identical to receiving a regular
broadcast: you write a BroadcastReceiver and register it via the manifest or
registerReceiver(). However, you have two additional options when registering
that BroadcastReceiver.

First, you can specify a priority, either via setPriority() on the IntentFilter or
android:priority on the <intent-filter> element. The priority is a positive
integer, with higher numbers indicating higher priority. Higher-priority receivers
will get the broadcast sooner than will lower-priority receivers.

Second, your BroadcastReceiver can call abortBroadcast() to consume the event,
preventing any lower-priority receivers from even seeing the broadcast.

We will see ordered broadcasts used in a few places in the book, including for use
with one pattern of services letting the user know about work that was accomplished

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

in the background, where we will see an example implementation of these ordered
broadcasts.

Keeping It Local
A broadcast Intent, by default and nearly by definition, is broadcast. Anything on
the device could have a receiver “tuned in” to listen for such broadcasts. While you
can use setPackage() on Intent to restrict the distribution, the broadcast still goes
through the standard broadcast mechanism, which involves transferring the Intent
to an OS process, which then does the actual broadcasting. Hence, a broadcast
Intent has some overhead.

Yet, there are times when using broadcasts within an app is handy, but it would be
nice to avoid the overhead. To help with this the core Android team added
LocalBroadcastManager to the Android Support package, to provide an in-process
way of doing broadcasts with the standard Intent, IntentFilter, and
BroadcastReceiver classes, yet with less overhead. We examine this in more detail,
along with other “event bus” alternatives, later in the book.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #15 - Sharing Your Notes

Perhaps you would like to get your notes off of our book reader app and into
someplace else, or perhaps you would like to share them with somebody else. Either
way, we can do that using an ACTION_SEND operation, to allow the user to choose
how to “send” the notes, such as sending them by email or uploading them to some
third-party note service.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Adding a Share Action Bar Item
First, we need to allow the user to indicate that they want to “share” the note
displayed in the current NoteFragment. By putting an action bar item on the activity
where the NoteFragment is displayed, we do not need to worry about letting the user
choose which note to send — we simply send whichever note they happen to be
viewing or editing.

Modify res/menu/notes.xml to add in the new share toolbar button:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item

599

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T14-Database
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T15-Share
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

android:id="@+id/share"
android:icon="@android:drawable/ic_menu_share"
android:showAsAction="ifRoom|withText"
android:title="@string/share">>

</item></item>
<item<item

android:id="@+id/delete"
android:icon="@android:drawable/ic_menu_delete"
android:showAsAction="ifRoom|withText"
android:title="@string/delete">>

</item></item>

</menu></menu>

Eclipse users can add this via the structured editor for res/menu/notes.xml,
following the instructions used for other action bar items.

Note that this menu definition requires a new string resource, named share, with a
value like Share.

Step #2: Sharing the Note
To actually share the note, we need to start up a new activity using ACTION_SEND. A
fragment could start up this activity, knowing that the activity is one from a third
party and therefore never would be composited within one of our activities by way
of fragments. However, to keep things clean, let’s delegate the work for sending the
note to the hosting activity, so all startActivity() calls are outside of the fragment.

With that in mind, add the following sendNotes() method to NoteActivity:

void sendNotes(String prose) {
Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_TEXT, prose);

startActivity(Intent.createChooser(i,
getString(R.string.share_title)));

}

We create an ACTION_SEND Intent, fill in our note into EXTRA_TEXT, set the MIME
type to be text/plain (since it is unlikely that our user will be entering HTML
source code or something as the note), then call startActivity() on the Intent
returned by createChooser().

TUTORIAL #15 - SHARING YOUR NOTES

600

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that this method requires a new string resource, named share_title, with a
value like Share Notes.

Step #3: Tying Them Together
To tie these pieces together, we need to implement logic to handle our new action
bar item and call sendNotes(). To that end, modify the onOptionsItemSelected()
implementation on NoteFragment to include the this logic, via an else if block:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.delete) {
int position=getArguments().getInt(KEY_POSITION, -1);

isDeleted=truetrue;
DatabaseHelper.getInstance(getActivity())

.deleteNoteAsync(position);

((NoteActivity)getActivity()).closeNotes();

returnreturn(truetrue);
}
elseelse if (item.getItemId() == R.id.share) {

((NoteActivity)getActivity()).sendNotes(editor.getText()
.toString());

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

All we do is call sendNotes() on the hosting activity, using the current contents of
the EditText as the notes, so any not-yet-persisted changes are still shared.

Step #4: Testing the Result
If you run this on a device, navigate to a note, you will see the new action bar item:

TUTORIAL #15 - SHARING YOUR NOTES

601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 205: The New Action Bar Item

If you tap on that, you should get a chooser of various things that know how to send
plain text.

Unfortunately, your emulator may have nothing that can handle this Intent. If that
is the case, you will crash with an ActivityNotFoundException. To get past this, if
you enter http://goo.gl/w113e in your emulator’s browser, that should allow you to
download and install a copy of the APK from the Intents/FauxSender sample
project that we covered earlier in this book. When the download is complete (which
should be very quick), open up the notification drawer and tap on the “download
complete” notification. This should begin the installation process. Depending on
your Android version, you may also need to “allow installation of non-Market apps”
— after fixing this, you can use the Downloads app on the emulator to try installing
the APK again. Once FauxSender is installed, it will respond to your attempts to
share a note.

In Our Next Episode…
… we will allow the user to update the book’s contents over the Internet.

TUTORIAL #15 - SHARING YOUR NOTES

602

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender

Services and the Command Pattern

As noted previously, Android services are for long-running processes that may need
to keep running even when decoupled from any activity. Examples include playing
music even if the “player” activity gets garbage-collected, polling the Internet for
RSS/Atom feed updates, and maintaining an online chat connection even if the chat
client loses focus due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity
tries connecting to the service via inter-process communication (IPC). Services will
live until specifically shut down or until Android is desperate for RAM and destroys
them prematurely. Running for a long time has its costs, though, so services need to
be careful not to use too much CPU or keep radios active too much of the time, lest
the service cause the device’s battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming services,
including a look at the “command pattern” for services.

Why Services?
Services are a “Swiss Army knife” for a wide range of functions that do not require
direct access to an activity’s user interface, such as:

1. Performing operations that need to continue even if the user leaves the
application’s activities, like a long download (as seen with the Play Store) or
playing music (as seen with Android music apps)

2. Performing operations that need to exist regardless of activities coming and
going, such as maintaining a chat connection in support of a chat
application

603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Providing a local API to remote APIs, such as might be provided by a Web
service

4. Performing periodic work without user intervention, akin to cron jobs or
Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist with long-
running work.

Many applications will not need any services. Very few applications will need more
than one. However, the service is a powerful tool for an Android developer’s toolbox
and is a subject with which any qualified Android developer should be familiar.

Setting Up a Service
Creating a service implementation shares many characteristics with building an
activity. You inherit from an Android-supplied base class, override some lifecycle
methods, and hook the service into the system via the manifest.

The Service Class

Just as an activity in your application extends either Activity or an Android-
supplied Activity subclass, a service in your application extends either Service or
an Android-supplied Service subclass. The most common Service subclass is
IntentService, used primarily for the command pattern, described later in this
chapter. That being said, many services simply extend Service.

Lifecycle Methods

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations have their own lifecycle methods, such as:

• onCreate(), which, as with activities, is called when the service process is
created, by any means

• onStartCommand(), which is called each time the service is sent a command
via startService()

• onBind(), which is called whenever a client binds to the service via
bindService()

• onDestroy() which is called as the service is being shut down

SERVICES AND THE COMMAND PATTERN

604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As with activities, services initialize whatever they need in onCreate() and clean up
those items in onDestroy(). And, as with activities, the onDestroy() method of a
service might not be called, if Android terminates the entire application process,
such as for emergency RAM reclamation.

The onStartCommand() and onBind() lifecycle methods will be implemented based
on your choice of communicating to the client, as will be explained later in this
chapter.

Manifest Entry

Finally, you need to add the service to your AndroidManifest.xml file, for it to be
recognized as an available service for use. That is simply a matter of adding a
<service> element as a child of the application element, providing android:name
to reference your service class.

Since the service class is in the same Java namespace as everything else in this
application, we can use the shorthand ("WeatherService" or ".WeatherService") to
reference our class.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.fakeplayer"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="14"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<activity<activity

android:name="FakePlayer"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

SERVICES AND THE COMMAND PATTERN

605

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<service<service android:name="PlayerService"/>/>
</application></application>

</manifest></manifest>

Communicating To Services
Clients of services — frequently activities, though not necessarily — have two main
ways to send requests or information to a service. One approach is to send a
command, which creates no lasting connection to the service. The other approach is
to bind to the service, establishing a bi-directional communications channel that
lasts as long as the client needs it.

Sending Commands with startService()

The simplest way to work with a service is to call startService(). The
startService() method takes an Intent parameter, much like startActivity()
does. In fact, the Intent supplied to startService() has the same two-part role as it
does with startActivity():

1. Identify the service to communicate with
2. Supply parameters, in the form of Intent extras, to tell the service what it is

supposed to do

For a local service — the focus of this book — the simplest form of Intent is one
that identifies the class that implements the Intent (e.g., new Intent(this,
MyService.class);).

The call to startService() is asynchronous, so the client will not block. The service
will be created if it is not already running, and it will receive the Intent via a call to
the onStartCommand() lifecycle method. The service can do whatever it needs to in
onStartCommand(), but since onStartCommand() is called on the main application
thread, it should do its work very quickly. Anything that might take a while should
be delegated to a background thread.

SERVICES AND THE COMMAND PATTERN

606

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The onStartCommand() method can return one of several values, mostly to indicate
to Android what should happen if the service’s process should be killed while it is
running. The most likely return values are:

1. START_STICKY, meaning that the service should be moved back into the
started state (as if onStartCommand() had been called), but do not re-deliver
the Intent to onStartCommand()

2. START_REDELIVER_INTENT, meaning that the service should be restarted via a
call to onStartCommand(), supplying the same Intent as was delivered this
time

3. START_NOT_STICKY, meaning that the service should remain stopped until
explicitly started by application code

By default, calling startService() not only sends the command, but tells Android
to keep the service running until something tells it to stop. One way to stop a service
is to call stopService(), supplying the same Intent used with startService(), or
at least one that is equivalent (e.g., identifies the same class). At that point, the
service will stop and will be destroyed. Note that stopService() does not employ
any sort of reference counting, so three calls to startService() will result in a single
service running, which will be stopped by a call to stopService().

Another possibility for stopping a service is to have the service call stopSelf() on
itself. You might do this if you use startService() to have a service begin running
and doing some work on a background thread, then having the service stop itself
when that background work is completed.

Binding to Services

Another approach to communicating with a service is to use the binding pattern.
Here, instead of packaging commands to be sent via an Intent, you can obtain an
actual API from the service, with whatever data types, return values, and so on that
you wish. You then invoke that API no different than you would on some local
object.

The benefit is the richer API. The cost is that binding is more complex to set up and
more complex to maintain, particularly across configuration changes.

We will discuss the binding pattern later in this book.

SERVICES AND THE COMMAND PATTERN

607

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Scenario: The Music Player
Most audio player applications in Android — for music, audiobooks, or whatever —
do not require the user to remain in the player application itself. Rather, the user can
go on and do other things with their device, with the audio playing in the
background.

The sample project reviewed in this section is Service/FakePlayer.

The Design

We will use startService(), since we want the service to run even when the activity
starting it has been destroyed. However, we will use a regular Service, rather than
an IntentService. An IntentService is designed to do work and stop itself,
whereas in this case, we want the user to be able to stop the music playback when
the user wants to.

Since music playback is outside the scope of this chapter, the service will simply stub
out those particular operations.

The Service Implementation

Here is the implementation of this Service, named PlayerService:

packagepackage com.commonsware.android.fakeplayer;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;

publicpublic classclass PlayerServicePlayerService extendsextends Service {
publicpublic staticstatic finalfinal String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
publicpublic staticstatic finalfinal String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
privateprivate boolean isPlaying=falsefalse;

@Override
publicpublic int onStartCommand(Intent intent, int flags, int startId) {

String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, falsefalse);

play(playlist, useShuffle);

returnreturn(START_NOT_STICKY);
}

SERVICES AND THE COMMAND PATTERN

608

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Service/FakePlayer
http://github.com/commonsguy/cw-omnibus/tree/master/Service/FakePlayer

@Override
publicpublic void onDestroy() {

stop();
}

@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(nullnull);
}

privateprivate void play(String playlist, boolean useShuffle) {
ifif (!isPlaying) {

Log.w(getClass().getName(), "Got to play()!");
isPlaying=truetrue;

}
}

privateprivate void stop() {
ifif (isPlaying) {

Log.w(getClass().getName(), "Got to stop()!");
isPlaying=falsefalse;

}
}

}

In this case, we really do not need anything for onCreate(), so that lifecycle method
is skipped. On the other hand, we have to implement onBind(), because that is an
abstract method on Service.

When the client calls startService(), onStartCommand() is called in
PlayerService. Here, we get the Intent and pick out some extras to tell us what to
play back (EXTRA_PLAYLIST) and other configuration details (e.g., EXTRA_SHUFFLE).
onStartCommand() calls play(), which simply flags that we are playing and logs a
message to LogCat — a real music player would use MediaPlayer to start playing the
first song in the playlist. onStartCommand() returns START_NOT_STICKY, indicating
that if Android has to kill off this service (e.g., low memory), it should not restart it
once conditions improve.

onDestroy() stops the music from playing — theoretically, anyway — by calling a
stop() method. Once again, this just logs a message to LogCat, plus updates our
internal are-we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and discuss the
use of startForeground() to make it easier for the user to get back to the music
player, plus let Android know that the service is delivering part of the foreground
experience and therefore should not be shut down.

SERVICES AND THE COMMAND PATTERN

609

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Service

The PlayerFragment demonstrating the use of PlayerService has a very elaborate
UI, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/start"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/start_the_player"/>/>

<Button<Button
android:id="@+id/stop"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/stop_the_player"/>/>

</LinearLayout></LinearLayout>

The fragment itself is not much more complex:

packagepackage com.commonsware.android.fakeplayer;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass PlayerFragmentPlayerFragment extendsextends SherlockFragment implementsimplements
View.OnClickListener {

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.start).setOnClickListener(thisthis);
result.findViewById(R.id.stop).setOnClickListener(thisthis);

returnreturn(result);
}

@Override

SERVICES AND THE COMMAND PATTERN

610

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onClick(View v) {
Intent i=newnew Intent(getActivity(), PlayerService.class);

ifif (v.getId()==R.id.start) {
i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
i.putExtra(PlayerService.EXTRA_SHUFFLE, truetrue);

getActivity().startService(i);
}
elseelse {

getActivity().stopService(i);
}

}
}

The onCreate() method merely loads the UI. The onClick() method constructs an
Intent with fake values for EXTRA_PLAYLIST and EXTRA_SHUFFLE, then calls
startService(). After you press the “Start” button, you will see the corresponding
message in LogCat. Similarly, stopPlayer() calls stopService(), triggering the
second LogCat message. Notably, you do not need to keep the activity running in
between those button clicks — you can exit the activity via BACK and come back
later to stop the service.

Communicating From Services
Sending commands to a service, by default, is a one-way street. Frequently, though,
we need to get results from our service back to our activity. There are a few
approaches for how to accomplish this.

Broadcast Intents

One approach, first mentioned in the chapter on Intent filters, is to have the service
send a broadcast Intent that can be picked up by the activity… assuming the activity
is still around and is not paused. The service can call sendBroadcast(), supplying an
Intent that identifies the broadcast, designed to be picked up by a
BroadcastReceiver. This could be a component-specific broadcast (e.g., new
Intent(this, MyReceiver.class)), if the BroadcastReceiver is registered in the
manifest. Or, it can be based on some action string, perhaps one even documented
and designed for third-party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via registerReceiver(),
though this approach will only work for Intent objects specifying some action, not
ones identifying a particular component. But, when the activity’s

SERVICES AND THE COMMAND PATTERN

611

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BroadcastReceiver receives the broadcast, it can do what it wants to inform the
user or otherwise update itself.

Pending Results

Your activity can call createPendingResult(). This returns a PendingIntent – an
object that represents an Intent and the corresponding action to be performed
upon that Intent (e.g., use it to start an activity). In this case, the PendingIntent
will cause a result to be delivered to your activity’s implementation of
onActivityResult(), just as if another activity had been called with
startActivityForResult() and, in turn, called setResult() to send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent extra,
your activity can pass this PendingIntent to the service. The service, in turn, can call
one of several flavors of the send() method on the PendingIntent, to notify the
activity (via onActivityResult()) of an event, possibly even supplying data (in the
form of an Intent) representing that event.

We will be seeing PendingIntent used many places later in this book.

Messenger

Yet another possibility is to use a Messenger object. A Messenger sends messages to
an activity’s Handler. Within a single activity, a Handler can be used to send
messages to itself, as was mentioned briefly in the chapter on threads. However,
between components — such as between an activity and a service — you will need a
Messenger to serve as the bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an
Intent extra. The activity calling startService() or bindService() would attach a
Messenger as an extra on the Intent. The service would obtain that Messenger from
the Intent. When it is time to alert the activity of some event, the service would:

1. Call Message.obtain() to get an empty Message object
2. Populate that Message object as needed, with whatever data the service

wishes to pass to the activity
3. Call send() on the Messenger, supplying the Message as a parameter

The Handler will then receive the message via handleMessage(), on the main
application thread, and so can update the UI or whatever is necessary.

SERVICES AND THE COMMAND PATTERN

612

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notifications

Another approach is for the service to let the user know directly about the work that
was completed. To do that, a service can raise a Notification — putting an icon in
the status bar and optionally shaking or beeping or something. This technique is
covered in an upcoming chapter.

Scenario: The Downloader
If you elect to download something from the Play Store, you are welcome to back
out of the Market application entirely. This does not cancel the download – the
download and installation run to completion, despite no Market activity being on-
screen.

You may have similar circumstances in your application, from downloading a
purchased e-book to downloading a map for a game to downloading a file from
some sort of “drop box” file-sharing service.

Android 2.3 introduced the DownloadManager (covered in a previous chapter), which
would handle this for you. However, you might need that sort of capability on older
versions of Android, at least through late 2012, as Android 2.2 fades into the
distance.

The sample project reviewed in this section is Service/Downloader.

The Design

This sort of situation is a perfect use for the command pattern and an
IntentService. The IntentService has a background thread, so downloads can
take as long as needed. An IntentService will automatically shut down when the
work is done, so the service will not linger and you do not need to worry about
shutting it down yourself. Your activity can simply send a command via
startService() to the IntentService to tell it to go do the work.

Admittedly, things get a bit trickier when you want to have the activity find out
when the download is complete. This example will show the use of a
BroadcastReceiver for this.

SERVICES AND THE COMMAND PATTERN

613

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Service/Downloader
http://github.com/commonsguy/cw-omnibus/tree/master/Service/Downloader

Using the Service

The DownloadFragment demonstrating the use of Downloader has a trivial UI,
consisting of one large button:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/button"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/do_the_download"

/>/>

That UI is initialized in onCreateView(), as usual:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

b=(Button)result.findViewById(R.id.button);
b.setOnClickListener(thisthis);

returnreturn(result);
}

When the user clicks the button, onClick() is called to disable the button (to
prevent accidental duplicate downloads) and call startService() to send over a
command:

@Override
publicpublic void onClick(View v) {

b.setEnabled(falsefalse);

Intent i=newnew Intent(getActivity(), Downloader.class);

i.setData(Uri.parse("http://commonsware.com/Android/excerpt.pdf"));

getActivity().startService(i);
}

Here, the Intent we pass over has the URL of the file to download (in this case, a
URL pointing to a PDF).

The Service Implementation

Here is the implementation of this IntentService, named Downloader:

SERVICES AND THE COMMAND PATTERN

614

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.downloader;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Environmentandroid.os.Environment;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedOutputStreamjava.io.BufferedOutputStream;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

publicpublic classclass DownloaderDownloader extendsextends IntentService {
publicpublic staticstatic finalfinal String ACTION_COMPLETE=

"com.commonsware.android.downloader.action.COMPLETE";

publicpublic Downloader() {
supersuper("Downloader");

}

@Override
publicpublic void onHandleIntent(Intent i) {

trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, i.getData().getLastPathSegment());

ifif (output.exists()) {
output.delete();

}

URL url=newnew URL(i.getData().toString());
HttpURLConnection c=(HttpURLConnection)url.openConnection();

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) > 0) {
out.write(buffer, 0, len);

}

out.flush();
}

SERVICES AND THE COMMAND PATTERN

615

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

finallyfinally {
fos.getFD().sync();
out.close();
c.disconnect();

}

sendBroadcast(newnew Intent(ACTION_COMPLETE));
}
catchcatch (IOException e2) {

Log.e(getClass().getName(), "Exception in download", e2);
}

}
}

Our business logic is in onHandleIntent(), which is called on an Android-supplied
background thread, so we can take whatever time we need. Also, when
onHandleIntent() ends, the IntentService will stop itself automatically… assuming
no other requests for downloads occurred while onHandleIntent() was running. In
that case, onHandleIntent() is called again for the next download, and so on.

In onHandleIntent(), we first set up a File object pointing to where we want to
download the file. We use getExternalStorageDirectory() to find the public folder
for downloads. Since this directory may not exist, we need to create it using
mkdirs(). We then use the getLastPathSegment() convenience method on Uri,
which returns to us the filename portion of a path-style Uri. The result is that our
output File object points to a file, named the same as the file we are downloading,
in a public folder.

We then go through a typical HttpUrlConnection process to connect to the URL
supplied via the Uri in the Intent, streaming the results from the connection (8KB
at a time) out to our designated file. Then, we follow the requested recipe to ensure
our file is saved:

• flush() the stream
• sync() the FileDescriptor (from getFD())
• close() the stream

Finally, it would be nice to let somebody know that the download has completed. So,
we send a broadcast Intent, with our own custom action (ACTION_COMPLETE).

Receiving the Broadcast

Our DownloadFragment is set up to listen for that broadcast Intent, by registering a
BroadcastReceiver in onResume() and unregistering it in onPause():

SERVICES AND THE COMMAND PATTERN

616

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter f=
newnew IntentFilter(Downloader.ACTION_COMPLETE);

getActivity().registerReceiver(onEvent, f);
}

@Override
publicpublic void onPause() {

getActivity().unregisterReceiver(onEvent);

supersuper.onPause();
}

The BroadcastReceiver itself re-enables our button, plus displays a Toast indicating
that the download is complete:

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

b.setEnabled(truetrue);

Toast.makeText(getActivity(), R.string.download_complete,
Toast.LENGTH_LONG).show();

}
};

Note that if the user leaves the activity (e.g., BACK, HOME), the broadcast will not
be received by the activity. There are other ways of addressing this, particularly
combining an ordered broadcast with a Notification, which we will examine later
in this book.

SERVICES AND THE COMMAND PATTERN

617

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #16 - Updating the Book

The app is designed to ship a copy of the book’s chapters as assets, so a user can just
download one thing and get everything they need: book and reader.

However, sometimes books get updated. This is a bit less likely with the material
being used in this tutorial, as it is rather unlikely that H. G. Wells will rise from the
grave to amend The War of the Worlds. However, other books, such as Android
developer guides written by balding guys, might be updated more frequently.

Most likely, the way you would get those updates is by updating the entire app, so
you get improvements to the reader as well. However, another approach would be to
be able to download an update to the book as a separate ZIP file. The reader would
use the contents of that ZIP file if one has been downloaded, otherwise it will “fall
back” to the copy in assets. That is the approach that we will take in this tutorial, to
experiment a bit with Internet access and services.

This is a rather lengthy tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

619

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T15-Share
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T16-Update
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Step #1: Adding a Stub DownloadCheckService
There are a few pieces to our download-the-book-update puzzle:

• We need to determine if there is an update available and, if so, where we can
find the ZIP file that is the update

• We need to download the update’s ZIP file, which could be a fairly large file
• We need to unpack that ZIP file into internal or external storage, so that it is

more easily used by the rest of our code and performs more quickly than
would dynamically reading the contents out of the ZIP on the fly

• All of that needs to happen in the background from a threading standpoint
• Ideally, all of that could happen either in the foreground or the background

from a UI standpoint (i.e., user manually requests an update check, or an
update check is performed automatically on a scheduled basis)

To address the first puzzle piece — determining if there is an update available — we
can use an IntentService. That makes it easy for us to do the work not only in the
background from a threading standpoint, but also be able to use it either from the
UI or from some sort of background-work scheduler. So, let’s add a
DownloadCheckService to our project.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
DownloadCheckService in the “Name” field. Click the “Browse…” button next to the
“Superclass” field and find IntentService to set as the superclass. Then, click
“Finish” on the new-class dialog to create the DownloadCheckService class.

Then, with DownloadCheckService open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass DownloadCheckServiceDownloadCheckService extendsextends IntentService {

TUTORIAL #16 - UPDATING THE BOOK

620

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic DownloadCheckService() {
supersuper("DownloadCheckService");

}

@Override
protectedprotected void onHandleIntent(Intent intent) {
}

}

You will also need to add a new service node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to DownloadCheckService, following the
same approach that we used for activities in this application — just be sure to define
a service instead of an activity.

Outside of Eclipse

Create a src/com/commonsware/empublite/DownloadCheckService.java source file,
with the content shown above. Also add the following <service> element as a child
of the <application> element in your AndroidManifest.xml file:

<service<service android:name="DownloadCheckService">>
</service></service>

Step #2: Tying the Service Into the Action Bar
To allow the user to manually request that we update the book (if an update is
available), we should add a new action bar item to EmPubLiteActivity, to the res/
menu/options.xml file:

<item<item
android:id="@+id/update"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="ifRoom|withText"
android:title="@string/download_update">>

</item></item>

Eclipse users can add this via the structured editor for res/menu/options.xml,
following the instructions used for other action bar items.

Note that this menu definition requires a new string resource, named
download_update, with a value like Download Update.

That allows us to add a new case to the switch statement in
onOptionsItemSelected() in EmPubLiteActivity:

TUTORIAL #16 - UPDATING THE BOOK

621

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

casecase R.id.update:
startService(newnew Intent(thisthis, DownloadCheckService.class));
returnreturn(truetrue);

All we do here is send a command to our DownloadCheckService to see if a
download is available.

Step #3: Adding a Stub
DownloadCompleteReceiver
Ideally, our actual downloading will be done by DownloadManager, as it handles all of
the idiosyncrasies with network type failover and so on. The way we find out that a
download from DownloadManager is complete is via a broadcast Intent. So, we need
to set up a receiver for that Intent. And, since we do not know if our process will be
around when the download is complete, we should set up that BroadcastReceiver
in the manifest.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
DownloadCompleteReceiver in the “Name” field. Click the “Browse…” button next to
the “Superclass” field and find BroadcastReceiver to set as the superclass. Then,
click “Finish” on the new-class dialog to create the DownloadCompleteReceiver class.

You will also need to add a new receiver node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to DownloadCompleteReceiver, following
the same approach that we used for activities in this application — just be sure to
define a receiver instead of an activity.

However, we also must add an <intent-filter> to the <receiver> element,
identifying the broadcast which we wish to monitor. To do that:

• Click on the Receiver element associated with DownloadCompleteReceiver in
the list of “Application Nodes”

TUTORIAL #16 - UPDATING THE BOOK

622

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Click the “Add…” button next to the list of “Application Nodes” and choose
“Intent Filter” from the list

• With the “Intent Filter” highlighted in the “Application Nodes” tree, click
“Add…” again, this time choosing “Action” from the list

• In the details area on the right, type in
android.intent.action.DOWNLOAD_COMPLETE, as this one does not appear in
the drop-down in the current version of the ADT plugin for Eclipse

Outside of Eclipse

Create a src/com/commonsware/empublite/DownloadCompleteReceiver.java source
file, with the following code:

packagepackage com.commonsware.empublite;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass DownloadCompleteReceiverDownloadCompleteReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {
}

}

Also add the following <receiver> element as a child of the <application> element
in your AndroidManifest.xml file:

<receiver<receiver android:name="DownloadCompleteReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.DOWNLOAD_COMPLETE"/>/>
</intent-filter></intent-filter>

</receiver></receiver>
</application></application>

Step #4: Completing the DownloadCheckService
Now that we have some of our other dependencies in place, like
DownloadCompleteReceiver, we can add in the business logic for
DownloadCheckService.

First, add an UPDATE_URL static data member to DownloadCheckService, containing
the URL we will poll to see if there is an update available:

TUTORIAL #16 - UPDATING THE BOOK

623

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate staticstatic finalfinal String UPDATE_URL=
"http://misc.commonsware.com/empublite-update.json";

Next, replace the stub onHandleIntent() method we have now in
DownloadCheckService with the following:

@Override
protectedprotected void onHandleIntent(Intent intent) {

BufferedReader reader=nullnull;

trytry {
URL url=newnew URL(UPDATE_URL);
HttpURLConnection c=(HttpURLConnection)url.openConnection();

c.setRequestMethod("GET");
c.setReadTimeout(15000);
c.connect();

reader=
newnew BufferedReader(newnew InputStreamReader(c.getInputStream()));

StringBuilder buf=newnew StringBuilder();
String line=nullnull;

whilewhile ((line=reader.readLine()) != nullnull) {
buf.append(line + "\n");

}

checkDownloadInfo(buf.toString());
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception retrieving update info", e);

}
finallyfinally {

ifif (reader != nullnull) {
trytry {

reader.close();
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception closing HUC reader", e);

}
}

}
}

In this fairly large chunk of code, we are using HttpUrlConnection to download
UPDATE_URL, streaming the resulting JSON into a StringBuilder. We then pass the
String representing the JSON into yet-to-be-implemented checkDownloadInfo()

TUTORIAL #16 - UPDATING THE BOOK

624

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

method. Along the way, we have exception handling to make sure we clean up our
socket connection in case something goes wrong.

Then, add an UPDATE_BASEDIR static data member to DownloadCheckService,
representing the name of a directory on internal storage where our updates will be
stored:

privateprivate staticstatic finalfinal String UPDATE_BASEDIR="updates";

Next, add a getUpdateBaseDir() method to DownloadCheckService that takes
UPDATE_BASEDIR and adds it to the getFilesDir() File returned by a Context

staticstatic File getUpdateBaseDir(Context ctxt) {
returnreturn(newnew File(ctxt.getFilesDir(), UPDATE_BASEDIR));

}

Then, add an UPDATE_FILENAME static data member to DownloadCheckService,
containing the filename to which we will download the update:

publicpublic staticstatic finalfinal String UPDATE_FILENAME="book.zip";

Next, add an PREF_PENDING_UPDATE static data member to DownloadCheckService,
containing the key in SharedPreferences where we will store the local location of an
in-flight update:

publicpublic staticstatic finalfinal String PREF_PENDING_UPDATE="pendingUpdateDir";

Then, add a pair of string resources:

• update_title, with a value like EmPub Lite Update
• update_description, with a value like A new edition of book content

The JSON in question that we are downloading will be of the form:

{"20120512": "http://misc.commonsware.com/WarOfTheWorlds-Update.zip"}

With that in mind, add an implementation of checkDownloadInfo() to
DownloadCheckService as follows:

privateprivate void checkDownloadInfo(String raw) throwsthrows JSONException {
JSONObject json=newnew JSONObject(raw);
String version=json.names().getString(0);
File localCopy=newnew File(getUpdateBaseDir(thisthis), version);

ifif (!localCopy.exists()) {

TUTORIAL #16 - UPDATING THE BOOK

625

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PreferenceManager.getDefaultSharedPreferences(thisthis)
.edit()
.putString(PREF_PENDING_UPDATE,

localCopy.getAbsolutePath()).commit();

String url=json.getString(version);
DownloadManager mgr=

(DownloadManager)getSystemService(DOWNLOAD_SERVICE);
DownloadManager.Request req=

newnew DownloadManager.Request(Uri.parse(url));

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
.mkdirs();

req.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI
| DownloadManager.Request.NETWORK_MOBILE)

.setAllowedOverRoaming(falsefalse)

.setTitle(getString(R.string.update_title))

.setDescription(getString(R.string.update_description))

.setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
UPDATE_FILENAME);

mgr.enqueue(req);
}

}

We first parse the JSON and get the version number of the update, which is the
value of the one-and-only key of our JSONObject. We then create a File object
representing a directory for that update, a subdirectory of our getUpdateBaseDir()
directory. If we have already downloaded this update, that directory update’s
directory will exist by name, and we can skip the download.

Otherwise, we store the directory where we want the update to reside in our
SharedPreferences under PREF_PENDING_UPDATE, for later retrieval by another
service.

We then configure and enqueue a DownloadManager.Request to have
DownloadManager download the update (the value for our version’s key in the JSON).
The resulting ZIP file is downloaded to external storage, in the standard
DIRECTORY_DOWNLOADS location, under the filename represented by
UPDATE_FILENAME.

Given this implementation, we need to add three permissions to the manifest:

• android.permission.INTERNET
• android.permission.DOWNLOAD_WITHOUT_NOTIFICATION

TUTORIAL #16 - UPDATING THE BOOK

626

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• android.permission.WRITE_EXTERNAL_STORAGE

Non-Eclipse users can add the following <uses-permission> elements as children of
the root <manifest> element in AndroidManifest.xml:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission

android:name="android.permission.DOWNLOAD_WITHOUT_NOTIFICATION"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

Eclipse users can double-click on AndroidManifest.xml and switch over to the
Permissions tab. There, click the Add… button and choose to add a new “Uses
Permission” entry. In the drop-down that appears on right, choose
android.permission.INTERNET. Repeat that process twice more to add the other two
permissions listed above.

Step #5: Adding a Stub DownloadInstallService
DownloadManager will take care of downloading the ZIP file for us. However, once it
is downloaded, we need to unZIP it into the desired update directory. And, we
cannot do that from a BroadcastReceiver triggered by the download being
completed, as the unZIP process may take too long.

So, we need another IntentService — this one we can call
DownloadInstallService.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
DownloadInstallService in the “Name” field. Click the “Browse…” button next to
the “Superclass” field and find IntentService to set as the superclass. Then, click
“Finish” on the new-class dialog to create the DownloadInstallService class.

Then, with DownloadInstallService open in the editor, paste in the following class
definition:

TUTORIAL #16 - UPDATING THE BOOK

627

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.empublite;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass DownloadInstallServiceDownloadInstallService extendsextends IntentService {
publicpublic DownloadInstallService() {

supersuper("DownloadInstallService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
}

}

You will also need to add a new service node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to DownloadInstallService, following
the same approach that we used for DownloadCheckService earlier in this tutorial.

Outside of Eclipse

Create a src/com/commonsware/empublite/DownloadInstallService.java source
file, with the content shown above. Also add the following <service> element as a
child of the <application> element in your AndroidManifest.xml file:

<service<service android:name="DownloadInstallService">>
</service></service>

Step #6: Completing the
DownloadCompleteReceiver
Our DownloadCompleteReceiver is set up in the manifest to listen for
DownloadManager broadcasts. We need to confirm that our update has taken place
and, if so, arrange to invoke our DownloadInstallService to unpack it.

With that in mind, replace the stub onReceive() implementation in
DownloadCompleteReceiver with the following:

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

File update=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
DownloadCheckService.UPDATE_FILENAME);

TUTORIAL #16 - UPDATING THE BOOK

628

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (update.exists()) {
ctxt.startService(newnew Intent(ctxt, DownloadInstallService.class));

}
}

We create a File object pointing to where DownloadManager should have
downloaded the file, and if the File exists, we send the command to
DownloadInstallService.

Step #7: Completing the DownloadInstallService
Now, we can unpack our downloaded ZIP file into the desired directory.

First, define three static data members to DownloadInstallService:

• PREF_UPDATE_DIR, the key in SharedPreferences where we will store the
directory containing a copy of the book that ModelFragment should load
from instead of our assets

• PREF_PREV_UPDATE, the key in SharedPreferences where we will store the
directory containing the previous copy of the book that ModelFragment
might presently be using, but can be safely deleted the next time it goes to
load up the book contents

• ACTION_UPDATE_READY, the name of a broadcast Intent that we will use to
alert our running EmPubLiteActivity that an update was completed and
that we can now reload the book contents

publicpublic staticstatic finalfinal String PREF_UPDATE_DIR="updateDir";
publicpublic staticstatic finalfinal String PREF_PREV_UPDATE="previousUpdateDir";
publicpublic staticstatic finalfinal String ACTION_UPDATE_READY=

"com.commonsware.empublite.action.UPDATE_READY";

Next, replace our stub onHandleIntent() implementation in
DownloadInstallService with the following:

@Override
protectedprotected void onHandleIntent(Intent intent) {

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(thisthis);

String prevUpdateDir=prefs.getString(PREF_UPDATE_DIR, nullnull);
String pendingUpdateDir=

prefs.getString(DownloadCheckService.PREF_PENDING_UPDATE, nullnull);

ifif (pendingUpdateDir != nullnull) {
File root=

TUTORIAL #16 - UPDATING THE BOOK

629

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);
File update=newnew File(root, DownloadCheckService.UPDATE_FILENAME);

trytry {
unzip(update, newnew File(pendingUpdateDir));
prefs.edit().putString(PREF_PREV_UPDATE, prevUpdateDir)

.putString(PREF_UPDATE_DIR, pendingUpdateDir).commit();
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception unzipping update",
e);

}

update.delete();

Intent i=newnew Intent(ACTION_UPDATE_READY);

i.setPackage(getPackageName());
sendOrderedBroadcast(i, nullnull);

}
elseelse {

Log.e(getClass().getSimpleName(), "null pendingUpdateDir");
}

}

Here, we:

• Collect the current update directory (PREF_UPDATE_DIR) and the one that we
should be unZIPping an update into (PREF_PENDING_UPDATE) from
SharedPreferences

• Call a to-be-written unzip() method to unZIP the just-downloaded update
into the desired destination directory

• Update SharedPreferences to indicate that the just-unZIPped copy is the
update to be used from now on (PREF_UPDATE_DIR) and that the former
update directory can be deleted (PREF_PREV_UPDATE)

• Delete the ZIP file, as it is no longer needed
• Send an ACTION_UPDATE_READY ordered broadcast, limited to our package via
setPackage(), to let the activity know that our work is done

Finally, add the missing unzip() method to DownloadInstallService:

privateprivate staticstatic void unzip(File src, File dest) throwsthrows IOException {
InputStream is=newnew FileInputStream(src);
ZipInputStream zis=newnew ZipInputStream(newnew BufferedInputStream(is));
ZipEntry ze;

dest.mkdirs();

whilewhile ((ze=zis.getNextEntry()) != nullnull) {

TUTORIAL #16 - UPDATING THE BOOK

630

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

byte[] buffer=newnew byte[8192];
int count;
FileOutputStream fos=

newnew FileOutputStream(newnew File(dest, ze.getName()));
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
whilewhile ((count=zis.read(buffer)) != -1) {

out.write(buffer, 0, count);
}

out.flush();
}
finallyfinally {

fos.getFD().sync();
out.close();

}

zis.closeEntry();
}

zis.close();
}

This is a fairly standard Java unZIP-the-whole-ZIP-file implementation, though it
does use the Android-recommended sync() approach to ensure that our disk writes
are flushed.

Step #8: Updating ModelFragment
ModelFragment needs to know to load our downloaded update, instead of assets,
when that update is available. To that end, modify doInBackground() of the
ContentsLoadTask inner class of ModelFragment to look like this:

@Override
protectedprotected Void doInBackground(Context... ctxt) {

String updateDir=
prefs.getString(DownloadInstallService.PREF_UPDATE_DIR, nullnull);

trytry {
StringBuilder buf=newnew StringBuilder();
InputStream json=nullnull;

ifif (updateDir != nullnull && newnew File(updateDir).exists()) {
json=

newnew FileInputStream(newnew File(newnew File(updateDir),
"contents.json"));

}
elseelse {

json=ctxt[0].getAssets().open("book/contents.json");

TUTORIAL #16 - UPDATING THE BOOK

631

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

BufferedReader in=
newnew BufferedReader(newnew InputStreamReader(json));

String str;

whilewhile ((str=in.readLine()) != nullnull) {
buf.append(str);

}

in.close();

ifif (updateDir != nullnull && newnew File(updateDir).exists()) {
localContents=

newnew BookContents(newnew JSONObject(buf.toString()),
newnew File(updateDir));

}
elseelse {

localContents=
newnew BookContents(newnew JSONObject(buf.toString()));

}
}
catchcatch (Exception e) {

thisthis.e=e;
}

String prevUpdateDir=
prefs.getString(DownloadInstallService.PREF_PREV_UPDATE, nullnull);

ifif (prevUpdateDir != nullnull) {
File toBeDeleted=newnew File(prevUpdateDir);

ifif (toBeDeleted.exists()) {
deleteDir(toBeDeleted);

}
}

returnreturn(nullnull);
}

The differences are:

• We read the PREF_UPDATE_DIR preference out of prefs
• If the update directory is not null and that directory actually exists, we load

the JSON out of it instead of out of assets
• If the update directory is not null and that directory actually exists, we tell

the BookContents to use that directory instead of assets
• We see if there is a value for PREF_PREV_UPDATE, and if the value and the

pointed-to directory exists, we delete that directory using a to-be-
implemented deleteDir() method

TUTORIAL #16 - UPDATING THE BOOK

632

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This requires revisions to the data members, constructor, and getChapterFile()
method of BookContents, to support a new updateDir value:

packagepackage com.commonsware.empublite;

importimport android.net.Uriandroid.net.Uri;
importimport java.io.Filejava.io.File;
importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass BookContentsBookContents {
JSONObject raw=nullnull;
JSONArray chapters;
File updateDir=nullnull;

BookContents(JSONObject raw) {
thisthis(raw, nullnull);

}

BookContents(JSONObject raw, File updateDir) {
thisthis.raw=raw;
thisthis.updateDir=updateDir;
chapters=raw.optJSONArray("chapters");

}

int getChapterCount() {
returnreturn(chapters.length());

}

String getChapterFile(int position) {
JSONObject chapter=chapters.optJSONObject(position);

ifif (updateDir != nullnull) {
returnreturn(Uri.fromFile(newnew File(updateDir,

chapter.optString("file"))).toString());
}

returnreturn("file:///android_asset/book/"+chapter.optString("file"));
}

String getTitle() {
returnreturn(raw.optString("title"));

}
}

This also requires that we add the deleteDir() method to ModelFragment:

privateprivate staticstatic boolean deleteDir(File dir) {
ifif (dir.exists() && dir.isDirectory()) {

File[] children=dir.listFiles();

forfor (File child : children) {

TUTORIAL #16 - UPDATING THE BOOK

633

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

boolean ok=deleteDir(child);

ifif (!ok) {
returnreturn(falsefalse);

}
}

}

returnreturn(dir.delete());
}

Also, we now have a dependency: ContentsLoadTask needs the preferences that are
loaded by PrefsLoadTask. Hence, we can no longer launch these in parallel, but
instead must wait on executing the ContentsLoadTask until after PrefsLoadTask is
done. This is a surprisingly simple change to deliverModel() in ModelFragment,
converting the if (contents == null && contentsTask == null) check to be an
else if, chaining to the previous if:

synchronizedsynchronized privateprivate void deliverModel() {
ifif (prefs != nullnull && contents != nullnull) {

((EmPubLiteActivity)getActivity()).setupPager(prefs, contents);
}
elseelse {

ifif (prefs == nullnull && prefsTask == nullnull) {
prefsTask=newnew PrefsLoadTask();
executeAsyncTask(prefsTask,

getActivity().getApplicationContext());
}
elseelse if (contents == nullnull && contentsTask == nullnull) {

contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}

}
}

Step #9: Adding a BroadcastReceiver to
EmPubLiteActivity
We also need to catch that broadcast from DownloadInstallService and arrange to
reload our book contents once the update is complete.

To do this, in ModelFragment, move the contents of the else if block in
deliverModel() to a separate method, named updateBook():

void updateBook() {
contentsTask=newnew ContentsLoadTask();

TUTORIAL #16 - UPDATING THE BOOK

634

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

executeAsyncTask(contentsTask,
getActivity().getApplicationContext());

}

Then, have deliverModel() use updateBook():

synchronizedsynchronized privateprivate void deliverModel() {
ifif (prefs != nullnull && contents != nullnull) {

((EmPubLiteActivity)getActivity()).setupPager(prefs, contents);
}
elseelse {

ifif (prefs == nullnull && prefsTask == nullnull) {
prefsTask=newnew PrefsLoadTask();
executeAsyncTask(prefsTask,

getActivity().getApplicationContext());
}
elseelse if (contents == nullnull && contentsTask == nullnull) {

updateBook();
}

}
}

In EmPubLiteActivity, add a BroadcastReceiver data member named onUpdate
that will call updateBook() on the ModelFragment, then abort the ordered broadcast:

privateprivate BroadcastReceiver onUpdate=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

model.updateBook();
abortBroadcast();

}
};

Then, register that receiver in onResume() of EmPubLiteActivity, by adding these
lines at the end of onResume():

@Override
publicpublic void onResume() {

supersuper.onResume();

ifif (prefs != nullnull) {
pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));

}

IntentFilter f=
newnew IntentFilter(DownloadInstallService.ACTION_UPDATE_READY);

f.setPriority(1000);
registerReceiver(onUpdate, f);

}

We are setting the priority to be 1000 in preparation for an upcoming tutorial.

TUTORIAL #16 - UPDATING THE BOOK

635

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finally, unregister that receiver by adding the following line to the top of onPause():

unregisterReceiver(onUpdate);

We have one lingering problem: our BroadcastReceiver is referring to a model data
member that does not exist. That is our ModelFragment. Heretofore, we have not
needed to call ModelFragment from EmPubLiteActivity, but now we do, in order to
have ModelFragment reload the book.

So, add a model data member to EmPubLiteActivity:

privateprivate ModelFragment model=nullnull;

Then, adjust the onCreate() implementation in EmPubLiteActivity to assign a
value to model, whether we create a new ModelFragment or access the one we created
earlier when the activity was first created:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentByTag(MODEL) == nullnull) {
model=newnew ModelFragment();
getSupportFragmentManager().beginTransaction().add(model, MODEL)

.commit();
}
elseelse {

model=
(ModelFragment)getSupportFragmentManager().findFragmentByTag(MODEL);

}

setContentView(R.layout.main);

pager=(ViewPager)findViewById(R.id.pager);
getSupportActionBar().setHomeButtonEnabled(truetrue);

}

We also have one other tweak to make. ContentsAdapter used to have the
responsibility of adding the file:///android_asset/book/ to the path returned by
BookContents. That is no longer valid, as BookContents returns the full path
(whether local or to an asset). So, change getItem() in ContentsAdapter to be:

@Override
publicpublic Fragment getItem(int position) {

returnreturn(SimpleContentFragment.newInstance(contents.getChapterFile(position)));
}

TUTORIAL #16 - UPDATING THE BOOK

636

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

At this point, if you build and run the app, you will see the update action bar item
(looks like a floppy disk):

Figure 206: The New Action Bar Item

Pressing that and waiting a moment should cause your book to be updated with new
contents downloaded from the Internet:

TUTORIAL #16 - UPDATING THE BOOK

637

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 207: The Updated Content

Step #10: Discussing the Flaws
The tutorials in this book are not meant to be production-grade code. That being
said, the approaches we are taking in this specific tutorial are weaker than usual.

Notably, the way we have set up DownloadCompleteReceiver will cause it to receive
broadcasts for any use of DownloadManager. There is no good way to have
DownloadManager only tell us about our downloads. However, we could use some
more advanced techniques to have DownloadCompleteReceiver be disabled except
during the window of time when we are performing the actual download.

We also do not take any steps to limit the downloads. If the user taps the action bar
item twice, we might happily kick off two downloads.

In Our Next Episode…
… we will update the book’s contents ourselves, periodically in the background.

TUTORIAL #16 - UPDATING THE BOOK

638

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AlarmManager and the Scheduled
Service Pattern

Many applications have the need to get control every so often to do a bit of work.
And, many times, those applications need to get control in the background,
regardless of what the user may be doing (or not doing) at the time.

The solution, in most cases, is to use AlarmManager, which is roughly akin to croncron on
Linux and OS X and Scheduled Tasks in Windows. You teach AlarmManager when
you want to get control back, and AlarmManager will give you control at that time.

Scenarios
The two main axes to consider with scheduled work is frequency and foreground (vs.
background).

If you have an activity that needs to get control every second, the simplest approach
is to use a postDelayed() loop, scheduling a Runnable to be invoked after a certain
delay, where the Runnable reschedules itself to be invoked after the delay in addition
to doing some work:

publicpublic void onCreate(Bundle icicle) {
// other work here

someWidget.postDelayed(everySecond, 1000);
}

Runnable everySecond=newnew Runnable() {
publicpublic void run() {

// do periodic work
anyOldWidget.postDelayed(everySecond, 1000);

639

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
};

This has the advantages of giving you control back on the main application thread
and avoiding the need for any background threads.

On the far other end of the spectrum, you may need to get control on a somewhat
slower frequency (e.g., every 15 minutes), and do so in the background, even if
nothing of your app is presently running. You might need to poll some Web server
for new information, such as downloading updates to an RSS feed. This is the
scenario that AlarmManager excels at. While postDelayed() works inside your
process (and therefore does not work if you no longer have a process), AlarmManager
maintains its schedule outside of your process. Hence, it can arrange to give you
control, even if it has to start up a new process for you along the way.

Options
There are a variety of things you will be able to configure about your scheduled
alarms with AlarmManager.

Wake Up… Or Not?

The biggest one is whether or not the scheduled event should wake up the device.

A device goes into a sleep mode shortly after the screen goes dark. During this time,
nothing at the application layer will run, until something wakes up the device.
Waking up the device does not necessarily turn on the screen — it may just be that
the CPU starts running your process again.

If you choose a “wakeup”-style alarm, Android will wake up the device to give you
control. This would be appropriate if you need this work to occur even if the user is
not actively using the device, such as your app checking for critical email messages
in the middle of the night. However, it does drain the battery some.

Alternatively, you can choose an alarm that will not wake up the device. If your
desired time arrives and the device is asleep, you will not get control until something
else wakes up the device.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

640

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Repeating… Or Not?

You can create a “one-shot” alarm, to get control once at a particular time in the
future. Or, you can create an alarm that will give you control periodically, at a fixed
period of your choice (e.g., every 15 minutes).

If you need to get control at multiple times, but the schedule is irregular, use a “one-
shot” alarm for the nearest time, where you do your work and schedule a “one-shot”
alarm for the next-nearest time. This would be appropriate for scenarios like a
calendar application, where you need to let the user know about upcoming
appointments, but the times for those appointments may not have any fixed
schedule.

However, for most polling operations (e.g., checking for new messages every NN
minutes), a repeating alarm will typically be the better answer.

Inexact… Or Not?

If you do choose a repeating alarm, you will have your choice over having (relatively)
precise control over the timing of event or not.

If you choose an “inexact” alarm, while you will provide Android with a suggested
time for the first event and a period for subsequent events, Android reserves the
right to shift your schedule somewhat, so it can process your events and others
around the same time. This is particularly important for “wakeup”-style alarms, as it
is more power-efficient to wake up the device fewer times, so Android will try to
combine multiple apps’ events to be around the same time to minimize the
frequency of waking up the device.

However, inexact alarms are annoying to test and debug, simply because you do not
have control over when they will be invoked. Hence, during development, you might
start with an exact alarm, then switch to inexact alarms once most of your business
logic is debugged.

Note that Android 4.4 changes the behavior of AlarmManager, such that it is more
difficult to actually create an exact-repeating alarm schedule. This will be examined
in greater detail shortly, as we review the various methods and flags for scheduling
AlarmManager events.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

641

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Absolute Time… Or Not?

As part of the alarm configuration, you will tell Android when the event is to occur
(for one-shot alarms) or when the event is to first occur (for repeating alarms). You
can provide that time in one of two ways:

• An absolute “real-time clock” time (e.g., 4am tomorrow), or
• A time relative to now

For most polling operations, particularly for periods more frequent than once per
day, specifying the time relative to now is easiest. However, some alarms may need
to tie into “real world time”, such as alarm clocks and calendar alerts — for those,
you will need to use the real-time clock (typically by means of a Java Calendar
object) to indicate when the event should occur.

What Happens (Or Not???)

And, of course, you will need to tell Android what to do when each of these timer
events occurs. You will do that in the form of supplying a PendingIntent. First
mentioned in the chapter on services, a PendingIntent is a Parcelable object, one
that indicates an operation to be performed upon an Intent:

• start an activity
• start a service
• send a broadcast

While the service chapter discussed an Android activity using
createPendingResult() to craft such a PendingIntent, that is usually not very
useful for AlarmManager, as the PendingIntent will only be valid so long as the
activity is in the foreground. Instead, there are static factory methods on
PendingIntent that you will use instead (e.g., getBroadcast() to create a
PendingIntent that calls sendBroadcast() on a supplied Intent). That being said,
our next sample will use createPendingResult(), to keep the sample as simple as
possible.

A Simple Example
A trivial sample app using AlarmManager can be found in AlarmManager/Simple.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

642

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Simple

This application consists of a single activity, SimpleAlarmDemoActivity, that will
both set up an alarm schedule and respond to alarms:

packagepackage com.commonsware.android.alarm;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass SimpleAlarmDemoActivitySimpleAlarmDemoActivity extendsextends Activity {
privateprivate staticstatic finalfinal int ALARM_ID=1337;
privateprivate staticstatic finalfinal int PERIOD=5000;
privateprivate PendingIntent pi=nullnull;
privateprivate AlarmManager mgr=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(AlarmManager)getSystemService(ALARM_SERVICE);
pi=createPendingResult(ALARM_ID, newnew Intent(), 0);
mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,

SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);
}

@Override
publicpublic void onDestroy() {

mgr.cancel(pi);

supersuper.onDestroy();
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == ALARM_ID) {

Toast.makeText(thisthis, R.string.toast, Toast.LENGTH_SHORT).show();
}

}
}

In onCreate(), in addition to setting up the “hello, world”-ish UI, we:

• Obtain an instance of AlarmManager, by calling getSystemService(), asking
for the ALARM_SERVICE, and casting the result to be an AlarmManager

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

643

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Create a PendingIntent by calling createPendingResult(), supplying an
empty Intent as our “result” (since we do not really need it here)

• Calling setRepeating() on AlarmManager

The call to setRepeating() is a bit complex, taking four parameters:

1. The type of alarm we want, in this case ELAPSED_REALTIME, indicating that
we want to use a relative time base for when the first event should occur
(i.e., relative to now) and that we do not need to wake up the device out of
any sleep mode

2. The time when we want the first event to occur, in this case specified as a
time delta in milliseconds (PERIOD) added to “now” as determined by
SystemClock.elapsedRealtime() (the number of milliseconds since the
device was last rebooted)

3. The number of milliseconds to occur between events
4. The PendingIntent to invoke for each of these events

When the event occurs, since we used createPendingResult() to create the
PendingIntent, our activity gets control in onActivityResult(), where we simply
display a Toast (if the event is for our alarm’s request ID). This continues until the
activity is destroyed (e.g., pressing the BACK button), at which time we cancel() the
alarm, supplying a PendingIntent to indicate which alarm to cancel. While here we
use the same PendingIntent object as we used for scheduling the alarm, that is not
required — it merely has to be an equivalent PendingIntent, meaning:

• The Intent inside the PendingIntent matches the scheduled alarm’s Intent,
in terms of component, action, data (Uri), MIME type, and categories

• The ID of the PendingIntent (here, ALARM_ID) must also match

Running this simply brings up a Toast every five seconds until you BACK out of the
activity.

The Five set…() Varieties
There are five methods that you can call on AlarmManager to establish an alarm,
including the setRepeating() demonstrated above.

On Android 4.4 (API Level 19) and higher, setExact() is used for a one-shot alarm,
where you want to get control at one specific time in the future. This would be used
for specific events or for irregular alarm schedules.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

644

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On Android 4.3 and below, and for apps whose android:targetSdkVersion is set to
18 or lower, set() has the same behavior as setExact(). However, on Android 4.4
and above, apps with their android:targetSdkVersion set to be 19 or higher will
have different, inexact behavior for set(). The time of the event is considered a
minimum — your PendingIntent will not be invoked before your desired time, but
it can occur any time thereafter… and you do not have control over how long that
delay will be. As with all “inexact” schedules, the objective is for Android to be able
to “batch” these events, to do several around the same time, for greater efficiency,
particularly when waking up the device.

On Android 4.4 and higher, you have a setWindow() option that is a bit of a hybrid
between the new-style set() and setExact(). Here, you specify the time you want
the event to occur and an amount of time that Android can “flex” the actual event.
So, for example, you might set up an event to occur every hour, with a “window” of
five minutes, to allow Android the flexibility to invoke your PendingIntent within
that five-minute window. This allows for better battery optimization than with
setExact(), while still giving you some control over how far “off the mark” the event
can occur.

On Android 4.3 and below, and for apps whose android:targetSdkVersion is set to
18 or lower, setRepeating() is used for an alarm that should occur at specific points
in time at a specific frequency. In addition to specifying the time of the first event,
you also specify the period for future events. Android will endeavor to give you
control at precisely those times, though since Android is not a real-time operating
system (RTOS), microsecond-level accuracy is certainly not guaranteed.

setInexactRepeating() is used for an alarm that should occur on a general
frequency, such as every 15 minutes. In addition to specifying the time of the first
event, you also specify a general frequency, as one of the following public static data
members on AlarmManager:

• INTERVAL_FIFTEEN_MINUTES
• INTERVAL_HALF_HOUR
• INTERVAL_HOUR
• INTERVAL_HALF_DAY
• INTERVAL_DAY

Android guarantees that it will give your app control somewhere during that time
window, but precisely when within that window is up to Android.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

645

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that on Android 4.4 and above, for apps with their android:targetSdkVersion
set to be 19 or higher, setRepeating() behaves identically to
setInexactRepeating() – in other words, all repeating alarms are inexact. The only
way to get exact repeating would be to use setExact() and to re-schedule the event
yourself, rather than relying upon Android doing that for you automatically. Ideally,
you use setInexactRepeating(), to help extend battery life.

The Four Types of Alarms
In the above sample, we used ELAPSED_REALTIME as the type of alarm. There are
three others:

• ELAPSED_REALTIME_WAKEUP
• RTC
• RTC_WAKEUP

Those with _WAKEUP at the end will wake up a device out of sleep mode to execute
the PendingIntent — otherwise, the alarm will wait until the device is awake for
other means.

Those that begin with ELAPSED_REALTIME expect the second parameter to
setRepeating() to be a timestamp based upon SystemClock.elapsedRealtime().
Those that begin with RTC, however, expect the second parameter to be based upon
System.currentTimeMillis(), the classic Java “what is the current time in
milliseconds since the Unix epoch” method.

When to Schedule Alarms
The sample, though, begs a bit of a question: when are we supposed to set up these
alarms? The sample just does so in onCreate(), but is that sufficient?

For most apps, the answer is “no”. Here are the three times that you will need to
ensure that your alarms get scheduled:

When User First Runs Your App

When your app is first installed, none of your alarms are set up, because your code
has not yet run to schedule them. There is no means of setting up alarm information
in the manifest or something that might automatically kick in.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

646

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, you will need to schedule your alarms when the user first runs your app.

As a simplifying measure — and to cover another scenario outlined below — you
might be able to simply get away with scheduling your alarms every time the user
runs your app, as the sample app shown above does. This works for one-shot alarms
(using set()) and for alarms with short polling periods, and it works because setting
up a new alarm schedule for an equivalent PendingIntent will replace the old
schedule. However, for repeating alarms with slower polling periods, it may
excessively delay your events. For example, suppose you have an alarm set to go off
every 24 hours, and the user happens to run your app 5 minutes before the next
event was to occur — if you blindly reschedule the alarm, instead of going off in 5
minutes, it might not go off for another 24 hours.

There are more sophisticated approaches for this (e.g., using a SharedPreferences
value to determine if your app has run before or not).

On Boot

The alarm schedule for alarm manager is wiped clean on a reboot, unlike croncron or
Windows Scheduled Tasks. Hence, you will need to get control at boot time to re-
establish your alarms, if you want them to start up again after a reboot. We will
examine this process a bit later in this chapter.

After a Force-Stop

There are other events that could cause your alarms to become unscheduled. The
best example of this is if the user goes into the Settings app and presses “Force Stop”
for your app. At this point, on Android 3.1+, nothing of your code will run again,
until the user manually launches some activity of yours.

If you are rescheduling your alarms every time your app runs, this will be corrected
the next time the user launches your app. And, by definition, you cannot do
anything until the user runs one of your activities, anyway.

If you are trying to avoid rescheduling your alarms on each run, though, you have a
couple of options.

One is to record the time when your alarm-triggered events occur, each time they
occur, such as by updating a SharedPreference. When the user launches one of your
activities, you check the last-event time — if it was too long ago (e.g., well over your

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

647

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

polling period), you assume that the alarm had been canceled, and you reschedule
it.

Another is to rely on FLAG_NO_CREATE. You can pass this as a parameter to any of the
PendingIntent factory methods, to indicate that Android should only return an
existing PendingIntent if there is one, and not create one if there is not:

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i,
PendingIntent.FLAG_NO_CREATE);

If the PendingIntent is null, your alarm has been canceled — otherwise, Android
would already have such a PendingIntent and would have returned it to you. This
feels a bit like a side-effect, so we cannot rule out the possibility that, in future
versions of Android, this technique could result in false positives (null
PendingIntent despite the scheduled alarm) or false negatives (non-null
PendingIntent despite a canceled alarm).

Get Moving, First Thing
If you want to establish your alarms at boot time, to cope with a reboot wiping out
your alarm schedule, you will need to arrange to have a BroadcastReceiver get
control at boot time.

The Permission

In order to be notified when the device has completed its system boot process, you
will need to request the RECEIVE_BOOT_COMPLETED permission. Without this, even if
you arrange to receive the boot broadcast Intent, it will not be dispatched to your
receiver.

As the Android documentation describes it:

Though holding this permission does not have any security implications, it
can have a negative impact on the user experience by increasing the
amount of time it takes the system to start and allowing applications to
have themselves running without the user being aware of them. As such,
you must explicitly declare your use of this facility to make that visible to
the user.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

648

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Receiver Element

There are two ways you can receive a broadcast Intent. One is to use
registerReceiver() from an existing Activity, Service, or ContentProvider. The
other is to register your interest in the Intent in the manifest in the form of a
<receiver> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.sysevents.boot"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-sdk<uses-sdk android:minSdkVersion="3"
android:targetSdkVersion="6" />/>

<supports-screens<supports-screens android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false" />/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />/>
<application<application android:icon="@drawable/cw"

android:label="@string/app_name">>
<receiver<receiver android:name=".OnBootReceiver">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED" />/>

</intent-filter></intent-filter>
</receiver></receiver>

</application></application>
</manifest></manifest>

The above AndroidManifest.xml, from the SystemEvents/OnBoot sample project,
shows that we have registered a broadcast receiver named OnBootReceiver, set to be
given control when the android.intent.action.BOOT_COMPLETED Intent is
broadcast.

In this case, we have no choice but to implement our receiver this way — by the
time any of our other components (e.g., an Activity) were to get control and be
able to call registerReceiver(), the BOOT_COMPLETED Intent will be long gone.

The Receiver Implementation

Now that we have told Android that we would like to be notified when the boot has
completed, and given that we have been granted permission to do so by the user, we
now need to actually do something to receive the Intent. This is a simple matter of
creating a BroadcastReceiver, such as seen in the OnBootReceiver implementation
shown below:

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

649

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBoot
http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBoot

packagepackage com.commonsware.android.sysevents.boot;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnBootReceiverOnBootReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

Log.d("OnBootReceiver", "Hi, Mom!");
}

}

A BroadcastReceiver is not a Context, and so it gets passed a suitable Context
object in onReceive() to use for accessing resources and the like. The onReceive()
method also is passed the Intent that caused our BroadcastReceiver to be created,
in case there are “extras” we need to pull out (none in this case).

In onReceive(), we can do whatever we want, subject to some limitations:

• We are not a Context, like an Activity, so we cannot directly modify the UI
• If we want to do anything significant, it is better to delegate that logic to a

service that we start from here (e.g., calling startService() on the supplied
Context) rather than actually doing it here, since BroadcastReceiver
implementations need to be fast

• We cannot start any background threads, directly or indirectly, since the
BroadcastReceiver gets discarded as soon as onReceive() returns

In this case, we simply log the fact that we got control.

To test this, install it on an emulator (or device), shut down the emulator, then
restart it.

New Behavior With Android 3.1

It used to be that Android applications registering a BOOT_COMPLETED
BroadcastReceiver would get control at boot time. Starting with Android 3.1, that
may or may not occur.

If you install an application that registers a BOOT_COMPLETED receiver, and simply
restart the Android 3.1 device, the receiver does not get control at boot time. It
appears that the user has to start up an activity in that application first (e.g., from

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

650

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the launcher) before Android will deliver a BOOT_COMPLETED Intent to that
application.

Google has long said that users should launch an activity from the launcher first,
before that application can go do much. Preventing BOOT_COMPLETED from being
delivered until the first activity is launched is a logical extension of the same
argument.

Most apps will be OK with this change. For example, if your boot receiver is there to
establish an AlarmManager schedule, you also needed to establish that schedule
when the app is first run, so the user does not have to reboot their phone just to set
up your alarms. That pattern does not change – it is just that if the user happens to
reboot the phone, it will not set up your alarms, until the user runs one of your
activities.

Archetype: Scheduled Service Polling
Given that we now know how to get control at boot time, we can return our
attention to AlarmManager.

The classic AlarmManager scenario is where you want to do a chunk of work, in the
background, on a periodic basis. This is fairly simple to set up in Android, though
perhaps not quite as simple as you might think.

The Main Application Thread Strikes Back

When an AlarmManager-triggered event occurs, it is very likely that your application
is not running. This means that the PendingIntent is going to have to start up your
process to have you do some work. Since everything that a PendingIntent can do
intrinsically gives you control on your main application thread, you are going to have
to determine how you want to move your work to a background thread.

One approach is to use a PendingIntent created by getService(), and have it send
a command to an IntentService that you write. Since IntentService does its work
on a background thread, you can take whatever time you need, without interfering
with the behavior of the main application thread. This is particularly important
when:

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

651

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The AlarmManager-triggered event happens to occur when the user happens
to have one of your activities in the foreground, so you do not freeze the UI,
or

• You want the same business logic to be executed on demand by the user,
such as via an action bar item, as once again you do not want to freeze the
UI

Examining a Sample

An incrementally-less-trivial sample app using AlarmManager for the scheduled
service pattern can be found in AlarmManager/Scheduled.

This application consists of three components: a BroadcastReceiver, a Service, and
an Activity.

This sample demonstrates scheduling your alarms at two points in your app:

• At boot time
• When the user runs the activity

For the boot-time scenario, we need a BroadcastReceiver set up to receive the
ACTION_BOOT_COMPLETED broadcast, with the appropriate permission. So, we set that
up, along with our other components, in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.schedsvc"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".ScheduledServiceDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

652

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Scheduled
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Scheduled

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<receiver<receiver android:name="PollReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

<service<service android:name="ScheduledService">>
</service></service>

</application></application>

</manifest></manifest>

The PollReceiver has its onReceive() method, to be called at boot time, which
delegates its work to a scheduleAlarms() static method, so that logic can also be
used by our activity:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=5000;

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

scheduleAlarms(ctxt);
}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, ScheduledService.class);
PendingIntent pi=PendingIntent.getService(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,
SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);

}
}

The scheduleAlarms() method retrieves our AlarmManager, creates a PendingIntent
designed to call startService() on our ScheduledService, and schedules an exact
repeating alarm to have that command be sent every five seconds.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

653

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ScheduledService itself is the epitome of “trivial”, simply logging a message to
LogCat on each command:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ScheduledServiceScheduledService extendsextends IntentService {
publicpublic ScheduledService() {

supersuper("ScheduledService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {

Log.d(getClass().getSimpleName(), "I ran!");
}

}

That being said, because this is an IntentService, we could do much more in
onHandleIntent() and not worry about tying up the main application thread.

Our activity — ScheduledServiceDemoActivity — is set up with Theme.NoDisplay
in the manifest, never calls setContentView(), and calls finish() right from
onCreate(). As a result, it has no UI. It simply calls scheduleAlarms() and raises a
Toast to indicate that the alarms are indeed scheduled:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass ScheduledServiceDemoActivityScheduledServiceDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

PollReceiver.scheduleAlarms(thisthis);

Toast.makeText(thisthis, R.string.alarms_scheduled, Toast.LENGTH_LONG)
.show();

finish();
}

}

On Android 3.1+, we also need this activity to move our application out of the
stopped state and allow that boot-time BroadcastReceiver to work.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

654

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you run this app on a device or emulator, after seeing the Toast, messages will
appear in LogCat every five seconds, even though you have no activity running.

Staying Awake at Work
The sample shown above works… most of the time.

However, it has a flaw: the device might fall asleep before our service can complete
its work, if we woke it up out of sleep mode to process the event.

To understand where this flaw would appear, and to learn how to address it, we need
to think a bit more about the event flows and timing of the code we are executing.

Mind the Gap

For a _WAKEUP-style alarm, Android makes precisely one guarantee: if the
PendingIntent supplied to AlarmManager for the alarm is one created by
getBroadcast() to send a broadcast Intent, Android will ensure that the device will
stay awake long enough for onReceive() to be completed. Anything beyond that is
not guaranteed.

In the sample shown above, we are not using getBroadcast(). We are taking the
more straightforward approach of sending the command directly to the service via a
getService() PendingIntent. Hence, Android makes no guarantees about what
happens after AlarmManager wakes up the device, and the device could fall back
asleep before our IntentService completes processing of onHandleIntent().

The WakefulIntentService

For our trivial sample, where we are merely logging to LogCat, we could simply
move that logic out of an IntentService and into a BroadcastReceiver. Then,
Android would ensure that the device would stay awake long enough for us to do
our work in onReceive().

The problem is that onReceive() is called on the main application thread, so we
cannot spend much time in that method. And, since our alarm event might occur
when nothing else of our code is running, we need to have our BroadcastReceiver
registered in the manifest, rather than via registerReceiver(). A side effect of this
is that we cannot fork threads or do other things in onReceive() that might live past
onReceive() yet be “owned” by the BroadcastReceiver itself. Besides, Android only

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

655

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ensures that the device will stay awake until onReceive() returns, so even if we did
fork a thread, the device might fall asleep before that thread can complete its work.

Enter the WakefulIntentService.

WakefulIntentService is a reusable component, published by the author of this
book. You can download it as an Android library project or as a JAR from a GitHub
repository. It is open source, licensed under the Apache License 2.0.

WakefulIntentService allows you to implement “the handoff pattern”:

• You add the JAR or library project to your project
• You create a subclass of WakefulIntentService to do your background work,

putting that business logic in a doWakefulWork() method instead of
onHandleIntent() (though it is still called on a background thread)

• You set up your alarm to route to a BroadcastReceiver of your design
• Your BroadcastReceiver calls sendWakefulWork() on the
WakefulIntentService class, identifying your own subclass of
WakefulIntentService

• You add a WAKE_LOCK permission to your manifest

WakefulIntentService will perform a bit of magic to ensure that the device will stay
awake long enough for your work to complete in doWakefulWork(). Hence, we get
the best of both worlds: the device will not fall asleep, and we will not have to worry
about tying up the main application thread.

The Polling Archetype, Revisited

With that in mind, take a peek at the AlarmManager/Wakeful sample project. This is
a near-clone of the previous sample, with the primary difference being that we will
use WakefulIntentService.

The libs/ directory of the project contains the CWAC-WakefulIntentService.jar
library, so we can make use of WakefulIntentService in our code.

Our manifest includes the WAKE_LOCK permission:

<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>

Our PollReceiver will now serve two roles: handling ACTION_BOOT_COMPLETED and
handling our alarm events. We can detect which of these cases triggered

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

656

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-wakeful/releases
https://github.com/commonsguy/cwac-wakeful
https://github.com/commonsguy/cwac-wakeful
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Wakeful
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Wakeful

onReceive() by inspecting the broadcast Intent, passed into onReceive(). We will
use an explicit Intent for the alarm events, so any Intent with an action string must
be ACTION_BOOT_COMPLETED:

packagepackage com.commonsware.android.wakesvc;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=900000; // 15 minutes
privateprivate staticstatic finalfinal int INITIAL_DELAY=5000; // 5 seconds

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() == nullnull) {
WakefulIntentService.sendWakefulWork(ctxt, ScheduledService.class);

}
elseelse {

scheduleAlarms(ctxt);
}

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + INITIAL_DELAY,
PERIOD, pi);

}
}

If the Intent is our explicit Intent, we call sendWakefulWork() on
WakefulIntentService, identifying our ScheduledService class as being the service
that contains our business logic.

The other changes to PollReceiver is that we use getBroadcast() to create our
PendingIntent, wrapping our explicit Intent identifying PollReceiver itself, and
that we use more realistic polling periods (5 second initial delay, every 15 minutes
thereafter).

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

657

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ScheduledService has only two changes: it extends WakefulIntentService and has
the LogCat logging in doWakefulWork():

packagepackage com.commonsware.android.wakesvc;

importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
publicpublic ScheduledService() {

supersuper("ScheduledService");
}

@Override
protectedprotected void doWakefulWork(Intent intent) {

Log.d(getClass().getSimpleName(), "I ran!");
}

}

How the Magic Works

A WakefulIntentService keeps the device awake by using a WakeLock. A WakeLock
allows a “userland” (e.g., Android SDK) app to tell the Linux kernel at the heart of
Android to keep the device awake, with the CPU powered on, indefinitely, until the
WakeLock is released.

This can be a wee bit dangerous, as you can accidentally keep the device awake
much longer than you need to. That is why using a library like
WakefulIntentService can be useful — to use more-tested code rather than rolling
your own.

Warning: Not All Android Devices Play Nice
Some Android devices take liberties with the way AlarmManager works, in ways that
may affect your applications.

One example of this today is the SONY Xperia Z. It has a “STAMINA mode” that the
user can toggle on via the “Power Management” screen in Settings. This mode will
be entered when the device’s screen turns off, if the device is not plugged in and
charging. The user can add apps to a whitelist (“Apps active in standby”), where
STAMINA mode does not affect those apps’ behavior.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

658

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.sonymobile.com/2013/04/03/how-sonys-battery-stamina-mode-works/

_WAKEUP style alarms do not wake up the device when it is in STAMINA mode. The
behavior is a bit reminiscent of non-_WAKEUP alarms. Alarms that occur while the
device is asleep are suppressed, and you get one invocation of your PendingIntent at
the point the device wakes back up. At that point, the schedule continues as though
the alarms had been going off all along. Apps on the whitelist are unaffected.

Mostly, you need to be aware of this from a support standpoint. If Xperia Z owners
complain that your app behaves oddly, and you determine that your alarms are not
going off, see if they have STAMINA mode on, and if they do, ask them to add your
app to the whitelist.

If you are using “if my alarm has not gone off in X amount of time, the user perhaps
force-stopped me, so let me reschedule my alarms” logic, you should be OK. Before
one of your activities gets a chance to make that check, your post-wakeup alarm
should have been invoked, so you can update your event log and last-run timestamp.
Hence, you should not be tripped up by STAMINA and accidentally reschedule your
alarms (potentially causing duplicates, depending upon your alarm-scheduling
logic).

Other devices with similar characteristics include Sony’s Xperia P, Xperia U, Xperia
sola, and Xperia go.

Debugging Alarms
If you are encountering issues with your alarms, the first thing to do is to ensure that
the alarm schedule in AlarmManager is what you expect it to be. To do that, run adbadb
shell dumpsys alarmshell dumpsys alarm from a command prompt. This will dump a report of all the
scheduled alarms, including when they are set to be invoked next:

Current Alarm Manager state:

Realtime wakeup (now=2013-03-09 07:49:51):
RTC_WAKEUP #11: Alarm{429c6028 type 0 com.android.providers.calendar}

type=0 when=+21h40m9s528ms repeatInterval=0 count=0
operation=PendingIntent{42ec2f40: PendingIntentRecord{434fb2f8

com.android.providers.calendar broadcastIntent}}
RTC_WAKEUP #10: Alarm{42e17e28 type 0 com.google.android.gms}

type=0 when=+18h10m8s480ms repeatInterval=86400000 count=1
operation=PendingIntent{42e15d20: PendingIntentRecord{42e0cc28

com.google.android.gms startService}}
RTC_WAKEUP #9: Alarm{42787d10 type 0 com.rememberthemilk.MobileRTM}

type=0 when=+16h10m13s480ms repeatInterval=0 count=0
operation=PendingIntent{426068a0: PendingIntentRecord{42787c70

com.rememberthemilk.MobileRTM broadcastIntent}}

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

659

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RTC_WAKEUP #8: Alarm{43422428 type 0 com.google.android.calendar}
type=0 when=+11h49m38s572ms repeatInterval=0 count=0
operation=PendingIntent{425edd68: PendingIntentRecord{42d6f460

com.google.android.calendar broadcastIntent}}
RTC_WAKEUP #7: Alarm{425eca98 type 0 com.google.android.gms}

type=0 when=+11h14m46s303ms repeatInterval=0 count=0
operation=PendingIntent{425e2cf0: PendingIntentRecord{42d2f0d8

com.google.android.gms broadcastIntent}}
RTC_WAKEUP #6: Alarm{434c2458 type 0 android}

type=0 when=+10h41m56s911ms repeatInterval=0 count=0
operation=PendingIntent{42772408: PendingIntentRecord{42e201e8 android

broadcastIntent}}
RTC_WAKEUP #5: Alarm{42a45908 type 0 com.google.android.partnersetup}

type=0 when=+9h8m56s565ms repeatInterval=0 count=0
operation=PendingIntent{425a9df0: PendingIntentRecord{42d586f8

com.google.android.partnersetup startService}}
RTC_WAKEUP #4: Alarm{42cee778 type 0 com.android.vending}

type=0 when=+8h14m34s283ms repeatInterval=0 count=0
operation=PendingIntent{42d49f20: PendingIntentRecord{42e894e8

com.android.vending startService}}
RTC_WAKEUP #3: Alarm{43436e28 type 0 com.google.android.gsf}

type=0 when=+3h41m38s284ms repeatInterval=40528000 count=0
operation=PendingIntent{42620810: PendingIntentRecord{42d618f8

com.google.android.gsf broadcastIntent}}
RTC_WAKEUP #2: Alarm{42c55cc8 type 0 com.google.android.apps.genie.geniewidget}

type=0 when=+1h54m57s750ms repeatInterval=21600000 count=1
operation=PendingIntent{429890f0: PendingIntentRecord{42de6590

com.google.android.apps.genie.geniewidget broadcastIntent}}
RTC_WAKEUP #1: Alarm{426315a8 type 0 android}

type=0 when=+18m49s976ms repeatInterval=3793484 count=1
operation=PendingIntent{42744160: PendingIntentRecord{42975a58 android

broadcastIntent}}
RTC_WAKEUP #0: Alarm{42d6b2a8 type 0 com.google.android.gsf}

type=0 when=+11m57s390ms repeatInterval=1800000 count=0
operation=PendingIntent{42d5ced8: PendingIntentRecord{42d546e0

com.google.android.gsf broadcastIntent}}
RTC #4: Alarm{433ee498 type 1 com.google.android.calendar}

type=1 when=+16h10m8s480ms repeatInterval=0 count=0
operation=PendingIntent{42604c48: PendingIntentRecord{42d963b0

com.google.android.calendar broadcastIntent}}
RTC #3: Alarm{42e69130 type 1 android}

type=1 when=+4h10m8s480ms repeatInterval=0 count=0
operation=PendingIntent{428b7d08: PendingIntentRecord{428f77d0 android

broadcastIntent}}
RTC #2: Alarm{4345cdd0 type 1 com.evernote}

type=1 when=+42m11s207ms repeatInterval=3600000 count=1
operation=PendingIntent{42a865a0: PendingIntentRecord{4303ce70 com.evernote

startService}}
RTC #1: Alarm{42d63170 type 1 com.rememberthemilk.MobileRTM}

type=1 when=+15m27s87ms repeatInterval=0 count=0
operation=PendingIntent{42d4ad88: PendingIntentRecord{42d611c8

com.rememberthemilk.MobileRTM broadcastIntent}}
RTC #0: Alarm{433dfdd8 type 1 com.google.android.deskclock}

type=1 when=+10m9s706ms repeatInterval=900000 count=0

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

660

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

operation=PendingIntent{42d9e198: PendingIntentRecord{42ded468
com.google.android.deskclock broadcastIntent}}

Elapsed realtime wakeup (now=+6d15h50m2s672ms):
ELAPSED_WAKEUP #16: Alarm{42cf26f0 type 2 com.google.android.apps.maps}

type=2 when=+999d23h59m59s999ms repeatInterval=0 count=0
operation=PendingIntent{42de2dc0: PendingIntentRecord{42ac73e8

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #15: Alarm{42c4a638 type 2 com.google.android.apps.maps}

type=2 when=+1d18h10m8s894ms repeatInterval=0 count=0
operation=PendingIntent{42ab50c8: PendingIntentRecord{42e2c020

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #14: Alarm{42cf23f0 type 2 com.google.android.location}

type=2 when=+21h38m35s113ms repeatInterval=0 count=0
operation=PendingIntent{42a33658: PendingIntentRecord{42dac5a8

com.google.android.location broadcastIntent}}
ELAPSED_WAKEUP #13: Alarm{434c2000 type 2 com.google.android.location}

type=2 when=+13h34m38s568ms repeatInterval=0 count=0
operation=PendingIntent{4302fb60: PendingIntentRecord{42d6fca8

com.google.android.location broadcastIntent}}
ELAPSED_WAKEUP #12: Alarm{42f8c8d0 type 2 android}

type=2 when=+3h59m57s456ms repeatInterval=0 count=0
operation=PendingIntent{427628e0: PendingIntentRecord{42db4080 android

broadcastIntent}}
ELAPSED_WAKEUP #11: Alarm{4282a7d0 type 2 com.google.android.apps.maps}

type=2 when=+3h10m8s458ms repeatInterval=0 count=0
operation=PendingIntent{42e1b670: PendingIntentRecord{42e2c2d0

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #10: Alarm{42d89bf0 type 2 com.tripit}

type=2 when=+2h49m31s665ms repeatInterval=10800000 count=0
operation=PendingIntent{4280e408: PendingIntentRecord{42db5dc8 com.tripit

startService}}
ELAPSED_WAKEUP #9: Alarm{42e57820 type 2 com.google.android.apps.maps}

type=2 when=+2h45m10s324ms repeatInterval=0 count=0
operation=PendingIntent{42a364c0: PendingIntentRecord{42dbfa90

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #8: Alarm{435057c0 type 2 com.google.android.apps.maps}

type=2 when=+2h16m5s664ms repeatInterval=0 count=0
operation=PendingIntent{42aab0b0: PendingIntentRecord{42da7c88

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #7: Alarm{43065540 type 2 com.google.android.apps.maps}

type=2 when=+1h17m5s685ms repeatInterval=0 count=0
operation=PendingIntent{42c80968: PendingIntentRecord{42e34fe0

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #6: Alarm{43348f18 type 2 android}

type=2 when=+54m8s461ms repeatInterval=0 count=0
operation=PendingIntent{428e7520: PendingIntentRecord{4289b130 android

broadcastIntent}}
ELAPSED_WAKEUP #5: Alarm{42990000 type 2 android}

type=2 when=+24m57s328ms repeatInterval=3600000 count=1
operation=PendingIntent{42d33140: PendingIntentRecord{42ad0140 android

broadcastIntent}}
ELAPSED_WAKEUP #4: Alarm{4300de18 type 2 com.google.android.apps.maps}

type=2 when=+9m57s328ms repeatInterval=900000 count=1

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

661

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

operation=PendingIntent{42a69660: PendingIntentRecord{42d2d518
com.google.android.apps.maps startService}}

ELAPSED_WAKEUP #3: Alarm{42c4a6e0 type 2 com.google.android.apps.maps}
type=2 when=+5m52s371ms repeatInterval=0 count=0
operation=PendingIntent{42abf1f0: PendingIntentRecord{42992450

com.google.android.apps.maps broadcastIntent}}
ELAPSED_WAKEUP #2: Alarm{42d60808 type 2 com.google.android.gsf}

type=2 when=+4m10s512ms repeatInterval=0 count=0
operation=PendingIntent{430495a8: PendingIntentRecord{4342bc08

com.google.android.gsf broadcastIntent}}
ELAPSED_WAKEUP #1: Alarm{42b8a490 type 2 com.android.phone}

type=2 when=+1m38s451ms repeatInterval=0 count=0
operation=PendingIntent{42a0d700: PendingIntentRecord{42e8bde0

com.android.phone broadcastIntent}}
ELAPSED_WAKEUP #0: Alarm{42dd1010 type 2 com.android.phone}

type=2 when=+1m16s533ms repeatInterval=0 count=0
operation=PendingIntent{42da3c00: PendingIntentRecord{43496428

com.android.phone broadcastIntent}}
ELAPSED #5: Alarm{42ce69c8 type 3 android}

type=3 when=+5d15h10m7s782ms repeatInterval=0 count=0
operation=PendingIntent{427a6750: PendingIntentRecord{428f46c0 android

broadcastIntent}}
ELAPSED #4: Alarm{429e05a8 type 3 android}

type=3 when=+4h57m38s678ms repeatInterval=0 count=0
operation=PendingIntent{428a28c8: PendingIntentRecord{428a2890 android

broadcastIntent}}
ELAPSED #3: Alarm{42dd2d00 type 3 com.android.phone}

type=3 when=+24m57s328ms repeatInterval=28800000 count=1
operation=PendingIntent{42dd2cf0: PendingIntentRecord{42dd2c50

com.android.phone broadcastIntent}}
ELAPSED #2: Alarm{429d1390 type 3 android}

type=3 when=+24m57s328ms repeatInterval=1800000 count=1
operation=PendingIntent{42911180: PendingIntentRecord{428fdc70 android

broadcastIntent}}
ELAPSED #1: Alarm{42d4cd98 type 3 android}

type=3 when=+9m4s957ms repeatInterval=0 count=0
operation=PendingIntent{427a6ab8: PendingIntentRecord{428f4558 android

broadcastIntent}}
ELAPSED #0: Alarm{42f9d900 type 3 android}

type=3 when=+8s460ms repeatInterval=0 count=0
operation=PendingIntent{428b9830: PendingIntentRecord{428f75c8 android

broadcastIntent}}

Broadcast ref count: 0

Top Alarms:
+14m24s97ms running, 0 wakeups, 9567 alarms: android

act=android.intent.action.TIME_TICK
+1m15s72ms running, 4890 wakeups, 4890 alarms: com.android.phone

act=com.android.server.sip.SipWakeupTimer@42626830
+1m13s465ms running, 0 wakeups, 320 alarms: android

act=com.android.server.action.NETWORK_STATS_POLL
+45s803ms running, 0 wakeups, 639 alarms: com.google.android.deskclock

act=com.android.deskclock.ON_QUARTER_HOUR

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

662

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

+42s830ms running, 0 wakeups, 19 alarms: com.android.phone
act=com.android.phone.UPDATE_CALLER_INFO_CACHE cmp={com.android.phone/

com.android.phone.CallerInfoCacheUpdateReceiver}
+35s479ms running, 0 wakeups, 954 alarms: android

act=com.android.server.ThrottleManager.action.POLL
+14s28ms running, 1609 wakeups, 1609 alarms: com.android.phone

act=com.android.internal.telephony.gprs-data-stall
+11s98ms running, 171 wakeups, 171 alarms: com.android.providers.calendar

act=com.android.providers.calendar.intent.CalendarProvider2
+8s380ms running, 893 wakeups, 893 alarms: android

act=android.content.syncmanager.SYNC_ALARM
+8s353ms running, 569 wakeups, 569 alarms: com.google.android.apps.maps

cmp={com.google.android.apps.maps/
com.google.googlenav.prefetch.android.PrefetcherService}

Alarm Stats:
com.google.android.location +120ms running, 12 wakeups:

+73ms 7 wakes 7 alarms:
act=com.google.android.location.nlp.ALARM_WAKEUP_CACHE_UPDATER

+47ms 5 wakes 5 alarms:
act=com.google.android.location.nlp.ALARM_WAKEUP_LOCATOR

android +15m32s920ms running, 1347 wakeups:
+14m24s97ms 0 wakes 9567 alarms: act=android.intent.action.TIME_TICK
+1m13s465ms 0 wakes 320 alarms:

act=com.android.server.action.NETWORK_STATS_POLL
+35s479ms 0 wakes 954 alarms:

act=com.android.server.ThrottleManager.action.POLL
+8s380ms 893 wakes 893 alarms: act=android.content.syncmanager.SYNC_ALARM
+7s734ms 159 wakes 159 alarms: act=android.appwidget.action.APPWIDGET_UPDATE

cmp={com.guywmustang.silentwidget/
com.guywmustang.silentwidgetlib.SilentWidgetProvider}

+1s144ms 151 wakes 151 alarms: act=android.app.backup.intent.RUN
+922ms 0 wakes 6 alarms: act=android.intent.action.DATE_CHANGED
+479ms 66 wakes 66 alarms:

act=com.android.server.WifiManager.action.DEVICE_IDLE
+383ms 56 wakes 56 alarms:

act=com.android.server.WifiManager.action.DELAYED_DRIVER_STOP
+101ms 14 wakes 14 alarms:

act=com.android.server.action.UPDATE_TWILIGHT_STATE
+100ms 7 wakes 7 alarms:

act=com.android.internal.policy.impl.PhoneWindowManager.DELAYED_KEYGUARD
+9ms 1 wakes 1 alarms: act=android.net.wifi.DHCP_RENEW
+3ms 0 wakes 1 alarms:

act=com.android.server.NetworkTimeUpdateService.action.POLL
com.tripit +934ms running, 51 wakeups:

+928ms 50 wakes 50 alarms: act=com.tripit.PARTIAL_TRIP_REFRESH
cmp={com.tripit/com.tripit.http.HttpService}

+6ms 1 wakes 1 alarms: act=com.tripit.FULL_TRIP_REFRESH cmp={com.tripit/
com.tripit.http.HttpService}

com.google.android.apps.maps +14s742ms running, 911 wakeups:
+8s353ms 569 wakes 569 alarms: cmp={com.google.android.apps.maps/

com.google.googlenav.prefetch.android.PrefetcherService}
+2s211ms 85 wakes 85 alarms:

act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_LOCATOR

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

663

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

+1s206ms 103 wakes 103 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_SENSOR_UPLOADER

+807ms 2 wakes 2 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_BURST_COLLECTION_TRIGGER

+759ms 56 wakes 56 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_S_COLLECTOR

+566ms 10 wakes 10 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_CACHE_UPDATER

+385ms 39 wakes 39 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_IN_OUT_DOOR_COLLECTOR

+308ms 31 wakes 31 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_ACTIVE_COLLECTOR

+77ms 8 wakes 8 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_ACTIVITY_DETECTION

+42ms 4 wakes 4 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_PASSIVE_COLLECTOR

+28ms 4 wakes 4 alarms:
act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_CALIBRATION_COLLECTOR

com.android.phone +2m18s659ms running, 6905 wakeups:
+1m15s72ms 4890 wakes 4890 alarms:

act=com.android.server.sip.SipWakeupTimer@42626830
+42s830ms 0 wakes 19 alarms: act=com.android.phone.UPDATE_CALLER_INFO_CACHE

cmp={com.android.phone/com.android.phone.CallerInfoCacheUpdateReceiver}
+14s28ms 1609 wakes 1609 alarms:

act=com.android.internal.telephony.gprs-data-stall
+1s302ms 45 wakes 45 alarms:

act=com.android.server.sip.SipWakeupTimer@428bbcb0
+850ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@42858508
+727ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@42928a30
+724ms 46 wakes 46 alarms: act=com.android.server.sip.SipWakeupTimer@428657c8
+705ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@42846700
+630ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@426d9bd0
+616ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@428abee0
+603ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@428cf268
+576ms 45 wakes 45 alarms: act=com.android.server.sip.SipWakeupTimer@428a5e48

com.google.android.apps.genie.geniewidget +1s370ms running, 7 wakeups:
+1s370ms 7 wakes 7 alarms: cmp={com.google.android.apps.genie.geniewidget/

com.google.android.apps.genie.geniewidget.miniwidget.UpdateReceiver}
com.google.android.partnersetup +21ms running, 1 wakeups:

+21ms 1 wakes 1 alarms: cmp={com.google.android.partnersetup/
com.google.android.partnersetup.RlzPingService}

com.google.android.gsf +11s816ms running, 733 wakeups:
+6s47ms 319 wakes 319 alarms: cmp={com.google.android.gsf/

com.google.android.gsf.checkin.EventLogService$Receiver}
+4s913ms 354 wakes 354 alarms:

act=com.google.android.intent.action.MCS_HEARTBEAT
+549ms 42 wakes 42 alarms: act=com.google.android.intent.action.SEND_IDLE
+255ms 14 wakes 14 alarms: cmp={com.google.android.gsf/

com.google.android.gsf.checkin.CheckinService$Receiver}
+52ms 4 wakes 4 alarms: act=com.google.android.intent.action.GTALK_RECONNECT

com.google.android.calendar +397ms running, 1 wakeups:
+332ms 0 wakes 15 alarms:

act=com.google.android.calendar.APPWIDGET_SCHEDULED_UPDATE
+65ms 1 wakes 2 alarms: act=com.android.calendar.EVENT_REMINDER_APP

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

664

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

cmp={com.google.android.calendar/com.android.calendar.alerts.AlertReceiver}
com.android.chrome +30ms running, 0 wakeups:

+30ms 0 wakes 4 alarms:
act=com.google.android.apps.chrome.omaha.ACTION_REGISTER_REQUEST
cmp={com.android.chrome/com.google.android.apps.chrome.omaha.OmahaPingService}

com.android.vending +701ms running, 31 wakeups:
+545ms 19 wakes 19 alarms: cmp={com.android.vending/

com.google.android.finsky.services.ContentSyncService}
+156ms 12 wakes 12 alarms: cmp={com.android.vending/

com.google.android.finsky.services.DailyHygiene}
com.rememberthemilk.MobileRTM +5s905ms running, 8 wakeups:

+5s812ms 0 wakes 257 alarms: act=com.rememberthemilk.MobileRTM.SYNC_START
cmp={com.rememberthemilk.MobileRTM/
com.rememberthemilk.MobileRTM.Receivers.RTMSyncReceiver}

+84ms 7 wakes 7 alarms: act=com.rememberthemilk.MobileRTM.DATE_CHANGED
cmp={com.rememberthemilk.MobileRTM/
com.rememberthemilk.MobileRTM.Receivers.RTMAlertReceiver}

+9ms 1 wakes 1 alarms: act=com.rememberthemilk.MobileRTM.SCAN_PROXIMITY
cmp={com.rememberthemilk.MobileRTM/
com.rememberthemilk.MobileRTM.Receivers.RTMAlertReceiver}

com.google.android.inputmethod.latin.dictionarypack +17ms running, 0 wakeups:
+17ms 0 wakes 1 alarms:

act=com.android.inputmethod.latin.dictionarypack.UPDATE_NOW
com.android.providers.downloads +15ms running, 1 wakeups:

+15ms 1 wakes 1 alarms: act=android.intent.action.DOWNLOAD_WAKEUP
cmp={com.android.providers.downloads/
com.android.providers.downloads.DownloadReceiver}

com.android.providers.calendar +11s249ms running, 178 wakeups:
+11s98ms 171 wakes 171 alarms:

act=com.android.providers.calendar.intent.CalendarProvider2
+139ms 6 wakes 6 alarms: act=android.intent.action.EVENT_REMINDER
+12ms 1 wakes 1 alarms: act=com.android.providers.calendar.SCHEDULE_ALARM

cmp={com.android.providers.calendar/
com.android.providers.calendar.CalendarReceiver}

com.google.android.deskclock +45s803ms running, 0 wakeups:
+45s803ms 0 wakes 639 alarms: act=com.android.deskclock.ON_QUARTER_HOUR

com.google.android.gms +755ms running, 14 wakeups:
+606ms 7 wakes 7 alarms: act=com.google.android.gms.recovery.WAKEUP
+149ms 7 wakes 7 alarms:

act=com.google.android.gms.icing.INDEX_RECURRING_MAINTENANCE
cmp={com.google.android.gms/com.google.android.gms.icing.impl.IndexService}

com.google.android.gm +3s512ms running, 0 wakeups:
+3s512ms 0 wakes 193 alarms:

act=com.google.android.gm.intent.provider.INDEX_MESSAGE_CONTENT
cmp={com.google.android.gm/com.google.android.gm.provider.MailIndexerService}

com.evernote +2s229ms running, 0 wakeups:
+2s229ms 0 wakes 178 alarms: act=com.evernote.action.FULL_SYNC

cmp={com.evernote/com.evernote.client.SyncService}

You are given details of each outstanding alarm, including the all-important when
value indicating the time the alarm should be invoked next, if it is not canceled first
(e.g., when=+5d15h10m7s782ms), along with the package requesting the alarm. You
can use this to identify your app’s alarms and see when they should be invoked next.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

665

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You are also given:

• Per-app details about how frequently their alarms have gone off, which can
be useful for battery impact analysis

• A list of “top alarms” by number of occurrences, also for device performance
analysis

WakefulBroadcastReceiver
The Android Support package has added a WakefulBroadcastReceiver, which offers
an alternative to WakefulIntentService for arranging to do work, triggered by a
broadcast (such as an AlarmManager event), that may take a while.
WakefulBroadcastReceiver has its pros and cons compared to
WakefulIntentService, making it worth considering.

Using WakefulBroadcastReceiver

Using WakefulBroadcastReceiver with AlarmManager is slightly different than is
using WakefulIntentService. The AlarmManager/WakeCast sample project is a clone
of the WakefulIntentService project, but one using WakefulBroadcastReceiver
instead.

The activity is unchanged — it simply calls scheduleAlarms() on PollReceiver.
scheduleAlarms() itself is unchanged, as it still uses setRepeating() on
AlarmManager to arrange to periodically invoke a PendingIntent, targeting the
PollReceiver.

But PollReceiver itself is now a WakefulBroadcastReceiver rather than just an
ordinary BroadcastReceiver. This in turn requires a slightly different
implementation of onReceive():

packagepackage com.commonsware.android.wakecast;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.support.v4.content.WakefulBroadcastReceiverandroid.support.v4.content.WakefulBroadcastReceiver;

publicpublic classclass PollReceiverPollReceiver extendsextends WakefulBroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=900000; // 15 minutes
privateprivate staticstatic finalfinal int INITIAL_DELAY=5000; // 5 seconds

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

666

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/WakeCast
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/WakeCast

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() == nullnull) {
startWakefulService(ctxt,

newnew Intent(ctxt, ScheduledService.class));
}
elseelse {

scheduleAlarms(ctxt);
}

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + INITIAL_DELAY,
PERIOD, pi);

}
}

Now, when the AlarmManager broadcast arrives, we call startWakefulService(),
passing it the Context supplied to onReceive(), plus an Intent identifying the
service to start up. Under the covers, this works much like sendWakefulWork() on
WakefulIntentService — it starts the identified service, but acquires a WakeLock
first.

Our ScheduledService is now a regular IntentService, instead of a
WakefulIntentService. This means that our background work moves back to the
standard onHandleIntent() method, instead of doWakefulWork(). However, we have
one extra bit of bookkeeping to do: we must call the static
completeWakefulIntent() method on WakefulBroadcastReceiver (or, as shown, on
PollReceiver, as that will point to the same static method):

packagepackage com.commonsware.android.wakecast;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ScheduledServiceScheduledService extendsextends IntentService {
publicpublic ScheduledService() {

supersuper("ScheduledService");
}

@Override

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

667

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

protectedprotected void onHandleIntent(Intent intent) {
Log.d(getClass().getSimpleName(), "I ran!");

PollReceiver.completeWakefulIntent(intent);
}

}

We pass the Intent supplied to onHandleIntent() to completeWakefulIntent().
Behind the scenes, completeWakefulIntent() will release the WakeLock that has
been keeping our CPU powered on while we do our work.

Comparing to WakefulIntentService

One might think that WakefulIntentService would now be obsolete with the
addition of WakefulBroadcastReceiver. In truth, there are some advantages to the
current implementation of WakefulBroadcastReceiver:

• It uses a time-limited WakeLock, one set to auto-release after one minute, so
there is no risk of an app somehow failing to release the lock and thereby
keeping the CPU on indefinitely.

• To make the time-limited locks work, WakefulBroadcastReceiver uses one
WakeLock per request, rather than the single static WakeLock that
WakefulIntentService uses, making WakefulBroadcastReceiver
incrementally more resilient in the face of various potential problems.

• Because it is not strictly tied to being used with an IntentService,
WakefulBroadcastReceiver may offer greater flexibility. For example, an
IntentService is not a good choice if the work you do is intrinsically
asynchronous, such as trying to find the device’s location. Any place where
you find yourself registering a listener from a service, an IntentService will
not work well, as the IntentService wants to shut down before your listener
has received a result. A regular Service can work well, though, in this case,
and WakefulBroadcastReceiver might be of use in this pattern (though the
author has not tried this yet).

On the other hand:

• WakefulBroadcastReceiver requires an explicit call to
completeWakefulIntent(), which a developer can easily forget, possibly
causing the WakeLock to be leaked. While this is not disastrous, since the
WakeLock will auto-release after a minute, it may still represent wasted
power. WakefulIntentService is more “idiot-proof” and therefore avoids this
issue.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

668

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The time for the WakefulBroadcastReceiver WakeLock is locked to being one
minute — no more, no less. This offers limited flexibility and can cause
problems if the work you intend to do could easily exceed a minute.
Unfortunately, the implementation of WakefulBroadcastReceiver offers no
easy way to override this one-minute timeout value.

• If Android terminates your process and restarts your service, the restarted
service will not be under the control of a WakeLock, as Android will be
starting the service directly, not via WakefulBroadcastReceiver.
WakefulIntentService will suffer the same fate, but it will automatically
grab a WakeLock for you when it detects this condition. In the case of
WakefulBroadcastReceiver, your service will run without a WakeLock, unless
you detect this case yourself (via a custom onStartCommand() that examines
the passed-in flags, looking for START_FLAG_REDELIVERY) and grab your own
WakeLock.

A future generation of WakefulIntentService will aim to adopt some of the
advantages of WakefulBroadcastReceiver while avoiding its disadvantages. As it
stands, either component is a reasonable choice if you are willing to live within their
respective constraints.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

669

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #17 - Periodic Book Updates

Now that we have the ability to update our book’s prose by downloading some files
from a Web site, we can take the next step: update the book automatically, on a
scheduled basis.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Adding a Stub UpdateReceiver
This tutorial is going to use AlarmManager. Therefore, we will need a manifest-
registered BroadcastReceiver, for two reasons:

1. We need to get control at boot time, to restore our alarm schedule
2. We need something to get control when the alarm events occur

In this step, to solve both needs, we will set up a stub UpdateReceiver.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

671

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T16-Update
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T17-Alarm
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in UpdateReceiver in
the “Name” field. Click the “Browse…” button next to the “Superclass” field and find
BroadcastReceiver to set as the superclass. Then, click “Finish” on the new-class
dialog to create the UpdateReceiver class.

You will also need to add a new receiver node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to UpdateReceiver, following the same
approach that we used for other receivers in this application.

However, we also must add an <intent-filter> to the <receiver> element,
identifying the broadcast which we wish to monitor. To do that:

• Click on the Receiver element associated with UpdateReceiver in the list of
“Application Nodes”

• Click the “Add…” button next to the list of “Application Nodes” and choose
“Intent Filter” from the list

• With the “Intent Filter” highlighted in the “Application Nodes” tree, click
“Add…” again, this time choosing “Action” from the list

• In the details area on the right, choose
android.intent.action.BOOT_COMPLETED

Also, in the Permissions sub-tab of the manifest editor, you will need to add the
RECEIVE_BOOT_COMPLETED permission.

Outside of Eclipse

Create a src/com/commonsware/empublite/UpdateReceiver.java source file, with
the following Java code:

packagepackage com.commonsware.empublite;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass UpdateReceiverUpdateReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {
}

}

TUTORIAL #17 - PERIODIC BOOK UPDATES

672

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, add the following <receiver> element as a child of the <application>
element in AndroidManifest.xml:

<receiver<receiver android:name="UpdateReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

Also, add the following <uses-permission> element alongside the other such
elements in the manifest:

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

Step #2: Scheduling the Alarms
Somewhere, we need code to schedule the alarms with AlarmManager. Ideally, this
will be a static method, one we can use from both EmPubLiteActivity (for normal
scheduling) and UpdateReceiver (for scheduling at boot time).

With that in mind, add the following scheduleAlarm() static method to
UpdateReceiver:

staticstatic void scheduleAlarm(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, UpdateReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);
Calendar cal=Calendar.getInstance();

cal.set(Calendar.HOUR_OF_DAY, 4);
cal.set(Calendar.MINUTE, 0);
cal.set(Calendar.SECOND, 0);
cal.set(Calendar.MILLISECOND, 0);

ifif (cal.getTimeInMillis() < System.currentTimeMillis()) {
cal.add(Calendar.DAY_OF_YEAR, 1);

}

mgr.setRepeating(AlarmManager.RTC_WAKEUP, cal.getTimeInMillis(),
AlarmManager.INTERVAL_DAY, pi);

}

Here we create a broadcast PendingIntent pointing back at UpdateReceiver, create
a Calendar object for tomorrow at 4am, and call setRepeating() on AlarmManager
to invoke our PendingIntent every day at 4am.

TUTORIAL #17 - PERIODIC BOOK UPDATES

673

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, modify onReceive() of UpdateReceiver to use scheduleAlarm(), if we are
called with an action string (indicating that we are being called due to
ACTION_BOOT_COMPLETED):

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() != nullnull) {
scheduleAlarm(ctxt);

}
}

Finally, at the end of onCreate() of EmPubLiteActivity, add:

UpdateReceiver.scheduleAlarm(thisthis);

This will schedule the alarms whenever the app is run. Between that and
UpdateReceiver, the alarms should be active most of the time during normal
operation.

Step #3: Adding the WakefulIntentService
It is possible that at 4am local time, the user will not be using their device.
Therefore, it is possible that the device will fall asleep while we try to download the
update. Therefore, we need to switch to using WakefulIntentService.

Visit the WakefulIntentService releases and download the
CWAC-WakefulIntentService.jar file listed there. Put it in the libs/ directory of
your project, creating that directory if it does not exist. Eclipse users can either:

• Do this work inside of Eclipse (e.g., drag-and-drop the JAR into Package
Explorer), or

• Do this work outside of Eclipse (e.g., create the libs/ directory directly
using OS tools), then press <F5> over the project to get Eclipse to scan the
project’s directory and pick up your changes

Then, modify DownloadCheckService and DownloadInstallService to inherit from
com.commonsware.cwac.wakeful.WakefulIntentService instead of from
IntentService. This will cause you to need to rename your onHandleIntent()
methods to be doWakefulWork().

TUTORIAL #17 - PERIODIC BOOK UPDATES

674

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-wakeful/releases
https://github.com/commonsguy/cwac-wakeful/releases

Also, add the WAKE_LOCK permission in the manifest, along with the rest of our
permissions. Eclipse users can add this from the Permissions sub-tab of the Eclipse
manifest editor; non-Eclipse users can add another <uses-permission> element.

Step #4: Using WakefulIntentService
To correctly use WakefulIntentService, we need to use sendWakefulWork() to send
commands to one, rather than startService().

With that in mind, in EmPubLiteActivity, change the R.id.update case of the
switch statement in onOptionsItemSelected() to use sendWakefulWork():

casecase R.id.update:
WakefulIntentService.sendWakefulWork(thisthis,

DownloadCheckService.class);
returnreturn(truetrue);

Similarly, in DownloadCompleteReceiver, change onReceive() to use
sendWakefulWork():

packagepackage com.commonsware.empublite;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Environmentandroid.os.Environment;
importimport java.io.Filejava.io.File;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass DownloadCompleteReceiverDownloadCompleteReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {

File update=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
DownloadCheckService.UPDATE_FILENAME);

ifif (update.exists()) {
WakefulIntentService.sendWakefulWork(ctxt, DownloadInstallService.class);

}
}

}

TUTORIAL #17 - PERIODIC BOOK UPDATES

675

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #5: Completing the UpdateReceiver
Finally, add an else block to the if statement in onReceive() of UpdateReceiver, to
handle the case where we get control due to the alarm event, so we can use
sendWakefulWork() to invoke the DownloadCheckService:

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() != nullnull) {
scheduleAlarm(ctxt);

}
elseelse {

WakefulIntentService.sendWakefulWork(ctxt,
DownloadCheckService.class);

}
}

To test this:

1. In your device or emulator, uninstall the existing EmPubLite application,
(e.g., by using the Settings app)

2. Install and run the revised app in your device or emulator, and confirm that
you are viewing the non-updated book, then press BACK to exit the activity

3. Temporarily modify the time of your device to be a few minutes before 4am
either today (if the current time is between midnight and 4am) or tomorrow
(if the current time is after 4am)

4. Find something to pass the time for those few minutes, such as procuring
liquid refreshment suitable for the time of day and locale

5. A few minutes after 4am, run the app and confirm that you have
downloaded the updated app, then fix your device or emulator’s clock back
to normal

In Our Next Episode…
… we will let the user know about updates from the background via a Notification.

TUTORIAL #17 - PERIODIC BOOK UPDATES

676

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notifications

Pop-up messages. Tray icons and their associated “bubble” messages. Bouncing dock
icons. You are no doubt used to programs trying to get your attention, sometimes for
good reason.

Your phone also probably chirps at you for more than just incoming calls: low
battery, alarm clocks, appointment notifications, incoming text message or email,
etc.

Not surprisingly, Android has a whole framework for dealing with these sorts of
things, collectively called “notifications”.

What’s a Notification?
A service, running in the background, needs a way to let users know something of
interest has occurred, such as when email has been received. Moreover, the service
may need some way to steer the user to an activity where they can act upon the
event – reading a received message, for example. For this, Android supplies status
bar icons, flashing lights, and other indicators collectively known as “notifications”.

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android, applications can
add their own status bar icons, with an eye towards having them appear only when
needed (e.g., a message has arrived).

Notifications will appear in one of two places. On a phone, they will appear in the
status bar, on the top of the screen, left-aligned:

677

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 208: Notifications, on a Galaxy Nexus

On a tablet, they will appear in the system bar, on the bottom of the screen, towards
the lower-right corner:

Figure 209: Notifications, on a Galaxy Tab 2

In either case, you can expand the “notification drawer” to get more details about
the active notifications, either by sliding down the status bar:

Figure 210: Notification Drawer, on a Galaxy Nexus

NOTIFICATIONS

678

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

or by tapping on the clock on the system bar:

Figure 211: Notification Drawer, on a Galaxy Tab 2

Some notifications will be complex, showing real-time information, such as the
progress of a long download. More often, notifications are fairly simple, providing
just a couple of lines of information, plus an identifying icon. Tapping on the
notification drawer entry will typically trigger some action, such as starting an
activity — an email app letting the user know that “you’ve got mail” can have its
notification bring up the inbox activity when tapped.

Showing a Simple Notification
Previously in the book, we had an example of using DownloadManager. There, we
would let the user know about the completion of our download by sending a
broadcast Intent back to the activity, so it could do something — in our case,
display a Toast.

An alternative would be for the background service doing the download to raise a
Notification when the download is complete. That would work even if the activity
was no longer around (e.g., user pressed BACK to exit it). A modified version of the
original DownloadManager sample taking this Notification approach can be found
in the Notifications/DownloadNotify sample project.

NOTIFICATIONS

679

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify

Our DownloadFragment for triggering the download has two changes:

1. We dispense with the BroadcastReceiver and logic related to it, including
disabling and enabling the Button

2. On the Intent we use with startService(), we include not only the Uri of
the file to download, but also its MIME type, by calling setDataAndType()
on the Intent object

packagepackage com.commonsware.android.downloader;

importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.Buttonandroid.widget.Button;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass DownloadFragmentDownloadFragment extendsextends SherlockFragment implementsimplements
View.OnClickListener {

privateprivate Button b=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

b=(Button)result.findViewById(R.id.button);
b.setOnClickListener(thisthis);

returnreturn(result);
}

@Override
publicpublic void onClick(View v) {

Intent i=newnew Intent(getActivity(), Downloader.class);

i.setDataAndType(Uri.parse("http://commonsware.com/Android/excerpt.pdf"),
"application/pdf");

getActivity().startService(i);
getActivity().finish();

}
}

The download logic in the onHandleIntent() method of Downloader is nearly
identical. The difference is that at the end, rather than sending a broadcast Intent,
we call a private raiseNotification() method. We also call this method if there is
an exception during the download. The raiseNotification() method takes the

NOTIFICATIONS

680

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent command that was delivered to onHandleIntent(), the File object
representing the downloaded results (if we succeeded), and the Exception that was
raised (if we crashed). As one might guess given the method’s name,
raiseNotification() will raise a Notification:

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_ALL)
.setWhen(System.currentTimeMillis());

ifif (e == nullnull) {
b.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete));

Intent outbound=newnew Intent(Intent.ACTION_VIEW);

outbound.setDataAndType(Uri.fromFile(output), inbound.getType());

b.setContentIntent(PendingIntent.getActivity(thisthis, 0, outbound, 0));
}
elseelse {

b.setContentTitle(getString(R.string.exception))
.setContentText(e.getMessage())
.setSmallIcon(android.R.drawable.stat_notify_error)
.setTicker(getString(R.string.exception));

}

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

}

The first thing we do in raiseNotification() is create a Builder object to help
construct the Notification. On API Level 11 and higher, there is a
Notification.Builder class that you can use. If you are supporting older devices,
the Android Support package has a NotificationCompat.Builder backport of the
same functionality, and that is what we are using in this particular project.

We can call methods on the Builder to configure the Notification that we want to
display. Whether our download succeeded or failed, we use three methods on
Builder:

• setAutoCancel(true) means that when the user slides open the notification
drawer and taps on our entry, the Notification is automatically canceled
and goes away

NOTIFICATIONS

681

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• setDefaults(Notification.DEFAULT_ALL) means that we want the device’s
standard notification tone, LED light flash, and vibration to occur when the
Notification is displayed

• setWhen(System.currentTimeMillis()) associates the current time with the
Notification, which may be displayed in the notification drawer for this
notification (depending on device configuration)

If we succeeded (the passed-in Exception is null), we further configure our
Notification via more calls to the Builder:

• setContentTitle() and setContentText() supply the prose to display in the
two lines of the notification drawer entry for our Notification

• setSmallIcon() indicates the icon to display in the status bar or system bar
when the Notification is active (in this case, specifying one supplied by
Android itself)

• setTicker() supplies some text to be displayed in the status bar or system
bar for a few seconds right when the Notification is displayed, so users who
happen to be looking at their device at that time will get more information
at a glance about what just happened that is demanding their attention

In addition, setContentIntent() supplies a PendingIntent to be invoked when the
notification drawer entry for our Notification is tapped. In our case, we create an
ACTION_VIEW Intent for our File (using Uri.fromFile() to get a Uri pointing to our
file on external storage) with the MIME type supplied from DownloadFragment.
Hence, if the user taps on our notification drawer entry, we will attempt to bring up
a PDF viewer on the downloaded PDF file – whether this will succeed or not will
depend upon whether there is a PDF viewer installed on the device.

If, instead, we did have an Exception, we use the same methods on Builder (minus
setContentIntent()) to configure the Notification, but using different text and
icons.

To actually display the Notification, we need to get a NotificationManager, which
is another system service. Calling getSystemService() and asking for the
NOTIFICATION_SERVICE will give us our NotificationManager, albeit after a cast.
Then, we can call notify() on the NotificationManager, supplying our
Notification (from build() on the Builder) and a locally-unique integer
(NOTIFY_ID, defined as a static data member on the service). That integer can later
be used with a cancel() method to remove the Notification from the screen, even
if the user has not canceled it themselves (e.g., via tapping on it with
setAutoCancel(true)).

NOTIFICATIONS

682

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NOTE: You may see some samples using getNotification() with
NotificationBuilder instead of build(). getNotification() was the original
method, but it has since been deprecated in favor of build().

Also, because we are using setDefaults(Notification.DEFAULT_ALL), and since the
default behavior for a Notification may involve vibrating the phone, we need to
hold the VIBRATE permission in the manifest:

<uses-permission<uses-permission android:name="android.permission.VIBRATE"/>/>

Running this in a device or emulator will display the Notification upon completion
of the download:

Figure 212: Sample Notification, on a Galaxy Nexus

Opening the notification drawer displays our Notification details:

NOTIFICATIONS

683

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 213: Sample Notification in Drawer, on a Galaxy Nexus

Tapping on the drawer entry will try to start a PDF viewer, perhaps bringing up a
chooser if there are multiple such viewers on the device. Also, tapping on the drawer
entry will cancel the Notification and remove it from the screen.

Seeking Some Order
By default, broadcasts are sent more or less in parallel. If there are ten
BroadcastReceiver objects that will all qualify for an Intent via their IntentFilter,
all ten will get the broadcast, in an indeterminate order, some possibly at the same
time.

Sometimes, this is not what we want. We want broadcasts to be picked up serially, in
a known sequence of possible receivers. That can be handled in Android via an
ordered broadcast. This is particularly important for situations where we are using
AlarmManager in the background, so we can update either the foreground activity or
raise a Notification if we do not have an activity in the foreground.

NOTIFICATIONS

684

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Activity-Or-Notification Scenario

Let us suppose that you are writing an email app. In addition to an “inbox” activity,
you have an IntentService, scheduled via AlarmManager, to go check for new email
messages every so often. This means, when your service discovers and downloads
new messages, there are two possibilities:

• The user has your inbox activity in the foreground, and that activity should
update to reflect the fact that there are new messages

• The user does not have your inbox activity in the foreground, so you want to
display a Notification to alert the user of the new messages and lead them
back to the inbox

However, ideally, the service neither knows nor cares whether the inbox activity is in
the foreground, exists in the process but is not in the foreground, or does not exist
in the process (e.g., Android started a new process to handle this middle-of-the-
night check for new email messages).

One way to handle this is via an ordered broadcast.

The recipe for the Activity-or-Notification pattern is:

1. Define an action string you will use when the event occurs that you want to
go to the activity or notification (e.g.,
com.commonsware.java.packages.are.fun.EVENT).

2. Dynamically register a BroadcastReceiever in your activity, with an
IntentFilter set up for the aforementioned action string and with a
positive priority (the default priority for a filter is 0). This receiver should
then have the activity do whatever it needs to do to update the UI based on
this event. The receiver should also call abortBroadcast() to prevent others
from getting it. Be sure to register the receiver in onStart() or onResume()
and unregister the receiver in the corresponding onStop() or onPause()
method.

3. Register in your manifest a BroadcastReceiver, with an <intent-filter>
set up for the aforementioned action string. This receiver should raise the
Notification.

4. In your service (e.g., an IntentService), when the event occurs, call
sendOrderedBroadcast().

And that’s it. Android takes care of the balance. If the activity is on-screen, its
receiver will be registered, so it will get the event, process it, and cancel the

NOTIFICATIONS

685

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

broadcast. If the activity is not on-screen, its receiver will not be registered, so the
event will go to the default handler, in the form of your manifest-registered
BroadcastReceiver, which will raise the Notification.

For example, let’s take a look at the Notifications/Ordered sample application.

In our OrderedActivity, in onCreate(), we set up AlarmManager to pass control to a
service (NoticeService) every five seconds:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

notice=(Button)findViewById(R.id.notice);

((NotificationManager)getSystemService(NOTIFICATION_SERVICE))
.cancelAll();

mgr=(AlarmManager)getSystemService(Context.ALARM_SERVICE);

Intent i=newnew Intent(thisthis, NoticeService.class);

pi=PendingIntent.getService(thisthis, 0, i, 0);

cancelAlarm(nullnull);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+1000,
5000,
pi);

}

We also rig up a button to cancel that alarm when pressed, via a cancelAlarm()
method:

publicpublic void cancelAlarm(View v) {
mgr.cancel(pi);

}

The NoticeService, when invoked by the AlarmManager, should theoretically do
some work. In our case, doing work sounds too much like doing work, and we are
lazy in this sample, so we skip straight to sending the ordered broadcast:

packagepackage com.commonsware.android.ordered;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

NOTIFICATIONS

686

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Ordered
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Ordered

publicpublic classclass NoticeServiceNoticeService extendsextends IntentService {
publicpublic staticstatic finalfinal String BROADCAST=

"com.commonsware.android.ordered.NoticeService.BROADCAST";
privateprivate staticstatic Intent broadcast=newnew Intent(BROADCAST);

publicpublic NoticeService() {
supersuper("NoticeService");

}

@Override
protectedprotected void onHandleIntent(Intent intent) {

sendOrderedBroadcast(broadcast, nullnull);
}

}

OrderedActivity, in onResume(), registers a BroadcastReceiver to handle this
broadcast, with a high-priority IntentFilter:

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter filter=newnew IntentFilter(NoticeService.BROADCAST);

filter.setPriority(2);
registerReceiver(onNotice, filter);

}

We unregister that receiver in onPause():

@Override
publicpublic void onPause() {

supersuper.onPause();

unregisterReceiver(onNotice);
}

The BroadcastReceiver itself updates the caption of our Button with the current
date and time:

privateprivate BroadcastReceiver onNotice=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

notice.setText(newnew Date().toString());
abortBroadcast();

}
};

The BroadcastReceiver also aborts the broadcast, so no other receivers could get it.

NOTIFICATIONS

687

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, if we start up the activity and let it run, our Button caption simply changes
every five seconds:

Figure 214: The OrderedActivity, showing the time of the last alarm

But, what happens if we leave the activity, such as via BACK or HOME?

In that case, we also have a <receiver> element in our manifest, set up to listen for
the same broadcast:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.ordered"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.VIBRATE"/>/>

NOTIFICATIONS

688

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="OrderedActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<service<service android:name="NoticeService"/>/>

<receiver<receiver android:name=".NoticeReceiver">>
<intent-filter><intent-filter>

<action<action
android:name="com.commonsware.android.ordered.NoticeService.BROADCAST"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

</application></application>

</manifest></manifest>

That is tied to a NoticeReceiver that simply displays a Notification:

packagepackage com.commonsware.android.ordered;

importimport android.app.Notificationandroid.app.Notification;
importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;

publicpublic classclass NoticeReceiverNoticeReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int NOTIFY_ME_ID=1337;

@Override
publicpublic void onReceive(Context ctxt, Intent intent) {

NotificationManager mgr=
(NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE);

NotificationCompat.Builder b=newnew NotificationCompat.Builder(ctxt);
PendingIntent pi=

PendingIntent.getActivity(ctxt, 0,
newnew Intent(ctxt,

OrderedActivity.class), 0);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_ALL)
.setWhen(System.currentTimeMillis())
.setContentTitle(ctxt.getString(R.string.notify_title))

NOTIFICATIONS

689

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.setContentText(ctxt.getString(R.string.notify_text))

.setSmallIcon(android.R.drawable.stat_notify_chat)

.setTicker(ctxt.getString(R.string.notify_ticker))

.setContentIntent(pi);

mgr.notify(NOTIFY_ME_ID, b.build());
}

}

So, if we leave the activity, our alarms are still going off, but we display a
Notification instead of updating the Button caption. Our service is oblivious to
whether the broadcast is handled by the activity, the manifest-registered
BroadcastReceiver, or is totally ignored.

The downside of this particular technique is that ordered broadcasts are ordinary
broadcasts in terms of visibility and scope. Each broadcast involves a bit of IPC, and
there is the risk that you might create an insecure broadcast, one that other apps
can listen to. A better approach to the Activity-or-Notification pattern is to use
an event bus, where the communications can be kept purely within your own
process. This is covered elsewhere in this book.

Other Scenarios

You might use an ordered broadcast for plugins to your app. Several plugins might
handle the broadcast, and which plugin handles which subset of your broadcasts is
determined in large part by which plugins the user elected to install. So, you send an
ordered broadcast and allow the plugins to use priorities to establish the “pecking
order” and handle their particular broadcasts (aborting those they handle, letting
the rest pass).

The SMS subsystem in Android uses ordered broadcasts, to allow replacement SMS
clients to handle messages, replacing the built-in client. We will examine this in
greater detail later in this book.

Big (and Rich) Notifications
Android 4.1 (a.k.a., Jelly Bean) introduced new Notification styles that
automatically expand into a “big” area when they are the top Notification in the
drawer. These expanded Notifications can display more text (or a larger thumbnail
of an image), plus add some action buttons to allow the user to directly perform
more actions straight from the Notification itself.

NOTIFICATIONS

690

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And while these new Notification styles are only available on API Level 16 and
higher, a familiar face has created a compatibility layer so our code can request the
larger styles and still work on older devices.

The Styles

There are three main styles supplied for expanded Notifications. There is the
BigText style:

Figure 215: BigText Notification, from NotificationCompat2 Sample App, on a Nexus S

We also have the Inbox style, which is the same basic concept but designed, for
several discrete lines of text:

NOTIFICATIONS

691

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 216: Inbox Notification, from NotificationCompat2 Sample App, on a Nexus S

And, we have the BigPicture style, ideal for a photo, album cover, or the like:

NOTIFICATIONS

692

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 217: BigPicture Notification, from NotificationCompat2 Sample App, on a
Nexus S

(as noted in the screenshot, the photo is courtesy of Romain Guy, an engineer on the
core Android team and photography buff)

The Builders

Notification.Builder, from the Android SDK, has been enhanced to support these
new styles. Specifically:

• There is an addAction() method on the Builder class to define the action
buttons, in terms of icon, caption, and PendingIntent that should be
executed when the button is clicked

• There are style-specific builders, such as Notification.InboxStyle, that
take a Notification.Builder and define the alternative expanded definition
to be used when the Notification is at the top

The v10 version of the Android Support package has a version of
NotificationCompat that supports these new APIs. Note, though, that older
versions of the package do not. You will either need to use a v10 or higher version of

NOTIFICATIONS

693

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the package or use Jake Wharton’s NotificationCompat2, which contains the
missing functionality.

The Sample

To see the new Jelly Bean capabilities in action, take a peek at the Notifications/
BigNotify sample application. This application consists of a single activity
(MainActivity) that will raise a Notification and finish(), using @style/
Theme.NoDisplay to suppress the activity’s own UI. Hence, the result of running the
app is to display the Notification and do nothing else. While silly, it minimizes the
amount of ancillary code involved in the project.

In the libs/ directory, we have a copy of the v10 version of the Android Support
package’s android-support-v4.jar.

The process of displaying an expanded Notification is to first create the basic
Notification, containing what you want to display for any non-expanded
circumstance:

• Older devices that cannot display expanded Notifications, or
• Newer devices where the Notification is not the top-most entry in the

notification drawer, and therefore appears in the classic non-expanded form

Hence, in onCreate(), after getting our hands on a NotificationManager, we use
NotificationCompat.Builder to create a regular Notification, wrapped in a
private buildNormal() method:

privateprivate NotificationCompat.Builder buildNormal() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setWhen(System.currentTimeMillis())
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setPriority(Notification.PRIORITY_HIGH)
.addAction(android.R.drawable.ic_media_play,

getString(R.string.play),
buildPendingIntent(Settings.ACTION_SETTINGS));

returnreturn(b);
}

NOTIFICATIONS

694

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/NotificationCompat2
https://github.com/JakeWharton/NotificationCompat2
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify

Most of what buildNormal() does is the same sort of stuff we saw with
NotificationCompat.Builder earlier in this chapter. There are two things, though,
that are new:

1. We call setPriority() to set the priority of the Notification to
PRIORITY_HIGH. This means that this Notification may be displayed higher
in the notification drawer than it might ordinarily appear.

2. We call addAction() to add an action button to the Notification, to be
shown in the expanded form. We are able to supply an icon, caption, and
PendingIntent, the latter created by a buildPendingIntent() method that
wraps our desired Intent action string (here, Settings.ACTION_SETTINGS) in
an Intent:

privateprivate PendingIntent buildPendingIntent(String action) {
Intent i=newnew Intent(action);

returnreturn(PendingIntent.getActivity(thisthis, 0, i, 0));
}

Ordinarily, we might use this Builder directly, to raise the Notification we
described. And, if we just wanted the action button to appear and nothing else new
in the expanded form, we could do just that. But in our case, we also want to change
the look of the expanded widget to a new style, InboxStyle. To do that, we need to
wrap our Builder in a NotificationCompat.InboxStyle builder:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

NotificationCompat.Builder normal=buildNormal();
NotificationCompat.InboxStyle big=

newnew NotificationCompat.InboxStyle(normal);

mgr.notify(NOTIFY_ID,
big.setSummaryText(getString(R.string.summary))

.addLine(getString(R.string.entry))

.addLine(getString(R.string.another_entry))

.addLine(getString(R.string.third_entry))

.addLine(getString(R.string.yet_another_entry))

.addLine(getString(R.string.low)).build());

finish();
}

NOTIFICATIONS

695

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Each of these “big” builders has a set of methods that are unique to that type of
builder to configure the look beyond what a standard Notification might have.
Specifically, in this case, we call:

• setSummaryText(), to provide “the first line of text after the detail section in
the big form of the template”, in the words of the JavaDocs, though this does
not necessarily mean what you think it does

• addLine(), to append several lines of text to appear in the Notification

It is the Notification created by our NotificationCompat.InboxStyle builder that
we use with the call to notify() on NotificationManager.

The Results

If we run our app, we get this:

Figure 218: Expanded Notification in Drawer, on a Nexus S

From top to bottom, we have:

• Our content text
• Our appended lines of text

NOTIFICATIONS

696

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Our action button
• Our summary text

Note that this is the appearance when we are in expanded mode, at the top of the
notification drawer. If our Notification is not at the top, or if it is displayed on a
pre-Jelly Bean device, the appearance is the normal style, as defined by our
buildNormal() method, though on Jelly Bean devices the user can use a two-finger
downward swipe gesture to expand the un-expanded Notification.

The Target Requirement

Note that to use action buttons successfully, you need to have your
android:targetSdkVersion set to 11 or higher. Technically, they will work with lower
values, but the contents of the button will be rendered incorrectly, with a gray-on-
gray color scheme that makes the buttons all but unreadable. Using 11 or higher will
cause the buttons to be rendered with an appropriate color scheme.

Foreground Services
If you have a service that will run for a substantial period of time, there is a risk that
your process will still be terminated. That could be triggered by the user, or it could
be the OS’s own decision, based on the age of your process.

Generally speaking, this is a good thing for the user, because too many developers
“leak” services, causing them to run unnecessarily, without adding value to the user,
and tying up system RAM as a result.

But, what about services that are delivering value to the user for a long period? For
example, what about a music player, where, in theory, the service is delivering value
until the user presses some sort of “stop” button somewhere to turn off the music?

For those sorts of situations, you can flag a service as being a “foreground service”.

Isn’t “Foreground Service” an Oxymoron?

You might be forgiven for thinking that “foreground” and “service” are not designed
to go together.

Partly, that is because we have overloaded the term “foreground”.

NOTIFICATIONS

697

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A foreground service is not one that somehow takes over the screen. A foreground
service is one that runs with foreground priority. That means:

• It will be treated similarly to the app that is in the UI foreground, from the
standpoint of determining processes eligible for termination

• It will be classified as foreground from a CPU standpoint, rather than being
relegated to the standard background process group

The former is what many developers want: a service (and process) that will not go
away.

The latter is what many users fear: a service (and process) that is capable of stealing
chunks of CPU time away from the game, video, or whatever else is truly in the
foreground from a UI standpoint.

Services themselves, while useful, are best when used sparingly, only running when
they are actively delivering value to the user. “This goes double” for foreground
services.

Putting Your Service in the Foreground

Putting a service into the foreground is a matter of calling startForeground(). This
method takes two parameters, the same two parameters that you would pass to
notify() of NotificationManager:

• A prepared Notification
• A unique ID for that Notification

Android will then display the Notification. So long as the Notification is visible,
your app’s process will be given foreground priority.

You undo this by calling stopForeground(). stopForeground() takes a boolean
parameter, indicating if the Notification should be removed (true) or not (false).
Typically, you will pass true, so the Notification only clutters up the screen while
you need it.

The Notifications/Foreground sample project is a clone of the Notifications/
DownloadNotify sample that opened this chapter, adding in the use of
startForeground() and stopForeground().

NOTIFICATIONS

698

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground

Towards the top of onHandleIntent(), we call startForeground(), to really ensure
that our process will remain intact long enough to complete the requested
download:

startForeground(FOREGROUND_ID,
buildForegroundNotification(filename));

This, in turn, uses a buildForegroundNotification() method to build the
Notification that will be displayed while the service is categorized as being in the
foreground:

b.setContentTitle(getString(R.string.downloading))
.setContentText(filename)
.setSmallIcon(android.R.drawable.stat_sys_download)
.setTicker(getString(R.string.downloading));

returnreturn(b.build());
}

}

Note that we use setOngoing(true), to indicate that this is an “ongoing” operation.
This precludes the user from removing the Notification manually, as doing that
would drop our process out of foreground priority.

Towards the end of onHandleIntent(), we call stopForeground(), before calling
raiseNotification():

stopForeground(truetrue);
raiseNotification(i, nullnull, e2);

There is a similar stopForeground() call in the catch block that raises the failure
Notification in case of an I/O error.

In both cases, we pass true to stopForeground() to remove the Notification. From
the user’s perspective, we could just as easily have passed false, as the
Notification used with startForeground() will also be removed once our service is
destroyed, which will happen shortly after onHandleIntent() ends.

The Malformed Notification

Of course, some developers do not play nicely with the other kids.

A technique that had been around for a while was for an app to pass an
intentionally-flawed Notification to startForeground(). While Android would

NOTIFICATIONS

699

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

blow up silently somewhere internally actually trying to display the Notification,
the foreground status was still granted. This resulted in behavior reminiscent of the
long-since-deprecated setForeground() method.

setForeground() allowed a service to get foreground priority with no repercussions.
Not surprisingly, lots of developers used it, as they decided that their app was more
important than any other apps on the device. setForeground() was replaced by
startForeground(), adding in the Notification requirement, to put a “cost” on
foreground status. The malformed-Notification trick allowed developers to avoid
that cost.

In Android 4.3, if you pass a malformed Notification to startForeground(),
Android will create one for you, featuring your app’s launcher icon, and use it
instead. Hence, on Android 4.3 and higher, you cannot hide your foreground status
from the user.

Needless to say, when this behavior was mentioned in a Google+ post by Dianne
Hackborn, a number of developers complained.

That being said, if you were using this hack, you will really need to consider
alternative strategies, as users do get irritated with everlasting services when they
are made aware of them:

• If you were using a foreground service to fix some bug in your app caused by
your process being terminated and later restarted (e.g., START_STICKY), fix
the bug.

• Consider making foreground behavior optional. Since the decision of
marking a service as a foreground service is made in Java, not the manifest, it
is relatively easy for you to add a checkbox to your app settings to allow the
user to indicate whether the benefits of foreground-ness are worth the cost
of having the Notification around.

• Consider making the service optional, if the foreground status is needed for
the service to be useful, but the features enabled by the service itself are not
absolutely essential.

• There is no need to have more than one simultaneous foreground service.
One service can have multiple threads to do disparate operations.

NOTIFICATIONS

700

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/105051985738280261832/posts/MTinJWdNL8t
https://plus.google.com/105051985738280261832/posts/MTinJWdNL8t

Disabled Notifications
Because apps have the ability to display larger-than-normal Notifications, plus
force them towards the top of the list via priority levels, Android has given users the
ability to disable Notifications on a per-app basis. Users visiting an app’s page in
Settings will see a “Show notifications” checkbox:

Figure 219: Show Notifications Checkbox, on a Nexus S

If the user unchecks the checkbox and agrees on the resulting confirmation dialog,
your requests to raise a Notification will be largely ignored. An error message will
appear in LogCat (“Suppressing notification from package … by user request”), but
no exception will be raised. Further, there does not appear to be an API for you to
determine if the notification will actually be displayed.

Also note that, at least through Android 4.2, if the user blocks notifications, it also
blocks Toast requests from your app.

And, also note that this setting survives an uninstall of your app. If the user
unchecks this checkbox, uninstalls your app, then reinstalls your app, the checkbox
is still unchecked, meaning that notifications will still be blocked.

NOTIFICATIONS

701

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The one notable exception to this blocking, as of Android 4.3, is that the
Notification associated with a foreground service will not be blocked. It will always
appear, even if the user unchecked “Show notifications” for your app in Settings.

NOTIFICATIONS

702

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #18 - Notifying the User

In the last tutorial, we added automatic updating. However, the user will not know
that the book was updated in the background, unless they open the book and see an
update. It would be nice to let the user know that an update succeeded, if
EmPubLiteActivity is not in the foreground, and a Notification is a likely solution.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Adding the InstallReceiver
The reason we used an ordered broadcast (sendOrderedBroadcast()) back in
Tutorial #16 for broadcasting the install-completed event is to support this tutorial.
Here, we are using the ordered broadcast event pattern:

1. Implement a high-priority receiver in the foreground activity, which handles
the event and aborts the broadcast

2. Implement a standard-priority receiver that is registered via the manifest,
and have it handle the event for cases where the activity is not in the
foreground

703

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T17-Alarm
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T18-Notify
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

So, we need another BroadcastReceiver — let’s create one named InstallReceiver
for this role. We will also take advantage of the fact that this broadcast is only
needed internally within our app, so we will mark this BroadcastReceiver as non-
exported in the manifest, so no other code will be able to trigger it.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in InstallReceiver in
the “Name” field. Click the “Browse…” button next to the “Superclass” field and find
BroadcastReceiver to set as the superclass. Then, click “Finish” on the new-class
dialog to create the InstallReceiver class.

You will also need to add a new receiver node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to InstallReceiver, following the same
approach that we used for other receivers in this application. However, in addition to
choosing InstallReceiver as the component name, also switch the “Exported”
drop-down to false.

However, we also must add an <intent-filter> to the <receiver> element,
identifying the broadcast which we wish to monitor. To do that:

• Click on the Receiver element associated with InstallReceiver in the list of
“Application Nodes”

• Click the “Add…” button next to the list of “Application Nodes” and choose
“Intent Filter” from the list

• With the “Intent Filter” highlighted in the “Application Nodes” tree, click
“Add…” again, this time choosing “Action” from the list

• In the details area on the right, type in
com.commonsware.empublite.action.UPDATE_READY, since this is a custom
action and therefore will not appear in the Eclipse drop-down list

Outside of Eclipse

Create an empty src/com/commonsware/empublite/InstallReceiver.java source
file; we will fill in the source code for it in the next step.

TUTORIAL #18 - NOTIFYING THE USER

704

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, add the following <receiver> element as a child of the <application> element
in AndroidManifest.xml:

<receiver<receiver
android:name="InstallReceiver"
android:exported="false">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.empublite.action.UPDATE_READY"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

Step #2: Completing the InstallReceiver
First, create two new string resources:

• R.string.update_desc, with a value of Click here to open the updated
book!

• R.string.update_complete, with a value of EmPub Lite Updated!

Then, modify the InstallReceiver implementation from the original stub to this:

packagepackage com.commonsware.empublite;

importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;

publicpublic classclass InstallReceiverInstallReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int NOTIFY_ID=1337;

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

NotificationCompat.Builder builder=
newnew NotificationCompat.Builder(ctxt);

Intent toLaunch=newnew Intent(ctxt, EmPubLiteActivity.class);
PendingIntent pi=PendingIntent.getActivity(ctxt, 0, toLaunch, 0);

builder.setAutoCancel(truetrue).setContentIntent(pi)
.setContentTitle(ctxt.getString(R.string.update_complete))
.setContentText(ctxt.getString(R.string.update_desc))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(ctxt.getString(R.string.update_complete))
.setWhen(System.currentTimeMillis());

NotificationManager mgr=

TUTORIAL #18 - NOTIFYING THE USER

705

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

((NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE));

mgr.notify(NOTIFY_ID, builder.build());
}

}

Here, we:

• Create a NotificationCompat.Builder
• Create an activity PendingIntent, pointing at EmPubLiteActivity
• Configure the Notification via the Builder
• Raise the Notification once configured

To test this, repeat the test from Step #5 of the previous tutorial. You should see the
Notification appear once the update has completed. Sliding open the notification
drawer and tapping on the notification should bring up the book for reading.

In Our Next Episode…
… we will move some fragments into a sidebar on large-screen devices, like tablets.

TUTORIAL #18 - NOTIFYING THE USER

706

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Large-Screen Strategies and Tactics

So far, we have been generally ignoring screen size. With the vast majority of
Android devices being in a fairly narrow range of sizes (3” to just under 5”), ignoring
size while learning is not a bad approach. However, when it comes time to create a
production app, you are going to want to strongly consider how you are going to
handle other sizes, mostly larger ones (e.g., tablets).

Objective: Maximum Gain, Minimum Pain
What you want is to be able to provide a high-quality user experience without
breaking your development budget — time and money — in the process.

An app designed around a phone, by default, may look fairly lousy on a tablet. That
is because Android is simply going to try to stretch your layouts and such to fill the
available space. While that will work, technically, the results may be unpleasant, or
at least ineffective. If we have the additional room, it would be nice to allow the user
to do something with that room.

At the same time, though, you do not have an infinite amount of time to be dealing
with all of this. After all, there are a variety of tablet sizes. While ~7” and ~10”
screens are the most common, there are certainly others that are reasonably popular
(e.g., the Galaxy Note is ~5” and from a design standpoint tends to be thought of as a
tablet, even though it has telephony capability).

The Fragment Strategy
Some apps will use the additional space of a large screen directly. For example, a
painting app would use that space mostly to provide a larger drawing canvas upon

707

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

which the user can attempt to become the next Rembrandt, Picasso, or Pollock. The
app might elect to make more tools available directly on the screen as well, versus
requiring some sort of pop-up to appear to allow the user to change brush styles,
choose a different color, and so forth.

However, this can be a lot of work.

Some apps can make a simplifying assumption: the tablet UI is really a bunch of
phone-sized layouts, stitched together. For example, if you take a 10” tablet in
landscape, it is about the same size as two or three phones side-by-side. Hence, one
could imagine taking the smarts out of a few activities and having them be adjacent
to one another on a tablet, versus having to be visible only one at a time as they are
on phones.

For example, consider Gmail.

On a phone, you see conversations in a particular label on one screen:

Figure 220: Gmail, On a Galaxy Nexus, Showing Conversations

… and the list of labels on another screen:

LARGE-SCREEN STRATEGIES AND TACTICS

708

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 221: Gmail, On a Galaxy Nexus, Showing Labels

… and the list of messages in some selected conversation in a third screen:

LARGE-SCREEN STRATEGIES AND TACTICS

709

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 222: Gmail, On a Galaxy Nexus, Showing Messages

Whereas on a 7” tablet, you see the list of labels and the conversations in a selected
label at the same time:

LARGE-SCREEN STRATEGIES AND TACTICS

710

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 223: Gmail, On a Galaxy Tab 2, Showing Labels and Conversations

On that 7” tablet, tapping on a specific conversation brings up the list of messages
for that conversation in a new screen. But, on a 10” tablet, tapping on a specific
conversation shows it, plus the list of conversations, side-by-side:

LARGE-SCREEN STRATEGIES AND TACTICS

711

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 224: Gmail, On a XOOM, Showing Conversations and Messages

Yet all of that was done with one app with very little redundant logic, by means of
fragments.

The list-of-labels, list-of-conversations, and list-of-messages bits of the UI were
implemented as fragments. On a smaller screen (e.g., a phone), each one is
displayed by an individual activity. Yet, on a larger screen (e.g., a tablet), more than
one fragment is displayed by a single activity. In fact — though it will not be
apparent from the static screenshots — on the 10” tablet, the activity showed all
three fragments, using animated effects to slide the list of labels off-screen and the
list of conversations over to the left slot when the user taps on a conversation to
show the messages.

The vision, therefore, is to organize your UI into fragments, then choose which
fragments to show in which circumstances based on available screen space:

LARGE-SCREEN STRATEGIES AND TACTICS

712

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 225: Tablets vs. Handsets (image courtesy of Android Open Source Project)

Changing Layout

One solution is to say that you have the same fragments for all devices and all
configurations, but that the sizing and positioning of those fragments varies. This is
accomplished by using different layouts for the activity, ones that provide the sizing
and positioning rules for the fragments.

So far, most of our fragment examples have been focused on activities with a single
fragment, like you might use on smaller screens (e.g., phones). However, activities
can most certainly have more than one fragment, though you will need to provide
the “slots” into which to plug those fragments.

For example, you could have the following in res/layout-w720dp/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<FrameLayout<FrameLayout

android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
<FrameLayout<FrameLayout

android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

LARGE-SCREEN STRATEGIES AND TACTICS

713

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here we have a horizontal LinearLayout holding a pair of FrameLayout containers.
Each of those FrameLayout containers will be a slot to load in a fragment, using code
like:

getSupportFragmentManager().beginTransaction()
.add(R.id.countries, someFragmentHere)
.commit();

In principle, you could have a res/layout-w720dp/main.xml that holds both of the
same FrameLayout containers, but just in a vertical LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<FrameLayout<FrameLayout

android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
<FrameLayout<FrameLayout

android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

As the user rotates the device, the fragments will go in their appropriate slots.

Changing Fragment Mix

However, for larger changes in screen size, you will probably need to have larger
changes in your fragments. The most common pattern is to have fewer fragments
on-screen for an activity on a smaller-screen device (e.g., one fragment at a time on
a phone) and more fragments on-screen for an activity on a larger-screen device
(e.g., two fragments at a time on a tablet).

So, for example, as the counterpart to the res/layout-w720dp/main.xml shown in
the previous section, you might have a res/layout/main.xml that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/countries"

LARGE-SCREEN STRATEGIES AND TACTICS

714

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

This provides a single slot, R.id.countries, for a fragment, one that fills the screen.
For a larger-screen device, held in landscape, you would use the two-fragment
layout; for anything else (e.g., tablet in portrait, or phone in any orientation), you
would use the one-fragment layout.

Of course, the content that belongs in the second fragment would have to show up
somewhere, typically in a separate layout managed by a separate activity.

Sometimes, when you add another fragment for a large screen, you only want it to
be there some of the time. For example, a digital book reader (like the one we are
building in the tutorials) might normally take up the full screen with the reading
fragment, but might display a sidebar fragment based upon an action bar item click
or the like. If you would like the BACK button to reverse your FragmentTransaction
that added the second fragment — so pressing BACK removes that fragment and
returns you to the single-fragment setup — you can add addToBackStack() as part
of your FragmentTransaction construction:

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, f)
.commit();

We will see this in the next tutorial.

The Role of the Activity

So, what is the activity doing?

First, the activity is the one loading the overall layout, the one indicating which
fragments should be loaded (e.g., the samples shown above). The activity is
responsible for populating those “slots” with the appropriate fragments. It can
determine which fragments to create based on which slots exist, so it would only try
to create a fragment to go in R.id.details if there actually is an R.id.details slot
to use.

Next, the activity is responsible for handling any events that are triggered by UI
work in a fragment (e.g., user clicking on a ListView item), whose results should
impact other fragments (e.g., displaying details of the clicked-upon ListView item).
The activity knows which fragments exist at the present time. So, the activity can

LARGE-SCREEN STRATEGIES AND TACTICS

715

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

either call some method on the second fragment if it exists, or it can call
startActivity() to pass control to another activity that will be responsible for the
second fragment if it does not exist in the current activity.

Finally, the activity is generally responsible for any model data that spans multiple
fragments. Whether that model data is held in a “model fragment” (as outlined in
the chapter on fragments) or somewhere else is up to you.

Fragment Example: The List-and-Detail Pattern
This will make a bit more sense as we work through another example, this time
focused on a common pattern: a list of something, where clicking on the list brings
up details on the item that was clicked upon. On a larger-screen device, in
landscape, both pieces are typically displayed at the same time, side-by-side. On
smaller-screen devices, and sometimes even on larger-screen devices in portrait,
only the list is initially visible — tapping on a list item brings up some other activity
to display the details.

Describing the App

The sample app for this section is LargeScreen/EU4You. This app has a list of
member nations of the European Union (EU). Tapping on a member nation will
display the mobile Wikipedia page for that nation in a WebView widget.

The data model — such as it is and what there is of it — consists of a Country class
which holds onto the country name (as a string resource ID), flag (as a drawable
resource ID), and mobile Wikipedia URL (as another string resource ID):

Country(int name, int flag, int url) {
thisthis.name=name;
thisthis.flag=flag;
thisthis.url=url;

}

The Country class has a static ArrayList of Country objects representing the whole
of the EU, initialized in a static initialization block:

staticstatic {
EU.add(newnew Country(R.string.austria, R.drawable.austria,

R.string.austria_url));
EU.add(newnew Country(R.string.belgium, R.drawable.belgium,

R.string.belgium_url));
EU.add(newnew Country(R.string.bulgaria, R.drawable.bulgaria,

LARGE-SCREEN STRATEGIES AND TACTICS

716

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4You
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4You

R.string.bulgaria_url));
EU.add(newnew Country(R.string.cyprus, R.drawable.cyprus,

R.string.cyprus_url));
EU.add(newnew Country(R.string.czech_republic,

R.drawable.czech_republic,
R.string.czech_republic_url));

EU.add(newnew Country(R.string.denmark, R.drawable.denmark,
R.string.denmark_url));

EU.add(newnew Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));

EU.add(newnew Country(R.string.finland, R.drawable.finland,
R.string.finland_url));

EU.add(newnew Country(R.string.france, R.drawable.france,
R.string.france_url));

EU.add(newnew Country(R.string.germany, R.drawable.germany,
R.string.germany_url));

EU.add(newnew Country(R.string.greece, R.drawable.greece,
R.string.greece_url));

EU.add(newnew Country(R.string.hungary, R.drawable.hungary,
R.string.hungary_url));

EU.add(newnew Country(R.string.ireland, R.drawable.ireland,
R.string.ireland_url));

EU.add(newnew Country(R.string.italy, R.drawable.italy,
R.string.italy_url));

EU.add(newnew Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));

EU.add(newnew Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));

EU.add(newnew Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg_url));

EU.add(newnew Country(R.string.malta, R.drawable.malta,
R.string.malta_url));

EU.add(newnew Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));

EU.add(newnew Country(R.string.poland, R.drawable.poland,
R.string.poland_url));

EU.add(newnew Country(R.string.portugal, R.drawable.portugal,
R.string.portugal_url));

EU.add(newnew Country(R.string.romania, R.drawable.romania,
R.string.romania_url));

EU.add(newnew Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia_url));

EU.add(newnew Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia_url));

EU.add(newnew Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

EU.add(newnew Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));

EU.add(newnew Country(R.string.united_kingdom,
R.drawable.united_kingdom,
R.string.united_kingdom_url));

}

LARGE-SCREEN STRATEGIES AND TACTICS

717

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CountriesFragment

The fragment responsible for rendering the list of EU nations is CountriesFragment.
It is a SherlockListFragment, using a CountryAdapter to populate the list:

classclass CountryAdapterCountryAdapter extendsextends ArrayAdapter<Country> {
CountryAdapter() {

supersuper(getActivity(), R.layout.row, R.id.name, Country.EU);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

CountryViewHolder wrapper=nullnull;

ifif (convertView == nullnull) {
convertView=

LayoutInflater.from(getActivity()).inflate(R.layout.row,
nullnull);

wrapper=newnew CountryViewHolder(convertView);
convertView.setTag(wrapper);

}
elseelse {

wrapper=(CountryViewHolder)convertView.getTag();
}

wrapper.populateFrom(getItem(position));

returnreturn(convertView);
}

}

This adapter is somewhat more complex than the ones we showed in the chapter on
selection widgets. We will get into what CountryAdapter is doing, and the
CountryViewHolder it references, in a later chapter of this book. Suffice it to say for
now that the rows in the list contain both the country name and its flag.

When the user taps on a row in our ListView, something needs to happen –
specifically, the details of that country need to be displayed. However, displaying
those details is not the responsibility of CountriesFragment, as it simply displays the
list of countries and nothing else. Hence, we need to pass the event up to the
hosting activity to handle.

To accomplish this, we use the contract pattern, seen in a previous chapter. The
fragment defines an interface, which is the “contract” that all hosting activities of
that fragment must implement. As before, this requirement is enforced by the
superclass, ContractListFragment:

LARGE-SCREEN STRATEGIES AND TACTICS

718

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

/***
Copyright (c) 2013 Jake Wharton
Portions Copyright (c) 2013 CommonsWare, LLC

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required
by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

From _The Busy Coder's Guide to Android Development_
http://commonsware.com/Android

*/

// derived from https://gist.github.com/JakeWharton/2621173

packagepackage com.commonsware.android.eu4you;

importimport android.app.Activityandroid.app.Activity;
importimport com.actionbarsherlock.app.SherlockListFragmentcom.actionbarsherlock.app.SherlockListFragment;

publicpublic classclass ContractListFragmentContractListFragment<T> extendsextends SherlockListFragment {
privateprivate T contract;

@SuppressWarnings("unchecked")
@Override
publicpublic void onAttach(Activity activity) {

supersuper.onAttach(activity);

trytry {
contract=(T)activity;

}
catchcatch (ClassCastException e) {

throwthrow newnew IllegalStateException(activity.getClass()
.getSimpleName()

+ " does not implement contract interface for "
+ getClass().getSimpleName(), e);

}
}

@Override
publicpublic void onDetach() {

supersuper.onDetach();

contract=nullnull;
}

publicpublic finalfinal T getContract() {
returnreturn(contract);

}
}

LARGE-SCREEN STRATEGIES AND TACTICS

719

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, any activity that hosts a CountriesFragment is responsible for implementing
this contract interface, so we can call onCountrySelected() when the user clicks on
a row in the list:

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

ifif (getContract().isPersistentSelection()) {
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
l.setItemChecked(position, truetrue);

}
elseelse {

getListView().setChoiceMode(ListView.CHOICE_MODE_NONE);
}

getContract().onCountrySelected(Country.EU.get(position));
}

CountriesFragment also has quite a bit of code dealing with clicked-upon rows
being in an “activated” state. This provides visual context to the user and is often
used in the list-and-details pattern. For example, in the tablet renditions of Gmail
shown earlier in this chapter, you will notice that the list on the left (e.g., list of
labels) has one row highlighted with a blue background. This is the “activated” row,
and it indicates the context for the material in the adjacent fragment (e.g., list of
conversations in the label). Managing this “activated” state is a bit beyond the scope
of this section, however, so we will delay discussion of that topic to a later chapter in
this book.

DetailsFragment

The details to be displayed come in the form of a URL to a mobile Wikipedia page
for a country, designed to be displayed in a WebView. The EU4You sample app makes
use of the same WebViewFragment that we saw earlier in this book, such as in the
tutorials. DetailsFragment itself, therefore, simply needs to expose some method to
allow a hosting activity to tell it what URL to display:

packagepackage com.commonsware.android.eu4you;

publicpublic classclass DetailsFragmentDetailsFragment extendsextends WebViewFragment {
publicpublic void loadUrl(String url) {

getWebView().loadUrl(url);
}

}

You will notice that this fragment is not retained via setRetainInstance(). That is
because, as you will see, we will not always be displaying this fragment. Fragments

LARGE-SCREEN STRATEGIES AND TACTICS

720

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that are displayed in some configurations (e.g., landscape) but not in others (e.g.,
portrait), where a device might change between those configurations at runtime,
cannot be retained without causing crashes.

The Activities

Our launcher activity is also named EU4You. It uses two of the layouts shown above.
Both are main.xml, but one is in res/layout-w720dp/:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<FrameLayout<FrameLayout

android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
<FrameLayout<FrameLayout

android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

The other is in res/layout/:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/countries"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

Both have a FrameLayout for the CountriesFragment (R.id.countries), but only the
res/layout-w720dp/ edition has a FrameLayout for the DetailsFragment
(R.id.details).

Here is the complete implementation of the EU4You activity:

packagepackage com.commonsware.android.eu4you;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;

LARGE-SCREEN STRATEGIES AND TACTICS

721

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass EU4YouEU4You extendsextends SherlockFragmentActivity implementsimplements
CountriesFragment.Contract {

privateprivate CountriesFragment countries=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

countries=

(CountriesFragment)getSupportFragmentManager().findFragmentById(R.id.countries);

ifif (countries == nullnull) {
countries=newnew CountriesFragment();
getSupportFragmentManager().beginTransaction()

.add(R.id.countries, countries)

.commit();
}

details=

(DetailsFragment)getSupportFragmentManager().findFragmentById(R.id.details);

ifif (details == nullnull && findViewById(R.id.details) != nullnull) {
details=newnew DetailsFragment();
getSupportFragmentManager().beginTransaction()

.add(R.id.details, details).commit();
}

}

@Override
publicpublic void onCountrySelected(Country c) {

String url=getString(c.url);

ifif (details != nullnull && details.isVisible()) {
details.loadUrl(url);

}
elseelse {

Intent i=newnew Intent(thisthis, DetailsActivity.class);

i.putExtra(DetailsActivity.EXTRA_URL, url);
startActivity(i);

}
}

@Override
publicpublic boolean isPersistentSelection() {

returnreturn(details != nullnull && details.isVisible());
}

}

LARGE-SCREEN STRATEGIES AND TACTICS

722

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The job of onCreate() is to set up the UI. So, we:

• See if we already have an instance of CountriesFragment, by asking our
FragmentManager to give us the fragment in the R.id.countries slot — this
might occur if we underwent a configuration change, as CountriesFragment
would be recreated in that case

• If we do not have a CountriesFragment instance, create one and execute a
FragmentTransaction to load it into R.id.countries of our layout

• Find the DetailsFragment (which, since DetailsFragment is not retained,
should always return null, but, as they say, “better safe than sorry”)

• If we do not have a DetailsFragment and the layout has a R.id.details slot,
create a DetailsFragment and execute the FragmentTransaction to put it in
that slot… but otherwise do nothing

The net result is that EU4You can correctly handle either situation, where we have
both fragments or just one.

Similarly, the onCountrySelected() method (required by the Contract interface)
will see if we have our DetailsFragment or not (and whether it is visible, or is
hidden because we created it but it is not visible in the current screen orientation).
If we do, we just call loadUrl() on it, to populate the WebView. If we do not have a
visible DetailsFragment, we need to do something to display one. In principle, we
could elect to execute a FragmentTransaction to replace the CountriesFragment
with the DetailsFragment, but this can get complicated. Here, we start up a separate
DetailsActivity, passing the URL for the chosen Country in an Intent extra.

DetailsActivity is similar:

packagepackage com.commonsware.android.eu4you;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass DetailsActivityDetailsActivity extendsextends SherlockFragmentActivity {
publicpublic staticstatic finalfinal String EXTRA_URL=

"com.commonsware.android.eu4you.EXTRA_URL";
privateprivate String url=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

details=

LARGE-SCREEN STRATEGIES AND TACTICS

723

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(DetailsFragment)getSupportFragmentManager().findFragmentById(R.id.details);

ifif (details == nullnull) {
details=newnew DetailsFragment();

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content, details)
.commit();

}

url=getIntent().getStringExtra(EXTRA_URL);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

details.loadUrl(url);
}

}

We create the DetailsFragment and load it into the layout, capture the URL from
the Intent extra, and call loadUrl() on the DetailsFragment. However, since we are
executing a FragmentTransaction, the actual UI for the DetailsFragment is not
created immediately, so we cannot call loadUrl() right away (otherwise,
DetailsFragment will try to pass it to a non-existent WebView, and we crash). So, we
delay calling loadUrl() to onResume(), at which point the WebView should exist.

The Results

On a larger-screen device, in landscape, we have both fragments, though there is
nothing initially loaded into the DetailsFragment:

LARGE-SCREEN STRATEGIES AND TACTICS

724

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 226: EU4You, On a Tablet Emulator, Landscape

Tapping on a country brings up the details on the right:

LARGE-SCREEN STRATEGIES AND TACTICS

725

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 227: EU4You, On a Tablet Emulator, Landscape, With Details

In any other configuration, such as a smaller-screen device, we only see the
CountriesFragment at the outset:

LARGE-SCREEN STRATEGIES AND TACTICS

726

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 228: EU4You, On a Phone Emulator

Tapping on a country brings up the DetailsFragment full-screen in the
DetailsActivity:

LARGE-SCREEN STRATEGIES AND TACTICS

727

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 229: EU4You, On a Phone Emulator, Showing Details

Other European Flavors
The EU4You sample from above is one way of approaching this master-detail
pattern. It is not the only one. In this section, will we review two more
implementations of EU4You, one that uses a static fragment for the countries, and
one that uses a single activity rather than two.

Static CountriesFragment

In the original EU4You activity, both fragments were dynamic, each added via a
FragmentTransaction. DetailsFragment has to be dynamic, as whether or not it is
visible depends upon screen size and orientation. However, there is no particular
need for our CountriesFragment to be dynamic, as you will see in the LargeScreen/
EU4YouStaticCountries sample project.

Here, our single-pane layout uses a <fragment> element to wire in the
CountriesFragment:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

LARGE-SCREEN STRATEGIES AND TACTICS

728

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries

android:id="@+id/countries"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.eu4you3.CountriesFragment"

/>/>

Similarly, our dual-pane layout uses a <fragment> element for the
CountriesFragment, alongside the FrameLayout for the details:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:baselineAligned="false"
android:orientation="horizontal">>

<fragment<fragment
android:id="@+id/countries"
android:name="com.commonsware.android.eu4you3.CountriesFragment"
android:layout_width="0px"
android:layout_height="match_parent"
android:layout_weight="30"/>/>

<FrameLayout<FrameLayout
android:id="@+id/details"
android:layout_width="0px"
android:layout_height="match_parent"
android:layout_weight="70"/>/>

</LinearLayout></LinearLayout>

Our onCreate() for EU4You is simpler, in that we do not need to mess with the
CountriesFragment at all:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

details=

(DetailsFragment)getSupportFragmentManager().findFragmentById(R.id.details);

ifif (details == nullnull && findViewById(R.id.details) != nullnull) {
details=newnew DetailsFragment();
getSupportFragmentManager().beginTransaction()

.add(R.id.details, details).commit();
}

}

LARGE-SCREEN STRATEGIES AND TACTICS

729

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Neither CountriesFragment or anything involving the details necessarily needs to
change.

Going With One Activity

You might wonder why we need to bother with DetailsActivity. After all, the
EU4You activity is perfectly capable of showing the DetailsFragment in a second
pane — why not have it display the DetailsFragment in the first pane as well, in
single-pane scenarios? Surely, this will be much simpler, as we can dispense with the
activity and its entry in the manifest!

Yes, this is possible. No, it is not simpler.

The reason for the complexity is now managing all of our possible mix of fragments.
We already had to deal with the following possibilities:

• Single-pane, showing the countries
• Single-pane, showing the countries, but on a large screen in portrait mode,

after the activity had been launched in landscape, so the DetailsFragment
exists in the FragmentManager, but is not visible

• Dual-pane, showing both fragments

If we get rid of DetailsActivity and dump all the responsibility onto EU4You, we
have more scenarios:

• Single-pane, showing the details, having replaced the countries via a
FragmentTransaction

• Single-pane, showing the countries, after having shown the details and the
user then pressing BACK

Basically, what we must do now is replace() the CountriesFragment with the
DetailsFragment, when we are in single-pane mode, when the user taps on a
country in the list. This requires a fairly extensive number of changes, as you will see
in the LargeScreen/EU4YouSingleActivity sample project.

The Revised Layouts

In our single-pane mode, our one pane will either hold the CountriesFragment or
the DetailsFragment, depending upon what the user has done. Right now, our
FrameLayout is named R.id.countries, which was fine before, but now seems like

LARGE-SCREEN STRATEGIES AND TACTICS

730

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSingleActivity
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSingleActivity

an inappropriate name. So, the new project’s layouts change this to R.id.mainfrag,
without changing anything else:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/mainfrag"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

The New onCountrySelected()

The “simple” part of the changes comes in the revised onCountrySelected() method
in EU4You:

@Override
publicpublic void onCountrySelected(Country c) {

String url=getString(c.url);

details.loadUrl(url);

ifif (details.getId() != R.id.details) {
getSupportFragmentManager().beginTransaction()

.replace(R.id.mainfrag, details,
TAG_DETAILS)

.addToBackStack(nullnull).commit();
}

}

In our revised scenario, we will always have a DetailsFragment. The question is
merely whether it is presently visible. Hence, we can call loadUrl() on details
directly.

However, there are two possible scenarios for the status of our DetailsFragment at
the point in time of onCountrySelected() being called:

1. It exists in the details FrameLayout of our dual-pane layout resource
2. It exists, perhaps due to a configuration change, but is not presently in a

container

You might think that there would be a third scenario, where it is the visible fragment
in the mainfrag FrameLayout. Indeed, sometimes DetailsFragment will be in that
container… just not now. The only time that onCountrySelected() will be called is if
the user tapped on an item in our CountriesFragment, which means that
CountriesFragment must be in mainfrag.

LARGE-SCREEN STRATEGIES AND TACTICS

731

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ID of a fragment, from getId(), is the ID of its container, when used with
dynamic fragments. So, we check to see whether our DetailsFragment is in the
details FrameLayout by comparing ID values. If they differ, then we commit() a
replace() FragmentTransaction to put DetailsFragment into mainfrag. Note,
though, that we use addToBackStack(), so if the user presses the BACK button, we
will roll back this transaction and return to the CountriesFragment.

The New onCreate()

If you thought that was messy, you will not like the changes required to onCreate()
of EU4You much more:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

countries=

(CountriesFragment)getSupportFragmentManager().findFragmentByTag(TAG_COUNTRIES);
details=

(DetailsFragment)getSupportFragmentManager().findFragmentByTag(TAG_DETAILS);

ifif (countries == nullnull) {
countries=newnew CountriesFragment();
getSupportFragmentManager().beginTransaction()

.add(R.id.mainfrag, countries,
TAG_COUNTRIES).commit();

}

ifif (details == nullnull) {
details=newnew DetailsFragment();

ifif (findViewById(R.id.details) != nullnull) {
getSupportFragmentManager().beginTransaction()

.add(R.id.details, details,
TAG_DETAILS).commit();

}
}
elseelse {

ifif (details.getId() == R.id.mainfrag) {
ifif (findViewById(R.id.details) != nullnull) {

getSupportFragmentManager().popBackStackImmediate();
}

}
elseelse {

getSupportFragmentManager().beginTransaction().remove(details)
.commit();

}

LARGE-SCREEN STRATEGIES AND TACTICS

732

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (findViewById(R.id.details) != nullnull) {
getSupportFragmentManager().beginTransaction()

.add(R.id.details, details,
TAG_DETAILS).commit();

}
}

}

This sample is derived from the original EU4You sample, and so we are still using a
FragmentTransaction to set up the CountriesFragment in mainfrag, if we did not
create CountriesFragment earlier.

Dealing with DetailsFragment, though, is decidedly more complicated. The flow
that we want is if we were in dual-pane mode and switch to single-pane mode, that
we show the CountriesFragment in that single pane. If we switch from single-pane
mode to dual-pane mode, both fragments will be shown, of course.

First, we have the case where our DetailsFragment does not yet exist. This is much
like the original sample: we need to create the fragment and put it into the details
FrameLayout, if the details FrameLayout exists.

If the DetailsFragment exists, we need to make sure that it winds up in the details
FrameLayout, if one exists.

To do that, we first check its ID to see if it is presently located in mainfrag. If it is,
and if we have a details FrameLayout, we have switched to dual-pane mode and
need to pop our back stack, in preparation for moving the DetailsFragment to the
details FrameLayout.

If the DetailsFragment exists but is not in mainfrag, we remove() it entirely.

Then, if the DetailsFragment exists, regardless of where it was before, we add() it to
the details FrameLayout.

The “OMG! Our Fragments Have No Views!” Changes

In testing, there are now scenarios in which CountriesFragment is called with
onSaveInstanceState(), but without its views having been created (i.e.,
onCreateView() was not called). This would cause us to fail when trying to use
getListView(), as that method would return null, since the ListView did not exist.
So, we modify onSaveInstanceState() to be a bit more robust:

LARGE-SCREEN STRATEGIES AND TACTICS

733

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

ifif (getView() != nullnull) {
state.putInt(STATE_CHECKED,

getListView().getCheckedItemPosition());
}

}

We also need to beef up DetailsFragment a bit. Before, we relied on the fact that, on
a configuration change, our extras on our Intent for DetailsActivity would still be
available. Now, though, there is no DetailsActivity, which means that
DetailsFragment has to maintain its state, so that we do not lose the URL we were
viewing when the user rotates the screen or causes another configuration change.
And, to top it off, we have the same potential issue as with CountriesFragment,
where the fragment might exist but not have onCreateView() called (e.g., we were in
dual-pane mode and switched to single-pane mode, and DetailsFragment has not
yet been displayed), so we cannot assume that getWebView() will always return a
non-null value.

To that end, DetailsFragment gets complicated:

packagepackage com.commonsware.android.eu4you2;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass DetailsFragmentDetailsFragment extendsextends WebViewFragment {
privateprivate staticstatic finalfinal String STATE_URL="url";
privateprivate String url=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

ifif (url == nullnull && savedInstanceState != nullnull) {
url=savedInstanceState.getString(STATE_URL);

}

ifif (url != nullnull) {
loadUrl(url);
url=nullnull;

}
}

@Override
publicpublic void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

ifif (url == nullnull) {

LARGE-SCREEN STRATEGIES AND TACTICS

734

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

outState.putString(STATE_URL, getWebView().getUrl());
}
elseelse {

outState.putString(STATE_URL, url);
}

}

void loadUrl(String url) {
ifif (getView() == nullnull) {

thisthis.url=url;
}
elseelse {

getWebView().loadUrl(url);
}

}
}

The url data member will temporarily hold the URL of the page we should be
viewing, particularly when we have no WebView to work with. So, our loadUrl()
method now puts the URL into url if we have no WebView or loads it into the
WebView if the WebView exists. onSaveInstanceState() will put the URL — whether
from url or from the WebView — into the state Bundle. onActivityCreated() will
attempt to populate url from the Bundle (if we do not already have a URL), then use
that to populate the WebView (which should exist if onActivityCreated() is called).
url is set to null to indicate that the WebView holds our URL, once that is
completed.

The Results

From a user experience standpoint, things have not significantly changed. The user
still sees the list, still sees the details when tapping on an entry in the list, and still
gets the dual-pane experience on larger screens.

However, the transition between the list and the details in single-pane mode is a bit
faster, as a FragmentTransaction takes less time than does starting up another
activity. However, by default, our FragmentTransaction does not apply any
transition effects, and so the fragment changes “just happen” without any fades,
zooms, or the like. It is certainly possible to specify fragment transition effects, if
desired, though this is outside the scope of this chapter.

LARGE-SCREEN STRATEGIES AND TACTICS

735

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Mashup Possibilities

It should be possible to combine the two revised versions of EU4You, having a single
activity manage all the fragments, with CountriesFragment set up as a static
fragment. The proof that this is possible is left to the reader.

The SlidingPaneLayout Variant

The Rev13 update to the Android Support package introduced SlidingPaneLayout,
another way of handling this sort of master-detail pattern. SlidingPaneLayout
significantly reduces the level of effort for setting up master-detail, as it handles all
of the “dirty work” of showing the different fragments in different scenarios (normal
screen, large screen, etc.).

Note that while the JavaDocs for SlidingPaneLayout contain “Experimental. This
class may be removed”, it is reasonably likely that somebody will continue
maintaining this should Google abandon it.

The Role of SlidingPaneLayout

In the master-detail pattern, we are showing both the master and the detail
fragment, side-by-side, on larger screens, while showing only one at a time on
smaller screens. In the preceding examples, we had to manage all of that ourselves,
in terms of deciding how many fragments to show and for switching between those
fragments as needed.

SlidingPaneLayout encapsulates that logic.

SlidingPaneLayout will detect the screen size. If the screen size is big enough,
SlidingPaneLayout will display its two children side-by-side. If the screen size is not
big enough, SlidingPaneLayout will display one child at a time. However, by
default, when the “master” child is visible, a thin strip on the right will allow the
user to return to the “detail” child. Similarly, a swiping gesture can switch from the
“detail” back to the “master” child. These are in addition to any changes in context
you might introduce based on UI operations (e.g., tapping on an element in a master
ListView automatically switching to the detail child).

LARGE-SCREEN STRATEGIES AND TACTICS

736

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Converting to SlidingPaneLayout

The LargeScreen/EU4YouSlidingPane sample project represents a rework of the
EU4You core sample, this time using SlidingPaneLayout for handling the master-
detail pattern.

Since SlidingPaneLayout encapsulates the master-detail logic, we can drop a lot of
stuff that we used before but no longer need, including:

• DetailsActivity (as SlidingPaneLayout works akin to our single-activity
implementation)

• the dedicated large-screen layout (as SlidingPaneLayout “bakes in” the logic
for handling different screen sizes)

• dynamic fragments (as SlidingPaneLayout will work better with static
fragments, anyway)

• isPersistentSelection() (as we will always want to use activated rows, on
API Level 11+, as the user can more readily switch back and forth between
master and detail on smaller screens, and we want to indicate in the master
what the context is that is displayed in the detail)

However, we did have to add a bit of pane management, plus move around some list-
related behaviors in our CountriesFragment.

For starters, our res/layout/main.xml file now contains a SlidingPaneLayout,
along with our two fragments, each set up as static <fragment> elements:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.SlidingPaneLayout<android.support.v4.widget.SlidingPaneLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/panes"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<fragment<fragment
android:id="@+id/countries"
android:name="com.commonsware.android.eu4you4.CountriesFragment"
android:layout_width="300sp"
android:layout_height="match_parent"/>/>

<fragment<fragment
android:id="@+id/details"
android:name="com.commonsware.android.eu4you4.DetailsFragment"
android:layout_width="400dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

LARGE-SCREEN STRATEGIES AND TACTICS

737

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSlidingPane
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSlidingPane

</android.support.v4.widget.SlidingPaneLayout></android.support.v4.widget.SlidingPaneLayout>

By putting an android:layout_weight on our details fragment, we indicate that we
want that one to take up all remaining room when the two fragments are shown
side-by-side. You might think that we should then set the width of the details
fragment to 0dp; however, for some reason, this does not work.

The size of the countries (master) fragment will be honored on larger screens. On
smaller screens, the size of the master fragment will be dictated by the width of the
screen, minus a strip to allow the user to see a portion of the detail fragment and
swipe that to display the detail fragment in toto.

Our CountriesFragment now always sets up the ListView to be single-choice mode,
in onActivityCreated(). It also calls onCountrySelected() on our
CountriesFragment.Contract, to ensure that the master is highlighting the last
selection — this is needed to make sure that everything is displayed properly after a
configuration change:

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

setListAdapter(newnew CountryAdapter());
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);

ifif (state != nullnull) {
int position=state.getInt(STATE_CHECKED, -1);

ifif (position > -1) {
getListView().setItemChecked(position, truetrue);
getContract().onCountrySelected(Country.EU.get(position));

}
}

}

onListItemClick() of CountriesFragment becomes a bit simpler:

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

l.setItemChecked(position, truetrue);
getContract().onCountrySelected(Country.EU.get(position));

}

The EU4You activity overall becomes substantially simpler:

LARGE-SCREEN STRATEGIES AND TACTICS

738

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.eu4you4;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.widget.SlidingPaneLayoutandroid.support.v4.widget.SlidingPaneLayout;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass EU4YouEU4You extendsextends SherlockFragmentActivity implementsimplements
CountriesFragment.Contract {

privateprivate DetailsFragment details=nullnull;
privateprivate SlidingPaneLayout panes=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

details=

(DetailsFragment)getSupportFragmentManager().findFragmentById(R.id.details);
panes=(SlidingPaneLayout)findViewById(R.id.panes);
panes.openPane();

}

@Override
publicpublic void onBackPressed() {

ifif (panes.isOpen()) {
supersuper.onBackPressed();

}
elseelse {

panes.openPane();
}

}

@Override
publicpublic void onCountrySelected(Country c) {

details.loadUrl(getString(c.url));
panes.closePane();

}
}

In SlidingPaneLayout terminology, the pane is “open” if the master is shown on
smaller screens, and the pane is “closed” if the detail is shown on smaller screens. If
this feels a bit counter-intuitive to you, you are not alone in that regard.

By default, the SlidingPaneLayout is closed. So, if we want to start (on smaller
screens) with the master pane shown, we need to call openPane(), as we do in
onCreate(). Similarly:

• If we want to show the details when the user clicks on a country in the
CountriesFragment, we need to call closePane() in onCountrySelected()

LARGE-SCREEN STRATEGIES AND TACTICS

739

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If we want to show the master pane if the user presses BACK while viewing
the detail pane, we need to override onBackPressed() and consume that
event (calling openPane()), instead of performing the normal superclass
behavior

What SlidingPaneLayout Looks Like

On a larger screen, the SlidingPaneLayout edition of the EU4You activity looks the
same as the prior examples.

However, on a smaller screen, things look slightly different. Specifically:

• Our master perspective has a thin strip on the right, showing a peek of the
detail fragment

Figure 230: EU4YouSlidingPane, On a Phone Emulator, Showing Master

• The user can switch to the detail pane either by swiping open the detail pane
or clicking on a country

• The user can switch back to the master pane either by swiping the detail
pane back closed or by pressing the BACK button

LARGE-SCREEN STRATEGIES AND TACTICS

740

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Showing More Pages
ViewPager is a popular container in Android, as horizontal swiping is an increasingly
popular navigational model, to move between peer pieces of content (e.g., swiping
between contacts, swiping between book chapters). In some cases, when the
ViewPager is on a larger screen, we simply want larger pages — a digital book reader,
for example, would simply have a larger page in a bigger font for easier reading.

Sometimes, though, we might not be able to take advantage of the full space offered
by the large screen, particularly when our ViewPager takes up the whole screen. In
cases like this, it might be useful to allow ViewPager, in some cases, to show more
than one page at a time. Each “page” is then designed to be roughly phone-sized,
and we choose whether to show one, two, or perhaps more pages at a time based
upon the available screen space.

Mechanically, allowing ViewPager to show more than one page is fairly easy,
involving overriding one more method in our PagerAdapter: getPageWidth(). To see
this in action, take a look at the ViewPager/MultiView1 sample project.

Each page in this sample is simply a TextView widget, using the activity’s style’s
“large appearance”, centered inside a LinearLayout:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

</LinearLayout></LinearLayout>

The activity, in onCreate(), gets our ViewPager from the res/layout/
activity_main.xml resource, and sets its adapter to be a SampleAdapter:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

pager=(ViewPager)findViewById(R.id.pager);

LARGE-SCREEN STRATEGIES AND TACTICS

741

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/MultiView1
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/MultiView1

pager.setAdapter(newnew SampleAdapter());
pager.setOffscreenPageLimit(6);

}

In this case, SampleAdapter is not a FragmentPagerAdapter, nor a
FragmentStatePagerAdapter. Instead, it is its own implementation of the
PagerAdapter interface:

/*
* Inspired by
* https://gist.github.com/8cbe094bb7a783e37ad1
*/

privateprivate classclass SampleAdapterSampleAdapter extendsextends PagerAdapter {
@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

View page=
getLayoutInflater().inflate(R.layout.page, container, falsefalse);

TextView tv=(TextView)page.findViewById(R.id.text);
int blue=position * 25;

finalfinal String msg=
String.format(getString(R.string.item), position + 1);

tv.setText(msg);
tv.setOnClickListener(newnew OnClickListener() {

@Override
publicpublic void onClick(View v) {

Toast.makeText(MainActivity.this, msg, Toast.LENGTH_LONG)
.show();

}
});

page.setBackgroundColor(Color.argb(255, 0, 0, blue));
container.addView(page);

returnreturn(page);
}

@Override
publicpublic void destroyItem(ViewGroup container, int position,

Object object) {
container.removeView((View)object);

}

@Override
publicpublic int getCount() {

returnreturn(9);
}

@Override
publicpublic float getPageWidth(int position) {

returnreturn(0.5f);
}

LARGE-SCREEN STRATEGIES AND TACTICS

742

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn(view == object);
}

}

To create your own PagerAdapter, the big methods that you need to implement are:

• instantiateItem(), where you create the page itself and add it to the
supplied container. In this case, we inflate the page, set the text of the
TextView based on the supplied position, set the background color of the
page itself to be a different shade of blue based on the position, set up a click
listener to show a Toast when the TextView is tapped, and use that for our
page. We return some object that identifies this page; in this case, we return
the inflated View itself. A fragment-based PagerAdapter would probably
return the fragment.

• destroyItem(), where we need to clean up a page that is being removed
from the pager, where the page is identified by the Object that we had
previously returned from instantiateItem(). In our case, we just remove it
from the supplied container.

• isViewFromObject(), where we confirm whether some specific page in the
pager (represented by a View) is indeed tied to a specific Object returned
from instantiateItem(). In our case, since we return the View from
instantiateItem(), we merely need to confirm that the two objects are
indeed one and the same.

• getCount(), as with the built-in PagerAdapter implementations, to return
how many total pages there are.

In our case, we also override getPageWidth(). This indicates, for a given position,
how much horizontal space in the ViewPager should be given to this particular page.
In principle, each page could have its own unique size. The return value is a float,
from 0.0f to 1.0f, indicating what fraction of the pager’s width goes to this page. In
our case, we return 0.5f, to have each page take up half the pager.

The result is that we have two pages visible at a time:

LARGE-SCREEN STRATEGIES AND TACTICS

743

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 231: Two Pages in a ViewPager on Android 4.0.3

It is probably also a good idea to call setOffscreenPageLimit() on the ViewPager,
as we did in onCreate(). By default (and at minimum), ViewPager will cache three
pages: the one presently visible, and one on either side. However, if you are showing
more than one at a time, you should bump the limit to be 3 times the number of
simultaneous pages. For a page width of 0.5f — meaning two pages at a time – you
would want to call setOffscreenPageLimit(6), to make sure that you had enough
pages cached for both the current visible contents and one full swipe to either side.

ViewPager even handles “partial swipes” — a careful swipe can slide the right-hand
page into the left-hand position and slide in a new right-hand page. And ViewPager
stops when you run out of pages, so the last page will always be on the right, no
matter how many pages at a time and how many total pages you happen to have.

The biggest downside to this approach is that it will not work well with the current
crop of indicators. PagerTitleStrip and PagerTabStrip assume that there is a
single selected page. While the indicator will adjust properly, the visual
representation shows that the left-hand page is the one selected (e.g., the tab with
the highlight), even though two or more pages are visible. You can probably
overcome this with a custom indicator (e.g., highlight the selected tab and the one
to its right).

LARGE-SCREEN STRATEGIES AND TACTICS

744

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also note that this approach collides a bit with setPageMargin() on ViewPager.
setPageMargin() indicates an amount of whitespace that should go in a gutter
between pages. In principle, this would work great with showing multiple
simultaneous pages in a ViewPager. However, ViewPager does not take the gutter
into account when interpreting the getPageWidth() value. For example, suppose
getPageWidth() returns 0.5f and we setPageMargin(20). On a 480-pixel-wide
ViewPager, we will actually use 500 pixels: 240 for the left page, 240 for the right
page, and 20 for the gutter. As a result, 20 pixels of our right-hand page are off the
edge of the pager. Ideally, ViewPager would subtract out the page margin before
applying the page width. One workaround is for you to derive the right
getPageWidth() value based upon the ViewPager size and gutter yourself, rather
than hard-coding a value. Or, build in your gutter into your page contents (e.g.,
using android:layout_marginLeft and android:layout_marginRight) and skip
setPageMargin() entirely.

Columns or Pages

Another pattern — using pages for smaller screens and having the “pages” side-by-
side in columns for larger screens — will be explored later in the book.

Fragment FAQs
Here are some other common questions about the use of fragments in support of
large screen sizes:

Does Everything Have To Be In a Fragment?

In a word, no.

UI constructs that do not change based on screen size, configurations, and the like
could simply be defined in the activity itself. For example, the activity can add items
to the action bar that should be there regardless of what fragments are shown.

What If Fragments Are Not Right For Me?

While fragments are useful, they do not solve all problems. Few games will use
fragments for the core of game play, for example. Applications with other forms of
specialized user interfaces — painting apps, photo editors, etc. – may also be better
served by eschewing fragments for those specific activities and doing something else.

LARGE-SCREEN STRATEGIES AND TACTICS

745

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That “something else” might start with custom layouts for the different sizes and
orientations. At runtime, you can determine what you need either by inspecting
what you got from the layout, or by using Configuration and DisplayMetrics
objects to determine what the device capabilities are (e.g., screen size). The activity
would then need to have its own code for handling whatever you want to do
differently based on screen size (e.g., offering a larger painting canvas plus more on-
screen tool palettes).

Do Fragments Work on Google TV?

Much of the focus on “larger-screen devices” has been on tablets, because, as of the
time of this writing, they are the most popular “larger-screen devices” in use.
However, there is also Google TV to consider, as it presents itself as a -large (720p)
or -xlarge (1080p) screen. Fragments can certainly help with displaying a UI for
Google TV, but there are other design considerations to take into account, based
upon the fact that the user sits much further from a TV than they do from a phone
or tablet (so-called “10-foot user experience”).

More coverage of developing for Google TV can be found in a later chapter of this
book.

Screen Size and Density Tactics
Even if we take the “tablet = several phones” design approach, the size of the
“phone” will vary, depending on the size of the tablet. Plus, there are real actual
phones, and those too vary in size. Hence, our fragments (or activities hosting their
own UI directly) need to take into account micro fluctuations in size, as well as the
macro ones.

Screen density is also something that affects us tactically. It is rare that an
application will make wholesale UI changes based upon whether the screen is 160dpi
or 240dpi or 320dpi or something else. However, changes in density can certainly
impact the sizes of things, like images, that are intrinsically tied to pixel sizes. So, we
need to take density into account as we are crafting our fragments to work well in a
small range of sizes.

Dimensions and Units

As a unit of measure, the pixel (px) is a poor choice, because its size varies by
density. Two phones might have very similar screen sizes but radically different

LARGE-SCREEN STRATEGIES AND TACTICS

746

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

densities. Anything specified in terms of pixels will be smaller on the higher-density
device, and typically you would want them to be about the same size. For example, a
Button should not magically shrink for a ~4” phone just because the phone happens
to have a much higher screen density than some other phone.

The best answer is to avoid specifying concrete sizes where possible. This is why you
tend to see containers, and some widgets, use match_parent and wrap_content for
their size — those automatically adjust based upon device characteristics.

Some places, though, you have to specify a more concrete size, such as with padding
or margins. For these, you have two major groups of units of measure to work with:

• Those based upon pixels, but taking device characteristics into account.
These include density-independent pixels (dp or dip), which try to size each
dp to be about 1/160 of an inch. These also include scaled pixels (sp), which
scales the size based upon the default font size on the device — sp is often
used with TextView (and subclasses) for android:textSize attributes.

• Those based purely on physical units of measure: mm (millimeters), in
(inches), and pt (points = 1/72 of an inch).

Any of those tends to be better than px. Which you choose will depend on which
you and your graphics designer are more comfortable with.

If you find that there are cases where the dimensions you want to use vary more
widely than the automatic calculations from these density-aware units of measure,
you can use dimension resources. Create a dimens.xml file in res/values/ and
related resource sets, and put in there <dimen> elements that give a dimension a
name and a size. In addition to perhaps making things a bit more DRY (“don’t repeat
yourself”), you can perhaps create different values of those dimensions for different
screen sizes, densities, or other cases as needed.

Layouts and Stretching

Web designers need to deal with the fact that the user might resize their browser
window. The approaches to deal with this are called “fluid” designs.

Similarly, Android developers need to create “fluid” layouts for fragments, rows in a
ListView, and so on, to deal with similar minor fluctuations in size.

Each of “The Big Three” container classes has its approach for dealing with this:

LARGE-SCREEN STRATEGIES AND TACTICS

747

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Use android:layout_weight with LinearLayout to allocate extra space
• Use android:stretchColumns and android:shrinkColumns with
TableLayout to determine which columns should absorb extra space and
which columns should be forcibly “shrunk” to yield space for other columns
if we lack sufficient horizontal room

• Use appropriate rules on RelativeLayout to anchor widgets as needed to
other widgets or the boundaries of the container, such that extra room flows
naturally wherever the rules call for

Drawables That Resize

Images, particularly those used as backgrounds, will need to be resized to take
everything into account:

• screen size and density
• size of the widget, and its contents, for which it serves as the background

(e.g., amount of prose in a TextView)

Android supports what is known as the “nine-patch” PNG format, where resizing
information is held in the PNG itself. This is typically used for things like rounded
rectangles, to tell Android to stretch the straight portions of the rectangle but to not
stretch the corners. Nine-patch PNG files will be examined in greater detail in a later
chapter of this book.

The ShapeDrawable XML drawable resource uses an ever-so-tiny subset of SVG
(Scalable Vector Graphics) to create a vector art definition of an image. Once again,
this tends to be used for rectangles and rounded rectangles, particularly those with a
gradient fill. Since Android interprets the vector art definition at runtime, it can
create a smooth gradient, interpolating all intervening colors from start to finish.
Stretching a PNG file — even a nine-patch PNG file — tends to result in “banding
effects” on the gradients. ShapeDrawable is also covered later in this book.

Third-party libraries can also help. The svg-android project supplies a JAR that
handles more SVG capabilities than does ShapeDrawable, though it too does not
cover the entire SVG specification.

Drawables By Density

Sometimes, though, there is no substitute for your traditional bitmap image. Icons
and related artwork are not necessarily going to be stretched at runtime, but they
are still dependent upon screen density. A 80x80 pixel image may look great on a

LARGE-SCREEN STRATEGIES AND TACTICS

748

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/svg-android/
http://code.google.com/p/svg-android/

Samsung Galaxy Nexus or other -xhdpi device, coming in at around a quarter-inch
on a side. However, when viewed on a -mdpi device, that same icon will be a half-
inch on a side, which may be entirely too large.

The best answer is to create multiple renditions of the icon at different densities,
putting each icon in the appropriate drawable resource directory (e.g., res/
drawable-mdpi, res/drawable-hdpi). This is what Android Asset Studio did for us in
the tutorials, creating launcher icons from some supplied artwork for all four
densities. Even better is to create icons tailored for each density — rather than just
reducing the pixel count, take steps to draw an icon that will still make sense to the
user at the lower pixel count, exaggerating key design features and dropping other
stuff off. Google’s Kiril Grouchnikov has an excellent blog post on this aspect

However, Android will let you cheat.

If you supply only some densities, but your app runs on a device with a different
density, Android will automatically resample your icons to try to generate one with
the right density, to keep things the same size. On the plus side, this saves you work
— perhaps you only ship an -xhdpi icon and let Android do the rest. And it can
reduce your APK size by a bit. However, there are costs:

• This is a bit slower at runtime and consumes a bit more battery
• Android’s resampling algorithm may not be as sophisticated as that of your

preferred image editor (e.g., Photoshop)
• You cannot finesse the icon to look better than a simple resampling (e.g.,

drop off design elements that become unidentifiable)

Other Considerations
There are other things you should consider when designing your app to work on
multiple screen sizes, beyond what is covered above.

Small-Screen Devices

It is easy to think of screen size issues as being “phones versus tablets”. However, not
only do tablets come in varying sizes (5” Samsung Galaxy Note to a bunch of 10.1"
tablets), but phones come in varying sizes. Those that have less than a 3” diagonal
screen size will be categorized as -small screen devices, and you can have different
layouts for those.

LARGE-SCREEN STRATEGIES AND TACTICS

749

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.pushing-pixels.org/2011/11/04/about-those-vector-icons.html

Getting things to work on small screens is sometimes more difficult than moving
from normal to larger screens, simply because you lack sufficient room. You can only
shrink widgets so far before they become unreadable or “untappable”. You may need
to more aggressively use ScrollView to allow your widgets to have more room, but
requiring the user to pan through your whole fragment’s worth of UI. Or, you may
need to divide your app into more fragments than you originally anticipated, and
use more activities or other tricks to allow the user to navigate the fragments
individually on small-screen devices, while stitching them together into larger
blocks for larger phones.

Avoid Full-Screen Backgrounds

Android runs in lots of different resolutions.

Lots and lots of different resolutions.

Trying to create artwork for each and every resolution in use today will be tedious
and fragile, the latter because new resolutions pop up every so often, ones you may
not be aware of.

Hence, try to design your app to avoid some sort of full-screen background, where
you are expecting the artwork to perfectly fit the screen. Either:

• Do not use a background, or
• Use a background, but one that is designed to be cropped to fit and will look

good in its cropped state, or
• Use a background, but one that can naturally bleed into some solid fill to the

edges (e.g., a starfield that simply lacks stars towards the edges), so you can
“fill in” space around your background with that solid color to fill the screen,
or

• Dynamically draw the background (e.g., a starfield where you place the stars
yourself at runtime using 2D graphics APIs)

For most conventional apps, just using the background from your stock theme will
typically suffice. This problem is much bigger for 2D games, which tend to rely upon
backgrounds as a game surface.

Manifest Elements for Screen Sizes

There are two elements you can add to your manifest that impact how your
application will behave with respect to screen sizes.

LARGE-SCREEN STRATEGIES AND TACTICS

750

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<compatible-screens> serves as an advertisement of your capabilities, to the Google
Play Store and similar “markets”. You can have a <compatible-screens> element
with one or more child <screen> elements — each <screen> enumerates a
combination of screen size and screen density that you support:

<compatible-screens><compatible-screens>
<!-- all possible normal size screens -->
<screen<screen android:screenSize="normal" android:screenDensity="ldpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="mdpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="hdpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="xhdpi" />/>
<!-- all possible large size screens -->
<screen<screen android:screenSize="large" android:screenDensity="ldpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="mdpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="hdpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="xhdpi" />/>

</compatible-screens></compatible-screens>

The Google Play Store will filter your app, so it will not show up on devices that have
screens that do not meet one of your <screen> elements.

Note that <compatible-screens> was added in API Level 9, but that simply means
that your build target will need to be API Level 9 or higher. Since
<compatible-screens> only affects markets, not your app’s runtime behavior, there
is no harm in having this element in your manifest when it is run on older devices.

There is also a <supports-screens> element, as we saw when we set up our initial
project in the tutorials. Here, you indicate what screen sizes you support, akin to
<compatible-screens> (minus any density declarations). And, the Google Play Store
will filter your app, so it will not show up on devices that have screens smaller than
what you support.

So, for example, suppose that you have a <supports-screens> element like this:

<supports-screens<supports-screens android:smallScreens="false"
android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="false"

/>/>

You will not show up in the Google Play Store for any -small screen devices.
However, you will show up in the Google Play Store for any -xlarge screen devices
— Android will merely apply some runtime logic to try to help your app run well on
such screens. So, while <compatible-screens> is purely a filter, <supports-screens>

LARGE-SCREEN STRATEGIES AND TACTICS

751

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

is a filter for smaller-than-supported screens, and a runtime “give me a hand!” flag
for larger-than-supported screens.

Considering Newer Densities

-tvdpi — around 213dpi — was added for Google TV, and is the density used for
720p Google TV devices. However, Google also elected to use -tvdpi for the Nexus 7
tablet. However, not even Google bothered to create many -tvdpi-specific resources,
allowing the OS to downsample from the -hdpi edition.

The new wave of 1080p phones are -xxhdpi, around 480dpi. While Android can up-
sample an -xhdpi image for -xxhdpi, the results may not be as crisp as you would
like. Hence, you may wish to consider creating -xxhdpi as your “top tier” density, so
other devices can downsample if needed. Also, while 1080p phones were few in
number in early 2013, it is likely to be a popular form factor and will become
significant in numbers over the next couple of years.

Also, bear in mind that the Nexus 10, for inexplicable reasons, uses -xxhdpi
resources for launcher icons, even though the device itself is -xhdpi for everything
else.

LARGE-SCREEN STRATEGIES AND TACTICS

752

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #19 - Supporting Large
Screens

So far, we have created a variety of fragments that are being used one at a time in a
hosting activity: notes, help, and about. And, on smaller-screen devices, like phones,
that is probably the best solution. But on -large and -xlarge devices, like 10”
tablets, it might be nice to be able to have some of those fragments take over a part
of the main activity’s space. For example, the user could be reading the chapter and
reading the online help.

Hence, in this tutorial, we will arrange for the help and about fragments to be
loaded into EmPubLiteActivity directly on -large and -xlarge devices, while
retaining our existing functionality for other devices.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Creating Our Layouts
The simplest way to both add a place for these other fragments and to determine
when we should be using these other fragments in the main activity is to create new
layout resource sets for -large devices, with customized versions of main.xml to be

753

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T18-Notify
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T19-LargeScreen
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

used by EmPubLiteActivity. Android will automatically use -large resources on
-xlarge devices if -xlarge equivalents do not exist.

NOTE: This tutorial has you use the legacy -large resource set qualifiers, instead of
-swNNNdp for some value of NNN. There is nothing wrong with using -large in
modern development, and in fact it is necessary to support the smattering of pre-
API Level 13 tablets. That being said, a future edition of this tutorial will switch to
showing you -sw600dp, along with using layout aliases for older device support, as
described in the chapter on resources and configuration changes.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

First, right-click over the res/ folder, and choose New > Folder from the context
menu. Fill in layout-large-land as the folder name, then click “Finish” to create the
folder.

Then, right-click over the res/layout/main.xml file and choose “Copy” from the
context menu. After that, right-click over the new res/layout-large-land/ folder
and choose “Paste” from the context menu. This makes a copy of your main.xml
resource that we can use for -large-land devices.

Double-click on the res/layout-large-land/main.xml file to bring it up in the
graphical layout editor. In the Outline pane, right-click on the RelativeLayout and
choose “Wrap in Container…” from the context menu. Choose “LinearLayout
(horizontal)” in the drop-down list of available containers, and give the container
some ID (the value does not matter, as we will not be using it, but the dialog
requires it). Click OK to wrap our RelativeLayout in the horizontal LinearLayout.

Click on the RelativeLayout in the Outline pane. In the Properties pane, in the
“Layout Parameters” group, fill in 7 in the “Weight” field. Switch over to the XML
editor and fill in 0dp for android:layout_width for the RelativeLayout (this cannot
be done in the Properties pane due to a bug in the current version of the tools).

In the Palette, switch to the Advanced group of widgets, and drag a View over to the
Outline pane and drop it on the LinearLayout, which will add it to the end of the
LinearLayout roster of children. Make the following adjustments to the properties
of the View using the Properties pane:

TUTORIAL #19 - SUPPORTING LARGE SCREENS

754

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33978

• Set the Id to @+id/divider
• Set the Height to match_parent
• Set the Background to #AA000000
• Set the Visibility to gone

Then, switch over to the XML and give the View an android:layout_width of 2dp.
Also, if you see an erroneous android:layout_weight attribute on this View, get rid
of it.

Back in the Palette, switch to the Layouts group of widgets, and drag a FrameLayout
over to the Outline pane and drop it on the LinearLayout, adding it as a third child.
Make the following adjustments to the properties of the FrameLayout using the
Properties pane:

• Set the Id to @+id/sidebar
• Set the Weight to 0

Then, switch over to the XML and give the FrameLayout an android:layout_width
of 0dp.

Save your changes (e.g., <Ctrl>-<S>).

Then, right-click over the res/ folder, and choose New > Folder from the context
menu. Fill in layout-large as the folder name, then click “Finish” to create the
folder.

Then, right-click over the res/layout-large-land/main.xml file and choose “Copy”
from the context menu. After that, right-click over the new res/layout-large/
folder and choose “Paste” from the context menu.

Double-click on res/layout-large/main.xml file, to bring it up in the graphical
layout editor. Click on the LinearLayout and, in the Properties pane, set the
“Orientation” to be vertical.

Then, switch over to the XML view, and swap the android:layout_width and
android:layout_height values for the RelativeLayout, the View, and the
FrameLayout. When you are done, each should have an android:layout_width of
match_parent and an android:layout_height of 0dp (except the View, which should
be 2dp).

Save your changes (e.g., <Ctrl>-<S>).

TUTORIAL #19 - SUPPORTING LARGE SCREENS

755

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Create a res/layout-large-land/ directory in your project, and create a main.xml
file in there with the following contents:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/foo"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RelativeLayout<RelativeLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="7">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

<View<View
android:id="@+id/divider"
android:layout_width="2dp"
android:layout_height="match_parent"
android:background="#AA000000"
android:visibility="gone"/>/>

<FrameLayout<FrameLayout
android:id="@+id/sidebar"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="0">>

</FrameLayout></FrameLayout>

</LinearLayout></LinearLayout>

Then, create a res/layout-large/ directory in your project, and create a main.xml
file in there with the following contents:

TUTORIAL #19 - SUPPORTING LARGE SCREENS

756

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/foo"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<RelativeLayout<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="7">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

<View<View
android:id="@+id/divider"
android:layout_width="match_parent"
android:layout_height="2dp"
android:background="#AA000000"
android:visibility="gone"/>/>

<FrameLayout<FrameLayout
android:id="@+id/sidebar"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="0">>

</FrameLayout></FrameLayout>

</LinearLayout></LinearLayout>

Step #2: Loading Our Sidebar Widgets
Now that we added the divider widget and sidebar container to (some of) our
layouts, we need to access those widgets at runtime.

So, in EmPubLiteActivity, add data members for them:

TUTORIAL #19 - SUPPORTING LARGE SCREENS

757

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate View sidebar=nullnull;
privateprivate View divider=nullnull;

Then, in onCreate() of EmPubLiteActivity, initialize those data members,
sometime after the call to setContentView():

sidebar=findViewById(R.id.sidebar);
divider=findViewById(R.id.divider);

Step #3: Opening the Sidebar
A real production-grade app would use animated effects to hide and show our
sidebar. However, we have not yet covered animations in this book, so we will
simply:

• Cause the divider to become visible
• Adjust the android:layout_weight of our sidebar to be 3 instead of 0, giving

it ~30% of the screen (with the original RelativeLayout getting 70%,
courtesy of its android:layout_weight="7")

With that in mind, add the following implementation of an openSidebar() method
to EmPubLiteActivity:

void openSidebar() {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)sidebar.getLayoutParams();
ifif (p.weight == 0) {

p.weight=3;
sidebar.setLayoutParams(p);

}
divider.setVisibility(View.VISIBLE);

}

Here, we:

• Get the existing LinearLayout.LayoutParams from the sidebar
• If it is still 0 (meaning the sidebar has not been opened), assign it a weight of
3, update the layout via setLayoutParams(), and toggle the visibility of the
divider

TUTORIAL #19 - SUPPORTING LARGE SCREENS

758

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #4: Loading Content Into the Sidebar
Now that we can get our sidebar to appear, we need to load content into it… but only
if we have the sidebar. If EmPubLiteActivity loads a layout that does not have the
sidebar, we need to stick with our existing logic that starts up an activity to display
the content.

With that in mind, add data members to EmPubLiteActivity to hold onto our help
and about fragments:

privateprivate SimpleContentFragment help=nullnull;
privateprivate SimpleContentFragment about=nullnull;

Also add a pair of static data members that will be used as tags for identifying these
fragments in our FragmentManager:

privateprivate staticstatic finalfinal String HELP="help";
privateprivate staticstatic finalfinal String ABOUT="about";

Also add a pair of static data members that will hold the paths to our help and about
assets, since we will be referring to them from more than one place when we are
done:

privateprivate staticstatic finalfinal String FILE_HELP=
"file:///android_asset/misc/help.html";

privateprivate staticstatic finalfinal String FILE_ABOUT=
"file:///android_asset/misc/about.html";

In onCreate() of EmPubLiteActivity, initialize the fragments from the
FragmentManager:

help=

(SimpleContentFragment)getSupportFragmentManager().findFragmentByTag(HELP);
about=

(SimpleContentFragment)getSupportFragmentManager().findFragmentByTag(ABOUT);

The net result is that if we are returning from a configuration change, we will have
our fragments, otherwise we will not at this point.

Next, add the following methods to EmPubLiteActivity:

void showAbout() {
ifif (sidebar != nullnull) {

TUTORIAL #19 - SUPPORTING LARGE SCREENS

759

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

openSidebar();

ifif (about == nullnull) {
about=SimpleContentFragment.newInstance(FILE_ABOUT);

}

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, about).commit();

}
elseelse {

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_ABOUT);
startActivity(i);

}
}

void showHelp() {
ifif (sidebar != nullnull) {

openSidebar();

ifif (help == nullnull) {
help=SimpleContentFragment.newInstance(FILE_HELP);

}

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, help).commit();

}
elseelse {

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_HELP);
startActivity(i);

}
}

Both of these methods follows the same basic recipe:

• Check to see if sidebar is null, to see if we have a sidebar or not
• If we have a sidebar, call openSidebar() to ensure the user can see the

sidebar, create our Fragment if we do not already have it, and use a
FragmentTransaction to replace whatever was in the sidebar with the new
Fragment

• If we do not have the sidebar, launch an activity with an appropriately-
configured Intent

Note a couple of things with our FragmentTransaction objects:

TUTORIAL #19 - SUPPORTING LARGE SCREENS

760

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• We use addToBackStack(null), so if the user presses BACK, Android will
reverse this transaction

• We use replace() instead of add(), as there may already be a fragment in
the sidebar (replace() will behave the same as add() for an empty sidebar)

Then, in the onOptionsItemSelected() of EmPubLiteActivity, replace the about,
and help case blocks to use the newly-added methods, replacing their existing
implementations:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase android.R.id.home:

pager.setCurrentItem(0, falsefalse);
returnreturn(truetrue);

casecase R.id.notes:
Intent i=newnew Intent(thisthis, NoteActivity.class);
i.putExtra(NoteActivity.EXTRA_POSITION, pager.getCurrentItem());
startActivity(i);
returnreturn(truetrue);

casecase R.id.update:
WakefulIntentService.sendWakefulWork(thisthis,

DownloadCheckService.class);
returnreturn(truetrue);

casecase R.id.about:
showAbout();

returnreturn(truetrue);

casecase R.id.help:
showHelp();

returnreturn(truetrue);

casecase R.id.settings:
startActivity(newnew Intent(thisthis, Preferences.class));
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

TUTORIAL #19 - SUPPORTING LARGE SCREENS

761

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #5: Removing Content From the Sidebar
While addToBackStack(null) will allow Android to automatically remove fragments
as the user presses BACK, that will not cause our sidebar to magically close. Rather,
we need to do that ourselves.

The easiest way to track this is to track the state of the “back stack”. So, add
implements FragmentManager.OnBackStackChangedListener to the declaration of
EmPubLiteActivity, and in onCreate() of EmPubLiteActivity, add the following
lines, sometime after you initialized the sidebar and divider data members:

getSupportFragmentManager().addOnBackStackChangedListener(thisthis);

ifif (getSupportFragmentManager().getBackStackEntryCount() > 0) {
openSidebar();

}

The first statement registers our activity as receiving events related to changes in the
state of the back stack. The rest of that code will reopen our sidebar if, due to a
configuration change, we have fragments on the back stack — by default, our
sidebar is closed, as that is the state that is encoded in the layout files.

To make this compile, we need to implement onBackStackChanged() in
EmPubLiteActivity:

@Override
publicpublic void onBackStackChanged() {

ifif (getSupportFragmentManager().getBackStackEntryCount() == 0) {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)sidebar.getLayoutParams();
ifif (p.weight > 0) {

p.weight=0;
sidebar.setLayoutParams(p);
divider.setVisibility(View.GONE);

}
}

}

Here, if our back stack is empty, we reverse the steps from openSidebar() and close
it back up again, hiding the divider and setting the sidebar’s weight to 0.

At this point, if you build the project and run it on a -large or -xlarge device or
emulator (e.g., a WXGA800 emulator image with default settings), and you choose
to view the notes, help, or about, you will see the sidebar appear, whether in portrait
or landscape.

TUTORIAL #19 - SUPPORTING LARGE SCREENS

762

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 232: EmPubLight, XLarge Landscape, With Help

TUTORIAL #19 - SUPPORTING LARGE SCREENS

763

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Backwards Compatibility Strategies
and Tactics

Android is an ever-moving target. The first Android device (T-Mobile G1/HTC
Dream) was released in October 2008, running Android 1.0. In December 2011, the
Galaxy Nexus was released, running Android 4.0. Hence, we have averaged one
major release per year, plus numerous significant minor releases (e.g., 2.1, 2.2, 2.3).

The Android Developer site maintains a chart and table showing the most recent
breakdown of OS versions making requests of the Play Store.

Most devices tend to be clustered around 1–3 minor releases. However, these are
never the most recent release, which takes time to percolate through the device
manufacturers and carriers and onto devices, whether those are new sales or
upgrades to existing devices.

Some people panic when they realize this.

Panic is understandable, if not necessary. This is a well-understood problem, that
occurs frequently within software development — ask any Windows developer who
had to simultaneously support everything from Windows 98 to Windows XP.
Moreover, there are many things in Android designed to make this problem as small
as possible. What you need are the strategies and tactics to make it all work out.

Think Forwards, Not Backwards
Android itself tries very hard to maintain backwards compatibility. While each new
Android release adds many classes and methods, relatively few are marked as
deprecated, and almost none are outright eliminated. And, in Android, “deprecated”

765

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

means “there’s probably a better solution for what you are trying to accomplish,
though we will maintain this option for you as long as we can”.

Despite this, many developers aim purely for the lowest common denominator.
Aiming to support older releases is noble. Ignoring what has happened since those
releases is stupid, if you are trying to distribute your app to the public via the Play
Store or similar mass-distribution means.

Why? You want your app to be distinctive, not decomposing.

For example, as we saw in the chapter on the action bar, adding one line to the
manifest (android:targetSdkVersion="11") gives you the action bar, the
holographic widget set (e.g., Theme.Holo), the new style of options menu, and so on.
Those dead-set on avoiding things newer than Android 2.1 would not use this
attribute. As a result, on Android 3.0+ devices, their apps will tend to look old. Some
will not, due to other techniques they are employing (e.g., running games in a full-
screen mode), but many will.

You might think that this would not matter. After all, how many people in 2011 were
even using Android 3.x? 5%?

However, those in position to trumpet your application — Android enthusiast
bloggers chief among them — will tend to run newer equipment. Their opinion
matters, if you are trying to have their opinion sway others relative to your app.
Hence, if you look out-of-touch to them, they may be less inclined to provide
glowing recommendations of your app to their readers.

Besides, not everything added to newer versions of Android is pure “eye candy”. It is
entirely possible that features in the newer Android releases might help make your
app stand out from the competition, whether it is making greater use of NFC or
offering tighter integration to the stock Calendar application or whatever. By taking
an “old features only” approach, you leave off these areas for improvement.

And, to top it off, the world moves faster than you think. It takes about a year for a
release to go from release to majority status (or be already on the downslope
towards oblivion, passed over by something newer still). You need to be careful that
the decisions you make today do not doom you tomorrow. If you focus on “old
features only”, how much rework will it take you to catch up in six months, or a year?

Hence, this book advocates an approach that differs from that taken by many: aim
high. Decide what features you want to use, whether those features are from older

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

766

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

releases or the latest-and-greatest release. Then, write your app using those features,
and take steps to ensure that everything still works reasonably well (if not as full-
featured) on older devices. This too is a well-trodden path, used by Web developers
for ages (e.g., support sexy stuff in Firefox and Safari, while still gracefully degrading
for IE6). And the techniques that those Web developers use have their analogous
techniques within the Android world.

Aim Where You Are Going
One thing to bear in mind is that the OS distribution chart and table from the
Android Developers blog shown above is based on requests to the Android Market.

This is only directly relevant if you are actually distributing through the Play Store.

If you are distributing through the Amazon AppStore, or to device-specific outlets
(e.g., Barnes & Noble NOOK series), you will need to take into account what sorts of
devices are using those means of distribution.

If you are specifically targeting certain non-Play Store devices, like the Kindle Fire,
you will need to take into account what versions of Android they run.

If you are building an app to be distributed by a device manufacturer on a specific
device, you need to know what Android version will (initially) be on that device and
focus on it.

If you are distributing your app to employees of a firm, members of an organization,
or the like, you need to determine if there is some specific subset of devices that
they use, and aim accordingly. For example, some enterprises might distribute
Android devices to their employees, in which case apps for that enterprise should
run on those devices, not necessarily others.

A Target-Rich Environment
There are a few places in your application where you will need to specify Android
API levels of relevance to your code.

The most important one is the android:minSdkVersion attribute, as discussed early
in this book. You need to set this to the oldest version of Android you are willing to
support, so you will not be installed on devices older than that.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

767

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There is also android:targetSdkVersion, mentioned in passing earlier in this
chapter. In the abstract, this attribute tells Android “this is the version of Android I
was thinking of when I wrote the code”. Android can use this information to help
both backwards and forwards compatibility. Historically, this was under-utilized.
However, with API Level 11 and API Level 14, android:targetSdkVersion took on
greater importance. Specifying 11 or higher gives you the action bar and all the rest
of the look-and-feel introduced in the Honeycomb release. Specifying 14 or higher
will give you some new features added in Ice Cream Sandwich, such as automatic
whitespace between your app widgets and other things on the user’s home screen. In
general, use a particular android:targetSdkVersion when instructions tell you to.

There is an android:maxSdkVersion, which indicates the newest version of Android
you would like to support. However, this will only serve as a filter on the Play Store.
If a user has, say, a Gingerbread device, and your app has
android:maxSdkVersion="10", and the user’s device gets an upgrade to Ice Cream
Sandwich, your app may remain installed. In that case, your app will be running on a
version higher than the maximum you specified. However, you will not show up in
the Market for devices running a newer version of Android than you specified.
Google strongly discourages the use of this attribute.

The fourth place — and perhaps the one that confuses developers the most – is the
build target.

Part of the confusion is the multiple uses of the term “target”. The build target has
nothing to do with android:targetSdkVersion. Nor is it strictly tied to what devices
you are targeting.

Rather, it is a very literal term: it is the target of the build. It indicates:

• What version of the Android class library you wish to compile against,
dictating what classes and methods you will be able to refer to directly

• What rules to apply when interpreting resources and the manifest, to
complain about things that are not recognized

The net is that you set your build target to be the lowest API level that has
everything you are using directly.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

768

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lint: It’s Not Just For Belly Buttons
In the old days, the only way to find out that you were using a newer class or method
than what was in your minSdkVersion would be to set your build target to be the
same as your minSdkVersion. That way, any attempt to use something newer than
your minimum would be greeted with compile errors. This works, but at a high cost:
it makes intentionally using newer capabilities very painful, forcing you to use
reflection to access them.

Nowadays, this is no longer needed, thanks to Lint.

Lint is part of the standard build process, adding new errors and warnings for things
that are syntactically valid but probably not the right answer. In particular, Lint will
tell you if you are using classes or methods that are newer than your minSdkVersion,
even if they are valid for your build target.

Hence, the targeting strategy nowadays is:

• Set your minSdkVersion to be the oldest version that you are willing to
support

• Set your build target to be the version of Android that has all of the classes
and methods you intend to use, allowing Lint to point out places where you
need to pay attention to what sort of device you are running on (more on
this later)

• Set your targetSdkVersion to be something relatively recent, unless you
have specific reasons to use some specific version

A Little Help From Your Friends
The simplest way to use a feature yet support devices that lack the feature is to use a
compatibility library that enables the feature for more devices.

We have seen two of these so far in the book:

• The Android Support package, offering implementations of fragments and
loaders going back to Android 1.6

• ActionBarSherlock, providing Android 2.x devices (and beyond) with action
bars

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

769

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In these cases, the API for using the compatibility library is nearly identical to using
the native Android capability, mostly involving slightly different package names
(e.g., android.support.v4.app.Fragment instead of android.app.Fragment).

So, if there is something new that you want to use on older devices, and the new
feature is not obviously tied to hardware, see if there is a “backport” of the feature
available to you. For example, Android 4.0 added a GridLayout, to try to simplify
some UI patterns that are tedious to do with nested LinearLayout containers or a
RelativeLayout. While GridLayout itself is only available natively on Android
starting with 4.0, it is entirely possible to take the source code for GridLayout and
get it working on older devices, as one developer did. Of course, after that developer
went through all of that work, Google added GridLayout to the Android Support
package.

These sorts of backports can then be dropped once you drop support for the older
devices that required them. For example, if the action bar APIs stay stable,
ActionBarSherlock will no longer be needed once you drop support for Android 2.x
devices, perhaps sometime late in 2013.

Avoid the New on the Old
If the goal is to support new capabilities on new devices, while not losing support for
older devices, that implies we have the ability to determine what devices are newer
and what devices are older. There are a few techniques for doing this, involving Java
and resources.

Java

If you wish to conditionally execute some lines of code based on what version of
Android the device is running, you can check the value of Build.VERSION, referring
to the android.os.Build class. For example:

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
// do something only on API Level 9 and higher

}

Any device running an older version of Android will skip the statements inside this
version guard and therefore will not execute.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

770

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.peterkuterna.net/2011/11/using-new-gridlayout-on-pre-ice-cream.html

That technique is sufficient for Android 2.0 and higher devices. If you are still
supporting Android 1.x devices, the story gets a bit more complicated, and that will
be discussed later in the book.

If you decide that you want your build target to match your minSdkVersion level —
as some developers elect to do — your approach will differ. Rather than blocking
some statements from being executed on old devices, you will enable some
statements to be executed on new devices, where those statements use Java
reflection (e.g., Class.forName()) to reference things that are newer than what your
build target supports. Since using reflection is extremely tedious in Java, it is usually
simpler to have your build target reflect the classes and methods you are actually
using.

@TargetAPI

One problem with this technique is that Eclipse will grumble at you, saying that you
are using classes and methods not available on the API level you set for your
minSdkVersion. To quiet down these Lint messages, you can use the @TargetAPI
annotation.

For example, in the tutorials, we used a WebViewFragment back-ported to work with
the Android Support version of fragments and ActionBarSherlock. WebViewFragment
wants to pass the onResume() and onPause() events to the WebView it manages, but
onResume() and onPause() only exist on WebView on API Level 11 and higher. So, we
need to use the Build version guard to ensure we do not call those methods on older
devices. To get rid of the warning messages, we use @TargetAPI(11):

/**
* Called when the fragment is visible to the user and actively running. Resumes

the WebView.
*/

@TargetApi(11)
@Override
publicpublic void onPause() {

supersuper.onPause();

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();

}
}

/**
* Called when the fragment is no longer resumed. Pauses the WebView.
*/

@TargetApi(11)

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

771

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onResume() {

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();

}

supersuper.onResume();
}

Now, Lint knows that we are intentionally using API Level 11 capabilities and will no
longer warn us about them.

Another Example: AsyncTask

As mentioned in the chapter on threads, AsyncTask can work with either a full
thread pool or a “serialized executor” that will only execute one AsyncTask at a time.
From Android 1.6 through 2.3, the full thread pool is the only available option.
Android 3.0 introduced the serialized executor, and Android 3.2 made it the default,
if you have set your targetSdkVersion to be 13 or higher.

If you want to ensure that no matter what your targetSdkVersion is, that you always
get the full thread pool, you need to use a version guard block:

@TargetApi(11)
staticstatic publicpublic <T> void executeAsyncTask(AsyncTask<T, ?, ?> task,

T... params) {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
}
elseelse {

task.execute(params);
}

}

Here, we use executeOnExecutor() and specifically request the
THREAD_POOL_EXECUTOR — but only on API Level 11 and higher. Otherwise, we fall
back to the default behavior, which gives us the thread pool used on the older API
levels.

Resources

The aforementioned version guards only work for Java code. Sometimes, you will
want to have different resources for different versions of Android. For example, you
might want to make a custom style that inherits from Theme.Holo for Android 3.0

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

772

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and higher. Since Theme.Holo does not exist on earlier versions of Android, trying to
use a style that inherits from it will fail miserably on, say, an Android 2.2 device.

To handle this scenario, use the -vNN suffix to have two resource sets. One (e.g., res/
values-v11/) would be restricted to certain Android versions and higher (e.g., API
Level 11 and higher). The default resource set (e.g., res/values/) would be valid for
any device. However, since Android chooses more specific matches first, an Ice
Cream Sandwich phone would go with the resources containing the -v11 suffix. So,
in the -v11 resource directories, you put the resources you want used on API Level 11
and higher, and put the backwards-compatible ones in the set without the suffix.
This works for Android 2.0 and higher. You can also use -v3 for resources that only
will be used on Android 1.5 (and no higher) or -v4 for resources that only will be
used on Android 1.6.

Components

One variation on the above trick allows you to conditionally enable or disable
components, based on API level.

Every <activity>, <receiver>, or <service> in the manifest can support an
android:enabled attribute. A disabled component (android:enabled="false")
cannot be started by anyone, including you.

We have already seen string resources be used in the manifest, for things like
android:label attributes. Boolean values can also be created as resources. By
convention, they are stored in a bools.xml file in res/values/ or related resource
sets. Just as <string> elements provide the definition of a string resource, <bool>
elements provide the definition of a boolean resource. Just give the boolean resource
a name and a value:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<bool<bool name="on_honeycomb">>false</bool></bool>
</resources></resources>

The above example has a boolean resource, named on_honeycomb, with a value of
false. That would typically reside in res/values/bools.xml. However, you might
also have a res/values-v11/bools.xml file, where you set on_honeycomb to true.

Now, you can use @bool/on_honeycomb in android:enabled to conditionally enable a
component for API Level 11 or higher, leaving it disabled for older devices.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

773

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This can be a useful trick in cases where you might need multiple separate
implementations of a component, based on API level. For example, later in the book
we will examine app widgets — those interactive elements users can add to their
home screens. App widgets have limited user interfaces, but API Level 11 added a few
new capabilities that previously were unavailable, such as the ability to use
ListView. However, the code for a ListView-backed app widget may be substantially
different than for a replacement app widget that works on older devices. And, if you
leave the ListView app widget enabled in the manifest, the user might try choosing
it and crashing. So, you would only enable the ListView app widget on API Level 11
or higher, using the boolean resource trick.

Testing
Of course, you will want to make sure your app really does work on older devices as
well as newer ones.

At build time, one trick to use periodically is to change your build target to match
your minSdkVersion, then see where the compiler complains (or, in Eclipse, where
you get all the red squiggles). If everything is known (e.g., resource attributes that
will be ignored on older versions) or protected (e.g., Java statements inside a version
guard if statement), then you are OK. If, however, you see complaints about
something you forgot was only in newer Android releases, you can take steps to fix
things.

You will also want to think about Android versions when it comes to testing, a topic
that will be covered later in this book.

Keeping Track of Changes
Each Android SDK release is accompanied by API release notes, such as this set for
Android 4.2/API Level 17.

Similarly, each Android SDK release is accompanied by its “API Differences Report”, a
roster of each added, removed, or modified class or method. For example, this API
Differences Report points out the changes between API Level 16 and API Level 17.

Other changes are called out in the JavaDocs for Build.VERSION_CODES, with
particular emphasis on what happens when you set a specific API level as your
android:targetSdkVersion. Note that this roster is not complete, but may mention
some things not mentioned in the other locations.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

774

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/sdk/api_diff/17/changes.html
http://developer.android.com/sdk/api_diff/17/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html

Each class, method, and field in the JavaDocs has a notation as to what API level that
particular item was added. Class API levels appear towards the top of the page;
method and field API levels appear on the right side of the gray bar containing the
method signature or field declaration. Also, in the JavaDocs “Android APIs” column
on the left, there is a drop-down that allows you to filter the contents based upon
API level.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

775

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Help

Obviously, this book does not cover everything. And while your #1 resource (besides
the book) is going to be the Android SDK documentation, you are likely to need
information beyond what’s covered in either of those places.

Searching online for “android” and a class name is a good way to turn up tutorials
that reference a given Android class. However, bear in mind that tutorials written
before late August 2008 are probably written for the M5 SDK and, as such, will
require considerable adjustment to work properly in current SDKs.

Beyond randomly hunting around for tutorials, though, this chapter outlines some
other resources to keep in mind.

Questions. Sometimes, With Answers.
The “official” places to get assistance with Android are the Android Google Groups.
With respect to the SDK, there are three to consider following:

1. StackOverflow’s android tag
2. android-developers, for SDK questions and answers
3. adt-dev, for questions and answers about the official Android development

tools
4. android-discuss, designed for free-form discussion of anything Android-

related, not necessarily for programming questions and answers

You might also consider:

1. The core Android team’s periodic Hangouts on Google+
2. The Android tutorials and programming forums over at anddev.org

777

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android
http://groups.google.com/group/android-developers
http://groups.google.com/group/adt-dev
http://groups.google.com/group/android-discuss
http://anddev.org/

3. The #android-dev IRC channel on freenode (irc.freenode.net)

It is important, particularly for StackOverflow and the Google Groups, to write well-
written questions:

1. Include relevant portions of the source code (e.g., the method in which you
are getting an exception)

2. The stack trace from LogCat, if the problem is an unhandled exception
3. On StackOverflow, make sure your source code and stack trace are formatted

as source code; on Google Groups, consider posting long listings on
gist.github.com or a similar sort of code-paste site

4. Explain thoroughly what you are trying to do, how you are trying to do it,
and why you are doing it this way (if you think your goal or approach may be
a little offbeat)

5. On StackOverflow, respond to answers and comments with your own
comments, addressing the person using the @ syntax (e.g.,
@CommonsWare), to maximize the odds you will get a reply

6. On the Google Groups, do not “ping” or reply to your own message to try to
elicit a response until a reasonable amount of time has gone by (e.g., 24
hours)

Heading to the Source
The source code to Android is now available. Mostly this is for people looking to
enhance, improve, or otherwise fuss with the insides of the Android operating
system. But, it is possible that you will find the answers you seek in that code,
particularly if you want to see how some built-in Android component “does its
thing”.

The source code and related resources can be found at http://source.android.com.
Here, you can:

1. Download the source code
2. File bug reports against the operating system itself
3. Submit patches and learn about the process for how such patches get

evaluated and approved
4. Join a separate set of Google Groups for Android platform development

Note that, as of the time of this writing, you cannot browse or search the Android
source code from the Android project’s site. The easiest way to browse the source

GETTING HELP

778

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://gist.github.com
http://source.android.com
http://source.android.com/source/downloading.html
http://source.android.com/source/report-bugs.html
http://source.android.com/source/submit-patches.html
http://source.android.com/community/index.html

code is to browse the GitHub mirrors of the source. To search the source code, you
can use services like AndroidXRef.

Getting Your News Fix
Ed Burnette, a nice guy who happened to write his own Android book, is also the
manager of Planet Android, a feed aggregator for a number of Android-related blogs.
Subscribing to the planet’s feed will let you monitor quite a bit of Android-related
blog posts, though not exclusively related to programming.

GETTING HELP

779

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/android
http://androidxref.com/source/
http://www.planetandroid.com/

Trail: Advanced UI

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing GridLayout

In 2011, Google added GridLayout to our roster of available container classes (a.k.a.,
layout managers). GridLayout is an attempt to make setting up complex Android
layouts a bit easier, particularly with an eye towards working well with the Eclipse
graphical layout editor. In this chapter, we will examine why GridLayout was added
and how we can use it in our projects.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Issues with the Classic Containers
Once upon a time, most layouts were implemented using a combination of
LinearLayout, RelativeLayout, and TableLayout. In fact, most layouts are still
created using those three “classic” containers. Almost everything you would want to
be able to create can be accomplished using one, or sometimes more than one, of
those containers.

However, there are issues with the classic containers. The two most prominent
might be the over-reliance upon nested containers and issues with Eclipse’s drag-
and-drop GUI building capability.

781

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Nested Containers

LinearLayout and TableLayout suffer from a tendency to put too many containers
inside of other containers. For example, implementing some sort of 2x2 grid would
involve:

• A vertical LinearLayout holding onto a pair of horizontal LinearLayouts, or
• A TableLayout holding onto a pair of TableRows

On the surface, this does not seem that bad. And, in many cases, it is not that bad.

However, views and containers are relatively heavyweight items. They consume a fair
bit of heap space, and when it comes time to lay them out on the screen, they
consume a fair bit of processing power. In particular, the fact that a container can
hold onto any type of widget or container means that it is difficult to optimize
common scenarios (e.g., a 2x2 grid) for faster processing. Instead, a container treats
its children more or less as “black boxes”, requiring lots of method invocations up
and down the call stack to calculate sizes and complete the layout process.

Moreover, the call stack itself can be an issue. The stack size of the main application
thread has historically been rather small (8KB was the last reported value). If you
have a complex UI, with more than ~15 nested containers, you are likely to run into a
StackOverflowError. Android itself will contribute some of these containers,
exacerbating this problem.

RelativeLayout, by comparison, can implement some UI patterns without any
nested containers, simply by positioning widgets relative to the container’s bounds
and relative to each other.

Eclipse Drag-and-Drop

Where RelativeLayout falls down is with the drag-and-drop capability of the
graphical layout editor in Eclipse.

When you release the mouse button when dropping a widget into the preview area,
the tools need to determine what that really means in terms of layout rules.

LinearLayout works fairly well: it will either insert your widget in between two other
widgets or add it to the end of the row or column you dropped into. TableLayout
behaves similarly.

INTRODUCING GRIDLAYOUT

782

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RelativeLayout, though, has a more difficult time guessing what particular
combination of rules you really mean by this particular drop target. Are you trying to
attach the widget to another widget? If so, which one? Are you trying to attach the
widget to the bounds of the RelativeLayout? While sometimes it will guess
properly, sometimes it will not, with potentially confusing results. It is reasonably
likely that you will need to tweak the layout rules manually, either via the Properties
pane or via the raw XML.

The New Contender: GridLayout
GridLayout tries to cull the best of the capabilities of the classic containers and drop
as many of their limitations as possible.

GridLayout works a bit like TableLayout, insofar as it sets things up in a grid, with
rows and columns, where the row and column sizes are computed based upon what
is placed into those rows and columns. However, unlike TableLayout, which relies
upon a separate TableRow container to manage the rows, GridLayout takes the
RelativeLayout approach of putting rules on the individual widgets (or containers)
in the grid, where those rules steer the layout processing. For example, with
GridLayout, widgets can declare specifically which row and column they should slot
into.

GridLayout also goes a bit beyond what TableLayout offers in terms of capabilities.
Notably, it supports row spans as well as column spans, whereas TableRow only
supports a column span. This gives you greater flexibility when designing your
layout to fit the grid-style positioning rules. You can also:

• Explicitly state how many columns there are, rather than having that value
be inferred by row contents

• Allow Android to determine where to place a widget without specifying any
row or column, with it finding the next available set of grid cells capable of
holding the widget, based upon its requested row span and column span
values

• Have control over orientation: whereas TableLayout always was a column of
rows, you could have a GridLayout be a row of columns, if that makes
implementing the design easier

• And so on

INTRODUCING GRIDLAYOUT

783

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alas, Eclipse is beyond hopeless with GridLayout at this junction. With luck, it will
improve in future years. In the interim, you will most likely need to spend quality
time in the XML editor in order to get the results that you want.

GridLayout and the Android Support Package
GridLayout was natively added to the Android SDK in API Level 14 (Android 4.0).
Fortunately, the Android Support package has a backport of GridLayout. However,
the backport is not in one of the JAR files, such as android-support-v4.jar, as
GridLayout requires some resources. Hence, it is in an Android library project that
you must add to your project.

You will find this library project in $SDK/extras/android/support/v7/gridlayout,
where $SDK is wherever you installed your copy of the Android SDK.

Command-line builds can use `android update lib-project to attach the Android
library project to their host project. Eclipse developers will need to create a new
Eclipse project based upon the Android library project first. In either case, the
process is similar to what was needed to add ActionBarSherlock to a project, as was
described in one of the tutorials.

When using the backported GridLayout, you will need to declare another XML
namespace in your layout XML resources. That namespace will be
http://schemas.android.com/apk/res/your.package.goes.here, where
your.package.goes.here is replaced by your application’s package name. If you use
Eclipse to add the GridLayout to the layout resource, it will automatically add this
namespace, under the prefix of app, such as:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res/

com.commonsware.android.gridlayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

That namespace is required for GridLayout-specific attributes. For example, we can
have a columnCount attribute, indicating how many columns the GridLayout should
contain. For the native API Level 14 GridLayout, that attribute would be
android:columnCount. For the backport, it will be app:columnCount, assuming that
you gave the namespace the prefix of app.

INTRODUCING GRIDLAYOUT

784

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When citing GridLayout-specific attributes, the rest of this chapter will use the app
prefix, to clarify which attributes need that prefix for the backport. If you are using
the native API Level 14 implementation of GridLayout, and you are manually
working with the XML, just remember to use android as a prefix instead of app.

The sample app shows both the native and the backport implementations of
GridLayout: on API Level 14+ devices/emulators it will use native implementations
from res/layout-v14/, and it will use the backport on older environments.

Eclipse and GridLayout
You will find GridLayout in the “Layouts” portion of the palette of available widgets
and containers. As with anything else, you can drag it from the palette into the
preview area, then use the Outline and Properties views to configure it.

However, this is the native API Level 14 version of GridLayout, not the backport. If
you wish to use the backport, you will need to go into the XML and manually adjust
the element name, to be android.support.v7.widget.GridLayout instead of
GridLayout. This may, in turn, require restarting Eclipse to make it happy, if you get
errors in the preview area when trying to view the resulting GridLayout.

In some future edition of this book, when Eclipse editing of GridLayout is sensible,
we will describe the process of using it to create the various layouts that appear in
the rest of this chapter.

Trying to Have Some Rhythm
One of the things that the Android design guidelines try to emphasize is having
everything work in 48dp-high blocks, to give you a reasonable set of touch targets for
fingers, while maintaining some uniformity of sizing.

Figure 233: 48dp Rhythm, Depicted (image courtesy of Android Open Source Project)

When working with GridLayout in the Eclipse graphical layout editor, you will be
prompted to try to put your widgets in 48dp-based positions. There is even a “snap

INTRODUCING GRIDLAYOUT

785

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to grid” toolbar toggle button that, when pressed, will force everything you drag into
the GridLayout to reside on a 16dp-based grid.

To accomplish this, it adds a series of Space widgets to your layout (or, if you are
working with the backport of GridLayout, you get
android.support.v7.widget.Space widgets). These will consume the space that
gets your widgets to line up in what Eclipse thinks is the proper positioning. We will
see examples of that as we examine our sample application.

Our Test App
To look at a series of GridLayout-based layouts, let’s turn our attention to the
GridLayout/Sampler sample project. This has the same ViewPager and
PagerTabStrip as did the second sample app from the chapter on ViewPager.
However, rather than use a list of 10 EditText widgets managed by fragments, in this
case, our fragments will manage layouts containing GridLayout. Each page of our
pager will contain a TrivialFragment, whose contents are based on a Sample class
that is a simple pair of a layout resource ID and a string resource ID for the
fragment’s title:

packagepackage com.commonsware.android.gridlayout;

classclass SampleSample {
int layoutId;
int titleId;

Sample(int layoutId, int titleId) {
thisthis.layoutId=layoutId;
thisthis.titleId=titleId;

}
}

Our revised SampleAdapter maintains a static ArrayList of these Sample objects,
one per layout we wish to examine, and uses those values to populate our ViewPager
title:

packagepackage com.commonsware.android.gridlayout;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {

INTRODUCING GRIDLAYOUT

786

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/GridLayout/Sampler
http://github.com/commonsguy/cw-omnibus/tree/master/GridLayout/Sampler

staticstatic ArrayList<Sample> SAMPLES=newnew ArrayList<Sample>();
privateprivate Context ctxt=nullnull;

staticstatic {
SAMPLES.add(newnew Sample(R.layout.row, R.string.row));
SAMPLES.add(newnew Sample(R.layout.column, R.string.column));
SAMPLES.add(newnew Sample(R.layout.table, R.string.table));
SAMPLES.add(newnew Sample(R.layout.table_flex, R.string.flexible_table));
SAMPLES.add(newnew Sample(R.layout.implicit, R.string.implicit));
SAMPLES.add(newnew Sample(R.layout.spans, R.string.spans));

}

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(SAMPLES.size());
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(TrivialFragment.newInstance(getSample(position).layoutId));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(getSample(position).titleId));
}

privateprivate Sample getSample(int position) {
returnreturn(SAMPLES.get(position));

}
}

TrivialFragment just inflates our desired layout, having received the layout resource
ID as a parameter to its factory method:

packagepackage com.commonsware.android.gridlayout;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass TrivialFragmentTrivialFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_LAYOUT_ID="layoutId";

staticstatic TrivialFragment newInstance(int layoutId) {
TrivialFragment frag=newnew TrivialFragment();

INTRODUCING GRIDLAYOUT

787

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bundle args=newnew Bundle();

args.putInt(KEY_LAYOUT_ID, layoutId);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

returnreturn(inflater.inflate(getArguments().getInt(KEY_LAYOUT_ID, -1),
container, falsefalse));

}
}

Note that if you load this project from the GitHub repository, you will need to
update it not only for ActionBarSherlock, but also for your copy of the GridLayout
library project.

Replacing the Classics
Let’s first examine the behavior of GridLayout by seeing how it can replace some of
the classic layouts we would get from LinearLayout and TableLayout. Each of the
following sub-sections will examine one GridLayout-based layout XML resource,
how it can be constructed, and what the result looks like when viewed in the sample
project.

Horizontal LinearLayout

The classic way to create a row of widgets is to use a horizontal LinearLayout. The
LinearLayout will put each of its children, one after the next, within the row.

The GridLayout equivalent is to specify one that has an app:columnCount equal to
the number of widgets in the row. Then, each widget will have app:layout_column
set to its specific column index (starting at 0) and app:layout_row set to 0, as seen
in res/layout/row.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/
apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.gridlayout"

android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

INTRODUCING GRIDLAYOUT

788

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<Button<Button
app:layout_column="0"
app:layout_row="0"
android:text="@string/button"/>/>

<Button<Button
app:layout_column="1"
app:layout_row="0"
android:text="@string/button"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

Unlike LinearLayout, though, we do not specify sizes of the children, in terms of
android:layout_width and android:layout_height. GridLayout works a bit like
TableLayout in this regard, supplying default values for these attributes. In the case
of GridLayout, the defaults are wrap_content, and this cannot be overridden (akin
to the behavior of immediate children of a TableRow). Instead, you will control size
via row and column spans, as will be illustrated later in this chapter.

Given the above layout, we get:

Figure 234: Row Using GridLayout, on a 4.0.3 Emulator

INTRODUCING GRIDLAYOUT

789

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Vertical LinearLayout

Similarly, the conventional way you would specify a column is to use a vertical
LinearLayout, which would position its children one after the next. The GridLayout
equivalent would be to have app:columnCount set to 1, and to place the widgets in
each required row via app:layout_row attributes, as seen in res/layout/
column.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/
apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.gridlayout"

android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="1">>

<Button<Button
app:layout_column="0"
app:layout_row="0"
android:text="@string/button"/>/>

<Button<Button
app:layout_column="0"
app:layout_row="1"
android:text="@string/button"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

INTRODUCING GRIDLAYOUT

790

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 235: Column Using GridLayout, on a 4.0.3 Emulator

All that being said, it is still probably better to use LinearLayout in these cases,
rather than mess with GridLayout.

TableLayout

The big key to a TableLayout is column width, where columns expand to fill their
contents, assuming there is sufficient room in the table. GridLayout also expands its
columns to address the sizes of its contents.

For example, here is a simple 2x2 table, with TextView widgets in the left column
and EditText widgets in the right column, as seen in res/layout/table.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/
apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.gridlayout"

android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

<TextView<TextView
app:layout_column="0"

INTRODUCING GRIDLAYOUT

791

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

app:layout_row="0"
android:text="@string/name"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="0"
android:inputType="textPersonName">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<TextView<TextView
app:layout_column="0"
app:layout_row="1"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="1"
android:inputType="textPostalAddress"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

One feature of the Eclipse graphical layout editor is that we can toggle on a series of
lines showing the sizing of the rows and columns, by clicking the “Show Structure”
toolbar button:

Figure 236: “Show Structure” Toolbar Icon

This helps illustrate that our right column actually takes up all remaining room on
the screen, by showing green gridlines denoting the transitions between rows and
columns:

INTRODUCING GRIDLAYOUT

792

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 237: “Show Structure” Output for GridLayout Table Layout

However, our EditText widgets are small, because nothing is causing them to fill the
available space. To do that, we can use android:layout_gravity, to ask the
GridLayout to let the widgets fill the available horizontal space, as seen in res/
layout/table_flex.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/
apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.gridlayout"

android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

<TextView<TextView
app:layout_column="0"
app:layout_row="0"
android:text="@string/name"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="0"
app:layout_gravity="fill_horizontal"
android:inputType="textPersonName">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<TextView<TextView
app:layout_column="0"
app:layout_row="1"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="1"
app:layout_gravity="fill_horizontal"
android:inputType="textPostalAddress"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

INTRODUCING GRIDLAYOUT

793

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This allows the EditText widgets to fill the width of the column:

Figure 238: Table Using GridLayout, on a 4.0.3 Emulator

That holds true regardless of how wide that column is:

INTRODUCING GRIDLAYOUT

794

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 239: Table Using GridLayout, in Landscape, on a 4.0.3 Emulator

Implicit Rows and Columns
While all the previous samples showed the row and column of each widget being
defined explicitly via app:layout_row and app:layout_column attributes, that is not
your only option.

If you have app:columnCount on the GridLayout element itself, you can allow
GridLayout to assign rows and columns. In this respect, GridLayout behaves a bit
like a “flow layout”: it assigns widgets to cells in the first row, starting from the first
column and working its way across, wrapping to the next row when it runs out of
room. This makes for a more terse layout file, at the cost of perhaps introducing a bit
of confusion when you add or remove a widget and everything after it in the layout
file shifts location.

For example, res/layout/implicit.xml is the same as res/layout/table_flex.xml,
except that it skips the app:layout_row and app:layout_column attributes, allowing
GridLayout to assign the positions:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/
apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.gridlayout"

android:layout_width="match_parent"
android:layout_height="match_parent"

INTRODUCING GRIDLAYOUT

795

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

app:columnCount="2"
app:orientation="horizontal">>

<TextView<TextView
android:text="@string/name"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_gravity="fill_horizontal"
android:inputType="textPersonName">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<TextView<TextView
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_gravity="fill_horizontal"
android:inputType="textPostalAddress"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

Visually, this sample is identical to the last one:

Figure 240: Table Using GridLayout and Implicit Positions, on a 4.0.3 Emulator

INTRODUCING GRIDLAYOUT

796

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The “across columns, then down rows” model holds for GridLayout in the default
orientation: horizontal. You can add an app:orientation attribute to the
GridLayout, setting it to vertical. Then, based on an app:rowCount value,
GridLayout will automatically assign positions, working down the first column, then
across to the next column when it runs out of rows.

Row and Column Spans
Like TableLayout, GridLayout supports the notion of column spans. You can use
app:layout_columnSpan to indicate how many columns a particular widget should
span in the resulting grid.

However, GridLayout also supports row spans, in the form of app:layout_rowSpan
attributes. A widget can span rows, columns, or both, as needed.

If you are using implicit positions, per the previous section, GridLayout will seek the
next available space that has sufficient rows and columns for a widget’s set of spans.

For example, the following diagram depicts five buttons placed in a GridLayout with
various spans, and an attempt to add a sixth button that should span two columns:

Figure 241: Span Sample (image courtesy of Android Open Source Project)

Assuming the first five buttons were added in sequence and with implicit
positioning, GridLayout ordinarily would drop the sixth button into the fourth
column of the third row. However, there is only a one-column-wide space available
there, given that the third button intrudes into the third row. Hence, GridLayout
will skip over the smaller space and put the sixth button into the sixth column in the
third row.

INTRODUCING GRIDLAYOUT

797

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A GridLayout-based layout that implements the above diagram can be found in res/
layout/spans.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/
apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.gridlayout"

android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="9"
app:orientation="horizontal"
app:rowCount="5">>

<Button<Button
app:layout_gravity="fill"
app:layout_columnSpan="2"
app:layout_rowSpan="2"
android:text="@string/string_1"/>/>

<Button<Button
app:layout_gravity="fill_horizontal"
app:layout_columnSpan="2"
android:text="@string/string_2"/>/>

<Button<Button
app:layout_gravity="fill_vertical"
app:layout_rowSpan="4"
android:text="@string/string_3"/>/>

<Button<Button
app:layout_gravity="fill"
app:layout_columnSpan="3"
app:layout_rowSpan="2"
android:text="@string/string_4"/>/>

<Button<Button
app:layout_gravity="fill_horizontal"
app:layout_columnSpan="3"
android:text="@string/string_5"/>/>

<Button<Button
app:layout_gravity="fill_horizontal"
app:layout_columnSpan="2"
android:text="@string/string_6"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="0"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="1"

INTRODUCING GRIDLAYOUT

798

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="2"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="3"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="4"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="5"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="6"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="7"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
android:layout_column="8"
android:layout_row="0"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="1"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="2"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="3"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"

INTRODUCING GRIDLAYOUT

799

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

app:layout_column="8"
app:layout_row="4"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

This layout shows one of the limitations of GridLayout: its columns and rows will
have a size of 0 by default. Hence, to ensure that each row and column has a
minimum size, this layout uses Space elements (in an eighth column and fifth row)
to establish those minimums. This makes the layout file fairly verbose, but it gives
the desired results:

Figure 242: GridLayout Spans, on a 4.0.3 Emulator

However, the fixed-sized Space elements break the fluidity of the layout:

INTRODUCING GRIDLAYOUT

800

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 243: GridLayout Spans, in Landscape, on a 4.0.3 Emulator

Perhaps someday someone will create a PercentSpace widget, occupying a
percentage of the parent’s size, that could be used instead.

The author would like to give thanks to those on StackOverflow who assisted in
getting the span layout to work.

Should You Use GridLayout?
An Android Developers Blog post on GridLayout says:

If you are starting a UI from scratch and are not familiar with Android
layouts, use a GridLayout — it supports most of the features of the other
layouts and has a simpler and more general API than either TableLayout or
RelativeLayout.

In 2014, that may be a sound recommendation for newcomers to Android, and it
might not be an unreasonable suggestion for experienced Android developers today.
However, the complexity of the Android library project required for the backport,
coupled with the copious number of examples using the classic layout managers,
make those older layout managers a better choice in many respects for those with
limited Android experience.

INTRODUCING GRIDLAYOUT

801

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/11887299/115145
http://stackoverflow.com/a/11887299/115145
http://android-developers.blogspot.com/2011/11/new-layout-widgets-space-and-gridlayout.html
http://android-developers.blogspot.com/2011/11/new-layout-widgets-space-and-gridlayout.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dialogs and DialogFragments

Generally speaking, modal dialogs are considered to offer poor UX, particularly on
mobile devices. You want to give the user more choices, not fewer, and so locking
them into “deal with this dialog right now, or else” is not especially friendly. That
being said, from time to time, there will be cases where that sort of modal interface
is necessary, and to help with that, Android does have a dialog framework that you
can use.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

DatePickerDialog and TimePickerDialog
Android has a pair of built-in dialogs that handle the common operations of
allowing the user to select a date (DatePickerDialog) or a time (TimePickerDialog).
These are simply dialog wrappers around the DatePicker and TimePicker widgets,
as are described in this book’s Widget Catalog.

The DatePickerDialog allows you to set the starting date for the selection, in the
form of a year, month, and day of month value. Note that the month runs from 0 for
January through 11 for December. Most importantly, both let you provide a callback
object (OnDateChangedListener or OnDateSetListener) where you are informed of a
new date selected by the user. It is up to you to store that date someplace,
particularly if you are using the dialog, since there is no other way for you to get at
the chosen date later on.

803

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Similarly, TimePickerDialog lets you:

• Set the initial time the user can adjust, in the form of an hour (0 through 23)
and a minute (0 through 59)

• Indicate if the selection should be in 12-hour mode with an AM/PM toggle,
or in 24-hour mode (what in the US is thought of as “military time” and
much of the rest of the world is thought of as “the way times are supposed to
be”)

• Provide a callback object (OnTimeChangedListener or OnTimeSetListener) to
be notified of when the user has chosen a new time, which is supplied to you
in the form of an hour and minute

For example, from the Dialogs/Chrono sample project, here’s a trivial layout
containing a label and two buttons — the buttons will pop up the dialog flavors of
the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView android:id="@+id/dateAndTime"

android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<Button<Button android:id="@+id/dateBtn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>/>

<Button<Button android:id="@+id/timeBtn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Set the Time"
android:onClick="chooseTime"
/>/>

</LinearLayout></LinearLayout>

The more interesting stuff comes in the Java source:

packagepackage com.commonsware.android.chrono;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.DatePickerDialogandroid.app.DatePickerDialog;
importimport android.app.TimePickerDialogandroid.app.TimePickerDialog;

DIALOGS AND DIALOGFRAGMENTS

804

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/Chrono

importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.view.Viewandroid.view.View;
importimport android.widget.DatePickerandroid.widget.DatePicker;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.TimePickerandroid.widget.TimePicker;
importimport java.util.Calendarjava.util.Calendar;

publicpublic classclass ChronoDemoChronoDemo extendsextends Activity {
TextView dateAndTimeLabel;
Calendar dateAndTime=Calendar.getInstance();

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

updateLabel();
}

publicpublic void chooseDate(View v) {
newnew DatePickerDialog(thisthis, d,

dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH))

.show();
}

publicpublic void chooseTime(View v) {
newnew TimePickerDialog(thisthis, t,

dateAndTime.get(Calendar.HOUR_OF_DAY),
dateAndTime.get(Calendar.MINUTE),
truetrue)

.show();
}

privateprivate void updateLabel() {
dateAndTimeLabel

.setText(DateUtils
.formatDateTime(thisthis,

dateAndTime.getTimeInMillis(),

DateUtils.FORMAT_SHOW_DATE|DateUtils.FORMAT_SHOW_TIME));
}

DatePickerDialog.OnDateSetListener d=newnew DatePickerDialog.OnDateSetListener() {
publicpublic void onDateSet(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
updateLabel();

DIALOGS AND DIALOGFRAGMENTS

805

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
};

TimePickerDialog.OnTimeSetListener t=newnew TimePickerDialog.OnTimeSetListener() {
publicpublic void onTimeSet(TimePicker view, int hourOfDay,

int minute) {
dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updateLabel();

}
};

}

The “model” for this activity is just a Calendar instance, initially set to be the current
date and time. In the updateLabel() method, we take the current Calendar, format
it using DateUtils and formatDateTime(), and put it in the TextView. The nice
thing about using Android’s DateUtils class is that it will format dates and times
using the user’s choice of date formatting, determined through the Settings
application.

Each button has a corresponding method that will get control when the user clicks it
(chooseDate() and chooseTime()). When the button is clicked, either a
DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it an OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the dialog the
last-selected date, getting the values out of the Calendar. In the case of the
TimePickerDialog, it gets an OnTimeSetListener callback to update the time
portion of the Calendar, the last-selected time, and a true indicating we want
24-hour mode on the time selector

With all this wired together, the resulting activity looks like this:

DIALOGS AND DIALOGFRAGMENTS

806

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 244: ChronoDemo, As Initially Launched, on Android 4.0.3

Figure 245: ChronoDemo, Showing DatePickerDialog

DIALOGS AND DIALOGFRAGMENTS

807

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 246: ChronoDemo, Showing TimePickerDialog

Changes (and Bugs) in Jelly Bean

DatePickerDialog and TimePickerDialog were modified in Android 4.1, and not
necessarily for the better.

First, the “Cancel” button has been removed, unless you specifically add a negative
button listener to the underlying DatePicker or TimePicker widget:

DIALOGS AND DIALOGFRAGMENTS

808

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 247: ChronoDemo, Showing DatePickerDialog, on a Jelly Bean Nexus S

The user can press BACK to exit the dialog, so all functionality is still there, but you
may need to craft your documentation to accommodate this difference.

Then, your OnDateSetListener or OnTimeSetListener will be called an extra time. If
the user presses BACK to leave the dialog, your onDateSet() or onTimeSet() will be
called. If the user clicks the positive button of the dialog, you are called twice. There
is a workaround documented on StackOverflow, and the bug report can be found on
the Android issue tracker.

AlertDialog
For your own custom dialogs, you could extend the Dialog base class, as do
DatePickerDialog and TimePickerDialog. More commonly, though, developers
create custom dialogs via AlertDialog, in large part due to the existence of
AlertDialog.Builder. This builder class allows you to construct a custom dialog
using a single (albeit long) Java statement, rather than having to create your own
custom subclass. Builder offers a series of methods to configure an AlertDialog,
each method returning the Builder for easy chaining.

DIALOGS AND DIALOGFRAGMENTS

809

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/11493752/115145
http://code.google.com/p/android/issues/detail?id=34833
http://code.google.com/p/android/issues/detail?id=34833

Commonly-used configuration methods on Builder include:

• setMessage() if you want the “body” of the dialog to be a simple textual
message, from either a supplied String or a supplied string resource ID.

• setTitle() and setIcon(), to configure the text and/or icon to appear in
the title bar of the dialog box.

• setPositiveButton(), setNeutralButton(), and setNegativeButton(), to
indicate which button(s) should appear across the bottom of the dialog,
where they should be positioned (left, center, or right, respectively), what
their captions should be, and what logic should be invoked when the button
is clicked (besides dismissing the dialog).

Calling create() on the Builder will give you the AlertDialog, built according to
your specifications. You can use additional methods on AlertDialog itself to
perhaps configure things beyond what Builder happens to support.

Note, though, that calling create() does not actually display the dialog. The
modern way to display the dialog is to tie it to a DialogFragment, as will be
discussed in the next section.

DialogFragments
One challenge with dialogs comes with configuration changes, notably screen
rotations. If they pivot the device from portrait to landscape (or vice versa),
presumably the dialog should remain on the screen after the change. However, since
Android wants to destroy and recreate the activity, that would have dire impacts on
your dialog.

Pre-fragments, Android had a “managed dialog” facility that would attempt to help
with this. However, with the introduction of fragments came the DialogFragment,
which handles the configuration change process.

You have two ways of supplying the dialog to the DialogFragment:

1. You can override onCreateDialog() and return a Dialog, such as
AlertDialog created via an AlertDialog.Builder

2. You can override onCreateView(), as you would with an ordinary fragment,
and the View that you return will be placed inside of a dialog

DIALOGS AND DIALOGFRAGMENTS

810

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dialogs/DialogFragment sample project demonstrates the use of a
DialogFragment in conjunction with an AlertDialog in this fashion.

Here is our DialogFragment, named SampleDialogFragment:

packagepackage com.commonsware.android.dlgfrag;

importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.app.Dialogandroid.app.Dialog;
importimport android.content.DialogInterfaceandroid.content.DialogInterface;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.DialogFragmentandroid.support.v4.app.DialogFragment;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass SampleDialogFragmentSampleDialogFragment extendsextends DialogFragment implementsimplements
DialogInterface.OnClickListener {

privateprivate View form=nullnull;

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

form=
getActivity().getLayoutInflater()

.inflate(R.layout.dialog, nullnull);

AlertDialog.Builder builder=newnew AlertDialog.Builder(getActivity());

returnreturn(builder.setTitle(R.string.dlg_title).setView(form)
.setPositiveButton(android.R.string.ok, thisthis)
.setNegativeButton(android.R.string.cancel, nullnull).create());

}

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

String template=getActivity().getString(R.string.toast);
EditText name=(EditText)form.findViewById(R.id.title);
EditText value=(EditText)form.findViewById(R.id.value);
String msg=

String.format(template, name.getText().toString(),
value.getText().toString());

Toast.makeText(getActivity(), msg, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onDismiss(DialogInterface unused) {

supersuper.onDismiss(unused);

Log.d(getClass().getSimpleName(), "Goodbye!");
}

DIALOGS AND DIALOGFRAGMENTS

811

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment

@Override
publicpublic void onCancel(DialogInterface unused) {

supersuper.onCancel(unused);

Toast.makeText(getActivity(), R.string.back, Toast.LENGTH_LONG).show();
}

}

In onCreateDialog(), we inflate a custom layout (R.layout.dialog) that consists of
some TextView labels and EditText fields:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_name"/>/>

<EditText<EditText
android:id="@+id/title"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:inputType="text"/>/>

</LinearLayout></LinearLayout>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/value"/>/>

<EditText<EditText
android:id="@+id/value"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:inputType="number"/>/>

</LinearLayout></LinearLayout>

DIALOGS AND DIALOGFRAGMENTS

812

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</LinearLayout></LinearLayout>

We then create an instance of AlertDialog.Builder, then start configuring the
dialog by calling a series of methods on the Builder:

• setTitle() to supply the text to appear in the title bar of the dialog
• setView() to define the contents of the dialog, in the form of our inflated
View

• setPositiveButton() to define the caption of one button (set here to the
Android-supplied “OK” string resource) and to arrange to get control when
that button is clicked (via this as the second parameter and our activity
implementing DialogInterface.OnClickListener)

• setNegativeButton() to define the caption of the other button (set here to
the Android-supplied “Cancel” resource)

We do not supply a listener to setNegativeButton(), because we do not need one in
this case. Whenever the user clicks on any of the buttons, the dialog will be
dismissed automatically. Hence, you only need a listener if you intend to do
something special beyond dismissing the dialog when a button is clicked.

At that point, we call create() to construct the actual AlertDialog instance and
hand that back to Android.

If the user taps our positive button, we are called with onClick() and can collect
information from our form and do something with it, in this case displaying a Toast.

We also override:

• onCancel(), which is called if the user presses the BACK button to exit the
dialog

• onDismiss(), which is called whenever the dialog goes away for any reason
(BACK or a button click)

Our activity (MainActivity), has a big button tied to a showMe() method, which
calls show() on a newly-created instance of our SampleDialogFragment:

publicpublic void showMe(View v) {
newnew SampleDialogFragment().show(getSupportFragmentManager(),

"sample");
}

DIALOGS AND DIALOGFRAGMENTS

813

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The second parameter to show() is a tag that can be used to retrieve this fragment
again later from the FragmentManager via findFragmentByTag().

When you click the big button in the activity, our dialog is displayed:

Figure 248: SampleDialogFragment, As Initially Launched, on Android 4.0.3

Android will handle the configuration change, and so long as our dialog uses typical
widgets like EditText, the standard configuration change logic will carry our data
forward from the old activity’s dialog to the new activity’s dialog.

DialogFragment: The Other Flavor
If you do not override onCreateDialog(), Android will assume that you want the
View returned by onCreateView() to be poured into an ordinary Dialog, which
DialogFragment will create for you automatically.

One advantage of this approach is that you can selectively show the fragment as a
dialog or show it as a regular fragment as part of your main UI.

DIALOGS AND DIALOGFRAGMENTS

814

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To show the fragment as a dialog, use the same show() technique as was outlined in
the previous section. To display the fragment as part of the main UI, use a
FragmentTransaction to add() it, the way you would for any other dynamic
fragment.

This is one alternative to the normal fragment approach of having dedicated
activities for each fragment on smaller screen sizes.

We will also see this approach used when we try to apply fragments to display
content on a secondary screen using Android 4.2’s Presentation class, covered
elsewhere in this book.

Dialogs: Modal, Not Blocking
Dialogs in Android are modal in terms of UI. The user cannot proceed in your
activity until they complete or dismiss the dialog.

Dialogs in Android are not blocking in terms of the programming model. When you
call show() to display a dialog — either directly or by means of adding a
DialogFragment to the screen — this is not a blocking call. The dialog will be
displayed sometime after the call to show(), asynchronously. You use callbacks, such
as the button event listeners, to find out about events going on with respect to the
dialog that you care about.

This runs counter to a couple of GUI toolkits, where displaying the dialog blocks the
thread that does the displaying. In those toolkits, the call to show() would not
return until the dialog had been displayed and dealt with by the user. That being
said, most modern GUI toolkits take the approach Android does and have dialogs be
non-blocking. Some developers try to figure out some way of hacking a blocking
approach on top of Android’s non-blocking dialogs — their time would be far better
spent learning modern event-driven programming.

DIALOGS AND DIALOGFRAGMENTS

815

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced ListViews

The humble ListView is the backbone of many an Android application. On phone-
sized screens, the screen may be dominated by a single ListView, to allow the user
to choose something to examine in more detail (e.g., pick a contact). On larger
screens, the ListView may be shown side-by-side with the details of the selected
item, to minimize the “pogo stick” effect seen on phones as users bounce back and
forth between the list and the details.

While we have covered the basics of ListView in the core chapters of this book,
there is a lot more that you can do if you so choose, to make your lists that much
more interesting — this chapter will cover some of these techniques.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on Adapter and AdapterView.

Multiple Row Types, and Self Inflation
When we originally looked at ListView, we had all of our rows come from a
common layout. Hence, while the data in each row would vary, the row structure
itself would be consistent for all rows. This is very easy to set up, but it is not always
what you want. Sometimes, you want a mix of row structures, such as header rows
versus detail rows, or detail rows that vary a bit in structure based on the data:

817

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 249: ListView with Row Structure Mix (image courtesy of Google)

Here, we see some header rows (e.g., “SINGLE LINE LIST”) along with detail rows.
While the detail rows visually vary a bit, they might still be all inflated from the
same layout, simply making some pieces (second line of text, thumbnail, etc.) visible
or invisible as needed. However, the header rows are sufficiently visually distinct
that they really ought to come from separate layouts.

The good news is that Android supports multiple row types. However, this comes at
a cost: you will need to handle the row creation yourself, rather than chaining to the
superclass.

Our sample project, Selection/HeaderDetailList will demonstrate this, along with
showing how you can create your own custom adapter straight from BaseAdapter,
for data models that do not quite line up with what Android supports natively.

Our Data Model and Planned UI

The HeaderDetailList project is based on the ViewHolderDemo project from the
chapter on ListView. However, this time, we have our list of 25 nonsense words
broken down into five groups of five, as seen in the HeaderDetailList activity:

privateprivate staticstatic finalfinal String[][] items= {
{ "lorem", "ipsum", "dolor", "sit", "amet" },

ADVANCED LISTVIEWS

818

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderDetailList
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderDetailList

{ "consectetuer", "adipiscing", "elit", "morbi", "vel" },
{ "ligula", "vitae", "arcu", "aliquet", "mollis" },
{ "etiam", "vel", "erat", "placerat", "ante" },
{ "porttitor", "sodales", "pellentesque", "augue", "purus" } };

We want to display a header row for each batch:

Figure 250: HeaderDetailList, on Android 4.0.3

The Basic BaseAdapter

Once again, we have a custom ListAdapter named IconicAdapter. However, this
time, instead of inheriting from ArrayAdapter, or even CursorAdapter, we are
inheriting from BaseAdapter. As the name suggests, BaseAdapter is a basic
implementation of the ListAdapter interface, with stock implementations of many
of the ListAdapter methods. However, BaseAdapter is abstract, and so there are a
few methods that we need to implement:

• getCount() returns the total number of rows that would be in the list. In our
case, we total up the sizes of each of the batches, plus add one for each batch
for our header rows:

ADVANCED LISTVIEWS

819

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic int getCount() {

int count=0;

forfor (String[] batch : items) {
count+=1 + batch.length;

}

returnreturn(count);
}

• getItem() needs to return the data model for a given position, passed in as
the typical int index. An ArrayAdapter would return the value out of the
array at that index; a CursorAdapter would return the Cursor positioned at
that row. In our case, we will return one of two objects: either the String for
rows that are to display a nonsense word, or an Integer containing our
batch’s index for rows that are to be a header:

@Override
publicpublic Object getItem(int position) {

int offset=position;
int batchIndex=0;

forfor (String[] batch : items) {
ifif (offset == 0) {

returnreturn(Integer.valueOf(batchIndex));
}

offset--;

ifif (offset < batch.length) {
returnreturn(batch[offset]);

}

offset-=batch.length;
batchIndex++;

}

throwthrow newnew IllegalArgumentException("Invalid position: "
+ String.valueOf(position));

}

• getItemId() needs to return a unique long value for a given position. A
CursorAdapter would find the _id value in the Cursor for that position and
return it. In our case, lacking anything else, we simply return the position
itself:

@Override
publicpublic long getItemId(int position) {

ADVANCED LISTVIEWS

820

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(position);
}

• getView(), which returns the View to use for a given row. This is the method
that we overrode on our IconicAdapter in some previous incarnations to
tailor the way the rows were populated. Our getView() implementation will
be a bit more complex in this case, due to our multiple-row-type
requirement, so we will examine it a bit later in this section.

Requesting Multiple Row Types

The methods listed above are the abstract ones that you have no choice but to
implement yourself. Anything else on the ListAdapter interface that you wish to
override you can, to replace the stub implementation supplied by BaseAdapter.

If you wish to have more than one type of row, there are two such methods that you
will wish to override:

• getViewTypeCount() needs to return the number of distinct row types you
will use. In our case, there are just two:

@Override
publicpublic int getViewTypeCount() {

returnreturn(2);
}

• getItemViewType() needs to return a value from 0 to
getViewTypeCount()-1, indicating the index of the particular row type to
use for a particular row position. In our case, we need to return different
values for headers (0) and detail rows (1). To determine which is which, we
use getItem() — if we get an Integer back, we need to use a header row for
that position:

@Override
publicpublic int getItemViewType(int position) {

ifif (getItem(position) instanceofinstanceof Integer) {
returnreturn(0);

}

returnreturn(1);
}

The reason for supplying this information is for row recycling. The View that is
passed into getView() is either null or a row that we had previously created that has
scrolled off the screen. By passing us this now-unused View, Android is asking us to

ADVANCED LISTVIEWS

821

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

reuse it if possible. By specifying the row type for each position, Android will ensure
that it hands us the right type of row for recycling — we will not be passed in a
header row to recycle when we need to be returning a detail row, for example.

Creating and Recycling the Rows

Our getView() implementation, then, needs to have two key enhancements over
previous versions:

1. We need to create the rows ourselves, particularly using the appropriate
layout for the required row type (header or detail)

2. We need to recycle the rows when they are provided, as this has a major
impact on the scrolling speed of our ListView

To help simplify the logic, we will have getView() focus on the detail rows, with a
separate getHeaderView() to create/recycle and populate the header rows. Our
getView() determines up front whether the row required is a header and, if so,
delegates the work to getHeaderView():

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

ifif (getItemViewType(position) == 0) {
returnreturn(getHeaderView(position, convertView, parent));

}

View row=convertView;

ifif (row == nullnull) {
row=getLayoutInflater().inflate(R.layout.row, parent, falsefalse);

}

ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder == nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);

}

String word=(String)getItem(position);

ifif (word.length() > 4) {
holder.icon.setImageResource(R.drawable.delete);

}
elseelse {

holder.icon.setImageResource(R.drawable.ok);
}

holder.label.setText(word);

ADVANCED LISTVIEWS

822

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

holder.size.setText(String.format(getString(R.string.size_template),
word.length()));

returnreturn(row);
}

Assuming that we are to create a detail row, we then check to see if we were passed
in a non-null View. If we were passed in null, we cannot recycle that row, so we
have to inflate a new one via a call to inflate() on a LayoutInflater we get via
getLayoutInflater(). But, if we were passed in an actual View to recycle, we can
skip this step.

From here, the getView() implementation is largely the way it was before, including
dealing with the ViewHolder. The only change of significance is that we have to
manage the label TextView ourselves — before, we chained to the superclass and let
ArrayAdapter handle that. So our ViewHolder now has a label data member with
our label TextView, and we fill it in along with the size and icon. Also, we use
getItem() to retrieve our nonsense word, so it can find the right word for the given
position out of our various word batches.

Our getHeaderView() does much the same thing, except it uses getItem() to
retrieve our batch index, and we use that for constructing our header:

privateprivate View getHeaderView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

ifif (row == nullnull) {
row=getLayoutInflater().inflate(R.layout.header, parent, falsefalse);

}

Integer batchIndex=(Integer)getItem(position);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(String.format(getString(R.string.batch),
1 + batchIndex.intValue()));

returnreturn(row);
}

Choice Modes and the Activated Style
In the chapter on large-screen strategies, we saw the EU4You sample application,
and we mentioned that the ListView formatted its rows as “activated” to represent
the current selection, when the ListView was side-by-side with the details.

ADVANCED LISTVIEWS

823

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the chapter on styles, we saw an example of an “activated” style that referred to a
device-specific color to use for an activated background. It just so happens that this
is the same style that we used in EU4You.

Hence, the recipe for using activated notation for a ListView adjacent to details on
the last-clicked-upon ListView row is:

• Use CHOICE_MODE_SINGLE (or android:choiceMode="singleChoice") on the
ListView.

• Have a style resource, in res/values-v11/, that references the device-
specific activated background:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>

</resources></resources>

• Have the same style resource also defined in res/values if you are
supporting pre-Honeycomb devices, where you skip the parent and the
background color override, as neither of those specific values existed before
API Level 11:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated">>
</style></style>

</resources></resources>

• Use that style as the background of your ListView row (e.g., style="@style/
activated")

Android will automatically color the row background based upon the last row
clicked, instead of checking a RadioButton as you might ordinarily see with
CHOICE_MODE_SINGLE lists.

Custom Mutable Row Contents
Lists with pretty icons next to them are all fine and well. But, can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets
like TextView and ImageView? For example, there is a RatingBar widget that allows
users to assign a rating by clicking on a set of star icons. Could we combine the

ADVANCED LISTVIEWS

824

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RatingBar with text in order to allow people to scroll a list of, say, songs and rate
them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is
that it is a little tricky, specifically when it comes to taking action when the
interactive widget’s state changes (e.g., a value is typed into a field). We need to
store that state somewhere, since our RatingBar widget will be recycled when the
ListView is scrolled. We need to be able to set the RatingBar state based upon the
actual word we are viewing as the RatingBar is recycled, and we need to save the
state when it changes so it can be restored when this particular row is scrolled back
into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
what item in the ArrayAdapter it represents. After all, the RatingBar is just a widget,
used in a row of a ListView. We need to teach the rows which item in the
ArrayAdapter they are currently displaying, so when their RatingBar is checked,
they know which item’s state to modify.

So, let’s see how this is done, using the activity in the Selection/RateList sample
project. We will use the same basic classes as in most of our ListView samples,
where we are showing a list of nonsense words. In this case, you can rate the words
on a three-star rating. Words given a top rating are put in all caps:

packagepackage com.commonsware.android.ratelist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport android.widget.RatingBarandroid.widget.RatingBar;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass RateListDemoRateListDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

ADVANCED LISTVIEWS

825

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/RateList
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/RateList

publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

ArrayList<RowModel> list=newnew ArrayList<RowModel>();

forfor (String s : items) {
list.add(newnew RowModel(s));

}

setListAdapter(newnew RatingAdapter(list));
}

privateprivate RowModel getModel(int position) {
returnreturn(((RatingAdapter)getListAdapter()).getItem(position));

}

classclass RatingAdapterRatingAdapter extendsextends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {

supersuper(RateListDemo.this, R.layout.row, R.id.label, list);
}

publicpublic View getView(int position, View convertView,
ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
RatingBar bar=(RatingBar)row.getTag();

ifif (bar==nullnull) {
bar=(RatingBar)row.findViewById(R.id.rate);
row.setTag(bar);

RatingBar.OnRatingBarChangeListener l=
newnew RatingBar.OnRatingBarChangeListener() {

publicpublic void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {

Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}

};

bar.setOnRatingBarChangeListener(l);
}

RowModel model=getModel(position);

bar.setTag(Integer.valueOf(position));
bar.setRating(model.rating);

ADVANCED LISTVIEWS

826

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(row);
}

}

classclass RowModelRowModel {
String label;
float rating=2.0f;

RowModel(String label) {
thisthis.label=label;

}

publicpublic String toString() {
ifif (rating>=3.0) {

returnreturn(label.toUpperCase());
}

returnreturn(label);
}

}
}

Here is what is different in this activity and getView() implementation than in
earlier, simpler samples:

1. While we are still using String array items as the list of nonsense words,
rather than pour that String array straight into an ArrayAdapter, we turn it
into a list of RowModel objects. RowModel is the mutable model: it holds the
nonsense word plus the current rating. In a real system, these might be
objects populated from a database, and the properties would have more
business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect the
change from a pure-String model to use a RowModel.

3. The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we have a
ViewHolder in the row’s tag. If not, we create a new ViewHolder and
associate it with the row. For the row’s RatingBar, we add an anonymous
onRatingChanged() listener that looks at the row’s tag (getTag()) and
converts that into an Integer, representing the position within the
ArrayAdapter that this row is displaying. Using that, the rating bar can get
the actual RowModel for the row and update the model based upon the new
state of the rating bar. It also updates the text adjacent to the RatingBar
when checked to match the rating bar state.

ADVANCED LISTVIEWS

827

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. We always make sure that the RatingBar has the proper contents and has a
tag (via setTag()) pointing to the position in the adapter the row is
displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"

>>
<RatingBar<RatingBar

android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />/>

<TextView<TextView
android:id="@+id/label"
android:padding="2dip"
android:textSize="18sp"
android:layout_gravity="left|center_vertical"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

And the result is what you would expect, visually:

ADVANCED LISTVIEWS

828

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 251: RateList, As Initially Shown

This includes the toggled rating bars turning their words into all caps:

Figure 252: RateList, With a Three-Star Word

ADVANCED LISTVIEWS

829

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

From Head To Toe
Perhaps you do not need section headers scattered throughout your list. If you only
need extra “fake rows” at the beginning or end of your list, you can use header and
footer views.

ListView supports addHeaderView() and addFooterView() methods that allow you
to add View objects to the beginning and end of the list, respectively. These View
objects otherwise behave like regular rows, in that they are part of the scrolled area
and will scroll off the screen if the list is long enough. If you want fixed headers or
footers, rather than put them in the ListView itself, put them outside the ListView,
perhaps using a LinearLayout.

To demonstrate header and footer views, take a peek at the Selection/
HeaderFooter sample project, particularly the HeaderFooterDemo class:

packagepackage com.commonsware.android.header;

importimport java.util.Arraysjava.util.Arrays;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;
importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass HeaderFooterDemoHeaderFooterDemo extendsextends ListActivity {
privateprivate staticstatic String[] items={"lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque", "augue",
"purus"};

privateprivate long startTime=SystemClock.uptimeMillis();
privateprivate boolean areWeDeadYet=falsefalse;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
getListView().addHeaderView(buildHeader());

ADVANCED LISTVIEWS

830

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter

getListView().addFooterView(buildFooter());
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

}

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

areWeDeadYet=truetrue;
}

privateprivate View buildHeader() {
Button btn=newnew Button(thisthis);

btn.setText("Randomize!");
btn.setOnClickListener(newnew View.OnClickListener() {

publicpublic void onClick(View v) {
List<String> list=Arrays.asList(items);

Collections.shuffle(list);

setListAdapter(newnew ArrayAdapter<String>(HeaderFooterDemo.this,
android.R.layout.simple_list_item_1,
list));

}
});

returnreturn(btn);
}

privateprivate View buildFooter() {
TextView txt=newnew TextView(thisthis);

updateFooter(txt);

returnreturn(txt);
}

privateprivate void updateFooter(finalfinal TextView txt) {
long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

txt.setText(String.valueOf(runtime)+" seconds since activity launched");

ifif (!areWeDeadYet) {
getListView().postDelayed(newnew Runnable() {

publicpublic void run() {
updateFooter(txt);

}
}, 1000);

}
}

}

ADVANCED LISTVIEWS

831

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we add a header View built via buildHeader(), returning a Button that, when
clicked, will shuffle the contents of the list. We also add a footer View built via
buildFooter(), returning a TextView that shows how long the activity has been
running, updated every second. The list itself is the ever-popular list of lorem ipsum
words.

When initially displayed, the header is visible but the footer is not, because the list
is too long:

Figure 253: A ListView with a header view shown

If you scroll downward, the header will slide off the top, and eventually the footer
will scroll into view:

ADVANCED LISTVIEWS

832

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 254: A ListView with a footer view shown

ADVANCED LISTVIEWS

833

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Action Bar Navigation

Beyond the app icon (a.k.a., icon on the left), action bar toolbar items, and the
overflow menu, the action bar also supports a navigation area. This resides to the
right of the app icon and to the left of the toolbar items/overflow menu. You can:

• Put tabs in here, to allow users to switch between portions of your app
• Use “list navigation”, which effectively puts a Spinner in here, also to allow

users to switch from place to place
• Put in some other custom form of navigation, such as a search field

This chapter will review how to do these things, and how they tie into other
constructs in Android, notably the ViewPager.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

List Navigation
Android’s action bar supports a “list navigation” option. Despite the name, the “list”
is really a Spinner, hosted in the action bar. You get to populate the Spinner via your
own SpinnerAdapter, and you get control when the user changes the selected item,
so that you can update your UI as you see fit.

To set this up:

835

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Call setNavigationMode(ActionBar.NAVIGATION_MODE_LIST) on the
ActionBar to enable the list navigation mode, which you get via
getActionBar() (or getSupportActionBar() for ActionBarSherlock apps)

2. Call setListNavigationCallbacks() on the ActionBar, simultaneously
supplying the SpinnerAdapter to use to populate the Spinner and an
ActionBar.OnNavigationListener object to be notified when there is a
selection change in the Spinner

The ActionBar/ListNav sample project demonstrates this, using a variation on the
“whole lot of editors” UI first seen in the ViewPager chapter.

We want to display a full-screen EditText widget whose contents will be driven by
the list navigation selection. The fragment for this — EditorFragment — is a slightly
revised version of the same class from the ViewPager samples. Here, though, state
management will be handled completely by the activity, so we simply expose getters
and setters as needed for working with the text in the editor, along with its hint:

packagepackage com.commonsware.android.listnav;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass EditorFragmentEditorFragment extendsextends SherlockFragment {
privateprivate EditText editor=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}

CharSequence getText() {
returnreturn(editor.getText());

}

void setText(CharSequence text) {
editor.setText(text);

}

void setHint(CharSequence hint) {

ACTION BAR NAVIGATION

836

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ListNav
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ListNav

editor.setHint(hint);
}

}

Setting up the list navigation mode is part of the work we do in onCreate():

ArrayAdapter<String> nav=nullnull;
ActionBar bar=getSupportActionBar();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
nav=

newnew ArrayAdapter<String>(
bar.getThemedContext(),
android.R.layout.simple_spinner_item,
labels);

}
elseelse {

nav=
newnew ArrayAdapter<String>(

thisthis,
android.R.layout.simple_spinner_item,
labels);

}

nav.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
bar.setListNavigationCallbacks(nav, thisthis);

Android 4.0 (Ice Cream Sandwich) offers a getThemedContext() method on
ActionBar. Use the Context returned by this method when working with resources
that relate to the ActionBar. In this case, we use it when creating our ArrayAdapter
to use with the Spinner. However, since this is only available on API Level 14 and
higher, you need to check for that and fall back to using the Activity as your
Context for earlier versions of Android.

We then use setNavigationMode() to indicate that we want list navigation, then use
setListNavigationCallbacks() to supply our ArrayAdapter, plus our
implementation of OnNavigationListener — in this case, we are implementing this
interface on the activity itself.

Because we are implementing OnNavigationListener, we need to override the
onNavigationItemSelected() method. This will get called when the Spinner
selection changes (including when it is initially set), and it is up to us to affect our
UI. That requires a bit of additional preparation work:

• We set up our EditorFragment in onCreate(), if it does not already exist:

ACTION BAR NAVIGATION

837

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

frag=

(EditorFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

ifif (frag==nullnull) {
frag=newnew EditorFragment();
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content, frag)

.commit();
}

• We track the last known position of the Spinner selection, by means of a
lastPosition data member

• We store our data model (the text held by the editor) in a models
CharSequence array

Our objective is to have 10 total “editors”, accessible via the list navigation. Our
labels array in our ArrayAdapter has 10 entries, and models is a 10-item array to
match.

That allows us to implement onNavigationItemSelected():

@Override
publicpublic boolean onNavigationItemSelected(int itemPosition, long itemId) {

ifif (lastPosition > -1) {
models[lastPosition]=frag.getText();

}

lastPosition=itemPosition;
frag.setText(models[itemPosition]);
frag.setHint(labels[itemPosition]);

returnreturn(truetrue);
}

In the ViewPager sample, we actually had 10 instances of EditorFragment. Here, we
have just one, that we are going to use for all 10 positions. Hence, all we do is grab
the current contents of the editor and save them in models (except when we are first
starting and have no prior position). Then, we populate the editor with the next
model and a suitable hint.

Now, we could have 10 instances of EditorFragment and swap between them with
FragmentTransactions. Or, we could have a variety of distinct fragment instances,
from different classes, and swap between them using FragmentTransactions. What
you do to update your UI based upon the list navigation change is up to you.

ACTION BAR NAVIGATION

838

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One limitation of list navigation, compared to ViewPager, is state management on
configuration changes. ViewPager handled keeping track of what page we were on,
and if we retained all our fragments, our model data (the editors’ contents) were
retained as well. With list navigation and a single non-retained fragment, we have to
do all of that ourselves.

So, we implement onSaveInstanceState() to persist both the models array and our
current position:

In onCreate(), we restore our models array:

ifif (state != nullnull) {
models=state.getCharSequenceArray(KEY_MODELS);

}

And, later in onCreate(), we tell the action bar which position to select:

ifif (state != nullnull) {
bar.setSelectedNavigationItem(state.getInt(KEY_POSITION));

}

The result is a Spinner in the action bar, allowing the user to choose which of the 10
“editors” to work with:

ACTION BAR NAVIGATION

839

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 255: ListNavDemo, Showing the List, on Android 4.0.3

Tabs (And Sometimes List) Navigation
Similarly, you can set up tab navigation, where you present a roster of tabs the user
can tap on.

Maybe.

(We’ll get to the explanation of “maybe” in a bit)

Setting up tabs is fairly straightforward, once you know the recipe:

1. Call setNavigationMode(ActionBar.NAVIGATION_MODE_TABS) on the
ActionBar, which you get via getActionBar() (or getSupportActionBar()
for ActionBarSherlock apps)

2. Call addTab() on ActionBar for each tab you want, supplying at minimum
the text caption of the tab and a TabListener implementation that will be
notified of state changes in that tab

ACTION BAR NAVIGATION

840

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ActionBar/TabFragmentDemo sample project is very similar to the one for list
navigation described above, except that it uses tabs instead of list navigation. We
have the same 10 editors, the same data model (models), and the same basic logic for
saving and restoring our instance state. What differs is in how we set up the UI.

As with list navigation, you can do whatever you want when tabs are selected or
unselected. You could:

• Add and remove fragments
• Attach and detach fragments (which remove them from the UI but keep

them in the FragmentManager for later reuse)
• Flip pages of a ViewPager
• Update a simple UI in place (akin to what we did in the list navigation

sample above)

In our case, we will take the “caveman” approach of replacing our entire fragment on
each tab click.

Our EditorFragment is a bit closer to the original from the ViewPager samples,
except that this time we pass in the initial text to display, along with the position, in
the factory method:

packagepackage com.commonsware.android.tabfrag;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass EditorFragmentEditorFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate staticstatic finalfinal String KEY_TEXT="text";
privateprivate EditText editor=nullnull;

staticstatic EditorFragment newInstance(int position,
CharSequence text) {

EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
args.putCharSequence(KEY_TEXT, text);
frag.setArguments(args);

returnreturn(frag);
}

ACTION BAR NAVIGATION

841

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/TabFragmentDemo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/TabFragmentDemo

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(String.format(getString(R.string.hint), position + 1));
editor.setText(getArguments().getCharSequence(KEY_TEXT));

returnreturn(result);
}

CharSequence getText() {
returnreturn(editor.getText());

}
}

In onCreate(), we tell the ActionBar that we want tab navigation, then we add 10
tabs to the bar:

ActionBar bar=getSupportActionBar();
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < 10; i++) {
bar.addTab(bar.newTab().setText("Tab #" + String.valueOf(i + 1))

.setTabListener(thisthis).setTag(i));
}

Calling newTab() on the ActionBar gives us an ActionBar.Tab object, which we can
use builder-style to configure the tab. In our case, we are setting the caption
(setText()), the listener (setTabListener()), and a tag to use to identify this tab
(setTag()). The tag is akin to the tags on Views — it can be any object you want. In
our case, we just use the index of the tab.

Our activity needs to implement the TabListener interface, since we are passing it
into the setTabListener() method. There are three methods you must implement
on that interface:

1. onTabSelected() is called when the tab is selected by the user
2. onTabUnselected() is called when some other tab is selected by the user
3. onTabReselected() is called, presumably, when the user taps on an already-

selected tab (e.g., to refresh the tab’s contents)

ACTION BAR NAVIGATION

842

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Our implementation ignores the latter and focuses on the first two:

publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {
int i=((Integer)tab.getTag()).intValue();

ft.replace(android.R.id.content,
EditorFragment.newInstance(i, models[i]));

}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {

int i=((Integer)tab.getTag()).intValue();
EditorFragment frag=

(EditorFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

ifif (frag != nullnull) {
models[i]=frag.getText();

}
}

@Override
publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {

// unused

In onTabSelected(), we get our tab’s position via its tag, then call replace() on the
supplied FragmentTransaction to replace the current contents of the activity with a
new EditorFragment, set up with the proper position and model data.

In onTabUnselected(), we get our tab’s position and the EditorFragment, then save
the updated text (if any) from the editor in models for later reuse.

Running this on a phone-sized screen gives you your tabs, in a row beneath the main
action bar itself:

ACTION BAR NAVIGATION

843

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 256: TabFragmentDemo, on Android 4.0.3, Phone-Sized Screen

Those tabs are “swipey”, meaning that the user can fling the row of tabs to get to all
10 of them.

This UI makes perfect sense for something described as “tab navigation”. Where
things get a bit odd is in any configuration, such as a normal-sized screen in
landscape:

ACTION BAR NAVIGATION

844

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 257: TabFragmentDemo, on Android 4.0.3, Phone-Sized Screen in Landscape

or on a large-sized screen in portrait:

Figure 258: TabFragmentDemo, on Android 4.0.3, Tablet-Sized Screen in Portrait

ACTION BAR NAVIGATION

845

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android will automatically convert your tab navigation to list navigation if and when
it wishes to. You do not have control over this behavior, and it will vary by Android
release:

The system will apply the correct UX policy for the device. As the exact
policy of presentation may change on different devices or in future releases,
it is intentionally not specified in documentation.

(from the issue filed by the author of this book over this behavior)

Custom Navigation
You could also elect to use one of the various flavors of setCustomView() on
ActionBar. These allow you to completely control what goes in the navigation area
of the bar, by supplying either a View or a layout resource ID that should get inflated
into the bar. Particularly in the latter case, you would call getCustomView() later on
to retrieve the inflated layout, so you can access the widgets, configure listeners, and
so forth.

While Google definitely steers you in the direction of using the tabs or list
navigation, plenty of apps will use a custom navigation option, for things like:

• a search field
• an AutoCompleteTextView (e.g., a browser’s address bar)
• etc.

ACTION BAR NAVIGATION

846

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=24439

Action Modes and Context Menus

If you have spent much time on an Android 3.0+ device, then you probably have run
into a curious phenomenon. Sometimes, when you select an item in a list or other
widget, the action bar magically transforms from its normal look:

Figure 259: The Gmail action bar on a Honeycomb tablet, in normal mode

to one designed to perform operations on what you have selected:

Figure 260: The Gmail action bar on a Honeycomb tablet, showing an action mode

The good news is that this is not some sort of magic limited only to firmware
applications like Gmail. You too can have this effect in your application, by
triggering an “action mode”.

Action modes — sometimes called the “contextual action bar” — is the replacement
for the “context menu”, whereby a menu would appear when you long-tap on some
widget. Context menus were most commonly used with AdapterViews, particularly
with ListView, to perform an operation on the specific long-tapped-upon item.

In this chapter, we will explore both action modes and context menus.

847

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Another Wee Spot O’ History
Most desktop operating systems have had the notion of a “context menu” for some
time, typically triggered by a click of the right mouse button. In particular, a right-
click over some selected item might bring up a context menu of operations to
perform on that item:

• Selecting text in a text editor, then right-clicking, might bring up a context
menu for cut/copy/paste of the text

• Right-clicking over a file in some sort of file explorer might bring up a
context menu for cut/copy/paste of the file

• Etc.

Android supports context menus, driven by a long-tap on a widget rather than a
right-click. You will find many applications that offer such menus, particularly on
lists of things.

Context menus are certainly useful. Power users can save screen taps if they know
where context menus reside and what features they offer. For example, rather than
tapping on a list item, then opening an options menu, then tapping a menu item to
delete something, a power user could long-tap to open a context menu, then tap on
a context menu item — saving one tap and switching back and forth between
activities.

The problem is that context menus are invisible and are triggered by an action not
used elsewhere very much (long tap).

In theory, users would find out about context menus in your application from
reading your documentation. That would imply that we were in some alternate
universe where all users read documentation, all people live in peace and harmony,
and all book authors have great heads of hair. In this universe, power users will find
your context menus, but ordinary users may be completely oblivious to them. Also,
the hair of book authors remains stubbornly variable.

ACTION MODES AND CONTEXT MENUS

848

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The action bar itself is designed to help raise the visibility of what had been the
options menu (e.g., turning menu items into toolbar buttons) and standardizing the
location of navigation elements (e.g., tabs, search fields). The action bar takes
advantage of the fact that we have a lot more screen space on a tablet than we do on
a phone, and uses some of that space to consistently benefit the user.

The action mode is designed to perform a similar bit of magic for context menus.
Rather than have context menus be buried under a long-tap, action modes let the
contextual actions take over the action bar, putting them front-and-center in the
user experience.

Manual Action Modes
A common pattern will be to activate an action mode when the user checks off
something in a multiple-choice ListView, as is the case with applications like Gmail.
If you want to go that route, there is some built-in scaffolding to make that work,
described later in this chapter.

You can, if you wish, move the action bar into an action mode whenever you want.
This would be particularly important if your UI is not based on a ListView. For
example, tapping on an image in a GridView might activate it and move you into an
action mode for operations upon that particular image.

In this section, we will examine the ActionMode/Manual sample project. This is
another variation on the “show a list of nonsense words in a list” sample used
elsewhere in this book.

Choosing Your Trigger

As noted above, Gmail switches into an action mode when the user checks off one or
more conversations in the conversations list. Selecting a word or passage in an
EditText (e.g., via a long-tap) brings up an action mode for cut/copy/paste
operations. And so on.

You will need to choose, for your own UI, what trigger mechanism will bring up an
action mode. It should be some trigger that makes it obvious to the user what the
action mode will be acting upon. For example:

ACTION MODES AND CONTEXT MENUS

849

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/Manual
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/Manual

• If the user long-taps on an item in a GridView, bring up an action mode,
and treat future taps on GridView items as adding or removing items from
the “selection” while that action mode is visible

• If the user “rubber-bands” some figures in your vector art drawing View,
bring up an action mode for operations on those figures (e.g., rotate, resize)

In the case of the ActionMode sample project, we stick with the classic long-tap on a
ListView row to bring up an action mode that replaces the context menu when run
on a API Level 11+ device:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

initAdapter();
getListView().setLongClickable(truetrue);
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
getListView().setOnItemLongClickListener(newnew ActionModeHelper(

thisthis,

getListView()));
}

Starting the Action Mode

Starting an action mode is trivially easy: just call startActionMode() on your
Activity, passing in an implementation of ActionMode.Callback, which will be
called with various lifecycle methods for the action mode itself.

In the case of the ActionMode sample project, ActionModeHelper – our
OnItemLongClickListener from the preceding section – also is our
ActionMode.Callback implementation. Hence, when the user long-clicks on an item
in the ListView, the ActionModeHelper establishes itself as the action mode:

@Override
publicpublic boolean onItemLongClick(AdapterView<?> view, View row,

int position, long id) {
modeView.clearChoices();
modeView.setItemChecked(position, truetrue);

ifif (activeMode == nullnull) {
activeMode=host.startActionMode(thisthis);

}

returnreturn(truetrue);
}

ACTION MODES AND CONTEXT MENUS

850

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that startActionMode() returns an ActionMode object, which we can use later
on to configure the mode’s behavior, by stashing it in an actionMode data member.

Also, we make the long-clicked-upon item be “checked”, to show which item the
action mode will act upon. Our row layout will make a checked row show up with
the “activated” style:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
android:gravity="center_vertical"
android:paddingLeft="6dip"
android:minHeight="?android:attr/listPreferredItemHeight"
style="@style/activated"

/>/>

That style is defined for Honeycomb and higher in res/values-v11/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>

</resources></resources>

A do-nothing version of that style is used for older devices, from res/values/
styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated">>

ACTION MODES AND CONTEXT MENUS

851

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</style></style>
</resources></resources>

Also note that we only start the action mode if it is not already started.

Implementing the Action Mode

The real logic behind the action mode lies in your ActionMode.Callback
implementation. It is in these four lifecycle methods where you define what the
action mode should look like and what should happen when choices are made in it.

onCreateActionMode()

The onCreateActionMode() method will be called shortly after you call
startActionMode(). Here, you get to define what goes in the action mode. You get
the ActionMode object itself (in case you do not already have a reference to it). More
importantly, you are passed a Menu object, just as you get in onCreateOptionsMenu().
And, just like with onCreateOptionsMenu(), you can inflate a menu resource into the
Menu object to define the contents of the action mode:

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {

MenuInflater inflater=host.getSupportMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);

returnreturn(truetrue);
}

In addition to inflating our context menu resource into the action mode’s menu, we
also set the title of the ActionMode, which shows up to the right of the Done button:

Figure 261: The ActionMode sample application’s action bar on a Honeycomb tablet,
showing the active action mode

onPrepareActionMode()

If you determine that you need to change the contents of your action mode, you can
call invalidate() on the ActionMode object. That, in turn, will trigger a call to

ACTION MODES AND CONTEXT MENUS

852

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onPrepareActionMode(), where you once again have an opportunity to configure the
Menu object. If you do make changes, return true — otherwise, return false. In the
case of ActionModeHelper, we take the latter approach:

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {

returnreturn(falsefalse);
}

onActionItemClicked()

Just as onCreateActionMode() is the action mode analogue to
onCreateOptionsMenu(), onActionItemClicked() is the action mode analogue to
onOptionsItemSelected(). This will be called if the user clicks on something related
to your action mode. You are passed in the corresponding MenuItem object (plus the
ActionMode itself), and you can take whatever steps are necessary to do whatever the
work is.

On the ActionModeDemo class, we have the business logic for handling the data-
change operations in a performAction() method:

@SuppressWarnings("unchecked")
publicpublic boolean performAction(int itemId, int position) {

ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

switchswitch (itemId) {
casecase R.id.cap:

String word=words.get(position);

word=word.toUpperCase();

adapter.remove(words.get(position));
adapter.insert(word, position);

returnreturn(truetrue);

casecase R.id.remove:
adapter.remove(words.get(position));

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

And, the onActionItemClicked() method calls performAction():

ACTION MODES AND CONTEXT MENUS

853

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {

boolean result=
host.performAction(item.getItemId(),

modeView.getCheckedItemPosition());

ifif (item.getItemId() == R.id.remove) {
activeMode.finish();

}

returnreturn(result);
}

onActionItemClicked() also dismisses the action mode if the user chose the
“remove” item, since the action mode is no longer needed. You get rid of an active
action mode by calling finish() on it.

onDestroyActionMode()

The onDestroyActionMode() callback will be invoked when the action mode goes
away, for any reason, such as:

1. The user clicks the Done button on the left
2. The user clicks the BACK button
3. You call finish() on the ActionMode

Here, you can do any necessary cleanup. ActionModeHelper tries to clean things up,
notably the “checked” state of the last item long-tapped-upon:

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

activeMode=nullnull;
modeView.clearChoices();
modeView.requestLayout();

}

However, for reasons that are not yet clear, clearChoices() does not update the UI
when called from onDestroyActionMode() unless you also call requestLayout().

Multiple-Modal-Choice Action Modes
For many cases, the best user experience will be for you to have a multiple-choice
ListView, where checking items in that list enables an action mode for performing
operations on the checked items. For this scenario, Android has a new built-in

ACTION MODES AND CONTEXT MENUS

854

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ListView choice mode, CHOICE_MODE_MULTIPLE_MODAL, that automatically sets up an
ActionMode for you as the user checks and unchecks items.

To see how this works, let’s examine the ActionMode/ActionModeMC sample project.
This is the same project as in the preceding section, but altered to have a multiple-
choice ListView, utilizing an action mode on Honeycomb. More importantly,
though, this version of the sample uses the native API Level 11+ version of the action
bar, as ActionBarSherlock does not support CHOICE_MODE_MULTIPLE_MODAL at this
time.

Once again, in onCreate(), we need to set up the smarts for our ListView. This
time, though, we will use CHOICE_MODE_MULTIPLE_MODAL:

@TargetApi(11)
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

initAdapter();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
getListView().setMultiChoiceModeListener(newnew HCMultiChoiceModeListener(

thisthis,

getListView()));
}
elseelse {

getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);
registerForContextMenu(getListView());

}
}

If we are on an API Level 11+ device, we enable CHOICE_MODE_MULTIPLE_MODAL for the
ListView, and register an instance of an HCMultiChoiceModeListener object via
setMultiChoiceModeListener(). This object is an implementation of the
MultiChoiceModeListener interface that we will examine shortly.

We will discuss the non-Honeycomb branch later in this chapter.

Since we now may have multiple checked items, our performAction() method must
take this into account, capitalizing or removing all checked words:

@SuppressWarnings("unchecked")
publicpublic boolean performActions(MenuItem item) {

ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();

ACTION MODES AND CONTEXT MENUS

855

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ActionModeMC
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ActionModeMC

SparseBooleanArray checked=getListView().getCheckedItemPositions();

switchswitch (item.getItemId()) {
casecase R.id.cap:

forfor (int i=0; i < checked.size(); i++) {
ifif (checked.valueAt(i)) {

int position=checked.keyAt(i);
String word=words.get(position);

word=word.toUpperCase(Locale.ENGLISH);

adapter.remove(words.get(position));
adapter.insert(word, position);

}
}

returnreturn(truetrue);

casecase R.id.remove:
ArrayList<Integer> positions=newnew ArrayList<Integer>();

forfor (int i=0; i < checked.size(); i++) {
ifif (checked.valueAt(i)) {

positions.add(checked.keyAt(i));
}

}

Collections.sort(positions, Collections.reverseOrder());

forfor (int position : positions) {
adapter.remove(words.get(position));

}

getListView().clearChoices();

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

Back in the Honeycomb-or-higher code, MultiChoiceModeListener extends the
ActionMode.Callback interface we used with our manual action mode earlier in this
book. Hence, we need to implement all the standard ActionMode.Callback
methods, plus a new onItemCheckedStateChanged() method introduced by
MultiChoiceModeListener:

packagepackage com.commonsware.android.actionmodemc;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.view.ActionModeandroid.view.ActionMode;

ACTION MODES AND CONTEXT MENUS

856

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.widget.AbsListViewandroid.widget.AbsListView;
importimport android.widget.ListViewandroid.widget.ListView;

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
publicpublic classclass HCMultiChoiceModeListenerHCMultiChoiceModeListener implementsimplements

AbsListView.MultiChoiceModeListener {
ActionModeDemo host;
ActionMode activeMode;
ListView lv;

HCMultiChoiceModeListener(ActionModeDemo host, ListView lv) {
thisthis.host=host;
thisthis.lv=lv;

}

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {

MenuInflater inflater=host.getMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);
mode.setSubtitle("(1)");
activeMode=mode;

returnreturn(truetrue);
}

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {

returnreturn(falsefalse);
}

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {

boolean result=host.performActions(item);

updateSubtitle(activeMode);

returnreturn(result);
}

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

activeMode=nullnull;
}

@Override
publicpublic void onItemCheckedStateChanged(ActionMode mode, int position,

long id, boolean checked) {
updateSubtitle(mode);

}

ACTION MODES AND CONTEXT MENUS

857

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate void updateSubtitle(ActionMode mode) {
mode.setSubtitle("(" + lv.getCheckedItemCount() + ")");

}
}

Android will automatically start our action mode for us when the user checks the
first item in the list, using our MultiChoiceModeListener as the callback. Android
will also automatically finish the action mode if the user unchecks all previously-
checked items.

In onCreateActionMode(), we populate the menu, plus set up a title and subtitle on
the ActionMode. The subtitle appears below the title, as you might expect. In this
case, we are indicating how many words are checked and therefore will be affected
by the actions the user chooses in the action mode:

Figure 262: The ActionModeMC sample application’s action bar on a Honeycomb
tablet, showing the active action mode

Then, in onActionItemClicked(), we both call performActions() to affect the
desired changes, plus update the subtitle in case the user removed words (which
means they are no longer checked).

The new onItemCheckedStateChanged() will be called whenever the user checks or
unchecks an item, up until the last item is unchecked. HCMultiChoiceModeListener
simply updates the subtitle to reflect the new count of checked items.

On the whole, using CHOICE_MODE_MULTIPLE_MODAL is simpler than setting up your
own trigger mechanism and managing the action mode yourself. That being said,
both are completely valid options, which is particularly important for situations
where a multiple-choice ListView is not the desired user interface.

ACTION MODES AND CONTEXT MENUS

858

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Long-Click To Initiate an Action Mode
However, rather than having checkboxes or the like always in the ListView, a more
modern approach is to move into multiple-selection mode based on a long-click.
Before then, clicks on rows behave like with any other ListView, but after a long-
click, the action mode appears and the user can tap on rows to select which of them
to operate upon.

The ActionMode/LongPress sample project is a variation on the preceding project,
with some slight simplifications, and adopting the long-click as the means to enter
the action mode.

Setting Up the Listeners

In onCreate(), we set up listeners for both a long click (via
setOnItemLongClickListener()) and for multiple-choice mode (via
setMultiChoiceModeListener(). Both times, we supply the activity as the listener,
as it implements the appropriate interfaces:

getListView().setOnItemLongClickListener(thisthis);
getListView().setMultiChoiceModeListener(thisthis);

Handling the Long Click

By default, the ListView is in no-choice mode, where clicks on rows simply trigger
onListItemClick() or the equivalent. However, if the user long-clicks on a row, our
onItemLongClick() method will be called, and we can both switch into multiple-
choice mode and mark the long-clicked row as being checked:

@Override
publicpublic boolean onItemLongClick(AdapterView<?> parent, View view,

int position, long id) {
getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
getListView().setItemChecked(position, truetrue);

returnreturn(truetrue);
}

At this point, the action mode will also start up, courtesy of having called
setMultiChoiceModeListener().

ACTION MODES AND CONTEXT MENUS

859

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/LongPress
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/LongPress

Addressing Configuration Changes

If we undergo a configuration change, we want:

1. To keep the current set of words, including any that were added
2. To keep the action mode going, if the user had long-clicked to enter the

action mode
3. To keep our checked item states, if the action mode is active

Keeping the checked item states will be handled for us by the built-in instance-state
management of ListView and ListActivity. However, the rest we need to handle
ourselves. So, we have an onSaveInstanceState() implementation in the activity,
which saves the current choice mode, plus the current word list:

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);
state.putInt(STATE_CHOICE_MODE, getListView().getChoiceMode());
state.putStringArrayList(STATE_MODEL, words);

}

Plus, in onCreate(), after setting up the listeners, we set up the choice mode of the
ListView based upon the passed in instance state Bundle, if there is one:

@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);

ifif (state == nullnull) {
initAdapter(nullnull);

}
elseelse {

initAdapter(state.getStringArrayList(STATE_MODEL));
}

getListView().setOnItemLongClickListener(thisthis);
getListView().setMultiChoiceModeListener(thisthis);

int choiceMode=
(state == nullnull ? ListView.CHOICE_MODE_NONE

: state.getInt(STATE_CHOICE_MODE));

getListView().setChoiceMode(choiceMode);
}

ACTION MODES AND CONTEXT MENUS

860

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Once we call setChoiceMode() with the previous activity instance’s choice mode, if
that was CHOICE_MODE_MULTIPLE_MODAL, Android will automatically open up the
action mode again and restore our checked items.

Resetting the Choice Mode

Where things get a bit interesting is when the user dismisses the action mode, at
which point we need to move back to no-choice mode.

You might think that this would merely be a matter of calling setChoiceMode() on
the ListView, asking for CHOICE_MODE_NONE. Indeed, that is part of the solution.
However, there are two problems:

1. If you call that in onDestroyActionMode() directly, you wind up with infinite
recursion and a StackOverflowError, as changing the choice mode while the
action mode is still technically active will cause it to destroy the action mode
again.

2. Switching the choice mode back to “none” enables some optimizations
within ListView that ignore the checked state of our rows. However, those
rows still already checked will show up as activated, even after calling
setChoiceMode() to return to the normal “none” mode. clearChoices() also
does not have a worthwhile effect, for whatever reason.

Hence, in onDestroyActionMode(), not only do we need to call setChoiceMode(),
but we need to “smack around” the ListView enough to get it to clear our checked
rows, and the easiest way to do that is to call setAdapter() on it, passing in its
existing adapter:

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

ifif (activeMode != nullnull) {
activeMode=nullnull;
getListView().setChoiceMode(ListView.CHOICE_MODE_NONE);
getListView().setAdapter(getListView().getAdapter());

}
}

And, we only do that while our action mode is active (i.e., activeMode is not null),
to avoid the infinite recursion.

This is a bit clunky, but it works.

ACTION MODES AND CONTEXT MENUS

861

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Results

When initially launched, the activity looks like a simple ListActivity:

Figure 263: Action Mode Long Press Demo, As Initially Launched

Tapping on a row provides the normal momentary highlight.

However, if the user long-clicks a row, we move into the action mode and a multiple-
choice ListView:

ACTION MODES AND CONTEXT MENUS

862

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 264: Action Mode Long Press Demo, with Action Mode Activated

Figure 265: Action Mode Long Press Demo, with Multiple Selections

ACTION MODES AND CONTEXT MENUS

863

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dismissing the action mode returns the ListView to normal operation.

Split Action Modes
Android 4.0 brought action modes to phone-sized devices. Small screens in the
portrait orientation have problems with the action bar in general being too small.
Action modes inherit the same problem.

For example, here is the ActionMode/ActionModeMC project as seen on a Nexus S
running Android 4.0.3:

Figure 266: The ActionModeMC sample on a phone

You will notice that our mode’s title gets ellipsized due to the lack of room, and this
is just with two action items. Admittedly, using icons rather than text labels would
help, but even that can only get us so far.

If you use a split action bar, by adding
android:uiOptions="splitActionBarWhenNarrow" to the <activity> element in the
manifest, the action mode will also split, with the action items moving to the
bottom:

ACTION MODES AND CONTEXT MENUS

864

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 267: The ActionModeMC sample on a phone, using a split action bar

If there is more horizontal room (i.e., it is not “narrow”), then the action mode will
display as normal:

ACTION MODES AND CONTEXT MENUS

865

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 268: The ActionModeMC sample on a phone, using a split action bar, in
landscape orientation

What Came Before: Context Menus
Since ActionBarSherlock supports manual action modes (if not the more-convenient
multiple-choice action modes), you can use action modes going back to Android 2.1,
which is probably more than sufficient for your needs.

However, perhaps there are situations where you truly do want a context menu,
rather than the contextual action bar. You are certainly welcome to stick with the
older approach. In fact, the multiple-choice action mode sample demonstrates
supporting both context menus (on pre-Honeycomb devices) and action modes (on
Honeycomb and higher).

Creating a Context Menu

First, you need to indicate which widget(s) on your activity have context menus. To
do this, call registerForContextMenu() from your activity, supplying the View that
is the widget needing a context menu. In the case of the multiple-choice version of
ActionModeDemo, we did this in the non-Honeycomb branch, supplying our ListView
as the View in question:

registerForContextMenu(getListView());

ACTION MODES AND CONTEXT MENUS

866

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, you need to implement onCreateContextMenu(), which, among other things,
is passed the View you supplied in registerForContextMenu(). You can use that to
determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu() method also gets the ContextMenu itself and a
ContextMenu.ContextMenuInfo, which tells you which item in the list the user did
the tap-and-hold over, in case you want to customize the context menu based on
that information. For example, you could toggle a checkable menu choice based
upon the current state of the item.

It is also important to note that onCreateContextMenu() gets called for each time
the context menu is requested. Unlike the options menu (which is only built once
per activity), context menus are discarded once they are used or dismissed. Hence,
you do not want to hold onto the supplied ContextMenu object; just rely on getting
the chance to rebuild the menu to suit your activity’s needs on an on-demand basis
based on user actions.

Beyond that, onCreateContextMenu() does the same sort of thing as
onCreateOptionsMenu(): inflate a menu resource to indicate what should appear,
such as is the case in ActionModeDemo:

@Override
publicpublic void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menuInfo) {
getMenuInflater().inflate(R.menu.context, menu);

}

In this case, we are using the same menu resource as is used by the action mode.

Responding to a Context Menu

Just as to respond to an action bar item, you implement onOptionsItemSelected(),
to respond to a context menu item, you implement onContextItemSelected():

@Override
publicpublic boolean onContextItemSelected(MenuItem item) {

boolean result=performActions(item);

ifif (!result) {
result=supersuper.onContextItemSelected(item);

}

returnreturn(result);
}

ACTION MODES AND CONTEXT MENUS

867

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As with onOptionsItemSelected(), you are passed the MenuItem that represents the
context menu item that the user chose. In this case, we pass that object to the same
performActions() method used by the action mode. If performActions() returns
false, we chain to the superclass (in case a built-in context menu item was clicked).

ACTION MODES AND CONTEXT MENUS

868

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ActionBarCompat: The Official Action
Bar Backport

Approximately 30 months after Google added the action bar to Android 3.0, Google
released a backport for previous devices. Known as ActionBarCompat, this fills much
the same niche as does ActionBarSherlock, adding action bar support to Android
apps, going all the way back to API Level 7.

This section will outline how using ActionBarCompat differs from using
ActionBarSherlock, plus reasons why you might choose one over the other.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Using the ActionBarCompat
The recipe for using the AppCompat action bar is reminiscent of using
ActionBarSherlock, and it requires no new skills beyond what you have learned so
far in this book. However, there are some subtle and not-so-subtle differences in the
approaches each library takes.

To see the differences, we will take a look at the ActionBar/AppCompat sample
project. This is a port of the fragments-and-action-bar sample from earlier in the
book, where we have replaced ActionBarSherlock with ActionBarCompat.

869

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/AppCompat
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/AppCompat

The Library Project

Just as you need to attach an Android library project for ActionBarSherlock to an
app’s project to use that backport, so too you must attach an Android library project
for ActionBarCompat. This library project can be found in your Android SDK
installation, inside the extras/android/support/v7/appcompat/ directory.

For example, if you are using Eclipse, you will want to import that project into your
workspace. Ideally, you should make a copy of the project, so that way when the
project gets updated by Google (and you install the update via the SDK Manager),
your existing copy is not immediately affected. This will allow you to decide when to
upgrade to the new ActionBarCompat version.

Your Theme

Just as you need to reference a theme that inherits from Theme.Sherlock to use
ActionBarSherlock in an activity or application, you must reference a theme that
inherits from Theme.AppCompat to use ActionBarCompat.

The original project used Theme.Sherlock in the android:theme attribute of the
<application> element in the manifest; this cross-port simply replaces it with
Theme.AppCompat:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.AppCompat">>

You will notice that we no longer have
android:uiOptions="splitActionBarWhenNarrow" in <application>, as the original
project had. That is intentional, and will be explained a bit later in this section.

Your Menu Resources

Where things start to get a bit strange with ActionBarCompat comes with our menu
resources.

ActionBarSherlock works with the same menu resources as we would use with native
API Level 11+ action bars. ActionBarCompat does not. Instead, it forces you to use a
different namespace for any action bar-related attributes, those added in API Level 11
or higher.

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

870

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, we started with:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/add"
android:icon="@android:drawable/ic_menu_add"
android:showAsAction="ifRoom"
android:title="@string/add" android:actionLayout="@layout/add"/>/>

<item<item
android:id="@+id/reset"
android:icon="@android:drawable/ic_menu_revert"
android:showAsAction="never"
android:title="@string/reset"/>/>

</menu></menu>

and we had to change it to:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:thisapp="http://schemas.android.com/apk/res-auto"

xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/add"
android:icon="@android:drawable/ic_menu_add"
android:title="@string/add"
thisapp:actionLayout="@layout/add"
thisapp:showAsAction="ifRoom"/>/>

<item<item
android:id="@+id/reset"
android:icon="@android:drawable/ic_menu_revert"
android:title="@string/reset"
thisapp:showAsAction="never"/>/>

</menu></menu>

Note that we have a new xmlns:thisapp="http://schemas.android.com/apk/
res-auto" namespace declaration in the root <menu> element, and that namespace
is used for the thisapp:showAsAction and thisapp:actionLayout attributes. The
actual prefix name, here shown as thisapp, can be whatever you want — the official
documentation samples show it as yourapp. It just has to be unique within the
document and a valid XML namespace prefix (e.g., no whitespace).

Your Manifest Metadata

However, that same use-a-different-namespace trick does not work well with the
manifest, as an app does not load up the manifest itself directly, the way we inflate

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

871

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

menu resources. And, while ActionBarSherlock was able to make use of an
android:uiOptions="splitActionBarWhenNarrow" attribute, ActionBarCompat does
not.

Instead, we need to use a <meta-data> element on our <activity> to indicate that
we want splitActionBarWhenNarrow behavior:

<activity<activity
android:name="ActionBarFragmentActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.support.UI_OPTIONS"
android:value="splitActionBarWhenNarrow"/>/>

</activity></activity>

Your Activity

Just as we had to inherit from a Sherlock-flavored activity class to use
ActionBarSherlock, we have to inherit from an ActionBarActivity class to use
ActionBarCompat. ActionBarActivity itself inherits from FragmentActivity, and
so we can use the Android Support package’s backport of fragments without issue.
However, note that there are no other analogues of ActionBarActivity for other
scenarios, whereas ActionBarSherlock offered SherlockListActivity and kin. In
principle, you should be able to make your own mash-ups of ActionBarActivity
and other base activity classes, though the proof of this is left as an exercise for the
reader.

Your Fragments

The biggest gain from using ActionBarCompat comes with your fragments. You no
longer need to extend a Sherlock-flavored fragment class. You can use the standard
Android Support package backport version of fragments, like ListFragment.

Your Callback Methods

In many cases, your onCreateOptionsMenu() and onOptionsItemSelected()
methods will be the same for ActionBarCompat as they would be for a regular

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

872

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android app. You no longer need to use Sherlock-flavored Menu and MenuItem
classes, for example.

However, if you do need to manipulate action bar-specific attributes of your inflated
menu resources, you will be unable to do so directly. While ActionBarSherlock’s
edition of MenuItem has getActionView(), the standard Android one only does for
API Level 11+, not earlier versions.

The workaround is to use MenuCompat and MenuItemCompat, from the Android
Support package, to give you access to newer Menu and MenuItem features in a
backwards-compatible fashion.

For example, our onCreateOptionsMenu() method needs to configure the EditText
that we are adding as an action layout to the action bar. With ActionBarSherlock, we
have to use the Sherlock-flavored Menu and MenuItem classes, but we can then work
with the action view directly:

privateprivate void configureActionItem(Menu menu) {
EditText add=

(EditText)menu.findItem(R.id.add).getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(thisthis);
}

With ActionBarCompat, we no longer need the specialized imports, but we do need
to use the static getActionView() method on MenuItemCompat to retrieve our
inflated View:

privateprivate void configureActionItem(Menu menu) {
EditText add=

(EditText)MenuItemCompat.getActionView(menu.findItem(R.id.add))
.findViewById(R.id.title);

add.setOnEditorActionListener(thisthis);
}

Your Results

Visually, the results are nearly identical, as both ActionBarSherlock and
ActionBarCompat aim for a consistent look and feel with the native action bar
implementation.

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

873

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One difference comes with the style of the overflow on devices with a MENU button.
ActionBarSherlock elected to stick with the Android 2.x options menu style, for
consistency with other apps on Android 2.x:

Figure 269: ActionBarSherlock Overflow, on Android 2.3.3

ActionBarCompat elects to style the overflow to match the look that debuted with
Android 4.x:

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

874

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 270: ActionBarCompat Overflow, on Android 2.3.3

Choosing a Backport
You might think that everybody should race to use the ActionBarCompat backport,
since it is officially supported by Google. Certainly, you are welcome to do so.

However, if you already have existing ActionBarSherlock-based apps, there is limited
utility in replacing ActionBarSherlock with ActionBarCompat. That would require a
fair bit of rewriting for little added value.

You should also keep in mind the “track record” of the implementations. While
ActionBarCompat is officially supported, it has not been used all that much. The
most notable ActionBarCompat action bar app at the time of the backport’s release
was the 2013 Google I|O conference app. ActionBarSherlock, on the other hand, has
been used by countless apps and therefore has been tried in many more situations.
This means that there is a lot more documentation for ActionBarSherlock at this
time, from blog posts to StackOverflow questions.

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

875

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, bear in mind that Android 2.x devices are steadily fading away, much as did the
1.x devices that preceded them. Apps begun in 2014 or beyond could easily elect to
skip Android 2.x entirely, avoiding the need for any sort of action bar backport.

ACTIONBARCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

876

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Advanced Action Bar
Techniques

The action bar offers a number of other features that developers can take advantage
of, ones that do not necessarily fit into the other chapters. Hence, this chapter is a
“catch all” for other things you may wish to do with your action bar.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Action Layouts, Action Views, and Action
Providers
There are many options for replacing the stock toolbar-style button used for an
action item with something else. In the original chapter on the action bar, we saw
how to use android:actionLayout and getActionView() to replace the toolbar
button with the contents of a layout resource, which we could then configure at
runtime.

If all you need is a single widget to replace the toolbar button, rather than a whole
layout resource, you can use android:actionViewClass instead of
android:actionLayout. In android:actionViewClass, you provide the fully-
qualified class name of the widget that you wish to use to replace the toolbar button.
You still use getActionView() to retrieve a reference to this at runtime.

877

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If the widget you use implements the CollapsibleActionView interface, then it has
an additional behavior: the ability to collapse into a standard toolbar button or
expand into its normal mode. The only example of this in the current Android SDK
is SearchView, which can expand into a field for searching or collapse into a simple
search icon (magnifying glass) as needed. We will see more about SearchView, and
how it behaves as a CollapsibleActionView, later in this chapter.

Yet another possible toolbar button replacement is an action provider. Whereas an
action view or action layout provide the UI, and your code provides the handling of
touch events, an action provider is an “all-in-one” solution. It is designed to be
configured, then used by the user without any required additional intervention by
the developer. That being said, an action provider can have its own listener
interfaces to let developers know about various events that have occurred. The two
primary implementations of the ActionProvider base class are:

• MediaRouteActionProvider, used to allow users to control the destination
for media, such as routing audio to Bluetooth headphones instead of the
device speaker

• ShareActionProvider, to simplify sharing content via ACTION_SEND, as is
covered elsewhere in the book

To use an ActionProvider, you add the android:actionProviderClass attribute to
an <item> in the <menu> resource, providing the fully-qualified class name of the
ActionProvider implementation. You can call getActionProvider() on the
MenuItem to retrieve the ActionProvider instance, for configuration at runtime.

Searching with SearchView
Many apps employ a SearchView in their action bar. The user typically sees the
search icon as a regular toolbar button:

Figure 271: SearchView Demo, Showing Collapsed Action View

Tapping that opens a search field, taking over more of the action bar:

OTHER ADVANCED ACTION BAR TECHNIQUES

878

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 272: SearchView Demo, Showing Expanded Action View

Typing something in initiates some sort of search, as defined by the activity that is
using the SearchView. BACK or the app icon in the action bar will “collapse” the
SearchView back into its iconified state.

While you are welcome to use SearchView in conjunction with Android’s overall
search framework, you can also use it standalone within your app, as is seen in the
ActionBar/SearchView sample project, profiled in this section. This sample is a
clone of one of the previous action bar samples, where we have the list of 25 words,
hosted in a ListFragment, with action bar items to add a word and reset the word
list. In this section, we will augment the sample with a SearchView and a filtered
ListView.

SearchView… in the Menu Resource

The project’s menu resource (res/menu/actions.xml) contains a regular action item
(reset), an action item employing an action layout (add), and an action item
containing our SearchView (search):

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/search"
android:actionViewClass="android.widget.SearchView"
android:icon="@android:drawable/ic_menu_search"
android:showAsAction="ifRoom|collapseActionView"
android:title="@string/filter">>

</item></item>

</menu></menu>

Note that the search item not only has
android:actionViewClass="android.widget.SearchView" to tie in our action view,
but it also has android:showAsAction="ifRoom|collapseActionView", to indicate
that this action view should support collapsing and expanding.

OTHER ADVANCED ACTION BAR TECHNIQUES

879

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/SearchView
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/SearchView

SearchView… in the Action Bar Configuration

In onCreateOptionsMenu() of our ActionBarFragment, in addition to inflating the
menu resource and calling a configureActionItem() method to configure the add
action layout, we now also call a configureSearchView() method to configure the
SearchView:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);

configureSearchView(menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

In configureSearchView(), surprisingly enough, we configure the SearchView:

privateprivate void configureSearchView(Menu menu) {
MenuItem search=menu.findItem(R.id.search);

sv=(SearchView)search.getActionView();
sv.setOnQueryTextListener(thisthis);
sv.setOnCloseListener(thisthis);
sv.setSubmitButtonEnabled(falsefalse);
sv.setIconifiedByDefault(truetrue);

ifif (initialQuery != nullnull) {
sv.setIconified(falsefalse);
search.expandActionView();
sv.setQuery(initialQuery, truetrue);

}
}

Specifically, we:

• Register our fragment as the QueryTextListener and the OnCloseListener
• Disable the submit button, as we will be using the SearchView for filtering

rather than querying
• Indicate that the SearchView should be collapsed (“iconified”) as the default

state

Also, our fragment has an initialQuery data member, and if that is not null, we
expand the SearchView and fill in initialQuery as the query to be shown in the
SearchView, also submitting it.

OTHER ADVANCED ACTION BAR TECHNIQUES

880

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

initialQuery comes from our configuration change logic, as if the user fills in
something in the SearchView in one configuration (e.g., portrait), we do not want to
lose it on a configuration change (e.g., to landscape). In our onSaveInstanceState()
method, we save both the query from the SearchView and the words currently in our
list:

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

ifif (!sv.isIconified()) {
state.putCharSequence(STATE_QUERY, sv.getQuery());

}

state.putStringArrayList(STATE_MODEL, words);
}

In onActivityCreated(), we use the savedInstanceState Bundle to populate the
adapter with the previous set of words, plus store the old SearchView’s query in
initialQuery:

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

ifif (savedInstanceState == nullnull) {
initAdapter(nullnull);

}
elseelse {

initAdapter(savedInstanceState.getStringArrayList(STATE_MODEL));
initialQuery=savedInstanceState.getCharSequence(STATE_QUERY);

}

setHasOptionsMenu(truetrue);
}

Hence, on a configuration change, by the time configureSearchView() is called, we
will have our initialQuery, if there is one, and we can set up the UI to be the same
as it was in the old configuration.

SearchView… And Filtering a ListView

The ActionBarFragment implements the SearchView.OnQueryTextListener and
SearchView.OnCloseListener interfaces, which is why we can pass this to
setOnQueryTextListener() and setOnCloseListener() in configureSearchView().

Those two interfaces require a total of three methods, described below.

OTHER ADVANCED ACTION BAR TECHNIQUES

881

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onQueryTextChange()

The onQueryTextChange() method — required by
SearchView.OnQueryTextListener – will be called whenever the user has changed
the contents of the expanded SearchView, such as by typing a character. This is used
when you want to employ the SearchView for filtering, updating the filter as the user
types, rather than for searching, in which case you would wait until the user
“submits” the search request.

Our implementation takes advantage of ArrayAdapter’s built-in filtering capability:

@Override
publicpublic boolean onQueryTextChange(String newText) {

ifif (TextUtils.isEmpty(newText)) {
adapter.getFilter().filter("");

}
elseelse {

adapter.getFilter().filter(newText.toString());
}

returnreturn(truetrue);
}

Adapters that implement the Filterable interface can be filtered, automatically
restricting the displayed items to ones that match the filter. Calling getFilter() on
a Filterable returns a Filter. The default implementation of a Filter filters on
the leading characters of toString() of getItem() from the Adapter. Hence,
filtering an ArrayAdapter on our roster of 25 words, where the filter string is 'm',
would show morbi and molllis but skip amet, let alone other words not beginning
with m.

So, our onQueryTextChange() method simply updates the Filter with whatever the
user has typed into the SearchView, setting the filter to the empty string if the
SearchView is either empty or has null contents.

onQueryTextSubmit()

The onQueryTextSubmit() method — required by
SearchView.OnQueryTextListener – would be called if the user tapped on the
submit button within the expanded SearchView, to ask us to perform the search. In
this sample, we have disabled that button, as we are filtering our list on the fly,
rather than performing a query once the SearchView is filled out. Hence,

OTHER ADVANCED ACTION BAR TECHNIQUES

882

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ActionBarFragment has a do-nothing implementation of onQueryTextSubmit(),
simply returning false to indicate that we have not consumed the event:

@Override
publicpublic boolean onQueryTextSubmit(String query) {

returnreturn(falsefalse);
}

onClose()

The onClose() method — required by SearchView.OnCloseListener — in theory
will be called when the SearchView is collapsed. Here, we simply clear out the filter
that we are using to limit the contents of the ListView, plus return true to say that
we have handled the event:

@Override
publicpublic boolean onClose() {

adapter.getFilter().filter("");

returnreturn(truetrue);
}

According to the SearchView source code, it will only be called if:

• The query text is empty, and
• The SearchView is iconified by default (setIconifiedByDefault(true))

In practice, not even that works.

Hence, if you really need to find out when the SearchView is collapsed, you will
probably need to use the more generic OnActionExpandListener interface, attached
to the SearchView via setOnActionExpandListener().
onMenuItemActionCollapse() should be called when the SearchView is collapsed.
This also works for other types of collapsible action views, not just SearchView.

SearchView… From the User’s Perspective

If the user taps on the search icon, then starts typing into the SearchView’s editing
area, the ListView is filtered based upon the typed-in prefix:

OTHER ADVANCED ACTION BAR TECHNIQUES

883

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=25758

Figure 273: SearchView Demo, Showing Filtered Results

OTHER ADVANCED ACTION BAR TECHNIQUES

884

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implementing a Navigation Drawer

Each year brings a new design pattern in Android that takes the development
community by storm. In 2011, it was the action bar. In 2012, it was ViewPager. In
2013, it was the navigation drawer.

This chapter covers that navigation drawer pattern: what it is, where you use it, and
how you implement it, using a DrawerLayout class supplied by the Android Support
package.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. In addition, one section ties into the chapter on action modes.

What is a Navigation Drawer?
Complex apps often require complex navigation, to get to all of the different areas of
the app. And, in many cases, that navigation is tied to nouns, reflecting different
types of content, more so than verbs, reflecting operations to be performed against a
particular piece of content. Verbs are actions, and can usually go in the action bar as
action bar items (e.g., toolbar-style buttons). Nouns could be put in the action bar as
well as items, though having a mixed bunch of nouns and verbs makes the action
bar item roster inconsistent.

Of course, the action bar provides other navigation options, like tabs or list
navigation. Those may work in many cases. However, currently, tabs are usually
thought of as a means of categorizing larger sets of content, with each tab
representing a part of the content. In this sense, tabs are “peers”, often with similar

885

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

rendering structures. While list navigation does not have that same sort of
semantics, the simple Spinner-style drop-down does not afford much UI flexibility,
and longer lists can be difficult to manipulate via the small scrolling area.

Back before the action bar, the “go-to” design pattern for navigation was the so-
called “dashboard”:

Figure 274: Google IO 2010 Conference App, with Dashboard

But this took up the whole screen and was therefore only available as the “home”
activity of an app.

The navigation drawer, or “sliding menu”, pattern has the same sort of content
navigation options available in a drawer that slides out from the side of the screen:

IMPLEMENTING A NAVIGATION DRAWER

886

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 275: Google+, with Open Navigation Drawer

The drawer can be accessed from many, if not all, activities in the app, to allow the
user to get wherever they need to from wherever they happen to be.

A Simple Navigation Drawer
The good news is that Google released an implementation of the navigation drawer
pattern, called DrawerLayout, in the Android Support package.

The bad news is that it still takes a bit of work to get this integrated with your app.

This section will review the NavDrawer/Simple sample project, that shows a fairly
simplistic integration of a DrawerLayout into an activity.

The Activity Layout

The root element of your activity layout, for an activity using DrawerLayout, is
DrawerLayout itself:

<android.support.v4.widget.DrawerLayout<android.support.v4.widget.DrawerLayout
xmlns:android="http://schemas.android.com/apk/res/android"

IMPLEMENTING A NAVIGATION DRAWER

887

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Simple

android:id="@+id/drawer_layout"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<FrameLayout<FrameLayout
android:id="@+id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

<ListView<ListView
android:id="@+id/drawer"
android:layout_width="240dp"
android:layout_height="match_parent"
android:layout_gravity="start"
android:background="#111"
android:choiceMode="singleChoice"
android:divider="@android:color/transparent"
android:dividerHeight="0dp"/>/>

</android.support.v4.widget.DrawerLayout></android.support.v4.widget.DrawerLayout>

Note that DrawerLayout was added in mid–2013, so you will need an
android-support-v4.jar file that is from that timeframe or newer to have access to
this class.

DrawerLayout itself is rather unremarkable in the layout resource: you size and
position it, usually to fill the screen. It needs to have precisely two child elements:

1. The first child represents the “real” activity content
2. The second child represents the contents of the drawer that can be opened

and closed

If you are adapting an existing activity to use the DrawerLayout, that first child could
well be an <include> element pointing to your existing activity layout resource, so
that you can leave it undisturbed and just point your activity to start with this new
DrawerLayout resource.

There are a couple of attributes in the children that are important for proper
DrawerLayout operation:

• The second child — often a ListView — needs to have its
android:layout_gravity set to indicate what side of the screen the drawer
will slide out from. Typically this will be left (or start if you are on API
Level 17+ and are taking advantage of the RTL layout support).

• The second child also specifies its android:layout_width to indicate the size
of the drawer when opened. This should not be the full width of the screen,

IMPLEMENTING A NAVIGATION DRAWER

888

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and the Android design guidelines suggest a width between 240dp and
320dp.

The ActionBarDrawerToggle

The onCreate() method of MainActivity is responsible for setting up the drawer, as
well as the activity’s main content:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

ifif (getFragmentManager().findFragmentById(R.id.content) == nullnull) {
showLorem();

}

ListView drawer=(ListView)findViewById(R.id.drawer);

drawer.setAdapter(newnew ArrayAdapter<String>(
thisthis,
R.layout.drawer_row,

getResources().getStringArray(R.array.drawer_rows)));
drawer.setOnItemClickListener(thisthis);

drawerLayout=(DrawerLayout)findViewById(R.id.drawer_layout);
toggle=

newnew ActionBarDrawerToggle(thisthis, drawerLayout,
R.drawable.ic_drawer,
R.string.drawer_open,
R.string.drawer_close);

drawerLayout.setDrawerListener(toggle);
getActionBar().setDisplayHomeAsUpEnabled(truetrue);
getActionBar().setHomeButtonEnabled(truetrue);

}

In terms of the content, if the FrameLayout placed in the layout resource is empty,
we call showLorem() to lazy-create a LoremFragment (a ListFragment with 25 Latin
words) and run a FragmentTransaction to display it:

privateprivate void showLorem() {
ifif (lorem == nullnull) {

lorem=newnew LoremFragment();
}

ifif (!lorem.isVisible()) {
getFragmentManager().beginTransaction()

.replace(R.id.content, lorem).commit();

IMPLEMENTING A NAVIGATION DRAWER

889

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/patterns/navigation-drawer.html

}
}

onCreate() then retrieves the ListView, sets the contents of the list to be a
<string-array> resource named drawer_rows, and sets up the activity itself to
respond to clicks on the list.

onCreate() then sets up an ActionBarDrawerToggle. This allows the app icon on the
left of the action bar to open and close the navigation drawer. The
ActionBarDrawerToggle constructor takes five parameters:

• The Activity as a Context
• The DrawerLayout widget to be managed by this toggle
• The icon to superimpose on the app icon to indicate that there is a toggle
• String resources for the open and close operations, for accessibility

Google’s “Action Bar Icon Pack” contains stock icons to use for the third parameter,
for light and dark action bar themes. In addition, the Android Asset Studio offers a
way for you to customize the navigation drawer indicator artwork for other themes.

In addition to creating the toggle instance, we need to:

• Associate it with the DrawerLayout, by calling setDrawerListener() on it
• Enable the app icon via setHomeButtonEnabled() and enable it for “up”

navigation via setDisplayHomeAsUpEnabled()
• Forward the onPostCreate(), onConfigurationChanged(), and
onOptionsItemSelected() activity callback methods on to the toggle:

@Override
protectedprotected void onPostCreate(Bundle savedInstanceState) {

supersuper.onPostCreate(savedInstanceState);

toggle.syncState();
}

@Override
publicpublic void onConfigurationChanged(Configuration newConfig) {

supersuper.onConfigurationChanged(newConfig);

toggle.onConfigurationChanged(newConfig);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (toggle.onOptionsItemSelected(item)) {
returnreturn(truetrue);

IMPLEMENTING A NAVIGATION DRAWER

890

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/downloads/design/Android_Design_Icons_20130926.zip
http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

Without any additional work, launching the app will show the “slice of a hamburger”
navigation drawer icon in the action bar:

Figure 276: Nav Drawer Sample App, Showing a Bit of Hamburger

Tapping the app icon will open the drawer:

IMPLEMENTING A NAVIGATION DRAWER

891

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 277: Nav Drawer Sample App, with Drawer Open

The drawer slides over the content, rather than pushing the content away, which is
why we do not see the words peeking out on the right side of the screen.

Tapping the app icon again will close the drawer.

The user can also open the drawer via gestures. A bezel swipe from the left side will
open the drawer, and swiping the open drawer right to left will close it. In addition,
tapping and holding on the left edge of the content will cause the drawer to “peek”
open by a handful of pixels, to hint to the user that there may be something that
they can access by swiping from the left.

The Actions on Navigation Clicks

Of course, a navigation drawer is useless unless we do something when the user
interacts with it, clicking on list rows in this case.

Our list is very simple, with just two elements. The app simply toggles between two
fragments based upon the list item click:

IMPLEMENTING A NAVIGATION DRAWER

892

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onItemClick(AdapterView<?> listView, View row,

int position, long id) {
ifif (position == 0) {

showLorem();
}
elseelse {

showContent();
}

drawerLayout.closeDrawers();
}

We also close the drawer, using closeDrawers(), as otherwise the DrawerLayout is
unaware that the user chose something and that we should return to the content.

Alternative Row Layouts
The rows in the sample app’s ListView were fairly conventional. Rows in a nav
drawer should be fairly simple, as you are merely trying to lead the users to pieces of
content, not present content itself.

That being said, the navigation options can have a bit more to them than what the
sample app showed. The Android design guidelines will steer you in the direction of
how best to style:

• Rows with leading icons
• Rows with trailing badges (e.g., unread message counts)
• Expandable sections (e.g., less-important items but still worth having in the

drawer)
• Dividers, to help organize groups of related rows

IMPLEMENTING A NAVIGATION DRAWER

893

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/patterns/navigation-drawer.html

Figure 278: Sample Navigation Drawer Rows with Icons and Badges

You will see other apps experiment with other capabilities. For example, Gmail uses
RadioButton widgets for the accounts:

Figure 279: Gmail Navigation Drawer, with RadioButtons, Dividers, and Badges (Sans
Backgrounds)

That being said, the closer you can stick with the official design guidelines, the
better off you will tend to be, in terms of meeting user expectations and not
encountering rendering or click event oddities with DrawerLayout.

IMPLEMENTING A NAVIGATION DRAWER

894

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Additional Considerations
Beyond putting the right things into the navigation drawer, there are some other
things that you will need to take into account, particularly as your navigation drawer
interacts with the rest of the activity and overall application.

Highlighting the Current Location

If the user opens the navigation drawer, and they are already at one of the navigation
destinations shown in the drawer, that destination should show up with the
activated state, to indicate to the user that she is already there. Conversely, if the
user has drilled down into some part of your application that does not have a
corresponding entry in the navigation drawer, the navigation drawer should show no
activated entry.

One way to handle this is to keep the ListView updated as the user navigates
(whether through the navigation drawer or by other means), selecting and de-
selecting items as needed.

The row layout used in the original sample, culled from Google’s DrawerLayout
sample code, already has the activated background:

<android.support.v4.widget.DrawerLayout<android.support.v4.widget.DrawerLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/drawer_layout"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<FrameLayout<FrameLayout
android:id="@+id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

<ListView<ListView
android:id="@+id/drawer"
android:layout_width="240dp"
android:layout_height="match_parent"
android:layout_gravity="start"
android:background="#111"
android:choiceMode="singleChoice"
android:divider="@android:color/transparent"
android:dividerHeight="0dp"/>/>

</android.support.v4.widget.DrawerLayout></android.support.v4.widget.DrawerLayout>

IMPLEMENTING A NAVIGATION DRAWER

895

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/training/implementing-navigation/nav-drawer.html
http://developer.android.com/training/implementing-navigation/nav-drawer.html
http://developer.android.com/training/implementing-navigation/nav-drawer.html

However, we were not using it in that sample, so the drawer ListView did not give
the user any indication that they had already navigated to a navigable destination.
But, we have the NavDrawer/Activated sample project, a clone of the original
sample, that adds this activation capability, and demonstrates the headaches it
causes.

First, as part of our onCreate() work in MainActivity, we need to configure the
ListView to work in single-choice mode (the ListView engine behind the activated
state), along with the rest of the ListView setup:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

drawer=(ListView)findViewById(R.id.drawer);
drawer.setChoiceMode(ListView.CHOICE_MODE_SINGLE);

String[] rows=getResources().getStringArray(R.array.drawer_rows);

drawer.setAdapter(newnew ArrayAdapter<String>(thisthis,
R.layout.drawer_row,
rows));

drawer.setOnItemClickListener(thisthis);

drawerLayout=(DrawerLayout)findViewById(R.id.drawer_layout);
toggle=

newnew ActionBarDrawerToggle(thisthis, drawerLayout,
R.drawable.ic_drawer,
R.string.drawer_open,
R.string.drawer_close);

drawerLayout.setDrawerListener(toggle);
getActionBar().setDisplayHomeAsUpEnabled(truetrue);
getActionBar().setHomeButtonEnabled(truetrue);

getFragmentManager().addOnBackStackChangedListener(thisthis);

ifif (getFragmentManager().findFragmentById(R.id.content) == nullnull) {
showLorem();

}
}

@Override
protectedprotected void onPostCreate(Bundle savedInstanceState) {

supersuper.onPostCreate(savedInstanceState);

Our showLorem() method now will post() a Runnable, named onNavChange, after it
calls commit() on its FragmentTransaction:

IMPLEMENTING A NAVIGATION DRAWER

896

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Activated
http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Activated

privateprivate void showLorem() {
ifif (lorem == nullnull) {

lorem=newnew LoremFragment();
}

ifif (!lorem.isVisible()) {
getFragmentManager().popBackStack();
getFragmentManager().beginTransaction()

.replace(R.id.content, lorem).commit();
drawer.post(onNavChange);

}
}

That magic onNavChange Runnable simply sees what fragment is presently visible
and updates the checked item in the nav drawer’s ListView to match:

privateprivate Runnable onNavChange=newnew Runnable() {
@Override
publicpublic void run() {

ifif (lorem != nullnull && lorem.isVisible()) {
drawer.setItemChecked(0, truetrue);

}
elseelse if (content != nullnull && content.isVisible()) {

drawer.setItemChecked(1, truetrue);
}
elseelse {

int toClear=drawer.getCheckedItemPosition();

ifif (toClear >= 0) {
drawer.setItemChecked(toClear, falsefalse);

}
}

}
};

By using post(), we schedule the Runnable to be executed after the fragment
change has occurred. Ideally, we would somehow more explicitly attach the
Runnable to the FragmentTransaction, but that does not appear to be an option.

Since we call showLorem() in onCreate(), this causes our navigation drawer to
show that we are in LoremFragment when the activity first starts up:

IMPLEMENTING A NAVIGATION DRAWER

897

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=67574

Figure 280: Activated Navigation Drawer Demo, As Initially Launched

The natural behavior of a single-choice ListView will check the row that we tap
upon, and so when the user taps on an entry in the navigation drawer, it
automatically becomes activated. This means we do not have to do our own work for
that.

If everything in your app is represented by an entry in the navigation drawer, your
work is done. However, most likely, there are parts of your app that do not directly
map to entries in the navigation drawer… and that is where things get a wee bit
complex.

To demonstrate this, we need a bit more to our UI. So, we make LoremFragment use
the contract pattern, by inheriting from the same sort of ContractListFragment
seen elsewhere in the book. We override onListItemClick() to call a wordClicked()
method on the contract, to let the hosting activity know about that UI operation:

packagepackage com.commonsware.android.drawer.activated;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;

IMPLEMENTING A NAVIGATION DRAWER

898

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass LoremFragmentLoremFragment extendsextends ContractListFragment<LoremFragment.Contract> {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setListAdapter(newnew ArrayAdapter<String>(
getActivity(),
android.R.layout.simple_list_item_1,
items));

}

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

getContract().wordClicked();
}

interfaceinterface ContractContract {
void wordClicked();

}
}

We also create a StuffFragment that displays a simple message:

IMPLEMENTING A NAVIGATION DRAWER

899

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 281: Activated Navigation Drawer Demo, Showing StuffFragment

The idea is that clicking on a word in the LoremFragment should bring up the
StuffFragment, as if this were a master/detail implementation.

The implementation of wordClicked() in MainActivity does indeed show a
StuffFragment (while also adding it to the back stack), but it also needs to make the
drawer ListView have no checked items, reflecting the fact that the UI state does
not reflect one of the navigation destinations:

@Override
publicpublic void wordClicked() {

ifif (stuff == nullnull) {
stuff=newnew StuffFragment();

}

getFragmentManager().beginTransaction()
.replace(R.id.content, stuff)
.addToBackStack(nullnull).commit();

drawer.post(onNavChange);
}

Note that we also post() the onNavChange Runnable here as well.

IMPLEMENTING A NAVIGATION DRAWER

900

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The result is that when we do tap on a word in the list, the StuffFragment appears,
but the navigation drawer shows no activated row:

Figure 282: Activated Navigation Drawer Demo, Showing StuffFragment and
Navigation Drawer

However, since we manually cleared the checked state, we now need to re-check a
row if the user navigates back to one of the other fragments. There are two ways the
user could return to one of those other fragments: via the navigation drawer, or via
the BACK button (popping our transaction off the back stack).

If they navigate to one of the other fragments via the navigation drawer, the
appropriate row will be activated automatically by the user’s click event. However,
we need to consider what to do about that transaction hanging around the back
stack from before. One option is to remove it, so the other fragments behave as
they do normally, where BACK exits the activity. That is a matter of calling
popBackStack() on the FragmentManager as part of showing one of the fragments,
such as the showContent() method that shows the ContentFragment:

privateprivate void showContent() {
ifif (content == nullnull) {

content=newnew ContentFragment();
}

IMPLEMENTING A NAVIGATION DRAWER

901

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (!content.isVisible()) {
getFragmentManager().popBackStack();
getFragmentManager().beginTransaction()

.replace(R.id.content, content).commit();
drawer.post(onNavChange);

}
}

If the user presses the BACK button, having the earlier fragment reappear happens
automatically. However, we need to fix up the navigation drawer to show the proper
row as being activated. To do that, we implement OnBackStackChangedListener on
MainActivity and call addOnBackStackChangedListener() on the
FragmentManager in the onCreate() initialization work. That way,
onBackStackChanged() will be called when there is a change in the state of the back
stack. Then, it is merely a matter of calling post() for onNavChanged again, to
update the nav drawer:

@Override
publicpublic void onBackStackChanged() {

drawer.post(onNavChange);
}

Hiding Context-Specific Action Bar Items

Another Google design guideline that makes sense, but adds complexity, is to only
show action bar items that pertain to the entire application while the navigation
drawer is visible. So, for example, a “Help” action bar item should remain visible, to
allow users to switch over to that. But an “Edit” action bar item, to edit something in
the main activity, should be hidden while the navigation drawer is visible.

The navigation drawer is effectively an application-level construct, even if we wind
up implementing it on a per-activity basis due to the way Android user interfaces are
constructed. Hence, the action bar items with the drawer open should pertain to the
same scope that the drawer itself does: the application, not a particular activity or
fragment inside of it.

Also, on phone-sized screens, the user may not be able to see much of the
underlying UI, as the drawer itself will occlude most of it. They may not remember
exactly what was showing, and therefore may forget what that “Delete” action bar
item would actually delete. Hiding such a context-specific item, while the drawer is
open, is safer.

IMPLEMENTING A NAVIGATION DRAWER

902

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The converse, of course, is that when the drawer closes, you will need to show once
again the items that you hid when the drawer opened.

DrawerLayout supports a DrawerListener, an instance of which you can attach to
the drawer itself, to be notified of when the drawer opens and closes, so you can
adjust your action bar items to match.

Interacting with an Action Mode

You may be using your own custom action modes (a.k.a., contextual action bars),
such as allowing the user to perform operations on multiple selections in a
ListView.

Since the navigation drawer is tied to the application as a whole, not necessarily just
the current activity or the selections in it, Google’s recommendation is for you to
temporarily dismiss the action mode when the navigation drawer is opened. This
will allow the action bar to show items of relevance to the app, not to the selection.
If the user navigates elsewhere using the navigation drawer, you would leave the
action mode dismissed. If the user slides the navigation drawer closed, though, you
could re-enable the action mode, tied back into the multiple selections the user has
already made.

Advertising Your Drawer

Users who have spent some time with Android will have a decent shot at
recognizing that tapping the action bar item adorned with the nav drawer artwork
will open a drawer. However, not all users will necessarily make that connection,
particularly users relatively new to Android.

As noted earlier in this chapter, DrawerLayout implements the “peek” pattern, where
a long-tap on the edge of the screen will cause the drawer to open just a bit, to hint
that there is something that can be opened with a swipe gesture. This is nice and
subtle, but perhaps too subtle, as users are not necessarily likely to tap-and-hold on
the screen edge just to see if something interesting happens.

Another possibility is to have the drawer open automatically, either the first time
that your app is launched, or every time your app is launched until you detect that
the user has manually opened the drawer (e.g., by adding a DrawerListener and
watching for onDrawerSlide() and onDrawerOpened() events not triggered by you).
On the plus side, this puts the drawer “front and center”, so the user cannot miss it.
Once the user taps in your activity (inside or outside of the drawer), the drawer will

IMPLEMENTING A NAVIGATION DRAWER

903

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

close with the animated slide to the edge. The hope is that the user will either
eventually realize that they can bezel-swipe to get that drawer open, or they will
learn about the action bar option (where you have it). This works if the drawer is
fairly useful, relative to what the activity would be displaying by default. If, however,
the drawer pales in comparison to the main activity view, forcing the drawer open
may reduce, not improve, usability.

What Should Not Be in the Drawer
Your navigation drawer should only provide access to the major areas of content in
your app. If you do not have many “major areas of content in your app”, reconsider
having a navigation drawer, and use something else (e.g., drop-down list navigation
in the action bar) to get to what content you have.

Also, there are certain things that should not go into a navigation drawer:

• Actions (verbs) generally do not belong in the navigation drawer. “Edit”,
“Save”, and so forth belong as action bar items, or perhaps as part of an
action mode, not in the navigation drawer.

• Content itself does not belong in the navigation drawer. Bits of metadata, in
the form of badges and similar sorts of indicators, are fine, to hint to the user
about the content that is available in that area of your app. But the
navigation drawer is not meant to be the “master” in the master/detail
pattern, nor is it some sort of “sidebar” of additional content that you just
want to have hidden away.

• Low-priority areas of your app, particularly those that are traditionally in the
action bar, should not be in the navigation drawer. “Help” and “About” are
classic examples. “Settings” is another, though the line starts to get a bit
fuzzy (while “Settings” might be something traditional for the action bar,
“Accounts” is not). The overflow menu of an action bar is a fine place to have
those sorts of areas be available to the user without cluttering up the
primary action bar or the navigation drawer.

Independent Implementations
The navigation drawer pattern did not begin with the introduction of DrawerLayout.
There have been many independent implementations of such a “sliding menu” that
pre-dated DrawerLayout and the Android design guidelines for navigation drawers.
Examples include:

IMPLEMENTING A NAVIGATION DRAWER

904

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Jeremy Feinstein’s SlidingMenu
• 6Wunderkinder’s Sliding Layer
• David Scott’s RibbonMenu

Just bear in mind that these implementations do not necessarily adhere to
everything in the design guidelines, requiring you to perhaps make modifications or
simply ignore those guidelines as needed.

IMPLEMENTING A NAVIGATION DRAWER

905

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/jfeinstein10/SlidingMenu/
http://www.androidviews.net/2013/04/sliding-layer/
http://www.androidviews.net/2012/12/ribbonmenu/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Uses of WebView

Android uses the WebKit browser engine as the foundation for both its Browser
application and the WebView embeddable browsing widget. The Browser application,
of course, is something Android users can interact with directly; the WebView widget
is something you can integrate into your own applications for places where an
HTML interface might be useful.

Earlier in this book, we saw a simple integration of a WebView into an Android
activity, with the activity dictating what the browsing widget displayed and how it
responded to links.

Here, we will expand on this theme, and show how to more tightly integrate the Java
environment of an Android application with the JavaScript environment of WebKit.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one covering WebView.

Friends with Benefits
When you integrate a WebView into your activity, you can control what Web pages
are displayed, whether they are from a local provider or come from over the Internet,
what should happen when a link is clicked, and so forth. And between WebView,
WebViewClient, and WebSettings, you can control a fair bit about how the
embedded browser behaves. Yet, by default, the browser itself is just a browser,
capable of showing Web pages and interacting with Web sites, but otherwise gaining
nothing from being hosted by an Android application.

907

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Except for one thing: addJavascriptInterface().

The addJavascriptInterface() method on WebView allows you to inject a Java
object into the WebView, exposing its methods, so they can be called by JavaScript
loaded by the Web content in the WebView itself.

Now you have the power to provide access to a wide range of Android features and
capabilities to your WebView-hosted content. If you can access it from your activity,
and if you can wrap it in something convenient for use by JavaScript, your Web
pages can access it as well.

For example, HTML5 offers geolocation, whereby the Web page can find out where
the device resides, by browser-supplied means. We can do much of the same thing
ourselves via addJavascriptInterface().

In the WebKit/GeoWeb1 project, you will find a fairly simple layout (main.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<WebView<WebView android:id="@+id/webkit"

android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

All this does is host a full-screen WebView widget.

Next, take a look at the GeoWebOne activity class:

packagepackage com.commonsware.android.geoweb;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.location.Locationandroid.location.Location;
importimport android.location.LocationListenerandroid.location.LocationListener;
importimport android.location.LocationManagerandroid.location.LocationManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.JavascriptInterfaceandroid.webkit.JavascriptInterface;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass GeoWebOneGeoWebOne extendsextends Activity {

ADVANCED USES OF WEBVIEW

908

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb1

privateprivate staticstatic String PROVIDER=LocationManager.GPS_PROVIDER;
privateprivate WebView browser;
privateprivate LocationManager myLocationManager=nullnull;

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE);

browser.getSettings().setJavaScriptEnabled(truetrue);
browser.addJavascriptInterface(newnew Locater(), "locater");
browser.loadUrl("file:///android_asset/geoweb1.html");

}

@Override
publicpublic void onResume() {

supersuper.onResume();
myLocationManager.requestLocationUpdates(PROVIDER, 10000,

100.0f,
onLocation);

}

@Override
publicpublic void onPause() {

supersuper.onPause();
myLocationManager.removeUpdates(onLocation);

}

LocationListener onLocation=newnew LocationListener() {
publicpublic void onLocationChanged(Location location) {

// ignore...for now
}

publicpublic void onProviderDisabled(String provider) {
// required for interface, not used

}

publicpublic void onProviderEnabled(String provider) {
// required for interface, not used

}

publicpublic void onStatusChanged(String provider, int status,
Bundle extras) {

// required for interface, not used
}

};

publicpublic classclass LocaterLocater {

ADVANCED USES OF WEBVIEW

909

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@JavascriptInterface
publicpublic String getLocation() throwsthrows JSONException {

Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

ifif (loc==nullnull) {
returnreturn(nullnull);

}

JSONObject json=newnew JSONObject();

json.put("lat", loc.getLatitude());
json.put("lon", loc.getLongitude());

returnreturn(json.toString());
}

}
}

This looks a bit like some of the WebView examples from earlier in this book.
However, it adds three key bits of code:

• It sets up the LocationManager to provide updates when the device position
changes, routing those updates to a do-nothing LocationListener callback
object

• It has a Locater inner class that provides a convenient API for accessing the
current location, in the form of latitude and longitude values encoded in
JSON

• It uses addJavascriptInterface() to expose a Locater instance under the
name locater to the Web content loaded in the WebView

The Locater API uses JSON to return both a latitude and a longitude at the same
time. We are limited to using data types that are in common between JavaScript and
Java, so we cannot pass back the Location object we get from the LocationManager.
Hence, we convert the key Location data into a simple JSON structure that the
JavaScript on the Web page can parse.

Note that the getLocation() method on Locater has the @JavascriptInterface
annotation. This is required of apps with android:targetSdkVersion set to 17 or
higher, though it is a good idea to start using it anyway. With such an
android:targetSdkVersion, in an app running on an Android 4.2 or higher device,
only public methods with the @JavascriptInterface annotation will be accessible
by JavaScript code. On earlier devices, or with an earlier android:targetSdkVersion,
all public methods on the Locater object would be accessible by JavaScript,
including those inherited from superclasses like Object. Note that your build target

ADVANCED USES OF WEBVIEW

910

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

will need to be Android 4.2 or higher in order to reference the
@JavascriptInterface annotation.

Also note that onCreate() has the @SuppressLint("SetJavaScriptEnabled")
annotation. This overrides a Lint warning about the use of
setJavaScriptEnabled(true), where Lint wants to make sure that you understand
the risks of allowing arbitrary JavaScript to execute inside your app. In this case, the
JavaScript is code that we wrote, and so we can ensure that it is safe and sane.

The Web page itself is referenced in the source code as file:///android_asset/
geoweb1.html, so the GeoWeb1 project has a corresponding assets/ directory
containing geoweb1.html:

<html><html>
<head><head>
<title><title>Android GeoWebOne Demo</title></title>
<script<script language="javascript">>

functionfunction whereami() {
varvar location=JSON.parse(locater.getLocation());

document.getElementById("lat").innerHTML=location.lat;
document.getElementById("lon").innerHTML=location.lon;

}
</script></script>
</head></head>
<body><body>
<p><p>
You are at:

 <span>(unknown) latitude and

<span>(unknown) longitude.
</p></p>
<p><a<p>>Update Location</p></p>
</body></body>
</html></html>

When you click the “Update Location” link, the page calls a whereami() JavaScript
function, which in turn uses the locater object to update the latitude and
longitude, initially shown as “(unknown)” on the page.

If you run the application, initially, the page is pretty boring:

ADVANCED USES OF WEBVIEW

911

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 283: The GeoWebOne sample application, as initially launched

However, if you wait a bit for a GPS fix, and click the “Update Location” link… the
page is still pretty boring, but it at least knows where you are:

ADVANCED USES OF WEBVIEW

912

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 284: The GeoWebOne sample application, after clicking the Update Location
link

Turnabout is Fair Play
Now that we have seen how JavaScript can call into Java, it would be nice if Java
could somehow call out to JavaScript. In our example, it would be helpful if we could
expose automatic location updates to the Web page, so it could proactively update
the position as the user moves, rather than wait for a click on the “Update Location”
link.

Well, as luck would have it, we can do that too. This is a good thing, otherwise, this
would be a really weak section of the book.

What is unusual is how you call out to JavaScript. One might imagine there would
be an executeJavaScript() counterpart to addJavascriptInterface(), where you
could supply some JavaScript source and have it executed within the context of the
currently-loaded Web page.

Oddly enough, that is not how this is accomplished.

ADVANCED USES OF WEBVIEW

913

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Instead, given your snippet of JavaScript source to execute, you call loadUrl() on
your WebView, as if you were going to load a Web page, but you put javascript: in
front of your code and use that as the “address” to load.

If you have ever created a “bookmarklet” for a desktop Web browser, you will
recognize this technique as being the Android analogue – the javascript: prefix
tells the browser to treat the rest of the address as JavaScript source, injected into
the currently-viewed Web page.

So, armed with this capability, let us modify the previous example to continuously
update our position on the Web page.

The layout for the WebKit/GeoWeb2 sample project is the same as before. The Java
source for our activity changes a bit:

packagepackage com.commonsware.android.geoweb2;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.location.Locationandroid.location.Location;
importimport android.location.LocationListenerandroid.location.LocationListener;
importimport android.location.LocationManagerandroid.location.LocationManager;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.JavascriptInterfaceandroid.webkit.JavascriptInterface;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass GeoWebTwoGeoWebTwo extendsextends Activity {
privateprivate staticstatic String PROVIDER="gps";
privateprivate WebView browser;
privateprivate LocationManager myLocationManager=nullnull;

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

myLocationManager=
(LocationManager)getSystemService(Context.LOCATION_SERVICE);

browser.getSettings().setJavaScriptEnabled(truetrue);
browser.addJavascriptInterface(newnew Locater(), "locater");
browser.loadUrl("file:///android_asset/geoweb2.html");

}

ADVANCED USES OF WEBVIEW

914

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb2

@Override
publicpublic void onResume() {

supersuper.onResume();
myLocationManager.requestLocationUpdates(PROVIDER, 0, 0, onLocation);

}

@Override
publicpublic void onPause() {

supersuper.onPause();
myLocationManager.removeUpdates(onLocation);

}

LocationListener onLocation=newnew LocationListener() {
@TargetApi(Build.VERSION_CODES.KITKAT)
publicpublic void onLocationChanged(Location location) {

StringBuilder buf=newnew StringBuilder("whereami(");

buf.append(String.valueOf(location.getLatitude()));
buf.append(",");
buf.append(String.valueOf(location.getLongitude()));
buf.append(")");

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
browser.evaluateJavascript(buf.toString(), nullnull);

}
elseelse {

browser.loadUrl("javascript:" + buf.toString());
}

}

publicpublic void onProviderDisabled(String provider) {
// required for interface, not used

}

publicpublic void onProviderEnabled(String provider) {
// required for interface, not used

}

publicpublic void onStatusChanged(String provider, int status,
Bundle extras) {

// required for interface, not used
}

};

publicpublic classclass LocaterLocater {
@JavascriptInterface
publicpublic String getLocation() throwsthrows JSONException {

Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

ifif (loc == nullnull) {
returnreturn(nullnull);

}

ADVANCED USES OF WEBVIEW

915

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JSONObject json=newnew JSONObject();

json.put("lat", loc.getLatitude());
json.put("lon", loc.getLongitude());

returnreturn(json.toString());
}

}
}

Before, the onLocationChanged() method of our LocationListener callback did
nothing. Now, it builds up a call to a whereami() JavaScript function, providing the
latitude and longitude as parameters to that call. So, for example, if our location
were 40 degrees latitude and –75 degrees longitude, the call would be
whereami(40,-75).

What happens then depends upon the version of Android the device is running.

• For devices running Android 4.4+, it calls evaluateJavascript(). This takes
the Javascript source code, plus an optional callback, and executes it in the
context of the currently-loaded Web page.

• For devices running older versions of Android, it puts javascript: in front
of the Javascript source and calls loadUrl() on the WebView. This is the same
syntax used for “bookmarklets” in desktop Web browsers.

The result is that a whereami() function in the Web page gets called with the new
location.

That Web page, of course, also needed a slight revision, to accommodate the option
of having the position be passed in:

<html><html>
<head><head>
<title><title>Android GeoWebTwo Demo</title></title>
<script<script language="javascript">>

functionfunction whereami(lat, lon) {
document.getElementById("lat").innerHTML=lat;
document.getElementById("lon").innerHTML=lon;

}

functionfunction pull() {
varvar location=JSON.parse(locater.getLocation());

whereami(location.lat, location.lon);
}

</script></script>
</head></head>

ADVANCED USES OF WEBVIEW

916

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<body><body>
<p><p>
You are at:

 <span>(unknown) latitude and

<span>(unknown) longitude.
</p></p>
<p><a<p>>Update Location</p></p>
</body></body>
</html></html>

The basics are the same, and we can even keep our “Update Location” link, albeit
with a slightly different onClick attribute.

If you build, install, and run this revised sample on a GPS-equipped Android device,
the page will initially display with “(unknown)” for the current position. After a fix is
ready, though, the page will automatically update to reflect your actual position.
And, as before, you can always click “Update Location” if you wish.

NOTE: The behavior documented here is for Android 4.3 and below, and for
Android 4.4+ when your app has its android:targetSdkVersion set to 18 or lower.
On Android 4.4+, you will want to use the new evaluateJavascript() method to
achieve the same effect as had been seen with loadUrl("javascript:..."). This
sample will be updated in a future version of the book to accommodate this change.

Navigating the Waters
There is no navigation toolbar with the WebView widget. This allows you to use it in
places where such a toolbar would be pointless and a waste of screen real estate.
That being said, if you want to offer navigational capabilities, you can, but you have
to supply the UI. WebView offers ways to perform garden-variety browser
navigation, including:

• reload() to refresh the currently-viewed Web page
• goBack() to go back one step in the browser history, and canGoBack() to

determine if there is any history to go back to
• goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

• goBackOrForward() to go backwards or forwards in the browser history,
where negative numbers represent a count of steps to go backwards, and
positive numbers represent how many steps to go forwards

• canGoBackOrForward() to see if the browser can go backwards or forwards
the stated number of steps (following the same positive/negative convention
as goBackOrForward())

ADVANCED USES OF WEBVIEW

917

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• clearCache() to clear the browser resource cache and clearHistory() to
clear the browsing history

Settings, Preferences, and Options (Oh, My!)
With your favorite desktop Web browser, you have some sort of “settings” or
“preferences” or “options” window. Between that and the toolbar controls, you can
tweak and twiddle the behavior of your browser, from preferred fonts to the
behavior of JavaScript.

Similarly, you can adjust the settings of your WebView widget as you see fit, via the
WebSettings instance returned from calling the widget’s getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly esoteric
(e.g., setFantasyFontFamily()). However, here are some that you may find more
useful:

• Control the font sizing via setDefaultFontSize() (to use a point size) or
setTextSize() (to use constants indicating relative sizes like LARGER and
SMALLEST)

• Control Web site rendering via setUserAgent(), so you can supply your own
user agent string to make the Web server think you are a desktop browser,
another mobile device (e.g., iPhone), or whatever. The settings you change
are not persistent, so you should store them somewhere (such as via the
Android preferences engine) if you are allowing your users to determine the
settings, versus hard-wiring the settings in your application.

ADVANCED USES OF WEBVIEW

918

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is commonly
referred to as “soft keyboards”. However, the “soft keyboard” term is not necessarily
accurate, as IMF could be used for handwriting recognition or other means of
accepting text input via the screen.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the section covering the EditText widget.

Keyboards, Hard and Soft
Some Android devices have a hardware keyboard that is visible some of the time
(when it is slid out). A few Android devices have a hardware keyboard that is always
visible (so-called “bar” or “slab” phones). Most Android devices, though, have no
hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware keyboard, an
input method editor (IME) will be available to the user when they tap on an enabled
EditText.

This requires no code changes to your application… if the default functionality of the
IME is what you want. Fortunately, Android is fairly smart about guessing what you
want, so it may be you can just test with the IME but otherwise make no specific
code changes.

919

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Of course, the keyboard may not quite behave how you would like. For example, in
the Basic/Field sample project, the FieldDemo activity has the IME overlaying the
multiple-line EditText:

Figure 285: The input method editor, as seen in the FieldDemo sample application

It would be nice to have more control over how this appears, and for other behavior
of the IME. Fortunately, the framework as a whole gives you many options for this,
as is described over the bulk of this chapter.

Tailored To Your Needs
Android 1.1 and earlier offered many attributes on EditText widgets to control their
style of input, such as android:password to indicate a field should be for password
entry (shrouding the password keystrokes from prying eyes). Starting in Android 1.5,
with the IMF, many of these have been combined into a single android:inputType
attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited
list (where | is the pipe character). The class generally describes what the user is
allowed to input, and this determines the basic set of keys available on the soft
keyboard. The available classes are:

1. text (the default)

THE INPUT METHOD FRAMEWORK

920

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. number
3. phone
4. datetime
5. date
6. time

Many of these classes offer one or more modifiers, to further refine what the user
will be entering. To help explain those, take a look at the res/layout/main.xml file
from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>

<TextView<TextView
android:text="No special rules:"

/>/>
<EditText<EditText
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Email address:"

/>/>
<EditText<EditText

android:inputType="text|textEmailAddress"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Signed decimal number:"

/>/>
<EditText<EditText

android:inputType="number|numberSigned|numberDecimal"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Date:"

/>/>
<EditText<EditText

android:inputType="date"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Multi-line text:"

/>/>

THE INPUT METHOD FRAMEWORK

921

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo1
http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo1

<EditText<EditText
android:inputType="text|textMultiLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a slightly
different flavor of EditText:

• One has no attributes at all on the EditText, meaning you get a plain text
entry field

• One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

• One allows for signed decimal numeric input, via android:inputType =
"number|numberSigned|numberDecimal"

• One is set up to allow for data entry of a date (android:inputType =
"date")

• The last allows for multi-line input with auto-correction of probable spelling
errors (android:inputType = "text|textMultiLine|textAutoCorrect")

The class and modifiers tailor the keyboard. So, a plain text entry field results in a
plain soft keyboard:

Figure 286: A standard input method editor (a.k.a., soft keyboard)

THE INPUT METHOD FRAMEWORK

922

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

An email address field might put the @ symbol on the soft keyboard, at the cost of a
smaller spacebar:

Figure 287: The input method editor for email addresses

Note, though, that this behavior is specific to the input method editor. Some editors
might put an @ sign on the primary keyboard for an email field. Some might put a
“.com” button on the primary keyboard. Some might not react at all. It is up to the
implementation of the input method editor — all you can do is supply the hint.

Numbers and dates restrict the keys to numeric keys, plus a set of symbols that may
or may not be valid on a given field:

THE INPUT METHOD FRAMEWORK

923

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 288: The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go
You may have noticed a subtle difference between the first and second input method
editors, beyond the addition of the @ key. If you look in the lower-right corner of the
soft keyboard, the second field’s editor has a “Next” button, while the first field’s
editor has a newline button.

This points out two things:

• EditText widgets are multi-line by default if you do not specify
android:inputType

• You can control what goes on with that lower-right-hand button, called the
accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be “Next”, moving you to the next EditText in sequence, or
“Done”, if you are on the last EditText on the screen. You can manually stipulate
what the accessory button will be labeled via the android:imeOptions attribute. For

THE INPUT METHOD FRAMEWORK

924

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

example, in the res/layout/main.xml from the InputMethod/IMEDemo2 sample
project, you will see an augmented version of the previous example, where two input
fields specify what their accessory button should look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"

>>
<TableLayout<TableLayout

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>

<TextView<TextView
android:text="No special rules:"

/>/>
<EditText<EditText
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Email address:"

/>/>
<EditText<EditText

android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Signed decimal number:"

/>/>
<EditText<EditText

android:inputType="number|numberSigned|numberDecimal"
android:imeOptions="actionDone"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Date:"

/>/>
<EditText<EditText

android:inputType="date"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Multi-line text:"

/>/>
<EditText<EditText

android:inputType="text|textMultiLine|textAutoCorrect"

THE INPUT METHOD FRAMEWORK

925

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo2
http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo2

android:minLines="3"
android:gravity="top"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>
</ScrollView></ScrollView>

Here, we attach a “Send” action to the accessory button for the email address
(android:imeOptions = "actionSend"), and the “Done” action on the middle field
(android:imeOptions = "actionDone").

By default, “Next” will move the focus to the next EditText and “Done” will close up
the input method editor. However, for those, or for any other ones like “Send”, you
can use setOnEditorActionListener() on EditText (technically, on the TextView
superclass) to get control when the accessory button is clicked or the user presses
the <Enter> key. You are provided with a flag indicating the desired action (e.g.,
IME_ACTION_SEND), and you can then do something to handle that request (e.g., send
an email to the supplied email address).

If you need more control over the action button, you can set:

• android:imeActionId, which provides a custom value for the actionId that
is passed to onEditorAction() of your OnEditorActionListener

• android:imeActionLabel, where you provide your own caption for the
button (bearing in mind that your desired caption may or may not fit)

Fitting In
You will notice that the IMEDemo2 layout shown above has another difference from its
IMEDemo1 predecessor: the use of a ScrollView container wrapping the TableLayout.
This ties into another level of control you have over the input method editors: what
happens to your activity’s own layout when the input method editor appears?

There are three possibilities, depending on circumstances:

1. Android can “pan” your activity, effectively sliding the whole layout up to
accommodate the input method editor, or overlaying your layout, depending
on whether the EditText being edited is at the top or bottom. This has the
effect of hiding some portion of your UI.

2. Android can resize your activity, effectively causing it to shrink to a smaller
screen dimension, allowing the input method editor to sit below the activity
itself. This is great when the layout can readily be shrunk (e.g., it is

THE INPUT METHOD FRAMEWORK

926

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

dominated by a list or multi-line input field that does not need the whole
screen to be functional).

3. In landscape mode, Android may display the input method editor full-
screen, obscuring your entire activity. This allows for a bigger keyboard and
generally easier data entry.

Android controls the full-screen option purely on its own. And, by default, Android
will choose between pan and resize modes depending on what your layout looks
like. If you want to specifically choose between pan and resize, you can do so via an
android:windowSoftInputMode attribute on the <activity> element in your
AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.imf.two"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".IMEDemo2"
android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Because we specified resize, Android will shrink our layout to accommodate the
input method editor. With the ScrollView in place, this means the scroll bar will
appear as needed:

THE INPUT METHOD FRAMEWORK

927

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 289: The shrunken, scrollable layout

Jane, Stop This Crazy Thing!
Sometimes, you need the input method editor to just go away. For example, if you
make the action button be “Search”, the user tapping that button will not
automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a system
service that controls these input method editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where fld is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that there are
two ways for a user to have opened that input method editor in the first place:

• If their device does not have a hardware keyboard exposed, and they tap on
the EditText, the input method editor should appear

• If they previously dismissed the editor, or if they are using the editor for a
widget that does not normally pop one up (e.g., ListView), and they long-
tap on the MENU button, the input method editor should appear

THE INPUT METHOD FRAMEWORK

928

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you only want to close the input method editor for the first scenario, but not the
second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the second
parameter to your call to hideSoftInputFromWindow(), instead of the 0 shown in the
previous example.

THE INPUT METHOD FRAMEWORK

929

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fonts

Inevitably, you’ll get the question “hey, can we change this font?” when doing
application development. The answer depends on what fonts come with the
platform, whether you can add other fonts, and how to apply them to the widget or
whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding new fonts.
Though, as with any new environment, there are a few idiosyncrasies to deal with.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on files.

Love The One You’re With
Android natively knows three fonts, by the shorthand names of “sans”, “serif”, and
“monospace”. For Android 1.x, 2.x, and 3.x, these fonts are actually the Droid series of
fonts, created for the Open Handset Alliance by Ascender. A new font set, Roboto, is
used in Android 4.x and beyond.

For those fonts, you can just reference them in your layout XML, if you choose, such
as the following layout from the Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1">>

931

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.ascendercorp.com/oha.html
http://github.com/commonsguy/cw-omnibus/tree/master/Fonts/FontSampler
http://github.com/commonsguy/cw-omnibus/tree/master/Fonts/FontSampler

<TableRow><TableRow>
<TextView<TextView

android:text="sans:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/sans"
android:text="Hello, world!"
android:typeface="sans"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="serif:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/serif"
android:text="Hello, world!"
android:typeface="serif"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="monospace:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/monospace"
android:text="Hello, world!"
android:typeface="monospace"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Custom:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/custom"
android:text="Hello, world!"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow<TableRow android:id="@+id/filerow">>

<TextView<TextView
android:text="Custom from File:"

FONTS

932

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/file"
android:text="Hello, world!"
android:textSize="20sp"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

This layout builds a table showing short samples of five fonts. Notice how the first
three have the android:typeface attribute, whose value is one of the three built-in
font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer, or a
manager, or a customer wants a different font than one of those three. Or perhaps
you want to use a font for specialized purposes, such as a “dingbats” font instead of a
series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with your
application. To do this, simply create an assets/ folder in the project root, and put
your TrueType (TTF) fonts in the assets. You might, for example, create assets/
fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can no
longer use layout XML for this, since the XML does not know about any fonts you
may have tucked away as an application asset. Instead, you need to make the change
in Java code:

packagepackage com.commonsware.android.fonts;

importimport android.app.Activityandroid.app.Activity;
importimport android.graphics.Typefaceandroid.graphics.Typeface;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.io.Filejava.io.File;

publicpublic classclass FontSamplerFontSampler extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewById(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),

FONTS

933

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);

File font=newnew File(Environment.getExternalStorageDirectory(),
"MgOpenCosmeticaBold.ttf");

ifif (font.exists()) {
tv=(TextView)findViewById(R.id.file);
face=Typeface.createFromFile(font);

tv.setTypeface(face);
}
elseelse {

findViewById(R.id.filerow).setVisibility(View.GONE);
}

}
}

Here we grab the TextView for our “custom” sample, then create a Typeface object
via the static createFromAsset() builder method. This takes the application’s
AssetManager (from getAssets()) and a path within your assets/ directory to the
font you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing the
Typeface you just created. In this case, we are using the Handmade Typewriter font.

You can also load a font out of a local file and use it. The benefit is that you can
customize your fonts after your application has been distributed. On the other hand,
you have to somehow arrange to get the font onto the device. But just as you can get
a Typeface via createFromAsset(), you can get a Typeface via createFromFile(). In
our FontSampler, we look in the root of “external storage” (typically the SD card) for
the MgOpenCosmeticaBold TrueType font file, and if it is found, we use it for the
fifth row of the table. Otherwise, we hide that row.

The results?

FONTS

934

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Figure 290: The FontSampler application

Note that Android does not seem to like all TrueType fonts. When Android dislikes a
custom font, rather than raise an Exception, it seems to substitute Droid Sans
(“sans”) quietly. So, if you try to use a different font and it does not seem to be
working, it may be that the font in question is incompatible with Android, for
whatever reason.

Here a Glyph, There a Glyph
TrueType fonts can be rather pudgy, particularly if they support an extensive subset
of the available Unicode characters. The Handmade Typewriter font used above runs
over 70KB; the DejaVu free fonts can run upwards of 500KB apiece. Even
compressed, these add bulk to your application, so be careful not to go overboard
with custom fonts, lest your application take up too much room on your users’
phones.

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As
an example, let us talk about the ellipsis.

FONTS

935

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and
adding an ellipsis if the text is longer than the available space. You can use this via
the android:ellipsize attribute, for example. This works fairly well, at least for
single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual ellipsis
character, where the three dots are contained in a single glyph. Hence, any font that
you use in a TextView where you also use the “ellipsizing” feature will need the
ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-screen, such
that the length (in characters) is the same before and after “ellipsizing”. To make this
work, Android replaces one character with the ellipsis, and replaces all other
removed characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’
(U+FEFF). This means the “extra” characters after the ellipsis do not take up any
visible space on screen, yet they can be part of the string.

However, this means any custom fonts you use for TextView widgets that you use
with android:ellipsize must also support this special Unicode character. Not all
fonts do, and you will get artifacts in the on-screen representation of your shortened
strings if your font lacks this character (e.g., rogue X’s appear at the end of the line).

And, of course, Android’s international deployment means your font must handle
any language your users might be looking to enter, perhaps through a language-
specific input method editor.

Hence, while using custom fonts in Android is very possible, there are many
potential problems, and so you must weigh carefully the benefits of the custom fonts
versus their potential costs.

FONTS

936

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rich Text

Plain text is so, well, plain.

Fortunately, Android has fairly extensive support for formatted text, before you need
to break out something as heavy-weight as WebView. However, some of this rich text
support has been shrouded in mystery, particularly how you would allow users to
edit formatted text.

This chapter will explain how the rich text support in Android works and how you
can take advantage of it, with particular emphasis on some open source projects to
help you do just that.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic widgets and the input method framework.

The Span Concept
You may have noticed that many methods in Android accept or return a
CharSequence. The CharSequence interface is little used in traditional Java, if for no
other reason than there are relatively few implementations of it outside of String.
However, in Android, CharSequence becomes much more important, because of a
sub-interface named Spanned.

Spanned defines sequences of characters (CharSequence) that contain inline markup
rules. These rules — instances of CharacterStyle — indicate whether the “spanned”

937

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

portion of the characters should be rendered in an alternate font, or be turned into a
hyperlink, or have other effects applied to them.

Methods that take a CharSequence as a parameter, therefore, can work equally well
with String objects as well as objects that implement Spanned.

Implementations

The base interface for rich-text CharSequence objects is Spanned. This is used for any
CharSequence that has inline markup rules, and it defines methods for retrieving
markup rules applied to portions of the underlying text.

The primary concrete implementation of Spanned is SpannedString. SpannedString,
like String, is immutable — you cannot change either the text or the formatting of a
SpannedString.

There is also the Spannable sub-interface of Spanned. Spannable is used for any
CharSequence with inline markup rules that can be modified, and it defines the
methods for modifying the formatting. There is a corresponding SpannableString
implementation.

Finally, there is a related Editable interface, which is for a CharSequence that can
have its text modified in-place. SpannableStringBuilder implements both Editable
and Spannable, for modifying text and formatting at the same time.

TextView and Spanned

One of the most important uses of Spanned objects is with TextView. TextView is
capable of rendering a Spanned, complete with all of the specified formatting. So, if
you have a Spanned that indicates that the third word should be rendered in italics,
TextView will faithfully italicize that word.

TextView, of course, is an ancestor of many other widgets, from EditText to Button
to CheckBox. Each of those, therefore, can use and render Spannable objects. The
fact that EditText has the ability to render Spanned objects — and even allow them
to be edited — is key for allowing users to enter rich text themselves as part of your
UI.

RICH TEXT

938

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Available Spans

As noted above, the markup rules come in the form of instances of a base class
known as CharacterStyle. Despite that name, all of the SDK-supplied subclasses of
CharacterStyle end in Span (not Style), and so you will likely see references to
these as “spans” as often as “styles”. That also helps minimize confusion between
character styles and style resources.

There are well over a dozen supplied CharacterStyle subclasses, including:

1. ForegroundColorSpan and BackgroundColorSpan for coloring text
2. StyleSpan, TextAppearanceSpan, TypefaceSpan, UnderlineSpan, and

StrikethroughSpan for affecting the true “style” of text
3. AbsoluteSizeSpan, RelativeSizeSpan, SuperscriptSpan, and

SubscriptSpan for affecting the size (and, in some cases, vertical position) of
the text

And so on.

In principle, you could implement your own custom subclasses of CharacterStyle,
though coverage of this is well outside the scope of this book.

Loading Rich Text
Spanned objects do not appear by magic. Plenty of things in Java will give you
ordinary strings, from XML and JSON parsers to loading data out of a database to
simply hard-coding string constants. However, there are only a few ways that you as
a developer will get a Spanned complete with formatting, and that includes you
creating such a Spanned yourself by hand.

String Resource

The primary way most developers get a Spanned object into their application is via a
string resource. String resources support inline markup in the form of HTML tags.
Bold (), italics (<i>), and underline (<u>) are officially supported, such as:

<string<string name="welcome">>Welcome to Android!</string></string>

When you retrieve the string resource via getText(), you get back a CharSequence
that represents a Spanned object with the markup rules in place.

RICH TEXT

939

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTML

The next-most common way to get a Spanned object is to use Html.fromHtml(). This
parses an HTML string and returns a Spanned object, with all recognized tags
converted into corresponding spans. You might use this for text loaded from a
database, retrieved from a Web service call, extracted from an RSS feed, etc.

Unfortunately, the list of tags that fromHtml() understands is undocumented. Based
upon the source code to fromHtml(), the following seem safe:

1.
2.
3. <big>
4. <blockquote>
5.

6. <cite>
7. <dfn>
8. <div align="...">
9.

10.
11. <h1>
12. <h2>
13. <h3>
14. <h4>
15. <h5>
16. <h6>
17. <i>
18.
19. <p>
20. <small>
21. <strike>
22.
23. <sub>
24. <sup>
25. <tt>
26. <u>

However, do bear in mind that these are undocumented and therefore are subject to
change. Also note that fromHtml() is perhaps slower than you might think,
particularly for longer strings.

RICH TEXT

940

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You might also wind up using some other support code to get your HTML. For
example, some data sources might publish text formatted as Markdown —
StackOverflow, GitHub, etc. use this extensively. Markdown can be converted to
HTML, through any number of available Java libraries or via CWAC-AndDown,
which wraps the native hoedown Markdown-to-HTML converter for maximum
speed.

From EditText

The reason why so much sample code calls getText() followed by toString() on an
EditText widget is because EditText is going to return an Editable object from
getText(), not a simple string. That’s because, in theory, EditText could be
returning something with formatting applied. The call to toString() simply strips
out any potential formatting as part of giving you back a String.

However, you could elect to use the Editable object (presumably a
SpannableStringBuilder) if you wanted, such as for pouring the entered text into a
TextView, complete with any formatting that might have wound up on the entered
text.

Actually getting formatting applied to the contents of an EditText is covered later in
this chapter.

Manually

You are welcome to create a SpannableString via its constructor, supplying the text
that you wish to display, then calling various methods on SpannableString to
format it. We will see an example of this later in this chapter.

Or, you are welcome to create a SpannableStringBuilder via its constructor. In
some respects, SpannableStringBuilder works like the classic StringBuilder —
you call append() to add more text. However, SpannableStringBuilder also offers
delete(), insert(), and replace() methods to modify portions of the existing
content. It also supports the same methods that SpannableString does, via the
Spannable interface, for applying formatting rules to portions of text.

Editing Rich Text
If the Spannable you wound up with is a SpannedString, it is what it is — you
cannot change it. If, however, you have a SpannableString, that can be modified by

RICH TEXT

941

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://daringfireball.net/projects/markdown/
https://github.com/commonsguy/cwac-anddown
https://github.com/hoedown/hoedown

you, or by the user. Of course, allowing the user to modify a Spannable gets a wee bit
tricky, and is why the RichEditText project was born.

RichEditText

If you load a Spannable into an EditText, the formatting will not only be displayed,
but it will be part of the editing experience. For example, if the phrase “the fox
jumped” is in bold, and the user adds in more words to make it “the quick brown fox
jumped”, the additional words will also be in boldface. That is because the user is
modifying text in the middle of a defined span, and so therefore the adjusted text is
rendered according to that span.

The biggest problem is that EditText alone has no mechanism to allow users to
change formatting. Perhaps someday it will have options for that. In the meantime,
though, RichEditText is designed to fill that gap.

RichEditText is a CWAC project that offers a reasonably convenient API for
applying, toggling, or removing effects applied to the current selected text. You have
your choice of creating your own UI for this (e.g., implementing a toolbar) or
enabling an extension to the EditText action modes to allow the users to format the
text.

More information on using RichEditText can be found on the project site, and a
future version of this chapter will go into details not only of its use, but also its
construction, once the project has matured a little more.

Manually

Spannable offers two methods for modifying its formatting: setSpan() to apply
formatting, and removeSpan() to get rid of an existing span. And, since Spannable
extends Spanned, a Spannable also has getSpans(), to return existing spans of a
current type within a certain range of characters in the text. These methods, along
with others on Spanned, allow you to get and set whatever formatting you wish to
apply on a Spannable object, such as a SpannableString.

For example, let’s take a look at the RichText/Search sample project. Here, we are
going to load some text into a TextView, then allow the user to enter a search string
in an EditText, and we will use the Spannable methods to highlight the search
string occurrences inside the text in the TextView.

Our layout is simply an EditText atop a TextView (wrapped in a ScrollView):

RICH TEXT

942

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-richedit
http://github.com/commonsguy/cw-omnibus/tree/master/RichText/Search
http://github.com/commonsguy/cw-omnibus/tree/master/RichText/Search

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<EditText<EditText
android:id="@+id/search"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:singleLine="true">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<ScrollView<ScrollView
android:id="@+id/scroll"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/prose"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceMedium"/>/>

</ScrollView></ScrollView>

</LinearLayout></LinearLayout>

We pre-fill the TextView with a string resource (@string/address), which in this
project is the text of Lincoln’s Gettysburg Address, with a bit of inline markup (e.g.,
“Four score and seven years ago” italicized). So, when we fire up the project at the
outset, we see the formatted prose from the string resource:

RICH TEXT

943

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 291: The RichTextSearch sample, as initially launched

In onCreate() of our activity, we find the EditText widget and designate the activity
itself as being an OnEditorActionListener for the EditText:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

search=(EditText)findViewById(R.id.search);
search.setOnEditorActionListener(thisthis);

}

That means when the user presses <Enter>, we will get control in an
onEditorAction() method. There, we pass the search text to a private searchFor()
method, plus ensure that the input method editor is hidden (if one was used to fill
in the search text):

@Override
publicpublic boolean onEditorAction(TextView v, int actionId, KeyEvent event) {

ifif (event == nullnull || event.getAction() == KeyEvent.ACTION_UP) {
searchFor(search.getText().toString());

InputMethodManager imm=
(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

RICH TEXT

944

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

returnreturn(truetrue);
}

The searchFor() method is where the formatting is applied to our search text:

privateprivate void searchFor(String text) {
TextView prose=(TextView)findViewById(R.id.prose);
Spannable raw=newnew SpannableString(prose.getText());
BackgroundColorSpan[] spans=raw.getSpans(0,

raw.length(),
BackgroundColorSpan.class);

forfor (BackgroundColorSpan span : spans) {
raw.removeSpan(span);

}

int index=TextUtils.indexOf(raw, text);

whilewhile (index >= 0) {
raw.setSpan(newnew BackgroundColorSpan(0xFF8B008B), index, index

+ text.length(), Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);
index=TextUtils.indexOf(raw, text, index + text.length());

}

prose.setText(raw);
}

First, we get a Spannable object out of the TextView. While an EditText returns an
Editable from getText(), getText() on a TextView returns a CharSequence. In
particular, the first time we execute searchFor(), getText() will return a
SpannedString, as that is what a string resource turns into. However, that is not
modifiable, so we convert it into a SpannableString so we can apply formatting to it.
An optimization would be to see if getText() returns something implementing
Spannable and then just using it directly.

We want to highlight the search terms using a BackgroundColorSpan. However, that
means we first need to get rid of any existing BackgroundColorSpan objects applied
to the prose from a previous search — otherwise, we would keep highlighting more
and more of the prose. So, we use getSpans() to find all BackgroundColorSpan
objects anywhere in the prose (from index 0 through the length of the text). For
each that we find, we call removeSpan() to get rid of it from our Spannable.

Then, we use indexOf() on TextUtils to find the first occurrence of whatever the
user typed into the EditText. If we find it, we create a new BackgroundColorSpan

RICH TEXT

945

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and apply it to the matching portion of the prose using setSpan(). The last
parameter to setSpan() is a flag, indicating what should happen if text is inserted at
either the starting or ending point. In our case, the text itself is remaining constant,
so the flag does not matter much – here, we use SPAN_EXCLUSIVE_EXCLUSIVE, which
would mean that the span would not cover any text inserted at the starting or
ending point of the span.

We then continue using indexOf() to find any remaining occurrences of the search
text. Once we are done modifying our Spannable, we put it into the TextView via
setText().

The result is that all matching substrings are highlighted in a purple/magenta shade:

Figure 292: The RichTextSearch sample, after searching on “can”

Saving Rich Text
SpannableString and SpannedString are not Serializable. There is no built-in way
to persist them directly.

RICH TEXT

946

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, Html.toHtml() will convert a Spanned object into corresponding HTML,
for all CharacterStyle objects that can be readily converted into HTML. You can
then persist the resulting HTML any place you would persist a String (e.g., database
column).

In principle, you could create other similar conversion code, such as something to
take a Spanned and return the corresponding Markdown source.

Manipulating Rich Text
The TextUtils class has many utility methods that manipulate a CharSequence, to
allow you to do things that you might ordinarily have done just with methods on
String. These utility methods will work with any CharSequence, including
SpannedString and SpannableString.

Some are specifically aimed at Spanned objects, such as copySpansFrom() (to apply
formatting from one CharSequence onto another). Some are clones of String
equivalents, such as split(), join(), and substring(). Yet others are designed for
developers using the Canvas 2D drawing API, such as ellipsize() and
commaEllipsize() for intelligently truncating messages.

RICH TEXT

947

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Custom Drawables

Many times, our artwork can simply be some PNG or JPEG files, perhaps with
different variations in different resource directories by density.

Sometimes, though, we need something more.

In addition to supporting standard PNG and JPEG files, Android has a number of
custom drawable resource formats — mostly written in XML — that handle specific
scenarios.

For example, you may wish to customize “the background” of a Button, but a Button
really has several different background images for different circumstances (normal,
pressed, focused, disabled, etc.). Android has a certain type of drawable resource
that aggregates other drawable resources, indicating which of those other resources
should be used in different circumstances (e.g., for a normal button use X, for a
disabled button use Y).

In this chapter, we will explore these non-traditional types of “drawables” and how
you can use them within your apps.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and basic widgets.

Having read the chapters on animators and legacy animations would be useful.

949

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ColorDrawable
The simplest XML drawable format, by far, is for ColorDrawable. Not surprisingly,
this defines a Drawable that is a solid color.

So, you can have a res/drawable/thing.xml file, containing something like this:

<color<color xmlns:android="http://schemas.android.com/apk/res/android"
android:color="#80FF00FF"/>/>

From there, you can use @drawable/thing or R.drawable.thing in the same places
that you would use any other drawable resource.

AnimationDrawable
The original way of doing animation on the Web was via the animated GIF. An
individual GIF file could contain many frames, and the browser would switch
between those frames to display a basic animated effect. This was used by Web
designers for things both good (animated progress “spinners”) and bad (“hit the
monkey” ad banners).

Android, on the whole, does not support animated GIF files, certainly not as regular
images for use with widgets like ImageView.

However, there are times where having this sort of frame-by-frame animation would
be useful. For example, in an upcoming chapter, we will look at ProgressBar, which
is Android’s primary way of demonstrating progress of background work. You may
wish to customize the “spinning wheel” image that Android uses by default, to
match your app’s color scheme, or to spin your company logo, or whatever. On the
Web, particularly on older browsers, you might use an animated GIF for that — on
Android, that is not an option.

An AnimationDrawable, though, is an option.

AnimationDrawable has the net effect of an animated GIF:

• You define a series of images that serve as the frames of the animation
• You define how long each of those images should be on the screen
• You define whether the animation should loop back to the beginning after it

reaches the end or not

CUSTOM DRAWABLES

950

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, rather than encoding all of this in an animated GIF, you instead encode
this information in an XML file, stored as a drawable resource.

XML-encoded drawable resources are typically stored in a drawable directory that
does not contain density information, such as res/drawable/. That is because the
XML-encoded drawable resources are density-invariant: they behave the same
regardless of density. Those, like the AnimationDrawable, that refer to other images
might well refer to other images that are stored in density-dependent resource
directories, but the XML-encoded drawable itself is independent of density.

An AnimationDrawable is defined as in XML with a root <animation-list> element,
containing a series of <item> elements for each frame:

<animation-list<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="true">>
<item<item android:drawable="@drawable/frame1" android:duration="250" />/>
<item<item android:drawable="@drawable/frame2" android:duration="250" />/>
<item<item android:drawable="@drawable/frame3" android:duration="250" />/>
<item<item android:drawable="@drawable/frame4" android:duration="250" />/>

</animation-list></animation-list>

The root <animation-list> element can have an android:oneshot attribute,
indicating whether the animation should repeat after displaying the last frame
(false) or stop (true).

The <item> elements have android:drawable attributes pointing to the individual
images for the individual frames. Usually these frames are PNG or JPEG files, but you
refer to them as drawable resources, using @drawable syntax, so Android can find
the right image based upon the density (or other characteristics) of the current
device. The <item> elements also need an android:duration attribute, specifying
the time in milliseconds that this frame should be on the screen. While the above
example has all durations the same, that is not required.

For example, the Android OS uses AnimationDrawable resources in a few places.
One is for the download icon used in a Notification for use with DownloadManager
and similar situations. That drawable resource – stat_sys_download.xml — looks
like this:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/res/drawable/status_icon_background.xml
**
** Copyright 2008, The Android Open Source Project
**

CUSTOM DRAWABLES

951

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<animation-list<animation-list

xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">>

<item<item android:drawable="@drawable/stat_sys_download_anim0"
android:duration="200" />/>

<item<item android:drawable="@drawable/stat_sys_download_anim1"
android:duration="200" />/>

<item<item android:drawable="@drawable/stat_sys_download_anim2"
android:duration="200" />/>

<item<item android:drawable="@drawable/stat_sys_download_anim3"
android:duration="200" />/>

<item<item android:drawable="@drawable/stat_sys_download_anim4"
android:duration="200" />/>

<item<item android:drawable="@drawable/stat_sys_download_anim5"
android:duration="200" />/>
</animation-list></animation-list>

Here, we have a repeating animation (android:oneshot="false"), consisting of six
frames, each on the screen for 200 milliseconds.

By specifying an AnimationDrawable in your Notification for its icon, you too can
have this sort of animated effect. Of course, the animation is “fire and forget”: other
than by removing or replacing the Notification, you cannot affect the animation in
any other way.

Animated GIF Conversion

It may be that you have an animated GIF that you would like to use as the basis for
your AnimationDrawable. If you have passing familiarity with Ruby, the author of
this book has published a Ruby script, named gif2animdraw, that automates the
conversion.

To use gif2animdraw, in addition to the script itself and a Ruby interpreter, you will
need the RMagick, slop, and builder gems. Note that RMagick, in turn, will require

CUSTOM DRAWABLES

952

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/commonsguy/6757059
https://gist.github.com/commonsguy/6757059

ImageMagick libraries and therefore is a bit more complicated to install than is your
ordinary gem.

On Linux environments, you can also chmodchmod the script to run it directly; otherwise,
you would run it via the rubyruby command.

The script takes four command-line switches:

• -i should point to the GIF file to be converted
• -o should point to the root output directory, which typically would be a

project’s res/ directory
• -d should have, as a value, one of the Android density bucket names (e.g.,
hdpi); this will be used as the density for the frames of the GIF

• Optionally, include --oneshot to indicate that this should be a one-shot
animation, not a repeating one

The results will be:

• A drawable/ directory underneath your supplied root, containing a file with
the same name as the GIF file, but with a .xml extension, representing the
AnimationDrawable itself

• A drawable-XXXX/ directory, where XXXX is your stated density, containing
each frame of the animated GIF, as a PNG file, with a sequentially numbered
filename based on the GIF’s filename

StateListDrawable
Another XML-defined drawable resource, the StateListDrawable, is key if you want
to have different images when widgets are in different states.

As outlined in the introduction to this chapter, what makes a Button visually be a
Button is its background. To handle different looks for the Button background for
different states (normal, pressed, disabled, etc.), the standard Button background is
a StateListDrawable, one that looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

CUSTOM DRAWABLES

953

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://rmagick.rubyforge.org/install-faq.html
http://rmagick.rubyforge.org/install-faq.html

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<selector<selector xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:state_window_focused="false" android:state_enabled="true"

android:drawable="@drawable/btn_default_normal" />/>
<item<item android:state_window_focused="false" android:state_enabled="false"

android:drawable="@drawable/btn_default_normal_disable" />/>
<item<item android:state_pressed="true"

android:drawable="@drawable/btn_default_pressed" />/>
<item<item android:state_focused="true" android:state_enabled="true"

android:drawable="@drawable/btn_default_selected" />/>
<item<item android:state_enabled="true"

android:drawable="@drawable/btn_default_normal" />/>
<item<item android:state_focused="true"

android:drawable="@drawable/btn_default_normal_disable_focused" />/>
<item<item

android:drawable="@drawable/btn_default_normal_disable" />/>
</selector></selector>

The XML has a <selector> root element, indicating this is a StateListDrawable.
The <item> elements inside the root describe what Drawable resource should be
used if the StateListDrawable is being used in some state. For example, if the
“window” (think activity or dialog) does not have the focus
(android:state_window_focused="false") and the Button is enabled
(android:state_enabled="true"), then we use the @drawable/btn_default_normal
Drawable resource. That resource, as it turns out, is a nine-patch PNG file, described
later in this chapter.

Android applies each rule in turn, top-down, to find the Drawable to use for a given
state of the StateListDrawable. The last rule has no android:state_* attributes,
meaning it is the overall default image to use if none of the other rules match.

So, if you want to change the background of a Button, you need to:

• Copy the above resource, found in your Android SDK as res/drawable/
btn_default.xml inside any of the platforms/ directories, into your project

• Copy each of the Button state nine-patch images into your project
• Modify whichever of those nine-patch images you want, to affect the visual

change you seek

CUSTOM DRAWABLES

954

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If need be, tweak the states and images defined in the StateListDrawable
XML you copied

• Reference the local StateListDrawable as the background for your Button

The backgrounds of most widgets that have backgrounds by default will use a
StateListDrawable. Searching a platform version’s res/drawable/ directory for
XML files containing <selector> elements comes up with a rather long list.

LayerDrawable
A LayerDrawable basically stacks a bunch of other drawables on top of each other.
Later drawables are drawn on top of earlier drawables, much as later children of a
RelativeLayout are drawn on top of earlier children.

Typically, you will create a LayerDrawable via a <layer-list> XML drawable
resource.

For example, a ToggleButton widget has a LayerDrawable as its background:

?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:id="@+android:id/background"

android:drawable="@android:drawable/btn_default_small" />/>
<item<item android:id="@+android:id/toggle" android:drawable="@android:drawable/

btn_toggle" />/>
</layer-list></layer-list>

This LayerDrawable draws two images on top of each other. One is a standard small
button background (@android:drawable/btn_default_small). The other is the
actual face of the toggle itself — a StateListDrawable that uses different images for
checked and unchecked states.

CUSTOM DRAWABLES

955

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the <layer-list>, you can have several <item> elements. Each <item> element
usually will need an android:drawable attribute, pointing to the drawable that
should be drawn. Optionally, you can assign ID values to the items via android:id
attributes, much like you would do for widgets in a layout XML resource. Later on,
you can call findDrawableByLayerId() on the LayerDrawable to retrieve an
individual Drawable representing the layer, given its android:id value.

There are also android:left, android:right, android:top, and android:bottom
attributes, which you can use to provide dimension values to offset an image within
the layered set. For example, you could use android:left to inset one of the layers
by a certain number of pixels (or dp or whatever).

By default, the layers in the LayerDrawable are scaled to fit the size of whatever View
is holding them (e.g., the size of the ToggleButton using the LayerDrawable as a
background). To prevent this, you can skip the android:drawable attribute, and
instead nest a <bitmap> element inside the <item>, where you can provide an
android:gravity attribute to control how the image should be handled relative to
its containing View. We will get more into nested <bitmap> elements later in this
chapter.

TransitionDrawable
A TransitionDrawable is a LayerDrawable with one added feature: for a two-layer
drawable, it can smoothly transition from showing one layer to another on top.

For example, you may have noticed that when you tap-and-hold on a row in a
ListView that the selector highlight has an animated effect, slowly shifting colors
from the color used for a simple click to one signifying that you have long-clicked
the row. Android accomplishes this via a TransitionDrawable, set up as a
<transition> XML drawable resource:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

CUSTOM DRAWABLES

956

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

See the License for the specific language governing permissions and
limitations under the License.

-->

<transition<transition xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:drawable="@android:drawable/list_selector_background_pressed"

/>/>
<item<item android:drawable="@android:drawable/

list_selector_background_longpress" />/>
</transition></transition>

The TransitionDrawable object has a startTransition() method that you can use,
that will have Android smoothly switch from the first drawable to the second. You
specify the duration of the transition as a number of milliseconds passed to
startTransition(). There are also options to reverse the transition, set up more of
a cross-fade effect, and the like.

LevelListDrawable
A LevelListDrawable is similar in some respects to a StateListDrawable, insofar as
one specific item from the “list drawable” will be displayed based upon certain
conditions. In the case of StateListDrawable, the conditions are based upon the
state of the widget using the drawable (e.g., checked, pressed, disabled). In the case
of LevelListDrawable, it is merely an integer level.

For example, the status or system bar of your average Android device has an icon
indicating the battery charge level. That is actually implemented as a
LevelListDrawable, via an XML resource containing a root <level-list> element:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/res/drawable/stat_sys_battery.xml
**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/

CUSTOM DRAWABLES

957

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

-->

<level-list<level-list xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:maxLevel="4" android:drawable="@android:drawable/

stat_sys_battery_0" />/>
<item<item android:maxLevel="15" android:drawable="@android:drawable/

stat_sys_battery_15" />/>
<item<item android:maxLevel="35" android:drawable="@android:drawable/

stat_sys_battery_28" />/>
<item<item android:maxLevel="49" android:drawable="@android:drawable/

stat_sys_battery_43" />/>
<item<item android:maxLevel="60" android:drawable="@android:drawable/

stat_sys_battery_57" />/>
<item<item android:maxLevel="75" android:drawable="@android:drawable/

stat_sys_battery_71" />/>
<item<item android:maxLevel="90" android:drawable="@android:drawable/

stat_sys_battery_85" />/>
<item<item android:maxLevel="100" android:drawable="@android:drawable/

stat_sys_battery_100" />/>
</level-list></level-list>

This LevelListDrawable has eight items, whose android:drawable attributes point
to specific other drawable resources (in this case, standard PNG files with different
implementations for different densities). Each <item> has an android:maxLevel
value. When someone calls setLevel() on the Drawable or setImageLevel() on the
ImageView, Android will choose the item with the lowest maxLevel that meets or
exceeds the requested level, and show that. In the case of the battery icon, when the
battery level changes, the status bar picks up that change and calls setImageLevel()
with the battery charge percentage (expressed as an integer from 0–100) — that, in
turn, triggers the right PNG file to be displayed.

Another use of LevelListDrawable is with a RemoteViews, such as for an app widget.
The setImageLevel() method is “remotable”, despite not being directly part of the
RemoteViews API. Hence, given that you use a LevelListDrawable in your app
widget’s layout, you should be able to use setInt() with a method name of
"setImageLevel" to have the app widget update to display the proper image.

ScaleDrawable and ClipDrawable
A ScaleDrawable does pretty much what its name suggests: it scales another
drawable. A ClipDrawable does pretty much what its name suggests: it clips another
drawable.

How they do this, and how you control it, requires a bit more explanation.

CUSTOM DRAWABLES

958

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Like LevelListDrawable, ScaleDrawable and ClipDrawable leverage the setLevel()
method on Drawable (or the setImageLevel() method on ImageView). Whereas
LevelListDrawable uses this to choose an individual image out of a set of possible
images, ScaleDrawable and ClipDrawable use the level to control how much an
image should be scaled or clipped. For this, they support a range of levels from 0 to
10000.

Scaling

For a level of 0, ScaleDrawable will not draw anything. For a level from 1 to 10000,
ScaleDrawable will scale an image from a configurable minimum size to the bounds
of the View to which the drawable is applied.

The amount of scaling is determined by android:scaleHeight and
android:scaleWidth attributes:

<?xml version="1.0" encoding="utf-8"?>
<scale<scale xmlns:android="http://schemas.android.com/apk/res/android"

android:drawable="@android:drawable/btn_default"
android:scaleGravity="left|top"
android:scaleHeight="50%"
android:scaleWidth="50%"/>/>

The above ScaleDrawable (denoted by the <scale> root element) says that we
should scale both height and width of the underlying drawable to 50% of the
available space for the drawable, when the level is at its maximum (10000).

Note that you do not have to scale along both dimensions. If, for example, you kept
android:scaleWidth but deleted android:scaleHeight, setImageLevel() would
control the scaled width of the underlying image (provided via android:drawable)
but not the height.

The android:scaleGravity attribute indicates where the scaled image should reside
within the available space (the 10000 level, determined by the bounds of the View to
which the drawable is applied). The value shown above, center, keeps the image
centered within the available space, and shrinks or expands it around the center. A
value of left|top would keep the image in the upper-left corner of the space, having
the visual effect of moving the lower-right corner based upon the supplied level.

CUSTOM DRAWABLES

959

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clipping

Scaling proportionally reduces the height and/or width of an image. Clipping, on the
other hand, chops off part of the height or width of the image.

<clip<clip xmlns:android="http://schemas.android.com/apk/res/android"
android:clipOrientation="horizontal"
android:drawable="@drawable/btn_default_normal"
android:gravity="left"/>/>

In this sample ClipDrawable (indicated by the <clip> root element), we are going to
allow the level to chop off part of the image indicated by the android:drawable
attribute. Our android:clipOrientation, set to horizontal, means we are going to
chop off part of the width (vertical would have us chop off part of the height). The
amount that is going to be chopped off is the level you supply (e.g.,
setImageLevel()) divided by 10000. Hence, a level of 5000 will chop off 0.5 (a.k.a.,
50%) of the image.

Where in the image the clipping occurs is determined by the android:gravity
attribute. An android:clipOrientation of horizontal and an android:gravity of
left, as in the sample drawable above, means that the left side of the image is
retained, and the image will be clipped on the right. Specifying right instead of
left would reverse that, clipping the image from the right, while center would clip
equally from both sides. There are other gravity values as well, such as top and
bottom values to be used with a vertical orientation.

Seeing It In Action

To see these effects, take a look at the Drawable/ScaleClip sample project. This is
derived from an earlier example showing how to use ViewPager with PagerTabStrip.
In that example, we had 10 tabs, each being a large EditText widget. In this example,
we have 2 tabs, “Scale” and “Clip”, both using the same layout:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ImageView<ImageView
android:id="@+id/image"
android:layout_width="150dp"
android:layout_height="150dp"
android:layout_centerHorizontal="true"
android:layout_marginTop="20dp"
android:scaleType="fitXY"/>/>

CUSTOM DRAWABLES

960

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/ScaleClip
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/ScaleClip

<SeekBar<SeekBar
android:id="@+id/level"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_marginBottom="20dp"
android:layout_marginLeft="20dp"
android:layout_marginRight="20dp"
android:max="10000"
android:progress="10000"/>/>

</RelativeLayout></RelativeLayout>

This is simply a 150dp square ImageView towards the top of the screen and a SeekBar
towards the bottom of the screen. The SeekBar will be used to control the level
applied to a ScaleDrawable and ClipDrawable, which is why we have android:max
set to 10000. We also have our “progress” (original SeekBar value) set to 10000, so
the bar’s thumb will be fully slid over to the right at the outset.

The fragments that we will use for the tabs both inherit from a common abstract
FragmentBase class:

packagepackage com.commonsware.android.scaleclip;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.SeekBarandroid.widget.SeekBar;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

abstractabstract publicpublic classclass FragmentBaseFragmentBase extendsextends SherlockFragment implementsimplements
SeekBar.OnSeekBarChangeListener {

abstractabstract void setImageBackground(ImageView image);

privateprivate ImageView image=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

setRetainInstance(truetrue);

View result=inflater.inflate(R.layout.scaleclip, container, falsefalse);
SeekBar bar=((SeekBar)result.findViewById(R.id.level));

bar.setOnSeekBarChangeListener(thisthis);
image=(ImageView)result.findViewById(R.id.image);
setImageBackground(image);
image.setImageLevel(bar.getProgress());

CUSTOM DRAWABLES

961

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(result);
}

@Override
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
image.setImageLevel(progress);

}

@Override
publicpublic void onStartTrackingTouch(SeekBar seekBar) {

// no-op
}

@Override
publicpublic void onStopTrackingTouch(SeekBar seekBar) {

// no-op
}

}

In onCreateView(), we inflate the above layout file, hook up the fragment itself to be
the listener for SeekBar change events, call the subclass’ setImageBackground()
method to populate the ImageView with an image, and set the ImageView’s level to be
the initial value of the SeekBar. When the SeekBar value changes, our
onProgressChanged() method will adjust the level.

The concrete subclasses — ScaleFragment and ClipFragment — simply populate the
ImageView with the ScaleDrawable and ClipDrawable resources shown earlier in
this section:

packagepackage com.commonsware.android.scaleclip;

importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass ScaleFragmentScaleFragment extendsextends FragmentBase {
@Override
void setImageBackground(ImageView image) {

image.setImageResource(R.drawable.scale);
}

}

packagepackage com.commonsware.android.scaleclip;

importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass ClipFragmentClipFragment extendsextends FragmentBase {
@Override
void setImageBackground(ImageView image) {

image.setImageResource(R.drawable.clip);

CUSTOM DRAWABLES

962

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Those two drawables based their scaling and clipping on res/drawable-xdpi/
btn_default_normal.9.png. This is a slightly-modified copy of the default button
background, and is a nine-patch PNG file. We will discuss nine-patch PNG files later
in this chapter — suffice it to say for now that it is a PNG file with rules about how it
should be stretched.

Our scale tab starts off showing the full image:

Figure 293: ScaleDrawable, Level of 10000

As we start sliding the SeekBar thumb to the left, the image shrinks progressively:

CUSTOM DRAWABLES

963

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 294: ScaleDrawable, Level of Approximately 5000

It eventually tends towards the 50% level specified in our android:scaleHeight and
android:scaleWidth values:

CUSTOM DRAWABLES

964

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 295: ScaleDrawable, Level of Approximately 100

Sliding it all the way to the left, though, causes the image to vanish.

The ClipDrawable starts off looking much like the ScaleDrawable:

CUSTOM DRAWABLES

965

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 296: ClipDrawable, Level of 10000

As we slide the SeekBar to the left, the right side of the image gets clipped:

CUSTOM DRAWABLES

966

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 297: ClipDrawable, Level of Approximately 5000

InsetDrawable
An InsetDrawable allows you to apply insets on any side (or all sides) of some other
drawable resource. The use case cited in the documentation is “This is used when a
View needs a background that is smaller than the View’s actual bounds”. However, at
the present time, nothing in the Android open source code uses this particular type
of resource, or even the Java class.

In principle, though, you could have an XML drawable resource that looked like this:

<?xml version="1.0" encoding="utf-8"?>
<inset<inset xmlns:android="http://schemas.android.com/apk/res/android"

android:drawable="@drawable/something_or_another"
android:insetLeft="20dp"
android:insetTop="10dp" />/>

When used as the background for some View, for example, Android would pull in
the something_or_another resource and effectively add 20dp of left margin and 10dp
of top margin on the background when calculating its size and drawing it on the
screen.

CUSTOM DRAWABLES

967

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/graphics/drawable/InsetDrawable.html

ShapeDrawable
Far and away the most complex of the XML drawable formats is the ShapeDrawable.
It gives you what amounts to a very tiny subset of SVG, for creating simple vector art
shapes.

The root element of a ShapeDrawable resource is <shape>, which may have child
elements, along with attributes, to configure what gets rendered on the screen when
the drawable is applied.

This section will review the elements and attributes available to you, with sample
drawables (and screenshots) culled from the Drawable/Shape sample project.

This is a “sampler” project, designed to depict a number of ShapeDrawables. To
accomplish this, we will use action bar tabs, in an ActionBarSherlock-equipped
project. Our activity (MainActivity) has a pair of static int arrays, one pointing at
string resources to use for tab captions, the other pointing at corresponding
drawable resources:

packagepackage com.commonsware.android.shape;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentTransactionandroid.support.v4.app.FragmentTransaction;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.actionbarsherlock.app.ActionBarcom.actionbarsherlock.app.ActionBar;
importimport com.actionbarsherlock.app.ActionBar.Tabcom.actionbarsherlock.app.ActionBar.Tab;
importimport com.actionbarsherlock.app.ActionBar.TabListenercom.actionbarsherlock.app.ActionBar.TabListener;
importimport com.actionbarsherlock.app.SherlockActivitycom.actionbarsherlock.app.SherlockActivity;

publicpublic classclass MainActivityMainActivity extendsextends SherlockActivity implementsimplements
TabListener {

privateprivate staticstatic finalfinal int TABS[]= { R.string.solid, R.string.gradient,
R.string.border, R.string.rounded, R.string.ring,
R.string.layered };

privateprivate staticstatic finalfinal int DRAWABLES[]= { R.drawable.rectangle,
R.drawable.gradient, R.drawable.border, R.drawable.rounded,
R.drawable.ring, R.drawable.layered };

privateprivate ImageView image=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

image=(ImageView)findViewById(R.id.image);

ActionBar bar=getSupportActionBar();

CUSTOM DRAWABLES

968

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Shape
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Shape

bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < TABS.length; i++) {
bar.addTab(bar.newTab().setText(getString(TABS[i]))

.setTabListener(thisthis));
}

}

@Override
publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {

image.setImageResource(DRAWABLES[tab.getPosition()]);
}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {

// no-op
}

@Override
publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {

// no-op
}

}

In onCreate(), we toggle the ActionBar into tab-navigation mode, then iterate over
the arrays and add one tab per element.

Our layout is an ImageView, named image, centered on the screen, taking up 80% of
the horizontal space, plus has 20dp of top and bottom margin:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayout1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
android:gravity="center"
android:weightSum="10">>

<ImageView<ImageView
android:id="@+id/image"
android:src="@drawable/rectangle"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_marginTop="20dp"
android:layout_marginBottom="20dp"
android:layout_gravity="center"
android:layout_weight="8"/>/>

</LinearLayout></LinearLayout>

CUSTOM DRAWABLES

969

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In our activity’s onTabSelected() — implemented because the activity is the
TabListener for our tabs — we get the position of our tab and fill in the appropriate
drawable into the ImageView.

Given that, let’s take a look at how to construct a ShapeDrawable, along with some
sample drawables.

<shape>

Your root element, not surprisingly, is <shape>.

The primary thing that you will define on the <shape> element is the redundantly-
named android:shape attribute, to define what sort of shape you want:

• line (a shape with no interior)
• oval (also for ellipses)
• rectangle (including rounded rectangles)
• ring (for partially-filled circles)

There are some other attributes available on <shape> for a ring, which we will
examine later in this chapter.

<solid>

Your shape will usually require some sort of fill, to say what color goes in the shape.
There are two types of fills: solid and gradient.

For a solid fill, add a <solid> child element to the <shape>, with an android:color
attribute indicating what color to use. As with most places in Android, this can
either be a literal color or a reference to a color resource.

So, for example, we can specify a solid red rectangle as:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>
<solid<solid android:color="#FFAA0000"/>/>

</shape></shape>

This gives us the following visual result:

CUSTOM DRAWABLES

970

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 298: ShapeDrawable, Solid Red Rectangle

<gradient>

Your alternative fill is a gradient. The nice thing about gradients with ShapeDrawable
is that they are generated at runtime from the specifications in the ShapeDrawable,
and therefore will be smooth. Gradients that appear in PNG files and the like, if
stretched, will tend to have a banding effect.

Gradient fills are defined via a <gradient> child element of the <shape> element.

The simplest way to set up a gradient is to use three attributes:

• android:startColor and android:endColor, to specify the starting and
ending colors of the gradient, respectively, and

• android:angle, to specify what direction the gradient “flows” in

The angle must be a multiple of 45 degrees. 0 degrees is left-to-right, 90 degrees is
bottom-to-top, 180 degrees is right-to-left, and 270 degrees is top-to-bottom.

So, for example, we could change our rectangle to have a gradient fill, from red to
blue, with red at the top, via:

CUSTOM DRAWABLES

971

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<gradient<gradient
android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

</shape></shape>

That gives us:

Figure 299: ShapeDrawable, Gradient Fill Rectangle

We will examine some other gradient options in the section on rings, later in this
chapter.

<stroke>

If you want a separate color for a border around your shape, you can use the
<stroke> element, as a child of the <shape> element, to configure one.

CUSTOM DRAWABLES

972

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are four attributes that you can declare. The two that you will probably always
use are android:color (to indicate the color of the border) and android:width (to
indicate the thickness of the border). By default, using just those two will give you a
solid line around the edge of your shape.

If you would prefer a dashed border, you can add in android:dashWidth (to indicate
how long each dash segment should be) and android:dashGap (to indicate how long
the gaps between dash segments should be).

So, for example, we can add a dashed border to our gradient rectangle via a suitable
<stroke> element:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<gradient<gradient
android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

<stroke<stroke
android:width="2dp"
android:dashGap="4dp"
android:dashWidth="20dp"
android:color="#FF000000"/>/>

</shape></shape>

This gives us:

CUSTOM DRAWABLES

973

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 300: ShapeDrawable, Gradient Fill Rectangle with Dashed Border

<corners>

If we are implementing a rectangle shape, but we really want it to be a rounded
rectangle, we can add a <corners> element as a child of the <shape> element. You
can specify the radius to apply to the corners, either for all corners (e.g.,
android:radius), or for individual corners (e.g., android:topLeftRadius). Here,
“radius” basically means the size of the circle that should implement the corner,
where a radius of 0dp would indicate the default square corner.

So, if we wanted to add rounded corners to our gradient-filled, dash-outlined
rectangle, we could use this:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<gradient<gradient
android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

<stroke<stroke

CUSTOM DRAWABLES

974

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:dashGap="4dp"
android:dashWidth="20dp"
android:width="2dp"
android:color="#FF000000"/>/>

<corners<corners android:radius="8dp"/>/>

</shape></shape>

This gives us the following:

Figure 301: ShapeDrawable, Gradient Fill Rounded Rectangle with Dashed Border

<padding> and <size>

There are also <padding> and <size> elements that you can add, that specify
padding to put on the various sizes and the overall size of the drawable. More often
than not, you would actually handle this on the ImageView or other widget that is
using your drawable, but if you would prefer to define those things in the drawable
itself, you are welcome to do so.

CUSTOM DRAWABLES

975

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Put a Ring On It

Rings are a bit more complicated, in large part because they are not completely
filled. With a ring, the “fill” is filling what goes in the ring itself, not the “hole” in the
center of the ring. This means that we need to teach Android more about how that
“hole” is supposed to be set up.

To do that, we need to provide two pieces of information:

1. How big the inner radius should be, where by “inner radius” Android means
“the radius of the hole”

2. How thick the ring should be

The ring will then be drawn based upon that inner radius and thickness.

You might wonder, “well, where does the size of the actual drawable come into
play?” After all, if we specify an inner radius of 20dp and a thickness of 10dp, that
would give us an outer radius of 30dp, for a total width of 60dp… regardless of how
big the actual drawable is.

And that is completely correct.

However, for both the inner radius and the thickness, you have two choices of how
to specify their values:

1. As actual sizes (dimensions or references to dimension resources)
2. As ratios to the overall drawable width (defined by <size> or the widget that

is using the drawable)

This gives us four total attributes to choose from, to be placed on the <shape>
element for ring drawables:

1. android:innerRadius
2. android:innerRadiusRatio
3. android:thickness
4. android:thicknessRatio

Therefore, if you want the ring’s size to be based on the size of the drawable, you
would use innerRadiusRatio, thicknessRatio, or both.

CUSTOM DRAWABLES

976

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The other thing about rings is that they are round. Hence, a default linear gradient
fill — going from one side of the drawable to another – may not be what you really
want. You can control the type of gradient fill to use via the android:type attribute
on the <gradient> element. There are three possible values:

1. linear (the default behavior)
2. radial, where the gradient starts from the center (or another point that you

define) and changes color from that center to the edges
3. sweep, where the gradient revolves clockwise in a circle, starting from

whatever android:angle you specify (or 0, meaning “east”, as the default)

So, for example, take a look at the following ShapeDrawable:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:innerRadiusRatio="3"
android:shape="ring"
android:thickness="15dp"
android:useLevel="false">>

<gradient<gradient
android:centerColor="#4c737373"
android:endColor="#ff9933CC"
android:startColor="#4c737373"
android:type="sweep"/>/>

</shape></shape>

Here, we:

• Declare that our shape is a ring
• Indicate that the distance between the inner radius and the outer radius of

the ring should be 15dp
• Indicate that there is a 3:1 ratio between the width of the image and the

radius of the “hole” in the ring
• Indicate that the fill should be a gradient that sweeps clockwise from the

default angle of 0
• Indicate that the first half of the gradient (start to center) should remain a

constant color
• Indicate that the second half of the gradient (center to end) should change

color from gray to purple

We also have android:useLevel="false" in the <shape> element. For unknown
reasons, this is required for rings but not for other types of shapes.

CUSTOM DRAWABLES

977

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This gives us:

Figure 302: ShapeDrawable, Ring with Gradient Fill

BitmapDrawable
Having an XML drawable format named BitmapDrawable may seem like a
contradiction in terms. However, BitmapDrawable is not an XML representation of a
bitmap, but rather an XML representation of operations to perform on an actual
bitmap.

The big thing that BitmapDrawable offers is android:tileMode, which turns a single
bitmap into a repeating bitmap. The bitmap is tiled, horizontally and vertically,
using a tiling mode that you specify.

This is demonstrated in the Drawable/TileMode sample project.

Our activity’s layout is just a LinearLayout, set to fill the screen:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/widget"

CUSTOM DRAWABLES

978

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/TileMode
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/TileMode

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

</LinearLayout></LinearLayout>

Our activity populates action bar tabs, where it applies a particular background
image to the LinearLayout (known as R.id.widget) based on the selected tab:

packagepackage com.commonsware.android.tilemode;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentTransactionandroid.support.v4.app.FragmentTransaction;
importimport android.view.Viewandroid.view.View;
importimport com.actionbarsherlock.app.ActionBarcom.actionbarsherlock.app.ActionBar;
importimport com.actionbarsherlock.app.ActionBar.Tabcom.actionbarsherlock.app.ActionBar.Tab;
importimport com.actionbarsherlock.app.ActionBar.TabListenercom.actionbarsherlock.app.ActionBar.TabListener;
importimport com.actionbarsherlock.app.SherlockActivitycom.actionbarsherlock.app.SherlockActivity;

publicpublic classclass MainActivityMainActivity extendsextends SherlockActivity implementsimplements
TabListener {

privateprivate staticstatic finalfinal int TABS[]= { R.string._default, R.string.clamp,
R.string.repeat, R.string.mirror };

privateprivate staticstatic finalfinal int DRAWABLES[]= { R.drawable._default,
R.drawable.clamp, R.drawable.repeat, R.drawable.mirror };

privateprivate View widget=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

widget=findViewById(R.id.widget);

ActionBar bar=getSupportActionBar();
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < TABS.length; i++) {
bar.addTab(bar.newTab().setText(getString(TABS[i]))

.setTabListener(thisthis));
}

}

@Override
publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {

widget.setBackgroundResource(DRAWABLES[tab.getPosition()]);
}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {

// no-op
}

CUSTOM DRAWABLES

979

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {

// no-op
}

}

The res/drawable/_default.xml resource, used on the first tab, is an unadorned
BitmapDrawable resource, where our <bitmap> element simply has an android:src
attribute pointing to a bitmap to be used for this BitmapDrawable:

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"/>/>

Since we have not specified a tile mode, the image is stretched to fill the size of our
LinearLayout when serving as its background:

Figure 303: BitmapDrawable, Without android:tileMode

The res/drawable/clamp.xml resource, used on the second tab, adds
android:tileMode="clamp":

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"
android:tileMode="clamp"/>/>

CUSTOM DRAWABLES

980

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This causes the right-most column of pixels and the bottom-most column of pixels
to be repeated to fill the available space:

Figure 304: BitmapDrawable, Clamped

Zooming in on the upper-left portion of our LinearLayout demonstrates this:

CUSTOM DRAWABLES

981

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 305: Portion of BitmapDrawable, Clamped

The res/drawable/repeat.xml resource, used on the third tab, employs
android:tileMode="repeat":

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"
android:tileMode="repeat"/>/>

Here, the image is simply repeated in toto to fill the available space, rather than only
its lower-right edges:

CUSTOM DRAWABLES

982

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 306: BitmapDrawable, Repeated

Zooming in on an arbitrary chunk of the LinearLayout shows this effect:

Figure 307: Portion of BitmapDrawable, Repeated

CUSTOM DRAWABLES

983

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The res/drawable/mirror.xml resource, used on the fourth tab, uses
android:tileMode="mirror":

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"
android:tileMode="mirror"/>/>

Here, the image is repeated, but alternately mirrored along the repeating axis. So, it
is flipped horizontally for each repeat along the horizontal axis, and it is flipped
vertically for each repeat along the vertical axis:

Figure 308: BitmapDrawable, Mirrored

Zooming in on an arbitrary chunk of the LinearLayout shows this effect:

CUSTOM DRAWABLES

984

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 309: Portion of BitmapDrawable, Mirrored

Composite Drawables
Let’s say that we wanted to have a pair of ShapeDrawable images, one superimposed
on another. Since a single ShapeDrawable defines only one shape, we would need
something else to assist with stacking the images.

One possibility would be to use a LayerDrawable, creating three total resources:

1. The first ShapeDrawable, in its own resource file
2. The second ShapeDrawable, in its own resource file
3. The LayerDrawable, holding references to the two ShapeDrawable resources

And this will certainly work. But you have an alternative: put all of it into a single
drawable resource.

An android:drawable attribute in an <item> element can be replaced by child
elements representing another drawable structure. Hence, rather than having a
LayerDrawable with two <item> elements pointing to other drawable resources, we
could have those same <item> elements contain the other drawable XML structures,
and thereby cut our number of files from 3 to 1.

For example, we could have something like this:

<?xml version="1.0" encoding="utf-8"?>
<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

<item><item>
<shape<shape android:shape="rectangle">>

<gradient<gradient

CUSTOM DRAWABLES

985

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

<stroke<stroke
android:dashGap="4dp"
android:dashWidth="20dp"
android:width="2dp"
android:color="#FF000000"/>/>

<corners<corners android:radius="8dp"/>/>
</shape></shape>

</item></item>
<item><item>

<shape<shape
android:innerRadiusRatio="3"
android:shape="ring"
android:thickness="15dp"
android:useLevel="false">>
<gradient<gradient

android:endColor="#FFFFFFFF"
android:startColor="#ff000000"
android:type="sweep"/>/>

</shape></shape>
</item></item>

</layer-list></layer-list>

This is a LayerDrawable, layering two ShapeDrawable structures. The first
ShapeDrawable is our dash-bordered, gradient-filled, rounded rectangle from before.
The second ShapeDrawable is a ring with a simple gradient sweep fill, from black to
white.

This gives us:

CUSTOM DRAWABLES

986

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 310: Composite Drawable

Hence, any of the drawable XML structures other than ShapeDrawable can, in their
<item> elements, hold any drawable XML structure, instead of pointing to another
separate resource.

Android uses this trick as well. For example, the stock ProgressBar image is based
off of a LayerDrawable wrapped around three ShapeDrawable structures:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

CUSTOM DRAWABLES

987

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<item<item android:id="@android:id/background">>
<shape><shape>

<corners<corners android:radius="5dip" />/>
<gradient<gradient

android:startColor="#ff9d9e9d"
android:centerColor="#ff5a5d5a"
android:centerY="0.75"
android:endColor="#ff747674"
android:angle="270"

/>/>
</shape></shape>

</item></item>

<item<item android:id="@android:id/secondaryProgress">>
<clip><clip>

<shape><shape>
<corners<corners android:radius="5dip" />/>
<gradient<gradient

android:startColor="#80ffd300"
android:centerColor="#80ffb600"
android:centerY="0.75"
android:endColor="#a0ffcb00"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>

<item<item android:id="@android:id/progress">>
<clip><clip>

<shape><shape>
<corners<corners android:radius="5dip" />/>
<gradient<gradient

android:startColor="#ffffd300"
android:centerColor="#ffffb600"
android:centerY="0.75"
android:endColor="#ffffcb00"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>

</layer-list></layer-list>

We will get into how this works with a ProgressBar in a separate chapter.

CUSTOM DRAWABLES

988

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

XML Drawables and Eclipse
Alas, Eclipse has no special support for these drawables. When you double-click on
one in the Package Explorer, you will get a standard XML editor, nothing more, at
least at the present time.

A Stitch In Time Saves Nine
Most of the types of non-traditional drawable resources you can create in Android
are described in XML… but not all.

As you read through the Android documentation, you no doubt ran into references
to “nine-patch” or “9-patch” and wondered what Android had to do with quilting.
Rest assured, you will not need to take up needlework to be an effective Android
developer.

If, however, you are looking to create backgrounds for resizable widgets, like a
Button, you may wish to work with nine-patch images.

As the Android documentation states, a nine-patch is “a PNG image in which you
define stretchable sections that Android will resize to fit the object at display time to
accommodate variable sized sections, such as text strings”. By using a specially-
created PNG file, Android can avoid trying to use vector-based formats (e.g.,
ShapeDrawable) and their associated overhead when trying to create a background
at runtime. Yet, at the same time, Android can still resize the background to handle
whatever you want to put inside of it, such as the text of a Button.

In this section, we will cover some of the basics of nine-patch graphics, including
how to customize and apply them to your own Android layouts.

The Name and the Border

Nine-patch graphics are PNG files whose names end in .9.png. This means they can
be edited using normal graphics tools, but Android knows to apply nine-patch rules
to their use.

What makes a nine-patch graphic different than an ordinary PNG is a one-pixel-
wide border surrounding the image. When drawn, Android will remove that border,
showing only the stretched rendition of what lies inside the border. The border is

CUSTOM DRAWABLES

989

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://quilting.about.com/od/quiltblockconstruction/ss/patchwork_block_2.htm

used as a control channel, providing instructions to Android for how to deal with
stretching the image to fit its contents.

Padding and the Box

Along the right and bottom sides, you can draw one-pixel-wide black lines to
indicate the “padding box”. Android will stretch the image such that the contents of
the widget will fit inside that padding box.

For example, suppose we are using a nine-patch as the background of a Button.
When you set the text to appear in the button (e.g., “Hello, world!”), Android will
compute the size of that text, in terms of width and height in pixels. Then, it will
stretch the nine-patch image such that the text will reside inside the padding box.
What lies outside the padding box forms the border of the button, typically a
rounded rectangle of some form.

Figure 311: The padding box, as shown by a set of control lines to the right and bottom
of the stretchable image

CUSTOM DRAWABLES

990

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Stretch Zones

To tell Android where on the image to actually do the stretching, draw one-pixel-
wide black lines on the top and left sides of the image. Android will scale the
graphic only in those areas — areas outside the stretch zones are not stretched.

Perhaps the most common pattern is the center-stretch, where the middle portions
of the image on both axes are considered stretchable, but the edges are not:

Figure 312: The stretch zones, as shown by a set of control lines to the left and top of
the stretchable image

Here, the stretch zones will be stretched just enough for the contents to fit in the
padding box. The edges of the graphic are left unstretched.

Some additional rules to bear in mind:

1. If you have multiple discrete stretch zones along an axis (e.g., two zones
separated by whitespace), Android will stretch both of them but keep them
in their current proportions. So, if the first zone is twice as wide as the
second zone in the original graphic, the first zone will be twice as wide as
the second zone in the stretched graphic.

CUSTOM DRAWABLES

991

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. If you leave out the control lines for the padding box, it is assumed that the
padding box and the stretch zones are one and the same.

Tooling

To experiment with nine-patch images, you may wish to use the draw9patchdraw9patch
program, found in the tools/ directory of your SDK installation:

Figure 313: The draw9patch tool

Eclipse, at the present time, does not have a built-in version of draw9patchdraw9patch, so
Eclipse users will need to run the standalone copy from their SDK installation.

While a regular graphics editor would allow you to draw any color on any pixel,
draw9patchdraw9patch limits you to drawing or erasing pixels in the control area. If you attempt
to draw inside the main image area itself, you will be blocked.

On the right, you will see samples of the image in various stretched sizes, so you can
see the impact as you change the stretchable zones and padding box.

While this is convenient for working with the nine-patch nature of the image, you
will still need some other graphics editor to create or modify the body of the image

CUSTOM DRAWABLES

992

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

itself. For example, the image shown above, from the Drawable/NinePatch project, is
a modified version of a nine-patch graphic from the SDK’s ApiDemos, where the
GIMP was used to add the neon green stripe across the bottom portion of the image.

Using Nine-Patch Images

Nine-patch images are most commonly used as backgrounds, as illustrated by the
following layout from the Drawable/NinePatch sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TableLayout<TableLayout

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:stretchColumns="1"

>>
<TableRow<TableRow

android:layout_width="match_parent"
android:layout_height="wrap_content"

>>
<TextView<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:text="Horizontal:"

/>/>
<SeekBar<SeekBar android:id="@+id/horizontal"

android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
</TableRow></TableRow>
<TableRow<TableRow

android:layout_width="match_parent"
android:layout_height="wrap_content"

>>
<TextView<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:text="Vertical:"

/>/>
<SeekBar<SeekBar android:id="@+id/vertical"

android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

CUSTOM DRAWABLES

993

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/NinePatch
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/NinePatch

<LinearLayout<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/resize"

android:layout_width="96px"
android:layout_height="96px"
android:text="Hi!"
android:textSize="5pt"
android:background="@drawable/button"

/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

Here, we have two SeekBar widgets, labeled for the horizontal and vertical axes, plus
a Button set up with our nine-patch graphic as its background
(android:background = "@drawable/button").

The NinePatchDemo activity then uses the two SeekBar widgets to let the user
control how large the button should be drawn on-screen, starting from an initial size
of 64px square:

packagepackage com.commonsware.android.ninepatch;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport android.widget.SeekBarandroid.widget.SeekBar;

publicpublic classclass NinePatchDemoNinePatchDemo extendsextends Activity {
SeekBar horizontal=nullnull;
SeekBar vertical=nullnull;
View thingToResize=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

thingToResize=findViewById(R.id.resize);

horizontal=(SeekBar)findViewById(R.id.horizontal);
vertical=(SeekBar)findViewById(R.id.vertical);

horizontal.setMax(144); // 240 less 96 starting size
vertical.setMax(144); // keep it square @ max

horizontal.setOnSeekBarChangeListener(h);

CUSTOM DRAWABLES

994

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

vertical.setOnSeekBarChangeListener(v);
}

SeekBar.OnSeekBarChangeListener h=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar,

int progress,
boolean fromTouch) {

ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
ViewGroup.LayoutParams current=newnew LinearLayout.LayoutParams(64+progress,

old.height);

thingToResize.setLayoutParams(current);
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused

}
};

SeekBar.OnSeekBarChangeListener v=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar,

int progress,
boolean fromTouch) {

ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
ViewGroup.LayoutParams current=newnew LinearLayout.LayoutParams(old.width,

64+progress);

thingToResize.setLayoutParams(current);
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused

}
};

}

The result is an application that can be used much like the right pane of draw9patchdraw9patch,
to see how the nine-patch graphic looks on an actual device or emulator in various
sizes:

CUSTOM DRAWABLES

995

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 314: The NinePatch sample project, in its initial state

Figure 315: The NinePatch sample project, after making it bigger horizontally

CUSTOM DRAWABLES

996

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 316: The NinePatch sample application, after making it bigger in both
dimensions

CUSTOM DRAWABLES

997

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Animators

Users like things that move. Or fade, spin, or otherwise offer a dynamic experience.

Much of the time, such animations are handled for us by the framework. We do not
have to worry about sliding rows in a ListView when the user scrolls, or as the user
pans around a ViewPager, and so forth.

However, sometimes, we will need to add our own animations, where we want
effects that either are not provided by the framework innately or are simply different
(e.g., want something to slide off the bottom of the screen, rather than off the left
edge).

Android had an animation framework back in the beginning, one that is still
available for you today. However, Android 3.0 introduced a new animator framework
that is going to be Android’s primary focus for animated effects going forward.
Many, but not all, of the animator framework capabilities are available to us as
developers via a backport.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Also, you should read the chapter on custom views, to be able to make sense
of one of the samples.

ViewPropertyAnimator
Let’s say that you want to fade out a widget, instead of simply setting its visibility to
INVISIBLE or GONE.

999

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For a widget whose name is v, on API Level 11 or higher, that is as simple as:

v.animate().alpha(0);

Here, “alpha” refers to the “alpha channel”. An alpha of 1 is normal opacity, while an
alpha of 0 is completely transparent, with values in between representing various
levels of translucence.

That may seem rather simple. The good news is, it really is that easy. Of course,
there is a lot more you can do here, and we have to worry about supporting older
Android versions, and we need to think about things other than fading widgets in
and out, and so forth.

First, though, let’s consider what is really going on when we call animate() on a
widget on API Level 11+.

Native Implementation

The call to animate() returns an instance of ViewPropertyAnimator. This object
allows us to build up a description of an animation to be performed, such as calling
alpha() to change the alpha channel value. ViewPropertyAnimator uses a so-called
fluent interface, much like the various builder classes (e.g., Notification.Builder)
— calling a method on a ViewPropertyAnimator() usually returns the
ViewPropertyAnimator itself. This allows you to build up an animation via a chained
series of method calls, starting with that call to animate() on the widget.

You will note that we do not end the chain of method calls with something like a
start() method. ViewPropertyAnimator will automatically arrange to start the
animation once we return control of the main application thread back to the
framework. Hence, we do not have to explicitly start the animation.

You will also notice that we did not indicate any particulars about how the
animation should be accomplished, beyond stating the ending alpha channel value
of 0. ViewPropertyAnimator will use some standard defaults for the animation, such
as a default duration, to determine how quickly Android changes the alpha value
from its starting point to 0. Most of those particulars can be overridden from their
defaults via additional methods called on our ViewPropertyAnimator, such as
setDuration() to provide a duration in milliseconds.

There are four standard animations that ViewPropertyAnimator can perform:

ANIMATORS

1000

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Fluent_interface

1. Changes in alpha channel values, for fading widgets in and out
2. Changes in widget position, by altering the X and Y values of the upper-left

corner of the widget, from wherever on the screen it used to be to some new
value

3. Changes in the widget’s rotation, around any of the three axes
4. Changes in the widget’s size, where Android can scale the widget by some

percentage to expand or shrink it

We will see an example of changing a widget’s position, using the translationXBy()
method, later in this chapter.

You are welcome to use more than one animation effect simultaneously, such as
using both alpha() and translationXBy() to slide a widget horizontally and have it
fade in or out.

There are other aspects of the animation that you can control. By default, the
animation happens linearly — if we are sliding 500 pixels in 500ms, the widget will
move evenly at 1 pixel/ms. However, you can specify a different “interpolator” to
override that default linear behavior (e.g., start slow and accelerate as the animation
proceeds). You can attach a listener object to find out about when the animation
starts and ends. And, you can specify withLayer() to indicate that Android should
try to more aggressively use hardware acceleration for an animation, a concept that
we will get into in greater detail later in this chapter.

To see this in action, take a look at the Animation/AnimatorFade sample app.

The app consists of a single activity (MainActivity). It uses a layout that is
dominated by a single TextView widget, whose ID is fadee:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/fadee"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/fading_out"
android:textAppearance="?android:attr/textAppearanceLarge"
tools:context=".MainActivity"/>/>

</RelativeLayout></RelativeLayout>

ANIMATORS

1001

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFade
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFade

In onCreate(), we load up the layout and get our hands on the fadee widget:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

fadee=(TextView)findViewById(R.id.fadee);
}

MainActivity itself implements Runnable, and our run() method will perform some
animated effects:

@Override
publicpublic void run() {

ifif (fadingOut) {
fadee.animate().alpha(0).setDuration(PERIOD);
fadee.setText(R.string.fading_out);

}
elseelse {

fadee.animate().alpha(1).setDuration(PERIOD);
fadee.setText(R.string.coming_back);

}

fadingOut=!fadingOut;

fadee.postDelayed(thisthis, PERIOD);
}

Specifically, if we are to fade out the TextView (as we are at the outset, we use
ViewPropertyAnimator to fade out the widget over a certain period
(fadee.animate().alpha(0).setDuration(PERIOD);) and set the caption of the
TextView to a value indicating that we are fading out. If we are to be fading back in,
we perform the opposite animation and set the caption to a different value. We then
flip the fadingOut boolean for the next pass and use postDelayed() to reschedule
ourselves to run after the period has elapsed.

To complete the process, we run() our code initially in onResume() and cancel the
postDelayed() loop in onPause():

@Override
publicpublic void onResume() {

supersuper.onResume();

run();
}

@Override
publicpublic void onPause() {

ANIMATORS

1002

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

fadee.removeCallbacks(thisthis);

supersuper.onPause();
}

The result is that the TextView smoothly fades out and in, alternating captions as it
goes.

However, it would be really unpleasant if all this animator goodness worked only on
API Level 11+. Fortunately for us, somebody wrote a backport… somebody with
whom you are already familiar.

Backport Via NineOldAndroids

Jake Wharton, author of ActionBarSherlock, ViewPagerIndicator, and other libraries,
also wrote NineOldAndroids. This is, in effect, a backport of ViewPropertyAnimator
and its underpinnings. There are some slight changes in how you use it, because
NineOldAndroids is simply a library. It cannot add methods to existing classes (like
adding animate() to View), nor can it add capabilities that the underlying firmware
simply lacks. But, it may cover many of your animator needs, even if the name is
somewhat inexplicable, and it works going all the way back to API Level 1, ensuring
that it will cover any Android release that you care about.

As with ActionBarSherlock, NineOldAndroids is an Android library project. You will
need to download that project (look in the library/ directory of the ZIP archive)
and import it into Eclipse (if you are using Eclipse). The repository for this book has
a compatible version of NineOldAndroids in its external/ directory, and that
version is what this chapter’s samples will refer to.

Since NineOldAndroids cannot add animate() to View, the recommended approach
is to use a somewhat obscure feature of Java: imported static methods. An import
static statement, referencing a particular static method of a class, makes that
method available as if it were a static method on the class that you are writing, or as
some sort of global function. NineOldAndroids has an animate() method that you
can import this way, so instead of v.animate(), you use animate(v) to accomplish
the same end. Everything else is the same, except perhaps some imports, to
reference NineOldAndroids instead of the native classes.

You can see this in the Animation/AnimatorFadeBC sample app.

ANIMATORS

1003

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://nineoldandroids.com
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFadeBC
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFadeBC

In addition to having the NineOldAndroids JAR in libs/, the only difference
between this edition and the previous sample is in how the animation is set up.
Instead of lines like:

fadee.animate().alpha(0).setDuration(PERIOD);

we have:

animate(fadee).alpha(0).setDuration(PERIOD);

This takes advantage of our static import:

importimport staticstatic com.nineoldandroids.view.ViewPropertyAnimator.animate;

If the static import makes you queasy, you are welcome to simply import the
com.nineoldandroids.view.ViewPropertyAnimator class, rather than the static
method, and call the animate() method on ViewPropertyAnimator:

ViewPropertyAnimator.animate(fadee).alpha(0).setDuration(PERIOD);

The Foundation: Value and Object Animators
ViewPropertyAnimator itself is a layer atop of a more primitive set of animators,
known as value and object animators.

A ValueAnimator handles the core logic of transitioning some value, from an old to a
new value, over a period of time. ValueAnimator offers replaceable “interpolators”,
which will determine how the values change from start to finish over the animation
period (e.g., start slowly, accelerate, then end slowly). ValueAnimator also handles
the concept of a “repeat mode”, to indicate if the animation should simply happen
once, a fixed number of times, or should infinitely repeat (and, in the latter cases,
whether it does so always transitioning from start to finish or if it reverses direction
on alternate passes, going from finish back to start).

What ValueAnimator does not do is actually change anything. It is merely
computing the different values based on time. You can call getAnimatedValue() to
find out the value at any point in time, or you can call addUpdateListener() to
register a listener object that will be notified of each change in the value, so that
change can be applied somewhere.

Hence, what tends to be a bit more popular is ObjectAnimator, a subclass of
ValueAnimator that automatically applies the new values. ObjectAnimator does this

ANIMATORS

1004

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

by calling a setter method on some object, where you supply the object and the
“property name” used to derive the getter and setter method names. For example, if
you request a property name of foo, ObjectAnimator will try to call getFoo() and
setFoo() methods on your supplied object.

As with ViewPropertyAnimator, ValueAnimator and ObjectAnimator are
implemented natively in API Level 11 and are available via the NineOldAndroids
backport as well.

To see what ObjectAnimator looks like in practice, let us examine the Animation/
ObjectAnimator sample app.

Once again, our activity’s layout is pretty much just a centered TextView, here
named word:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/word"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:textAppearance="?android:attr/textAppearanceLarge"
tools:context=".MainActivity"/>/>

</RelativeLayout></RelativeLayout>

The objective of our activity is to iterate through 25 words, showing one at a time in
the TextView:

packagepackage com.commonsware.android.animator.obj;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.nineoldandroids.animation.ObjectAnimatorcom.nineoldandroids.animation.ObjectAnimator;
importimport com.nineoldandroids.animation.ValueAnimatorcom.nineoldandroids.animation.ValueAnimator;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

ANIMATORS

1005

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator

privateprivate TextView word=nullnull;
int position=0;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

word=(TextView)findViewById(R.id.word);

ValueAnimator positionAnim = ObjectAnimator.ofInt(thisthis, "wordPosition", 0,
24);

positionAnim.setDuration(12500);
positionAnim.setRepeatCount(ValueAnimator.INFINITE);
positionAnim.setRepeatMode(ValueAnimator.RESTART);
positionAnim.start();

}

publicpublic void setWordPosition(int position) {
thisthis.position=position;
word.setText(items[position]);

}

publicpublic int getWordPosition() {
returnreturn(position);

}
}

To accomplish this, we use NineOldAndroids version of ObjectAnimator, saying that
we wish to “animate” the wordPosition property of the activity itself, from 0 to 24.
We configure the animation to run for 12.5 seconds (i.e., 500ms per word) and to
repeat indefinitely by restarting the animation from the beginning on each pass. We
then call start() to kick off the animation.

For this to work, though, we need getWordPosition() and setWordPosition()
accessor methods for the theoretical wordPosition property. In our case, the “word
position” is simply an integer data member of the activity, which we return in
getWordPosition() and update in setWordPosition(). However, we also update the
TextView in setWordPosition(), to display the word at that position.

The net effect is that words appear in our TextView, changing on average every
500ms.

ANIMATORS

1006

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Animating Custom Types
In the previous section, we animated an int property of an Activity. That works,
because Android knows how to compute int values between the start and end
position, through simple math.

But, what if we wanted to animate something that is not a simple number? For
example, what if we want to animate a Color, or a LatLng from Maps V2, or a
TastyTreat class of our own design?

So long as we can perform the calculations, we can animate a type of anything we
want, using TypeEvaluator and ofObject() on ObjectAnimator.

A TypeEvaluator is a simple interface, containing a single method that we need to
override: evaluate(). However, TypeEvaluator uses generics, and so our
implementation will actually be of some concrete class (e.g., a TypeEvaluator of
TastyTreat). Our job in evaluate() is to return a value of our designated type (e.g.,
TastyTreat) given three inputs:

1. The initial value for our animation range, in the form of our designated type
2. The end value for our animation range, in the form of our designated type
3. The fraction along that range that represents how much we have moved

from the initial value to the end value

Note that the fraction is not limited to being between 0 and 1, as certain
interpolators (e.g., an overshoot interpolator) might result in a fraction being
negative (e.g., we overshot past the initial value) or greater than one (e.g., we
overshot past the end value).

For example, to have a TypeEvaluator of Color, we might have evaluate() generate
a new Color instance based upon applying the fraction to the initial and end red,
green, blue, and alpha channels.

To use a TypeEvaluator, instead of ofInt(), ofFloat(), or similar simple factory
methods on ObjectAnimator, we use ofObject(). ofObject() takes the object to be
animated, the property to be animated, the TypeEvaluator to assist in the actual
animation, and the final value of the animation (or, optionally, a series of waypoints
to be animated along).

ANIMATORS

1007

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A flavor of ofObject() that takes the property name — akin to the wordPosition
ofInt() used in the previous section — has been around since API Level 11. API
Level 14 added an ofObject() method that takes a Property value instead of the
name of the property. This version has the added benefit of type-safety, as it can
ensure that your object to be animated, TypeEvaluator, and final position are all of
the same type.

You can see an example of using TypeEvaluator this way in the chapter on Maps V2,
as we animate the movement of a map marker from a starting point to an ending
point.

Hardware Acceleration
Animated effects operate much more smoothly with hardware acceleration. There
are two facets to employing hardware acceleration for animations: enabling it overall
and directing its use for the animations themselves.

Hardware acceleration is enabled overall on Android devices running Android 4.0 or
higher (API Level 14). On Android 3.x, hardware acceleration is available but is
disabled by default — use android:hardwareAccelerated="true" in your
<application> or <activity> element in the manifest to enable it on those
versions. Hardware acceleration for 2D graphics operations like widget animations is
not available on older versions of Android.

While this will provide some benefit across the board, you may also wish to consider
rendering animated widgets or containers in an off-screen buffer, or “hardware
layer”, that then gets applied to the screen via the GPU. In particular, the GPU can
apply certain animated transformations to a hardware layer without forcing software
to redraw the widgets or containers (e.g., what happens when you invalidate()
them). As it turns out, these GPU-enhanced transformations match the ones
supported by ViewPropertyAnimator:

1. Changes in alpha channel values, for fading widgets in and out
2. Changes in widget position, by altering the X and Y values of the upper-left

corner of the widget, from wherever on the screen it used to be to some new
value

3. Changes in the widget’s rotation, around any of the three axes
4. Changes in the widget’s size, where Android can scale the widget by some

percentage to expand or shrink it

ANIMATORS

1008

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By having the widget be rendered in a hardware layer, these ViewPropertyAnimator
operations are significantly more efficient than before.

However, since hardware layers take up video memory, generally you do not want to
keep a widget or container in a hardware layer indefinitely. Instead, the
recommended approach is to have the widget or container be rendered in a
hardware layer only while the animation is ongoing, by calling setLayerType() for
LAYER_TYPE_HARDWARE before the animation begins, then calling setLayerType() for
LAYER_TYPE_NONE (i.e., return to default behavior) when the animation completes.
Or, for ViewPropertyAnimator on API Level 16 and higher, use withLayer() in the
fluent interface to have it apply the hardware layer automatically just for the
animation duration.

We will see examples of using hardware acceleration this way in the next section.

The Three-Fragment Problem
If you have used an Android tablet, there is a decent chance that you have used the
Gmail app on that tablet. Gmail organizes its landscape main activity into two
panes, one on the left taking up ~30% of the screen, and one on the right taking up
the remainder:

Figure 317: Gmail Fragments (image courtesy of Google and AOSP)

Gmail has a very specific navigation mode in its main activity when viewed in
landscape on a tablet, where upon some UI event (e.g., tapping on something in the
right-hand area):

• The original left-hand fragment (Fragment A) slides off the screen to the left
• The original right-hand fragment (Fragment B) slides to the left edge of the

screen and shrinks to take up the spot vacated by Fragment A

ANIMATORS

1009

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Another fragment (Fragment C) slides in from the right side of the screen
and takes up the spot vacated by Fragment B

And a BACK button press reverses this operation.

This is a bit tricky to set up, leading to the author of this book posting a question on
StackOverflow to get input. Here, we will examine one of the results of that
discussion, based in large part on the implementation of the AOSP Email app, which
has a similar navigation flow. The other answers on that question may have merit in
other scenarios as well.

You can see one approach for implementing the three-pane solution in the
Animation/ThreePane sample app.

The ThreePaneLayout

The logic to handle the animated effects is encapsulated in a ThreePaneLayout class.
It is designed to be used in a layout XML resource where you supply the contents of
the three panes, sizing the first two as you want, with the third “pane” having zero
width at the outset:

<com.commonsware.android.anim.threepane.ThreePaneLayout<com.commonsware.android.anim.threepane.ThreePaneLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/root"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<FrameLayout<FrameLayout
android:id="@+id/left"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="3"/>/>

<FrameLayout<FrameLayout
android:id="@+id/middle"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="7"/>/>

<Button<Button
android:layout_width="0dp"
android:layout_height="match_parent"/>/>

</com.commonsware.android.anim.threepane.ThreePaneLayout></com.commonsware.android.anim.threepane.ThreePaneLayout>

ANIMATORS

1010

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePane
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePane

ThreePaneLayout itself is a subclass of LinearLayout, set up to always be horizontal,
regardless of what might be set in the layout XML resource.

publicpublic ThreePaneLayout(Context context, AttributeSet attrs) {
supersuper(context, attrs);
initSelf();

}

void initSelf() {
setOrientation(HORIZONTAL);

}

When the layout finishes inflating, we grab the three panes (defined as the first
three children of the container) and stash them in data members named left,
middle, and right, with matching getter methods:

@Override
publicpublic void onFinishInflate() {

supersuper.onFinishInflate();

left=getChildAt(0);
middle=getChildAt(1);
right=getChildAt(2);

}

publicpublic View getLeftView() {
returnreturn(left);

}

publicpublic View getMiddleView() {
returnreturn(middle);

}

publicpublic View getRightView() {
returnreturn(right);

}

The major operational API, from the standpoint of an activity using
ThreePaneLayout, is hideLeft() and showLeft(). hideLeft() will switch from
showing the left and middle widgets in their original size and position to showing
the middle and right widgets wherever left and middle had been originally.
showLeft() reverses the operation.

The problem is that, initially, we do not know where the widgets are or how big they
are, as that should be able to be set from the layout XML resource and are not
known until the ThreePaneLayout is actually applied to the screen. Hence, we lazy-
retrieve those values in hideLeft(), plus remove any weights that had been
originally defined, setting the actual pixel widths on the widgets instead:

ANIMATORS

1011

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void hideLeft() {
ifif (leftWidth == -1) {

leftWidth=left.getWidth();
middleWidthNormal=middle.getWidth();
resetWidget(left, leftWidth);
resetWidget(middle, middleWidthNormal);
resetWidget(right, middleWidthNormal);
requestLayout();

}

translateWidgets(-1 * leftWidth, left, middle, right);

ObjectAnimator.ofInt(thisthis, "middleWidth", middleWidthNormal,
leftWidth).setDuration(ANIM_DURATION).start();

}

The work to change the weights into widths is handled in resetWidget():

privateprivate void resetWidget(View v, int width) {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)v.getLayoutParams();

p.width=width;
p.weight=0;

}

After the lazy-initialization and widget cleanup, we perform the two animations.
translateWidgets() will slide each of our three widgets to the left by the width of
the left widget, using a ViewPropertyAnimator and a hardware layer:

privateprivate void translateWidgets(int deltaX, View... views) {
forfor (finalfinal View v : views) {

v.setLayerType(View.LAYER_TYPE_HARDWARE, nullnull);

v.animate().translationXBy(deltaX).setDuration(ANIM_DURATION)
.setListener(newnew AnimatorListenerAdapter() {

@Override
publicpublic void onAnimationEnd(Animator animation) {

v.setLayerType(View.LAYER_TYPE_NONE, nullnull);
}

});
}

}

The resize animation — to set the middle size to be what left had been – is handled
via an ObjectAnimator, for a theoretical property of middleWidth on
ThreePaneLayout. That is backed by a setMiddleWidth() method that adjusts the
width property of the middle widget’s LayoutParams and triggers a redraw:

ANIMATORS

1012

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@SuppressWarnings("unused")
privateprivate void setMiddleWidth(int value) {

middle.getLayoutParams().width=value;
requestLayout();

}

The showLeft() method simply performs those two animations in reverse:

publicpublic void showLeft() {
translateWidgets(leftWidth, left, middle, right);

ObjectAnimator.ofInt(thisthis, "middleWidth", leftWidth,
middleWidthNormal).setDuration(ANIM_DURATION)

.start();
}

Using the ThreePaneLayout

The sample app uses one activity (MainActivity) and one fragment
(SimpleListFragment) to set up and use the ThreePaneLayout. The objective is a UI
that roughly mirrors that of Gmail and the AOSP Email app: a list on the left, a list
in the middle (whose contents are based on the item chosen in the left list), and
something else on the right (whose contents are based on the item chosen in the
middle list).

SimpleListFragment is used for both lists. Its newInstance() factory method is
handed the list of strings to display. SimpleListFragment just loads those into its
ListView, also setting up CHOICE_MODE_SINGLE for use with the activated style, and
routing all clicks on the list to the MainActivity that hosts the fragment:

packagepackage com.commonsware.android.anim.threepane;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Arraysjava.util.Arrays;

publicpublic classclass SimpleListFragmentSimpleListFragment extendsextends ListFragment {
privateprivate staticstatic finalfinal String KEY_CONTENTS="contents";

publicpublic staticstatic SimpleListFragment newInstance(String[] contents) {
returnreturn(newInstance(newnew ArrayList<String>(Arrays.asList(contents))));

}

publicpublic staticstatic SimpleListFragment newInstance(ArrayList<String> contents) {

ANIMATORS

1013

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SimpleListFragment result=newnew SimpleListFragment();
Bundle args=newnew Bundle();

args.putStringArrayList(KEY_CONTENTS, contents);
result.setArguments(args);

returnreturn(result);
}

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
setContents(getArguments().getStringArrayList(KEY_CONTENTS));

}

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

((MainActivity)getActivity()).onListItemClick(thisthis, position);
}

void setContents(ArrayList<String> contents) {
setListAdapter(newnew ArrayAdapter<String>(

getActivity(),
R.layout.simple_list_item_1,
contents));

}
}

MainActivity populates the left FrameLayout with a SimpleListFragment in
onCreate(), if the fragment does not already exist (e.g., from a configuration
change). When an item in the left list is clicked, MainActivity populates the middle
FrameLayout. When an item in the middle list is clicked, it sets the caption of the
right Button and uses hideLeft() to animate that Button onto the screen, hiding
the left list. If the user presses BACK, and our left list is not showing,
MainActivity calls showLeft() to reverse the animation:

packagepackage com.commonsware.android.anim.threepane;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Buttonandroid.widget.Button;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String KEY_MIDDLE_CONTENTS="middleContents";
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",

ANIMATORS

1014

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"pellentesque", "augue", "purus" };
privateprivate boolean isLeftShowing=truetrue;
privateprivate SimpleListFragment middleFragment=nullnull;
privateprivate ArrayList<String> middleContents=nullnull;
privateprivate ThreePaneLayout root=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

root=(ThreePaneLayout)findViewById(R.id.root);

ifif (getFragmentManager().findFragmentById(R.id.left) == nullnull) {
getFragmentManager().beginTransaction()

.add(R.id.left,
SimpleListFragment.newInstance(items))

.commit();
}

middleFragment=
(SimpleListFragment)getFragmentManager().findFragmentById(R.id.middle);

}

@Override
publicpublic void onBackPressed() {

ifif (!isLeftShowing) {
root.showLeft();
isLeftShowing=truetrue;

}
elseelse {

supersuper.onBackPressed();
}

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putStringArrayList(KEY_MIDDLE_CONTENTS, middleContents);
}

@Override
protectedprotected void onRestoreInstanceState(Bundle inState) {

middleContents=inState.getStringArrayList(KEY_MIDDLE_CONTENTS);
}

void onListItemClick(SimpleListFragment fragment, int position) {
ifif (fragment == middleFragment) {

((Button)root.getRightView()).setText(middleContents.get(position));

ifif (isLeftShowing) {
root.hideLeft();
isLeftShowing=falsefalse;

ANIMATORS

1015

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}
elseelse {

middleContents=newnew ArrayList<String>();

forfor (int i=0; i < 20; i++) {
middleContents.add(items[position] + " #" + i);

}

ifif (getFragmentManager().findFragmentById(R.id.middle) == nullnull) {
middleFragment=SimpleListFragment.newInstance(middleContents);
getFragmentManager().beginTransaction()

.add(R.id.middle, middleFragment).commit();
}
elseelse {

middleFragment.setContents(middleContents);
}

}
}

}

The Results

If you run this app on a landscape tablet running API Level 11 or higher, you start off
with a single list of words on the left:

Figure 318: ThreePane, As Initially Launched

ANIMATORS

1016

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking on a word brings up a second list, taking up the rest of the screen, with
numbered entries based upon the clicked-upon word:

Figure 319: ThreePane, After Clicking a Word

Clicking on an entry in the second list starts the animation, sliding the first list off to
the left, sliding the second list into the space vacated by the first list, and sliding in a
“detail view” into the right portion of the screen:

ANIMATORS

1017

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 320: ThreePane, After Clicking a Numbered Word

Pressing BACK once will reverse the animation, restoring you to the two-list
perspective.

The Backport

The ThreePane sample described above uses the native API Level 11 version of the
animator framework and the native implementation of fragments. However, the
same approach can work using the Android Support package’s version of fragments
and NineOldAndroids. You can see this in the Animation/ThreePaneBC sample app.

Besides changing the import statements and adding the NineOldAndroids JAR file,
the only other changes of substance were:

• Using ViewPropertyAnimator.animate(v) instead of v.animate() in
translateWidgets()

• Conditionally setting the hardware acceleration layers via setLayerType() in
translateWidgets() based upon API level, as that method was only added
in API Level 11

ANIMATORS

1018

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePaneBC
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePaneBC

The smoothness of animations, though, will vary by hardware capabilities. For
example, on a first-generation Kindle Fire, running Android 2.3, the backport works
but is not especially smooth, while the animations are very smooth on more modern
hardware where hardware acceleration can be applied.

The Problems

As we will see in the chapter on “jank”, there is some stutter in the rendering of this
app. Fixing it requires removing the animated change in the width of the middle
pane, which in turn makes the animation itself look worse. More details on the
analysis can be found in the “jank” chapter.

ANIMATORS

1019

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Legacy Animations

Before ViewPropertyAnimator and the rest of the animator framework were added
in API Level 11, we had the original Animation base class and specialized animations
based upon it, like TranslateAnimation for movement and AlphaAnimation for
fades. On the whole, you will want to try to use the animator framework where
possible, as the new system is more powerful and efficient than the legacy Animation
approach. However, particularly for apps where the NineOldAndroids backport is
insufficient, you may wish to use the legacy framework.

After an overview of the role of the animation framework, we go in-depth to animate
the movement of a widget across the screen. We then look at alpha animations, for
fading widgets in and out. We then see how you can get control during the lifecycle
of an animation, how to control the acceleration of animations, and how to group
animations together for parallel execution. Finally, we see how the same framework
can now be used to control the animation for the switching of activities.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and basic widgets. Also, you should read the
chapter on custom views.

It’s Not Just For Toons Anymore
Android has a package of classes (android.view.animation) dedicated to animating
the movement and behavior of widgets.

1021

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

They center around an Animation base class that describes what is to be done. Built-
in animations exist to move a widget (TranslateAnimation), change the
transparency of a widget (AlphaAnimation), revolve a widget (RotateAnimation),
and resize a widget (ScaleAnimation). There is even a way to aggregate animations
together into a composite Animation called an AnimationSet. Later sections in this
chapter will examine the use of several of these animations.

Given that you have an animation, to apply it, you have two main options:

1. You may be using a container that supports animating its contents, such as a
ViewFlipper or TextSwitcher. These are typically subclasses of
ViewAnimator and let you define the “in” and “out” animations to apply. For
example, with a ViewFlipper, you can specify how it flips between Views in
terms of what animation is used to animate “out” the currently-visible View
and what animation is used to animate “in” the replacement View.

2. You can simply tell any View to startAnimation(), given the Animation to
apply to itself. This is the technique we will be seeing used in the examples
in this chapter.

A Quirky Translation
Animation takes some getting used to. Frequently, it takes a fair bit of
experimentation to get it all working as you wish. This is particularly true of
TranslateAnimation, as not everything about it is intuitive, even to authors of
Android books.

Mechanics of Translation

The simple constructor for TranslateAnimation takes four parameters describing
how the widget should move: the before and after X offsets from the current
position, and the before and after Y offsets from the current position. The Android
documentation refers to these as fromXDelta, toXDelta, fromYDelta, and toYDelta.

In Android’s pixel-space, an (X,Y) coordinate of (0,0) represents the upper-left
corner of the screen. Hence, if toXDelta is greater than fromXDelta, the widget will
move to the right, if toYDelta is greater than fromYDelta, the widget will move
down, and so on.

LEGACY ANIMATIONS

1022

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Imagining a Sliding Panel

Some Android applications employ a sliding panel, one that is off-screen most of the
time but can be called up by the user (e.g., via a menu) when desired. When
anchored at the bottom of the screen, the effect is akin to the Android menu system,
with a container that slides up from the bottom and slides down and out when
being removed. However, while menus are limited to menu choices, Android’s
animation framework lets one create a sliding panel containing whatever widgets
you might want.

One way to implement such a panel is to have a container (e.g., a LinearLayout)
whose contents are absent (INVISIBLE) when the panel is closed and is present
(VISIBLE) when the drawer is open. If we simply toggled setVisibility() using the
aforementioned values, though, the panel would wink open and closed immediately,
without any sort of animation. So, instead, we want to:

1. Make the panel visible and animate it up from the bottom of the screen
when we open the panel

2. Animate it down to the bottom of the screen and make the panel invisible
when we close the panel

The Aftermath

This brings up a key point with respect to TranslateAnimation: the animation
temporarily moves the widget, but if you want the widget to stay where it is when
the animation is over, you have to handle that yourself. Otherwise, the widget will
snap back to its original position when the animation completes.

In the case of the panel opening, we handle that via the transition from INVISIBLE
to VISIBLE. Technically speaking, the panel is always “open”, in that we are not, in
the end, changing its position. But when the body of the panel is INVISIBLE, it takes
up no space on the screen; when we make it VISIBLE, it takes up whatever space it is
supposed to.

Later in this chapter, we will cover how to use animation listeners to accomplish this
end for closing the panel.

LEGACY ANIMATIONS

1023

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing SlidingPanel

With all that said, turn your attention to the Animation/SlidingPanel sample
project and, in particular, the SlidingPanel class.

This class implements a layout that works as a panel, anchored to the bottom of the
screen. A toggle() method can be called by the activity to hide or show the panel.
The panel itself is a LinearLayout, so you can put whatever contents you want in
there.

We use two flavors of TranslateAnimation, one for opening the panel and one for
closing it.

Here is the opening animation:

anim=newnew TranslateAnimation(0.0f, 0.0f,
getHeight(),
0.0f);

Our fromXDelta and toXDelta are both 0, since we are not shifting the panel’s
position along the horizontal axis. Our fromYDelta is the panel’s height according to
its layout parameters (representing how big we want the panel to be), because we
want the panel to start the animation at the bottom of the screen; our toYDelta is 0
because we want the panel to be at its “natural” open position at the end of the
animation.

Conversely, here is the closing animation:

anim=newnew TranslateAnimation(0.0f, 0.0f, 0.0f,
getHeight());

It has the same basic structure, except the Y values are reversed, since we want the
panel to start open and animate to a closed position.

The result is a container that can be closed:

LEGACY ANIMATIONS

1024

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanel
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanel

Figure 321: The SlidingPanel sample application, with the panel closed

… or open, in this case toggled via a menu choice in the SlidingPanelDemo activity:

LEGACY ANIMATIONS

1025

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 322: The SlidingPanel sample application, with the panel open

Using the Animation

When setting up an animation, you also need to indicate how long the animation
should take. This is done by calling setDuration() on the animation, providing the
desired length of time in milliseconds.

When we are ready with the animation, we simply call startAnimation() on the
SlidingPanel itself, causing it to move as specified by the TranslateAnimation
instance.

Fading To Black. Or Some Other Color.
AlphaAnimation allows you to fade a widget in or out by making it less or more
transparent. The greater the transparency, the more the widget appears to be
“fading”.

LEGACY ANIMATIONS

1026

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alpha Numbers

You may be used to alpha channels, when used in #AARRGGBB color notation, or
perhaps when working with alpha-capable image formats like PNG.

Similarly, AlphaAnimation allows you to change the alpha channel for an entire
widget, from fully-solid to fully-transparent.

In Android, a float value of 1.0 indicates a fully-solid widget, while a value of 0.0
indicates a fully-transparent widget. Values in between, of course, represent various
amounts of transparency.

Hence, it is common for an AlphaAnimation to either start at 1.0 and smoothly
change the alpha to 0.0 (a fade) or vice versa.

Animations in XML

With TranslateAnimation, we showed how to construct the animation in Java
source code. One can also create animation resources, which define the animations
using XML. This is similar to the process for defining layouts, albeit much simpler.

For example, there is a second animation project, Animation/SlidingPanelEx,
which demonstrates a panel that fades out as it is closed. In there, you will find a
res/anim/ directory, which is where animation resources should reside. In there, you
will find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha<alpha xmlns:android="http://schemas.android.com/apk/res/android"

android:fromAlpha="1.0"
android:toAlpha="0.0" />/>

The name of the root element indicates the type of animation (in this case, alpha for
an AlphaAnimation). The attributes specify the characteristics of the animation, in
this case a fade from 1.0 to 0.0 on the alpha channel.

This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in Java.

Using XML Animations

To make use of XML-defined animations, you need to inflate them, much as you
might inflate a View or Menu resource. This is accomplished by using the

LEGACY ANIMATIONS

1027

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanelEx
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanelEx

loadAnimation() static method on the AnimationUtils class, seen here in our
SlidingPanel constructor:

publicpublic SlidingPanel(finalfinal Context ctxt, AttributeSet attrs) {
supersuper(ctxt, attrs);

TypedArray a=ctxt.obtainStyledAttributes(attrs,
R.styleable.SlidingPanel,
0, 0);

speed=a.getInt(R.styleable.SlidingPanel_speed, 300);

a.recycle();

fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);
}

Here, we are loading our fade animation, given a Context. This is being put into an
Animation variable, so we neither know nor care that this particular XML that we
are loading defines an AlphaAnimation instead of, say, a RotateAnimation.

When It’s All Said And Done
Sometimes, you need to take action when an animation completes.

For example, when we close the panel, we want to use a TranslationAnimation to
slide it down from the open position to closed… then keep it closed. With the system
used in SlidingPanel, keeping the panel closed is a matter of calling
setVisibility() on the contents with INVISIBLE.

However, you cannot do that when the animation begins; otherwise, the panel is
gone by the time you try to animate its motion.

Instead, you need to arrange to have it become invisible when the animation ends.
To do that, you use an animation listener.

An animation listener is simply an instance of the AnimationListener interface,
provided to an animation via setAnimationListener(). The listener will be invoked
when the animation starts, ends, or repeats (the latter courtesy of
CycleInterpolator, discussed later in this chapter). You can put logic in the
onAnimationEnd() callback in the listener to take action when the animation
finishes.

For example, here is the AnimationListener for SlidingPanel:

LEGACY ANIMATIONS

1028

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Animation.AnimationListener collapseListener=newnew Animation.AnimationListener()
{

publicpublic void onAnimationEnd(Animation animation) {
setVisibility(View.INVISIBLE);

}

publicpublic void onAnimationRepeat(Animation animation) {
// not needed

}

publicpublic void onAnimationStart(Animation animation) {
// not needed

}
};

All we do is set our content’s visibility to be INVISIBLE, thereby closing the panel.

Loose Fill
You will see attributes, available on Animation, named android:fillEnabled and
android:fillAfter. Reading those, you may think that you can dispense with the
AnimationListener and just use those to arrange to have your widget wind up being
“permanently” in the state represented by the end of the animation. All you would
have to do is set each of those to true in your animation XML (or the equivalent in
Java), and you would be set.

At least for TranslateAnimation, you would be mistaken.

It actually will look like it works — the animated widgets will be drawn in their new
location. However, if those widgets are clickable, they will not be clicked in their
new location, but rather in their old one. This, of course, is not terribly useful.

Hence, even though it is annoying, you will want to use the AnimationListener
techniques described in this chapter.

Hit The Accelerator
In addition to the Animation classes themselves, Android also provides a set of
Interpolator classes. These provide instructions for how an animation is supposed
to behave during its operating period.

For example, the AccelerateInterpolator indicates that, during the duration of an
animation, the rate of change of the animation should begin slowly and accelerate

LEGACY ANIMATIONS

1029

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

until the end. When applied to a TranslateAnimation, for example, the sliding
movement will start out slowly and pick up speed until the movement is complete.

There are several implementations of the Interpolator interface besides
AccelerateInterpolator, including:

1. AccelerateDecelerateInterpolator, which starts slowly, picks up speed in
the middle, and slows down again at the end

2. DecelerateInterpolator, which starts quickly and slows down towards the
end

3. LinearInterpolator, the default, which indicates the animation should
proceed smoothly from start to finish

4. CycleInterpolator, which repeats an animation for a number of cycles,
following the AccelerateDecelerateInterpolator pattern (slow, then fast,
then slow)

To apply an interpolator to an animation, simply call setInterpolator() on the
animation with the Interpolator instance, such as the following line from
SlidingPanel:

anim.setInterpolator(newnew AccelerateInterpolator(1.0f));

You can also specify one of the stock interpolators via the android:interpolator
attribute in your animation XML file.

Android 1.6 added some new interpolators. Notable are BounceInterpolator (which
gives a bouncing effect as the animation nears the end) and OvershootInterpolator
(which goes beyond the end of the animation range, then returns to the endpoint).

Animate. Set. Match.
For the Animation/SlidingPanelEx project, though, we want the panel to slide
open, but also fade when it slides closed. This implies two animations working at
the same time (a fade and a slide). Android supports this via the AnimationSet class.

An AnimationSet is itself an Animation implementation. Following the composite
design pattern, it simply cascades the major Animation events to each of the
animations in the set.

LEGACY ANIMATIONS

1030

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To create a set, just create an AnimationSet instance, add the animations, and
configure the set. For example, here is the logic from the SlidingPanel
implementation in Animation/SlidingPanelEx:

publicpublic void toggle() {
TranslateAnimation anim=nullnull;
AnimationSet set=newnew AnimationSet(truetrue);

isOpen=!isOpen;

ifif (isOpen) {
setVisibility(View.VISIBLE);
anim=newnew TranslateAnimation(0.0f, 0.0f,

getHeight(),
0.0f);

}
elseelse {

anim=newnew TranslateAnimation(0.0f, 0.0f, 0.0f,
getHeight());

anim.setAnimationListener(collapseListener);
set.addAnimation(fadeOut);

}

set.addAnimation(anim);
set.setDuration(speed);
set.setInterpolator(newnew AccelerateInterpolator(1.0f));
startAnimation(set);

}

If the panel is to be opened, we make the contents visible (so we can animate the
motion upwards), and create a TranslateAnimation for the upward movement. If
the panel is to be closed, we create a TranslateAnimation for the downward
movement, but also add a pre-defined AlphaAnimation (fadeOut) to an
AnimationSet. In either case, we add the TranslateAnimation to the set, give the set
a duration and interpolator, and run the animation.

Active Animations
Starting with Android 1.5, users could indicate if they wanted to have inter-activity
animations: a slide-in/slide-out effect as they switched from activity to activity.
However, at that time, they could merely toggle this setting on or off, and
applications had no control over these animations whatsoever.

Starting in Android 2.0, though, developers have a bit more control. Specifically:

LEGACY ANIMATIONS

1031

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Developers can call overridePendingTransition() on an Activity, typically
after calling startActivity() to launch another activity or finish() to close
up the current activity. The overridePendingTransition() indicates an in/
out animation pair that should be applied as control passes from this activity
to the next one, whether that one is being started (startActivity()) or is
the one previous on the stack (finish()).

2. Developers can start an activity via an Intent containing the
FLAG_ACTIVITY_NO_ANIMATION flag. As the name suggests, this flag requests
that animations on the transitions involving this activity be suppressed.

These are prioritized as follows:

• Any call to overridePendingTransition() is always taken into account
• Lacking that, FLAG_ACTIVITY_NO_ANIMATION will be taken into account
• In the normal case, where neither of the two are used, whatever the user’s

preference, via the Settings application, is applied

LEGACY ANIMATIONS

1032

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mapping with Maps V2

One of Google’s most popular services — after search, of course – is Google Maps,
where you can find everything from the nearest pizza parlor to directions from New
York City to San Francisco (only 2,905 miles!) to street views and satellite imagery.

Android has had mapping capability from the beginning, with an API available to us
as developers to bake maps into our apps. However, as we will see shortly, that
original API was getting a bit stale.

In December 2012, Google released a long-awaited update to the mapping
capabilities available to Android app developers. The original mapping solution,
now known as the Maps V1, worked but had serious limitations. The new mapping
solution, known as Maps V2, offers greater power and greater ease of handling
common situations, though it too has its rough edges.

Prerequisites
Understanding this chapter requires that you have read the core chapters, along
with the chapter on drawables. Many of the samples also employ list navigation in
the action bar — while this is not needed to use Maps V2, knowing that material will
help you understand a bit of how the samples work. Also, one of the samples
involves location tracking, and another of the samples involves the use of the
animator framework.

This chapter also makes the occasional reference back to Maps V1 for comparisons,
mostly for the benefit of developers already familiar with Maps V1 and looking to
migrate to Maps V2. However, prior experience with Maps V1 is not necessary to
understand this chapter.

1033

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One section involves the use of Picasso, covered in the chapter on Internet access.

A Brief History of Mapping on Android
Back in the dawn of Android, we were given the Maps SDK add-on. This would allow
us to load a firmware-hosted mapping library into our applications, then embed
maps into our activities, by means of a MapView widget.

And it worked.

More importantly, from the standpoint of users, the results from our apps were
visually indistinguishable from the built-in Maps application available on devices
that had the Maps SDK add-on.

This was the case through most of 2009. Eventually, though, the Google Maps team
wanted to update the Maps application… but, for whatever reason, the decision was
made to not update the Maps SDK add-on as well. At this point, the Google Maps
team effectively forked the Maps SDK add-on, causing the Maps application to
diverge from what other Android app developers could deliver. Over time, this
feature gap became quite pronounced.

The release of Android 3.0 in early 2011 compounded the problems. Now, we needed
to consider using fragments to help manage our code and deliver solutions to all
screen sizes. Alas, while we could add maps to our fragments, we could only do so
on API Level 11 or higher — the fragments backport from the Android Support
package did not work with the Maps SDK add-on.

The release of Maps V2 helped all of this significantly. Now we have proper map
support for native and backported versions of the fragment framework. We also have
a look and feel that is closer to what the Maps application itself supports. While we
still cannot reach feature parity with the Maps application, our SDK apps can at
least look like they belong on the same device as the Maps application.

More importantly, as of the time of this writing, Maps V1 is no longer an option for
new developers. Those who already have Maps V1 API keys can use Maps V1, but no
new Maps V1 API keys are being offered. That leaves you with either using Maps V2
or some alternative mapping solution.

MAPPING WITH MAPS V2

1034

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Where You Can Use Maps V2
Many devices will be able to use Maps V2… but not all. Notably:

• Devices need to support OpenGL ES 2.0+, to handle the new vector-based
tiles that Maps V2 uses. Over 90% of Android devices in use today that
support the Play Store (or its “Android Market” predecessor) also support
OpenGL ES 2.0+.

• Devices will need an update to the Google Services Framework that
accompanies the Play Store. Devices that do not have the Play Store — either
because they are forever stuck on the old Android Market or, like the Kindle
Fire, never had Play Store support in the first place — will be unable to use
Maps V2.

Later in this chapter, we will look at other mapping libraries that you could use
instead of either of Google’s mapping solutions.

For many developers, the biggest limitation at the present time is that Maps V2
support does not exist in the Android emulator images. Google has indicated that
this will be resolved in the not-too-distant future. While there are recipes online for
hacking Maps V2 support into other emulator images, these recipes rely upon
pirated versions of various pieces of Google software and therefore are not
recommended.

Licensing Terms for Maps V2
As with the original Maps SDK add-on, to use Maps V2, you must agree to a terms of
service agreement to be authorized to embed Google Maps within your application.
If you intend to use Maps V2, you should review these terms closely, as they place
many restrictions on developers. The most notorious of these is that you cannot use
Maps V2 to create an application that offers “real time navigation or route guidance,
including but not limited to turn-by-turn route guidance that is synchronized to the
position of a user’s sensor-enabled device.”

If you find these terms to be an issue for your application, you may need to consider
alternative mapping solutions.

MAPPING WITH MAPS V2

1035

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/dashboards/index.html
https://developers.google.com/maps/terms
https://developers.google.com/maps/terms

What You Need to Start
If you wish to use Maps V2 in one or more of your Android applications, this section
will outline what you need to get started.

Your Signing Key Fingerprint(s)

As with the legacy Maps SDK add-on, you will need fingerprints of your app signing
keys, to tie your apps to your Google account and the API keys you will be
generating. However, unlike the legacy Maps SDK add-on, the fingerprints you will
be using will be created using the SHA–1 hash algorithm, rather than MD5.

First, you will need to know where the keystore is for your signing key. For a
production keystore that you created yourself for your production apps, you should
know where it is located already. For the debug keystore, used by default during
development, the location is dependent upon operating system:

• OS X and Linux: ~/.android/debug.keystore
• Windows XP: C:\Documents and
Settings\$USER\.android\debug.keystore

• Windows Vista and Windows 7: C:\Users\$USER\.android\debug.keystore

(where $USER is your Windows user name)

You will then need to run the keytoolkeytool command, to dump information related to
this keystore. The keytoolkeytool command is in your Java SDK, not the Android SDK. You
will need to run this from a command line (e.g., Command Prompt in Windows).
The specific command to run is:

keytool -list -v -keystore ... -alias androiddebugkey -storepass android
-keypass android

where the ... is replaced by the path to your debug keystore, enclosed in quotation
marks if the path contains spaces. For your production keystore, you would supply
your own alias and passwords.

This should emit output akin to:

Alias name: androiddebugkey
Creation date: Aug 7, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1

MAPPING WITH MAPS V2

1036

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4e3f2684
Valid from: Sun Aug 07 19:57:56 EDT 2011 until: Tue Jul 30 19:57:56 EDT 2041
Certificate fingerprints:

MD5: 98:84:0E:36:F0:B3:48:9C:CD:13:EB:C6:D8:7F:F3:B1
SHA1: E6:C5:81:EB:8A:F4:35:B0:04:84:3E:6E:C3:88:BD:B2:66:52:E7:09
Signature algorithm name: SHA1withRSA
Version: 3

You will need to make note of the SHA1 entry (see third line from the bottom of the
above sample).

Your Google Account

To sign up for an API key, you need a Google account. Ideally, this account would be
the same one you intend to use for submitting apps to the Play Store (if, indeed, you
intend to do so).

Your API Key

Given that you are logged into the aforementioned Google account, you can visit
the Google Cloud Console to request access to the Maps V2 API. They have a
tendency to keep changing this set of pages, but these instructions were good as of
late February 2014:

• Create a project via the “Create project” option, if you have not done so
already for something else (e.g., GCM)

• Open your project, then select “APIs & auth” from the left navigation bar,
and in there select “APIs”

• Sift through the various APIs until you find “Google Maps Android API v2”,
then toggle that on

• Agree to the Terms of Service that appears when you try to toggle on Maps
V2 access

• Click “Credentials” in the left navigation bar
• Click the “CREATE NEW KEY” button
• In the popup dialog, choose “Android key”
• In the fields that appear once you chose “Android key”, fill in your app’s

package name and your SHA1 fingerprint, then click the “Create” button

This will give you an “API key” that you will need for your application.

MAPPING WITH MAPS V2

1037

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://cloud.google.com/console

If you wish to have more than one app use Maps V2, you can click “Edit allowed
Android applications” for a key, to return to the dialog where you can paste in
another SHA1 fingerprint and package name, separated by a semicolon. Or, if you
prefer, you can create new keys for each application.

For apps that are in (or going to) production, you will need to supply both the debug
and production SHA1 fingerprints with your package name. By doing this on the
same key, you will use the same API key string for both debug and production
builds, which simplifies things a fair bit over the separate API keys you would have
used with the legacy Maps SDK add-on.

Also note that a single API key seems to only support a few fingerprint/package
pairs. If you try adding a new pair, and the form ignores you, you will need to set up
a separate API key for additional pairs.

The Play Services Library

You also need to set up the Google Play Services library for use with your app.

First, you will need to download the “Google Play services” package in your SDK
Manager (see highlighted line):

Figure 323: Android SDK Manager, Showing “Google Play services”

MAPPING WITH MAPS V2

1038

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, if you are an Eclipse user, you will need to add the Play Services Android
library project to your workspace. You can do this via the “Import Existing Android
Code into Workspace” wizard, pointing Eclipse to the extras/google/
google_play_services/libproject/google-play-services_lib/ directory inside
of your Android SDK.

Finally, when you create a project that is to use Maps V2, you will need to add a
reference to that library project, either via the Eclipse project properties dialog or via
the android update lib-projectandroid update lib-project command. This is the same process that you use
for adding other Android library projects, such as ActionBarSherlock.

Note that the Play Services documentation requests that you add the following
stanza to your proguard-project.txt file for use by your production builds:

-keep class * extends java.util.ListResourceBundle {
protected Object[][] getContents();

}

It is unclear if this is strictly needed for Maps V2, as the Play Services library is used
for other things beyond Maps V2.

The Book Samples… And You!
If you wish to try to run the book samples outlined in this chapter, you will need to
make a few fixes to them for your own environment:

• Replace the Maps V2 API key in the manifest with your own
• Replace the reference to the Play Services Android library project with your

own
• Replace the reference to the ActionBarSherlock library project with your own
• Change the build target to an Android SDK that you have downloaded (or

download the Android SDK used by the project)

Setting Up a Basic Map
With that preparation work completed, now you can start working on projects that
use the Maps V2 API. In this section, we will review the MapsV2/Basic sample
project, which simply brings up a Maps V2 map on the world.

MAPPING WITH MAPS V2

1039

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Basic
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Basic

The Project Setup

This project uses Maps V2, and so it has a reference to that library project. It also
uses ActionBarSherlock, so the action bar pattern can work on pre-Android 3.0
devices, so it has a reference to that library project as well:

Figure 324: Android Library Projects Referenced by Maps V2/Basic

The Manifest

Our manifest file is fairly traditional, though there are a number of elements in it
that are required by Maps V2:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.mapsv2.basic"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="16"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>
<uses-permission<uses-permission

android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"/>/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>/>

<uses-feature<uses-feature
android:glEsVersion="0x00020000"
android:required="false"/>/>

MAPPING WITH MAPS V2

1040

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar">>
<activity<activity

android:name="MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<meta-data<meta-data
android:name="com.google.android.maps.v2.API_KEY"
android:value="AIzaSyC4iyT46cB00IdKGcy5EmAxK5uCOQX2Oy8"/>/>

<meta-data<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"/>/>

<activity<activity android:name="LegalNoticesActivity">>
</activity></activity>

</application></application>

</manifest></manifest>

Specifically:

• We need the INTERNET, ACCESS_NETWORK_STATE, and
WRITE_EXTERNAL_STORAGE permissions, plus the
com.google.android.providers.gsf.permission.READ_GSERVICES
permission, all defined in <uses-permission> elements

• We need a <meta-data> element, with a name of
com.google.android.maps.v2.API_KEY, whose value is the API key we got
from the Google APIs Console for use with this particular package name

• We need a second <meta-data> element, with a name of
com.google.android.gms.version, with a value of the @integer/
google_play_services_version (an integer resource supplied by the Play
Services SDK library project)

We also should include a <uses-feature> element for OpenGL ES 2.0. If your app
absolutely must be able to run Maps V2, have android:required="true" (or drop
the android:required attribute entirely, as true is the default), which will force
devices to have OpenGL ES 2.0 to run your app. If your app will gracefully degrade

MAPPING WITH MAPS V2

1041

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for devices incapable of running Maps V2, use android:required="false", as is
shown in the sample.

Beyond those items, everything else in this project is based on what the app needs,
more so than what Maps V2 needs.

Note that we used to need to define and use a custom permission, based upon our
app’s package name and ending in MAPS_RECEIVE. This is not required as of Play
Services 3.1.59 and the “rev 8” release of the Play Services SDK.

The Play Services Detection

In the fullness of time, all devices that are capable of using Maps V2 will already
have the on-device portion of this logic, known as the “Google Play services” app.

However, it is entirely possible, in the short term, that you will encounter devices
that are capable of using Maps V2 (e.g., they have OpenGL ES 2.0 or higher), but do
not have the “Google Play services” app from the Play Store, and therefore you
cannot actually use Maps V2 in your app.

This is a departure from the Maps V1 approach, where either the device shipped
with maps capability, or it did not, and nothing (legally) could be done to change
that state.

To determine whether or not the Maps V2 API is available to you, the best option is
to call the isGooglePlayServicesAvailable() static method on the
GooglePlayServicesUtil utility class supplied by the Play Services library. This will
return an int, with a value of ConnectionResult.SUCCESS if Maps V2 can be used
right away.

Actually assisting the user to get Maps V2 set up all the way is conceivable but is also
bug-riddled and annoying. The MapsV2/Basic sample app has an
AbstractMapActivity base class that is designed to hide most of this annoyance
from you. If you wish to know the details of how this works, we will cover it later in
this chapter. The fact that this is bug-riddled also has impacts on whether or not
you should be using Maps V2 at all for your app, a point which we will examine in an
upcoming section.

MAPPING WITH MAPS V2

1042

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Fragment and Activity

Our main activity — MainActivity — extends from the aforementioned
AbstractMapActivity and simply overrides onCreate(), as most activities do:

packagepackage com.commonsware.android.mapsv2.basic;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends AbstractMapActivity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

}
}

}

We call setContentView() to load up the activity_main layout resource:

<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/map"
android:layout_width="match_parent"
android:layout_height="match_parent"
class="com.google.android.gms.maps.SupportMapFragment"/>/>

That resource, in turn, has a <fragment> element pointing to a
com.google.android.gms.maps.SupportMapFragment class supplied by the Play
Services library. This is a fragment that knows how to display a Maps V2 map. In
particular, it is a fragment designed for use with the Android Support project’s
backport of fragments. There is a corresponding
com.google.android.gms.maps.MapFragment class for use with the native API Level
11 version of fragments.

You will notice, though, that we only call setContentView() if a readyToGo()
method returns true. The readyToGo() method is supplied by the
AbstractMapActivity class and returns true if we are safe to go ahead and use Maps
V2, false otherwise. In the false case, AbstractMapActivity will be taking care of
trying to get Maps V2 going, and we need do nothing further.

Note that SupportMapFragment is designed to work with the Android Support
package, but not with ActionBarSherlock. However, a SherlockFragmentActivity
(like AbstractMapActivity) can load a SupportMapFragment. So long as you are only
using SupportMapFragment, it should co-exist with ActionBarSherlock without

MAPPING WITH MAPS V2

1043

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

difficulty. If, however, your objective would be to extend SupportMapFragment and
add logic that might depend upon ActionBarSherlock (e.g., contribute items to the
action bar), that will not work. Instead, you will need to use the Maps V2 version of
the MapView widget directly (as will be covered later in this chapter) or hope that
somebody else comes up with a SherlockMapFragment that works with Maps V2.

The License

According to the terms of use for Maps V2, you must show Maps V2 license
information in your app’s UI, in some likely spot. Apps that show their own license
terms, or have an “about” activity (or dialog) could display them there. Otherwise,
you will need to have a dedicated spot for the Maps V2 license.

To obtain the license text, you can call getOpenSourceSoftwareLicenseInfo() on
the GooglePlayServicesUtil utility class. This text can then be popped into a
TextView somewhere in your app. AbstractMapActivity adds an action bar overflow
item to display the license, which in turn invokes a LegalNoticesActivity, which
simply displays the license text in a TextView. We will examine this in more detail
later in this chapter.

The Result

When you run the app, assuming that Maps V2 is ready for use, you will get a basic
map showing the west coast of Africa:

MAPPING WITH MAPS V2

1044

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 325: Maps V2 Map, as Initially Viewed

If you choose the “Legal Notices” action bar item, the view shifts to show a bunch of
license terms:

MAPPING WITH MAPS V2

1045

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 326: Maps V2 License Terms

If your Maps V2 API key is incorrect, or you do not have this app’s package name set
up for that key in the Google APIs Console, you will get an “Authorization failure”
error message in LogCat, and you will get a blank map, akin to the behavior seen in
Maps V1 when you had an invalid android:apiKey attribute on the MapView.

Playing with the Map
Showing a map of the west coast of Africa is nice, and it is entirely possible that is
precisely what you wanted to show the user. If, on the other hand, you wanted to
show the user something else — another location, a closer look, etc. — you will
need to further configure your map, via a GoogleMap object.

To see how this is done, take a look at the MapsV2/NooYawk sample application. This
is a clone of MapsV2/Basic that adds in logic to center and zoom the map over a
portion of New York City, plus allow the user to toggle which set of map tiles to see.

The onCreate() method of the revised MapActivity is now a bit more involved:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

MAPPING WITH MAPS V2

1046

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/NooYawk
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/NooYawk

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

SupportMapFragment mapFrag=

(SupportMapFragment)getSupportFragmentManager().findFragmentById(R.id.map);

initListNav();

map=mapFrag.getMap();

ifif (savedInstanceState == nullnull) {
CameraUpdate center=

CameraUpdateFactory.newLatLng(newnew LatLng(40.76793169992044,
-73.98180484771729));

CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

map.moveCamera(center);
map.animateCamera(zoom);

}
}

}

After calling setContentView(), we can retrieve our SupportMapFragment via
findFragmentById(), no different than any other fragment. In this case, we do so
simply to call getMap() on it, which returns our GoogleMap object. Most of our work
in configuring the map will be accomplished by calling methods on this GoogleMap
object.

To change where the map is centered, we can create a CameraUpdate object from the
CameraUpdateFactory (“camera” in this case referring to the position of the user’s
virtual eyes with respect to the surface of the Earth). The newLatLng() factory
method on CameraUpdateFactory will give us a CameraUpdate object that can re-
center the map over a supplied latitude and longitude. Those coordinates are
encapsulated in a LatLng object and are maintained as decimal degrees as Java float
or double values (as opposed to the Maps V1 GeoPoint, which used integer
microdegrees).

To change the zoom level of the map, we need another CameraUpdate object, this
time from the zoomTo() factory method on CameraUpdateFactory. As with Maps V1,
the zoom levels start at 1 and zoom in by powers of two. As you will see, a value of 15
gives you a nice block-level view of a city like New York City.

To actually apply these changes to the map, we have two methods on GoogleMap:

MAPPING WITH MAPS V2

1047

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. moveCamera() will perform a “smash cut” and immediately change the map
based upon the supplied CameraUpdate

2. animateCamera() will smoothly animate the map from its original state to
the new state supplied by the CameraUpdate

In our case, we immediately shift to the proper position, but then zoom in from the
default zoom level to 15, giving us a map centered over Columbus Circle, in the
southwest corner of Central Park in Manhattan:

Figure 327: Maps V2 Centered Over Columbus Circle, New York City

We do all that work inside a check of the savedInstanceState parameter, as we only
wish to initialize the map fragment when it is first created. Otherwise, on a
configuration change, we re-center and re-zoom the map, wiping out any changes
the user may have made. MapFragment (and SupportMapFragment) automatically
retain their camera settings when a configuration change occurs, saving us that
trouble.

Note that you might want to do both actions simultaneously, rather than have one
be animated and one not as in this sample. In that case, you can manually create a
CameraPosition object that describes the desired center, zoom, etc., then use the

MAPPING WITH MAPS V2

1048

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

newCameraPosition() method on CameraUpdateFactory to get a CameraUpdate
instance that will apply all of those changes.

You will also notice that our action bar has list navigation, defaulted to “Normal”.
That was set up by the initListNav() method invoked from onCreate():

privateprivate void initListNav() {
ArrayList<String> items=newnew ArrayList<String>();
ArrayAdapter<String> nav=nullnull;
ActionBar bar=getSupportActionBar();

forfor (int type : MAP_TYPE_NAMES) {
items.add(getString(type));

}

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
nav=

newnew ArrayAdapter<String>(
bar.getThemedContext(),
android.R.layout.simple_spinner_item,
items);

}
elseelse {

nav=
newnew ArrayAdapter<String>(

thisthis,
android.R.layout.simple_spinner_item,
items);

}

nav.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
bar.setListNavigationCallbacks(nav, thisthis);

}

Here, we simply set up a hard-coded set of navigation choices, from the
MAP_TYPE_NAMES static array of string resource IDs:

privateprivate staticstatic finalfinal int[] MAP_TYPE_NAMES= { R.string.normal,
R.string.hybrid, R.string.satellite, R.string.terrain };

We also set up the activity itself as being the listener for navigation events, by
passing it into setListNavigationCallbacks() and implementing the
OnNavigationListener interface. This requires an onNavigationItemSelected()
method, called when the user changes the value in the drop-down list:

@Override
publicpublic boolean onNavigationItemSelected(int itemPosition, long itemId) {

map.setMapType(MAP_TYPES[itemPosition]);

MAPPING WITH MAPS V2

1049

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(truetrue);
}

Here, based on the position selected in the list navigation, we call setMapType() on
the GoogleMap with a corresponding map type:

privateprivate staticstatic finalfinal int[] MAP_TYPES= { GoogleMap.MAP_TYPE_NORMAL,
GoogleMap.MAP_TYPE_HYBRID, GoogleMap.MAP_TYPE_SATELLITE,
GoogleMap.MAP_TYPE_TERRAIN };

The setMapType() method switches the tile set used by the map. For example, we
can switch to “hybrid” mode, which is a satellite view with labels for points of
interest:

Figure 328: Maps V2 with Hybrid Map Tiles

There is also a pure satellite mode (sans labels) and a “terrain” mode for a roughly
topographical look at the landscape.

We also hold onto the navigation item across configuration changes via
onSaveInstanceState() and onRestoreInstanceState():

MAPPING WITH MAPS V2

1050

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

state.putInt(STATE_NAV,
getSupportActionBar().getSelectedNavigationIndex());

}

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

getSupportActionBar().setSelectedNavigationItem(state.getInt(STATE_NAV));
}

Placing Simple Markers
In Maps V1, if we wanted to annotate a map, we used an Overlay. For markers —
push-pins and the like — typically we would use an ItemizedOverlay, which
handled a lot of the work of rendering these markers and responding to taps upon
markers. However, ItemizedOverlay had its issues, particularly with regards to
performance with large numbers of markers.

With Maps V2, the entire Overlay system is eliminated. Instead, you simply hand
markers to the GoogleMap for display, as is illustrated in the MapsV2/Markers sample
application. This is a clone of MapsV2/NooYawk, with four markers for four landmarks
within Manhattan.

Our onCreate() method on MainActivity now has four additional statements –
calls to a private addMarker() method to define the four landmarks:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

The addMarker() method on our MainActivity adds markers by creating a
MarkerOptions object and passing it to the addMarker() on GoogleMap.
MarkerOptions offers a so-called “fluent” interface, with a series of methods to affect
one aspect of the MarkerOptions, each of which returns the MarkerOptions object
itself. That way, configuring a MarkerOptions is a chained series of method calls:

MAPPING WITH MAPS V2

1051

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Markers
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Markers

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet)));

}

Here, we:

• Set the position() of the marker, in the form of another LatLng object
• Set the title() and snippet() of the marker to be a pair of strings loaded

from string resources

We will see other methods available on MarkerOptions in upcoming sections of this
chapter.

addMarker() on GoogleMap returns an actual Marker object, which we could hold
onto to change certain aspects of it later on (e.g., its title). In the case of this sample,
we ignore this.

If you look at the full implementation of onCreate(), you will see that our
addMarker() calls are outside the savedInstanceState check that we added in
MapsV2/NooYawk:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

SupportMapFragment mapFrag=

(SupportMapFragment)getSupportFragmentManager().findFragmentById(R.id.map);

initListNav();

map=mapFrag.getMap();

ifif (savedInstanceState == nullnull) {
CameraUpdate center=

CameraUpdateFactory.newLatLng(newnew LatLng(40.76793169992044,
-73.98180484771729));

CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

map.moveCamera(center);
map.animateCamera(zoom);

}

MAPPING WITH MAPS V2

1052

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

}
}

That is because while a MapFragment retains its camera information (center, zoom,
etc.), it does not retain its markers on a configuration change. Hence, we need to re-
establish the markers in all calls to onCreate(), not just the very first one.

With no other changes, we get a version of the map that shows markers at our
designated locations:

Figure 329: Maps V2 with Two Markers

Initially, we only see two markers, as the other two are outside the current center
position and zoom level of the map. If the user changes the center or zoom, markers
will come and go as needed:

MAPPING WITH MAPS V2

1053

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 330: Maps V2 with All Four Markers

We do not need to worry about managing the markers ourselves, so long as the
GoogleMap performance is adequate. It is likely that dumping 10,000 markers into a
GoogleMap will still result in sluggish responses, though, so you may need to add and
remove markers yourself based upon what portion of the world the user happens to
be examining in the map at the moment.

Seeing All the Markers
When you add markers to a map, there is no guarantee that the markers will be
visible given the map’s current center position and zoom level. In fact, it is entirely
possible that you add a bunch of markers and none are visible, so the user may not
realize that the markers were added.

There is a way that you can center and zoom the map to show some set of markers,
based on their positions. You get to choose the markers: all of them, the four nearest
markers, etc.

MAPPING WITH MAPS V2

1054

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We can see how this works in the MapsV2/Bounds sample application. This is a clone
of MapsV2/Markers from the previous section, with reworked code to show all four
markers when the map is first displayed.

The key to making this work is a LatLngBounds object. This represents a bounding
box that contains all LatLng locations handed to the LatLngBounds. To build up a
LatLngBounds, you can use the LatLngBounds.Builder class. So, our revised
MainActivity has a LatLngBounds.Builder private data member:

privateprivate LatLngBounds.Builder builder=newnew LatLngBounds.Builder();

Our revised addMarker() method adds the LatLng values from our markers as they
are added to the map:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

Marker marker=
map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))

.title(getString(title))

.snippet(getString(snippet)));

builder.include(marker.getPosition());
}

Finally, the revised onCreate() moves the CameraUpdateFactory work until after all
four of the addMarker() calls and changes it a bit:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

SupportMapFragment mapFrag=

(SupportMapFragment)getSupportFragmentManager().findFragmentById(R.id.map);

initListNav();

map=mapFrag.getMap();

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

MAPPING WITH MAPS V2

1055

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Bounds
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Bounds

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

ifif (savedInstanceState == nullnull) {
findViewById(android.R.id.content).post(newnew Runnable() {

@Override
publicpublic void run() {

CameraUpdate allTheThings=
CameraUpdateFactory.newLatLngBounds(builder.build(), 32);

map.moveCamera(allTheThings);
}

});
}

}
}

Specifically, we:

• Ask the LatLngBounds.Builder to build() the LatLngBounds
• Pass that to the newLatLngBounds() method on CameraUpdateFactory, along

with an inset value in pixels (all LatLng locations will be that many pixels in
from the edges, or more)

• Use moveCamera() to center and zoom the map based upon the resulting
CameraUpdate

All of this is done in a Runnable which we post() to a View (here, the FrameLayout
of our activity supplied by Android as android.R.id.content). GoogleMap cannot
ensure that all of our markers are visible until it knows how big the map is, and that
is not known until the map is rendered to the screen. post() will add our work to
the end of the main application thread’s work queue. The Runnable will not be run
until after the map is on the screen, at which time the CameraUpdate can work.

Flattening and Rotating Markers
Markers, by default, appear to be “push pins” pressed into the surface of the map.
This is not necessarily obvious with the default top-down perspective of the map
camera. But, if you use a two-finger vertical swiping gesture, you can change the
camera tilt, and that will illustrate the “push pin” effect a bit better:

MAPPING WITH MAPS V2

1056

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 331: Maps V2 with Markers, Viewed on a Tilt

The September 2013 update to the Play Services SDK exposed some new marker
capabilities in this area: flat markers and rotated markers.

A flat marker is one that is flat on the map. In other words, rather than theoretically
rising out of the Z axis of the map, the marker is kept on the X-Y plane:

MAPPING WITH MAPS V2

1057

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 332: Maps V2 with Markers, One Normal, One Flat

It is also possible to rotate a marker. The flat marker in the previous screenshot is
rotated 90 degrees from its normal “bulb on the north side” orientation. The
following screenshot shows another flat marker, rotated 270 degrees from normal:

MAPPING WITH MAPS V2

1058

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 333: Maps V2 with Markers, Flat and Rotated

These features can be handy for providing pointers in a particular direction, such as
indicating not only the location to make a turn, but what direction to turn at that
location.

These capabilities are courtesy of new flat() and rotation() methods on
MarkerOptions, plus corresponding getters and setters on Marker itself. To see how
this works, let’s examine the MapsV2/FlatMarkers sample application. This is a clone
of MapsV2/Markers, with markers applied using different values for flat() and
rotation().

Specifically, our own addMarker() helper method now takes and applies a boolean
parameter for flat (true means it is flat, false means normal behavior), as well as a
float parameter for rotation (a value between 0 and 360 for the rotation off the
default in degrees):

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet, boolean flat,
float rotation) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet))
.flat(flat).rotation(rotation));

}

MAPPING WITH MAPS V2

1059

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/FlatMarkers
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/FlatMarkers

When we call addMarker(), we supply corresponding values:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations, falsefalse, 180);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet, falsefalse, 0);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3, truetrue, 90);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy, truetrue,
270);

Sprucing Up Your “Info Windows”
If the user taps on one of the markers from the preceding sample, Android will
automatically display a popup, known as an “info window”:

Figure 334: Maps V2 with Default Info Window

You can tailor that “info window” if desired, either replacing just the interior portion
(leaving the bounding border with its caret intact) or replacing the entire window.
However, in the interests of memory conservation, you do not hand new View

MAPPING WITH MAPS V2

1060

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

widgets to the MarkerOptions object. Instead, you can provide an adapter that will
be called when info windows (or their contents) are required.

To see how this works, we can examine the MapsV2/Popups sample application. This
is a clone of MapsV2/Markers, where we are using our own layout file for the contents
of the info windows, from the popup.xml layout resource:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ic_launcher"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/snippet"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

Here, we will show the title and snippet in our own chosen font size and weight,
plus show the launcher icon on the left.

To use this layout, we must create an InfoWindowAdapter implementation — in the
case of this sample project, that is found in the PopupAdapter class:

MAPPING WITH MAPS V2

1061

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Popups
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Popups

packagepackage com.commonsware.android.mapsv2.popups;

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.google.android.gms.maps.GoogleMap.InfoWindowAdaptercom.google.android.gms.maps.GoogleMap.InfoWindowAdapter;
importimport com.google.android.gms.maps.model.Markercom.google.android.gms.maps.model.Marker;

classclass PopupAdapterPopupAdapter implementsimplements InfoWindowAdapter {
LayoutInflater inflater=nullnull;

PopupAdapter(LayoutInflater inflater) {
thisthis.inflater=inflater;

}

@Override
publicpublic View getInfoWindow(Marker marker) {

returnreturn(nullnull);
}

@Override
publicpublic View getInfoContents(Marker marker) {

View popup=inflater.inflate(R.layout.popup, nullnull);

TextView tv=(TextView)popup.findViewById(R.id.title);

tv.setText(marker.getTitle());
tv=(TextView)popup.findViewById(R.id.snippet);
tv.setText(marker.getSnippet());

returnreturn(popup);
}

}

When an info window is to be displayed, Android will first call getInfoWindow() on
our InfoWindowAdapter, passing in the Marker whose info window is needed. If we
return a View here, that will be used for the entire info window. If, instead, we return
null, Android will call getInfoContents(), passing in the same Marker object. If we
return a View here, Android will use that as the “body” of the info window, with
Android supplying the border. If we return null, the default info window is
displayed. This way, we can conditionally do any of the three possibilities (replace
the window, replace the contents, or accept the default).

In our case, getInfoContents() will inflate the popup.xml layout and populate the
two TextView widgets with the title and snippet from the Marker.

Then, we just need to tell the GoogleMap to use our InfoWindowAdapter, via a call to
setInfoWindowAdapter(), such as this statement from onCreate() of our new
edition of MainActivity:

MAPPING WITH MAPS V2

1062

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

map.setInfoWindowAdapter(newnew PopupAdapter(getLayoutInflater()));

Now, when the user taps on a marker, they will get our customized info window:

Figure 335: Maps V2 with Customized Info Window

We can also call setOnInfoWindowClickListener() on our GoogleMap, passing in an
implementation of the OnInfoWindowClickListener interface, to find out when the
user taps on the info window. In the case of MainActivity, we set up the activity
itself to implement that interface and be the listener:

map.setOnInfoWindowClickListener(thisthis);

This requires us to implement an onInfoWindowClick() method, where we are
passed the Marker representing the tapped-upon info window:

@Override
publicpublic void onInfoWindowClick(Marker marker) {

Toast.makeText(thisthis, marker.getTitle(), Toast.LENGTH_LONG).show();
}

Here, we just display a Toast with the title of the Marker when the user taps an info
window:

MAPPING WITH MAPS V2

1063

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 336: Maps V2 with Toast Triggered by Tap on Info Window

Note that, according to the documentation, you can only find out about taps on the
entire info window. Indeed, if you try setting up click listeners on the widgets in
your custom layout, you will find that they are not called. This is because the View
you return for the info window is converted into a Bitmap, which is then displayed.
Presumably, this is to steer developers in the direction of making larger tap targets,
rather than expecting users to tap tiny elements within an info window. On the
other hand, if your design calls for a large info window containing several navigation
options, you will need to either re-think your design or avoid the info window
system. We will see how to find out about taps on markers more directly later in this
chapter.

Images and Your Info Window
The Bitmap approach that Maps V2 uses for the info window introduces an
additional challenge: updating the info window itself. Normally, we would just
update the individual widgets in the info window, the way we might update widgets
in an already-visible row in a ListView. However, that is not an option here, as our
widgets are discarded almost immediately.

MAPPING WITH MAPS V2

1064

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One particular occurrence of this problem comes when you want to show an image
in the info window. If the image is a resource, or is already in memory, showing it is
not a big problem, as you can just populate your ImageView in your info window
with it. However, if the image is a file (or, worse, needs to be downloaded), you want
to load the image asynchronously. However, if you kick off some background thread,
like an AsyncTask, to retrieve the image, you will return from your
InfoWindowAdapter method long before the task is complete. Your info window will
show whatever placeholder image you used; the image you loaded will never be
seen, even if you update your original ImageView.

There are two solutions to this problem.

The best solution, by far, is to have the images before you need them, wherever
possible. For example, if you are showing a map with 25 markers, for which you need
25 thumbnail images, start downloading those images while you are showing the
map. With luck, at the point in time when the user taps on a marker to show the
info window, you will have your image already.

However, this approach will not work well if:

• You need a ridiculous number of images, or
• You need images, but they need to be downloaded full-sized and turned into

thumbnails locally, as that might consume quite a bit of bandwidth, or
• Your last name is Murphy, and therefore the user taps on an info window

before you have had a chance to prepare its image

The workaround is to make note of the Marker the user tapped upon to open its info
window, then call showInfoWindow() on that Marker to cause the info window to be
redisplayed once you have your image, triggering calls to your InfoWindowAdapter.
There, you can see that your image cache includes the image that you need, and you
can apply it to the info window.

The problem here is that it is possible that the user tapped on another marker, after
the first one, while you were busily fetching and loading the image. Hence, rather
than blindly calling showInfoWindow() on the Marker, you should call
isInfoWindowShown() first, and only call showInfoWindow() to force the refresh if
isInfoWindowShown() returns true. Otherwise, some other marker’s info window is
shown. The user is not expecting this earlier info window to somehow magically
reappear.

MAPPING WITH MAPS V2

1065

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

All of this is a pain. It can be made a bit less of a pain by use of an image fetching-
and-caching library like Picasso. We can see how this can be applied by looking at
the MapsV2/ImagePopups sample application. This is a clone of MapsV2/Popups, with
some additions to handle lazy-populating an info window based upon a downloaded
image.

First, since we are going to be generating some thumbnails based on downloaded
imagery, it helps to establish a fixed-size ImageView for our icon. So, this project has
a pair of dimension resources, for the image height and width:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="icon_width">>96dp</dimen></dimen>
<dimen<dimen name="icon_height">>64dp</dimen></dimen>

</resources></resources>

Those are then used in a revised version of the popup layout resource:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon_width"
android:layout_height="@dimen/icon_height"
android:padding="2dip"
android:src="@drawable/ic_launcher"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/snippet"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

MAPPING WITH MAPS V2

1066

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/ImagePopups
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/ImagePopups

android:textSize="15sp"/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

We need some way of keeping track of what images should be used for each marker.
This is somewhat annoying to implement, as we cannot subclass Marker, since it is
marked as final and cannot be extended. However, we can use getId() on a Marker
to obtain a unique ID, and we can use that as the key to additional model data. We
will examine variations on this technique later in this chapter. For now, this sample
gets away with a simple HashMap, mapping the string ID of a Marker to a Uri
representing an image to be shown for that Marker’s info window:

privateprivate HashMap<String, Uri> images=newnew HashMap<String, Uri>();

Our private addMarker() method now takes a String name of an image, and it adds
a Uri pointing to that image to the HashMap, keyed by the ID of the generated
Marker:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet, String image) {

Marker marker=
map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))

.title(getString(title))

.snippet(getString(snippet)));

ifif (image != nullnull) {
images.put(marker.getId(),

Uri.parse("http://misc.commonsware.com/mapsv2/"
+ image));

}
}

For three of our markers, we pass in actual filenames; for a fourth, null is used,
indicating that there is no suitable image for use:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations, "UN_HQ.jpg");

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet,
"Avery_Fisher_Hall.jpg");

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3,
"Carnegie_Hall.jpg");

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy, nullnull);

MAPPING WITH MAPS V2

1067

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the three images being used in this chapter come from Wikipedia. One is
public domain, the others are licensed under the Creative Commons Attribution 1.0
license. Those two are a picture of Avery Fisher Hall, part of the Lincoln Center for
the Performing Arts (courtesy of Geographer) and the other is a picture of the
United Nations building (courtesy of WorldIslandInfo).

The PopupAdapter needs access to these images. It will also need access to a Context,
for use with Picasso. So, PopupAdapter now has data members for these, which are
passed into a revised version of its constructor by MainActivity. That constructor
not only holds onto the new objects, but it retrieves the values of the dimension
resources for our images, converted by Android into pixels for the screen density of
the device that we are running on:

PopupAdapter(Context ctxt, LayoutInflater inflater,
HashMap<String, Uri> images) {

thisthis.ctxt=ctxt;
thisthis.inflater=inflater;
thisthis.images=images;

iconWidth=
ctxt.getResources().getDimensionPixelSize(R.dimen.icon_width);

iconHeight=
ctxt.getResources().getDimensionPixelSize(R.dimen.icon_height);

}

The revised getInfoContents() method is significantly more complicated than was
its predecessor:

@Override
publicpublic View getInfoContents(Marker marker) {

View popup=contentsCache.get(marker.getId());

ifif (popup == nullnull) {
popup=inflater.inflate(R.layout.popup, nullnull);
contentsCache.put(marker.getId(), popup);

TextView tv=(TextView)popup.findViewById(R.id.title);

tv.setText(marker.getTitle());
tv=(TextView)popup.findViewById(R.id.snippet);
tv.setText(marker.getSnippet());

Uri image=images.get(marker.getId());
ImageView icon=(ImageView)popup.findViewById(R.id.icon);

ifif (image == nullnull) {
icon.setVisibility(View.GONE);

}
elseelse {

MAPPING WITH MAPS V2

1068

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/File:Avery_Fisher_Hall.jpg
http://en.wikipedia.org/wiki/User:Geographer
http://en.wikipedia.org/wiki/File:UN_HQ_157652121_5b5979da9e2.jpg
http://en.wikipedia.org/wiki/File:UN_HQ_157652121_5b5979da9e2.jpg
http://www.worldislandinfo.com/

Picasso.with(ctxt).load(image).resize(iconWidth, iconHeight)
.centerCrop().noFade()
.placeholder(R.drawable.placeholder)
.into(icon, newnew MarkerCallback(marker));

}
}

returnreturn(popup);
}

It attempts to retrieve an already-inflated layout for this info window from
contentsCache, a HashMap maintained to hold onto already-created layouts:

privateprivate HashMap<String, Uri> images=nullnull;
privateprivate Context ctxt=nullnull;

Not only does this save some processing time by avoiding re-inflating a layout
unnecessarily, but it also will help Picasso be able to populate the ImageView, as will
be demonstrated shortly.

If the contentsCache has an inflated layout for this Marker, that View is returned, as
it should already be set up (and possibly have an image, if there was one to be
loaded and Picasso has completed its work).

If there was a cache miss, getInfoContents() starts by inflating the popup layout
and populating the title and snippet as before. Then, getInfoContents() retrieves
the icon ImageView from the inflated popup View, plus fetches the Uri from the
HashMap of Uri values (given the Marker ID). If there is no Uri, getInfoContents()
marks the ImageView as GONE, so it will not take up space in the popup. If, however,
there is an image Uri, getInfoContents() asks Picasso to “do its thing”:

• Load the image from the Uri
• Resize the image to be the desired dimensions for the ImageView, center-

cropping to keep the right aspect ratio
• Skip the fade-in animation that is normally applied when Picasso populates

an ImageView (as the Maps V2 Bitmap is generated before the animation
completes, resulting in a washed-out image)

• Use a particular placeholder drawable resource while the image is loading
• Populate the ImageView with the results, specifying a MarkerCallback to be

notified of the results

MarkerCallback, as an implementation of Picasso’s Callback interface, needs
onError() and onSuccess() methods. onError() just dumps a message to LogCat,

MAPPING WITH MAPS V2

1069

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

while onSuccess() refreshes the info window, via a call to showInfoWindow() on the
Marker, if that info window is still showing:

staticstatic classclass MarkerCallbackMarkerCallback implementsimplements Callback {
Marker marker=nullnull;

MarkerCallback(Marker marker) {
thisthis.marker=marker;

}

@Override
publicpublic void onError() {

Log.e(getClass().getSimpleName(), "Error loading thumbnail!");
}

@Override
publicpublic void onSuccess() {

ifif (marker != nullnull && marker.isInfoWindowShown()) {
marker.showInfoWindow();

}
}

}

If you run this sample app, you will see the popup with a placeholder image at first,
quickly being replaced by the thumbnail supplied by Picasso:

Figure 337: Maps V2 with Popup and Thumbnail

MAPPING WITH MAPS V2

1070

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the technique shown here will run into scaling issues with lots of
markers… or, more accurately, with lots of info windows. Using a LruCache or some
similarly-bounded cache for the layouts instead of a HashMap should help in this
regard.

Setting the Marker Icon
Unlike Maps V1, Maps V2 includes a stock marker icon that looks a lot like the
standard Google Maps marker. You have three major choices for what to use for your
own markers:

1. Stick with the stock icon, which is the default behavior
2. Change the stock icon to a different hue
3. Replace the stock icon with your own from an asset, resource, file, or in-

memory Bitmap

To indicate that you want a different icon than the stock one, use the icon()
method on the MarkerOptions fluent interface. This takes a BitmapDescriptor,
which you get from one of a series of static methods on the
BitmapDescriptorFactory class.

For example, you might have a revised version of the addMarker() method of
MainActivity that took a hue — a value from 0 to 360 representing different colors
along a color wheel. 0 represents red, 120 represents green, and 240 represents blue,
with different shades in between. There is a series of HUE_ constants defined on
BitmapDescriptorFactory, plus a defaultMarker() method that takes a hue as a
parameter and returns a BitmapDescriptor that will use the stock icon, colored to
the specified hue:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet, int hue) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet))

.icon(BitmapDescriptorFactory.defaultMarker(hue)));
}

This could then be used to give you different colors per marker, or by category of
marker, etc.:

MAPPING WITH MAPS V2

1071

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 338: Maps V2 with Alternate Marker Hues

Note that you can modify the icon at runtime via the setIcon() method on the
Marker returned by addMarker() method on GoogleMap.

However, you cannot draw the marker directly yourself, the way you might have with
Maps V1. What you can do is draw to a Bitmap-backed Canvas object, then use the
resulting Bitmap with BitmapFactoryDescriptor and its fromBitmap() factory
method.

Responding to Taps
Perhaps we would like to find out when a user taps on one of our markers, instead of
displaying an info window. Maybe we want to have some other UI response to that
tap in our app.

To do that, simply create an implementation of the OnMarkerClickListener
interface and attach it to the GoogleMap via setOnMarkerClickListener(). You will
then be called with onMarkerClick() when the user taps on a marker, and you are
passed the Marker object in question. If you return true, you are indicating that you

MAPPING WITH MAPS V2

1072

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

are handling the event; returning false means that default handling (the info
window) should be done.

You can see this, plus the multi-colored markers, in the MapsV2/Taps sample
application. This takes MapsV2/Popups and adds a Toast when the user taps a
marker, in addition to displaying the info window:

@Override
publicpublic boolean onMarkerClick(Marker marker) {

Toast.makeText(thisthis, marker.getTitle(), Toast.LENGTH_LONG).show();

returnreturn(falsefalse);
}

Figure 339: Maps V2 with Toast and Info Window

Our call to setOnMarkerClickListener() is up in the onCreate() method of
MainActivity:

map.setOnMarkerClickListener(thisthis);

MAPPING WITH MAPS V2

1073

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Taps
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Taps

Dragging Markers
In Maps V1, if you wanted to drag-and-drop map markers, you had to handle all of
that yourself, using low-level touch events.

Conversely, Maps V2 handles marker drag-and-drop for you.

By default, markers are not draggable. But, if you call draggable(true) on your
MarkerOptions when creating the marker — or call setDraggable(true) on the
Marker later on — Android will automatically support drag-and-drop. The user can
tap-and-hold on the marker to enable drag mode, then slide the marker around the
map.

Note that at the present time, this functionality is a little odd. When you tap-and-
hold the marker, with drag mode enabled, the marker initially jumps away from its
original position. The user can reposition the marker to any desired location, and
the marker will seem to “drop” where the user requests. Why the marker makes the
sudden shift at the outset, using the default marker settings, is unclear.

Of course, your code may need to know about drag-and-drop events, such as to
update your own data model to reflect the newly-chosen location. You can register
an OnMarkerDragListener that will be notified of the start of the drag, where the
marker slides during the drag, and where the marker is dropped at the end of the
drag.

You can see all of this in the MapsV2/Drag sample application, which is a clone of
MapsV2/Popup with drag-and-drop enabled.

To enable drag-and-drop, we just chain draggable(true) onto the series of calls on
our MarkerOptions when creating the markers:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet))
.draggable(truetrue));

}

We also register MainActivity as being the drag listener, up in onCreate():

map.setOnMarkerDragListener(thisthis);

MAPPING WITH MAPS V2

1074

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Drag
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Drag

That requires MainActivity to implement OnMarkerDragListener, which in turn
requires three methods to be defined: onMarkerDragStart(), onMarkerDrag(), and
onMarkerDragEnd():

@Override
publicpublic void onMarkerDragStart(Marker marker) {

LatLng position=marker.getPosition();

Log.d(getClass().getSimpleName(), String.format("Drag from %f:%f",
position.latitude,
position.longitude));

}

@Override
publicpublic void onMarkerDrag(Marker marker) {

LatLng position=marker.getPosition();

Log.d(getClass().getSimpleName(),
String.format("Dragging to %f:%f", position.latitude,

position.longitude));
}

@Override
publicpublic void onMarkerDragEnd(Marker marker) {

LatLng position=marker.getPosition();

Log.d(getClass().getSimpleName(), String.format("Dragged to %f:%f",
position.latitude,
position.longitude));

}

Here, we just dump the information about the new marker position in LogCat.

So, if you run this app and drag-and-drop a marker, you will see output in LogCat
akin to:

12-19 13:10:36.442: D/MainActivity(22510): Drag from 40.770876:-73.982499
12-19 13:10:36.892: D/MainActivity(22510): Dragging to 40.770876:-73.981593
12-19 13:10:36.912: D/MainActivity(22510): Dragging to 40.770795:-73.981352
12-19 13:10:36.932: D/MainActivity(22510): Dragging to 40.770754:-73.981141
.
.
.
12-19 13:10:38.292: D/MainActivity(22510): Dragging to 40.769596:-73.983615
12-19 13:10:38.372: D/MainActivity(22510): Dragged to 40.769596:-73.983615

The actual list of events was much longer, as onMarkerDrag() is called a lot, so the
... in the LogCat entries above reflect another 50 or so lines for a drag-and-drop
that took a couple of seconds.

MAPPING WITH MAPS V2

1075

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, up in onCreate(), we retain our SupportMapFragment across configuration
changes via setRetainInstance(true):

mapFrag.setRetainInstance(truetrue);

While MapFragment and SupportMapFragment will hold onto their markers across a
configuration change by default, they do not hold onto changed marker positions
via drag-and-drop. Retaining the fragment instance causes the fragment to keep our
markers in their moved positions, rather than resetting them to their original
positions.

The “Final” Limitations
With Maps V1 and ItemizedOverlay, OverlayItem was a regular Java class. You
could extend this class, to support additional data or behaviors that were unique to
your app.

Of course, an even more flexible approach would have been for OverlayItem to be
an interface, with a stock SimpleOverlayItem concrete implementation. That way,
you could implement OverlayItem on some Java class resident elsewhere in your
app’s class hierarchy (e.g., inheriting from some class needed for a persistence
framework).

Rather than taking a step forward, Maps V2 took a step backward instead.

In Maps V2, not only do you not create Marker objects directly yourself, but Marker
is marked as final and cannot be extended.

However, Marker does have getId(), an immutable identifier for the Marker. We can
use that as a key for a HashMap that allows us to get at additional model data
associated with the Marker.

You can see this approach in the MapsV2/Models sample application, which is a clone
of MapsV2/Popup where we use the ID in just this fashion.

Our simplified model is merely the data we poured into our Marker objects in the
original MapsV2/Popup project:

packagepackage com.commonsware.android.mapsv2.model;

importimport android.content.Contextandroid.content.Context;

MAPPING WITH MAPS V2

1076

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Models
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Models

publicpublic classclass ModelModel {
String title;
String snippet;
double lat;
double lon;

Model(Context ctxt, double lat, double lon, int title,
int snippet) {

thisthis.title=ctxt.getString(title);
thisthis.snippet=ctxt.getString(snippet);
thisthis.lat=lat;
thisthis.lon=lon;

}

String getTitle() {
returnreturn(title);

}

String getSnippet() {
returnreturn(snippet);

}

double getLatitude() {
returnreturn(lat);

}

double getLongitude() {
returnreturn(lon);

}
}

Our activity holds onto a HashMap of these Model objects, with the map keyed by the
Marker ID (a String):

privateprivate HashMap<String, Model> models=newnew HashMap<String, Model>();

Of course, a real application would have a much more elaborate setup than this.

We then arrange to populate our map with Marker objects created from our Model
objects, moving the add-the-markers-to-the-map logic to an addMarkers() method:

privateprivate void addMarkers(GoogleMap map) {
Model model=

newnew Model(thisthis, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

models.put(addMarkerForModel(map, model).getId(), model);

model=
newnew Model(thisthis, 40.76866299974387, -73.98268461227417,

R.string.lincoln_center,

MAPPING WITH MAPS V2

1077

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

R.string.lincoln_center_snippet);
models.put(addMarkerForModel(map, model).getId(), model);

model=
newnew Model(thisthis, 40.765136435316755, -73.97989511489868,

R.string.carnegie_hall, R.string.practice_x3);
models.put(addMarkerForModel(map, model).getId(), model);

model=
newnew Model(thisthis, 40.70686417491799, -74.01572942733765,

R.string.downtown_club, R.string.heisman_trophy);
models.put(addMarkerForModel(map, model).getId(), model);

}

privateprivate Marker addMarkerForModel(GoogleMap map, Model model) {
LatLng position=

newnew LatLng(model.getLatitude(), model.getLongitude());

returnreturn(map.addMarker(newnew MarkerOptions().position(position)
.title(model.getTitle())
.snippet(model.getSnippet())));

}

Notice that addMarkerForModel() returns the Marker, and we use getId() on that
Marker as the key when adding a Model to the HashMap.

Our PopupAdapter gets the data for the info window from the Model (though, in
truth, in this case, it could have gotten the data from the Marker itself, since we did
not add more information to the info window):

packagepackage com.commonsware.android.mapsv2.model;

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.HashMapjava.util.HashMap;
importimport com.google.android.gms.maps.GoogleMap.InfoWindowAdaptercom.google.android.gms.maps.GoogleMap.InfoWindowAdapter;
importimport com.google.android.gms.maps.model.Markercom.google.android.gms.maps.model.Marker;

classclass PopupAdapterPopupAdapter implementsimplements InfoWindowAdapter {
LayoutInflater inflater=nullnull;
HashMap<String, Model> models=nullnull;

PopupAdapter(LayoutInflater inflater, HashMap<String, Model> models) {
thisthis.inflater=inflater;
thisthis.models=models;

}

@Override
publicpublic View getInfoWindow(Marker marker) {

returnreturn(nullnull);

MAPPING WITH MAPS V2

1078

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Override
publicpublic View getInfoContents(Marker marker) {

View popup=inflater.inflate(R.layout.popup, nullnull);

TextView tv=(TextView)popup.findViewById(R.id.title);

tv.setText(models.get(marker.getId()).getTitle());
tv=(TextView)popup.findViewById(R.id.snippet);
tv.setText(models.get(marker.getId()).getSnippet());

returnreturn(popup);
}

}

Visually, this is indistinguishable from the original MapsV2/Popups project. Of
course, a real app would have more complex models, perhaps containing more
discrete information for a more complex info window.

A Bit More About IPC
IPC is not only a problem in terms of disappearing Marker objects.

If you run a Maps V2 app under Traceview, to see what methods get called and how
much time everything takes, you will see that many, many operations with
GoogleMap do little in your process, but instead make synchronous calls to a Play
Services process to do the real work:

MAPPING WITH MAPS V2

1079

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 340: Traceview Results for Maps V2 Map Creation

The preceding trace came from just the onCreate() method of the MapsV2/Models
sample from the preceding section. Over 30% of the time to run onCreate() is tied
up in IPC calls. And, unfortunately, you are not allowed to do much manipulation of
a GoogleMap from a background thread (e.g., moveCamera()).

The moral of this story is to avoid manipulating your GoogleMap in time-sensitive
portions of your code.

(the author would once again like to thank Cyril Mottier for pointing out this
limitation in Maps V2)

Finding the User
Many times, the user is looking at a map to figure out where they are. Perhaps they
are lost. Perhaps their spouse or significant other thinks that they are lost. Perhaps
they think that they were teleported somewhere (e.g., a North African desert) after
turning a “frozen wheel” in an icy cavern beneath an island, and therefore are really
lost. Stranger things have happened.

(well, OK, perhaps not)

MAPPING WITH MAPS V2

1080

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://lostpedia.wikia.com/wiki/Frozen_wheel

Regardless, it is often useful to help point out to the user their current location. That
is a matter of adding a suitable location permission (e.g., ACCESS_FINE_LOCATION)
and calling setMyLocationEnabled(true) on your GoogleMap. This activates a layer
that will highlight their location, with the user having an option of having the
“camera” (i.e., their perspective on the map) reposition itself to their location and
move as they move. This latter capability is activated by a small icon in the upper
right of the map.

You can see this in operation in the MapsV2/MyLocation sample application, which is
a clone of MapsV2/Popup with standard location tracking enabled.

All we do is call two additional methods on our GoogleMap in onCreate():

• setMyLocationEnabled(), indicating that we want the “my location” layer
added and automatic tracking to be enabled, and

• setOnMyLocationChangeListener(), indicating that we also want to be
notified about changes in the user position

map.setMyLocationEnabled(truetrue);
map.setOnMyLocationChangeListener(thisthis);

The latter method is new to the February 2013 update to the Maps V2 portion of the
Play Services Android library project. If, when trying to implement it, you get a
compile error complaining that there is no such method, be sure to update your Play
Services component in the SDK Manager and start using the updated Android
library project.

That latter method also requires our activity to implement the
OnMyLocationChangeListener interface, which in turn requires us to implement the
onMyLocationChange() method, which will be called when Maps V2 gets a new
location fix:

@Override
publicpublic void onMyLocationChange(Location lastKnownLocation) {

Log.d(getClass().getSimpleName(),
String.format("%f:%f", lastKnownLocation.getLatitude(),

lastKnownLocation.getLongitude()));
}

Here, we simply log the location to LogCat.

This is nice and easy, giving us our my-location overlay and arrow indicating the
user’s location and orientation:

MAPPING WITH MAPS V2

1081

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/MyLocation
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/MyLocation

Figure 341: Maps V2, Showing the User’s Location

However, there are two problems here. First, setOnMyLocationChangeListener() is
now deprecated, as Google would prefer that you directly request the locations
through the LocationClient available from Play Services.

Second, there does not appear to be a way to force camera tracking of the user’s
position — you are reliant upon the user tapping that icon. You also have no control
over the nature of the location provider that is used.

However, there is a workaround for this, proposed in a StackOverflow answer –
provide your own location data and update the camera yourself, by means of
setLocationSource(). setLocationSource() lets you push locations to the
GoogleMap, making other adjustments (e.g., camera position) along the way.

To see how this works, take a peek at the MapsV2/Location sample application,
which is a clone of MapsV2/Popup with custom location tracking enabled.

Along with adding ACCESS_FINE_LOCATION to the manifest, this sample project adds
four lines to the onCreate() implementation of MainActivity to configure the
GoogleMap:

MAPPING WITH MAPS V2

1082

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/13753518/115145
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Location
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Location

locMgr=(LocationManager)getSystemService(LOCATION_SERVICE);
crit.setAccuracy(Criteria.ACCURACY_FINE);

map.setMyLocationEnabled(truetrue);
map.getUiSettings().setMyLocationButtonEnabled(falsefalse);

The first two lines get access to a LocationManager and indicate that a Criteria
object (initialized as a data member) should require fine accuracy. These come from
the location tracking subsystem in Android.

The next line turns on location tracking in the GoogleMap, so the user’s position will
be marked on the map.

The last line disables the user’s control over whether the camera position tracks
their movement, since we want that to always be on in this case.

In onResume() and onPause() of MainActivity, we enable and disable getting
location updates, as is typical of an activity needing location data. However, we also
tell the GoogleMap that we are going to supply it with location data, rather than it
having to obtain location data itself:

@Override
publicpublic void onResume() {

supersuper.onResume();

locMgr.requestLocationUpdates(0L, 0.0f, crit, thisthis, nullnull);
map.setLocationSource(thisthis);

}

@Override
publicpublic void onPause() {

map.setLocationSource(nullnull);
locMgr.removeUpdates(thisthis);

supersuper.onPause();
}

Note that we are blindly assuming that we will get location data. A production-grade
app would put in better smarts to confirm that we will actually learn our location via
this Criteria (e.g., the user does not have all location providers disabled).

The call to setLocationSource() tells GoogleMap that our MainActivity itself is to
be the source of location data. This requires MainActivity to implement the
LocationSource interface, requiring us to implement activate() and deactivate()
methods:

MAPPING WITH MAPS V2

1083

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void activate(OnLocationChangedListener listener) {

thisthis.mapLocationListener=listener;
}

@Override
publicpublic void deactivate() {

thisthis.mapLocationListener=nullnull;
}

activate() provides us with an OnLocationChangedListener, from GoogleMap, to
which we need to pass location data as we get it. deactivate() indicates that we
should no longer attempt to contact that listener. In addition to holding onto that
listener (or removing our reference to it when deactivated), we also take this
opportunity to request and remove location updates.

The onLocationChanged() method — where we get our location fixes from
LocationManager via the LocationListener interface — must pass the location
along to the GoogleMap-supplied OnLocationChangedListener, if we have such a
listener available:

@Override
publicpublic void onLocationChanged(Location location) {

ifif (mapLocationListener != nullnull) {
mapLocationListener.onLocationChanged(location);

LatLng latlng=
newnew LatLng(location.getLatitude(), location.getLongitude());

CameraUpdate cu=CameraUpdateFactory.newLatLng(latlng);

map.animateCamera(cu);
}

}

Here, we also create a CameraUpdate representing the new location and animate that
update, to have the map slide over to the new location, centering the camera on the
user’s updated position.

The net effect of all of this is that the map continuously re-centers itself to show the
user’s position, which GoogleMap is highlighting on the map for us.

Drawing Lines and Areas
If you wanted to draw on a map in the Maps V1 framework, you created an Overlay
and drew upon it. This forced you to handle low-level drawing work yourself, as you

MAPPING WITH MAPS V2

1084

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

were handed a Canvas object and had to handle all the lines, fills, and so forth
yourself.

Maps V2 offers a different approach. Free-form drawing is still conceivable, though it
appears to have to be handled in the form of tile overlays instead of map overlays.
However, for the simpler cases of drawing lines and areas, Maps V2 has built-in
polyline, polygon, and circle support. You tell the GoogleMap what needs to be
drawn, and it handles drawing it, both initially and as the map is zoomed or panned.
A polyline is a line connecting a series of points; a polygon is a region defined by a
series of corners. A circle, from the standpoint of Maps V2, is defined by a center
coordinate and a radius.

We can see polylines and polygons on a GoogleMap in the MapsV2/Poly sample
application, which is a clone of MapsV2/Popup with two additions:

• A polyline connecting the locations of our four markers
• A polygon enclosing the area of Manhattan known as the Garment District

(bounded by 34th Street, 42nd Street, Fifth Avenue, and Ninth Avenue)

To draw those, we simply add a few lines to onCreate() of MainActivity:

PolylineOptions line=
newnew PolylineOptions().add(newnew LatLng(40.70686417491799,

-74.01572942733765),
newnew LatLng(40.76866299974387,

-73.98268461227417),
newnew LatLng(40.765136435316755,

-73.97989511489868),
newnew LatLng(40.748963847316034,

-73.96807193756104))
.width(5).color(Color.RED);

map.addPolyline(line);

PolygonOptions area=
newnew PolygonOptions().add(newnew LatLng(40.748429, -73.984573),

newnew LatLng(40.753393, -73.996311),
newnew LatLng(40.758393, -73.992705),
newnew LatLng(40.753484, -73.980882))

.strokeColor(Color.BLUE);

map.addPolygon(area);

The API for adding polylines and polygons is reminiscent of the API for adding
markers: define an ...Options object with the characteristics of the item to be
drawn, then call an add...() method on GoogleMap to add the item.

MAPPING WITH MAPS V2

1085

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Poly
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Poly

So, to add a polyline, we create a PolylineOptions object. Using its fluent interface,
we add() a series of LatLng objects, representing the points to be connected by the
line. We also specify the line width in pixels via width() and the color of the line via
color(). If we had several lines that might overlap, we could specify the zIndex(),
where higher indexes indicate lines to be drawn over the top of lines with lower
indexes. We add the polyline to the map by passing our PolylineOptions to
addPolyline() on GoogleMap.

This gives us a line connecting the four markers, with GoogleMap handling the
details of where the line should be drawn on the screen given the current map
center and zoom levels:

Figure 342: Maps V2 with Polyline

Note that the polyline is drawn using a flat Mercator projection by default. For most
maps, that is perfectly fine. If your map will be showing countries and continents,
rather than city blocks, you might want to call geodesic(true) on the
PolylineOptions, to have the line drawn on a geodesic curve, reflecting the
spherical nature of the Earth (dissenting opinions on that notwithstanding).

Similarly, we create a PolygonOptions object, configure it, and pass it to addPolygon
for our Garment District box. The add() method on PolygonOptions will take the

MAPPING WITH MAPS V2

1086

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Flat_Earth

corners of our polygon, automatically enclosing that region. We also specify the
strokeColor(). We could have specified a fillColor() (default is transparent),
strokeWidth() (default is 10 pixels), zIndex(), and geodesic().

If we run the app and pan the map down to the south a bit, we see our polygon:

Figure 343: Maps V2 with Polyline and Polygon

As with the polyline, Android automatically handles drawing what is needed based
on map center and zoom levels.

Note that, as with markers, we need to re-add the polylines and polygons after a
configuration change, as the GoogleMap does not retain that information.

Gestures and Controls
By default, standard gestures and controls are enabled on your map:

• The user can change zoom level either by + and - buttons or via “pinch-to-
zoom” gestures

• The user can change the center of the map via simple swipe gestures

MAPPING WITH MAPS V2

1087

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The user can change the camera tilt via two-finger vertical swipes, so instead
of a traditional top-down perspective, the user can see things on an angle

• The user can change the orientation of the map via a two-finger rotating
swipe, to change the typical “north is to the top of the map” to some other
orientation

You can obtain a UiSettings object from your GoogleMap via getUiSettings() to
disable these features, if desired:

• setRotateGesturesEnabled()
• setScrollGesturesEnabled() (for panning the map)
• setTiltGesturesEnabled()
• setZoomControlsEnabled() (for the + and - buttons)
• setZoomGesturesEnabled() (for pinch-to-zoom)

There is also setAllGesturesEnabled() to toggle on or off all gesture-based map
control. This is roughly analogous to the android:clickable attribute on the Maps
V1 edition of MapView.

There is also setCompassEnabled(), to indicate if a compass should be shown if the
user changes the map orientation via a rotate gesture.

Tracking Camera Changes
If you have gestures enabled, the user can change the perspective of the map,
referred to as changing the camera position. You may need to know about these
changes, to perform various operations in your app based upon what is presently
visible on the screen. To find out when the camera position changes, you can call
setOnCameraChangeListener() on the GoogleMap, supplying an implementation of
OnCameraChangeListener, which will be called with onCameraChange() as the user
pans, zooms, or tilts the map.

To see how this works, we can take a quick peek at the MapsV2/Camera sample
application, which is a clone of MapsV2/Popup with camera position tracking
enabled.

Late in onCreate() of MainActivity, we call setOnCameraChangeListener() on our
GoogleMap, supplying MainActivity itself as the listener:

map.setOnCameraChangeListener(thisthis);

MAPPING WITH MAPS V2

1088

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Camera
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Camera

This requires MainActivity to implement OnCameraChangeListener and supply an
implementation of onCameraChange():

@Override
publicpublic void onCameraChange(CameraPosition position) {

Log.d(getClass().getSimpleName(),
String.format("lat: %f, lon: %f, zoom: %f, tilt: %f",

position.target.latitude,
position.target.longitude, position.zoom,
position.tilt));

}

Here, we just log a message to LogCat on each camera position change, logging:

• the latitude and longitude of the map center, obtained from the target
LatLng data member of the CameraPosition object supplied to
onCameraChange(),

• the zoom level of the map, from the zoom data member of CameraPosition,
and

• the tilt of the map, in degrees, from the tilt data member of
CameraPosition

As a result, if you run this app and play around with the various gestures, you get a
series of LogCat messages with the results:

12-26 15:36:39.456: D/MainActivity(31419): lat: 40.763727, lon: -73.983163,
zoom: 15.000000, tilt: 0.000000
12-26 15:36:39.536: D/MainActivity(31419): lat: 40.763797, lon: -73.983118,
zoom: 15.000000, tilt: 0.000000
12-26 15:36:40.796: D/MainActivity(31419): lat: 40.767982, lon: -73.979181,
zoom: 15.000000, tilt: 0.000000
12-26 15:36:41.966: D/MainActivity(31419): lat: 40.766275, lon: -73.981911,
zoom: 15.000000, tilt: 0.000000
12-26 15:36:42.216: D/MainActivity(31419): lat: 40.765145, lon: -73.983651,
zoom: 15.000000, tilt: 0.000000
12-26 15:36:43.526: D/MainActivity(31419): lat: 40.765165, lon: -73.983583,
zoom: 15.000000, tilt: 0.000000
12-26 15:36:44.176: D/MainActivity(31419): lat: 40.765685, lon: -73.981983,
zoom: 15.875862, tilt: 0.000000
12-26 15:36:44.236: D/MainActivity(31419): lat: 40.765685, lon: -73.981983,
zoom: 15.875862, tilt: 0.000000
12-26 15:36:45.566: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 11.015625
12-26 15:36:45.616: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 16.171875
12-26 15:36:45.666: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 24.375000
12-26 15:36:45.726: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 38.671875

MAPPING WITH MAPS V2

1089

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

12-26 15:36:45.776: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 45.234375
12-26 15:36:45.816: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 48.046875
12-26 15:36:45.846: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 50.859375
12-26 15:36:45.886: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 52.968750
12-26 15:36:45.926: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 56.484375
12-26 15:36:45.966: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 57.890625
12-26 15:36:46.096: D/MainActivity(31419): lat: 40.766083, lon: -73.982028,
zoom: 15.875862, tilt: 59.296875

Maps in Fragments and Pagers
One key limitation of Maps V1 was that you could only have one MapView instance
per process. Presumably, the proprietary code at the heart of the Maps SDK add-on
used static data members for some state management, ones that would get messed
up if there were two or more MapView widgets in active use.

Fortunately, Maps V2 gets rid of this restriction. You are welcome to have multiple
MapFragment objects if that makes sense. Maps are relatively memory-intensive, so
you should not be planning on having dozens or hundreds of them in use at a time,
but you can have more than one.

To showcase this, the MapsV2/Pager sample application hosts 10
SupportMapFragment instances as pages in a ViewPager. The bulk of the application
is a clone of one of the ViewPager samples from the chapter on ViewPager.

Having maps in a ViewPager presents a bit of a problem, in terms of interpreting
horizontal swipe events. Normally, ViewPager handles those itself. However, that
would mean that the user cannot pan the map horizontally, which makes using the
map somewhat challenging. In this sample, we will augment the ViewPager with
logic to allow horizontal swiping on the maps and on the tab strip.

Our activity inflates a layout that contains our ViewPager along with a
PagerTabStrip:

<?xml version="1.0" encoding="utf-8"?>
<com.commonsware.android.mapsv2.pager.MapAwarePager<com.commonsware.android.mapsv2.pager.MapAwarePager
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/pager"
android:layout_width="match_parent"

MAPPING WITH MAPS V2

1090

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Pager
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Pager

android:layout_height="match_parent">>

<android.support.v4.view.PagerTabStrip<android.support.v4.view.PagerTabStrip
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>/>

</com.commonsware.android.mapsv2.pager.MapAwarePager></com.commonsware.android.mapsv2.pager.MapAwarePager>

However, you will note that this is not ViewPager, but rather MapAwarePager, a
custom subclass of ViewPager that we will examine shortly.

MainActivity then populates the MapAwarePager with an instance of a
MapPageAdapter:

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;

publicpublic classclass MainActivityMainActivity extendsextends AbstractMapActivity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(buildAdapter());
}

}

privateprivate PagerAdapter buildAdapter() {
returnreturn(newnew MapPageAdapter(thisthis, getSupportFragmentManager()));

}
}

MapPageAdapter is a FragmentStatePagerAdapter, not a FragmentPagerAdapter.
This means that as the user swipes through our ViewPager, the adapter has the right
to discard old fragments when it creates new ones. This helps reduce the overall
memory footprint of our activity.

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;

MAPPING WITH MAPS V2

1091

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.support.v4.app.FragmentStatePagerAdapterandroid.support.v4.app.FragmentStatePagerAdapter;

publicpublic classclass MapPageAdapterMapPageAdapter extendsextends FragmentStatePagerAdapter {
Context ctxt=nullnull;

publicpublic MapPageAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(newnew PageMapFragment());
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(R.string.map_page_title) + String.valueOf(position +
1));

}
}

MapPageAdapter declares that there should be ten pages (in getCount()) and returns
an instance of PageMapFragment for each page. PageMapFragment is a subclass of
SupportMapFragment, and so is responsible for displaying our map:

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.google.android.gms.maps.CameraUpdatecom.google.android.gms.maps.CameraUpdate;
importimport com.google.android.gms.maps.CameraUpdateFactorycom.google.android.gms.maps.CameraUpdateFactory;
importimport com.google.android.gms.maps.GoogleMapcom.google.android.gms.maps.GoogleMap;
importimport com.google.android.gms.maps.SupportMapFragmentcom.google.android.gms.maps.SupportMapFragment;
importimport com.google.android.gms.maps.model.LatLngcom.google.android.gms.maps.model.LatLng;
importimport com.google.android.gms.maps.model.MarkerOptionscom.google.android.gms.maps.model.MarkerOptions;

publicpublic classclass PageMapFragmentPageMapFragment extendsextends SupportMapFragment {
@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

GoogleMap map=getMap();

ifif (savedInstanceState == nullnull) {
CameraUpdate center=

CameraUpdateFactory.newLatLng(newnew LatLng(40.76793169992044,
-73.98180484771729));

CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

MAPPING WITH MAPS V2

1092

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

map.moveCamera(center);
map.animateCamera(zoom);

}

addMarker(map, 40.748963847316034, -73.96807193756104, R.string.un,
R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center, R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

}

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet)));

}
}

If we simply wanted to display an unconfigured map, we could just have
MapPageAdapter create and return instances of SupportMapFragment directly. If we
want to configure our map, though, we need to get control when the GoogleMap
object is ready for use. One way to do that is to extend SupportMapFragment and
override onActivityCreated(), as getMap() should return a non-null value at this
point. We can then go ahead and configure the map much as we have done in
previous examples, just from within the fragment itself rather than from the hosting
activity.

MapAwarePager overrides one key method of ViewPager: canScroll():

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.view.PagerTabStripandroid.support.v4.view.PagerTabStrip;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.view.SurfaceViewandroid.view.SurfaceView;
importimport android.view.Viewandroid.view.View;

publicpublic classclass MapAwarePagerMapAwarePager extendsextends ViewPager {
publicpublic MapAwarePager(Context context, AttributeSet attrs) {

supersuper(context, attrs);
}

@Override
protectedprotected boolean canScroll(View v, boolean checkV, int dx, int x,

MAPPING WITH MAPS V2

1093

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

int y) {
ifif (v instanceofinstanceof SurfaceView || v instanceofinstanceof PagerTabStrip) {

returnreturn(truetrue);
}

returnreturn(supersuper.canScroll(v, checkV, dx, x, y));
}

}

canScroll() should return true if the View (and specifically the supplied X and Y
coordinates within that View) can be scrolled horizontally, false otherwise. In our
case, we want to say that the map and the tab strip are each scrollable horizontally.
As it turns out, the passed-in View for our SupportMapFragment will be the map if it
is a subclass of SurfaceView (determined by trial and error on the author’s part, with
hopes for a more authoritative solution in a future edition of the Maps V2 API). So, if
the passed-in View is either a SurfaceView or a PagerTabStrip, we return true,
otherwise we default to normal logic.

The result is a series of independent maps, one per page:

Figure 344: Multiple Maps V2 Maps in a ViewPager

MAPPING WITH MAPS V2

1094

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Each map is independent: if the user pans or zooms one map, that has no impact on
any of the other pages. Panning the maps horizontally works; to move between
pages, use the tab strip.

Animating Marker Movement
Markers, by default, are static, unless you make them be draggable, and then only
the user can drag them.

However, you are welcome to update the position of a Marker at any point, by calling
setPosition() and supplying a new LatLng. The Marker then will jump to that
position.

But what if you want to animate the movement of a Marker from its current position
to a new one? Maps V2 does not offer anything “out of the box” for implementing
this, but Google demonstrated approaches for this in a “DevBytes” video and related
bit of code in a GitHub Gist. This section will cover the technique appropriate for
API Level 14+, including a full working sample (the Gist shows code but not its
usage).

Problem #1: Animating a LatLng

The position of a Marker is a LatLng, as we have seen previously. LatLng is not a
simple number, and so the animator framework needs our assistance to animate
them. Specifically, we need a TypeEvaluator for LatLng, with our evaluate()
method taking the initial and end positions and computing another LatLng
representing the fraction position between those other positions. This concept was
introduced back in the chapter on the animator framework.

A simple approach to computing the fractional LatLng would be to apply the
fraction to the latitude and the longitude as Java double values:

LatLng interpolate(float fraction, LatLng initial, LatLng end) {
double lat = (end.latitude - initial.latitude) * fraction + initial.latitude;
double lng = (end.longitude - initial.longitude) * fraction +

initial.longitude;

returnreturn(newnew LatLng(lat, lng));
}

That would work reasonably well for fairly close points, such as animating a marker
within a city. However, animating markers across longer distances means that we

MAPPING WITH MAPS V2

1095

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.youtube.com/watch?v=WKfZsCKSXVQ
https://gist.github.com/broady/6314689

have to take into account some geographic realities that a simple calculation will
miss.

Problem #2: The Earth Is Not Flat (Really!)

One bit of reality is that the Earth is round. The above calculation assumes that the
Earth is flat. Calculating “great circle” positions requires a fair bit of spherical
trigonometry, known to cause loss of hair in software developers.

Hence, ideally, we will use somebody’s existing debugged algorithm for that.

Problem #3: 180 Equals –180, At Least For Longitude

The other problem is that longitudes wrap around, as 180 degrees longitude is
equivalent to –180 degrees longitude, and longitudinal values are considered to be
between 180 and –180. In cases where we would not cross 180 degrees longitude, this
is not an issue. However, a simple calculation might miss this and wind up having
our animation “take the long way” (e.g., animating from –175 degrees longitude to
175 degrees longitude by going 350 degrees around the Earth, rather than just 10
degrees and crossing the International Date Line).

Introducing Some Googly Assistance

Google themselves have released a utility library for Maps V2. It offers polyline and
polygon decoding, primarily for interoperability with other location-related Google
services like the Google Directions API. The SphericalUtil class handles all of the
nasty math for computing distances along the surface of the Earth and related
calculations. It also offers BubbleIconFactory, which makes it easy to create marker
icons that look a bit like info windows (complete with border and caret) wrapping
around a bit of text or an icon.

In our case, we can use SphericalUtil to handle Problem #2 and Problem #3,
interpolating the location between two LatLng values, taking the curvature of the
Earth and longitude idiosyncrasies into account.

Seeing This in Action

The MapsV2/Animator sample project is a modified version of the MapsV2/Markers
project, adding in the notion of animating a marker from its original position
(Lincoln Center) to a new position (Penn Station) within Manhattan.

MAPPING WITH MAPS V2

1096

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/maps/documentation/android/utility/
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Animator
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Animator

Since we want to use the Google map utility library, we need to download and add
it to our project by one means or another. The book’s GitHub repository has a copy
of this library in the external/android-map-utils directory, though you are
welcome to obtain yours by some other means, such as Maven. Note, though, that
this library project depends upon the Play Services SDK. Hence, you will need to
update the project’s configuration to have it reference your development
environment’s copy of the Play Services SDK. Then, when you attach the library
project to your project, you can remove your own reference to the Play Services
SDK, as you will get that through the utility library.

We need to know where our starting and ending position for the animation will be,
in terms of LatLng objects. Since those have no dependencies upon a Context or
anything, we can simply declare them as static final values:

privateprivate staticstatic finalfinal LatLng PENN_STATION=newnew LatLng(40.749972,
-73.992319);

privateprivate staticstatic finalfinal LatLng LINCOLN_CENTER=
newnew LatLng(40.76866299974387, -73.98268461227417);

We will also need the actual Marker object created when we add our starting
position (LINCOLN_CENTER) to the map. So far, we have ignored the Marker returned
by addMarker() on GoogleMap, but now we need that. So, our own addMarker()
method now returns this value:

privateprivate Marker addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

returnreturn(map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat,
lon))

.title(getString(title))

.snippet(getString(snippet))));
}

We also now have a markerToAnimate data member of the activity, for our Marker,
which we populate from our modified addMarker() method:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

markerToAnimate=
addMarker(map, LINCOLN_CENTER.latitude,

LINCOLN_CENTER.longitude, R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

MAPPING WITH MAPS V2

1097

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/maps/documentation/android/utility/
http://github.com/commonsguy/cw-omnibus/tree/master/external/android-map-utils
http://github.com/commonsguy/cw-omnibus/tree/master/external/android-map-utils

To make the sample work repeatedly, it would be nice to support bi-directional
animation, starting with animating from Lincoln Center to Penn Station, then
reversing the animation to go back to Lincoln Center. That means that we need to
know, for any particular animation, where the end position should be. So, we track a
LatLng for the next end position, surprisingly named nextAnimationEnd, initializing
it to be PENN_STATION (since we are starting at the outset at LINCOLN_CENTER):

privateprivate LatLng nextAnimationEnd=PENN_STATION;

Next, we need to give the user a means of actually requesting the animation to run.
To do that, we define a new menu XML resource for an animate menu item (using
the directions icon for lack of a better handy icon):

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/animate"
android:icon="@android:drawable/ic_menu_directions"
android:showAsAction="ifRoom"
android:title="@string/animate"/>/>

</menu></menu>

We then load that menu resource in an overridden onCreateOptionsMenu() and
direct the click event to an animateMarker() method in onOptionsItemSelected():

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getSupportMenuInflater().inflate(R.menu.animate, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.animate) {
animateMarker();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

In animateMarker(), we need to do two things:

1. Actually run the animation

MAPPING WITH MAPS V2

1098

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Ensure that the camera position is such that the animation will actually be
visible, as it is pointless to animate a marker between two points if the
currently-viewed portion of the map does not show those points

To handle the camera position, we need to use moveCamera() with a CameraUpdate
from CameraUpdateFactory, as we used to set the initial camera position and zoom
level. To handle the case where we want one or more points to be visible, we can use
the newLatLngBounds() method on CameraUpdateFactory. This takes a
LatLngBounds describing the area that needs to be visible, plus a padding amount in
pixels for where that area should be inset within the map.

Of course, this implies that we have a LatLngBounds.

Since LatLngBounds also does not depend upon a Context or much of anything, we
can define one of those as a static final data member, using a
LatLngBounds.Builder instance:

privateprivate staticstatic finalfinal LatLngBounds bounds=
newnew LatLngBounds.Builder().include(LINCOLN_CENTER)

.include(PENN_STATION).build();

A LatLngBounds.Builder takes one or more LatLng objects — passed in via
include() – then constructs a LatLngBounds that encompasses all of those points
via build().

Our animateMarker() method then starts off by using moveCamera() to reset the
camera to show that defined region:

privateprivate void animateMarker() {
map.moveCamera(CameraUpdateFactory.newLatLngBounds(bounds, 48));

Property<Marker, LatLng> property=
Property.of(Marker.class, LatLng.class, "position");

ObjectAnimator animator=
ObjectAnimator.ofObject(markerToAnimate, property,

newnew LatLngEvaluator(), nextAnimationEnd);
animator.setDuration(2000);
animator.start();

ifif (nextAnimationEnd == LINCOLN_CENTER) {
nextAnimationEnd=PENN_STATION;

}
elseelse {

nextAnimationEnd=LINCOLN_CENTER;
}

}

MAPPING WITH MAPS V2

1099

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, we need to set up the animation. To do this, we will use the object animator
framework, specifically an ObjectAnimator. We know the Marker that we want to
animate (markerToAnimate) and we know where we want to animate it to
(nextAnimationEnd). What we need is to indicate the property to animate on this
object, plus provide help to actually animate a LatLng.

To specify the property, we could just pass in the name of the property ("position").
However, in animateMarker(), we set up a Property object via the static of() factory
method. This makes our use of ofObject() more type-safe, as Property will help
enforce that we are animating a Marker using LatLng values.

To animate LatLng values, we need a TypeEvaluator for LatLng, here defined as a
static inner class named LatLngEvaluator:

privateprivate staticstatic classclass LatLngEvaluatorLatLngEvaluator implementsimplements TypeEvaluator<LatLng> {
@Override
publicpublic LatLng evaluate(float fraction, LatLng startValue,

LatLng endValue) {
returnreturn(SphericalUtil.interpolate(startValue, endValue, fraction));

}
}

Our evaluate() method turns around and calls the static interpolate() method on
SphericalUtil, supplied by Google’s map utility library. interpolate() handles all
the nasty spherical trigonometry and stuff, so we do not have to.

We then set the duration of the animation to be two seconds, and start the
animation.

Finally, to reverse the animation for the next request, animateMarker() resets the
value of nextAnimationEnd to be PENN_STATION or LINCOLN_CENTER, wherever we will
animate to next.

This version of the app starts off as do all the others, except for the new action bar
item:

MAPPING WITH MAPS V2

1100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 345: Maps V2 Animator Demo, As Initially Launched

Tapping that action bar item (“directions” icon) will reset the camera position and
start animating the marker:

MAPPING WITH MAPS V2

1101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 346: Maps V2 Animator Demo, Partially Through an Animation

Two seconds later, the marker will reach its destination, presumably to board a train:

Figure 347: Maps V2 Animator Demo, with Marker Animated to Penn Station

MAPPING WITH MAPS V2

1102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Honoring Traffic Rules, Like “Drive Only On Streets”

You will notice that our animation ignores other aspects of reality, such as buildings
that might be in the way. Sometimes, that is appropriate, such as animating the
movement of:

• a bird
• a plane
• a costumed superhero with independent flight capability

Sometimes, though, we need to take into account those obstacles, such as animating
the movement of:

• a pedestrian
• a car
• a costumed superhero “flying” by means of swinging between buildings

using dynamically-generated cables of either natural or synthetic origin

However, to do this implies that we know where the obstacles are. Or, more
accurately, we would need to animate the marker along known good waypoints, such
as streets.

The animation would not be especially difficult, as ofObject() can take a series of
waypoints. However, we would need to find those waypoints, and there is nothing in
Maps V2 itself that supplies this data.

Maps, of the Indoor Variety
The good news is that Maps V2 supports Google’s indoor maps, for those venues for
which Google has indoor map data.

The bad news is that for some reason, only one map at a time supports indoor maps.
The default will be that the first map you create will support indoor maps, and
others will not.

To see if a given map offers indoor map capability, you can call isIndoorEnabled()
on GoogleMap. To toggle this capability, call setIndoorEnabled().

MAPPING WITH MAPS V2

1103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Superman
http://en.wikipedia.org/wiki/Spider-Man
http://en.wikipedia.org/wiki/Spider-Man

Taking a Snapshot of a Map
Once a map is drawn, you can take a snapshot of it, converting the viewed map into
a Bitmap object. This is designed to take an image of the map and use it in places
where a MapFragment, or even a MapView, cannot go, such as:

• Things tied to a RemoteViews, such as a custom Notification
• Thumbnails of maps, for an app that allows users to manipulate several

maps at once

The GoogleMap object has two flavors of a snapshot() method. Both take a
SnapshotReadyCallback object. You will need to supply an instance of something
implementing the SnapshotReadyCallback interface, overriding onSnapshotReady(),
where you will receive your Bitmap.

One flavor of snapshot() takes just the SnapshotReadyCallback; the other also takes
a Bitmap of the proper dimensions, such as a previous snapshot Bitmap that you
want to recycle. Using the latter snapshot() is recommended where possible, so you
do not need to allocate new Bitmap objects on each snapshot() call.

Note that snapshot() will only work once the map is actually rendered. So, for
example, calling snapshot() from onCreate() of your activity will fail, because the
map has not been rendered yet. snapshot() is designed to be called based upon user
input, either to manually capture a snapshot or based on navigation (e.g., tapping on
a ListView item triggers saving a snapshot of the current map as a thumbnail before
changing the map contents).

Also, the documentation for snapshot() contains the following:

Note: Images of the map must not be transmitted to your servers, or
otherwise used outside of the application. If you need to send a map to
another application or user, send data that allows them to reconstruct the
map for the new user instead of a snapshot.

As this statement may be tied to the terms and conditions of your use of Maps V2,
you should talk with qualified legal counsel before:

• Saving a snapshot to external storage
• Sharing a snapshot via ACTION_SEND
• Sending a snapshot to your server

MAPPING WITH MAPS V2

1104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

or similar operations.

MapFragment vs. MapView
So far, all the examples shown in this chapter use MapFragment (or, more accurately,
SupportMapFragment). In most cases, this is the right thing to use.

However, there may be places where you really want to use a View, rather than a
Fragment, for your maps.

The good news is that Maps V2 does have a MapView. MapFragment usually handles
creating and managing the MapView for you, but you can, if you wish, eschew
MapFragment and manage the MapView yourself.

The biggest limitation is that you need to forward the lifecycle methods from your
activity or fragment on to the MapView, calling onCreate(), onResume(), onPause(),
onDestroy(), and onSaveInstanceState() on the MapView. Normally, MapFragment
would do that for you, saving you the trouble.

Also note that while MapView is a ViewGroup, you are not allowed to add child
widgets to it.

Maps and ActionBarSherlock
All of the samples shown so far in this book have used ActionBarSherlock for their
action bar. However, we have been using SupportMapFragment, which itself is not
aware of ActionBarSherlock.

This actually works.

While the general pattern is to use a Sherlock version of a fragment class (e.g.,
SherlockListFragment), anything inheriting from the Android Support Library
backport of Fragment will work with ActionBarSherlock… so long as it does not try
to manipulate the action bar. SupportMapFragment, on its own, does not touch the
action bar, and so we are safe.

However, what if we do want our maps to manipulate the action bar, such as adding
tabs? Then, we need a SherlockFragment that also supports a GoogleMap. The
Android Support Library is unlikely to supply such a class itself, and as of the time of
this writing, neither does ActionBarSherlock.

MAPPING WITH MAPS V2

1105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, it is possible to create such a class… something Alexandre Gherschon did
in late 2012, with his take on a SherlockMapFragment implementation.

packagepackage com.actionbarsherlock.app;

importimport android.app.Activityandroid.app.Activity;
importimport android.support.v4.app.Watson.OnCreateOptionsMenuListenerandroid.support.v4.app.Watson.OnCreateOptionsMenuListener;
importimport android.support.v4.app.Watson.OnOptionsItemSelectedListenerandroid.support.v4.app.Watson.OnOptionsItemSelectedListener;
importimport android.support.v4.app.Watson.OnPrepareOptionsMenuListenerandroid.support.v4.app.Watson.OnPrepareOptionsMenuListener;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;
importimport com.actionbarsherlock.internal.view.menu.MenuItemWrappercom.actionbarsherlock.internal.view.menu.MenuItemWrapper;
importimport com.actionbarsherlock.internal.view.menu.MenuWrappercom.actionbarsherlock.internal.view.menu.MenuWrapper;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;
importimport com.google.android.gms.maps.SupportMapFragmentcom.google.android.gms.maps.SupportMapFragment;

publicpublic classclass SherlockMapFragmentSherlockMapFragment extendsextends SupportMapFragment implementsimplements
OnCreateOptionsMenuListener, OnPrepareOptionsMenuListener,
OnOptionsItemSelectedListener {

privateprivate SherlockFragmentActivity mActivity;

publicpublic SherlockFragmentActivity getSherlockActivity() {
returnreturn mActivity;

}

@Override
publicpublic void onAttach(Activity activity) {

ifif (!(activity instanceofinstanceof SherlockFragmentActivity)) {
throwthrow newnew IllegalStateException(getClass().getSimpleName()

+ " must be attached to a SherlockFragmentActivity.");
}
mActivity=(SherlockFragmentActivity)activity;

supersuper.onAttach(activity);
}

@Override
publicpublic void onDetach() {

mActivity=nullnull;
supersuper.onDetach();

}

@Override
publicpublic finalfinal void onCreateOptionsMenu(android.view.Menu menu,

android.view.MenuInflater inflater) {
onCreateOptionsMenu(newnew MenuWrapper(menu),

mActivity.getSupportMenuInflater());
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

// Nothing to see here.

MAPPING WITH MAPS V2

1106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/4392030
https://gist.github.com/4392030

}

@Override
publicpublic finalfinal void onPrepareOptionsMenu(android.view.Menu menu) {

onPrepareOptionsMenu(newnew MenuWrapper(menu));
}

@Override
publicpublic void onPrepareOptionsMenu(Menu menu) {

// Nothing to see here.
}

@Override
publicpublic finalfinal boolean onOptionsItemSelected(android.view.MenuItem item) {

returnreturn onOptionsItemSelected(newnew MenuItemWrapper(item));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

// Nothing to see here.
returnreturn falsefalse;

}
}

You can then extend SherlockMapFragment, creating your own fragment that can,
among other things, manipulate the action bar, as seen in the MapsV2/Sherlock
sample application:

packagepackage com.commonsware.android.mapsv2.sherlock;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport com.actionbarsherlock.app.SherlockMapFragmentcom.actionbarsherlock.app.SherlockMapFragment;

publicpublic classclass MyMapFragmentMyMapFragment extendsextends SherlockMapFragment {
@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

ifif (getMap() != nullnull) {
Log.d(getClass().getSimpleName(), "Map ready for use!");

}
}

}

One thing to be careful of, though, is the timing of when you try to use the
GoogleMap object. For example, in onCreateView(), the GoogleMap is not yet ready
for use. onActivityCreated(), as shown in the above code, appears to be a safe
alternative.

MAPPING WITH MAPS V2

1107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Sherlock
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Sherlock

You can then use your map fragment class wherever you had been using
SupportMapFragment, such as in a layout resource:

<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/map"
android:layout_width="match_parent"
android:layout_height="match_parent"
class="com.commonsware.android.mapsv2.sherlock.MyMapFragment"/>/>

About That AbstractMapActivity Class…
Early on, we hand-waved our way past the AbstractMapActivity that all of our
MainActivity classes inherit from, and we skirted past the readyToGo() method
that we were calling. Also, you may have noticed that our app has an action bar
overflow item, that we do not seem to be creating in MainActivity.

Now, it is time to dive into what is going on in our AbstractMapActivity
implementations.

Getting Maps V2 Ready to Go

The readyToGo() method in AbstractMapActivity is designed to help us determine
if Maps V2 is “ready to go” and, if not, to help the user perhaps fix their device such
that Maps V2 will work in the future:

protectedprotected boolean readyToGo() {
int status=

GooglePlayServicesUtil.isGooglePlayServicesAvailable(thisthis);

ifif (status == ConnectionResult.SUCCESS) {
ifif (getVersionFromPackageManager(thisthis) >= 2) {

returnreturn(truetrue);
}
elseelse {

Toast.makeText(thisthis, R.string.no_maps, Toast.LENGTH_LONG).show();
finish();

}
}
elseelse if (GooglePlayServicesUtil.isUserRecoverableError(status)) {

ErrorDialogFragment.newInstance(status)
.show(getSupportFragmentManager(),

TAG_ERROR_DIALOG_FRAGMENT);
}
elseelse {

Toast.makeText(thisthis, R.string.no_maps, Toast.LENGTH_LONG).show();
finish();

}

MAPPING WITH MAPS V2

1108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(falsefalse);
}

First, we call the static isGooglePlayServicesAvailable() method on
GooglePlayServicesUtil. This will return an integer indicating whether Maps V2 is
available for our use or not.

If the return value is ConnectionResult.SUCCESS — meaning Maps V2 is indeed
available to us – we check to see if OpenGL ES is version 2.0 or higher, as we did not
require that in the manifest. There are a few ways in Android to check the OpenGL
ES version. This sample uses some code from the Compatibility Test Suite (CTS),
examining PackageManager to determine the major level:

// following from
// https://android.googlesource.com/platform/cts/+/master/tests/tests/graphics/

src/android/opengl/cts/OpenGlEsVersionTest.java

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in
* writing, software distributed under the License is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See
* the License for the specific language governing
* permissions and limitations under the License.
*/

privateprivate staticstatic int getVersionFromPackageManager(Context context) {
PackageManager packageManager=context.getPackageManager();
FeatureInfo[] featureInfos=

packageManager.getSystemAvailableFeatures();
ifif (featureInfos != nullnull && featureInfos.length > 0) {

forfor (FeatureInfo featureInfo : featureInfos) {
// Null feature name means this feature is the open
// gl es version feature.
ifif (featureInfo.name == nullnull) {

ifif (featureInfo.reqGlEsVersion != FeatureInfo.GL_ES_VERSION_UNDEFINED)
{

returnreturn getMajorVersion(featureInfo.reqGlEsVersion);
}
elseelse {

returnreturn 1; // Lack of property means OpenGL ES

MAPPING WITH MAPS V2

1109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// version 1
}

}
}

}
returnreturn 1;

}

/** @see FeatureInfo#getGlEsVersion() */
privateprivate staticstatic int getMajorVersion(int glEsVersion) {

returnreturn((glEsVersion & 0xffff0000) >> 16);
}

If the major version is 2 (or, theoretically, higher), we return true from readyToGo(),
so MainActivity knows to continue on setting up the map. If the major version is 1,
we display a Toast — a production-grade app would do something else to let the
user know of the problem, most likely.

But, what if isGooglePlayServicesAvailable() returns something else?

There are two major possibilities here:

1. The error is something that the user might be able to rectify, such as by
downloading the Google Play Services app from the Play Store

2. The error is something that the user cannot recover from

We can distinguish these two cases by calling the static isUserRecoverableError()
on GooglePlayServicesUtil, passing in the value we received from
isGooglePlayServicesAvailable(). This will return true if the user might be able
to fix the problem, false otherwise.

In the false case, the user is just out of luck, so we display a Toast to alert them of
this fact, then finish() the activity and return false, so MainActivity skips over
the rest of its work.

In the true case, we can display something to the user to prompt them to fix the
problem. One way to do that is to use a dialog obtained from Google code, by calling
the static getErrorDialog() method on the GooglePlayServicesUtil class. In our
case, we wrap that in a DialogFragment named ErrorDialogFragment, implemented
as a static inner class of AbstractMapActivity:

publicpublic staticstatic classclass ErrorDialogFragmentErrorDialogFragment extendsextends DialogFragment {
staticstatic finalfinal String ARG_STATUS="status";

staticstatic ErrorDialogFragment newInstance(int status) {

MAPPING WITH MAPS V2

1110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bundle args=newnew Bundle();

args.putInt(ARG_STATUS, status);

ErrorDialogFragment result=newnew ErrorDialogFragment();

result.setArguments(args);

returnreturn(result);
}

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

Bundle args=getArguments();

returnreturn GooglePlayServicesUtil.getErrorDialog(args.getInt(ARG_STATUS),
getActivity(), 0);

}

@Override
publicpublic void onDismiss(DialogInterface dlg) {

ifif (getActivity() != nullnull) {
getActivity().finish();

}
}

}

While the code and comments around getErrorDialog() suggest that there is some
way for us to find out if the user performed actions that fix the problem, this code
does not seem to work well in practice. After all, downloading Google Play Services
is asynchronous, so even if the user returns to our app, it is entirely likely that Maps
V2 is still unavailable. As a result, when the user is done with the dialog, we
finish() the activity, forcing the user to start it again if and when they are done
downloading Google Play Services.

Testing this code requires an older device, one in which the “Google Play services”
app can be uninstalled… if it can be installed at all.

As it turns out, not all Android devices support the Play Store, or the Google Play
Services by extension. Notably, if the device lacks the Play Store,
isUserRecoverableError() returns true, even though the user cannot recover from
this situation (except perhaps via a firmware update).

(An earlier problem where getErrorDialog() could return null even for cases
where the error is supposedly user-recoverable has been fixed)

MAPPING WITH MAPS V2

1111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/gmaps-api-issues/issues/detail?id=4716
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4720
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4720

Handling the License Terms

AbstractMapActivity has implementations of onCreateOptionsMenu() and
onOptionsItemSelected() that will add a “Legal Notices” item to the overflow menu
and bring up LegalNoticesActivity when that menu item is tapped:

packagepackage com.commonsware.android.mapsv2.basic;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.actionbarsherlock.app.SherlockActivitycom.actionbarsherlock.app.SherlockActivity;
importimport com.google.android.gms.common.GooglePlayServicesUtilcom.google.android.gms.common.GooglePlayServicesUtil;

publicpublic classclass LegalNoticesActivityLegalNoticesActivity extendsextends SherlockActivity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.legal);

TextView legal=(TextView)findViewById(R.id.legal);

legal.setText(GooglePlayServicesUtil.getOpenSourceSoftwareLicenseInfo(thisthis));
}

}

LegalNoticesActivity simply has a TextView inside of a ScrollView and fills in the
TextView with the results of calling getOpenSourceSoftwareLicenseInfo() on
GooglePlayServicesUtil. This method returns the legalese that you need to display
to the users from somewhere in your app.

Helper Libraries for Maps V2
Many developers have been busy writing libraries that help in the development of
Maps V2 applications, beyond Google’s own utility library mentioned in the section
on animating markers.

Perhaps the most expansive of these is the Android Maps Extensions library, by
Maciej Górski. The big thing that this library offers is marker clustering, where as
the user zooms out, individual markers are replaced by a marker representing a
cluster, so you avoid flooding a small area with too many individual markers:

MAPPING WITH MAPS V2

1112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-maps-extensions/

Figure 348: Map with Many Markers (from Android Maps Extensions demo app)

MAPPING WITH MAPS V2

1113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 349: Same Map with Cluster Markers (from Android Maps Extensions demo
app)

MAPPING WITH MAPS V2

1114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 350: Same Map with Zoomed In Cluster Markers (from Android Maps
Extensions demo app)

This library wraps the Maps V2 classes, allowing the library to offer extensions to the
standard Maps V2 API, including:

• Associating your own data with Marker, Polygon, Polyline, and other
classes, to tie them back to your models

• Getters to retrieve previously-defined markers, etc.
• Etc.

Another library offering marker clustering is clusterkraf, from Two Toasters.

The clusterkraf library can optionally integrate with Cyril Mottier’s Polaris2 library.
His original Polaris library aimed to provide more features to Maps V1; Polaris2 fills a
similar role for Maps V2. At this time, Polaris2 is a smaller library, simply because
Maps V2 handles much of what Polaris provided. Polaris2, like Android Maps
Extensions, wraps the Maps V2 API with its own classes, in lieu of subclassing (since
most Maps V2 classes are marked final). Of note, Polaris2 offers reset() methods
on many of the ...Options classes (e.g., MarkerOptions), and offers constants for
the minimum and maximum valid latitude and longitude.

MAPPING WITH MAPS V2

1115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/twotoasters/clusterkraf
https://github.com/cyrilmottier/Polaris2

Problems with Maps V2 at Runtime
Portions of the logic that powers your Maps V2 MapFragment are supplied by the
Google Play Services app. As a result, many operations with Maps V2, such as
manipulating markers, require IPC calls between your app and Google Play
Services. If those IPC calls are synchronous, they will add a bit of overhead to your
app — enough that you will want to avoid them in time-critical pieces of code,
tight loops, and the like.

Some developers report seeing black regions being left behind during animations of
a map, such as sliding between ViewPager pages. Various workarounds are discussed
in the linked-to StackOverflow question. At this time, the leading workaround,
supplied by Jeff Gilfelt, involves putting a transparent frame on top of the map.
According to Google engineers, the issue ties back to the GLSurfaceView used for
drawing the map.

Problems with Maps V2 Deployment
Of course, the key question is: should you be using Maps V2 at all?

Google thinks so, as they have turned off access to new API keys for Maps V1. That
makes ongoing development of Maps V1 solutions a bit risky, as you cannot create
new API keys for new signing keys, such as if you need to replace your debug
keystore.

However, Maps V2 has some deployment limitations at this time. While 99.8+% of
Android devices that have the Play Store have the requisite OpenGL ES 2.0+, some
devices that have a suitable OpenGL ES version may not have the Play Store or
otherwise be unable to get Google Play Services, required for using Maps V2. The
isGooglePlayServicesAvailable() approach advocated by Google can help
determine this at runtime, though this approach used to have some bugs, and it still
cannot always help you recover from this problem.

What Non-Compliant Devices Show
If your app tries to bring up Maps V2 on a device that cannot possibly have the Play
Services Framework — such as a Kindle Fire — the user will see an error dialog:

MAPPING WITH MAPS V2

1116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/13837697/viewpager-with-google-maps-api-v2-mysterious-black-view
http://stackoverflow.com/a/13910364/115145
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4639
https://developers.google.com/maps/documentation/android/v1/mapkey

Figure 351: Maps V2 Error on Kindle Fire

Mapping Alternatives
Beyond using Maps V2 or Maps V1, you may need to consider other mapping
alternatives. The Google mapping APIs are only available on Android devices that
have the Maps SDK add-on (Maps V1) or Google Play Services (Maps V2). Not all
devices have those. And, the limitations of Maps V2 deployment and the
deprecation of Maps V1 may convince you that relying upon Google for maps is not
safe at the present time.

The most common native replacement for Google’s mapping is OpenStreetMap,
which to some extent is “the Wikipedia of maps”. OSMDroid is a library that
provides a Maps V1-ish API for embedding OpenStreetMap-based maps into your
application.

Another solution is to integrate Web-based Google maps into your app, the same
way that you might embed them into your Web site. An activity hosting a WebView
can display a Web-based Google Map, for example.

Certain devices may have access to other native mapping solutions. For example,
Amazon has published their own maps API for use with the Kindle Fire.

News and Getting Help
The Maps V2 team maintains a set of release notes for when they ship updates to the
Maps V2 support in the Play Services library project.

MAPPING WITH MAPS V2

1117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.openstreetmap.org/
http://code.google.com/p/osmdroid/
https://developer.amazon.com/sdk/maps.html
https://developers.google.com/maps/documentation/android/releases

The official support point for Maps V2 for Android is StackOverflow. Questions
tagged with both android and google-maps should show up on Google’s radar.

MAPPING WITH MAPS V2

1118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android+google-maps
http://stackoverflow.com/questions/tagged/android+google-maps
http://stackoverflow.com/questions/tagged/android+google-maps

Crafting Your Own Views

One of the classic forms of code reuse is the GUI widget. Since the advent of
Microsoft Windows — and, to some extent, even earlier – developers have been
creating their own widgets to extend an existing widget set. These range from 16-bit
Windows “custom controls” to 32-bit Windows OCX components to the
innumerable widgets available for Java Swing and SWT, and beyond. Android lets
you craft your own widgets as well, such as extending an existing widget with a new
UI or new behaviors.

This chapter starts with a discussion of the various ways you can go about creating
custom View classes. It then moves into an examination of ColorMixer, a composite
widget, made up of several other widgets within a layout.

Note that the material in this chapter is focused on creating custom View classes for
use within a single Android project. If your goal is to truly create reusable custom
widgets, you will also need to learn how to package them so they can be reused —
that is covered in a later chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Pick Your Poison
You have five major options for creating a custom View class.

1119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, your “custom View class” might really only be custom Drawable resources.
Many widgets can adopt a radically different look and feel just with replacement
graphics. For example, you might think that these toggle buttons from the Android
2.1 Google Maps application are some fancy custom widget:

Figure 352: Google Maps navigation toggle buttons

In reality, those are just radio buttons with replacement images.

Second, your custom View class might be a simple subclass of an existing widget,
where you override some behaviors or otherwise inject your own logic.
Unfortunately, most of the built-in Android widgets are not really designed for this
sort of simple subclassing, so you may be disappointed in how well this particular
technique works.

Third, your custom View class might be a composite widget — akin to an activity’s
contents, complete with layout and such, but encapsulated in its own class. This
allows you to create something more elaborate than you will just by tweaking
resources. We will see this later in the chapter with ColorMixer.

Fourth, you might want to implement your own layout manager, if your GUI rules do
not fit well with RelativeLayout, TableLayout, or other built-in containers. For
example, you might want to create a layout manager that more closely mirrors the
“box model” approach taken by XUL and Flex, or you might want to create one that
mirrors Swing’s FlowLayout (laying widgets out horizontally until there is no more
room on the current row, then start a new row).

Finally, you might want to do something totally different, where you need to draw
the widget yourself. For example, the ColorMixer widget uses SeekBar widgets to
control the mix of red, blue, and green. But, you might create a ColorWheel widget
that draws a spectrum gradient, detects touch events, and lets the user pick a color
that way.

Some of these techniques are fairly simple; others are fairly complex. All share some
common traits, such as widget-defined attributes, that we will see throughout the
remainder of this chapter.

CRAFTING YOUR OWN VIEWS

1120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Colors, Mixed How You Like Them
The classic way for a user to pick a color in a GUI is to use a color wheel like this
one:

Figure 353: A color wheel from the API samples

There is even code to make one in the API samples.

However, a color wheel like that is difficult to manipulate on a touch screen,
particularly a capacitive touchscreen designed for finger input. Fingers are great for
gross touch events and lousy for selecting a particular color pixel.

Another approach is to use a mixer, with sliders to control the red, green, and blue
values:

CRAFTING YOUR OWN VIEWS

1121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/ColorPickerDialog.html

Figure 354: The ColorMixer widget, inside an activity

That is the custom widget you will see in this section, based on the code in the
Views/ColorMixer sample project.

The Layout

ColorMixer is a composite widget, meaning that its contents are created from other
widgets and containers. Hence, we can use a layout file to describe what the widget
should look like.

The layout to be used for the widget is not that much: three SeekBar widgets (to
control the colors), three TextView widgets (to label the colors), and one plain View
(the “swatch” on the left that shows what the currently selected color is). Here is the
file, found in res/layout/mixer.xml in the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<merge<merge xmlns:android="http://schemas.android.com/apk/res/android">>

<View<View android:id="@+id/swatch"
android:layout_width="40dip"
android:layout_height="40dip"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true"
android:layout_marginLeft="4dip"

CRAFTING YOUR OWN VIEWS

1122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Views/ColorMixer
http://github.com/commonsguy/cw-omnibus/tree/master/Views/ColorMixer

/>/>
<TextView<TextView android:id="@+id/redLabel"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/swatch"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:text="@string/red"
android:textSize="10pt"

/>/>
<SeekBar<SeekBar android:id="@+id/red"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/redLabel"
android:layout_toRightOf="@id/redLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"

/>/>
<TextView<TextView android:id="@+id/greenLabel"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/redLabel"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:text="@string/green"
android:textSize="10pt"

/>/>
<SeekBar<SeekBar android:id="@+id/green"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/greenLabel"
android:layout_toRightOf="@id/greenLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"

/>/>
<TextView<TextView android:id="@+id/blueLabel"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/greenLabel"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:text="@string/blue"
android:textSize="10pt"

/>/>
<SeekBar<SeekBar android:id="@+id/blue"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/blueLabel"
android:layout_toRightOf="@id/blueLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"

CRAFTING YOUR OWN VIEWS

1123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

/>/>
</merge></merge>

One thing that is a bit interesting about this layout, though, is the root element:
<merge>. A <merge> layout is a bag of widgets that can be poured into some other
container. The layout rules on the children of <merge> are then used in conjunction
with whatever container they are added to. As we will see shortly, ColorMixer itself
inherits from RelativeLayout, and the children of the <merge> element will become
children of ColorMixer in Java. Basically, the <merge> element is only there because
XML files need a single root — otherwise, the <merge> element itself is ignored in
the layout.

The Attributes

Widgets usually have attributes that you can set in the XML file, such as the
android:src attribute you can specify on an ImageButton widget. You can create
your own custom attributes that can be used in your custom widget, by creating a
res/values/attrs.xml file containing declare-styleable resources to specify
them.

For example, here is the attributes file for ColorMixer:

<resources><resources>
<declare-styleable<declare-styleable name="ColorMixer">>

<attr<attr name="initialColor" format="color" />/>
</declare-styleable></declare-styleable>

</resources></resources>

The declare-styleable element describes what attributes are available on the
widget class specified in the name attribute — in our case, ColorMixer. Inside
declare-styleable you can have one or more attr elements, each indicating the
name of an attribute (e.g., initialColor) and what data format the attribute has
(e.g., color). The data type will help with compile-time validation and in getting any
supplied values for this attribute parsed into the appropriate type at runtime.

Here, we indicate there is only one attribute: initialColor, which will hold the
initial color we want the mixer set to when it first appears.

There are many possible values for the format attribute in an attr element,
including:

1. boolean
2. color

CRAFTING YOUR OWN VIEWS

1124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. dimension
4. float
5. fraction
6. integer
7. reference (which means a reference to another resource, such as a

Drawable)
8. string

You can even support multiple formats for an attribute, by separating the values
with a pipe (e.g., reference|color).

The Class

Our ColorMixer class, a subclass of RelativeLayout, will take those attributes and
provide the actual custom widget implementation, for use in activities.

Constructor Flavors

A View has three possible constructors:

1. One takes just a Context, which usually will be an Activity
2. One takes a Context and an AttributeSet, the latter of which represents the

attributes supplied via layout XML
3. One takes a Context, an AttributeSet, and the default style to apply to the

attributes

If you are expecting to use your custom widget in layout XML files, you will need to
implement the second constructor and chain to the superclass. If you want to use
styles with your custom widget when declared in layout XML files, you will need to
implement the third constructor and chain to the superclass. If you want developers
to create instances of your View class in Java code directly, you probably should
implement the first constructor and, again, chain to the superclass.

In the case of ColorMixer, all three constructors are implemented, eventually
routing to the three-parameter edition, which initializes our widget. Below, you will
see the first two of those constructors, with the third coming up in the next section:

publicpublic ColorMixer(Context context) {
thisthis(context, nullnull);

}

publicpublic ColorMixer(Context context, AttributeSet attrs) {

CRAFTING YOUR OWN VIEWS

1125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis(context, attrs, 0);
}

Using the Attributes

The ColorMixer has a starting color — after all, the SeekBar widgets and swatch
View have to show something. Developers can, if they wish, set that color via a
setColor() method:

publicpublic void setColor(int color) {
red.setProgress(Color.red(color));
green.setProgress(Color.green(color));
blue.setProgress(Color.blue(color));
swatch.setBackgroundColor(color);

}

If, however, we want developers to be able to use layout XML, we need to get the
value of initialColor out of the supplied AttributeSet. In ColorMixer, this is
handled in the three-parameter constructor:

publicpublic ColorMixer(Context context, AttributeSet attrs, int defStyle) {
supersuper(context, attrs, defStyle);

((Activity)getContext())
.getLayoutInflater()
.inflate(R.layout.mixer, thisthis, truetrue);

swatch=findViewById(R.id.swatch);

red=(SeekBar)findViewById(R.id.red);
red.setMax(0xFF);
red.setOnSeekBarChangeListener(onMix);

green=(SeekBar)findViewById(R.id.green);
green.setMax(0xFF);
green.setOnSeekBarChangeListener(onMix);

blue=(SeekBar)findViewById(R.id.blue);
blue.setMax(0xFF);
blue.setOnSeekBarChangeListener(onMix);

ifif (attrs!=nullnull) {
TypedArray a=getContext()

.obtainStyledAttributes(attrs,
R.styleable.ColorMixer,
0, 0);

setColor(a.getInt(R.styleable.ColorMixer_initialColor,
0xFFA4C639));

a.recycle();

CRAFTING YOUR OWN VIEWS

1126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

There are three steps for getting attribute values:

• Get a TypedArray conversion of the AttributeSet by calling
obtainStyledAttributes() on our Context, supplying it the AttributeSet
and the ID of our styleable resource (in this case, R.styleable.ColorMixer,
since we set the name of the declare-styleable element to be ColorMixer)

• Use the TypedArray to access specific attributes of interest, by calling an
appropriate getter (e.g., getInt()) with the ID of the specific attribute to
fetch (R.styleable.ColorMixer_initialColor)

• Recycle the TypedArray when done, via a call to recycle(), to make the
object available to Android for use with other widgets via an object pool
(versus creating new instances every time)

Note that the name of any given attribute, from the standpoint of TypedArray, is the
name of the styleable resource (R.styleable.ColorMixer) concatenated with an
underscore and the name of the attribute itself (_initialColor).

In ColorMixer, we get the attribute and pass it to setColor(). Since getInt() on
AttributeSet takes a default value, we supply some stock color that will be used if
the developer declined to supply an initialColor attribute.

Also note that our ColorMixer constructor inflates the widget’s layout. In particular,
it supplies true as the third parameter to inflate(), meaning that the contents of
the layout should be added as children to the ColorMixer itself. When the layout is
inflated, the <merge> element is ignored, and the <merge> element’s children are
added as children to the ColorMixer.

Saving the State

Similar to activities, a custom View overrides onSaveInstanceState() and
onRestoreInstanceState() to persist data as needed, such as to handle a screen
orientation change. The biggest difference is that rather than receive a Bundle as a
parameter, onSaveInstanceState() must return a Parcelable with its state…
including whatever state comes from the parent View.

The simplest way to do that is to return a Bundle, in which we have filled in our state
(the chosen color) and the parent class’ state (whatever that may be).

CRAFTING YOUR OWN VIEWS

1127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, for example, here are implementations of onSaveInstanceState() and
onRestoreInstanceState() from ColorMixer:

@Override
publicpublic Parcelable onSaveInstanceState() {

Bundle state=newnew Bundle();

state.putParcelable(SUPERSTATE, supersuper.onSaveInstanceState());
state.putInt(COLOR, getColor());

returnreturn(state);
}

@Override
publicpublic void onRestoreInstanceState(Parcelable ss) {

Bundle state=(Bundle)ss;

supersuper.onRestoreInstanceState(state.getParcelable(SUPERSTATE));

setColor(state.getInt(COLOR));
}

The Rest of the Functionality

ColorMixer defines a callback interface, named OnColorChangedListener:

publicpublic interfaceinterface OnColorChangedListenerOnColorChangedListener {
publicpublic void onColorChange(int argb);

}

ColorMixer also provides getters and setters for an OnColorChangedListener object:

publicpublic OnColorChangedListener getOnColorChangedListener() {
returnreturn(listener);

}

publicpublic void setOnColorChangedListener(OnColorChangedListener listener) {
thisthis.listener=listener;

}

The rest of the logic is mostly tied up in the SeekBar handler, which will adjust the
swatch based on the new color and invoke the OnColorChangedListener object, if
there is one:

privateprivate SeekBar.OnSeekBarChangeListener onMix=newnew
SeekBar.OnSeekBarChangeListener() {

publicpublic void onProgressChanged(SeekBar seekBar, int progress,
boolean fromUser) {

int color=getColor();

CRAFTING YOUR OWN VIEWS

1128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

swatch.setBackgroundColor(color);

ifif (listener!=nullnull) {
listener.onColorChange(color);

}
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused

}
};

Seeing It In Use

The project contains a sample activity, ColorMixerDemo, that shows the use of the
ColorMixer widget.

The layout for that activity, shown below, can be found in res/layout/main.xml of
the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:mixer="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"

>>
<TextView<TextView android:id="@+id/color"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

/>/>
<com.commonsware.android.colormixer.ColorMixer<com.commonsware.android.colormixer.ColorMixer

android:id="@+id/mixer"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
mixer:initialColor="#FFA4C639"

/>/>
</LinearLayout></LinearLayout>

Notice that the root LinearLayout element defines two namespaces, the standard
android namespace, and a separate one named mixer. The mixer namespace is given
a URL of http://schemas.android.com/apk/res-auto, which indicates to the
Android build system to match up mixer attributes with their respective widgets
that are supplied via Android library projects.

CRAFTING YOUR OWN VIEWS

1129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Our ColorMixer widget is in the layout, with a fully-qualified class name
(com.commonsware.android.colormixer.ColorMixer), since ColorMixer is not in
the android.widget package. Notice that we can treat our custom widget like any
other, giving it a width and height and so on.

The one attribute of our ColorMixer widget that is unusual is mixer:initialColor.
initialColor, you may recall, was the name of the attribute we declared in res/
values/attrs.xml and retrieve in Java code, to represent the color to start with. The
mixer namespace is needed to identify where Android should be pulling the rules
for what sort of values an initialColor attribute can hold. Since our <attr>
element indicated that the format of initialColor was color, Android will expect
to see a color value here, rather than a string or dimension.

The ColorMixerDemo activity is not very elaborate:

packagepackage com.commonsware.android.colormixer;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass ColorMixerDemoColorMixerDemo extendsextends Activity {
privateprivate TextView color=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

color=(TextView)findViewById(R.id.color);

ColorMixer mixer=(ColorMixer)findViewById(R.id.mixer);

mixer.setOnColorChangedListener(onColorChange);
}

privateprivate ColorMixer.OnColorChangedListener onColorChange=
newnew ColorMixer.OnColorChangedListener() {
publicpublic void onColorChange(int argb) {

color.setText(Integer.toHexString(argb));
}

};
}

It gets access to both the ColorMixer and the TextView in the main layout, then
registers an OnColorChangedListener with the ColorMixer. That listener, in turn,
puts the value of the color in the TextView, so the user can see the hex value of the
color along with the shade itself in the swatch.

CRAFTING YOUR OWN VIEWS

1130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ReverseChronometer: Simply a Custom Subclass
Sometimes, what you want to achieve only requires a basic subclass of an existing
widget (or container), into which you can pour your business logic.

For example, Android has a Chronometer widget, which is used for denoting elapsed
time of some operation. It works well, but it only counts up from zero. It cannot be
used to display a countdown instead.

But, we can roll a ReverseChronometer that does, simply by subclassing TextView, as
seen in the Views/ReverseChronometer sample project:

packagepackage com.commonsware.android.revchron;

importimport android.content.Contextandroid.content.Context;
importimport android.graphics.Colorandroid.graphics.Color;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass ReverseChronometerReverseChronometer extendsextends TextView implementsimplements Runnable {
long startTime=0L;
long overallDuration=0L;
long warningDuration=0L;

publicpublic ReverseChronometer(Context context, AttributeSet attrs) {
supersuper(context, attrs);

reset();
}

@Override
publicpublic void run() {

long elapsedSeconds=
(SystemClock.elapsedRealtime() - startTime) / 1000;

ifif (elapsedSeconds < overallDuration) {
long remainingSeconds=overallDuration - elapsedSeconds;
long minutes=remainingSeconds / 60;
long seconds=remainingSeconds - (60 * minutes);

setText(String.format("%d:%02d", minutes, seconds));

ifif (warningDuration > 0 && remainingSeconds < warningDuration) {
setTextColor(0xFFFF6600); // orange

}
elseelse {

setTextColor(Color.BLACK);
}

CRAFTING YOUR OWN VIEWS

1131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Views/ReverseChronometer
http://github.com/commonsguy/cw-omnibus/tree/master/Views/ReverseChronometer

postDelayed(thisthis, 1000);
}
elseelse {

setText("0:00");
setTextColor(Color.RED);

}
}

publicpublic void reset() {
startTime=SystemClock.elapsedRealtime();
setText("--:--");
setTextColor(Color.BLACK);

}

publicpublic void stop() {
removeCallbacks(thisthis);

}

publicpublic void setOverallDuration(long overallDuration) {
thisthis.overallDuration=overallDuration;

}

publicpublic void setWarningDuration(long warningDuration) {
thisthis.warningDuration=warningDuration;

}
}

ReverseChronometer is designed to show minutes and seconds remaining from some
initial time. In the constructor, by means to a call to a reset() method, we set the
text of the TextView to show a generic starting point (“–:–”), set its color to black,
and note the current time (SystemClock.elapsedRealtime()) in a startTime data
member.

ReverseChronometer also tracks two durations in seconds, with corresponding setter
methods:

• overallDuration is how long the countdown should run from beginning to
end

• warningDuration is how far from the end we should change the color of the
TextView from black to orange, to hint to the viewer that time is running out

ReverseChronometer implements Runnable, and when its run() method is called, it
determines how many seconds have elapsed since that startTime value. Depending
on the amount of seconds remaining, we either:

• Just update the text to show the minutes and seconds remaining
• Update the text and set the color to black or orange

CRAFTING YOUR OWN VIEWS

1132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Set the text to “0:00” (time has run out) and set the text color to red

In either of the first two cases, we also call postDelayed() to schedule ourselves to
run again in a second, where we can update the TextView contents once more. That
continues until somebody calls stop().

As with any custom View, we can reference this in a layout XML resource, fully-
qualifying the class name used as the name of our XML element for the widget. And,
since we inherit from TextView, we can set any of the attributes that we want on that
TextView, in terms of styling the text, positioning it within a parent container, etc.:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<com.commonsware.android.revchron.ReverseChronometer<com.commonsware.android.revchron.ReverseChronometer
android:id="@+id/chrono"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:textSize="50sp"
android:textStyle="bold"/>/>

</RelativeLayout></RelativeLayout>

All our activity needs to do is set the durations, then call run() and stop() at
appropriate times, such as when the activity is resumed and paused:

packagepackage com.commonsware.android.revchron;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate ReverseChronometer chrono=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

chrono=(ReverseChronometer)findViewById(R.id.chrono);
chrono.setOverallDuration(90);
chrono.setWarningDuration(10);

}

@Override
publicpublic void onResume() {

CRAFTING YOUR OWN VIEWS

1133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onResume();

chrono.run();
}

@Override
publicpublic void onPause() {

chrono.stop();

supersuper.onPause();
}

}

The result is much as you would expect: a countdown of the time remaining:

Figure 355: ReverseChronometer, Early in Countdown

…changing to orange when we are within the warning duration:

CRAFTING YOUR OWN VIEWS

1134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 356: ReverseChronometer, Late in Countdown

…and changing to red when time has run out:

CRAFTING YOUR OWN VIEWS

1135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 357: ReverseChronometer, With Complete Time Elapsed

Of course, much more could be done with this widget, if you chose:

• Support other constructors, beyond the two-argument constructor needed
for layout inflation

• Support setting durations and colors via custom XML attributes
• Adding listeners for warning and expired events, so other things can be done

at those points in time (e.g., play a sound, vibrate the device)

AspectLockedFrameLayout: A Custom Container
You can also craft your own custom container classes, whether inheriting straight
from ViewGroup to implement your own set of layout rules, or by extending an
existing ViewGroup to merely augment its functionality.

For example, there may be cases where you want to control the aspect ratio of some
set of widgets. This is important when working with preview frames off of the
Camera to prevent distortion, for example.

CRAFTING YOUR OWN VIEWS

1136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AspectLockedFrameLayout, therefore, is a custom extension of FrameLayout that
ensures that its contents are kept within a particular aspect ratio, reducing the
height or width of the contents to keep that aspect ratio.

AspectLockedFrameLayout is published as part of the CWAC-Layouts project, with
its own GitHub repo. As with many of the CWAC projects, the reusable code is
distributed as a JAR and as an Android library project, with a demo/ sub-project
illustrating the use of some of the library’s contents.

AspectLockedFrameLayout holds onto two data members:

• A double (aspectRatio) that represents a specific aspect ratio to maintain,
initialized to 0.0

• A View (aspectRatioSource) that represents some other widget whose
aspect ratio should be matched, initialized to null

AspectLockedFrameLayout has corresponding setters for each:

publicpublic void setAspectRatioSource(View aspectRatioSource) {
thisthis.aspectRatioSource=aspectRatioSource;

}

// from com.android.camera.PreviewFrameLayout, with slight
// modifications

publicpublic void setAspectRatio(double aspectRatio) {
ifif (aspectRatio <= 0.0) {

throwthrow newnew IllegalArgumentException(
"aspect ratio must be positive");

}

ifif (thisthis.aspectRatio != aspectRatio) {
thisthis.aspectRatio=aspectRatio;
requestLayout();

}
}

The “business logic” of maintaining the aspect ratio comes in onMeasure().
onMeasure() is called on a ViewGroup when it is time for it to determine its actual
size, based upon things like the requested height and width and the sizes of its
children. In our case onMeasure() needs to be tweaked to maintain the aspect ratio,
assuming that we have an aspect ratio to work with:

// from com.android.camera.PreviewFrameLayout, with slight
// modifications

CRAFTING YOUR OWN VIEWS

1137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-layouts

@Override
protectedprotected void onMeasure(int widthSpec, int heightSpec) {

double localRatio=aspectRatio;

ifif (localRatio == 0.0 && aspectRatioSource != nullnull
&& aspectRatioSource.getHeight() > 0) {

localRatio=
(double)aspectRatioSource.getWidth()

/ (double)aspectRatioSource.getHeight();
}

ifif (localRatio == 0.0) {
supersuper.onMeasure(widthSpec, heightSpec);

}
elseelse {

int lockedWidth=MeasureSpec.getSize(widthSpec);
int lockedHeight=MeasureSpec.getSize(heightSpec);

ifif (lockedWidth == 0 && lockedHeight == 0) {
throwthrow newnew IllegalArgumentException(

"Both width and height cannot be zero
-- watch out for scrollable containers");

}

// Get the padding of the border background.
int hPadding=getPaddingLeft() + getPaddingRight();
int vPadding=getPaddingTop() + getPaddingBottom();

// Resize the preview frame with correct aspect ratio.
lockedWidth-=hPadding;
lockedHeight-=vPadding;

ifif (lockedHeight > 0 && (lockedWidth > lockedHeight * localRatio)) {
lockedWidth=(int)(lockedHeight * localRatio + .5);

}
elseelse {

lockedHeight=(int)(lockedWidth / localRatio + .5);
}

// Add the padding of the border.
lockedWidth+=hPadding;
lockedHeight+=vPadding;

// Ask children to follow the new preview dimension.
supersuper.onMeasure(MeasureSpec.makeMeasureSpec(lockedWidth,

We start by determining what actually is the desired aspect ratio, held onto in a
localRatio local variable. That will be aspectRatio if we do not have an
aspectRatioSource that already knows its size, otherwise we will calculate the
aspect ratio from the source. And, if localRatio turns out to be 0.0, indicating that
we do not have an aspect ratio to maintain, we just chain to the superclass, so
AspectLockedFrameLayout will behave just like a normal FrameLayout.

CRAFTING YOUR OWN VIEWS

1138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If we do have an aspect ratio to maintain, we start by determining our requested
height and width. onMeasure() is passed a pair of “specs” that provides details about
our requested size, and we can get the height and width from those by means of the
MeasureSpec helper class. We remove any horizontal padding — padding is
considered to be “outside” the locked area and therefore is ignored in aspect ratio
calculations. We then adjust the height or the width, as needed, to maintain the
aspect ratio. We add back in the padding, then chain to the superclass with revised
height and width “specs” via MeasureSpec.

Note that much of this logic was derived from
com.android.camera.PreviewFrameLayout from the AOSP Camera application,
which is used to maintain the aspect ratio of the SurfaceView used to display
preview frames.

To use an AspectLockedFrameLayout, just add it to your layout XML file, with an
appropriate child widget/container representing the material that needs to maintain
a particular aspect ratio. Since the AspectLockedFrameLayout is overriding its
natural size, you can use android:layout_gravity to control its positioning within
some parent widget, such as centering it:

<FrameLayout<FrameLayout
android:layout_width="match_parent"
android:layout_height="match_parent">>

<com.commonsware.cwac.layouts.AspectLockedFrameLayout<com.commonsware.cwac.layouts.AspectLockedFrameLayout
android:id="@+id/source"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_gravity="center">>

<!-- children go here -->
</com.commonsware.cwac.layouts.AspectLockedFrameLayout></com.commonsware.cwac.layouts.AspectLockedFrameLayout>

</FrameLayout></FrameLayout>

Mirror and MirroringFrameLayout: Draw It Yourself
Another scenario where aspect ratios matter is when you are presenting information
on an external display via Presentation, as is covered elsewhere in this book.
Ideally, you fill the external display. And normally this will happen for you
automatically, as your Presentation content view should fill the available screen
space… assuming that the content has the right aspect ratio, or can be suitably
stretched.

CRAFTING YOUR OWN VIEWS

1139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One scenario where this might be a problem is if you want the same material shown
on both the main display and on the external display. For example, suppose that you
are using Presentation to deliver… well… a presentation. The external display is
probably some form of video projector, and you will want your slides or other
materials shown there. However, it is useful for you to be able to see those same
slides and such on the tablet, as typically the projector screen is behind, or to the
side of, the presenter. If the presenter has to keep turning around to confirm what is
shown on “the big screen”, it can detract from the presentation.

Moreover, you might not only want to show the same material, but have it stem from
the same source, on the tablet, for interactivity reasons. Suppose that you want to
display a Web page. You might just pop up a WebView in the Presentation. But…
how do you scroll? The Presentation offers no touch interface — projector screens
do not magically respond to pinch-to-zoom just because we happen to be projecting
something onto them from an Android tablet.

In this case, ideally we would like to mirror something. Have the actual widgets
shown on the tablet, which can then respond to touch events and the like. At the
same time, capture what is shown on the tablet and reproduce it, verbatim, on the
Presentation for the audience to see. Now everybody can see the same material,
and the presenter can manipulate that material.

But now aspect ratios come into play. We want to fill the Presentation display
space, without black bars or stretching or whatever. That only works if our source
material — the widgets and containers to be mirrored — have the same aspect ratio
as the Presentation’s Display itself.

With that in mind, the CWAC Layouts project also contains two classes to solve this
problem:

• MirroringFrameLayout is an AspectLockedFrameLayout that also can mirror
its content to…

• Mirror, a View that takes a Bitmap representing the MirroringFrameLayout
contents and displays it

MirroringFrameLayout

MirroringFrameLayout extends AspectLockedFrameLayout, so that we can lock the
aspect ratio of the to-be-mirrored contents to match the aspect ratio of the Mirror.
The Mirror is designed to be projected by the Presentation, and so if the Mirror

CRAFTING YOUR OWN VIEWS

1140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

fills the Presentation’s Display, we want our MirroringFrameLayout to match the
aspect ratio so the entire Display can indeed be filled.

Of course, a ViewGroup like FrameLayout normally just has its children draw to the
screen. In our case, we need to capture what is drawn ourselves, to supply to the
Mirror as needed. This is a bit tricky.

packagepackage com.commonsware.cwac.layouts;

importimport android.content.Contextandroid.content.Context;
importimport android.graphics.Bitmapandroid.graphics.Bitmap;
importimport android.graphics.Canvasandroid.graphics.Canvas;
//import android.graphics.Rect;
importimport android.util.AttributeSetandroid.util.AttributeSet;

publicpublic classclass MirroringFrameLayoutMirroringFrameLayout extendsextends AspectLockedFrameLayout {
privateprivate Mirror mirror=nullnull;
privateprivate Bitmap bmp=nullnull;
privateprivate Canvas bmpBackedCanvas=nullnull;

// private Rect rect=new Rect();

publicpublic MirroringFrameLayout(Context context) {
thisthis(context, nullnull);

}

publicpublic MirroringFrameLayout(Context context, AttributeSet attrs) {
supersuper(context, attrs);

setWillNotDraw(falsefalse);
}

publicpublic void setMirror(Mirror mirror) {
thisthis.mirror=mirror;

ifif (mirror != nullnull) {
mirror.setSource(thisthis);
setAspectRatioSource(mirror);

// following needed in case mirror has not been sized
// yet, so we can determine our aspect ratio

post(newnew Runnable() {
publicpublic void run() {

requestLayout();
}

});
}

}

@Override
publicpublic void draw(Canvas canvas) {

ifif (mirror != nullnull) {

CRAFTING YOUR OWN VIEWS

1141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

bmp.eraseColor(0);

supersuper.draw(bmpBackedCanvas);
supersuper.draw(canvas);

// getDrawingRect(rect);
// canvas.drawBitmap(bmp, null, rect, null);

ifif (mirror != nullnull) {
mirror.invalidate();

}
}
elseelse {

supersuper.draw(canvas);
}

}

@Override
protectedprotected void onSizeChanged(int w, int h, int oldw, int oldh) {

ifif (mirror != nullnull) {
ifif (bmp == nullnull || bmp.getWidth() != w || bmp.getHeight() != h) {

ifif (bmp != nullnull) {
bmp.recycle();

}

bmp=Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
bmpBackedCanvas=newnew Canvas(bmp);

}
}

supersuper.onSizeChanged(w, h, oldw, oldh);
}

Bitmap getLastBitmap() {
returnreturn(bmp);

}
}

Our one-argument constructor uses this() to chain to the two-argument
constructor. The two-argument constructor calls setWillNotDraw(false) indicating
to Android that we want this ViewGroup to participate in the drawing process like a
regular View — normally, certain steps in the drawing process are skipped as being
irrelevant to View classes that do not draw anything themselves.

We have a setMirror() method, where the activity or fragment can supply the
Mirror that is connected to this MirroringFrameLayout. In addition to holding onto
the Mirror in a mirror data member, we:

• Call setSource() on the Mirror, to tell it its associated
MirroringFrameLayout

CRAFTING YOUR OWN VIEWS

1142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Call setAspectRatioSource(), inherited from AspectLockedFrameLayout, so
our contents will match the aspect ratio from that source

• Use post() to arrange to call requestLayout() on ourselves later on, in case
the Mirror has not been sized yet (meaning we do not know our aspect ratio
— requestLayout() will trigger a fresh onMeasure() call on our
AspectLockedFrameLayout superclass to fix our aspect ratio and draw our
contents accordingly)

We override onSizeChanged(). This is called on any View when its size may have
changed, either because it is being sized initially when the UI is being set up, or
because something else nearby changed size (e.g., its parent) and therefore the size
of the View itself may now be different. In our case, we use onSizeChanged() to set
up a Bitmap object, sized to match our size, and a Canvas object that wraps around
that Bitmap object. As you will see, we will use this Canvas to capture what is being
drawn on the screen, for later use by the Mirror.

We also override draw(). This is, in effect, the “entry point” into the logic that causes
a View to render itself on the screen, by drawing to a supplied Canvas object. Most
View classes do not override draw(), as the real rendering is done in an onDraw()
method, as we will see with Mirror later in this chapter. However, in our case, we
have to override draw() for one simple reason: we do not want to draw to the Canvas
supplied by Android to the draw() method. We want to draw to our own Canvas,
backed by that Bitmap.

To that end, we:

• Make sure the Bitmap starts off blank by calling eraseColor()
• Chain to the superclass, replacing the Canvas given to us in draw() by our

own Bitmap-backed Canvas
• Calculate a Rect object with our size and position, using getDrawingRect()
• Use that Rect and the Bitmap to render the Bitmap to the “real” Canvas

supplied to us in draw()
• If we have our Mirror, call invalidate() on it, to get it to redraw itself

By rendering our contents to the Bitmap-backed Canvas, instead of the normal one,
we capture a copy of the output, in the form of the Bitmap. Since the Bitmap has the
same size as the “real” Canvas (courtesy of our onSizeChanged() work), when we
draw the Bitmap onto the Canvas, we effectively “color in” the same pixels in the
same spots as if we had skipped all of this and left the normal draw() logic alone.
But, since we still hold onto our Bitmap, we can use those same pixels elsewhere…
such as in our Mirror.

CRAFTING YOUR OWN VIEWS

1143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mirror

Mirror extends the base View class, and so it is the most “raw” of all the custom
widgets and containers shown so far in this chapter. It has a setSource() method,
used to connect the MirroringFrameLayout from which the Mirror can obtain what
it is supposed to display.

The bulk of the “business logic” lies in onDraw(), plus a helper calcCenter() static
method:

@Override
protectedprotected void onDraw(Canvas canvas) {

supersuper.onDraw(canvas);

ifif (source != nullnull) {
getDrawingRect(rect);

Bitmap cache=source.getLastBitmap();

ifif (cache != nullnull) {
calcCenter(rect.width(), rect.height(), cache.getWidth(),

cache.getHeight(), rect);
canvas.drawBitmap(cache, nullnull, rect, nullnull);

}
}

}

// based upon http://stackoverflow.com/a/14679729/115145

privateprivate staticstatic void calcCenter(int vw, int vh, int iw, int ih,
Rect out) {

double scale=
Math.min((double)vw / (double)iw, (double)vh / (double)ih);

int h=(int)(scale * ih);
int w=(int)(scale * iw);
int x=((vw - w) >> 1);
int y=((vh - h) >> 1);

out.set(x, y, x + w, y + h);
}

onDraw() is called on a View when it is time for that widget to actually draw its visual
representation onto the supplied Canvas. Different widgets will use different
drawing primitive methods offered by Canvas, to draw lines and text and whatnot. In
our case, we:

• Calculate a Rect object with our size and position, using getDrawingRect()

CRAFTING YOUR OWN VIEWS

1144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Get the Bitmap object from the MirroringFrameLayout, via a call to
getLastBitmap() (which simply returns the Bitmap that the
MirroringFrameLayout is using)

• Call calcCenter to adjust our Rect to take into account the fact that our size
may be different than the size of the actual Bitmap

• Call drawBitmap() on our Canvas, to render the Bitmap into the location
specified by the Rect, where drawBitmap() will automatically down-sample
or up-sample the image as needed to fill the necessary space

Usage and Results

Normally, you would use the Mirror in a layout for a Presentation and the
MirroringFrameLayout in an activity that controls the Presentation. However, it is
possible to use both in the same layout file, for light testing. However, please do not
put the Mirror inside of the MirroringFrameLayout, as this is likely to cause a
rupture in the space-time continuum, and you really do not want to be responsible
for that.

So, in the SimpleMirrorActivity from the demo/ sub-project, we use a layout that
has both Mirror and MirroringFrameLayout, with the latter set to mirror a WebView:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".SimpleMirrorActivity">>

<FrameLayout<FrameLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:background="#8800FF00">>

<com.commonsware.cwac.layouts.MirroringFrameLayout<com.commonsware.cwac.layouts.MirroringFrameLayout
android:id="@+id/source"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_gravity="center"
android:background="#88FF0000">>

<WebView<WebView
android:id="@+id/webkit"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

</com.commonsware.cwac.layouts.MirroringFrameLayout></com.commonsware.cwac.layouts.MirroringFrameLayout>
</FrameLayout></FrameLayout>

CRAFTING YOUR OWN VIEWS

1145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<View<View
android:layout_width="match_parent"
android:layout_height="4dip"
android:background="#FF000000"/>/>

<com.commonsware.cwac.layouts.Mirror<com.commonsware.cwac.layouts.Mirror
android:id="@+id/target"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="2"/>/>

</LinearLayout></LinearLayout>

In this case, we set the background of the FrameLayout holding our
MirroringFrameLayout to green, to show how the MirroringFrameLayout size is
changed to maintain our aspect ratio.

(or, perhaps we just like green)

Besides configuring the to-be-mirrored widgets, all you need to do is call
setMirror() on the MirroringFrameLayout to enable the mirroring logic:

packagepackage com.commonsware.cwac.layouts.demo;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport com.commonsware.cwac.layouts.Mirrorcom.commonsware.cwac.layouts.Mirror;
importimport com.commonsware.cwac.layouts.MirroringFrameLayoutcom.commonsware.cwac.layouts.MirroringFrameLayout;

publicpublic classclass SimpleMirrorActivitySimpleMirrorActivity extendsextends Activity {
@SuppressLint("SetJavaScriptEnabled")
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.simple_mirror);

MirroringFrameLayout source=
(MirroringFrameLayout)findViewById(R.id.source);

Mirror target=(Mirror)findViewById(R.id.target);

source.setMirror(target);

WebView wv=(WebView)findViewById(R.id.webkit);

wv.getSettings().setJavaScriptEnabled(truetrue);
wv.loadUrl("http://commonsware.com");

}
}

CRAFTING YOUR OWN VIEWS

1146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 358: MirroringFrameLayout Above Its Mirror

While the bottom portion is just the Mirror and therefore is non-interactive, the top
is the real WebView, which can be scrolled, with the resulting changes reflected in the
Mirror in real-time:

CRAFTING YOUR OWN VIEWS

1147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 359: MirroringFrameLayout and Mirror, Showing Scrolled Contents

Limitations

MirroringFrameLayout only works for materials drawn in the Java layer, that
therefore can be drawn to the Bitmap-backed Canvas. Content not drawn in the Java
layer will not work with MirroringFrameLayout, notably anything involving a
SurfaceView. This not only includes your own SurfaceView widgets, but anything
else that depends upon SurfaceView, such as VideoView or the Maps V2 MapView
and MapFragment.

Also, the re-sampling done by Mirror is not especially sophisticated and will cause
jagged effects, particularly when up-sampling. Ideally, the MirroredFrameLayout will
be the same size or larger than the Mirror. This may not always be possible,
particularly with a Mirror shown on a 1080p external display, but the closer you can
get will improve the output.

CRAFTING YOUR OWN VIEWS

1148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Custom Dialogs and Preferences

Android ships with a number of dialog classes for specific circumstances, like
DatePickerDialog and ProgressDialog. Similarly, Android comes with a smattering
of Preference classes for your PreferenceActivity, to accept text or selections from
lists and so on.

However, there is plenty of room for improvement in both areas. As such, you may
find the need to create your own custom dialog or preference class. This chapter will
show you how that is done.

We start off by looking at creating a custom AlertDialog, not by using
AlertDialog.Builder, but via a custom subclass. Then, we show how to create your
own dialog-style Preference, where tapping on the preference pops up a dialog to
allow the user to customize the preference value.

Prerequisites
Understanding this chapter requires that you have read the chapter on dialogs,
along with the chapter on the preference system. Also, the samples here use the
custom ColorMixer View described in another chapter.

Your Dialog, Chocolate-Covered
For your own application, the simplest way to create a custom AlertDialog is to use
AlertDialog.Builder, as described in a previous chapter. You do not need to create
any special subclass — just call methods on the Builder, then show() the resulting
dialog.

1149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, if you want to create a reusable AlertDialog, this may become
problematic. For example, where would this code to create the custom AlertDialog
reside?

So, in some cases, you may wish to extend AlertDialog and supply the dialog’s
contents that way, which is how TimePickerDialog and others are implemented.
Unfortunately, this technique is not well documented. This section will illustrate
how to create such an AlertDialog subclass, as determined by looking at how the
core Android team did it for their own dialogs.

The sample code is ColorMixerDialog, a dialog wrapping around the ColorMixer
widget shown in a previous chapter. The implementation of ColorMixerDialog can
be found in the CWAC-ColorMixer GitHub repository, as it is part of the
CommonsWare Android Components.

Using this dialog works much like using DatePickerDialog or TimePickerDialog.
You create an instance of ColorMixerDialog, supplying the initial color to show and
a listener object to be notified of color changes. Then, call show() on the dialog. If
the user makes a change and accepts the dialog, your listener will be informed.

Figure 360: The ColorMixerDialog

CUSTOM DIALOGS AND PREFERENCES

1150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer

Basic AlertDialog Setup

The ColorMixerDialog class is not especially long, since all of the actual color
mixing is handled by the ColorMixer widget:

packagepackage com.commonsware.cwac.colormixer;

importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.Contextandroid.content.Context;
importimport android.content.DialogInterfaceandroid.content.DialogInterface;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass ColorMixerDialogColorMixerDialog extendsextends AlertDialog
implementsimplements DialogInterface.OnClickListener {
staticstatic privateprivate finalfinal String COLOR="c";
privateprivate ColorMixer mixer=nullnull;
privateprivate int initialColor;
privateprivate ColorMixer.OnColorChangedListener onSet=nullnull;

publicpublic ColorMixerDialog(Context ctxt,
int initialColor,
ColorMixer.OnColorChangedListener onSet) {

supersuper(ctxt);

thisthis.initialColor=initialColor;
thisthis.onSet=onSet;

mixer=newnew ColorMixer(ctxt);
mixer.setColor(initialColor);

setView(mixer);
setButton(ctxt.getText(R.string.cwac_colormixer_set),

thisthis);
setButton2(ctxt.getText(R.string.cwac_colormixer_cancel),

(DialogInterface.OnClickListener)nullnull);
}

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

ifif (initialColor!=mixer.getColor()) {
onSet.onColorChange(mixer.getColor());

}
}

@Override
publicpublic Bundle onSaveInstanceState() {

Bundle state=supersuper.onSaveInstanceState();

state.putInt(COLOR, mixer.getColor());

returnreturn(state);
}

CUSTOM DIALOGS AND PREFERENCES

1151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

mixer.setColor(state.getInt(COLOR));
}

}

We extend the AlertDialog class and implement a constructor of our own design. In
this case, we take in three parameters:

1. A Context (typically an Activity), needed for the superclass
2. The initial color to use for the dialog, such as if the user is editing a color

they chose before
3. A ColorMixer.OnColorChangedListener object, just like ColorMixer uses, to

notify the dialog creator when the color is changed

We then create a ColorMixer and call setView() to make that be the main content
of the dialog. We also call setButton() and setButton2() to specify a “Set” and
“Cancel” button for the dialog. The latter just dismisses the dialog, so we need no
event handler. The former we route back to the ColorMixerDialog itself, which
implements the DialogInterface.OnClickListener interface.

Handling Color Changes

When the user clicks the “Set” button, we want to notify the application about the
color change…if the color actually changed. This is akin to DatePickerDialog and
TimePickerDialog only notifying you of date or times if the user clicks Set and
actually changed the values.

The ColorMixerDialog tracks the initial color via the initialColor data member. In
the onClick() method — required by DialogInterface.OnClickListener — we see
if the mixer has a different color than the initialColor, and if so, we call the
supplied ColorMixer.OnColorChangedListener callback object:

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

ifif (initialColor!=mixer.getColor()) {
onSet.onColorChange(mixer.getColor());

}
}

CUSTOM DIALOGS AND PREFERENCES

1152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

State Management

Dialogs use onSaveInstanceState() and onRestoreInstanceState(), just like
activities do. That way, if the screen is rotated, or if the hosting activity is being
evicted from RAM when it is not in the foreground, the dialog can save its state,
then get it back later as needed.

The biggest difference with onSaveInstanceState() for a dialog is that the Bundle of
state data is not passed into the method. Rather, you get the Bundle by chaining to
the superclass, then adding your data to the Bundle it returned, before returning it
yourself:

@Override
publicpublic Bundle onSaveInstanceState() {

Bundle state=supersuper.onSaveInstanceState();

state.putInt(COLOR, mixer.getColor());

returnreturn(state);
}

The onRestoreInstanceState() pattern is much closer to the implementation you
would find in an Activity, where the Bundle with the state data to restore is passed
in as a parameter:

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

mixer.setColor(state.getInt(COLOR));
}

Preferring Your Own Preferences, Preferably
The Android Settings application, built using the Preference system, has lots of
custom Preference classes. You too can create your own Preference classes, to
collect things like dates, numbers, or colors. Once again, though, the process of
creating such classes is not well documented. This section reviews one recipe for
making a Preference — specifically, a subclass of DialogPreference – based on the
implementation of other Preference classes in Android.

The result is ColorPreference, a Preference that uses the ColorMixer widget. As
with the ColorMixerDialog from the previous section, the ColorPreference is from

CUSTOM DIALOGS AND PREFERENCES

1153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the CommonsWare Android Components, and its source code can be found in the
CWAC-ColorMixer GitHub repository.

One might think that ColorPreference, as a subclass of DialogPreference, might
use ColorMixerDialog. However, that is not the way it works, as you will see.

The Constructor

A Preference is much like a custom View, in that there are a variety of constructors,
some taking an AttributeSet (for the preference properties), and some taking a
default style. In the case of ColorPreference, we need to get the string resources to
use for the names of the buttons in the dialog box, providing them to
DialogPreference via setPositiveButtonText() and setNegativeButtonText().

Here, we just implement the standard two-parameter constructor, since that is the
one that is used when this preference is inflated from a preference XML file:

publicpublic ColorPreference(Context ctxt, AttributeSet attrs) {
supersuper(ctxt, attrs);

setPositiveButtonText(ctxt.getText(R.string.cwac_colormixer_set));
setNegativeButtonText(ctxt.getText(R.string.cwac_colormixer_cancel));

}

Creating the View

The DialogPreference class handles the pop-up dialog that appears when the
preference is clicked upon by the user. Subclasses get to provide the View that goes
inside the dialog. This is handled a bit reminiscent of a CursorAdapter, in that there
are two separate methods to be overridden:

• onCreateDialogView() works like newView() of CursorAdapter, returning a
View that should go in the dialog

• onBindDialogView() works like bindView() of CursorAdapter, where the
custom Preference is supposed to configure the View for the current
preference value

In the case of ColorPreference, we use a ColorMixer for the View:

@Override
protectedprotected View onCreateDialogView() {

mixer=newnew ColorMixer(getContext());

CUSTOM DIALOGS AND PREFERENCES

1154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer

returnreturn(mixer);
}

Then, in onBindDialogView(), we set the mixer’s color to be lastColor, a private
data member:

@Override
protectedprotected void onBindDialogView(View v) {

supersuper.onBindDialogView(v);

mixer.setColor(lastColor);
}

We will see later in this section where lastColor comes from – for the moment, take
it on faith that it holds the user’s chosen color, or a default value.

Dealing with Preference Values

Of course, the whole point behind a Preference is to allow the user to set some
value that the application will then use later on. Dealing with values is a bit tricky
with DialogPreference, but not too bad.

Getting the Default Value

The preference XML format has an android:defaultValue attribute, which holds
the default value to be used by the preference. Of course, the actual data type of the
value will differ widely — an EditTextPreference might expect a String, while
ColorPreference needs a color value.

Hence, you need to implement onGetDefaultValue(). This is passed a TypedArray
— similar to how a custom View uses a TypedArray for getting at its custom
attributes in an XML layout file. It is also passed an index number into the array
representing android:defaultValue. The custom Preference needs to return an
Object representing its interpretation of the default value.

In the case of ColorPreference, we simply get an integer out of the TypedArray,
representing the color value, with an overall default value of 0xFFA4C639 (a.k.a.,
Android green):

@Override
protectedprotected Object onGetDefaultValue(TypedArray a, int index) {

returnreturn(a.getInt(index, 0xFFA4C639));
}

CUSTOM DIALOGS AND PREFERENCES

1155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Setting the Initial Value

When the user clicks on the preference, the DialogPreference supplies the last-
known preference value to its subclass, or the default value if this preference has not
been set by the user to date.

The way this works is that the custom Preference needs to override
onSetInitialValue(). This is passed in a boolean flag (restoreValue) indicating
whether or not the user set the value of the preference before. It is also passed the
Object returned by onGetDefaultValue(). Typically, a custom Preference will look
at the flag and choose to either use the default value or load the already-set
preference value.

To get the existing value, Preference defines a set of type-specific getter methods —
getPersistedInt(), getPersistedString(), etc. So, ColorPreference uses
getPersistedInt() to get the saved color value:

@Override
protectedprotected void onSetInitialValue(boolean restoreValue, Object defaultValue) {

lastColor=(restoreValue ? getPersistedInt(lastColor) :
(Integer)defaultValue);

}

Here, onSetInitialValue() stores that value in lastColor — which then winds up
being used by onBindDialogView() to tell the ColorMixer what color to show.

Closing the Dialog

When the user closes the dialog, it is time to persist the chosen color from the
ColorMixer. This is handled by the onDialogClosed() callback method on your
custom Preference:

@Override
protectedprotected void onDialogClosed(boolean positiveResult) {

supersuper.onDialogClosed(positiveResult);

ifif (positiveResult) {
ifif (callChangeListener(mixer.getColor())) {

lastColor=mixer.getColor();
persistInt(lastColor);

}
}

}

CUSTOM DIALOGS AND PREFERENCES

1156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The passed-in boolean indicates if the user accepted or dismissed the dialog, so you
can elect to skip saving anything if the user dismissed the dialog. The other
DialogPreference implementations also call callChangeListener(), which is
somewhat ill-documented. Assuming both the flag and callChangeListener() are
true, the Preference should save its value to the persistent store via persistInt(),
persistString(), or kin.

Using the Preference

Given all of that, using the custom Preference class in an application is almost anti-
climactic. You simply add it to your preference XML, with a fully-qualified class
name:

<PreferenceScreen<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">>
<com.commonsware.cwac.colormixer.ColorPreference<com.commonsware.cwac.colormixer.ColorPreference

android:key="favoriteColor"
android:defaultValue="0xFFA4C639"
android:title="Your Favorite Color"
android:summary="Blue. No yel-- Auuuuuuuugh!" />/>

</PreferenceScreen></PreferenceScreen>

At this point, it behaves no differently than does any other Preference type. Since
ColorPreference stores the value as an integer, your code would use getInt() on
the SharedPreferences to retrieve the value when needed.

The user sees an ordinary preference entry in the PreferenceActivity:

CUSTOM DIALOGS AND PREFERENCES

1157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 361: A PreferenceActivity, showing the ColorPreference

When tapped, it brings up the mixer:

CUSTOM DIALOGS AND PREFERENCES

1158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 362: The ColorMixer in a custom DialogPreference

Choosing a color and clicking “Set” persists the color value as a preference.

CUSTOM DIALOGS AND PREFERENCES

1159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Progress Indicators

Sometimes, we make the user wait. And wait. And wait some more.

Often, in these cases, it is useful to let the user know that something they requested
is something that we are diligently working on. To do this, we can use some form of
progress indicator. We saw basic use of a ProgressBar in the tutorials earlier in this
book — now is the time to take a much closer look at ProgressBar and other means
of displaying progress.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having read the chapters on dialogs, custom drawables, and animators is also
a good idea.

Progress Bars
The classic way to tell the user that we are doing something for them is to use a
ProgressBar widget, much as we briefly displayed one in the EmPubLite sample app
in the tutorials.

However, a ProgressBar is much more than a simple spinning image. We can use it
to display either indeterminate progress (“we will be done… sometime”) or specific
progress (“we are 34% complete”). We can use it either as a circle or as a classic
horizontal bar, the latter typically used for specific progress. And, for specific
progress, we can actually show two tiers of progress, known as “primary” and
“secondary” (e.g., primary for the progress in copying a directory’s worth of files,
secondary for the progress on a specific file).

1161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this section, we will take a look at these different ways of using ProgressBar.

Circular vs. Horizontal

As the name suggests, a ProgressBar denotes progress. As the name does not
suggest, a ProgressBar is not a bar, by default — it is a circle. Hence, the following
element from an XML layout resource:

<ProgressBar<ProgressBar
android:id="@+id/progressCI"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="20dp"
android:layout_marginTop="20dp"/>/>

gives us:

Figure 363: Android 4.0 ProgressBar, Default Style

However, referencing style="?android:attr/progressBarStyleHorizontal" in the
element:

<ProgressBar<ProgressBar
android:id="@+id/progressHI"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="20dp"
android:indeterminate="true"/>/>

gives us a horizontal bar:

PROGRESS INDICATORS

1162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 364: Android 4.0 ProgressBar, Horizontal Style

Note that the look-and-feel of these widgets have changed over the years. On
Android 1.x and 2.x, they will look like this:

Figure 365: Android 2.3.3 ProgressBar, Both Styles

Specific vs. Indeterminate

Typically, you use the circular ProgressBar style for indeterminate progress, where
the circle simply spins in place to let the user know that work is proceeding and the
device (or activity) has not frozen. The horizontal ProgressBar style is used to
illustrate specific amounts of progress, from 0 to a value you choose.

However, while those patterns are typical, the choice of whether to use
indeterminate or some specific amount of progress is independent of the style of the
widget.

The android:indeterminate attribute controls whether the ProgressBar will render
an indeterminate look or a specific look. For the latter, calls to setMax() (or the
android:max attribute) will set the upper end of the progress range (the default is
100), and setProgress() or incrementProgressBy() will set how much progress
along that range is illustrated.

Figure 366: Android 4.0 ProgressBar, Horizontal Style, Indeterminate and Specific

Figure 367: Android 2.3.3 ProgressBar, Horizontal Style, Indeterminate and Specific

PROGRESS INDICATORS

1163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Primary vs. Secondary

For specific progress, you actually have two independent amounts of progress.
setProgress(), incrementProgressBy(), and android:progress control the
primary progress, while setSecondaryProgress(),
incrementSecondaryProgressBy(), and android:secondaryProgress control the
secondary progress. Here, “primary progress” refers to the progress along an entire
piece of work (e.g., copying a folder’s worth of files), while “secondary progress”
refers the progress along a discrete chunk of the overall work (e.g., copying an
individual file).

A ProgressBar will render these with different colors, though primary trumps
secondary, and so the secondary progress will only be visible when its value exceeds
that of the primary progress:

Figure 368: Android 4.0 ProgressBar, Horizontal Style, Primary-Only and Primary-
Plus-Secondary

Figure 369: Android 2.3.3 ProgressBar, Horizontal Style, Primary-Only and Primary-
Plus-Secondary

ProgressBar and Threads
Normally, you cannot update the UI of a widget from a background thread.

ProgressBar is an exception. You can safely call setProgress() and
incrementProgressBy() from a background thread to update the primary progress,
and you can safely call setSecondaryProgress() and
incrementSecondaryProgressBy() from a background thread to update the
secondary progress.

To see this in action, take a look at the Progress/BarSampler sample project.

This project has a single activity (MainActivity), whose layout (activity_main.xml)
contains four ProgressBar widgets, two indeterminate and two for specific progress:

PROGRESS INDICATORS

1164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/BarSampler
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/BarSampler

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<ProgressBar<ProgressBar
android:id="@+id/progressCI"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="20dp"
android:layout_marginTop="20dp"/>/>

<ProgressBar<ProgressBar
android:id="@+id/progressHI"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="20dp"
android:indeterminate="true"/>/>

<ProgressBar<ProgressBar
android:id="@+id/progressHS"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="20dp"
android:indeterminate="false"
android:max="100"/>/>

<ProgressBar<ProgressBar
android:id="@+id/progressHS2"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:max="100"/>/>

</LinearLayout></LinearLayout>

The activity gets access to the latter two ProgressBar widgets and sets up a
ScheduledThreadPoolExecutor to get control every second in a background thread,
which calls our run() method. The run() method will increment both ProgressBar
widgets primary progress by 2 each time, and the secondary progress by 10
(dropping back to the starting point when the secondary progress reaches the
maximum of 100). When the primary progress gets to 100, we cancel our scheduled
work in the ScheduledThreadPoolExecutor:

packagepackage com.commonsware.android.progress;

importimport android.app.Activityandroid.app.Activity;

PROGRESS INDICATORS

1165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport java.util.concurrent.ScheduledThreadPoolExecutorjava.util.concurrent.ScheduledThreadPoolExecutor;
importimport java.util.concurrent.TimeUnitjava.util.concurrent.TimeUnit;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements Runnable {
privateprivate staticstatic finalfinal int PERIOD_SECONDS=1;
privateprivate ScheduledThreadPoolExecutor executor=

newnew ScheduledThreadPoolExecutor(1);
privateprivate ProgressBar primary=nullnull;
privateprivate ProgressBar secondary=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

primary=(ProgressBar)findViewById(R.id.progressHS);
secondary=(ProgressBar)findViewById(R.id.progressHS2);

executor.setExecuteExistingDelayedTasksAfterShutdownPolicy(falsefalse);
executor.scheduleAtFixedRate(thisthis, 0, PERIOD_SECONDS,

TimeUnit.SECONDS);
}

@Override
publicpublic void onDestroy() {

executor.shutdown();

supersuper.onDestroy();
}

@Override
publicpublic void run() {

ifif (primary.getProgress() < 100) {
primary.incrementProgressBy(2);
secondary.incrementProgressBy(2);

ifif (secondary.getSecondaryProgress() == 100) {
secondary.setSecondaryProgress(10);

}
elseelse {

secondary.incrementSecondaryProgressBy(10);
}

}
elseelse {

executor.remove(thisthis);
}

}
}

PROGRESS INDICATORS

1166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The net effect is that you see the progress march across the screen, with the
secondary progress going through five passes for the primary progress’ single pass
through the 0–100 range.

Tailoring Progress Bars
The stock ProgressBar look and feel is decent, if perhaps not spectacular. Often
times, the stock look is sufficient for your needs. If you wish to have greater control
over the look of your ProgressBar, the following sections will demonstrate some
possibilities.

Changing the Progress Colors

The ProgressBar uses different colors for primary and secondary specific progress.
By default, those colors are defined by the theme you are using, and the stock
themes have firmware-defined colors (e.g., yellows for Android 1.x and 2.x, blues for
Android 3.x and higher).

However, you can change the colors by using a LayerListDrawable and associating it
with a ProgressBar by means of the android:progressDrawable attribute.

The ProgressBar background image needs to be a LayerListDrawable with three
specific layers:

• android:id="@android:id/background" for the background color of the bar
• android:id="@android:id/progress" for the primary progress
• android:id="@android:id/secondaryProgress" for the secondary progress

Whether those layers are defined as ShapeDrawable structures, or as nine-patch PNG
files is up to you, but they will need the ability to stretch to fit however big your bar
winds up being.

To see what this means, let’s take a look at the Progress/Styled sample project.
This is a near-clone of the Progress/BarSampler project from earlier, using custom
backgrounds for the bars. Here, we will look at the horizontal ProgressBar widgets
— in the next section, we will look at how to change the background of a circular
indefinite ProgressBar.

PROGRESS INDICATORS

1167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Styled
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Styled

For the first horizontal ProgressBar (progressHS), we will use a custom style
created by Jérôme Van Der Linden’s Android Holo Colors Generator, a Web site set
up to help us create custom versions of the holographic widget theme.

When you visit this site in Google Chrome (note: other browsers are not supported
at this time), you can fill in a name for your theme (e.g., “AppTheme”), the color
scheme to use for the theme, and the foundation theme to use (light or dark):

Figure 370: Android Holo Colors Generator, Basic Info

You can then toggle on and off which widgets you intend to use, so the generator
will create custom styles for them:

PROGRESS INDICATORS

1168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-holo-colors.com/

Figure 371: Android Holo Colors Generator, Widget Selection

Then, the generator will create a ZIP file that you can download that contains the
generated resources for your custom styles.

The Progress/Styled project contains the files generated by the generator, replacing
the original style resources. Note that the generator does not create a
.DarkActionBar version of the style resource, so the values-v14 resource directory
in the project has one hand-crafted based upon a regular generated style resource.

Our manifest points to our AppTheme as being how we wish to style widgets in this
application:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.progress"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="15"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"

PROGRESS INDICATORS

1169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:theme="@style/AppTheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/title_activity_main">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

That theme, defined in apptheme_themes.xml, points to style resources for
horizontal ProgressBar widgets:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generated (in part) with http://android-holo-colors.com -->
<resources<resources xmlns:android="http://schemas.android.com/apk/res/android">>

<style<style name="AppTheme" parent="android:Theme.Holo.Light.DarkActionBar">>

<item<item name="android:progressBarStyleHorizontal">>@style/
ProgressBarAppTheme</item></item>

</style></style>

</resources></resources>

The ProgressBarAppTheme style resource is defined in a separate
apptheme_styles.xml resource:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generated with http://android-holo-colors.com -->
<resources<resources xmlns:android="http://schemas.android.com/apk/res/android">>

<style<style name="ProgressBarAppTheme"
parent="android:Widget.Holo.Light.ProgressBar.Horizontal">>

<item<item name="android:progressDrawable">>@drawable/
progress_horizontal_holo_light</item></item>

<item<item name="android:indeterminateDrawable">>@drawable/
progress_indeterminate_horizontal_holo_light</item></item>

</style></style>

</resources></resources>

Here, we say that we want the android:progressDrawable property to be a
progress_horizontal_holo_light drawable resource. We also set the

PROGRESS INDICATORS

1170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:indeterminateDrawable property — used for indeterminate bars — to a
progress_indeterminate_horizontal_holo_light drawable resource.

Those are defined as XML-based drawables, in the res/drawable/ directory in the
project. The progress_horizontal_holo_light resource is defined as:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2010 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item android:id="@android:id/background"
android:drawable="@drawable/progress_bg_holo_light" />/>

<item<item android:id="@android:id/secondaryProgress">>
<scale<scale android:scaleWidth="100%"

android:drawable="@drawable/progress_secondary_holo" />/>
</item></item>

<item<item android:id="@android:id/progress">>
<scale<scale android:scaleWidth="100%"

android:drawable="@drawable/progress_primary_holo" />/>
</item></item>

</layer-list></layer-list>

The generator creates our LayerListDrawable resource with our three layers, each
pointing to a nine-patch PNG file (with different versions for different densities)
that contains our desired custom color. The progress and secondaryProgress layers
use ScaleDrawable definitions to ensure that the images are measured against the
complete width of the background layer, which in turn will be sized according to the
size of the ProgressBar itself.

We will take a look at the progress_indeterminate_horizontal_holo_light
drawable resource in the next section.

PROGRESS INDICATORS

1171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that you could skip the custom theme and style if you wished, and simply add
the android:progressDrawable attribute to the ProgressBar widget definition in its
layout XML resource.

Regardless, the result is that our progress bars have the desired purple color scheme:

Figure 372: Custom ProgressBar Style, Primary and Secondary

Also, you can have your LayerListDrawable use ShapeDrawable layers, to avoid
creating nine-patch PNG files, if you prefer, using a resource like this:

<?xml version="1.0" encoding="utf-8"?>
<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item android:id="@android:id/background">>
<shape><shape>

<stroke<stroke android:width="1dip" android:color="#FF333333" />/>
<gradient<gradient

android:startColor="#FF9C9E9C"
android:centerColor="#FF5A5D5A"
android:centerY="0.71"
android:endColor="#FF6B716B"
android:angle="270"

/>/>
</shape></shape>

</item></item>
<item<item android:id="@android:id/secondaryProgress">>

<clip><clip>
<shape><shape>
<stroke<stroke android:width="1dip" android:color="#FF333333" />/>

<gradient<gradient
android:startColor="#4cffffff"
android:centerColor="#4cE7E7E7"
android:centerY="0.71"
android:endColor="#4cFFFBFF"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>
<item<item android:id="@android:id/progress">>

<clip><clip>
<shape><shape>

<stroke<stroke android:width="1dip" android:color="#FF333333" />/>
<gradient<gradient

android:startColor="#FFFFFFFF"
android:centerColor="#FFE7E7E7"

PROGRESS INDICATORS

1172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:centerY="0.71"
android:endColor="#FFFFFBFF"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>

</layer-list></layer-list>

Changing the Indeterminate Animation

Similarly, for indefinite progress “bars”, changing the progress drawable will let you
change the way they look. However, in this case, the drawable also needs to
implement the animation itself. You can accomplish this either by using an
AnimationDrawable or by using some other type of drawable wrapped in an
animation, such as a ShapeDrawable wrapped in a <rotate> animation.

For example, the custom theme created by the Android Holo Colors Generator
assigns the following drawable resource to android:indeterminateDrawable in the
theme:

<?xml version="1.0" encoding="utf-8"?>
<!--
/*
** Copyright 2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<animation-list<animation-list

xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo1"
android:duration="50" />/>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo2"
android:duration="50" />/>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo3"
android:duration="50" />/>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo4"
android:duration="50" />/>

PROGRESS INDICATORS

1173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<item<item android:drawable="@drawable/progressbar_indeterminate_holo5"
android:duration="50" />/>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo6"
android:duration="50" />/>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo7"
android:duration="50" />/>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo8"
android:duration="50" />/>
</animation-list></animation-list>

Hence, every horizontal indeterminate ProgressBar will use that
AnimationDrawable. The individual images in the animation are PNG files, with
different versions for different densities.

Circular ProgressBar widgets also need a custom progress drawable, though
obviously the image will need to be circular, not a bar. You can certainly use an
AnimationDrawable for this, or you can use a ShapeDrawable, such as the res/
drawable/progress_circular.xml resource shown below:

<?xml version="1.0" encoding="utf-8"?>
<rotate<rotate xmlns:android="http://schemas.android.com/apk/res/android"

android:fromDegrees="0"
android:pivotX="50%"
android:pivotY="50%"
android:toDegrees="360">>

<shape<shape
android:innerRadiusRatio="3"
android:shape="ring"
android:thicknessRatio="8"
android:useLevel="false">>
<gradient<gradient

android:centerColor="#4c737373"
android:centerY="0.50"
android:endColor="#ff9933CC"
android:startColor="#4c737373"
android:type="sweep"
android:useLevel="false"/>/>

</shape></shape>

</rotate></rotate>

Here, we have a ring ShapeDrawable, with a certain thickness and radius, filled with
a gradient. Half of the fill is actually a solid color (#4c737373), as the start and center
colors are the same. The other half is a sweep gradient from the starting color to the
same purple shade that is used by the other bar styles. This ring is then wrapped in a
rotate animation. This yields a simple gradient-filled ring, that rotates smoothly to
indicate progress:

PROGRESS INDICATORS

1174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 373: Custom ProgressBar Styles, Including Circular Indefinite

Note that the Android Holo Colors Generator does not generate circular indefinite
ProgressBar resources as of the time of this writing.

Progress Dialogs
One use of a ProgressBar is to have it wrapped in a ProgressDialog. Like all
dialogs, ProgressDialog is modal, preventing the user from interacting with an
underlying activity while the dialog is displayed. From a UI design standpoint, a
ProgressDialog is an easy way to temporarily show progress without having to find
a spot for a ProgressBar widget somewhere in the UI. Also, since usually there are
things in the activity that are dependent upon the work being done in the
background, having the dialog in place prevents anyone from trying to use things
that are not yet ready.

However, modal dialogs are not a great design approach, as they aggressively limit
the user’s options. ProgressDialog is perhaps the worst in this regard, as the user
can do nothing except wait. While part of your app may not yet be ready, other parts
surely are, such as reading the documentation, or adjusting settings, or clicking on

PROGRESS INDICATORS

1175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your ad banners. Hence, using anything else other than ProgressDialog, while
perhaps a bit more work, will be an improvement in the usability of your app.

That being said, let us see how to set up a ProgressDialog. The Progress/Dialog
sample project is a near-clone of the Dialogs/DialogFragment sample project from
the chapter on dialogs. The only difference is the onCreateDialog() method of our
DialogFragment, where we directly create a ProgressDialog instead of using an
AlertDialog.Builder to create an AlertDialog as before:

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

ProgressDialog dlg=newnew ProgressDialog(getActivity());

dlg.setMessage(getActivity().getString(R.string.dlg_title));
dlg.setIndeterminate(truetrue);
dlg.setProgressStyle(ProgressDialog.STYLE_SPINNER);

returnreturn(dlg);
}

We create the ProgressDialog via its constructor, set the message explaining what
we are waiting for via setMessage(), indicate that the ProgressBar should be an
indeterminate one via setIndeterminate(), and indicate that we want a circular
“spinner” ProgressBar rather than a horizontal one by calling
setProgressStyle(ProgressDialog.STYLE_SPINNER). There are a variety of other
things you could configure on the ProgressDialog if desired, and ProgressDialog
inherits from AlertDialog, so some things you could configure on an AlertDialog
will also be available on the ProgressDialog.

The result is a dialog that you may have seen from other apps in Android:

PROGRESS INDICATORS

1176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Dialog
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Dialog
http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment
http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment

Figure 374: ProgressDialog

Title Bar and Action Bar Progress Indicators
Another place to let users know that you are doing something on their behalf is to
put a progress indicator in the title bar or action bar of your activity. This avoids
your having to put an indeterminate ProgressBar somewhere in your activity’s UI. It
is also very simple to set up, as we can see in the Progress/TitleBar sample project.

packagepackage com.commonsware.android.titleprog;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Windowandroid.view.Window;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

getWindow().requestFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
supersuper.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);
setProgressBarIndeterminateVisibility(truetrue);

}
}

PROGRESS INDICATORS

1177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/TitleBar
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/TitleBar

Up front, as the first thing that you do in your onCreate() call, you need to call:

getWindow().requestFeature(Window.FEATURE_INDETERMINATE_PROGRESS);

This tells Android to reserve space in your title bar or action bar for an
indeterminate progress indicator, though the indicator does not appear at this point.

Later on, when you want the indicator to actually appear, call
setProgressBarIndeterminateVisibility(true) on your activity, and later call
setProgressBarIndeterminateVisibility(false) to make the indicator go away.

This particular application has android:targetSdkVersion set to 11 or higher, but it
is not using ActionBarSherlock. Hence, when you run it on an older Android
environment, you get a classic title bar with the progress indicator on the right:

Figure 375: Progress Indicator in Title Bar

When you have an action bar, you get the same basic effect, albeit with a larger
indicator to match the larger bar:

PROGRESS INDICATORS

1178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 376: Progress Indicator in Action Bar

Now, you will notice a slightly unusual structure to the onCreate() method in the
above code listing. Normally, the call to super.onCreate() is the very first thing that
you want to do. And, ordinarily, you would only need to call requestFeature() on
your window before the call to setContentView(). However, Jake Wharton has
indicated that the code sequence shown above is the correct one when using
ActionBarSherlock and its progress indicator.

Action Bar Refresh-and-Progress Items
One common pattern in an Android application is to have some sort of “refresh”
action bar item, that causes you to do some work once it is tapped. For example, the
Gmail app has a refresh action bar item that goes and checks for new email.

A handy way to visually represent that work is to replace the static action bar item
icon with some sort of circular progress indicator while that work is going on. This
can not only tell the user that we are working on their request, but it can also convey
to the user that tapping it again is unlikely to be especially useful.

To see how this works, take a look at the Progress/ActionBar sample project.

PROGRESS INDICATORS

1179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/12031297/115145
http://stackoverflow.com/a/12031297/115145
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/ActionBar

This is a trimmed-down version of the book’s original action bar sample. It retains
the “refresh” action bar item but gets rid of the others. The “refresh” action bar item
will not actually refresh anything, but it will pretend to do work for a few seconds,
replacing itself with a small indeterminate ProgressBar while that is going on.

In onCreateOptionsMenu() of our activity, we do the normal inflate-the-menu-
resource work, plus hold onto the MenuItem associated with our refresh option:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getSupportMenuInflater().inflate(R.menu.actions, menu);

refresh=menu.findItem(R.id.refresh);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

In onOptionsItemSelected(), we call a private refresh() method if the user taps on
our refresh action bar item:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.refresh) {
refresh();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

That refresh() method is where we do the work to change our action bar item to a
progress indicator and pretend to do the fake work:

privateprivate void refresh() {
refresh.setActionView(R.layout.refresh);

getListView().postDelayed(newnew Runnable() {
publicpublic void run() {

refresh.setActionView(nullnull);
}

}, 5000);
}

We call setActionView() to replace the default action bar toolbar button with a
custom View, inflated from res/layout/refresh.xml:

PROGRESS INDICATORS

1180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

style="?attr/actionButtonStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:gravity="center">>

<ProgressBar<ProgressBar
style="@android:style/Widget.ProgressBar.Small"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

This is a LinearLayout, styled to match an action button, with a small ProgressBar
widget in the center.

We then delay for 5000 millisecond (pretending to do work) before calling
setActionView(null) to remove our inflated layout and return to the normal action
bar button.

So while the activity starts with a conventional button…

Figure 377: Normal Action Bar Button

PROGRESS INDICATORS

1181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

…once we tap it, the button is replaced with our progress indicator:

Figure 378: Progress Indicator Replacing Action Bar Button

The on-click listener that the action bar puts on the button remains on the button
— we do not get control when the user taps on the ProgressBar, nor does the user
get any visual feedback suggesting that such taps have meaning. Hence, while the
refresh is going on, the user cannot request another refresh operation. If, for some
reason, you actually want that behavior, you could set that up yourself with your
inflated layout and event listeners on the widgets.

This sample implementation is not complete — for example, we should track
whether our work is going on and toggle the action bar item to the progress
indicator on a configuration change. But the basics are there and, as you can see, are
fairly simple.

Direct Progress Indication
Sometimes, the best way to let the user know about updates is to simply update the
data in place. Rather than have some separate indicator, let the core UI itself convey
the work being done.

PROGRESS INDICATORS

1182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We saw this in the chapter on threads, where we populated a ListView in “real time”
as we loaded in data into its adapter. Other variations on this theme include:

• Updating a page count TextView to show the number of downloaded pages,
while the user is reading earlier pages, perhaps with some sort of style (e.g.,
italics) or color coding (e.g., red) to indicate data that is being loaded.

• Simply disabling the buttons, action bar items, and other ways that the user
could navigate to a point in your app where you need the data that is being
loaded in the background. The key here is to make sure that users
understand why those items are disabled, and sometimes that is not obvious.
Hence, while this step may be necessary, it is often tied in with progress
indicators in the title bar or action bar or other means of indicating to the
user the reason they cannot perform certain operations.

PROGRESS INDICATORS

1183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Notifications

Notifications are those icons that appear in the status bar (or system bar on tablets),
typically to alert the user of something that is going on in the background or has
completed in the background. Many apps use them, to let the user know of new
email messages, calendar reminders, and so on. Foreground services, such as music
players, also use notifications, to tell the OS that they are part of the foreground user
experience and to let the user rapidly return to the apps to turn the music off.

There are other tricks available with the Notification object beyond those
originally discussed in an earlier chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on basic notifications and the section on RemoteViews
in the chapter on basic app widgets.

Custom Views: or How Those Progress Bars Work
Some applications have specific tasks that take a chunk of time. The most common
situation for these is a download — while downloading a file should not take forever,
it may take several seconds or minutes, depending on the size of the file and the
possible download speed.

You may have noticed that some applications, such as the Android Market, have a
Notification for a download that shows the progress of the download itself. Visually,
it’s obvious how they accomplish this: they use a ProgressBar. But normally you
create Notification objects with just a title and description as text. How do they

1185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

get the ProgressBar in there? And, perhaps more importantly, how are they
continuously updating it?

This section will explain how that works, along with a related construct added in
Android 3.0: the custom ticker.

Custom Content

When you specify a title and a description for a Notification, you are implicitly
telling Android to use a stock layout for the structure of the Notification object’s
entry in the notification drawer. However, instead, you can provide Android with the
layout to use and the contents of all the widget, by means of a RemoteViews. In other
words, by using the same techniques that you use to create app widgets, you can
create tailored notification drawer content. Just create the RemoteViews and put it in
the contentView data member of the Notification.

To update the notification drawer content — such as updating a ProgressBar to
show download progress — you update your RemoteViews in your Notification and
re-raise the Notification via a call to notify(). Android will apply your revised
RemoteViews to the notification drawer content, and the user will see the changed
widgets. However, you will also want to remove requested features from the
Notification that you do not want to occur every time you update the RemoteViews.
For example, if you keep the tickerText in place, every time you update the
RemoteViews, the ticker text will be re-displayed, which can get annoying.

We will see an example of this in action later in this chapter.

Custom Tickers

Traditionally, the “ticker” is a piece of text that is placed in the status bar when the
Notification is raised, so that if the user happens to be looking at the phone at that
moment (or glances at it quickly, cued by a vibration or ringtone), they get a bit
more contextual information about the Notification and why it is there.

On API Level 11+ tablets, you also have the option of creating a custom ticker, once
again using a RemoteViews. Create the RemoteViews to be what you want to show as
the ticker, and assign it to the tickerView data member of the Notification. On
devices with room (e.g., tablets), your RemoteViews will be displayed instead of the
contents of the tickerText data member. However, it is a good idea to also fill in the
tickerText value, for devices that elect to show that instead of your custom view.

ADVANCED NOTIFICATIONS

1186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Seeing It In Action
To see custom tickers and custom content in a complete project, take a peek at the
Notifications/HCNotifyDemo sample project. This is perhaps the smallest possible
project that uses all of these features, so do not expect much elaborate business
logic.

The Activity

The launcher icon for this application is tied to an activity named
HCNotifyDemoActivity. All it does is spawn a background service named
SillyService, that will simulate doing real work in the background and
maintaining a Notification along the way:

packagepackage com.commonsware.android.hcnotify;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.android.hcnotify.Rcom.commonsware.android.hcnotify.R;

publicpublic classclass HCNotifyDemoActivityHCNotifyDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

startService(newnew Intent(thisthis, SillyService.class));

finish();
}

}

The IntentService

SillyService is an IntentService, to take advantage of the two key features of an
IntentService: the supplied background thread, and automatically being destroyed
when the work being done in the background is finished.

Since SillyService is an IntentService, and IntentService requires a constructor,
supplying a display name for the service, we oblige:

publicpublic SillyService() {
supersuper("SillyService");

}

ADVANCED NOTIFICATIONS

1187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/HCNotifyDemo
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/HCNotifyDemo

All of the rest of the business logic is in onHandleIntent(), which will be described
in pieces below.

The Builder

In theory, SillyService is going to do some real long-running work, updating a
ProgressBar in a Notification along the way. To keep the example simple — and
not to violate “truth in advertising” laws given the service’s name — SillyService
will emulate doing real work by sleeping.

Hence, the first thing SillyService does in onHandleIntent() is get a
NotificationManager and a NotificationCompat.Builder, then configure the
builder to get the base Notification to use:

NotificationManager
mgr=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

NotificationCompat.Builder builder=newnew NotificationCompat.Builder(thisthis);

builder
.setContent(buildContent(0))
.setTicker(getText(R.string.ticker), buildTicker())
.setContentIntent(buildContentIntent())
.setLargeIcon(buildLargeIcon())
.setSmallIcon(R.drawable.ic_stat_notif_small_icon)
.setOngoing(truetrue);

Notification notif=builder.build();

Configuring the builder, in this case, involves calling the following setters:

1. setContent(), to provide the RemoteViews for the notification drawer entry,
here delegated to a buildContent() method we will examine in a bit

2. setTicker(), to provide the material to be displayed as the ticker, in this
case using a setTicker() variant that takes a CharSequence (e.g., a String,
or the result of getText() on a string resource ID) and a RemoteViews to use
in cases where the device supports custom tickers (delegated here to
buildTicker())

3. setContentIntent(), to provide the PendingIntent to be invoked if the user
taps on our custom content RemoteViews, here delegated to
buildContentIntent()

4. setLargeIcon(), used on some devices for a larger representation of our
notification icon for use in tickers and non-custom notification drawer
contents, here delegated to buildLargeIcon()

ADVANCED NOTIFICATIONS

1188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. setSmallIcon(), use for the status bar/system bar icon and, on some
devices, for non-custom notification drawer contents

6. setOngoing(), which sets FLAG_ONGOING_EVENT, preventing this
Notification from being deleted by the user

Finally, we call build() to retrieve the Notification object as configured by the
builder. Note that previous versions of NotificationBuilder used
getNotification() instead of build(), but getNotification() is now officially
deprecated.

The ProgressBar

Our buildContent() method just returns a RemoteViews object:

privateprivate RemoteViews buildContent(int progress) {
RemoteViews content=newnew RemoteViews(thisthis.getPackageName(),

R.layout.content);

returnreturn(content);
}

The RemoteViews object, in turn, is based on a trivial layout (res/layout/
content.xml) containing a ProgressBar:

<ProgressBar<ProgressBar xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:indeterminate="false">>

</ProgressBar></ProgressBar>

The simplest way to update a ProgressBar in a Notification is to simply hold onto
the Notification object and update the ProgressBar in the RemoteViews as needed.

SillyService takes this approach, looping 20 times for 1000-millisecond naps,
updating the ProgressBar on each pass of the loop:

forfor (int i=0;i<20;i++) {
notif.contentView.setProgressBar(android.R.id.progress,

100, i*5, falsefalse);
mgr.notify(NOTIFICATION_ID, notif);

ifif (i==0) {
notif.tickerText=nullnull;

ADVANCED NOTIFICATIONS

1189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

notif.tickerView=nullnull;
}

SystemClock.sleep(1000);
}

You update the progress of a ProgressBar by calling setProgressBar() on the
RemoteViews, and you get your content RemoteViews from the contentView data
member of the configured Notification. SillyService has the ProgressBar run
from 0 to 100 and sets the progress to be 5 times our loop counter. Each time we
update the RemoteViews, we call notify() to raise or update the Notification.

The key is that the first time we do this, we want to display our ticker, but not every
time the ProgressBar updates, as that would really aggravate the user. So, after we
raise the Notification in the first pass of our loop, we set the tickerText and
tickerView data members of the Notification to null, to suppress further tickers
from being displayed.

When the loop is finished, we just cancel() the Notification, to remove it from the
screen.

The Rest of the Story

The buildTicker() method also returns a RemoteViews:

privateprivate RemoteViews buildTicker() {
RemoteViews ticker=newnew RemoteViews(thisthis.getPackageName(),

R.layout.ticker);

ticker.setTextViewText(R.id.ticker_text,
getString(R.string.ticker));

returnreturn(ticker);
}

It, in turn, is based off of a res/layout/ticker.xml resource:

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/ticker_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView">>

</TextView></TextView>

ADVANCED NOTIFICATIONS

1190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There is nothing requiring the ticker (or the content, for that matter) to be
completely static. You might well customize TextView or other widgets at runtime
with details about the work being done. Here, buildTicker() does that via
setTextViewText(), albeit just pulling in a string resource.

The buildContentIntent() method returns a PendingIntent to be invoked when
the user taps on our ProgressBar-laden notification drawer entry. Here, lacking any
better ideas and being generally lazy, we return a PendingIntent designed to bring
up the Settings application:

privateprivate PendingIntent buildContentIntent() {
Intent i=newnew Intent(Settings.ACTION_SETTINGS);

returnreturn(PendingIntent.getActivity(thisthis, 0, i, 0));
}

While small icons in a Notification must be resources, large icons are bitmaps.
Presumably, that is to support the large icon holding contact photos, chat avatars,
album art for music players, and whatnot. Hence, buildLargeIcon() needs to return
a Bitmap object. In our case, it is simply a drawable resource, so we use
BitmapFactory and decodeResource() to get a Bitmap from the PNG:

privateprivate Bitmap buildLargeIcon() {
Bitmap raw=BitmapFactory.decodeResource(getResources(),

R.drawable.icon);

returnreturn(raw);
}

The Results

When we launch HCNotifyDemoActivity, which in turns starts up SillyService, we
initially get our custom ticker on a tablet:

Figure 379: The custom ticker in our Notification, as seen on a Honeycomb tablet

Eventually, the ticker vanishes, leaving us with the traditional system bar icon:

Figure 380: The system bar icon for our Notification, as seen on a Honeycomb tablet

ADVANCED NOTIFICATIONS

1191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tapping on the icon brings up the notification drawer, with our custom content,
including our ProgressBar:

Figure 381: Notification ProgressBar, on Android 3.x Tablet

On an Android 4.0 phone, the status bar and ticker are no different than their
Android 1.x/2.x counterparts, though we still get our custom content:

Figure 382: Notification ProgressBar, on Android 4.x Phone

How You Really Do Progress Notifications
While it is entirely possible to have a Notification with a ProgressBar using
RemoteViews, there is a far simpler solution: use setProgress() on the
Notification.Builder (or NotificationCompat.Builder). This is illustrated in the
Notifications/Progress sample project, which is simplified clone of the
HCNotifyDemo project.

The SillyService onHandleIntent() method now eschews the RemoteViews in
favor of setProgress():

ADVANCED NOTIFICATIONS

1192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Progress
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Progress

@Override
protectedprotected void onHandleIntent(Intent intent) {

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

NotificationCompat.Builder builder=
newnew NotificationCompat.Builder(thisthis);

builder.setTicker(getText(R.string.ticker))
.setContentTitle(getString(R.string.progress_notification))
.setContentText(getString(R.string.busy))
.setContentIntent(buildContentIntent())
.setSmallIcon(R.drawable.ic_stat_notif_small_icon)
.setOngoing(truetrue);

forfor (int i=0; i < 20; i++) {
builder.setProgress(20, i, falsefalse);
mgr.notify(NOTIFICATION_ID, builder.build());

SystemClock.sleep(1000);
}

builder.setContentText(getString(R.string.done))
.setProgress(0, 0, falsefalse).setOngoing(falsefalse);

mgr.notify(NOTIFICATION_ID, builder.build());
}

After initializing the stock data for the NotificationCompat.Builder, we enter the
same sort of loop–20-times-sleeping-a-second loop as was seen in the previous
demo. This time, though, we call setProgress() on the Builder to set the current
progress, then have it build() a Notification object to use with the
NotificationManager.

setProgress() takes three parameters:

• the maximum value of the ProgressBar, which eventually routes to
setMax() on the ProgressBar itself

• the current progress of the ProgressBar, which eventually routes to
setProgress() on the ProgressBar itself

• true if the progress is indeterminate, false otherwise

In this case, we set the maximum to be 20 and the progress to be the value of our
loop counter i.

When the loop is finished, we update the Builder to:

• Provide an alternative piece of text to show below the ProgressBar

ADVANCED NOTIFICATIONS

1193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Remove the ProgressBar via setProgress(0, 0, false)
• Use setOngoing(false) to allow the user to get rid of the Notification

When we run this sample, we see our ProgressBar-based Notification at the
outset:

Figure 383: Notification with ProgressBar

When the loop is finished, we see the Notification as updated for its final state:

ADVANCED NOTIFICATIONS

1194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 384: Notification with ProgressBar, When Done

Life After Delete
Most of the time, you do not care about your Notification being dismissed by the
user from the notification drawer (e.g., pressing the Clear button on Android 1.x/2.x
devices). If you do care about the Notification being deleted this way, you can
supply a PendingIntent in the deleteIntent data member of the Notification —
this will be executed when the user gets rid of your Notification. Usually, this will
be a getService() or getBroadcast() PendingIntent, to have you do something in
the background related to the dismissal. Users are likely to get rather irritated with
you if you pop up an activity because they got rid of your Notification.

Note that this only works for Notification objects that can be cleared. If you have
FLAG_ONGOING_EVENT set on the Notification, it will remain on-screen until you get
rid of it.

ADVANCED NOTIFICATIONS

1195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Mysterious Case of the Missing Number
The Notification class has a number data member. On Android 1.x and 2.x, setting
that data member would cause a number to be super-imposed on top of your icon in
the status bar. That data member no longer works as of Android 3.0.

However, Notification.Builder has a setNumber() method which does work on
API Level 11 and higher, though with slightly different behavior. Instead of putting
the number on top of your status bar icon, the number will appear in your
notification drawer entry. This only works if you do not use setContent() with
Notification.Builder to define your own notification drawer entry layout — in
that case, you could put your own number in wherever you would like.

ADVANCED NOTIFICATIONS

1196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

More Fun with Pagers

In earlier chapters, we saw basic uses of ViewPager, along with ways to show
multiple pages at a time on larger screens. However, there are other ways to apply
ViewPager and integrate it into the rest of your application, some of which we will
examine in this chapter.

Prerequisites
This chapter assumes that you have read the core chapters, particularly the one
showing how to use ViewPager. This chapter also assumes that you have read the
chapter on action bar navigation.

ViewPager with Action Bar Tabs
More often than not, if you wish to use tabs in concert with your ViewPager, you will
use PagerTabStrip, or perhaps an indicator from the ViewPagerIndicator project, to
supply those tabs. Those are designed to integrate cleanly with ViewPager and were
demonstrated earlier in this book.

And, as was outlined in the chapter on action bar navigation, while you can request
to use tabs in your action bar, those tabs do not necessarily work well — for
example, sometimes they will convert into a drop-down list instead.

That being said, perhaps there are scenarios in which you want to use action bar
tabs to control pages in a ViewPager. This is certainly possible, though it requires
teaching the action bar about the ViewPager and teaching the ViewPager about the
action bar.

1197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see what is required, take a look at the ViewPager/TabPager sample project. This
is based on the ViewPager/Fragments and ViewPager/Indicator sample projects
reviewed in the chapter introducing ViewPager.

As with those projects, our activity hosts a ViewPager, which we intend to populate
with EditorFragments by way of a SampleAdapter. None of that has changed in this
new sample. However, we do more work in the activity
(ViewPagerFragmentDemoActivity) that ties the pager into the action bar.

Tying Tabs to Pages

When the user taps on a tab, we expect the ViewPager to jump to the associated
page, where “the associated page” is based on tab position. For example, tapping the
second tab should bring up the second page. To change the current page of a
ViewPager, you simply need to call setCurrentItem() — we just need to know when
to call that and what value to supply as the position.

To do that, as we set up the action bar tabs, we attach the index of the tab as the
tab’s tag via setTag():

ActionBar bar=getSupportActionBar();
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < 10; i++) {
bar.addTab(bar.newTab()

.setText("Editor #" + String.valueOf(i + 1))

.setTabListener(thisthis).setTag(i));
}

We also set the activity itself as being the listener, meaning that we have to
implement the TabListener interface on the activity. That requires three methods to
be added: onTabSelected(), onTabReselected(), and onTabUnselected():

@Override
publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {

Integer position=(Integer)tab.getTag();

pager.setCurrentItem(position);
}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {

// no-op
}

@Override

MORE FUN WITH PAGERS

1198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/TabPager
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/TabPager
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments

publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {
// no-op

}

We ignore onTabReselected() and onTabUnselected(), providing stub
implementations because the interface requires them. However, we have a real
implementation of onTabSelected(), one which grabs the tab’s position out of its
tag and uses that in the call to setCurrentItem() on the ViewPager. As a result, if
the user chooses a tab — including choosing something from the drop-down that
replaces tabs in some circumstances — the pager updates to match.

Tying Pages to Tabs

Obviously, we needed to have tapping on a tab bring up its associated page. What
might be less obvious at the outset is that the reverse is true: we need to select the
right tab if the user navigates to another page via swiping in the ViewPager.
Otherwise, horizontal swipe actions will show a different page than the currently-
selected tab would indicate.

Fortunately, this too is relatively easy.

As part of our ViewPager setup, we have it send page-scrolled events to our activity
via setOnPageChangeListener():

pager=(ViewPager)findViewById(R.id.pager);
pager.setAdapter(newnew SampleAdapter(getSupportFragmentManager()));
pager.setOnPageChangeListener(thisthis);

That requires our activity to implement the ViewPager.OnPageChangedListener
interface, which in turn requires three methods:

1. onPageScrolled()
2. onPageScrollStateChanged()
3. onPageSelected()

It is the latter one that we care about — this will be called when the user fully swipes
to another page. In our implementation, we simply set the selected tab to the same
position:

@Override
publicpublic void onPageScrollStateChanged(int arg0) {

// no-op
}

MORE FUN WITH PAGERS

1199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onPageScrolled(int arg0, float arg1, int arg2) {

// no-op
}

@Override
publicpublic void onPageSelected(int position) {

getSupportActionBar().setSelectedNavigationItem(position);
}

The Results

The visual effect, normally, is not that different from using a PagerTabStrip:

Figure 385: ViewPager with Action Bar Tabs, Portrait/Normal Screen

The user can swipe the main area to move between pages, with the tabs
automatically updating. The user can also tap on a tab to move to that page, or
swipe the tabs to reach a tab not presently visible.

However, since these are action bar tabs, not a PagerTabStrip, they will
automatically convert into a list-navigation-style Spinner, at various times:

MORE FUN WITH PAGERS

1200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 386: ViewPager with Action Bar Tabs, Landscape/Normal Screen

Also, when tabs are “collapsed” into the list navigation mode, a bug in Android
means that swiping the pager does not update the Spinner, as
setSelectedNavigationItem() no longer works there.

Using ViewPagerIndicator
In addition to using action bar tabs, PagerTitleStrip, or PagerTabStrip to indicate
context for the user, there are a plethora of other UI alternatives. Embodiments of
many such patterns can be found in the ViewPagerIndicator library (VPI), another
project from Jake Wharton (author of ActionBarSherlock).

ViewPagerIndicator offers a variety of different indicator styles:

• A set of circles, colored lines, or your own icons to indicate different pages
• Another approach for implementing tabs, more readily customized for your

needs (e.g., replacing the bar indicating the selected tab with an arrowhead)

ViewPagerIndicator, like ActionBarSherlock, is open source, released under the
Apache Software License 2.0.

MORE FUN WITH PAGERS

1201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=38500
http://viewpagerindicator.com/

Downloading VPI

ViewPagerIndicator is distributed in much the same fashion as is
ActionBarSherlock. On the ViewPagerIndicator home page you will find buttons to
download a ZIP or a TGZ containing the library and sample code.

The library, as with ActionBarSherlock, is an Android library project. If you are using
Eclipse, you will need to import the project into your workspace, via File > Import,
then choosing Android > Existing Android Code Into Workspace from the import
wizard.

And, as with any other Android library project, you will need to attach the library to
your main project. If you are using Eclipse, this will be via Project > Properties >
Android; from the command-line, you would use the android update projectandroid update project
command.

Replacing PagerTabStrip with TabPageIndicator

Earlier in the book, we looked at PagerTabStrip. The differences between using
PagerTabStrip and one of the ViewPagerIndicator (VPI) classes, like
TabPageIndicator, are fairly minor. The ViewPager/VPI sample project is a straight
conversion of the PagerTabStrip sample to use TabPageIndicator.

First, your layout file will need to reference the VPI class instead of PagerTabStrip.
The VPI indicators do not go as children of ViewPager; instead, you position them
wherever makes sense using ordinary containers and layout rules. So, for example,
you could have a classic vertical LinearLayout for stacking a TabPageIndicator atop
the ViewPager:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<com.viewpagerindicator.TabPageIndicator<com.viewpagerindicator.TabPageIndicator
android:id="@+id/titles"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

MORE FUN WITH PAGERS

1202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://viewpagerindicator.com/
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/VPI
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/VPI

</LinearLayout></LinearLayout>

You also have to wire the indicator to the ViewPager, something that happens for
you automatically when you use PagerTabStrip. This simply involves passing the
ViewPager to the indicator via a setViewPager() method:

packagepackage com.commonsware.android.pager3;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;
importimport com.viewpagerindicator.TabPageIndicatorcom.viewpagerindicator.TabPageIndicator;

publicpublic classclass MainActivityMainActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);
TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

pager.setAdapter(buildAdapter());
tabs.setViewPager(pager);

}

privateprivate PagerAdapter buildAdapter() {
returnreturn(newnew SampleAdapter(thisthis, getSupportFragmentManager()));

}
}

For this sample, those are the only two required changes. However, if you were using
an OnPageChangeListener with your ViewPager, you now need to attach it to the
indicator, rather than the pager, so you find out about page changes triggered by the
indicator. This is accomplished by calling setOnPageChangeListener() on your
indicator object.

Styling the Indicator

It is also reasonably likely that you will want to style the indicator to meet your
needs. In the case of the TabPageIndicator, you can control things like the font
used for the tab title (size, color, style, etc.), the amount of padding to have to the
left and right of the title to form the overall “tab”, etc.

MORE FUN WITH PAGERS

1203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To do this, you will need to set up a custom theme for your project, if you do not
already have one. That would involve creating a style resource, inheriting from
whatever stock theme you want (e.g., @style/Theme.Sherlock.Light), and
referencing your custom theme in your manifest:

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

In addition to any other theme customizations you want to make, you will need to
have an item, named based upon the indicator class that you are using, that will
point to a style resource to use for styling instances of that indicator class. In the
case of TabPageIndicator, the name is vpiTabPageIndicatorStyle:

<style<style name="AppTheme" parent="@style/Theme.Sherlock.Light">>
<item<item name="vpiTabPageIndicatorStyle">>@style/TabStyle</item></item>

</style></style>

Of course, you need to declare another style resource, using the name you supplied
to the vpiTabPageIndicatorStyle item, where you tailor the look and feel of your
indicator:

<style<style name="TabStyle" parent="Widget.TabPageIndicator">>
<item<item name="android:textColor">>#FF33AA33</item></item>
<item<item name="android:textSize">>14sp</item></item>
<item<item name="android:textStyle">>italic</item></item>
<item<item name="android:paddingLeft">>16dp</item></item>
<item<item name="android:paddingRight">>16dp</item></item>
<item<item name="android:fadingEdge">>horizontal</item></item>
<item<item name="android:fadingEdgeLength">>8dp</item></item>

</style></style>

The easiest way to see what some of the options are is to look at the sample code for
ViewPagerIndicator and the various custom styles that it defines.

MORE FUN WITH PAGERS

1204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/Android-ViewPagerIndicator/tree/master/sample
https://github.com/JakeWharton/Android-ViewPagerIndicator/tree/master/sample
https://github.com/JakeWharton/Android-ViewPagerIndicator/blob/master/sample/res/values/styles.xml

With the custom style as defined above — specifying green italicized tab titles – we
get tabs that look like these:

Figure 387: ViewPager with Customized TabPagerIndicator

Columns for Large, Pages for Small
In some cases, you can take better advantage of larger screens by using ViewPager
more judiciously. In a previous chapter, we explored having ViewPager itself display
more than one page at a time. A variation on that same theme is to only use a
ViewPager on screen sizes where you lack sufficient room for everything, and to put
those same pages on the screen at the same time when you have room for all of
them.

The Plume Example

Plume is a Twitter client for Android. It uses the columns-or-pages support for
displaying various streams of tweets: your timeline, your @ mentions, hashtags you
follow, etc.

MORE FUN WITH PAGERS

1205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Each stream is represented by a typical ListView, with one row per tweet. On a
phone, since screen space is at a premium, those ListView widgets are set up in a
ViewPager, with one list per page. Users can swipe between the lists, or use tabs to
navigate the available lists.

However, tablets offer more room, so they will show three ListView widgets side-by-
side in landscape mode, so you can take in three sets of content without further
interaction with the screen.

The ViewPager/Columns1 sample project will demonstrate how you can accomplish
the same basic approach in your own app… with some limitations. This is a clone of
the ViewPagerIndicator sample from the previous section.

The Layouts

Our main activity layout — cunningly named main — has a ViewPager-based
definition in res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<com.viewpagerindicator.TabPageIndicator<com.viewpagerindicator.TabPageIndicator
android:id="@+id/titles"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

</LinearLayout></LinearLayout>

However, in res/layout-large/, for 5-inch devices on up, we have a horizontal
LinearLayout with three FrameLayout containers, each representing an equal-sized
slot for one of our “pages”:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:baselineAligned="false"
android:orientation="horizontal">>

MORE FUN WITH PAGERS

1206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Columns1
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Columns1

<FrameLayout<FrameLayout
android:id="@+id/editor1"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

<FrameLayout<FrameLayout
android:id="@+id/editor2"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

<FrameLayout<FrameLayout
android:id="@+id/editor3"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

</LinearLayout></LinearLayout>

Android will automatically inflate the proper layout when we call
setContentView(R.layout.main).

The Activity

However, while Android handles the inflation for us, we obviously need to populate
the contents a bit differently. In this sample, though, we are relying upon the fact
that screen size will not change on the fly. Hence, an instance of our application will
either show a ViewPager or show the horizontal LinearLayout, and not have to
switch between those at runtime.

Our SampleAdapter, therefore, can remain unchanged, except for reducing the page
count to 3:

packagepackage com.commonsware.android.pagercolumns;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
Context ctxt=nullnull;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

MORE FUN WITH PAGERS

1207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic int getCount() {

returnreturn(3);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(EditorFragment.getTitle(ctxt, position));
}

}

Our MainActivity will still use the SampleAdapter, and if we have a ViewPager, it
will use it the same way as before. However, if we do not have a ViewPager, we must
be showing three panes of content side by side, in which case we just execute a
FragmentTransaction to populate the three FrameLayout containers with the three
items created by the SampleAdapter:

packagepackage com.commonsware.android.pagercolumns;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;
importimport com.viewpagerindicator.TabPageIndicatorcom.viewpagerindicator.TabPageIndicator;

publicpublic classclass MainActivityMainActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

ifif (pager == nullnull) {
ifif (getSupportFragmentManager().findFragmentById(R.id.editor1) == nullnull) {

FragmentPagerAdapter adapter=buildAdapter();

getSupportFragmentManager().beginTransaction()
.add(R.id.editor1,

adapter.getItem(0))
.add(R.id.editor2,

adapter.getItem(1))
.add(R.id.editor3,

adapter.getItem(2)).commit();
}

}

MORE FUN WITH PAGERS

1208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

pager.setAdapter(buildAdapter());
tabs.setViewPager(pager);

}
}

privateprivate FragmentPagerAdapter buildAdapter() {
returnreturn(newnew SampleAdapter(thisthis, getSupportFragmentManager()));

}
}

Of course, we skip the FragmentTransaction if the fragments already exist, such as
due to a screen rotation configuration change.

The Results

On a phone, the ViewPager-based layout looks pretty much as it did before:

Figure 388: ViewPager with Customized TabPagerIndicator. Again.

However, on a tablet, we get our three editors side-by-side:

MORE FUN WITH PAGERS

1209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 389: Same App, Large-Screen Layout with Side-By-Side Editors

The Limitations

The simplified large-screen layout does not contain any indicators above the three
editors. This could be added by simple changes to the res/layout-large/main.xml
layout resource, if desired.

The bigger limitation is that this only works if you want the same look in all
configurations except screen size, and if the screen size never changes. However, it is
eminently possible that you will want to have a different mix than that, such as
using the three-column approach only on large-screen landscape layouts, using
ViewPager everywhere else. In that case, our approach breaks down, as we will have
different fragments inside the pager and outside the pager, meaning that we will lose
our data on a configuration change. Addressing this issue is covered in the next two
sections.

MORE FUN WITH PAGERS

1210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing ArrayPagerAdapter
The flexibility of ViewPager is governed, to a large extent, by the implementation of
its PagerAdapter. Inflexible PagerAdapter implementations lead to inflexible uses of
ViewPager.

Notably, the two concrete PagerAdapter implementations shipped in the Android
Support package — FragmentPagerAdapter and FragmentStatePagerAdapter —
have their limitations when it comes to things like:

• Using fragments created by those adapters in other fashions, such as in the
columns-or-pager scenario from the previous section

• Handling dynamically-changing contents, such as adding pages, removing
pages, or reordering pages

The ArrayPagerAdapter is an attempt to provide a more flexible PagerAdapter
implementation that still feels a lot like FragmentPagerAdapter in terms of its use of
fragments. It also bears some resemblance to the ArrayAdapter used for
AdapterView implementations like ListView, giving rise to its name.

ArrayPagerAdapter is part of the CWAC-Pager project and is available for use in any
Android project compatible with the Apache License 2.0.

We will review the implementation of ArrayPagerAdapter later in this chapter. This
section reviews how you can use ArrayPagerAdapter in your projects.

Adding the JAR

As the CWAC-Pager project does not need its own resources, it is packaged in the
form of a simple JAR file, which you can download and add to your project by
conventional means (e.g., putting it in the libs/ directory).

Choosing the Package

There are two implementations of ArrayPagerAdapter. One, in the
com.commonsware.cwac.pager package, is designed for use with native API Level 11
fragments. The other, in the com.commonsware.cwac.pager.v4 package, is designed
for use with the Android Support package’s backport of fragments. You will need to
choose the right ArrayPagerAdapter for the type of fragments that you are using.

MORE FUN WITH PAGERS

1211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager
https://github.com/commonsguy/cwac-pager/releases

However, other than choosing suitable versions of classes for Fragment, etc., there is
no real public API difference between the two. Hence, the documentation that
follows is suitable for either implementation of ArrayPagerAdapter, so long as you
use the one that matches the source of your fragment implementation.

Note that only ArrayPagerAdapter lives in the com.commonsware.cwac.pager.v4
package. The classes and interfaces that support ArrayPagerAdapter, like
PageDescriptor, are implemented in com.commonsware.cwac.pager and used by
both implementations of ArrayPagerAdapter.

Creating PageDescriptors

You might think that ArrayPagerAdapter would take an array of pages, much like
ArrayAdapter takes an array of models.

That’s not how it works.

Instead, ArrayPagerAdapter wants an ArrayList of PageDescriptor objects.
PageDescriptor is an interface, requiring you to supply implementations of two
methods:

• getTitle(), which will be the title used for this page, for things like
PagerTabStrip and the ViewPagerIndicator family of indicators

• getFragmentTag(), which is a unique tag for this page’s fragment

Also, PageDescriptor extends the Parcelable interface, and so any implementation
of PageDescriptor must also implement the methods and CREATOR required by
Parcelable.

You are welcome to create your own PageDescriptor if you wish. However, there is a
built-in implementation, SimplePageDescriptor, which probably meets your needs.
You just pass the tag and title into the SimplePageDescriptor constructor, and it
handles everything else, including the Parcelable implementation.

Creating and Populating the Adapter

To work with ArrayPagerAdapter, you start by creating an ArrayList of
PageDescriptor objects, one for each page that is to be in your pager.

Then, create a subclass of ArrayPagerAdapter. ArrayPagerAdapter uses Java
generics, requiring you to declare the type of fragment the adapter is serving up to

MORE FUN WITH PAGERS

1212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the ViewPager. So, for example, if you have a ViewPager that will have each page be
an EditorFragment, you would declare your custom ArrayPagerAdapter like so:

staticstatic classclass SamplePagerAdapterSamplePagerAdapter extendsextends
ArrayPagerAdapter<EditorFragment> {

If you will have pages come from a variety of fragments, just use the Fragment base
class appropriate for your fragment source (e.g., android.app.Fragment).

Your custom ArrayPagerAdapter subclass will need to override (at minimum) one
method: createFragment(). This method is responsible for instantiating fragments,
as requested. You are passed the PageDescriptor for the fragment to be created —
you simply create and return that fragment.

Hence, a custom ArrayPagerAdapter can be as simple as:

staticstatic classclass SamplePagerAdapterSamplePagerAdapter extendsextends
ArrayPagerAdapter<EditorFragment> {

publicpublic SamplePagerAdapter(FragmentManager fragmentManager,
ArrayList<PageDescriptor> descriptors) {

supersuper(fragmentManager, descriptors);
}

@Override
protectedprotected EditorFragment createFragment(PageDescriptor desc) {

returnreturn(EditorFragment.newInstance(desc.getTitle()));
}

}

Then, you can create an instance of your custom ArrayPagerAdapter subclass as
needed, supplying the constructor with a suitable FragmentManager and your
ArrayList of PageDescriptor objects. Once attached to a ViewPager,
ArrayPagerAdapter behaves much like a FragmentPagerAdapter by default.

There is another flavor of the ArrayPagerAdapter constructor, one that takes a
RetentionStrategy as a parameter, as is described later in this chapter.

Modifying the Contents

ArrayPagerAdapter offers several methods to allow you to change the contents of
the ViewPager:

• add() takes a PageDescriptor and adds a new page at the end of the current
roster of pages

MORE FUN WITH PAGERS

1213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• insert() takes a PageDescriptor and an insertion point and inserts a new
page before the current page at that insertion point

• remove() takes a position and removes the page at that position
• move() takes an old and new position and moves the page from the old

position to the new position (effectively combining a remove() from the old
position and an insert() of the same page into the new position

Other Useful Methods

getExistingFragment(), given a position, returns the existing fragment for that
position in the ViewPager, if that fragment exists. Otherwise, it returns null.

getCurrentFragment() is like getExistingFragment(), but returns the fragment for
the currently-viewed page in the ViewPager.

Columns for Large Landscape, Pages for the Rest
Earlier in this chapter, we saw how you could conditionally use a ViewPager in some
circumstances, but not others, such as using a ViewPager on smaller screens and a
set of columns for the “pages” on larger screens. The limitation noted at that time
was that you were stuck with one pattern for the lifetime of the activity, meaning
that in any configuration change, you had to stick with the ViewPager or the
columns that you started with.

However, while the columnar approach for larger screens works well in landscape,
you may find the columns to be too tall and too skinny in portrait. Hence, a better
solution would be to use columns only on larger screens in landscape, and to use the
ViewPager everywhere else.

This is annoyingly tricky to do, assuming that you want to use the same fragments in
each case, so you can arrange to hold onto the contents of their widgets.

Jake Wharton — author of ActionBarSherlock, ViewPagerIndicator, and a seemingly
infinite number of other Android open source libraries — raised this issue in a
Google+ post. He also posted a sample solution, but one that was limited to only two
fragments. Quoting Mr. Wharton:

Due the shenanigans performed by FragmentPagerAdapter we’re forced to
write a custom PagerAdapter which handles the instances our selves.

MORE FUN WITH PAGERS

1214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/108284392618554783657/posts/BrVD19iLKD5
https://plus.google.com/108284392618554783657/posts/BrVD19iLKD5
https://github.com/JakeWharton/adjacent-fragment-pager-sample

However, while two pages is reasonable, having some flexibility for a few more pages
would be useful. So, let’s see how we can accomplish the same aims, using
ArrayPagerAdapter, in the ViewPager/FlexColumns sample project.

Fragments Inside and Outside the ViewPager

A fragment cannot be in two containers at once. The ViewPager, where we have one,
is a different container than one of our columns, when we have one.

Hence, if the container is not changing during the operation of our activity — such
as using a ViewPager in both portrait and landscape on smaller screens — we have
no problem. But, if the container is changing — such as switching between columns
and a ViewPager on larger screens — we need to take steps.

One option for those “steps”, of course, is to simply run a separate set of fragments.
One set serves as pages of the ViewPager; the other serves as the columns. However,
then we have to do work to synchronize those on configuration changes, as from the
user’s perspective, the fact that we happen to render things in pages or columns
should not cause the user to lose data they entered in one form when switching to
the other.

If we want to use the same fragment instances, then we can use normal
configuration-change logic, like onSaveInstanceState(), to ensure that we hold
onto user-entered data during the change. However, we have to arrange to move the
fragment from one container to another. This will involve running a
FragmentTransaction to remove() the fragment from the old container and add() it
to its new container.

Making this more complicated is that the PagerAdapter should be handling the
add() part, when the fragment is being put into a page, as that is how fragment-
based PagerAdapter implementations like FragmentPagerAdapter work.

Adding to the fun is a matter of timing. By default, a FragmentTransaction is
committed asynchronously. Attempting to remove() a fragment and add() the same
fragment in the same transaction will fail, because the add() will complain that the
fragment is already in another container, because the remove() will not have
happened. Even doing the remove() and add() in separate normal transactions will
not help. Instead, we need to ensure that the remove() has completed processing
first, before we try to add(). To help with this, FragmentManager has a
executePendingTransactions() method we can call, to have it complete its own
processing on committed FragmentTransactions synchronously. Committing the

MORE FUN WITH PAGERS

1215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/FlexColumns
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/FlexColumns

remove() transaction and calling executePendingTransactions() before
committing the add() transaction works.

The Revised PagerAdapter

With all that in mind, let’s look at how this revised sample behaves. The core
functionality is the same as with the earlier pager-or-columns sample, but now we
will only use the columns on -large screen devices in -land orientation, by simply
renaming res/layout-large/ to res/layout-large-land/.

Our PagerAdapter is still called SamplePagerAdapter, but this time it is a
ArrayPagerAdapter for our EditorFragment pages:

staticstatic classclass SamplePagerAdapterSamplePagerAdapter extendsextends
ArrayPagerAdapter<EditorFragment> {

publicpublic SamplePagerAdapter(FragmentManager fragmentManager,
ArrayList<PageDescriptor> descriptors) {

supersuper(fragmentManager, descriptors);
}

@Override
protectedprotected EditorFragment createFragment(PageDescriptor desc) {

returnreturn(createFragment(desc.getTitle()));
}

EditorFragment createFragment(String title) {
returnreturn(EditorFragment.newInstance(title));

}
}

The Revised Activity

The onCreate() method of the earlier example would see if we had a ViewPager,
then either populate the columns or populate the ViewPager from our
PagerAdapter. The onCreate() method of the new example does the same basic
thing, except that it delegates most of the work for actually filling in the columns to
a private populateColumn() method:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

ifif (pager == nullnull) {
ifif (getSupportFragmentManager().findFragmentById(R.id.editor1) == nullnull) {

MORE FUN WITH PAGERS

1216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SamplePagerAdapter adapter=buildAdapter();
FragmentTransaction ft=

getSupportFragmentManager().beginTransaction();

populateColumn(getSupportFragmentManager(), ft, adapter, 0,
R.id.editor1);

populateColumn(getSupportFragmentManager(), ft, adapter, 1,
R.id.editor2);

populateColumn(getSupportFragmentManager(), ft, adapter, 2,
R.id.editor3);

ft.commit();
}

}
elseelse {

SamplePagerAdapter adapter=buildAdapter();
TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

pager.setAdapter(adapter);
tabs.setViewPager(pager);

}
}

The buildAdapter() method changes a bit, to create our ArrayPagerAdapter
subclass using an array of SimplePageDescriptor objects:

privateprivate SamplePagerAdapter buildAdapter() {
ArrayList<PageDescriptor> pages=newnew ArrayList<PageDescriptor>();

forfor (int i=0; i < 3; i++) {
pages.add(newnew SimplePageDescriptor(buildTag(i), buildTitle(i)));

}

returnreturn(newnew SamplePagerAdapter(getSupportFragmentManager(), pages));
}

buildAdapter(), in turn, uses buildTag() and buildTitle() methods to retrieve
the tag and title to use given a position:

privateprivate String buildTag(int position) {
returnreturn("editor" + String.valueOf(position));

}

privateprivate String buildTitle(int position) {
returnreturn(String.format(getString(R.string.hint), position + 1));

}

Finally, our populateColumn() method handles the work to fill in one of our
columns, if we are in column mode:

privateprivate void populateColumn(FragmentManager fm,
FragmentTransaction ft,

MORE FUN WITH PAGERS

1217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SamplePagerAdapter adapter, int position,
int slot) {

EditorFragment f=adapter.getExistingFragment(position);

ifif (f == nullnull) {
f=adapter.createFragment(buildTitle(position));

}
elseelse {

fm.beginTransaction().remove(f).commit();
fm.executePendingTransactions();

}

ft.add(slot, f, buildTag(position));
}

First, we ask our ArrayPagerAdapter to retrieve for us the existing fragment, if any,
for this given column/page, based on its position. This may return null, if this is the
first time we have run our app, in which case we ask our ArrayPagerAdapter to
create the fragment for us (using the same logic that it would when functioning
inside of a ViewPager, via createFragment()).

Otherwise, getExistingFragment() should return an existing EditorFragment
instance, one probably formerly managed by a ViewPager. So, we create, commit,
and execute a FragmentTransaction to remove() this fragment from its existing
container.

The net is that, in either case, we have an EditorFragment, set up for use in this
column, that does not have a current container. To add it to our column, we simply
call add() on the supplied FragmentTransaction, which is committed by our
activity’s onCreate() method. However, we use the three-parameter form of add(),
which allows us not only to put the fragment into a container, but to assign it a tag
as well. The tag is how ArrayPagerAdapter identifies the various fragments — by
using the same tag, this fragment can be picked up by future instances of
ArrayPagerAdapter in case of a configuration change.

You will notice that while we remove() the EditorFragment from the ViewPager and
add() it to the column, we are not handling the reverse case, where we would
remove() the fragment from the column and/or add() it to the ViewPager. That little
bit of logic is supplied to us by ArrayPagerAdapter, as we will see when we examine
the implementation of ArrayPagerAdapter later in this chapter.

The resulting activity works exactly the same as the previous one, except that we use
the ViewPager in portrait mode on larger-screen devices. Rotating a large-screen
device will show our fragments moving between pages and columns, with their

MORE FUN WITH PAGERS

1218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

contents (whatever you type into the EditorFragment instances) being maintained
via the built-in onSaveInstanceState() support for EditText widgets.

Adding, Removing, and Moving Pages
ArrayPagerAdapter also supports modifying the roster of pages at runtime: adding,
inserting, removing, and moving pages. For example, a Twitter client might:

• Allow users to add pages for new monitored hashtags or search results
• Allow users to reorder the pages, putting more frequently-used ones towards

the “front”, for easier access when the app starts from scratch
• Allow users to remove pages they do not use, such as ones they added earlier

To see how this works in practice, we can examine the demo project for the CWAC-
Pager library. There are two versions of this demo, one for the “v4” fragments from
the Android Support package, and one for native API Level 11 fragments. Here, we
will take a look at the latter project.

Reviewing the Core Functionality

This project is yet another rendition of our bunch-of-EditorFragment-pages sample
that we have been examining for various ways of using ViewPager. This one sets up
10 pages at the start. However, it also inflates a menu resource to add four actions to
the action bar: add, split, remove, and swap:

MORE FUN WITH PAGERS

1219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager/tree/master/demo-v4
https://github.com/commonsguy/cwac-pager/tree/master/demo

Figure 390: ArrayPagerAdapter Demo App, Showing First 3 Pages and Action Bar

onOptionsItemSelected() in our activity routes those four action items to three
methods: add() (for add and split), remove(), and swap().

Add and Split

Tapping the “add” action bar item will add a new page before the current one, with a
title and hint based upon the number of existing pages (e.g., tapping “add” with 10
pages will add “Editor #11”):

MORE FUN WITH PAGERS

1220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 391: ArrayPagerAdapter Demo App, Showing Result of “Add” From Second
Page

Tapping the “split” action bar item will add a new page after the currently-selected
one.

Since both of these involve adding pages, this sample consolidates their work into a
single add() method, taking a boolean parameter to indicate if we are inserting a
page before the current one or after:

privateprivate void add(boolean before) {
int current=pager.getCurrentItem();
SimplePageDescriptor desc=

newnew SimplePageDescriptor(buildTag(adapter.getCount()),
buildTitle(adapter.getCount()));

ifif (before) {
adapter.insert(desc, current);

}
elseelse {

ifif (current < adapter.getCount() - 1) {
adapter.insert(desc, current + 1);

}
elseelse {

adapter.add(desc);
}

MORE FUN WITH PAGERS

1221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

We call getCurrentItem() on the ViewPager to determine what the position index is
of the currently-selected page. From there, we set up our SimplePageDescriptor for
the page that we will be adding, giving it a title based upon our hint string resource
and a tag based upon the number of pages. We then call add() (if we are on the last
page and the user clicked on “split”) or insert() (for all other scenarios) to inject
the new page. The ArrayPagerAdapter will be responsible for creating this page, just
as it did for all previous pages.

Remove

Tapping “remove” will remove the currently-selected page, so long as we will still
have at least one page remaining (just to keep the example simpler, so we do not
have to worry about not having a “current page”).

This is handled by the remove() method on our activity, which turns around and
calls remove() on the ArrayPagerAdapter:

privateprivate void remove() {
ifif (adapter.getCount() > 1) {

adapter.remove(pager.getCurrentItem());
}

}

Swap

Tapping “swap” will swap the positions of the current page and the one immediately
after it. The exception is if you are on the last page, in which case we will swap the
current page with the one immediately before it:

privateprivate void swap() {
int current=pager.getCurrentItem();

ifif (current < adapter.getCount() - 1) {
adapter.move(current, current + 1);

}
elseelse {

adapter.move(current, current - 1);
}

}

This is handled by the swap() method on our activity, which calls move() on the
ArrayPagerAdapter. move() takes the position of the page to be moved and the

MORE FUN WITH PAGERS

1222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

position it should wind up in after the move, so we call move(current, current +
1) to swap the current page with the one after it or move(current, current - 1)
to swap the current page with the one before it.

Inside ArrayPagerAdapter
ArrayPagerAdapter is a relatively large implementation of the PagerAdapter
interface, and it helps to demonstrate some of the challenges faced when trying to
create alternative fragment-based PagerAdapter implementations. Hence, this
section will dive into portions of the innards of ArrayPagerAdapter, to explain how
(and, sometimes, why) it does what it does.

Note that ArrayPagerAdapter will continue to expand over time, and so the copy in
the master branch of the GitHub repo may be newer than the one profiled in this
chapter. This chapter covers v0.1.1.

Also note that some of the code in ArrayPagerAdapter comes from
FragmentPagerAdapter — as little of this code was altered as was practical, to help
make it easier to integrate changes made to FragmentPagerAdapter over time.

Also, to simplify the discussion, this section will demonstrate the
ArrayPagerAdapter set up for native API Level 11 fragments, in the
com.commonsware.cwac.pager package.

PageDescriptor and PageEntry

ArrayPagerAdapter works with two representations of pages: PageDescriptor and
PageEntry.

PageDescriptor is a simple interface, supplying the unique tag (getFragmentTag())
and indicator title (getTitle()) to use for a page:

packagepackage com.commonsware.cwac.pager;

importimport android.os.Parcelableandroid.os.Parcelable;

publicpublic interfaceinterface PageDescriptorPageDescriptor extendsextends Parcelable {
String getFragmentTag();

String getTitle();
}

MORE FUN WITH PAGERS

1223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Developers can use SimplePageDescriptor as an implementation of PageDescriptor
in most cases. SimplePageDescriptor just holds onto those two strings, plus handles
the implementation of the Parcelable interface:

packagepackage com.commonsware.cwac.pager;

importimport android.os.Parcelandroid.os.Parcel;
importimport android.os.Parcelableandroid.os.Parcelable;

publicpublic classclass SimplePageDescriptorSimplePageDescriptor implementsimplements PageDescriptor {
privateprivate String tag=nullnull;
privateprivate String title=nullnull;

publicpublic staticstatic finalfinal Parcelable.Creator<SimplePageDescriptor> CREATOR=
newnew Parcelable.Creator<SimplePageDescriptor>() {

publicpublic SimplePageDescriptor createFromParcel(Parcel in) {
returnreturn newnew SimplePageDescriptor(in);

}

publicpublic SimplePageDescriptor[] newArray(int size) {
returnreturn newnew SimplePageDescriptor[size];

}
};

publicpublic SimplePageDescriptor(String tag, String title) {
thisthis.tag=tag;
thisthis.title=title;

}

privateprivate SimplePageDescriptor(Parcel in) {
tag=in.readString();
title=in.readString();

}

@Override
publicpublic int describeContents() {

returnreturn(0);
}

@Override
publicpublic void writeToParcel(Parcel out, int flags) {

out.writeString(tag);
out.writeString(title);

}

publicpublic String getTitle() {
returnreturn(title);

}

publicpublic String getFragmentTag() {
returnreturn(tag);

}
}

MORE FUN WITH PAGERS

1224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, the actual data model held by ArrayPagerAdapter is not the
PageDescriptor, but rather a PageEntry, that holds onto its corresponding
PageDescriptor plus a Fragment.SavedState object:

privateprivate staticstatic classclass PageEntryPageEntry implementsimplements Parcelable {
privateprivate PageDescriptor descriptor=nullnull;
privateprivate Fragment.SavedState state=nullnull;

publicpublic staticstatic finalfinal Parcelable.Creator<PageEntry> CREATOR=
newnew Parcelable.Creator<PageEntry>() {

publicpublic PageEntry createFromParcel(Parcel in) {
returnreturn newnew PageEntry(in);

}

publicpublic PageEntry[] newArray(int size) {
returnreturn newnew PageEntry[size];

}
};

PageEntry(PageDescriptor descriptor) {
thisthis.descriptor=descriptor;

}

PageEntry(Parcel in) {

thisthis.descriptor=in.readParcelable(Thread.currentThread().getContextClassLoader());

thisthis.state=in.readParcelable(Thread.currentThread().getContextClassLoader());
}

PageDescriptor getDescriptor() {
returnreturn(descriptor);

}

@Override
publicpublic int describeContents() {

returnreturn(0);
}

@Override
publicpublic void writeToParcel(Parcel out, int flags) {

out.writeParcelable(descriptor, 0);
out.writeParcelable(state, 0);

}
}

Fragment.SavedState is a Parceble object we can request from a Fragment at any
point, representing the saved state of that fragment, as obtained via
onSaveInstanceState() and related code. At present, that Fragment.SavedState is
unused, as will be explained in the next section.

MORE FUN WITH PAGERS

1225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RetentionStrategy

ArrayPagerAdapter also uses a RetentionStrategy, designed to abstract the logic
for manipulating the fragments themselves as pages come and go within the
ViewPager. RetentionStrategy is an interface, with methods to attach() a fragment
to be in the pager and to detach() the fragment from the pager:

publicpublic interfaceinterface RetentionStrategyRetentionStrategy {
void attach(Fragment fragment, FragmentTransaction currTransaction);

void detach(Fragment fragment, FragmentTransaction currTransaction);
}

There is only one stock implementation of this strategy at this time, in the form of a
static data member named KEEP. This strategy is designed to replicate the behavior
of FragmentPagerAdapter, keeping all fragments around once created, and merely
attach()-ing and detach()-ing them from the FragmentManager as dictated:

privateprivate String getFragmentTag(int position) {
returnreturn(entries.get(position).getDescriptor().getFragmentTag());

}

publicpublic staticstatic finalfinal RetentionStrategy KEEP=newnew RetentionStrategy() {
@TargetApi(Build.VERSION_CODES.HONEYCOMB_MR2)
publicpublic void attach(Fragment fragment,

FragmentTransaction currTransaction) {
currTransaction.attach(fragment);

}

@TargetApi(Build.VERSION_CODES.HONEYCOMB_MR2)
publicpublic void detach(Fragment fragment,

A future implementation of ArrayPagerAdapter should include another strategy
that behaves more like FragmentStatePagerAdapter, removing the fragments
entirely and allowing them to be garbage collected, while using PageEntry to hold
onto their Fragment.SavedState structures to repopulate them later on if the user
swipes back to that page.

Class Declaration and Generics

ArrayPagerAdapter uses Java generics to allow developers to state what Fragment
subclass the pages are. This is for use with convenience methods —
getExistingFragment() and getCurrentFragment() — to help reduce the
developer’s need to downcast those Fragment instances to some subclass. If the
pages in the ViewPager will all come from a single Fragment subclass, the developer

MORE FUN WITH PAGERS

1226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

would use that class as the T in the declaration; otherwise, the developer would just
use Fragment:

abstractabstract publicpublic classclass ArrayPagerAdapterArrayPagerAdapter<T extendsextends Fragment> extendsextends
PagerAdapter {

Constructors

ArrayPagerAdapter offers two constructors. The simpler two-parameter constructor,
taking the FragmentManager and the desired pages as an ArrayList of
PageDescriptor objects, just chains to the three-parameter constructor. That third
parameter is an instance of a RetentionStrategy, allowing reusers of
ArrayPagerAdapter to try their own hand at implementing such a strategy. null —
the default strategy from the standpoint of the constructors — is replaced with the
default KEEP strategy, and the PageDescriptor objects are wrapped in PageEntry
objects as the actual data model (an entries ArrayList):

publicpublic ArrayPagerAdapter(FragmentManager fragmentManager,
ArrayList<PageDescriptor> descriptors,
RetentionStrategy retentionStrategy) {

thisthis.fm=fragmentManager;
thisthis.entries=newnew ArrayList<PageEntry>();

forfor (PageDescriptor d : descriptors) {
entries.add(newnew PageEntry(d));

}

thisthis.retentionStrategy=retentionStrategy;

ifif (thisthis.retentionStrategy == nullnull) {
thisthis.retentionStrategy=KEEP;

}
}

Core PagerAdapter Methods

All PagerAdapter implementations have some core methods that they must handle.
When you create a subclass of FragmentPagerAdapter and
FragmentStatePagerAdapter, you only need to worry about getCount() and
getPageTitle(). However, if you are creating your own replacement for those
fragment-based adapters, there are a few more standard PagerAdapter methods that
you will need to override.

MORE FUN WITH PAGERS

1227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getCount()

getCount() is easy: all we need to do is return our desired number of pages. That is
based on the number of PageDescriptor objects supplied to our adapter, which we
wrapped into PageEntry objects and hold onto in entries:

@Override
publicpublic int getCount() {

returnreturn(entries.size());
}

getPageTitle()

Similarly, getPageTitle() just needs to find the appropriate PageDescriptor and
call getTitle() on it, to supply the title for a given page for use by an indicator like
PagerTabStrip:

@Override
publicpublic String getPageTitle(int position) {

returnreturn(entries.get(position).getDescriptor().getTitle());
}

instantiateItem() and destroyItem()

The instantiateItem() method on PagerAdapter is responsible for setting up the
user interface for a given page (indicated by position) and adding those widgets to a
ViewGroup supplied as a parameter. It returns an Object that represents a “handle” to
the page that ViewPager will return to the PagerAdapter in future calls, such as to
destroyItem().

A Fragment-based PagerAdapter can use the fragment itself as the “handle”, and the
fragment’s onCreateView() as the means of obtaining the UI to pour into the
ViewGroup.

Hence, the ArrayPagerAdapter implementation of instantiateItem() does the
following:

• First, starts a FragmentTransaction, if there is not one already in progress
• Then, tries to find an existing Fragment for this position, using a
getExistingFragment() helper method (described later in this chapter)

• If an existing fragment exists, instantiateItem() uses the
RetentionStrategy to re-attach the UI

MORE FUN WITH PAGERS

1228

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If an existing fragment does not exist, instantiateItem() calls the abstract
createFragment() method, to allow the subclass to return the actual
Fragment object given the PageDescriptor, then add() that fragment to the
UI

• If the fragment is not already the current page, make sure that its action bar
contributions are hidden via setMenuVisibility() and
setUserVisibleHint()

• Return the fragment itself as the “handle”

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

ifif (currTransaction == nullnull) {
currTransaction=fm.beginTransaction();

}

Fragment fragment=getExistingFragment(position);

ifif (fragment != nullnull) {
retentionStrategy.attach(fragment, currTransaction);

}
elseelse {

fragment=createFragment(entries.get(position).getDescriptor());
currTransaction.add(container.getId(), fragment,

getFragmentTag(position));
}

ifif (fragment != currPrimaryItem) {
fragment.setMenuVisibility(falsefalse);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1) {
fragment.setUserVisibleHint(falsefalse);

}
}

returnreturn(fragment);
}

Conversely, destroyItem() is responsible for cleaning up anything from a page that
the PagerAdapter thinks is no longer needed. The destroyItem() method on
ArrayPagerAdapter starts a transaction if there is none, then delegates the actual
work to the RetentionStrategy:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void destroyItem(ViewGroup container, int position,

Object object) {
ifif (currTransaction == nullnull) {

currTransaction=fm.beginTransaction();

MORE FUN WITH PAGERS

1229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

retentionStrategy.detach((Fragment)object, currTransaction);
}

startUpdate() and finishUpdate()

The startUpdate() method will be called before any calls to instantiateItem() or
destroyItem(), and so, if desired, we can do some initialization work there. In the
case of ArrayPagerAdapter, all initialization is done lazily, and so startUpdate() is
not needed. However, since FragmentPagerAdapter overrides startUpdate() with an
empty implementation, we keep that for maximum fidelity with the stock
implementation:

@Override
publicpublic void startUpdate(ViewGroup container) {
}

The finishUpdate() method will be called after any calls to instantiateItem() or
destroyItem(), where we can do some cleanup work. ArrayPagerAdapter creates a
FragmentTransaction as part of its work in instantiateItem() and destroyItem(),
and so we need to commit that transaction in finishUpdate(). Once again, we
reproduce the implementation from FragmentPagerAdapter, which uses
commitAllowingStateLoss() (so we are not concerned with the timing of any state-
saving being done at the activity level) and executePendingTransactions() (so all
of the fragment work is done directly, rather than being posted to the end of the
main application thread’s work queue):

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void finishUpdate(ViewGroup container) {

ifif (currTransaction != nullnull) {
currTransaction.commitAllowingStateLoss();
currTransaction=nullnull;
fm.executePendingTransactions();

}
}

setPrimaryItem()

ViewPager will call setPrimaryItem() on the PagerAdapter when a new page is
being brought into view, based on gestures or other calls on ViewPager itself (e.g.,
setCurrentItem()). Some PagerAdapter implementations will have nothing much
to do here. Fragment-based PagerAdapter implementations, though, need to ensure

MORE FUN WITH PAGERS

1230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that the right fragment’s action bar items are shown. Hence, ArrayPagerAdapter
removes the action bar items from the previously-current page and adds the action
bar items of the newly-current page:

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
@SuppressWarnings("unchecked")
@Override
publicpublic void setPrimaryItem(ViewGroup container, int position,

Object object) {
T fragment=(T)object;

ifif (fragment != currPrimaryItem) {
ifif (currPrimaryItem != nullnull) {

currPrimaryItem.setMenuVisibility(falsefalse);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
{

currPrimaryItem.setUserVisibleHint(falsefalse);
}

}

ifif (fragment != nullnull) {
fragment.setMenuVisibility(truetrue);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
{

fragment.setUserVisibleHint(truetrue);
}

}

currPrimaryItem=fragment;
}

}

isViewFromObject()

isViewFromObject() helps ViewPager keep track of the UI for pages and how it
maps back to a page’s “handle”. In our case, since the “handle” is a Fragment, we need
to see if the supplied View is the View from the supplied Fragment:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn ((Fragment)object).getView() == view;
}

MORE FUN WITH PAGERS

1231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

State Management

Our PagerAdapter is called with saveState() and restoreState() methods, to have
us save the state of our data model and restore it, for configuration changes.
saveState() returns a Parcelable which will form part of the state saved by the
ViewPager, while restoreState() is handed back that Parcelable (or a copy).

The state of the fragments is handled by FragmentManager, no different than with
any other fragments we might use in an activity. The mere fact that we happen to
coordinate those fragments with a PagerAdapter does not change this. Hence, the
“state” that we are dealing with in saveState() and restoreState() is solely the
state of the PagerAdapter data model — in our case, the roster of pages.

To future-proof the implementation a bit, the state is represented as a Bundle, into
which we can store other Parcelable objects. Since Bundle knows how to save an
ArrayList of Parcelable objects, we can just call putParcelableArrayList() to
save our ArrayList of PageEntry objects, restoring them in restoreState() via
getParcelableArrayList():

@Override
publicpublic Parcelable saveState() {

Bundle state=newnew Bundle();

state.putParcelableArrayList(KEY_DESCRIPTORS, entries);

returnreturn(state);
}

@Override
publicpublic void restoreState(Parcelable state, ClassLoader loader) {

Bundle b=(Bundle)state;

b.setClassLoader(Thread.currentThread().getContextClassLoader());

entries=((Bundle)state).getParcelableArrayList(KEY_DESCRIPTORS);
}

Content Manipulation and Position Management

Perhaps the trickiest method on PagerAdapter that we have to worry about is
innocuously named getItemPostion(). We are given the Object “handle” for a page,
and we need to return the position of that page.

However, that’s not really what is going on here.

MORE FUN WITH PAGERS

1232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getItemPosition() is used when we call notifyDataSetChanged() to indicate a
structural change in our data model, such as an added or removed page. ViewPager
is looking for getItemPosition() to tell us the new position of pages for this
notifyDataSetChanged() call. So, as we manipulate our pages, we need to track
what is going on with page positions, so getItemPosition() can return the correct
data.

The actual value returned by getItemPosition() is either:

• The actual numerical position of the page, from 0 to getCount()-1, if the
page moved to another position (where we return the new position)

• PagerAdapter.POSITION_UNCHANGED, if the page has not moved
• PagerAdapter.POSITION_NONE, if the page no longer exists (e.g., was

removed)

ArrayPagerAdapter simply holds a HashMap (positionDelta), mapping our Fragment
“handle” to the page to an Integer representing any change to the position of that
page made by methods like add(). When getItemPosition() is called, we return the
value for that page out of the HashMap, or POSITION_UNCHANGED if the page does not
appear in the HashMap, indicating that the page has not been affected:

@Override
publicpublic int getItemPosition(Object o) {

Integer result=positionDelta.get(o);

ifif (result == nullnull) {
returnreturn(PagerAdapter.POSITION_UNCHANGED);

}

returnreturn(result);
}

The add() method needs to add a new page to the data model, given the
PageDescriptor. We clear() our positionDelta HashMap (as any previous changes
should already have been picked up), add() a new PageEntry to our data model
based on the supplied PageDescriptor, then call notifyDataSetChanged():

publicpublic void add(PageDescriptor desc) {
positionDelta.clear();
entries.add(newnew PageEntry(desc));
notifyDataSetChanged();

}

MORE FUN WITH PAGERS

1233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, we did not need to add an entry to positionDelta, as ViewPager will
use the natural position (based on where it appears in our data model) if we return
POSITION_UNCHANGED.

The insert() method needs to do much the same thing, except rather than adding
the new page to the end, we are adding it somewhere in the middle. This requires us
to do everything we did in add(), plus add entries to the positionDelta map to
indicate the new positions for every page that appears after the one being inserted:

publicpublic void insert(PageDescriptor desc, int position) {
positionDelta.clear();

forfor (int i=position; i < entries.size(); i++) {
Fragment f=getExistingFragment(i);

ifif (f != nullnull) {
positionDelta.put(f, i + 1);

}
}

entries.add(position, newnew PageEntry(desc));
notifyDataSetChanged();

}

The remove() method needs to get rid of an existing page, given its position. Here,
we are not given the “handle”, so we look it up via getExistingFragment(), then use
that to put POSITION_NONE in the positionDelta map. We also update
positionDelta to indicate the new positions for every page that appeared after the
one being removed:

publicpublic void remove(int position) {
positionDelta.clear();

Fragment f=getExistingFragment(position);

ifif (f != nullnull) {
positionDelta.put(f, PagerAdapter.POSITION_NONE);

}

forfor (int i=position + 1; i < entries.size(); i++) {
f=getExistingFragment(i);

ifif (f != nullnull) {
positionDelta.put(f, i - 1);

}
}

entries.remove(position);

MORE FUN WITH PAGERS

1234

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

notifyDataSetChanged();
}

Finally, a move() is simply treated as a remove() from the old position and an
insert() of the same page into the new position:

publicpublic void move(int oldPosition, int newPosition) {
ifif (oldPosition != newPosition) {

PageDescriptor desc=entries.get(oldPosition).getDescriptor();

remove(oldPosition);
insert(desc, newPosition);

}
}

Miscellany

One headache with FragmentPagerAdapter and FragmentStatePagerAdapter is that
they like to manage the fragments themselves, making it annoying for you to get at
those fragments independently later on. Some developers have resorted to holding
onto fragments in their own array, which works, but then you run into problems
when it comes to garbage collection with FragmentStatePagerAdapter.

ArrayPagerAdapter provides two convenience methods to address this:

• getExistingFragment() simply returns the fragment for a given position,
by finding the tag for that fragment from the PageDescription, then looking
up the fragment by that tag. This way, if the fragment does not exist due to
garbage collection, we can return null

• getCurrentFragment() returns the currPrimaryItem value, indicating the
page that we are presently on

@SuppressWarnings("unchecked")
publicpublic T getExistingFragment(int position) {

returnreturn (T)(fm.findFragmentByTag(getFragmentTag(position)));
}

Both are set to return the generic type T that the developer uses when creating a
subclass of ArrayPagerAdapter.

MORE FUN WITH PAGERS

1235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus Management and Accessibility

As developers, we are very used to creating apps that are designed to be navigated by
touch, with users tapping on widgets and related windows to supply input.

However, not all Android devices have touchscreens, and not all Android users use
touchscreens.

Internationalization (i18n) and localization (l10n) give you opportunities to expand
your user base to audiences beyond your initial set, based on language. Similarly,
you can expand your user base by offering support for non-touchscreen input and
output. Long-term, the largest user base of these features may be those with
televisions augmented by Android, whether via Google TV, OUYA consoles, or
whatever. Short-term, the largest user base of these features may be those for whom
touchscreens are rarely a great option, such as the blind. Supporting those with
unusual requirements for input and output is called accessibility (a11y), and
represents a powerful way for you to help your app distinguish itself from
competitors.

In this chapter, we will first examine how to better handle focus management, and
then segue into examining what else, beyond supporting keyboard-based input, can
be done in the area of accessibility.

Prerequisites
Understanding this chapter requires that you have read the core chapters and are
familiar with the concept of widgets having focus for user input.

1237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prepping for Testing
To test focus management, you will need an environment that supports “arrow key”
navigation. Here, “arrow key” also includes things like D-pads or trackballs –
basically, anything that navigates by key events instead of by touch events.

Examples include:

• The Android emulator, with the DPad support hardware property set to yes
• Phones that have actual D-pads, trackballs, arrow keys, or the like
• Television-based Android environments, such as Google TV or the OUYA

console
• Devices that have dedicated keyboard accessories, such as the keyboard

“slice” available for the ASUS Transfomer series of tablets
• A standard Android device accessed via a Bluetooth keyboard, gamepad, or

similar sort of pointing device

Hence, even if the emulator will be insufficient for your needs, you should be able to
set up a hardware test environment relatively inexpensively. Most modern Android
devices support Bluetooth keyboards, and such keyboards frequently can be
obtained at low relative cost.

For accessibility beyond merely focus control, you will certainly want to enable
TalkBack, via the Accessibility area of the Settings app. This will cause Android to
verbally announce what is on the screen, by means of its text-to-speech engine.

On Android 4.0 and higher devices, enabling Talkback will also optionally enable
“Explore by Touch”. This allows users to tap on items (e.g., icons in a GridView) to
have them read aloud via TalkBack, with a double-tap to actually perform what
ordinarily would require a single-tap without “Explore by Touch”.

Controlling the Focus
Android tries its best to have intelligent focus management “out of the box”, without
developer involvement. Many times, what it offers is sufficient for your needs. Other
times, though, the decisions Android makes are inappropriate:

• Trying to navigate in a certain direction (e.g., right) moves focus to a widget
that is not logically what should have the focus

FOCUS MANAGEMENT AND ACCESSIBILITY

1238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Focus has other side effects, like showing the soft keyboard on an EditText
widget, that is not desirable

Hence, if you feel that you need to take more control over how focus management is
handled, you have many means of doing so, covered in this section.

Establishing Focus

In order for a widget to get the focus, it has to be focusable.

You might think that the above sentence was just a chance for the author to be witty.
It was… a bit. But there are actually two types of “focusable” when it comes to
Android apps:

• Is it focusable when somebody is using a pointing device or the keyboard?
• Is it focusable in touch mode?

There are three major patterns for the default state of a widget:

1. Some are initially focusable in both cases (e.g., EditText)
2. Some are focusable in non-touch mode but are not focusable in touch mode

(e.g., Button)
3. Some are not focusable in either mode (e.g., TextView)

So, when a Button is not focusable in touch mode, that means that while the button
will take the focus when the user navigates to it (e.g., via keys), the button will not
take the focus when the user simply taps on it.

You can control the focus semantics of a given widget in four ways:

• You can use android:focusable and android:focusableInTouchMode in a
layout

• You can use setFocusable() and setFocusableInTouchMode() in Java

We will see examples of these shortly.

Requesting (or Abandoning) Focus

By default, the focus will be granted to the first focusable widget in the activity,
starting from the upper left. Often times, this is a fine solution.

FOCUS MANAGEMENT AND ACCESSIBILITY

1239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you want to have some other widget get the focus (assuming that the widget is
focusable, per the section above), you have two choices:

1. Call requestFocus() on the widget in question
2. You can give the widget’s layout element a child element, named

<requestFocus />, to stipulate that this widget should be the one to get the
focus

Note that this is a child element, not an attribute, as you might ordinarily expect.

For example, let’s look at the Focus/Sampler sample project, which we will use to
illustrate various focus-related topics.

Our main activity, creatively named MainActivity, loads a layout named
request_focus.xml, and demonstrates the <requestFocus /> element:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/a_button"/>/>

<EditText<EditText
android:id="@+id/editText1"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/first_field"
android:hint="@string/str_1st_field"
android:inputType="text"/>/>

<EditText<EditText
android:id="@+id/editText2"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/second_field"
android:hint="@string/str_2nd_field"
android:inputType="text">>

<requestFocus/><requestFocus/>
</EditText></EditText>

</LinearLayout></LinearLayout>

FOCUS MANAGEMENT AND ACCESSIBILITY

1240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Focus/Sampler
http://github.com/commonsguy/cw-omnibus/tree/master/Focus/Sampler

Here, we have three widgets in a horizontal LinearLayout: a Button, and two
EditText widgets. The second EditText widget has the <requestFocus /> child
element, and so it gets the focus when we display our launcher activity:

Figure 392: Focus Sampler, Showing Requested Focus

If we had skipped the <requestFocus /> element, the focus would have wound up
on the first EditText… assuming that we are working in touch mode. If the activity
had been launched via the pointing device or keyboard, then the Button would have
the focus, because the Button is focusable in non-touch mode by default.

Calling requestFocus() from Java code gets a bit trickier. There are a few flavors of
the requestFocus() method on View, of which two will be the most popular:

• An ordinary zero-argument requestFocus()
• A one-argument requestFocus(), with the argument being the direction in

which the focus should theoretically be coming from

You might look at the description of the second flavor and decide that the zero-
argument requestFocus() looks a lot easier. And, sometimes it will work. However,
sometimes it will not, as is the case with our second activity, RequestFocusActivity.

FOCUS MANAGEMENT AND ACCESSIBILITY

1241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this activity, our layout (focusable_button) is a bit different:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<EditText<EditText
android:id="@+id/editText1"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/first_field"
android:hint="@string/str_1st_field"
android:inputType="text"/>/>

<EditText<EditText
android:id="@+id/editText2"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/second_field"
android:hint="@string/str_2nd_field"
android:inputType="text">>

</EditText></EditText>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:focusableInTouchMode="true"
android:text="@string/a_button"/>/>

</LinearLayout></LinearLayout>

Here, we put the Button last instead of first. We have no <requestFocus /> element
anywhere, which would put the default focus on the first EditText widget. And, our
Button has android:focusableInTouchMode="true", so it will be focusable
regardless of whether we are in touch mode or not.

In onCreate() of our activity, we use the one-parameter version of requestFocus()
to give the Button the focus:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.focusable_button);
initActionBar();

button=findViewById(R.id.button1);
button.requestFocus(View.FOCUS_RIGHT);

FOCUS MANAGEMENT AND ACCESSIBILITY

1242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

button.setOnClickListener(thisthis);
}

If there were only the one EditText before the Button, the zero-argument
requestFocus() works. However, with a widget between the default focus and our
Button, the zero-argument requestFocus() does not work, but using
requestFocus(View.FOCUS_RIGHT) does. This tells Android that we want the focus,
and it should be as if the user is moving to the right from where the focus currently
lies.

All of our activities inherit from a BaseActivity that manages our action bar, with
an overflow menu to get to the samples and the app icon to get to the original
activity.

So, if you run the app and choose “Request Focus” from the overflow menu, you will
see:

Figure 393: Focus Sampler, Showing Manually-Requested Focus

We also wire up the Button to the activity for click events, and in onClick(), we call
clearFocus() to abandon the focus:

FOCUS MANAGEMENT AND ACCESSIBILITY

1243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onClick(View v) {

button.clearFocus();
}

What clearFocus() will do is return to the original default focus for this activity, in
our case the first EditText:

Figure 394: Focus Sampler, After Clearing the Focus

Focus Ordering

Beyond manually placing the focus on a widget (or manually clearing that focus),
you can also override the focus order that Android determines automatically. While
Android’s decisions usually are OK, they may not be optimal.

A widget can use android:nextFocus... attributes in the layout file to indicate the
widget that should get control on a focus change in the direction indicated by the
... part. So, android:nextFocusDown, applied to Widget A, indicates which widget
should receive the focus if, when the focus is on Widget A, the user “moves down”
(e.g., presses a DOWN key, presses the down direction on a D-pad). The same logic
holds true for the other three directions (android:nextFocusLeft,
android:nextFocusRight, and android:nextFocusUp).

FOCUS MANAGEMENT AND ACCESSIBILITY

1244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, the res/layout/table.xml resource in the FocusSampler project is
based on the TableLayout sample from early in this book, with a bit more focus
control:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1">>

<TableRow><TableRow>

<TextView<TextView android:text="@string/url"/>/>

<EditText<EditText
android:id="@+id/entry"
android:layout_span="3"
android:inputType="text"
android:nextFocusRight="@+id/ok"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<Button<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="@string/cancel"/>/>

<Button<Button
android:id="@+id/ok"
android:text="@string/ok"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

In the original TableLayout sample, by default, pressing either RIGHT or DOWN
while the EditText has the focus will move the focus to the “Cancel” button. This
certainly works. However, it does mean that there is no single-key means of moving
from the EditText to the “OK” button, and it would be nice to offer that, so those
using the pointing device or keyboard can quickly move to either button.

This is a matter of overriding the default focus-change behavior of the EditText
widget. In our case, we use android:nextFocusRight="@+id/ok" to indicate that the
“OK” button should get the focus if the user presses RIGHT from the EditText. This
gives RIGHT and DOWN different behavior, to reach both buttons.

FOCUS MANAGEMENT AND ACCESSIBILITY

1245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Scrolling and Focusing Do Not Mix

Let’s suppose that you have a UI design with a fixed bar of widgets at the top (e.g.,
action bar), a ListView dominating the activity, and a panel of widgets at the
bottom (e.g., button panel, or a split action bar), such as this book’s original action
bar demo:

Figure 395: A Split Action Bar

This is a common UI pattern, much to the detriment of those using pointing devices
or keyboards for navigation. In order to get to the bottom panel of widgets, they will
have to scroll through the entire list first, because scrolling trumps focus changes. So
while this is easy to navigate via a touchscreen, it is a major problem to navigate for
those not using a touchscreen.

Similarly, if the user has scrolled down the list, and now wishes to get to the top
action bar, the user would have to scroll all the way to the top of the list first.

Workarounds include:

FOCUS MANAGEMENT AND ACCESSIBILITY

1246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Overriding focus control such that left and right navigation from the list
moves you to the action bar or button panel (e.g., left moves you to the
action bar, right moves you to the button panel)

• In a television setup, having the “action bar” be vertical down the left, and
the button panel be vertical down the right, so you automatically get the
left/right navigation to move between these “zones”

• Eliminating the button panel, moving those items instead to the action bar,
or perhaps an action mode (a.k.a., contextual action bar) if the buttons are
only relevant if the user checks one or more items in the list

• Offer a hotkey, separate from navigation, that repositions the focus (e.g.,
CTRL-A to jump to the action bar), if you believe that users will read your
documentation to discover this key combination

In the specific case of a split action bar, Android handles this for you: moving focus
to the right from the top action bar moves you to the bottom action bar directly,
whereas moving focus down from the top action bar moves you into your main
content view (e.g., the ListView in the action bar sample image shown above).

Accessibility and Focus
People suffering from impaired vision, including the blind, have had to rely heavily
on proper keyboard navigation for their use of Android apps, at least prior to
Android 4.0 and “Explore by Touch”. These users need focus to be sensible, so that
they can find their way through your app, with TalkBack supplying prompts for what
has the focus. Having widgets that are unreachable in practice will eliminate features
from your app for this audience, simply because they cannot get to them.

“Explore by Touch” provides accessibility assistance without reliance upon proper
focus. However:

• “Explore by Touch” is new to Android 4.0, and many visually-impaired users
will be using older devices, particularly through 2013

• “Explore by Touch” is less reliable than keyboard-based navigation, insofar as
users have to remember specific screen locations (and get to them without
seeing those locations), rather than simply memorizing certain key
combinations

• “Explore by Touch”, by requiring additional taps (e.g., double-tap to tap a
Button), may cause some challenges when the UI itself requires additional
taps (e.g., a double-tap on a widget to perform an action — is this now a
triple-tap in “Explore by Touch” mode?)

FOCUS MANAGEMENT AND ACCESSIBILITY

1247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• “Explore by Touch” is mostly for the visually impaired, and does not help
others that might benefit from key-based navigation (e.g., people with
limited motor control)

So, even though “Explore by Touch” will help people use apps that cannot be
navigated purely through key events, the better you can support keyboards, the
better off your users will be.

Accessibility Beyond Focus
While getting focus management correct goes a long way towards making your
application easier to use, it is not the only thing to consider for making your
application truly accessible by all possible users. This section covers a number of
other things that you should consider as part of your accessibility initiatives.

Content Descriptions

For TalkBack to work, it needs to have something useful to read aloud to the user. By
default, for most widgets, all it can say is the type of widget that has the focus (e.g.,
“a checkbox”). That does not help the TalkBack-reliant user very much.

Please consider adding android:contentDescription attributes to most of your
widgets, pointing to a string resource that briefly describes the widget (e.g., “the
Enabled checkbox”). This will be used in place of the basic type of widget by
TalkBack.

Classes that inherit from TextView will use the text caption of the widget by default,
so your Button widgets may not need android:contentDescription if their captions
will make sense to TalkBack users.

However, with an EditText, since the text will be what the user types in, the text is
not indicative of the widget itself. Android will first use your android:hint value, if
available, falling back to android:contentDescription if android:hint is not
supplied.

Also, bear in mind that if the widget changes purpose, you need to change your
android:contentDescription to match. For example, suppose you have a media
player app with an ImageButton that you toggle between “play” and “pause” modes
by changing its image. When you change the image, you also need to change the

FOCUS MANAGEMENT AND ACCESSIBILITY

1248

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:contentDescription as well, lest sighted users think the button will now
“pause” while blind users think that the button will now “play”.

Custom Widgets and Accessibility Events

The engine behind TalkBack is an accessibility service. Android ships with some, like
TalkBack, and third parties can create other such services.

Stock Android widgets generate relevant accessibility events to feed data into these
accessibility services. That is how android:contentDescription gets used, for
example — on a focus change, stock Android widgets will announce the widget that
just received the focus.

If you are creating custom widgets, you may need to raise your own accessibility
events. This is particularly true for custom widgets that draw to the Canvas and
process raw touch events (rather than custom widgets that merely aggregate existing
widgets).

The Android developer documentation provides instructions for when and how to
supply these sorts of events.

Announcing Events

Sometimes, your app will change something about its visual state in ways that do
not get picked up very well by any traditional accessibility events. For example, you
might use GestureDetector to handle some defined library of gestures and change
state in your app. Those state changes may have visual impacts, but
GestureDetector will not know what those are and therefore cannot supply any sort
of accessibility event about them.

To help with this, API Level 16 added announceForAccessibility() as a method on
View. Just pass it a string and that will be sent out as an “announcement” style of
AccessibilityEvent. Your code leveraging GestureDetector, for example, could use
this to explain the results of having applied the gesture.

Font Selection and Size

For users with limited vision, being able to change the font size is a big benefit.
Android 4.0 finally allows this, via the Settings app, so users can choose between

FOCUS MANAGEMENT AND ACCESSIBILITY

1249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/accessibility/apps.html#custom-touch-events
http://developer.android.com/guide/topics/ui/accessibility/apps.html#custom-touch-events

small, normal, large, and huge font sizes. Any place where text is rendered and is
measured in sp will adapt.

The key, of course, is the sp part.

sp is perhaps the most confusing of the available dimension units in Android. px is
obvious, and dp (or dip) is understandable once you recognize the impacts of screen
density. Similarly, in, mm, and pt are fairly simple, at least once you remember that pt
is 1/72nd of an inch.

If the user has the font scale set to “normal”, sp equates to dp, so a dimension of 30sp
and 30dp will be the same size. However, values in dp do not change based on font
scale; values in sp will increase or decrease in physical size based upon the user’s
changes to the font scale.

We can see how this works in the Accessibility/FontScale sample project.

In our layout (res/layout/activity_main.xml), we have six pieces of text: two each
(regular and bold) measured at 30px, 30dp, and 30sp:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayout1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="10dp"
android:text="@string/normal_30px"
android:textSize="30px"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/bold_30px"
android:textSize="30px"
android:textStyle="bold"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="10dp"
android:text="@string/normal_30dp"

FOCUS MANAGEMENT AND ACCESSIBILITY

1250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Accessibility/FontScale
http://github.com/commonsguy/cw-omnibus/tree/master/Accessibility/FontScale

android:textSize="30dp"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/bold_30dp"
android:textSize="30dp"
android:textStyle="bold"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="10dp"
android:text="@string/normal_30sp"
android:textSize="30sp"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/bold_30sp"
android:textSize="30sp"
android:textStyle="bold"
tools:context=".MainActivity"/>/>

</LinearLayout></LinearLayout>

You will be able to see the differences between 30px and 30dp on any Android OS
release, simply by running the app on devices with different densities. To see the
changes between 30dp and 30sp, you will need to run the app on an Android 4.0+
device or emulator and change the font scale from the Settings app (typically in the
Display section).

Here is what the text looks like with a normal font scale:

FOCUS MANAGEMENT AND ACCESSIBILITY

1251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 396: Fonts at Normal Scale

As you can see, 30dp and 30sp are equivalent.

If we raise the font scale to “large”, the 30sp text grows to match:

FOCUS MANAGEMENT AND ACCESSIBILITY

1252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 397: Fonts at Large Scale

Moving to “huge” scale increases the 30sp text size further:

FOCUS MANAGEMENT AND ACCESSIBILITY

1253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 398: Fonts at Huge Scale

In the other direction, some users may elect to drop their font size to “small”, with a
corresponding impact on the 30sp text:

FOCUS MANAGEMENT AND ACCESSIBILITY

1254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 399: Fonts at Small Scale

As a developer, your initial reaction may be to run away from sp, because you do not
control it. However, just as Web developers should deal with changing font scale in
Web browsers, Android developers should deal with changing font scale in Android
apps. Remember: the user is changing the font scale because the user feels that the
revised scale is easier for them to use. Blocking such changes in your app, by
avoiding sp, will not be met with love and adoration from your user base.

Also, bear in mind that changes to the font scale represent a configuration change. If
your app is in memory at the time the user goes into Settings and changes the scale,
if the user returns to your app, each activity that comes to the foreground will
undergo the configuration change, just as if the user had rotated the screen or put
the device into a car dock or something.

Widget Size

Users with ordinary sight already have trouble with tiny widgets, as they are difficult
to tap upon.

Users trying to use the Explore by Touch facility added in Android 4.1 have it worse,
as they cannot even see (or see well) the tiny target you are expecting them to tap

FOCUS MANAGEMENT AND ACCESSIBILITY

1255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

upon. They need to be able to reliably find your widget based on its relative position
on the screen, and their ability to do so will be tied, in part, on widget size.

The Android design guidelines recommend 7–10mm per side minimum sizes for
tappable widgets. In particular, they recommend 48dp per side, which results in a
size of about 9mm per side.

You also need to consider how closely packed your widgets are. The closer the tap
targets lie, the more likely it is that all users — whether using Explore by Touch or
not — will accidentally tap on the wrong thing. Google recommends 8dp or more of
margin between widgets. Also note that the key is margins, as while increasing
padding might visually separate the widgets, the padding is included as part of the
widget from the standpoint of touch events. While padding may help users with
ordinary sight, margins provide similar help while also being of better benefit to
those using Explore by Touch.

Gestures and Taps

If you employ gestures, be careful when employing the same gesture in different
spots for different roles, particularly within the same activity.

For example, you might use a horizontal swipe to the right to switch pages in a
ViewPager in some places and remove items from a ListView in others. While there
may be visual cues to help explain this to users with ordinary sight, it may be far less
obvious what is going on for TalkBack users. This is even more true if you are
somehow combining these things (e.g., the ListView in question is in a page of the
ViewPager).

Also, be a bit careful as you “go outside the box” for tap events. You might decide
that a double-tap, or a two-finger tap, has special meaning on some widgets. Make
sure that this still works when users use Explore by Touch, considering that the first
tap will be “consumed” by Explore by Touch to announce the widget being tapped
upon.

Enhanced Keyboard Support

All else being equal, users seeking accessibility assistance will tend to use keyboards
when available. For users with limited (or no) sight, tactile keyboards are simply
easier to use than touchscreens. For users with limited motor control, external
devices that interface as keyboards may allow them to use devices that otherwise
they could not.

FOCUS MANAGEMENT AND ACCESSIBILITY

1256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/style/metrics-grids.html

Of course, plenty of users will use keyboards outside of accessibility as well. For
example, devices like the ASUS Transformer series form perfectly good “netbook”-
style devices when paired with their keyboards.

Hence, consider adding hotkey support, to assist in the navigation of your app. Some
hotkeys may be automatically handled (e.g., Ctrl-C for copy in an EditText).
However, in other cases you may wish to add those yourself (e.g., Ctrl-C for “copy”
with respect to a checklist and its selected rows, in addition to a “copy” action mode
item).

API Level 11 adds KeyEvent support for methods like isCtrlPressed() to detect
meta keys used in combination with regular keys.

Audio and Haptics

Of course, another way to make your app more accessible is to provide alternative
modes of input and output, beyond the visual.

Audio is popular in this regard:

• Using tones or clicks to reinforce input choices
• Integrating your own text-to-speech to augment TalkBack
• Integrating speech recognition for simple commands

However, bear in mind that deaf users will be unable to hear your audio. You are
better served using both auditory and visual output, not just one or the other.

In some cases, haptics can be helpful for input feedback, by using the Vibrator
system service to power the vibration motor. While most users will be able to feel
vibrations, the limitation here is whether the device is capable of vibrating:

• Some tablets lack a vibration motor
• Television-based Android environment may or may not have some sort of

vibration output (e.g., remote controls probably will not, but game
controllers might)

• Devices not held in one’s hand, such as those in a dock, will make haptics
less noticeable

So, audio and vibration can help augment visual input and output, though they
should not be considered complete replacements except in rare occurrences.

FOCUS MANAGEMENT AND ACCESSIBILITY

1257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Color and Color Blindness

Approximately 8% of men (and 0.5% of women) in the world are colorblind,
meaning that they cannot distinguish certain close colors:

…It’s not that colorblind people (in most cases) are incapable or perceiving
“green,” instead they merely distinguish fewer shades of green than you do.
So where you see three similar shades of green, a colorblind user might only
see one shade of green.

(from “Tips for Designing for Colorblind Users”)

Hence, relying solely on colors to distinguish different items, particularly when
required for user input, is not a wise move.

Make sure that there is something more to distinguish two pieces of your UI than
purely a shift in color, such as:

• Labels or icons
• Textures (e.g., solid vs. striped)
• Borders (e.g., drop shadow)

Accessibility Beyond Impairment
Accessibility is often tied to impaired users: ones with limited (or no) sight, ones
with limited (or no) hearing, ones with limited motor control, etc.

In reality, accessibility is for situations where users may have limitations. For
example, a user who might not normally think of himself as “impaired” has limited
sight, hearing, and motor control when those facilities are already in use, such as
while driving.

Hence, offering features that help with accessibility can benefit all your users, not
just ones you think of as “impaired”. For example:

• Offer a UI mode with an eye towards use in low-visibility situations that can
either be manually invoked (e.g., via a preference) or automatically invoked
(e.g., via a car dock)

• Offer voice input (commands) and output (text-to-speech) — iOS’s Siri is
not just for the blind, after all

FOCUS MANAGEMENT AND ACCESSIBILITY

1258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.colour-blindness.com/general/prevalence/
http://designshack.net/articles/accessibility/tips-for-designing-for-colorblind-users

• Offer hotkeys, not only to help those requiring a keyboard as their primary
mode of input (e.g., blind users minimizing touchscreen use), but to help
those who opt into using it for input (e.g., using a keyboard with an Android
tablet in lieu of a traditional notebook or netbook)

FOCUS MANAGEMENT AND ACCESSIBILITY

1259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous UI Tricks

While well-written GUI frameworks are better organized than XKCD’s take on home
organization, there are always a handful of tidbits that do, indeed, get categorized as
“miscellaneous”.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having an appreciation for XKCD is welcome, but optional.

Full-Screen and Lights-Out Modes
Full-screen mode, in Android parlance, means removing any system-supplied “bars”
from the screen: title bar, action bar, status bar, system bar, navigation bar, etc. You
might use this for games, video players, digital book readers, or other places where
the time spent in an activity is great enough to warrant removing some of the
normal accouterments to free up space for whatever the activity itself is doing.

Lights-out mode, in Android parlance, is where you take the system bar or
navigation bar and dim the widgets inside of them, such that the bar is still usable,
but is less visually distracting. This is a new concept added in Android 3.0 and has
no direct analogue in Android 1.x or 2.x.

Android 1.x/2.x

To have an activity be in full-screen mode, you have two choices:

1261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xkcd.com/1077/
http://xkcd.com/1077/

1. Having the activity use a theme of Theme.NoTitleBar.Fullscreen (or some
custom theme that inherits from Theme.NoTitleBar.Fullscreen)

2. Execute the following statements in onCreate() of your activity before
calling setContentView():

requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

WindowManager.LayoutParams.FLAG_FULLSCREEN);

The first statement removes the title bar (and also removes the action bar if you are
using ActionBarSherlock). The second statement indicates that you want the activity
to run in full-screen mode, hiding the status bar.

Android 4.0+

Things got significantly more messy once we started adding in the system bar (and,
later, the navigation bar as the replacement for the system bar). Since these bars
provide the user access to HOME, BACK, etc., it is usually important for them to be
available. Android’s behavior, therefore, varies in how you ask for something to
happen and what then happens, based upon whether the device is a phone or a
tablet.

The Activities/FullScreen sample project tries to enumerate some of the
possibilities. On an Android 4.0 device, we have three RadioButtons:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RadioGroup<RadioGroup
android:id="@+id/screenStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<RadioButton<RadioButton
android:id="@+id/normal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/display_normal"/>/>

<RadioButton<RadioButton
android:id="@+id/lowProfile"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_low_profile"/>/>

MISCELLANEOUS UI TRICKS

1262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/FullScreen
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/FullScreen

<RadioButton<RadioButton
android:id="@+id/hideNav"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_hide_navigation"/>/>

</RadioGroup></RadioGroup>

<Button<Button
android:id="@+id/button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:text="@string/something_at_the_bottom"/>/>

</RelativeLayout></RelativeLayout>

Figure 400: Sample UI, As Initially Launched on Android 4.0

…while on Android 4.1 or higher, we have another two possibilities:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RadioGroup<RadioGroup
android:id="@+id/screenStyle"

MISCELLANEOUS UI TRICKS

1263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_width="match_parent"
android:layout_height="wrap_content">>

<RadioButton<RadioButton
android:id="@+id/normal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/display_normal"/>/>

<RadioButton<RadioButton
android:id="@+id/lowProfile"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_low_profile"/>/>

<RadioButton<RadioButton
android:id="@+id/hideNav"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_hide_navigation"/>/>

<RadioButton<RadioButton
android:id="@+id/hideStatusBar"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hide_status_bar"/>/>

<RadioButton<RadioButton
android:id="@+id/fullScreen"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_full_screen"/>/>

</RadioGroup></RadioGroup>

<Button<Button
android:id="@+id/button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:text="@string/something_at_the_bottom"/>/>

</RelativeLayout></RelativeLayout>

MISCELLANEOUS UI TRICKS

1264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 401: Sample UI, As Initially Launched on a Nexus 4/Android 4.2

Controlling the full-screen and lights-out modes is managed via a call to
setSystemUiVisibility(), a method on View. You pass in a value made up of an
OR’d (|) set of flags indicating what you want the visibility to be, with the default
being normal operation. Hence, in the screenshot above, you see a Nexus 4 in
normal mode. Here is the same UI on a Nexus 10 in normal mode:

MISCELLANEOUS UI TRICKS

1265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 402: Sample UI, As Initially Launched on a Nexus 10/Android 4.2

Lights-out, or low-profile mode, is achieved by calling setSystemUiVisibility()
with the View.SYSTEM_UI_FLAG_LOW_PROFILE flag. This will dim the navigation or
system bar, so the bar is there and the buttons are still active, but that they are less
visually intrusive:

MISCELLANEOUS UI TRICKS

1266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 403: Sample UI, Lights-Out Mode, Nexus 4/Android 4.2

Figure 404: Sample UI, Lights-Out Mode, Nexus 10/Android 4.2

MISCELLANEOUS UI TRICKS

1267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can temporarily hide the navigation bar (or system bar) by passing
View.SYSTEM_UI_FLAG_HIDE_NAVIGATION to setSystemUiVisibility(). The bar will
disappear, until the user touches the UI, in which case the bar reappears:

Figure 405: Sample UI, Hidden-Navigation Mode, Nexus 4/Android 4.2

MISCELLANEOUS UI TRICKS

1268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 406: Sample UI, Hidden-Navigation Mode, Nexus 10/Android 4.2

Similarly, you can hide the status bar by passing View.SYSTEM_UI_FLAG_FULLSCREEN
to setSystemUiVisibility(). However, despite this flag’s name, it does not affect
the navigation or system bar:

MISCELLANEOUS UI TRICKS

1269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 407: Sample UI, “Full-Screen” Mode, Nexus 4/Android 4.2

Figure 408: Sample UI, “Full-Screen” Mode, Nexus 10/Android 4.2

MISCELLANEOUS UI TRICKS

1270

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, to hide both the status bar and the navigation or system bar, you need to
pass both flags (View.SYSTEM_UI_FLAG_FULLSCREEN |
View.SYSTEM_UI_FLAG_HIDE_NAVIGATION):

Figure 409: Sample UI, True Full-Screen Mode, Nexus 4/Android 4.2

MISCELLANEOUS UI TRICKS

1271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 410: Sample UI, True Full-Screen Mode, Nexus 10/Android 4.2

Note that showing and hiding the ActionBar is also possible, via calls to show() and
hide(), respectively.

Offering a Delayed Timeout
Android makes it easy for activities to keep the screen on while the activity is in the
foreground, by means of android:keepScreenOn and setKeepScreenOn().

However, these are very blunt instruments, and too many developers simply ask to
keep the screen on constantly, even when that is not needed and can cause excessive
battery drain. That is because it is very easy to always keeps the screen on.

Say, for example, you are playing a game. Keeping the screen on while the game is
being played is probably a good thing, particularly if the game does not require
constant interation with the screen. However, if you press the in-game pause button,
the game might keep the screen on while the game is paused. This might lead you to
press pause, put down your tablet (expecting it to fall asleep in a normal period of
time), and then have the tablet keep going and going and going… until the battery
runs dead.

MISCELLANEOUS UI TRICKS

1272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Whether you use setKeepScreenOn() or directly use a WakeLock, it is useful to think
of three tiers of user interaction.

The first tier is when your app is doing its “one big thing”: playing the game, playing
the video, displaying the digital book, etc. If you expect that there will be periods of
time when the user is actively engaged with your app, but is not interacting with the
screen, keep the screen on.

The second tier is when your app is delivering something to the user that probably
would get used without interaction in the short term, but not indefinitely. For
example, a game might reasonably expect that 15 seconds could be too short to have
the screen time out, but if the user has not done anything in 5–10 minutes, most
likely they are not in front of the game. Similarly, a digital book reader should not
try to keep the screen on for an hour without user interaction.

The third tier is when your app is doing anything other than the main content,
where normal device behavior should resume. A video player might keep the screen
on while the video is playing, but if the video ends, normal behavior should resume.
After all, if the person who had been watching the video fell asleep, they will not be
in position to press a power button.

The first and third tiers are fairly easy from a programming standpoint. Just
acquire() and release() the WakeLock, or toggle setKeepScreenOn() between true
and false.

The second tier — where you are willing to have a screen timeout, just not too
quickly — requires you to add a bit more smarts to your app. A simple, low-overhead
way of addressing this is to have a postDelayed() loop, to get a Runnable control
every 5–10 seconds. Each time the user interacts with your app, update a
lastInteraction timestamp. The Runnable compares lastInteraction with the
current time, and if it exceeds some threshold, release the WakeLock or call
setKeepScreenOn(false). When the user interacts again, though, you will need to
re-acquire the WakeLock or call setKeepScreenOn(true). Basically, you have your
own inactivity timing mechanism to control when you are inhibiting normal
inactivity behavior or not.

To see the second tier in action, take a look at the MiscUI/DelayedTimeout sample
project.

The UI is a simple button. We want to keep the screen awake while the user is using
the button, but let it fall asleep after a period of inactivity that we control. To

MISCELLANEOUS UI TRICKS

1273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MiscUI/DelayedTimeout
http://github.com/commonsguy/cw-omnibus/tree/master/MiscUI/DelayedTimeout

accomplish this, we will use a postDelayed() loop, to get control every 15 seconds to
see if there has been user activity:

packagepackage com.commonsware.android.timeout;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements Runnable {
privateprivate staticstatic int TIMEOUT_POLL_PERIOD=15000; // 15 seconds
privateprivate staticstatic int TIMEOUT_PERIOD=300000; // 5 minutes
privateprivate View content=nullnull;
privateprivate long lastActivity=SystemClock.uptimeMillis();

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

content=findViewById(android.R.id.content);
content.setKeepScreenOn(truetrue);
run();

}

@Override
publicpublic void onDestroy() {

content.removeCallbacks(thisthis);

supersuper.onDestroy();
}

@Override
publicpublic void run() {

ifif ((SystemClock.uptimeMillis() - lastActivity) > TIMEOUT_PERIOD) {
content.setKeepScreenOn(falsefalse);

}

content.postDelayed(thisthis, TIMEOUT_POLL_PERIOD);
}

publicpublic void onClick(View v) {
lastActivity=SystemClock.uptimeMillis();

}
}

In onCreate(), we call setKeepScreenOn(true) to keep the screen on, regardless of
what the user’s default timeout is. Then, we call the run() method from our
Runnable interface (implemented on the activity itself). run() sees if 5 minutes has
elapsed since the last bit of user activity (initially set to be the time the activity

MISCELLANEOUS UI TRICKS

1274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

launches). If 5 minutes has elapsed, we revert to normal screen-timeout behavior
with setKeepScreenOn(false). We also schedule ourselves, as a Runnable, to get
control again in 15 seconds, to see if 5 minutes has elapsed since the last-seen
activity. Our button’s onClick() method simply updates the last-seen timestamp,
and onDestroy() cleans up our postDelayed() loop by calling removeCallbacks()
to stop invoking our Runnable.

The net is that the device’s screen will remain on for 5 minutes since the last time
the user taps the button, even if the user’s default screen timeout is set to shorter
than 5 minutes. Yet, at the same time, we do not keep the screen on forever, causing
unnecessary battery drain.

Note that to test this, you will probably need to unplug your USB cable after
installing the app on the device (since many developers have it set up to keep the
screen on while plugged in). Also, you will need to set your device’s screen timeout
to be under 5 minutes, if it is not set that way already.

This is a primitive implementation, missing lots of stuff that you would want in
production code (e.g., it never calls setKeepScreenOn(true) if we flipped it to false
but then tap the button). And the complexity of determining if the user interacted
with the screen will be tied to the complexity of your UI.

That being said, by having a more intelligent use of WakeLock and
setKeepScreenOn(), you can deliver value to the user while not accidentally causing
excessive battery drain. Users do not always remember to press the power button, so
you need to make sure that just because the user made a mistake, that you do not
make it worse.

MISCELLANEOUS UI TRICKS

1275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Event Buses

Event-driven programming has been around for nearly a quarter-century. Much of
Android’s UI model is event-driven, where we find out about these events via
callbacks (e.g., onCreate() for the “start an activity” event) and registered listeners
(e.g., OnClickListener for when the user taps on a widget).

However, originally, Android did not have a very fine-grained event or message bus
implementation that we as developers could use. The Intent system works like a
message bus, but it is aimed at inter-process communication (IPC) as much as in-
process communication, and that comes with some costs.

However, over time, particularly starting in 2012, event buses started to pop up.
Here, we will look at some event bus alternatives for Android, how they can help us
manage communications within our app, and how we can employ some of them.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapters on broadcast Intents, AlarmManager and the
scheduled service pattern, and Notifications.

A Brief Note About the Sample Apps
The sample apps in this chapter are generally designed to run forever.

It is unlikely that you really want them to run forever, though. Hence, please
uninstall each sample after experimenting with it, particularly if you are testing on
hardware, such as your personal phone. Your battery will appreciate it.

1277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Is an Event Bus?
Whether you consider it an “event bus” (or “message bus”), the “publisher/
subscriber” (or “pub/sub”) pattern, or a subset of the “observer” pattern, the
programming model where components produce events that others consume for is
reasonably common in modern software development.

An event bus is designed to decouple the sources of events from the consumers of
those events. Or, as one event bus author put it:

I want an easy, centralized way to notify code that’s interested in specific
types of events when those events occur without any direct coupling
between the code the publishes an event and the code that receives it.

With the traditional Java listener or observer pattern implementation, the
component producing an event needs direct access to consumers of that event.
Sometimes, that list of consumers is limited to a single consumer, as with many
event handlers associated with Android widgets (e.g., just one OnClickListener).
But this source-holds-the-sinks coding pattern limits flexibility, as it requires explicit
registration by consumers with producers of events, and it may not be that easy for
the consumer to reach the producer. Furthermore, such direct connections are
considered to be a relatively strong coupling between those components, and often
times our objective is to have looser coupling.

An event bus provides a standard communications channel (or “bus”) that event
producers and event consumers can hook into. Event producers merely need to hand
the event to the bus; the bus will handle directing those events to relevant
consumers. This reduces the coupling between the producers and consumers,
sometimes even reducing the amount of code needed to source and sink these
events.

Standard Intents as Event Bus
You can think of the standard Intent and <intent-filter> system as a three-
channel event bus:

• One channel is used for starting activities
• One channel is used for starting or binding to services
• One channel is used for more ad-hoc “broadcast” events

EVENT BUSES

1278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/14762912/115145

The component starting an activity does not need to communicate directly with
code for that activity — in fact, often times this is impossible, as they are separate
apps running in separate processes. Instead, the component starting an activity
sends an event indicating the particular operation to be performed (e.g., view this
URL), and Android and the user determine which of candidate consumers is the one
to process that event.

However, broadcast Intents are a closer analogue to a real “event bus”, in that an
event produced by somebody can be consumed by zero, one, or several subscribed
consumers, based upon the filtering provided by <intent-filter> elements in the
manifest or IntentFilter objects for use with registerReceiver().

In theory, you could use broadcast Intents as the backbone for a fairly flexible event
bus within your app. In practice, this is not usually a good idea:

• Each broadcast involves inter-process communication (IPC), even if the
event producer and consumer(s) are in the same process. This adds
overhead.

• Because broadcasts are intrinsically IPC, you have to take security into
account, to ensure only authorized producers can publish events that the
consumers pick up.

LocalBroadcastManager as Event Bus
As was briefly noted earlier in the book, the Android Support package offers a
LocalBroadcastManager. This is designed to offer an event bus with a feel very
similar to classic broadcast Intents, but local to your process. Not only does this
avoid IPC overhead, but it improves security, as other apps have no means of spying
on your internal communications.

LocalBroadcastManager is supplied by both the android-support-v4.jar and
android-support-v13.jar libraries. Generally speaking, if your
android:minSdkVersion is less than 13, you probably should choose
android-support-v4.jar.

A Simple LocalBroadcastManager Sample

Let’s see LocalBroadcastManager in action via the Intents/Local sample project.

Here, our LocalActivity sends a command to a NoticeService from onCreate():

EVENT BUSES

1279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/Local
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/Local

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

notice=(TextView)findViewById(R.id.notice);
startService(newnew Intent(thisthis, NoticeService.class));

}

The NoticeService simply delays five seconds, then sends a local broadcast using
LocalBroadcastManager:

packagepackage com.commonsware.android.localcast;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;

publicpublic classclass NoticeServiceNoticeService extendsextends IntentService {
publicpublic staticstatic finalfinal String BROADCAST=

"com.commonsware.android.localcast.NoticeService.BROADCAST";
privateprivate staticstatic Intent broadcast=newnew Intent(BROADCAST);

publicpublic NoticeService() {
supersuper("NoticeService");

}

@Override
protectedprotected void onHandleIntent(Intent intent) {

SystemClock.sleep(5000);
LocalBroadcastManager.getInstance(thisthis).sendBroadcast(broadcast);

}
}

Specifically, you get at your process’ singleton instance of LocalBroadcastManager by
calling getInstance() on the LocalBroadcastManager class.

Our LocalActivity registers for this local broadcast in onResume(), once again
using getInstance() on LocalBroadcastManager:

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter filter=newnew IntentFilter(NoticeService.BROADCAST);

LocalBroadcastManager.getInstance(thisthis).registerReceiver(onNotice,
filter);

}

EVENT BUSES

1280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LocalActivity unregisters for this broadcast in onPause():

@Override
publicpublic void onPause() {

supersuper.onPause();

LocalBroadcastManager.getInstance(thisthis).unregisterReceiver(onNotice);
}

The BroadcastReceiver simply updates a TextView with the current date and time:

privateprivate BroadcastReceiver onNotice=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

notice.setText(newnew Date().toString());
}

};

If you start up this activity, you will see a “(waiting...)” bit of placeholder text for
about five seconds, before having that be replaced by the current date and time.

The BroadcastReceiver, the IntentFilter, and the Intent being broadcast are the
same as we would use with full broadcasts. It is merely how we are using them — via
LocalBroadcastManager – that dictates they are local to our process versus the
standard device-wide broadcasts.

A More Elaborate Sample

That sample is not terribly realistic, but it is simple.

A somewhat more realistic sample is the one using WakefulIntentService from
earlier in the book. However, that app was also fairly unrealistic, at least in terms of
its output, as LogCat is not very useful to users. A more typical approach for a
background service like this is to notify a foreground Activity, if there is one, about
work that was accomplished, and otherwise display a Notification. We saw a
version of that logic in the chapter on Notifications, but it used regular (albeit
ordered) broadcasts.

In the EventBus/LocalBroadcastManager sample project, we blend:

• Having a service wake up every so often to do some work
• Arranging to let the user know of background accomplishments via an
Activity or a Notification

• Using LocalBroadcastManager to keep the communications in-process

EVENT BUSES

1281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/LocalBroadcastManager
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/LocalBroadcastManager

The Activity

The EventDemoActivity that is our app’s entry point is a bit similar to the one used
in the WakefulIntentService demo, in that it calls scheduleAlarms() on
PollReceiver to set up the AlarmManager schedule:

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass EventDemoActivityEventDemoActivity extendsextends
SherlockFragmentActivity {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==
nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew EventLogFragment()).commit();

PollReceiver.scheduleAlarms(thisthis);
}

}
}

However, we also put an EventLogFragment on the screen, if it is not already there,
via a FragmentTransaction. This is where we will display events coming from the
service, while our activity is in the foreground. We will examine EventLogFragment
and how it participates in the event bus shortly.

The PollReceiver

PollReceiver is unchanged from its WakefulIntentService demo original edition.
This BroadcastReceiver will be used both for getting control at boot time (to
reschedule the alarms, wiped on the reboot) and for sending the work to the
ScheduledService for processing:

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

EVENT BUSES

1282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=15000; // 15 seconds
privateprivate staticstatic finalfinal int INITIAL_DELAY=1000; // 1 second

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() == nullnull) {
WakefulIntentService.sendWakefulWork(ctxt, ScheduledService.class);

}
elseelse {

scheduleAlarms(ctxt);
}

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + INITIAL_DELAY,
PERIOD, pi);

}
}

ScheduledService and Sending Events

Before, our ScheduledService just dumped a message to LogCat. This was crude but
effective for what that demo required. Now, we want our service to let the UI layer
know about some work that was accomplished, or to raise a Notification.

In this case, the “work” is generating a random number.

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.app.Notificationandroid.app.Notification;
importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.Randomjava.util.Random;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
privateprivate staticstatic int NOTIFY_ID=1337;

EVENT BUSES

1283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate Random rng=newnew Random();

publicpublic ScheduledService() {
supersuper("ScheduledService");

}

@Override
protectedprotected void doWakefulWork(Intent intent) {

Intent event=newnew Intent(EventLogFragment.ACTION_EVENT);
long now=Calendar.getInstance().getTimeInMillis();
int random=rng.nextInt();

event.putExtra(EventLogFragment.EXTRA_RANDOM, random);
event.putExtra(EventLogFragment.EXTRA_TIME, now);

ifif (!LocalBroadcastManager.getInstance(thisthis).sendBroadcast(event)) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(random))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

}
}

LocalBroadcastManager, as we have seen, uses the same Intent and IntentFilter
and BroadcastReceiver structures as are used with regular broadcasts, just via a
singleton message bus (LocalBroadcastManager.getInstance()) instead of the
framework’s IPC engine. Hence, we need an Intent that represents the message, so
we create one, using an action string published by the EventLogFragment. We also
attach two extras to this Intent, using keys published by EventLogFragment: the
random number, plus the time of this event.

We then call sendBroadcast() on the singleton LocalBroadcastManager. This
returns a boolean value, true indicating that one or more locally-registered receivers
were delivered the Intent, false otherwise. Hence, if sendBroadcast() returns
true, we can assume that somebody in the UI layer picked up our message and is
now responsible for displaying these results to the user.

EVENT BUSES

1284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Conversely, if sendBroadcast() returns false, we must assume that the UI layer did
not receive the message, and so the service should inform the user directly, in this
case via a Notification, showing the random number as the text in the notification
drawer.

EventLogFragment and Receiving Events

EventLogFragment, therefore, is responsible for:

• Registering (and unregistering) to receive the broadcasts to be sent locally by
the service

• Doing something with those events to inform the user about the all-
important random numbers

In this case, we use a retained ListFragment with a ListView set into transcript
mode, meaning that entries are added at the bottom, and older entries scroll off the
top, like a chat transcript:

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.text.DateFormatjava.text.DateFormat;
importimport java.text.SimpleDateFormatjava.text.SimpleDateFormat;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Datejava.util.Date;
importimport java.util.Localejava.util.Locale;
importimport com.actionbarsherlock.app.SherlockListFragmentcom.actionbarsherlock.app.SherlockListFragment;

publicpublic classclass EventLogFragmentEventLogFragment extendsextends SherlockListFragment {
staticstatic finalfinal String EXTRA_RANDOM="r";
staticstatic finalfinal String EXTRA_TIME="t";
staticstatic finalfinal String ACTION_EVENT="e";
privateprivate EventLogAdapter adapter=nullnull;

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

EVENT BUSES

1285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setRetainInstance(truetrue);
getListView().setTranscriptMode(ListView.TRANSCRIPT_MODE_NORMAL);

ifif (adapter == nullnull) {
adapter=newnew EventLogAdapter();

}

setListAdapter(adapter);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter filter=newnew IntentFilter(ACTION_EVENT);

LocalBroadcastManager.getInstance(getActivity())
.registerReceiver(onEvent, filter);

}

@Override
publicpublic void onPause() {

LocalBroadcastManager.getInstance(getActivity())
.unregisterReceiver(onEvent);

supersuper.onPause();
}

classclass EventLogAdapterEventLogAdapter extendsextends ArrayAdapter<Intent> {
DateFormat fmt=newnew SimpleDateFormat("HH:mm:ss", Locale.US);

publicpublic EventLogAdapter() {
supersuper(getActivity(), android.R.layout.simple_list_item_1,

newnew ArrayList<Intent>());
}

@SuppressLint("DefaultLocale")
@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

TextView row=
(TextView)supersuper.getView(position, convertView, parent);

Intent event=getItem(position);
Date date=newnew Date(event.getLongExtra(EXTRA_TIME, 0));

row.setText(String.format("%s = %x", fmt.format(date),
event.getIntExtra(EXTRA_RANDOM, -1)));

returnreturn(row);
}

}

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
@Override

EVENT BUSES

1286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onReceive(Context context, Intent intent) {
adapter.add(intent);

}
};

}

The ListAdapter for the ListView is an EventLogAdapter, an ArrayAdapter for
Intent objects, where in getView() we populate the list rows with the time and
random value.

In onResume() and onPause(), we register for (and unregister from) the desired
broadcast, pointing to an onEvent BroadcastReceiver that adds the incoming
Intent to the EventLogAdapter. That, in turn, updates the ListView.

The result is that while the activity is in the foreground, the events will be displayed
to the user directly:

Figure 411: LocalBroadcastManager as Event Bus, Demo Activity

Whereas if events are processed while the activity is not in the foreground, a
Notification will be shown with the last results:

EVENT BUSES

1287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 412: LocalBroadcastManager as Event Bus, Demo Notification

Reference, Not Value

When you send a “real” broadcast Intent, your Intent is converted into a byte array
(courtesy of the Parcelable interface) and transmitted to other processes. This
occurs even if the recipient of the Intent is within your own process — that is what
makes LocalBroadcastManager faster, as it avoids the inter-process communication.

However, since LocalBroadcastManager does not need to send your Intent between
processes, that means it does not turn your Intent into a byte array. Instead, it just
passes the Intent along to any registered BroadcastReceiver with a matching
IntentFilter. In effect, while “real” broadcasts are pass-by-value, local broadcasts
are pass-by-reference.

This can have subtle side effects.

For example, there are a few ways that you can put a collection into an Intent extra,
such as putStringArrayListExtra(). This takes an ArrayList as a parameter. With
a real broadcast, once you send the broadcast, it does not matter what happens to
the original ArrayList — the rest of the system is working off of a copy. With a local
broadcast, though, the Intent holds onto the ArrayList you supplied via the setter.

EVENT BUSES

1288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you change that ArrayList elsewhere (e.g., clear it for reuse), the recipient of the
Intent will see those changes.

Similarly, if you put a Parcelable object in an extra, the Intent holds onto the
actual object while it is being broadcast locally, whereas a real broadcast would have
resulted in a copy. If you change the object while the broadcast is in progress, the
recipient of the broadcast will see those changes.

This can be a feature, not a bug, when used properly. But, regardless, it is a non-
trivial difference, one that you will need to keep in mind.

Limitations of Local

While LocalBroadcastManager is certainly useful, it has some serious limitations.

The biggest is that it is purely local. While traditional broadcasts can either be
internal (via setPackage()) or device-wide, LocalBroadcastManager only handles
the local case. Hence, anything that might involve other processes, such as a
PendingIntent, will not use LocalBroadcastManager. For example, you cannot
register a receiver through LocalBroadcastManager, then use a getBroadcast()
PendingIntent to try to reach that BroadcastReceiver. The PendingIntent will use
the regular broadcast Intent mechanism, which the local-only receiver will not
respond to.

Similarly, since a manifest-registered BroadcastReceiver is spawned via the
operating system upon receipt of a matching true broadcast, you cannot use such
receivers with LocalBroadcastManager. Only a BroadcastReceiver registered via
registerReceiver() on the LocalBroadcastManager will use the
LocalBroadcastManager. For example, you cannot implement the Activity-
or-Notification pattern that we will see later in this book via
LocalBroadcastManager.

Also, LocalBroadcastManager does not offer ordered or sticky broadcasts.

Square’s Otto
LocalBroadcastManager has two major advantages:

1. It is part of the Android Support package, and therefore it is part of the
officially-supported corner of the Android ecosystem

EVENT BUSES

1289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. It works like traditional broadcasts, which will make it easier for some
developers to “wrap their heads around” it

However, that same dependency on the Intent and IntentFilter structure adds
bulk and limits flexibility. Hence, it is not surprising that there are alternative event
buses to LocalBroadcastManager.

Java, outside of Android, has had a few event bus implementations. One of the more
popular ones in recent years has been the event bus that is part of Google’s Guava
family of libraries. However, while a Java event bus perhaps can be used on Android,
it may not be optimal for Android. Hence, a few projects have started with Guava’s
event bus implementation and have extended it to be a bit more Android-aware, or
perhaps even Android-centric.

Square’s Otto is one such event bus.

Basic Usage and Sample App

With LocalBroadcastManager, you work with a singleton instance, calling methods
like registerReceiver() and sendBroadcast() upon it to subscribe to and raise
events, respectively.

With Otto, you work with a singleton instance of a Bus, calling methods like
register() and post() upon it to subscribe to and raise events, respectively.

Hence, at the core, Otto behaves much like LocalBroadcastManager. What differs is
in the nature of the events and the subscribers.

With LocalBroadcastManager, events are Intents. With Otto, an event can be
whatever data type you like. Hence, you can create your own ...Event classes,
holding whatever bits of data, in whatever data types suit you — you are not
restricted to things that can go in an Intent extra. However, as has been noted on
occasion, “with great power comes great responsibility”, and so you will need to
ensure that you use this carefully and do not wind up creating some sort of memory
leak as a result. For example, do not pass something from an Activity to a Service
via a custom event, where the Service will hold onto that information for a long
time, if that “something” holds a reference back to the Activity.

With LocalBroadcastManager, subscribers are BroadcastReceivers, who use an
IntentFilter to identify which events they are interested in. With Otto, subscribers
are any class you want. A special @Subscribe annotation is used to both indicate

EVENT BUSES

1290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://square.github.io/otto/
http://en.wikipedia.org/wiki/Uncle_Ben#.22With_great_power_comes_great_responsibility.22

what sorts of events the subscriber is interested in (based on the parameter to the
annotated method) and what method should be invoked when a matching event is
raised (the annotated method itself). Hence, not only do you use custom event
classes to allow you to carry along custom data, but you use them as a filtering
mechanism, much like you would use custom action strings with
LocalBroadcastManager.

To see how this works, take a look at the EventBus/Otto sample project, which is a
clone of the EventBus/LocalBroadcastManager demo, but one where we substitute
in Otto as a replacement for LocalBroadcastManager. Our activity and
PollReceiver are unchanged: they did not directly interact with
LocalBroadcastManager and do not need to interact with Otto. The changes are
isolated in our ScheduledService and EventLogFragment.

ScheduledService and Sending Events

First, we need a singleton Otto Bus instance, that serves the same basic role as does
the singleton LocalBroadcastManager retrieved by getInstance(). However, Otto
does not offer a similar getInstance() method. It is up to you to create and manage
your own singleton. This gives you greater flexibility, such as having multiple
independent buses for disparate event channels. However, it does mean that you
need to put a Bus somewhere.

Fortunately, Bus does not need a Context, and so we can initialize a singleton as a
static data member somewhere. Here, the “somewhere” is on ScheduledService:

staticstatic finalfinal Bus bus=newnew Bus(ThreadEnforcer.ANY);

The parameter to the Bus constructor is the threading rule to be enforced on this
bus. If you attempt to use the Bus on a thread that is disallowed by the supplied
ThreadEnforcer, you will get an IllegalStateException at runtime.
ThreadEnforcer.MAIN ensures that you only use the Bus on Android’s main
application thread. ThreadEnforcer.ANY allows the use of the Bus on any thread…
though then you will need to do your own work to route control back to the main
application thread, if needed.

Now, when it comes time for us to send a message, we can call post() on the Bus,
supplying whatever sort of event object that we want:

@Override
protectedprotected void doWakefulWork(Intent intent) {

EVENT BUSES

1291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/Otto
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/Otto

bus.post(newnew RandomEvent(rng.nextInt()));
}

Here, we are posting an instance of a RandomEvent:

packagepackage com.commonsware.android.eventbus.otto;

importimport java.util.Calendarjava.util.Calendar;
importimport java.util.Datejava.util.Date;

publicpublic classclass RandomEventRandomEvent {
Date when=Calendar.getInstance().getTime();
int value;

RandomEvent(int value) {
thisthis.value=value;

}
}

EventLogFragment and Receiving Events

Over in our EventLogFragment, rather than register and unregister a
BroadcastReceiver in onResume() and onPause(), we register and unregister the
fragment itself with the singleton Bus:

@Override
publicpublic void onResume() {

supersuper.onResume();

ScheduledService.bus.register(thisthis);
}

@Override
publicpublic void onPause() {

ScheduledService.bus.unregister(thisthis);

supersuper.onPause();
}

Now, we can use the @Subscribe annotation to arrange to receive any event we want
that is delivered via this Bus, based on event class. Since we want to receive
RandomEvent messages, we merely need to have a public void method, taking a
RandomEvent parameter, marked with the @Subscribe annotation, such as
onRandomEvent():

@Subscribe
publicpublic void onRandomEvent(finalfinal RandomEvent event) {

ifif (getActivity() != nullnull) {
getActivity().runOnUiThread(newnew Runnable() {

EVENT BUSES

1292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void run() {

adapter.add(event);
}

});
}

}

Note that the method name can be anything we want, as it is the annotation, not the
method name, that identifies this as being an event handling method.

In this method, we can do what we need to with our RandomEvent. In our case,
EventLogAdapter has been modified to be an ArrayAdapter of RandomEvent, as
opposed to being an ArrayAdapter of Intent as in the earlier sample. What we want
to do is append the new RandomEvent to the end of the adapter.

However, while LocalBroadcastManager will only deliver events on the main
application thread, Otto delivers events on whatever thread they were sent upon. In
this case, we know that this will be a background thread, the one used by the
IntentService. We cannot safely modify the EventLogAdapter on a background
thread, as that will update the UI. So, we need to call add() on the adapter on the
main application thread. Here, we use runOnUiThread() to pass a Runnable to the
main application thread containing our add() call. However, it is possible that we do
not have an activity right this moment, such as due to a configuration change. This
demo simply drops those events; a production-grade app might wish to queue those
within the fragment and apply them in some later lifecycle event (e.g., onAttach(),
onActivityCreated()).

Handling the “Nobody’s Home” Scenario

What is missing, though, is the logic we used in LocalBroadcastManager to
determine if somebody received our message, where we raised a Notification if
that is not the case.

The solution for this with Otto is to have ScheduledService listen for DeadEvent
events. A DeadEvent is delivered on the bus when an attempt to deliver some other
event failed with no subscribers. The DeadEvent has an event field that contains the
original event that failed to be delivered. If we can get the DeadEvent, we know the
RandomEvent was not handled at the UI layer, and we can raise the Notification.

To do this, not only do we need to register EventLogFragment with the Bus, but we
also need to register ScheduledService itself, so it can listen for a DeadEvent:

EVENT BUSES

1293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onCreate() {

supersuper.onCreate();

bus.register(thisthis);
}

@Override
publicpublic void onDestroy() {

bus.unregister(thisthis);

supersuper.onDestroy();
}

Then, our Notification logic can be moved into some method that has the
@Subscribe annotation and a DeadEvent parameter:

@Subscribe
publicpublic void onDeadEvent(DeadEvent braiiiiiiinz) {

RandomEvent original=(RandomEvent)braiiiiiiinz.event;
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(original.value))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

Event Producers

Standard broadcasts in Android can be broadcast in a “sticky” fashion. When an app
registers for a sticky broadcast, not only does the app get any future matching
broadcasts, but immediately it gets the last-broadcast Intent that matches.

LocalBroadcastManager does not offer a similar capability, and neither does Otto in
the direct sense. However, Otto does have the concept of event producers, which can
play a similar role.

EVENT BUSES

1294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can annotate a method with @Produce, to indicate that it is an event producer.
The method should take no parameters, but its return type should be one of your
event classes (e.g., RandomEvent).

When an app calls register() on a Bus, Otto finds all of the @Subscribe-annotated
methods and keeps track of them, for dispatching future events. However, in
addition, Otto also checks to see if there is a matching event producer for the event
type requested by the @Subscribe method. If there is a matching producer, the
producer method is called, and that event is passed to the subscriber immediately,
as part of the register() processing.

So, if we had a @Produce method in the sample app that returned a RandomEvent, the
onRandomEvent() method would have been invoked immediately with the result of
calling that @Produce method, in addition to being called with any future events
raised by the app.

This is useful for cases where there may be interruptions in event processing. For
example, in a configuration change, your activity and fragments are destroyed and
recreated by default. But if you are posting events on a background thread, as we did
in the sample, those events could occur while a configuration change is in process,
and there may not be an available subscriber for the event right at that moment. The
@Produce pattern would allow you to cache that result and give it to the new activity
or fragment.

greenrobot’s EventBus
Of the three major in-process event bus implementations, greenrobot’s EventBus is
slightly less popular than LocalBroadcastManager and Otto.
LocalBroadcastManager is part of the Android SDK (albeit in the Android Support
package), and so it will gain popularity from that status alone. Square has a vast
range of libraries and has a following simply from all the work they have done, plus
the work of individual Square engineers (e.g., Jake Wharton, author of
ActionBarSherlock, ViewPagerIndicator, and many others).

This is not to say that greenrobot’s EventBus is weaker than the alternatives. In fact,
it may be the most powerful of the three. Like Otto, greenrobot’s EventBus has
Guava’s EventBus in its heritage. Unlike Otto, greenrobot eschewed annotations,
opting instead for a convention-based system utilizing method name patterns, to
avoid the overhead of runtime annotations on Android prior to 4.0.

EVENT BUSES

1295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://greenrobot.github.io/EventBus/

The EventBus/GreenRobot sample project is a clone of the EventBus/Otto project,
replacing Otto with greenrobot’s EventBus, that we will examine in this section.

Basic Usage and Sample App

As both Otto and greenrobot’s EventBus have Guava’s EventBus as antecedents, the
flow of using both is similar, just with differing details.

ScheduledService

ScheduledService has a very similar feel to its Otto equivalent:

packagepackage com.commonsware.android.eventbus.greenrobot;

importimport android.app.Notificationandroid.app.Notification;
importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport java.util.Randomjava.util.Random;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
privateprivate staticstatic int NOTIFY_ID=1337;
privateprivate Random rng=newnew Random();

publicpublic ScheduledService() {
supersuper("ScheduledService");

}

@Override
publicpublic void onCreate() {

supersuper.onCreate();

EventBus.getDefault().register(thisthis, 0);
}

@Override
protectedprotected void doWakefulWork(Intent intent) {

EventBus.getDefault().post(newnew RandomEvent(rng.nextInt()));
}

@Override
publicpublic void onDestroy() {

EventBus.getDefault().unregister(thisthis);

supersuper.onDestroy();
}

EVENT BUSES

1296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/GreenRobot
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/GreenRobot

publicpublic void onEvent(RandomEvent event) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(event.value))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

}

There are only two significant differences.

First, we use EventBus.getDefault() to get the stock EventBus singleton, rather
than create our own instance as we did with Otto. We could create our own instance,
though, as opposed to LocalBroadcastManager, which seems to prefer its own
singleton.

Second, instead of having an onDeadEvent() @Subscribe method, we register our
own event handler for the RandomEvent, by calling register() on the EventBus
instance in onCreate(). Version 2.2.0 of greenrobot’s EventBus added ordered event
handling, modeled after the ordered broadcasts supplied by Android. The two-
parameter form of register() takes a priority as the second parameter, with higher
numbers indicating higher priority.

The service itself then has an onEvent() method for our RandomEvent, where it raises
the Notification. When using greenrobot’s EventBus, rather than using
annotations to denote event-handling methods, we use a naming scheme: onEvent()
(or variations on that theme, as will be seen shortly). Since Java allows method
overloading with different parameter lists, this works just fine — we can have N
event-handling methods in a class, with N different event types as the parameter.
The greenrobot code simply finds all of the event-handling methods by name, rather
than by annotation. This does limit the flexibility in choosing method names,
though.

EVENT BUSES

1297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

EventLogFragment

The modified EventLogFragment also uses EventBus.getDefault() to register and
unregister from the default bus instance. It too has a renamed event-handling
method, now called onEvent():

publicpublic void onEvent(finalfinal RandomEvent event) {
getActivity().runOnUiThread(newnew Runnable() {

@Override

The default behavior of threading with greenrobot’s EventBus is to deliver the event
on the same thread that raised the event, much like Otto and
LocalBroadcastManager. Hence, we use runOnUiThread() to arrange to update the
ArrayAdapter on the main application thread, as our event is raised by the
background thread from our WakefulIntentService.

Our onEvent() method also calls cancelEventDelivery(), which is analogous to
abortBroadcast() with ordered broadcasts. This prevents lower-priority event
handlers from receiving the event.

This works, because we registered this event handler with a priority of 1, higher than
the 0 we used with the service:

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().register(thisthis, 1);
}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

Hence, while the fragment is in the foreground, it will handle the RandomEvent;
otherwise, the service will.

Other Notable Capabilities

The biggest change you can (sometimes) utilize with greenrobot’s EventBus is to
have events delivered to alternative threads. This is denoted by adding a suffix to the
onEvent() method name. For example, having a MainThread suffix on the method

EVENT BUSES

1298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

name indicates to greenrobot’s EventBus that we want this method to be called on
the process’ main application thread. With Otto, the only thread we can be called on
is the thread used for posting the event. That is the default behavior with
greenrobot’s EventBus too, so the onEvent() method in ScheduledService is
supposed to be called on the thread where we used post(). However, the suffix
system allows you to designate another thread. There are three possible suffix
values:

• MainThread, to deliver the event on the main application thread
• BackgroundThread, which will use the current thread if it is not the main

application thread, otherwise will use a separate thread
• Async, which will always use a separate thread

If our fragment’s method were named onEventMainThread(), we would get our
RandomEvent on the main application thread, and we can add the event to the
EventLogAdapter directly, avoiding the extra Runnable and runOnUiThread() logic
that is used currently.

However, the ordered event system has a key limitation: it only works with the “post
thread” (i.e., the default behavior of onEvent() with no suffix). Since we are using
the ordered event system, we cannot take advantage of greenrobot’s alternative
thread delivery system.

In addition to the threading features, greenrobot’s EventBus has a few other
noteworthy bells and whistles:

• register() and unregister() optionally take an event class (e.g.,
RandomEvent.class) as a second parameter, allowing you to register and
unregister from specific events, in addition to the default behavior of
registering for all events for which you have handlers.

• postSticky() and registerSticky() allow you to have sticky events, much
like sticky broadcasts with the classic broadcast Intent system.

• Whereas Otto matches events only on the concrete base event class itself,
greenrobot’s EventBus also allows you to register event handlers for event
class superclasses. For example, you could have a common AppEvent base
class, with subclasses for specific scenarios, and have some object register
with an onEvent(AppEvent) method to find out about all of your events that
inherit from AppEvent.

EVENT BUSES

1299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Home Screen Effects

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Home Screen App Widgets

One of the oft-requested features added in Android 1.5 was the ability to add live
elements to the home screen. Called “app widgets”, these can be added by users via a
long-tap on the home screen and choosing an appropriate widget from the available
roster. Android ships with a few app widgets, such as a music player, but developers
can add their own — in this chapter, we will see how this is done.

For the purposes of this book, “app widgets” will refer to these items that go on the
home screen. Other uses of the term “widget” will be reserved for the UI widgets,
subclasses of View, usually found in the android.widget Java package.

In this chapter, we briefly touch on the security ramifications of app widgets, before
continuing on to discuss how Android offers a secure app widget framework. We
then go through all the steps of creating a basic app widget. Next, we discuss how to
deal with multiple instances of your app widget, the app widget lifecycle, alternative
models for updating app widgets, and how to offer multiple layouts for your app
widget (perhaps based on device characteristics). We wrap with some notes about
hosting your own app widgets in your own home screen implementation.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on:

• basic widgets
• broadcast Intents
• services

1301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

East is East, and West is West…
Part of the reason it took as long as it did for app widgets to become available is
security.

Android’s security model is based heavily on Linux user, file, and process security.
Each application is (normally) associated with a unique user ID. All of its files are
owned by that user, and its process(es) run as that user. This prevents one
application from modifying the files of another or otherwise injecting their own
code into another running process.

In particular, the core Android team wanted to find a way that would allow app
widgets to be displayed by the home screen application, yet have their content come
from another application. It would be dangerous for the home screen to run
arbitrary code itself or somehow allow its UI to be directly manipulated by another
process.

The app widget architecture, therefore, is set up to keep the home screen application
independent from any code that puts app widgets on that home screen, so bugs in
one cannot harm the other.

The Big Picture for a Small App Widget
The way Android pulls off this bit of security is through the use of RemoteViews.

The application component that supplies the UI for an app widget is not an
Activity, but rather a BroadcastReceiver (often in tandem with a Service). The
BroadcastReceiver, in turn, does not inflate a normal View hierarchy, like an
Activity would, but instead inflates a layout into a RemoteViews object.

RemoteViews encapsulates a limited edition of normal widgets, in such a fashion that
the RemoteViews can be “easily” transported across process boundaries. You
configure the RemoteViews via your BroadcastReceiver and make those
RemoteViews available to Android. Android in turn delivers the RemoteViews to the
app widget host (usually the home screen), which renders them to the screen itself.

This architectural choice has many impacts:

• You do not have access to the full range of widgets and containers. You can
use FrameLayout, LinearLayout, and RelativeLayout for containers, and

HOME SCREEN APP WIDGETS

1302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AnalogClock, Button, Chronometer, ImageButton, ImageView, ProgressBar,
and TextView for widgets. And, on API Level 11 and higher, you can use some
AdapterView-based widgets, like ListView, as we will examine in the next
chapter. And, as of API Level 16 (Android 4.1), you can use GridLayout… but
not its backport on earlier devices.

• The only user input you can get is clicks of the Button and ImageButton
widgets. In particular, there is no EditText for text input.

• Because the app widgets are rendered in another process, you cannot simply
register an OnClickListener to get button clicks; rather, you tell
RemoteViews a PendingIntent to invoke when a given button is clicked.

• You do not hold onto the RemoteViews and reuse them yourself. Rather, the
pattern appears to be that you create and send out a brand-new RemoteViews
whenever you want to change the contents of the app widget. This, coupled
with having to transport the RemoteViews across process boundaries, means
that updating the app widget is rather expensive in terms of CPU time,
memory, and battery life.

• Because the component handling the updates is a BroadcastReceiver, you
have to be quick (lest you take too long and Android consider you to have
timed out), you cannot use background threads, and your component itself
is lost once the request has been completed. Hence, if your update might
take a while, you will probably want to have the BroadcastReceiver start a
Service and have the Service do the long-running task and eventual app
widget update.

Crafting App Widgets
This will become somewhat easier to understand in the context of some sample
code. In the AppWidget/PairOfDice project, you will find an app widget that displays
a roll of a pair of dice. Clicking on the app widget re-rolls, in case you want a better
result.

The Manifest

First, we need to register our BroadcastReceiver implementation in our
AndroidManifest.xml file, along with a few extra features:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.appwidget.dice"
android:versionCode="1"
android:versionName="1.0">>

HOME SCREEN APP WIDGETS

1303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/PairOfDice
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/PairOfDice

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-feature<uses-feature
android:name="android.software.app_widgets"
android:required="true"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver

android:name=".AppWidget"
android:icon="@drawable/cw"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>/>

</receiver></receiver>

<activity<activity
android:name="PairOfDiceActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Here, along with a do-nothing activity, we have a <receiver>. Of note:

1. Our <receiver> has android:label and android:icon attributes, which are
not normally needed on BroadcastReceiver declarations. However, in this
case, those are used for the entry that goes in the menu of available widgets
to add to the home screen. Hence, you will probably want to supply values

HOME SCREEN APP WIDGETS

1304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for both of those, and use appropriate resources in case you want
translations for other languages.

2. Our <receiver> has an <intent-filter> for the
android.appwidget.action.APPWIDGET_UPDATE action. This means we will
get control whenever Android wants us to update the content of our app
widget. There may be other actions we want to monitor — more on this in a
later section.

3. Our <receiver> also has a <meta-data> element, indicating that its
android.appwidget.provider details can be found in the res/xml/
widget_provider.xml file. This metadata is described in the next section.

The uses-feature Element

If the central point of your application is to provide an app widget, you should
strongly consider adding a <uses-feature> element to advertise this fact to markets
like the Play Store:

<uses-feature<uses-feature android:name="android.software.app_widgets"
android:required="true" />/>

In principle, having this element means that markets should block the installation
of your app on devices where there is no app-widget-capable home screen or other
known places for supporting app widgets.

If, however, your app has an app widget, but it is an adjunct to other forms of UI
(typically a launcher activity), then you may wish to leave off this <uses-feature>
element, or set it to android:required="false".

The Metadata

Next, we need to define the app widget provider metadata. This has to reside at the
location indicated in the manifest — in this case, in res/xml/widget_provider.xml:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="144dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:initialLayout="@layout/widget"

/>/>

Here, we provide four pieces of information:

HOME SCREEN APP WIDGETS

1305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. The minimum width and height of the app widget (android:minWidth and
android:minHeight). These are approximate — the app widget host (e.g.,
home screen) will tend to convert these values into “cells” based upon the
overall layout of the UI where the app widgets will reside. However, they
should be no smaller than the minimums cited here. Also, ideally, you use
dip instead of px for the dimensions, so the number of cells will remain
constant regardless of screen density.

2. The frequency in which Android should request an update of the widget’s
contents (android:updatePeriodMillis). This is expressed in terms of
milliseconds, so a value of 3600000 is a 60-minute update cycle. Note that
the minimum value for this attribute is 30 minutes — values less than that
will be “rounded up” to 30 minutes. Hence our 15-minute (900000
millisecond) request will actually result in an update every 30 minutes.

3. The initial layout to use for the app widget, for the time between when the
user requests the app widget and when onUpdate() of our
AppWidgetProvider gets control.

Note that the calculations for determining the number of cells for an app widget
varies. The dip dimension value for an N-cell dimension was (74 * N) - 2 (e.g., a 2x3
cell app widget would request a width of 146dip and a height of 220dip). The value
as of API Level 14 (a.k.a., Ice Cream Sandwich) is now (70 * N) - 30 (e.g., a 2x3 cell
app widget would request a width of 110dip and a height of 180dip). To have your
app widgets maintain a consistent number of cells, you will need two versions of
your app widget metadata XML, one in res/xml-v14/ (with the API Level 14
calculation) and one in res/xml/ (for prior versions of Android).

The Layout

Eventually, you are going to need a layout that describes what the app widget looks
like. You need to stick to the widget and container classes noted above; otherwise,
this layout works like any other layout in your project.

For example, here is the layout for the PairOfDice app widget:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/background"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
>>

<ImageView<ImageView android:id="@+id/left_die"

HOME SCREEN APP WIDGETS

1306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:src="@drawable/die_5"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"

/>/>
<ImageView<ImageView android:id="@+id/right_die"

android:layout_centerVertical="true"
android:layout_alignParentRight="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginRight="7dip"

/>/>
</RelativeLayout></RelativeLayout>

All we have is a pair of ImageView widgets (one for each die), inside of a
RelativeLayout. The RelativeLayout has a background, specified as a nine-patch
PNG file. This allows the RelativeLayout to have guaranteed contrast with whatever
wallpaper is behind it, so the user can tell the actual app widget bounds.

The BroadcastReceiver

Next, we need a BroadcastReceiver that can get control when Android wants us to
update our RemoteViews for our app widget. To simplify this, Android supplies an
AppWidgetProvider class we can extend, instead of the normal BroadcastReceiver.
This simply looks at the received Intent and calls out to an appropriate lifecycle
method based on the requested action.

The one method that invariably needs to be implemented on the provider is
onUpdate(). Other lifecycle methods may be of interest and are discussed later in
this chapter.

For example, here is the implementation of the AppWidgetProvider for PairOfDice:

packagepackage com.commonsware.android.appwidget.dice;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.appwidget.AppWidgetProviderandroid.appwidget.AppWidgetProvider;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass AppWidgetAppWidget extendsextends AppWidgetProvider {
privateprivate staticstatic finalfinal int[] IMAGES={R.drawable.die_1,R.drawable.die_2,

HOME SCREEN APP WIDGETS

1307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

R.drawable.die_3,R.drawable.die_4,
R.drawable.die_5,R.drawable.die_6};

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager mgr,

int[] appWidgetIds) {
ComponentName me=newnew ComponentName(ctxt, AppWidget.class);

mgr.updateAppWidget(me, buildUpdate(ctxt, appWidgetIds));
}

privateprivate RemoteViews buildUpdate(Context ctxt, int[] appWidgetIds) {
RemoteViews updateViews=newnew RemoteViews(ctxt.getPackageName(),

R.layout.widget);

Intent i=newnew Intent(ctxt, AppWidget.class);

i.setAction(AppWidgetManager.ACTION_APPWIDGET_UPDATE);
i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS, appWidgetIds);

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0 , i,

PendingIntent.FLAG_UPDATE_CURRENT);

updateViews.setImageViewResource(R.id.left_die,
IMAGES[(int)(Math.random()*6)]);

updateViews.setOnClickPendingIntent(R.id.left_die, pi);
updateViews.setImageViewResource(R.id.right_die,

IMAGES[(int)(Math.random()*6)]);
updateViews.setOnClickPendingIntent(R.id.right_die, pi);
updateViews.setOnClickPendingIntent(R.id.background, pi);

returnreturn(updateViews);
}

}

To update the RemoteViews for our app widget, we need to build those RemoteViews
(delegated to a buildUpdate() helper method) and tell an AppWidgetManager to
update the widget via updateAppWidget(). In this case, we use a version of
updateAppWidget() that takes a ComponentName as the identifier of the widget to be
updated. Note that this means that we will update all instances of this app widget
presently in use — the concept of multiple app widget instances is covered in greater
detail later in this chapter.

Working with RemoteViews is a bit like trying to tie your shoes while wearing
mittens — it may be possible, but it is a bit clumsy. In this case, rather than using
methods like findViewById() and then calling methods on individual widgets, we
need to call methods on RemoteViews itself, providing the identifier of the widget we
wish to modify. This is so our requests for changes can be serialized for transport to

HOME SCREEN APP WIDGETS

1308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the home screen process. It does, however, mean that our view-updating code looks
a fair bit different than it would if this were the main View of an activity or row of a
ListView.

To create the RemoteViews, we use a constructor that takes our package name and
the identifier of our layout. This gives us a RemoteViews that contains all of the
widgets we declared in that layout, just as if we inflated the layout using a
LayoutInflater. The difference, of course, is that we have a RemoteViews object, not
a View, as the result.

We then use methods like:

1. setImageViewResource() to set the image for each of our ImageView widgets,
in this case a randomly chosen die face (using graphics created from a set of
SVG files from the OpenClipArt site)

2. setOnClickPendingIntent() to provide a PendingIntent that should get
fired off when a die, or the overall app widget background, is clicked

We then supply that RemoteViews to the AppWidgetManager, which pushes the
RemoteViews structure to the home screen, which renders our new app widget UI.

The Result

If you compile and install all of this, you will have a new app widget entry available.
How you add app widgets to the home screen varies based upon Android version
and the home screen implementation, and there are too many possibilities to try to
list here.

No matter how you add the Pair of Dice, the app widget will appear on the home
screen:

HOME SCREEN APP WIDGETS

1309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.openclipart.org/search/?query=dice

Figure 413: Pair of Dice, In Action

Another and Another
As indicated above, you can have multiple instances of the same app widget
outstanding at any one time. For example, one might have multiple picture frames,
or multiple “show-me-the-latest-RSS-entry” app widgets, one per feed. You will
distinguish between these in your code via the identifier supplied in the relevant
AppWidgetProvider callbacks (e.g., onUpdate()).

If you want to support separate app widget instances, you will need to store your
state on a per-app-widget-identifier basis. You will also need to use an appropriate
version of updateAppWidget() on AppWidgetManager when you update the app
widgets, one that takes app widget identifiers as the first parameter, so you update
the proper app widget instances.

Conversely, there is nothing requiring you to support multiple instances as
independent entities. For example, if you add more than one PairOfDice app widget
to your home screen, nothing blows up – they just show the same roll. That is
because PairOfDice uses a version of updateAppWidget() that does not take any app
widget IDs, and therefore updates all app widgets simultaneously.

HOME SCREEN APP WIDGETS

1310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

App Widgets: Their Life and Times
There are three other lifecycle methods that AppWidgetProvider offers that you may
be interested in:

1. onEnabled() will be called when the first widget instance is created for this
particular widget provider, so if there is anything you need to do once for all
supported widgets, you can implement that logic here

2. onDeleted() will be called when a widget instance is removed from the
home screen, in case there is any data you need to clean up specific to that
instance

3. onDisabled() will be called when the last widget instance for this provider is
removed from the home screen, so you can clean up anything related to all
such widgets

Note, however, that there is a bug in Android 1.5, where onDeleted() will not be
properly called. You will need to implement onReceive() and watch for the
ACTION_APPWIDGET_DELETED action in the received Intent and call onDeleted()
yourself. This has since been fixed, and if you are not supporting Android 1.5, you
will not need to worry about this problem.

Controlling Your (App Widget’s) Destiny
As PairOfDice illustrates, you are not limited to updating your app widget only
based on the timetable specified in your metadata. That timetable is useful if you
can get by with a fixed schedule. However, there are cases in which that will not
work very well:

1. If you want the user to be able to configure the polling period (the metadata
is baked into your APK and therefore cannot be modified at runtime)

2. If you want the app widget to be updated based on external factors, such as a
change in location

The recipe shown in PairOfDice will let you use AlarmManager (described in another
chapter) or proximity alerts or whatever to trigger updates. All you need to do is:

1. Arrange for something to broadcast an Intent that will be picked up by the
BroadcastReceiver you are using for your app widget provider

2. Have the provider process that Intent directly or pass it along to a Service
(such as an IntentService)

HOME SCREEN APP WIDGETS

1311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, note that the updatePeriodMillis setting not only tells the app widget to
update every so often, it will even wake up the phone if it is asleep so the widget can
perform its update. On the plus side, this means you can easily keep your widgets up
to date regardless of the state of the device. On the minus side, this will tend to
drain the battery, particularly if the period is too fast. If you want to avoid this
wakeup behavior, set updatePeriodMillis to 0 and use AlarmManager to control the
timing and behavior of your widget updates.

Note that if there are multiple instances of your app widget on the user’s home
screen, they will all update approximately simultaneously if you are using
updatePeriodMillis. If you elect to set up your own update schedule, you can
control which app widgets get updated when, if you choose.

Change Your Look
If you have been doing most of your development via the Android emulator, you are
used to all “devices” having a common look and feel, in terms of the home screen,
lock screen, and so forth. This is the so-called “Google Experience” look, and many
actual Android devices have it.

However, some devices have their own presentation layers. HTC has “Sense”, seen on
the HTC Hero and HTC Tattoo, among other devices. Motorola has MOTOBLUR,
seen on the Motorola CLIQ and DEXT. Other device manufacturers, like Sony
Ericsson, Samsung, and LG, have followed suit, as will others in the future. These
presentation layers replace the home screen and lock screen, among other things.
Moreover, they usually come with their own suite of app widgets with their own look
and feel. Your app widget may look fine on a Google Experience home screen, but
the look might clash when viewed on a Sense or MOTOBLUR device.

Fortunately, there are ways around this. You can set your app widget’s look on the fly
at runtime, to choose the layout that will look the best on that particular device.

The first step is to create an app widget layout that is initially invisible (res/layout/
invisible.xml):

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="invisible"

HOME SCREEN APP WIDGETS

1312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

>>
</RelativeLayout></RelativeLayout>

This layout is then the one you would reference from your app widget metadata, to
be used when the app widget is first created:

<appwidget-provider<appwidget-provider
xmlns:android="http://schemas.android.com/apk/res/android"

android:minWidth="292dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:configure="com.commonsware.android.appwidget.TWPrefs"
android:initialLayout="@layout/invisible"

/>/>

This ensures that when your app widget is initially added, you do not get the
“Problem loading widget” placeholder, yet you also do not choose one layout versus
another — it is simply invisible for a brief moment.

Then, in your AppWidgetProvider (or attached IntentService), you can make the
choice of what layout to inflate as part of your RemoteViews. Rather than using the
invisible one, you can choose one based on the device or other characteristics. The
biggest challenge is that there is no good way to determine what presentation layer,
if any, is in use on a device. For the time being, you will need to use the various fields
in the android.os.Build class to “sniff” on the device model and make a decision
that way.

One Size May Not Fit All
It may be that you want to offer multiple app widget sizes to your users. Some might
only want a small app widget. Some might really like what you have to offer and
want to give you more home screen space to work in.

Android 1.x/2.x

The good news: this is easy to do.

The bad news: it requires you, in effect, to have one app widget per size.

The size of an app widget is determined by the app widget metadata XML file. That
XML file is tied to a <receiver> element in the manifest representing one app
widget. Hence, to have multiple sizes, you need multiple metadata files and multiple
<receiver> elements.

HOME SCREEN APP WIDGETS

1313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This also means your app widgets will show up multiple times in the app widget
selection list, when the user goes to add an app widget to their home screen. Hence,
supporting many sizes will become annoying to the user, if they perceive you are
“spamming” the app widget list. Try to keep the number of app widget sizes to a
reasonable number (say, one or two sizes).

Android 3.0+

As of API Level 11, it is possible to have a resizeable app widget. To do this, you can
have an android:resizeMode attribute in your widget metadata, with a value of
horizontal, vertical, or both (e.g., horizontal|vertical). When the user long-
taps on an existing widget, they should see handles to allow the widget to be resized:

Figure 414: API Demos App Widget, Resizing

You can also have android:minResizeWidth and android:minResizeHeight
attributes, measured in dp, that indicate the approximate smallest size that your app
widget can support. These values will be interpreted in terms of “cells”, as with the
android:minWidth and android:minHeight attributes, and so the dp values you
supply will not be used precisely.

HOME SCREEN APP WIDGETS

1314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, for Android 3.x and 4.0 (API Level 11–15), your code would not be informed
about being resized. You had to simply ensure that your layout would intelligently
use any extra space automatically. Hence, resizing tended to be used primarily with
adapter-driven app widgets, as will be discussed in the next chapter.

Starting with API Level 16, though, you can find out when the user resizes your app
widget, so you can perhaps use a different layout for a different size, or otherwise
adapt to the available space. Finding out about resize events takes a bit more work,
as is illustrated in the AppWidget/Resize sample project.

This app widget project is similar to PairOfDice, described earlier in this chapter.
However, our layout skips the dice, replacing them with a TextView widget in the
RelativeLayout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/background"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
android:orientation="horizontal">>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:textAppearance="?android:attr/textAppearanceMedium">>

</TextView></TextView>

</RelativeLayout></RelativeLayout>

Our widget_provider.xml resource stipulates our desired android:resizeMode and
minimum resize dimensions:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="180dip"
android:minHeight="110dip"
android:minResizeWidth="110dip"
android:minResizeHeight="40dip"
android:initialLayout="@layout/widget"
android:resizeMode="horizontal|vertical"

/>/>

Finding out about app widget resizing is a different event than finding out about app
widget updates. Hence, we need to add a new <action> element to the

HOME SCREEN APP WIDGETS

1315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/Resize
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/Resize

<intent-filter> of our <receiver> in the manifest, indicating that we want
APPWIDGET_OPTIONS_CHANGED as well as ACTION_UPDATE:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver

android:name="AppWidget"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
<action<action

android:name="android.appwidget.action.APPWIDGET_OPTIONS_CHANGED"/>/>
</intent-filter></intent-filter>

Then, our app widget implementation can override an
onAppWidgetOptionsChanged() method:

@Override
publicpublic void onAppWidgetOptionsChanged(Context ctxt,

AppWidgetManager mgr,
int appWidgetId,
Bundle newOptions) {

RemoteViews updateViews=
newnew RemoteViews(ctxt.getPackageName(), R.layout.widget);

String msg=
String.format(Locale.getDefault(),

"[%d-%d] x [%d-%d]",

newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MIN_WIDTH),

newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MAX_WIDTH),

newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MIN_HEIGHT),

newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MAX_HEIGHT));

updateViews.setTextViewText(R.id.size, msg);

mgr.updateAppWidget(appWidgetId, updateViews);
}

You will notice that we skip onUpdate(). We will be called with
onAppWidgetOptionsChanged() when the app widget is added and resized. Hence, in
the case of this app widget, we can define what the app widget looks like from
onAppWidgetOptionsChanged(), eschewing onUpdate(). That being said, more
typical app widgets will wind up implementing both methods, especially if they are

HOME SCREEN APP WIDGETS

1316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supporting lower API levels than 16, where onAppWidgetOptionsChanged() will not
be called.

Also remember that your process may well be terminated in between calls to app
widget lifecycle methods like onUpdate() and onAppWidgetOptionsChanged().
Hence, if there is data from one method that you want in the other, be sure to
persist that data somewhere.

In the AppWidget implementation of onAppWidgetOptionsChanged(), we can find out
about our new app widget size by means of the Bundle supplied to our method.
What we cannot find out is our exact size. Rather, we are provided minimum and
maximum dimensions of our app widget via four values in the Bundle:

• AppWidgetManager.OPTION_APPWIDGET_MIN_WIDTH
• AppWidgetManager.OPTION_APPWIDGET_MAX_WIDTH
• AppWidgetManager.OPTION_APPWIDGET_MIN_HEIGHT
• AppWidgetManager.OPTION_APPWIDGET_MAX_HEIGHT

In our case, we grab these int values and pour them into a String template, using
that to fill in the TextView of the app widget’s contents.

When our app widget is initially launched, we show our initial size ranges:

HOME SCREEN APP WIDGETS

1317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 415: Resize Widget, As Initially Added

When the user resizes our app widget, we show the new size ranges:

HOME SCREEN APP WIDGETS

1318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 416: Resize Widget, During Resize Operation

However, not all home screen implementations will necessarily send the
APPWIDGET_OPTIONS_CHANGED when an app widget is added to the home screen, only
when the user resizes it later. For example, while the emulator’s home screen for
Android 4.1 broadcasts APPWIDGET_OPTIONS_CHANGED, it does not for 4.2 or 4.3.
Hence, you may want to also examine the size information in onUpdate() as well, so
that you react to the initial size as well as any future sizes. One way to do this is to
simply iterate over the supplied app widget IDs and invoke your own
onAppWidgetOptionsChanged() method:

// based on http://stackoverflow.com/a/18552461/115145

@Override
publicpublic void onUpdate(Context context,

AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

supersuper.onUpdate(context, appWidgetManager, appWidgetIds);

forfor (int appWidgetId : appWidgetIds) {
Bundle options=appWidgetManager.getAppWidgetOptions(appWidgetId);

onAppWidgetOptionsChanged(context, appWidgetManager, appWidgetId,
options);

HOME SCREEN APP WIDGETS

1319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Lockscreen Widgets
Android’s lockscreen (a.k.a., the keyguard) has long been unmodifiable by
developers. This led to a number of developers creating so-called “replacement
lockscreens”, which generally reduce device security, as they can be readily bypassed.
However, with API Level 17 (Android 4.2), developers now can create app widgets
that the user can deploy to the lockscreen, helping to eliminate the need for
“replacement lockscreens”.

Declaring that an app widget supports being on the lockscreen instead of (or in
addition to) the home screen is very easy. All you must do is add an
android:widgetCategory attribute to your app widget metadata resource. That
attribute should have a value of either keyguard (for the lockscreen), home_screen,
or both (e.g., keyguard|home_screen), depending upon where you want the app
widget to be eligible. By default, if this attribute is missing, Android assumes a
default value of home_screen.

Users cannot resize the lockscreen widgets at this time. However, you still will want
to specify an android:resizeMode attribute in your app widget metadata, as whether
or not you include vertical resizing will affect the height of your app widget.
Lockscreen widgets without vertical will have a fixed small height on tablets, while
lockscreen widgets with vertical will fill the available height. Lockscreen widgets
on phones will always be small (to fit above the PIN/password entry area), and
lockscreen widgets on all devices will stretch to fill available space horizontally.

You can also specify a different starting layout to use when your app is added to the
lockscreen, as opposed to being added to the home screen. To do this, just add an
android:initialKeyguardLayout attribute to your app widget metadata, pointing to
the lockscreen-specific layout to use.

To see this in action, take a look at the AppWidget/TwoOrThreeDice sample project.
This is a revised clone of the PairOfDice sample, allowing the dice to be added to
the lockscreen, and showing three dice on the lockscreen instead of the two on the
home screen.

Our app widget metadata now contains the lockscreen-related attributes:
android:widgetCategory and android:initialKeyguardLayout:

HOME SCREEN APP WIDGETS

1320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/TwoOrThreeDice
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/TwoOrThreeDice

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="144dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:initialLayout="@layout/widget"
android:initialKeyguardLayout="@layout/lockscreen"
android:widgetCategory="keyguard|home_screen"

/>/>

Our lockscreen layout simply adds a third die, middle_die:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/background"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
>>

<ImageView<ImageView android:id="@+id/left_die"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:src="@drawable/die_3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"

/>/>
<ImageView<ImageView android:id="@+id/middle_die"

android:layout_centerInParent="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"
android:layout_marginRight="7dip"

/>/>
<ImageView<ImageView android:id="@+id/right_die"

android:layout_centerVertical="true"
android:layout_alignParentRight="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginRight="7dip"

/>/>
</RelativeLayout></RelativeLayout>

However, by specifying a different layout for the lockscreen widget, we have a
problem. We need to know, in our Java code, what layout to use for the RemoteViews
and how many dice need to be updated. And, ideally, we would handle this in a
backwards-compatible fashion, so our app widget will have its original functionality
on older Android devices. Plus, supporting the lockscreen makes it that much more
likely that the user will have more than one instance of our app widget (e.g., one on

HOME SCREEN APP WIDGETS

1321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the lockscreen and one on the homescreen), so we should do a better job than
PairOfDice did about handling multiple app widget instances.

To deal with the latter point, our new onUpdate() method iterates over each of the
app widget IDs supplied to it and calls a private updateWidget() method for each, so
we can better support multiple instances:

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager mgr,

int[] appWidgetIds) {
forfor (int appWidgetId : appWidgetIds) {

updateWidget(ctxt, mgr, appWidgetId);
}

}

The updateWidget() method is a bit more complicated than the PairOfDice
equivalent code:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void updateWidget(Context ctxt, AppWidgetManager mgr,

int appWidgetId) {
int layout=R.layout.widget;

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
int category=

mgr.getAppWidgetOptions(appWidgetId)
.getInt(AppWidgetManager.OPTION_APPWIDGET_HOST_CATEGORY,

-1);

layout=
(category == AppWidgetProviderInfo.WIDGET_CATEGORY_KEYGUARD)

? R.layout.lockscreen : R.layout.widget;
}

RemoteViews updateViews=
newnew RemoteViews(ctxt.getPackageName(), layout);

Intent i=newnew Intent(ctxt, AppWidget.class);

i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

PendingIntent pi=
PendingIntent.getBroadcast(ctxt, appWidgetId, i,

PendingIntent.FLAG_UPDATE_CURRENT);

updateViews.setImageViewResource(R.id.left_die,
IMAGES[(int)(Math.random() * 6)]);

updateViews.setOnClickPendingIntent(R.id.left_die, pi);
updateViews.setImageViewResource(R.id.right_die,

IMAGES[(int)(Math.random() * 6)]);
updateViews.setOnClickPendingIntent(R.id.right_die, pi);
updateViews.setOnClickPendingIntent(R.id.background, pi);

HOME SCREEN APP WIDGETS

1322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (layout == R.layout.lockscreen) {
updateViews.setImageViewResource(R.id.middle_die,

IMAGES[(int)(Math.random() * 6)]);
updateViews.setOnClickPendingIntent(R.id.middle_die, pi);

}

mgr.updateAppWidget(appWidgetId, updateViews);
}

First, we need to choose which layout we are working with. We assume that we are
to use the original R.layout.widget resource by default. But, if we are on API Level
17 or higher, we can call getAppWidgetOptions() on the AppWidgetManager, to get
the Bundle of options — the same options that we could be delivered in
onAppWidgetOptionsUpdate() as described in the previous section. One value that
will be in this Bundle is AppWidgetManager.OPTION_APPWIDGET_HOST_CATEGORY,
which will be an int with a value of
AppWidgetProviderInfo.WIDGET_CATEGORY_KEYGUARD if our app widget is on the
lockscreen. In that case, we switch to using R.layout.lockscreen. In addition, we
know then we need to update the middle_die when we are updating the other dice.

There is also a subtle change in our getBroadcast() call to PendingIntent: we pass
in the app widget ID as the second parameter, whereas in PairOfDice we passed 0.
PendingIntent objects are cached in our process, and by default we will get the
same PendingIntent when we call getBroadcast() for the same Intent. However, in
our case, we may want two or more different PendingIntent objects for the same
Intent, with differing extras (EXTRA_APPWIDGET_ID). Since extras are not considered
when evaluating equivalence of Intent objects, just having different extras is
insufficient to get different PendingIntent objects for those Intent objects. The
second parameter to getBroadcast() (and getActivity() and getService()) on
PendingIntent is a unique identifier, to differentiate between two otherwise
equivalent Intent objects, forcing PendingIntent to give us distinct PendingIntent
objects. This way, we can support two or more app widget instances, each having
their own PendingIntent objects for their click events.

On an Android 4.2 lockscreen, you should be able to swipe to one side (e.g., a bezel
swipe from left to right), to expose an option to add an app widget:

HOME SCREEN APP WIDGETS

1323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 417: Lockscreen Add-A-Widget Panel, On a 4.2 Emulator

Tapping the “+” indicator (and, if needed, entering your device PIN or password),
brings up an app widget chooser:

HOME SCREEN APP WIDGETS

1324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 418: Lockscreen Widget Selection List, On a 4.2 Emulator

Choosing TwoOrThreeDice will then add the app widget to the lockscreen, with three
dice, not two:

HOME SCREEN APP WIDGETS

1325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 419: Lockscreen with TwoOrThreeDice, On a 4.2 Emulator

Preview Images
App widgets can now have preview images attached. Preview images are drawable
resources representing a preview of what the app widget might look like on the
screen. On tablets, this will be used as part of an app widget gallery, replacing the
simple context menu presentation you see on Android 1.x and 2.x phones:

HOME SCREEN APP WIDGETS

1326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 420: The XOOM tablet’s app widget gallery

To create the preview image itself, the Android 3.0 emulator contains a Widget
Preview application that lets you run an app widget in its own container, outside of
the home screen:

HOME SCREEN APP WIDGETS

1327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 421: The Widget Preview application, showing a preview of the Analog Clock
app widget

From here, you can take a snapshot and save it to external storage, copy it to your
project’s res/drawable-nodpi/ directory (indicating that there is no intrinsic
density assumed for this image), and reference it in your app widget metadata via an
android:previewImage attribute. We will see an example of such an attribute in the
chapter on advanced app widgets.

Being a Good Host
In addition to creating your own app widgets, it is possible to host app widgets. This
is mostly aimed for those creating alternative home screen applications, so they can
take advantage of the same app widget framework and all the app widgets being
built for it.

This is not very well documented at this juncture, but it apparently involves the
AppWidgetHost and AppWidgetHostView classes. The latter is a View and so should be
able to reside in an app widget host’s UI like any other ordinary widget.

HOME SCREEN APP WIDGETS

1328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adapter-Based App Widgets

API Level 11 introduced a few new capabilities for app widgets, to make them more
interactive and more powerful than before. The documentation lags a bit, though, so
determining how to use these features takes a bit of exploring. Fortunately for you,
the author did some of that exploring on your behalf, to save you some trouble.

Prerequisites
Understanding this chapter requires that you have read the preceding chapter and
all of its prerequisites.

AdapterViews for App Widgets
In addition to the classic widgets available for use in app widgets and RemoteViews,
five more were added for API Level 11:

1. GridView
2. ListView
3. StackView
4. ViewFlipper
5. AdapterViewFlipper

Three of these (GridView, ListView, ViewFlipper) are widgets that existed in
Android since the outset. StackView is a new widget to provide a “stack of cards” UI:

1329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 422: The Google Books app widget, showing a StackView

AdapterViewFlipper works like a ViewFlipper, allowing you to toggle between
various children with only one visible at a time. However, whereas with ViewFlipper
all children are fully-instantiated View objects held by the ViewFlipper parent,
AdapterViewFlipper uses the Adapter model, so only a small number of actual View
objects are held in memory, no matter how many potential children there are.

With the exception of ViewFlipper, the other four all require the use of an Adapter.
This might seem odd, as there is no way to provide an Adapter to a RemoteViews.
That is true, but Android 3.0 added new ways for Adapter-like communication
between the app widget host (e.g., home screen) and your application. We will take
an in-depth look at that in an upcoming section.

Building Adapter-Based App Widgets
In an activity, if you put a ListView or GridView into your layout, you will also need
to hand it an Adapter, providing the actual row or cell View objects that make up the
contents of those selection widgets.

In an app widget, this becomes a bit more complicated. The host of the app widget
does not have any Adapter class of yours. Hence, just as we have to send the
contents of the app widget’s UI via a RemoteViews, we will need to provide the rows
or cells via RemoteViews as well. Android, starting with API Level 11, has a
RemoteViewsService and RemoteViewsFactory that you can use for this purpose.

ADAPTER-BASED APP WIDGETS

1330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Let’s take a look, in the form of the AppWidget/LoremWidget sample project, which
will put a ListView of 25 nonsense words into an app widget.

The AppWidgetProvider

At its core, our AppWidgetProvider (named WidgetProvider, in a stunning display
of creativity) still needs to create and configure a RemoteViews object with the app
widget UI, then use updateAppWidget() to push that RemoteViews to the host via the
AppWidgetManager. However, for an app widget that involves an AdapterView, like
ListView, there are two more key steps:

• You have to tell the RemoteViews the identity of a RemoteViewsService that
will help fill the role that the Adapter would in an activity

• You have to provide the RemoteViews with a “template” PendingIntent to be
used when the user taps on a row or cell in the AdapterView, to replace the
onListItemClick() or similar method you might have used in an activity

For example, here is WidgetProvider for our nonsense-word app widget:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.appwidget.AppWidgetProviderandroid.appwidget.AppWidgetProvider;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass WidgetProviderWidgetProvider extendsextends AppWidgetProvider {
publicpublic staticstatic String EXTRA_WORD=

"com.commonsware.android.appwidget.lorem.WORD";

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager appWidgetManager,

int[] appWidgetIds) {
forfor (int i=0; i<appWidgetIds.length; i++) {

Intent svcIntent=newnew Intent(ctxt, WidgetService.class);

svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

RemoteViews widget=newnew RemoteViews(ctxt.getPackageName(),
R.layout.widget);

widget.setRemoteAdapter(R.id.words, svcIntent);

Intent clickIntent=newnew Intent(ctxt, LoremActivity.class);

ADAPTER-BASED APP WIDGETS

1331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/LoremWidget
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/LoremWidget

PendingIntent clickPI=PendingIntent
.getActivity(ctxt, 0,

clickIntent,
PendingIntent.FLAG_UPDATE_CURRENT);

widget.setPendingIntentTemplate(R.id.words, clickPI);

appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
}

supersuper.onUpdate(ctxt, appWidgetManager, appWidgetIds);
}

}

The call to setRemoteAdapter() is where we point the RemoteViews to our
RemoteViewsService for our AdapterView widget. The main rules for the Intent
used to identify the RemoteViewsService are:

1. The service must be identified by its data (Uri), so even if you create the
Intent via the Context-and-Class constructor, you will need to convert that
into a Uri via toUri(Intent.URI_INTENT_SCHEME) and set that as the Uri for
the Intent. Why? While your application has access to your
RemoteViewsService Class object, the app widget host will not, and so we
need something that will work across process boundaries. You could elect to
add your own <intent-filter> to the RemoteViewsService and use an
Intent based on that, but that would make your service more publicly
visible than you might want.

2. Any extras that you package on the Intent — such as the app widget ID in
this case — will be on the Intent that is delivered to the
RemoteViewsService when it is invoked by the app widget host.

Note that there are two flavors of setRemoteAdapter(). An older deprecated one
takes the app widget ID as the first parameter. The current one does not. The
current one, though, is only available on API Level 14 and higher.

The call to setPendingIntentTemplate() is where we provide a PendingIntent that
will be used as the template for all row or cell clicks. As we will see in a bit, the
underlying Intent in the PendingIntent will have more data added to it by our
RemoteViewsFactory.

In all other respects, our WidgetProvider is unremarkable compared to other app
widgets. It will need to be registered in the manifest as a <receiver>, as with any
other app widget.

ADAPTER-BASED APP WIDGETS

1332

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The RemoteViewsService

Android supplies a RemoteViewsService class that you will need to extend, and this
class is the one you must register with the RemoteViews for an AdapterView widget.
For example, here is WidgetService (once again, a highly creative name) from the
LoremWidget project:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsServiceandroid.widget.RemoteViewsService;

publicpublic classclass WidgetServiceWidgetService extendsextends RemoteViewsService {
@Override
publicpublic RemoteViewsFactory onGetViewFactory(Intent intent) {

returnreturn(newnew LoremViewsFactory(thisthis.getApplicationContext(),
intent));

}
}

As you can see, this service is practically trivial. You have to override one method,
onGetViewFactory(), which will return the RemoteViewsFactory to use for
supplying rows or cells for the AdapterView. You are passed in an Intent, the one
used in the setRemoteAdapter() call. Hence, if you have more than one AdapterView
widget in your app widget, you could elect to have two RemoteViewsService
implementations, or one that discriminates between the two widgets via something
in the Intent (e.g., custom action string). In our case, we only have one
AdapterView, so we create an instance of a LoremViewFactory and return it. Google
demonstrates using getApplicationContext() here to supply the Context object to
RemoteViewsFactory, instead of using the Service as a Context — it is unclear at this
time why this is.

Another thing different about the RemoteViewsService is how it is registered in the
manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.appwidget.lorem"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="19"/>/>

<uses-feature<uses-feature
android:name="android.software.app_widgets"

ADAPTER-BASED APP WIDGETS

1333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:required="true"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="LoremActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<receiver<receiver
android:name="WidgetProvider"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>/>

</receiver></receiver>

<service<service
android:name="WidgetService"
android:permission="android.permission.BIND_REMOTEVIEWS"/>/>

</application></application>

</manifest></manifest>

Note the use of android:permission, specifying that whoever sends an Intent to
WidgetService must hold the BIND_REMOTEVIEWS permission. This can only be held
by the operating system. This is a security measure, so arbitrary applications cannot
find out about your service and attempt to spoof being the OS and cause you to
supply them with RemoteViews for the rows, as this might leak private data.

The RemoteViewsFactory

A RemoteViewsFactory interface implementation looks and feels a lot like an
Adapter. In fact, one could imagine that the Android developer community might
create CursorRemoteViewsFactory and ArrayRemoteViewsFactory and such to
further simplify writing these classes.

ADAPTER-BASED APP WIDGETS

1334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, here is LoremViewsFactory, the one used by the LoremWidget project:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;
importimport android.widget.RemoteViewsServiceandroid.widget.RemoteViewsService;

publicpublic classclass LoremViewsFactoryLoremViewsFactory implementsimplements
RemoteViewsService.RemoteViewsFactory {

privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate Context ctxt=nullnull;
privateprivate int appWidgetId;

publicpublic LoremViewsFactory(Context ctxt, Intent intent) {
thisthis.ctxt=ctxt;
appWidgetId=

intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
AppWidgetManager.INVALID_APPWIDGET_ID);

}

@Override
publicpublic void onCreate() {

// no-op
}

@Override
publicpublic void onDestroy() {

// no-op
}

@Override
publicpublic int getCount() {

returnreturn(items.length);
}

@Override
publicpublic RemoteViews getViewAt(int position) {

RemoteViews row=
newnew RemoteViews(ctxt.getPackageName(), R.layout.row);

row.setTextViewText(android.R.id.text1, items[position]);

Intent i=newnew Intent();
Bundle extras=newnew Bundle();

extras.putString(WidgetProvider.EXTRA_WORD, items[position]);

ADAPTER-BASED APP WIDGETS

1335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

extras.putInt(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
i.putExtras(extras);
row.setOnClickFillInIntent(android.R.id.text1, i);

returnreturn(row);
}

@Override
publicpublic RemoteViews getLoadingView() {

returnreturn(nullnull);
}

@Override
publicpublic int getViewTypeCount() {

returnreturn(1);
}

@Override
publicpublic long getItemId(int position) {

returnreturn(position);
}

@Override
publicpublic boolean hasStableIds() {

returnreturn(truetrue);
}

@Override
publicpublic void onDataSetChanged() {

// no-op
}

}

You need to implement a handful of methods that have the same roles in a
RemoteViewsFactory as they do in an Adapter, including:

1. getCount()
2. getViewTypeCount()
3. getItemId()
4. hasStableIds()

In addition, you have onCreate() and onDestroy() methods that you must
implement, even if they do nothing, to satisfy the interface.

You will need to implement getLoadingView(), which will return a RemoteViews to
use as a placeholder while the app widget host is getting the real contents for the
app widget. If you return null, Android will use a default placeholder.

ADAPTER-BASED APP WIDGETS

1336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The bulk of your work will go in getViewAt(). This serves the same role as
getView() does for an Adapter, in that it returns the row or cell View for a given
position in your data set. However:

1. You have to return a RemoteViews, instead of a View, just as you have to use
RemoteViews for the main content of the app widget in your
AppWidgetProvider

2. There is no recycling, so you do not get a View (or RemoteViews) back to
somehow repopulate, meaning you will create a new RemoteViews every time

The impact of the latter is that you do not want to put large data sets into an app
widget, as scrolling may get sluggish, just as you do not want to implement an
Adapter without recycling unused View objects.

In LoremViewsFactory, the getViewAt() implementation creates a RemoteViews for a
custom row layout, cribbed from one in the Android SDK:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
android:gravity="center_vertical"
android:paddingLeft="6dip"
android:minHeight="?android:attr/listPreferredItemHeight"

/>/>

Then, getViewAt() pours in a word from the static String array of nonsense words
into that RemoteViews for the TextView inside it. It also creates an Intent and puts
the nonsense word in as an EXTRA_WORD extra, then provides that Intent to
setOnClickFillInIntent(). In addition, it adds the app widget instance ID as an

ADAPTER-BASED APP WIDGETS

1337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

extra, reusing the framework’s own AppWidgetManager.EXTRA_APPWIDGET_ID as the
key. The contents of the “fill-in” Intent are merged into the “template”
PendingIntent from setPendingIntentTemplate(), and the resulting
PendingIntent is what is invoked when the user taps on an item in the AdapterView.
The fully-configured RemoteViews is then returned.

The Rest of the Story

The app widget metadata needs no changes related to Adapter-based app widget
contents. However, LoremWidget does add the android:previewImage attribute:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="146dip"
android:minHeight="146dip"
android:updatePeriodMillis="0"
android:initialLayout="@layout/widget"
android:autoAdvanceViewId="@+id/words"
android:previewImage="@drawable/preview"
android:resizeMode="vertical"

/>/>

This points to the res/drawable-nodpi/preview.png file that represents a
“widgetshot” of the app widget in isolation, obtained from the Widget Preview
application:

Figure 423: The preview of LoremWidget

Also, the metadata specifies android:resizeMode="vertical". This attribute is new
to Android 3.1, and allows the app widget to be resized by the user (in this case, only
in the vertical direction, to show more rows). Older versions of Android will ignore
this attribute, and the app widget will remain in your requested size. You can use

ADAPTER-BASED APP WIDGETS

1338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

vertical, horizontal, or both (via the pipe operator) as values for
android:resizeMode.

When the user taps on an item in the list, our PendingIntent is set to bring up
LoremActivity. This activity has android:theme="@android:style/
Theme.NoDisplay" set in the manifest, meaning that it will not have its own user
interface. Rather, it will extract our EXTRA_WORD — and the app widget ID — out of
the Intent used to launch the activity and displays them in a Toast before finishing:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.app.Activityandroid.app.Activity;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass LoremActivityLoremActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);

String word=getIntent().getStringExtra(WidgetProvider.EXTRA_WORD);

ifif (word == nullnull) {
word="We did not get a word!";

}

Toast.makeText(thisthis,
String.format("#%d: %s",

getIntent().getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,

AppWidgetManager.INVALID_APPWIDGET_ID),
word), Toast.LENGTH_LONG).show();

finish();
}

}

The Results

When you compile and install the application, nothing new shows up in the home
screen launcher, because we have no activity defined to respond to ACTION_MAIN and
CATEGORY_HOME. This would be unusual for an application distributed through the
Play Store, as users often get confused if they install something and then do not
know how to start it. However, for the purposes of this example, we should be fine,
as readers of programming books never get confused about such things.

ADAPTER-BASED APP WIDGETS

1339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, if you bring up the app widget gallery (e.g., long-tap on the home screen of
a Motorola XOOM), you will see LoremWidget there, complete with preview image.
You can drag it into one of the home screen panes and position it. When done, the
app widget appears as expected:

Figure 424: A XOOM home screen, showing the LoremWidget on the left

The ListView is live and can be scrolled. Tapping an entry brings up the
corresponding Toast:

ADAPTER-BASED APP WIDGETS

1340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 425: A XOOM home screen, showing the LoremWidget on the left

The above image illustrates that a Toast is not a great UI choice on a tablet, given
the relative size of the Toast compared to the screen. Users will be far more likely to
miss the Toast than ever before.

If the user long-taps on the app widget, they will be able to reposition it. On
Android 3.1 and beyond, when they lift their finger after the long-tap, the app widget
will show resize handles on the sides designated by your android:resizeMode
attribute:

ADAPTER-BASED APP WIDGETS

1341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 426: A phone home screen, showing the LoremWidget on the left, with resize
handles

The user can then drag those handles to expand or shrink the app widget in the
specified dimensions:

ADAPTER-BASED APP WIDGETS

1342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 427: The resized LoremWidget

ADAPTER-BASED APP WIDGETS

1343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Data Storage and Retrieval

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Provider Theory

Android publishes data to you via an abstraction known as a “content provider”.
Access to contacts and the call log, for example, are given to you via a set of content
providers. In a few places, Android expects you to supply a content provider, such as
for integrating your own search suggestions with the Android Quick Search Box.
And, content providers are one way for you to supply data to third party
applications, or to consume information from third party applications. As such,
content providers have the potential to be something you would encounter
frequently, even if in practice they do not seem used much.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on working with local databases.

Using a Content Provider
Any Uri in Android that begins with the content:// scheme represents a resource
served up by a content provider. Content providers offer data encapsulation using
Uri instances as handles – you neither know nor care where the data represented by
the Uri comes from, so long as it is available to you when needed. The data could be
stored in a SQLite database, or in flat files, or retrieved off a device, or be stored on
some far-off server accessed over the Internet.

Given a Uri, you may be able to perform basic CRUD (create, read, update, delete)
operations using a content provider. Uri instances can represent either collections or
individual pieces of content. Given a collection Uri, you may be able to create new
pieces of content via insert operations. Given an instance Uri, you may be able to

1345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

read data represented by the Uri, update that data, or delete the instance outright.
Or, given an Uri, you may be able to open up a handle to what amounts to a file,
that you can read and, possibly, write to.

These are all phrased as “may” because the content provider system is a facade. The
actual implementation of a content provider dictates what you can and cannot do,
and not all content providers will support all capabilities.

Pieces of Me

The simplified model of the construction of a content Uri is the scheme, the
namespace of data, and, optionally, the instance identifier, all separated by slashes in
URL-style notation. The scheme of a content Uri is always content://.

So, a content Uri of content://constants/5 represents the constants instance with
an identifier of 5.

The combination of the scheme and the namespace is known as the “base Uri” of a
content provider, or a set of data supported by a content provider. In the example
above, content://constants is the base Uri for a content provider that serves up
information about “constants” (in this case, physical constants).

The base Uri can be more complicated. For example, if the base Uri for contacts
were content://contacts/people, the contacts content provider may serve up other
data using other base Uri values.

The base Uri represents a collection of instances. The base Uri combined with an
instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common
discussion, it is simpler to think of them as strings. The Uri.parse() static method
creates a Uri out of the string representation.

Getting a Handle

So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to work
with, is to get the base Uri from the content provider itself in code. For example,
CONTENT_URI is the base Uri for contacts represented as people — this maps to
content://contacts/people. If you just need the collection, this Uri works as-is; if

CONTENT PROVIDER THEORY

1346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

you need an instance and know its identifier, you can call addId() on the Uri to
inject it, so you have a Uri for the instance.

You might also get Uri instances handed to you from other sources, such as getting
Uri handles for contacts via sub-activities responding to ACTION_PICK intents. In this
case, the Uri is truly an opaque handle… unless you decide to pick it apart using the
various getters on the Uri class.

You can also hard-wire literal String objects (e.g., "content://contacts/people")
and convert them into Uri instances via Uri.parse(). This is not an ideal solution,
as the base Uri values could conceivably change over time. For example, the contacts
content provider’s base Uri is no longer content://contacts/people due to an
overhaul of that subsystem. However, when you integrate with content providers
from third parties, most likely you will not have a choice but to “hard-wire” in the
content Uri based on a string.

The Database-Style API

Of the two flavors of API that a content provider may support, the database-style
API is more prevalent. Using a ContentResolver, you can perform standard “CRUD”
operations (create, read, update, delete) using what looks like a SQL interface.

Makin’ Queries

Given a base Uri, you can run a query to return data out of the content provider
related to that Uri. This has much of the feel of SQL: you specify the “columns” to
return, the constraints to determine which “rows” to return, a sort order, etc. The
difference is that this request is being made of a content provider, not directly of
some database (e.g., SQLite).

You have two main options for running a query:

1. Use the query() method on ContentResolver from some sort of
background thread

2. Use a CursorLoader, as is discussed in an upcoming chapter

The standard query() method on ContentResolver takes five parameters:

• The base Uri of the content provider to query, or the instance Uri of a
specific object to query

CONTENT PROVIDER THEORY

1347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An array of properties (think “columns”) from that content provider that you
want returned by the query

• A constraint statement, functioning like a SQL WHERE clause
• An optional set of parameters to bind into the constraint clause, replacing

any ? that appear there
• An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data
returned by the query.

This will hopefully make more sense given an example. This chapter shows some
sample bits of code from the ContentProvider/ConstantsPlus sample project. This
is the same basic application as was first shown back in the chapter on database
access, but rewritten to pull the database logic into a content provider, which is then
used by the activity.

The activity starts off, in onCreate(), by executing a LoadCursorTask:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

newnew LoadCursorTask().execute();
}

In doInBackground(), LoadCursorTask calls a doQuery() method on the activity,
which in turn uses a ContentResolver to query our ContentProvider:

privateprivate Cursor doQuery() {
returnreturn(getContentResolver().query(Provider.Constants.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull));
}

In the call to query(), we provide:

1. The Uri passed into the activity by the caller (CONTENT_URI), in this case
representing the collection of physical constants managed by the content
provider

2. A list of properties to retrieve
3. Three null values, indicating that we do not need a constraint clause (the

Uri represents the instance we need), nor parameters for the constraint, nor
a sort order (we should only get one entry back)

CONTENT PROVIDER THEORY

1348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus

The biggest “magic” here is the list of properties. The lineup of what properties are
possible for a given content provider should be provided by the documentation (or
source code) for the content provider itself. In this case, we define logical values on
the Provider content provider implementation class that represent the various
properties (namely, the unique identifier, the display name or title, and the value of
the constant).

Adapting to the Circumstances

Now that we have a Cursor via query(), we have access to the query results and can
do whatever we want with them. You might, for example, manually extract data
from the Cursor to populate widgets or other objects.

However, if the goal of the query was to return a list from which the user should
choose an item, you probably should consider using SimpleCursorAdapter. This
class bridges between the Cursor and a selection widget, such as a ListView or
Spinner. Pour the Cursor into a SimpleCursorAdapter, hand the adapter off to the
widget, and you are set — your widget will show the available options.

After executing the query() and getting the Cursor, the LoadCursorTask in
ConstantsBrowser, in its onPostExecute() method, creates a SimpleCursorAdapter
with the following parameters:

1. The activity (or other Context) creating the adapter; in this case, the
ConstantsBrowser itself

2. The identifier for a layout to be used for rendering the list entries
(R.layout.row)

3. The cursor (constantsCursor)
4. The properties to pull out of the cursor and use for configuring the list entry

View instances (TITLE and VALUE)
5. The corresponding identifiers of TextView widgets in the list entry layout

that those properties should go into (R.id.title and R.id.value)

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@SuppressWarnings("deprecation")
@Override
publicpublic void onPostExecute(Void arg0) {

SimpleCursorAdapter adapter;

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
adapter=

newnew SimpleCursorAdapter(
ConstantsBrowser.this,

CONTENT PROVIDER THEORY

1349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

R.layout.row,
constantsCursor,
newnew String[] {

DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value },
0);

}
elseelse {

adapter=
newnew SimpleCursorAdapter(

ConstantsBrowser.this,
R.layout.row,
constantsCursor,
newnew String[] {

DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value });
}

setListAdapter(adapter);
}

}

If you need more control over the views than you can reasonably achieve with the
stock view construction logic, subclass SimpleCursorAdapter and override
getView() to create your own widgets to go into the list, as demonstrated earlier in
this book.

The complexity regarding which SimpleCursorAdapter constructor to use is
because Google deprecated the old constructor in API Level 11, replacing it with a
new constructor… that just takes a flag as an additional parameter. Normally, that
flag is 0. But, since the old constructor does not exist on API Level 10 and below, we
create the SimpleCursorAdapter using the proper constructor based on API level.

And, of course, you can manually manipulate the Cursor (e.g., moveToFirst(),
getString()), just like you can with a database Cursor.

Give and Take

Of course, content providers would be astonishingly weak if you couldn’t add or
remove data from them, being limited to only update what is there. Fortunately,
content providers offer these abilities as well.

CONTENT PROVIDER THEORY

1350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To insert data into a content provider, you have two options available on the
ContentProvider interface (available through getContentResolver() to your
activity):

• Use insert() with a collection Uri and a ContentValues structure
describing the initial set of data to put in the row

• Use bulkInsert() with a collection Uri and an array of ContentValues
structures to populate several rows at once

The insert() method returns a Uri for you to use for future operations on that new
object. The bulkInsert() method returns the number of created rows; you would
need to do a query to get back at the data you just inserted.

For example, if the user chooses our “Add” overflow item, we pop up a dialog to
collect a new constant:

privateprivate void add() {
View addView=getLayoutInflater().inflate(R.layout.add_edit, nullnull);
AlertDialog.Builder builder=newnew AlertDialog.Builder(thisthis);

builder.setTitle(R.string.add_title).setView(addView)
.setPositiveButton(R.string.ok, thisthis)
.setNegativeButton(R.string.cancel, nullnull).show();

}

Then, if the user taps the “OK” button in the dialog, our onClick() listener is
called, where we collect the entered values from the user, pour them into a
ContentValues structure, and pass that to an InsertTask:

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

ContentValues values=newnew ContentValues(2);
AlertDialog dlg=(AlertDialog)dialog;
EditText title=(EditText)dlg.findViewById(R.id.title);
EditText value=(EditText)dlg.findViewById(R.id.value);

values.put(DatabaseHelper.TITLE, title.getText().toString());
values.put(DatabaseHelper.VALUE, value.getText().toString());

newnew InsertTask().execute(values);
}

InsertTask, in its doInBackground() method, calls insert() on a ContentResolver
to insert this row:

@Override
protectedprotected Void doInBackground(ContentValues... values) {

CONTENT PROVIDER THEORY

1351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getContentResolver().insert(Provider.Constants.CONTENT_URI, values[0]);

constantsCursor=doQuery();
constantsCursor.getCount();

returnreturn(nullnull);
}

Notice that we also call doQuery() again. That is because our Cursor is now out of
date, and we need to obtain a fresh Cursor with fresh results. We also call
getCount() on the Cursor — both in InsertTask and in LoadCursorTask — just to
be sure that the Cursor has loaded all of its data, while we are safely on the
background thread.

The onPostExecute() implementation in InsertTask uses changeCursor() on
CursorAdapter() to swap in our new Cursor for any old one:

@Override
publicpublic void onPostExecute(Void arg0) {

((CursorAdapter)getListAdapter()).changeCursor(constantsCursor);
}

To delete one or more rows from the content provider, use the delete() method on
ContentResolver. This works akin to a SQL DELETE statement and takes three
parameters:

• A Uri representing the collection (or instance) from which you wish to
delete rows

• A constraint statement, functioning like a SQL WHERE clause, to determine
which rows should be deleted

• An optional set of parameters to bind into the constraint clause, replacing
any ? that appear there

The File System-Style API

Sometimes, what you are trying to retrieve does not look like a set of rows and
columns, but rather looks like a file. For example, the MediaStore content provider
manages the index of all music, video, and image files available on external storage,
and you can use MediaStore to open up any such file you find.

Some content providers, like MediaStore, support both the database-style and file
system-style APIs — you query to find media that matches your criteria, then can
open some file that matches. Other content providers might only support the file
system-style API.

CONTENT PROVIDER THEORY

1352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Given a Uri that represents some file managed by the content provider, you can use
openInputStream() and openOutputStream() on a ContentResolver to access an
InputStream or OutputStream, respectively. Note, though, that not all content
providers may support both modes. For example, a content provider that serves files
stored inside the application (e.g., assets in the APK file), you will not be able to get
an OutputStream to modify the content.

Building Content Providers
Building a content provider is probably a very tedious task. There are many
requirements of a content provider, in terms of methods to implement and public
data members to supply. And, until you try using it, you have no great way of telling
if you did any of it correctly (versus, say, building an activity and getting validation
errors from the resource compiler).

That being said, building a content provider is of huge importance if your
application wishes to make data available to other applications. If your application is
keeping its data solely to itself, you may be able to avoid creating a content provider,
just accessing the data directly from your activities. But, if you want your data to
possibly be used by others — for example, you are building a feed reader and you
want other programs to be able to access the feeds you are downloading and caching
— then a content provider is right for you.

First, Some Dissection

The content Uri is the linchpin behind accessing data inside a content provider.
When using a content provider, all you really need to know is the provider’s base
Uri; from there you can run queries as needed, or construct a Uri to a specific
instance if you know the instance identifier.

When building a content provider, though, you need to know a bit more about the
innards of the content Uri.

A content Uri has two to four pieces, depending on situation:

1. It always has a scheme (content://), indicating it is a content Uri instead of
a Uri to a Web resource (http://).

2. It always has an authority, which is the first path segment after the scheme.
The authority is a unique string identifying the content provider that
handles the content associated with this Uri.

CONTENT PROVIDER THEORY

1353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. It may have a data type path, which is the list of path segments after the
authority and before the instance identifier (if any). The data type path can
be empty, if the content provider only handles one type of content. It can be
a single path segment (foo) or a chain of path segments (foo/bar/goo) as
needed to handle whatever data access scenarios the content provider
requires.

4. It may have an instance identifier, which is an integer identifying a specific
piece of content. A content Uri without an instance identifier refers to the
collection of content represented by the authority (and, where provided, the
data path).

For example, a content Uri could be as simple as content://sekrits, which would
refer to the collection of content held by whatever content provider was tied to the
sekrits authority (e.g., SecretsProvider). Or, it could be as complex as
content://sekrits/card/pin/17, which would refer to a piece of content
(identified as 17) managed by the sekrits content provider that is of the data type
card/pin.

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the content
your content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify content
on the device. A collection content Uri — or, more accurately, the combination of
authority and data type path – should map to a pair of MIME types. One MIME type
will represent the collection; the other will represent an instance. These map to the
Uri patterns above for no-identifier and identifier, respectively. As you saw earlier in
this book, you can fill in a MIME type into an Intent to route the Intent to the
proper activity (e.g., ACTION_PICK on a collection MIME type to call up a selection
activity to pick an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where X is the
name of your firm, organization, or project, and Y is a dot-delimited type name. So,
for example, you might use vnd.tlagency.cursor.dir/sekrits.card.pin as the
MIME type for your collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually for
the same values of X and Y as you used for the collection MIME type (though that is
not strictly required).

CONTENT PROVIDER THEORY

1354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implementing the Database-Style API

Just as an activity and a receiver are both Java classes, so is a content provider. So,
the big step in creating a content provider is crafting its Java class, with a base class
of ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing five
methods that, when combined, perform the services that a content provider is
supposed to offer to activities wishing to create, read, update, or delete content via
the database-style API.

Implement onCreate()

As with an activity, the main entry point to a content provider is onCreate(). Here,
you can do whatever initialization you want. In particular, here is where you should
lazy-initialize your data store. For example, if you plan on storing your data in such-
and-so directory on an SD card, with an XML file serving as a “table of contents”, you
should check and see if that directory and XML file are there and, if not, create them
so the rest of your content provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause the data
store to shift structure, you should check to see what structure you have now and
adjust it if what you have is out of date.

Implement query()

As one might expect, the query() method is where your content provider gets
details on a query some activity wants to perform. It is up to you to actually process
said query.

The query method gets, as parameters:

1. A Uri representing the collection or instance being queried
2. A String array representing the list of properties that should be returned
3. A String representing what amounts to a SQL WHERE clause, constraining

which instances should be considered for the query results
4. A String array representing values to “pour into” the WHERE clause, replacing

any ? found there
5. A String representing what amounts to a SQL ORDER BY clause

CONTENT PROVIDER THEORY

1355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You are responsible for interpreting these parameters however they make sense and
returning a Cursor that can be used to iterate over and access the data.

As you can imagine, these parameters are aimed towards people using a SQLite
database for storage. You are welcome to ignore some of these parameters (e.g., you
elect not to try to roll your own SQL WHERE clause parser), but you need to
document that fact so activities only attempt to query you by instance Uri and not
by using parameters that you elect to ignore.

Implement insert()

Your insert() method will receive a Uri representing the collection and a
ContentValues structure with the initial data for the new instance. You are
responsible for creating the new instance, filling in the supplied data, and returning
a Uri to the new instance.

Implement update()

Your update() method gets the Uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL WHERE
clause, and a String array with parameters to use to replace ? found in the WHERE
clause. Your responsibility is to identify the instance(s) to be modified (based on the
Uri and WHERE clause), then replace those instances’ current property values with the
ones supplied.

This will be annoying, unless you are using SQLite for storage. Then, you can pretty
much pass all the parameters you received to the update() call to the database,
though the update() call will vary slightly depending on whether you are updating
one instance or several.

Implement delete()

As with update(), delete() receives a Uri representing the instance or collection to
work with and a WHERE clause and parameters. If the activity is deleting a single
instance, the Uri should represent that instance and the WHERE clause may be null.
But, the activity might be requesting to delete an open-ended set of instances, using
the WHERE clause to constrain which ones to delete.

CONTENT PROVIDER THEORY

1356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As with update(), though, this is simple if you are using SQLite for database storage
(sense a theme?). You can let it handle the idiosyncrasies of parsing and applying
the WHERE clause — all you have to do is call delete() on the database.

Implement getType()

The last method you need to implement is getType(). This takes a Uri and returns
the MIME type associated with that Uri. The Uri could be a collection or an
instance Uri; you need to determine which was provided and return the
corresponding MIME type.

Update the Manifest

The glue tying the content provider implementation to the rest of your application
resides in your AndroidManifest.xml file. Simply add a <provider> element as a
child of the <application> element, such as:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.constants"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider

android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"
android:exported="false"/>/>

<activity<activity
android:name=".ConstantsBrowser"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>

CONTENT PROVIDER THEORY

1357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</intent-filter></intent-filter>
</activity></activity>

</application></application>

</manifest></manifest>

The android:name property is the name of the content provider class, with a leading
dot to indicate it is in the stock namespace for this application’s classes (just like you
use with activities).

The android:authorities property should be a semicolon-delimited list of the
authority values supported by the content provider. Recall, from earlier in this
chapter, that each content Uri is made up of a scheme, authority, data type path,
and instance identifier. Each authority from each CONTENT_URI value should be
included in the android:authorities list.

Now, when Android encounters a content Uri, it can sift through the providers
registered through manifests to find a matching authority. That tells Android which
application and class implements the content provider, and from there Android can
bridge between the calling activity and the content provider being called.

Add Notify-On-Change Support

A feature that your content provider can offer to its clients is notify-on-change
support. This means that your content provider will let clients know if the data for a
given content Uri changes.

For example, suppose you have created a content provider that retrieves RSS and
Atom feeds from the Internet based on the user’s feed subscriptions (via OPML,
perhaps). The content provider offers read-only access to the contents of the feeds,
with an eye towards several applications on the phone using those feeds versus
everyone implementing their own feed poll-fetch-and-cache system. You have also
implemented a service that will get updates to those feeds asynchronously, updating
the underlying data store. Your content provider could alert applications using the
feeds that such-and-so feed was updated, so applications using that specific feed can
refresh and get the latest data.

On the content provider side, to do this, call notifyChange() on your
ContentResolver instance (available in your content provider via
getContext().getContentResolver()). This takes two parameters: the Uri of the
piece of content that changed and the ContentObserver that initiated the change. In

CONTENT PROVIDER THEORY

1358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

many cases, the latter will be null; a non-null value simply means that the observer
that initiated the change will not be notified of its own changes.

On the content consumer side, an activity can call registerContentObserver() on
its ContentResolver (via getContentResolver()). This ties a ContentObserver
instance to a supplied Uri — the observer will be notified whenever notifyChange()
is called for that specific Uri. When the consumer is done with the Uri,
unregisterContentObserver() releases the connection.

Implementing the File System-Style API

If you want consumers of your ContentProvider to be able to call
openInputStream() or openOutputStream() on a Uri, you will need to implement
the openFile() method. This method is optional — if you are not supporting
openInputStream() or openOutputStream(), you do not need to implement
openFile() at all.

The openFile() method returns a curious object called a ParcelFileDescriptor.
Given that, the ContentResolver can obtain the InputStream or OutputStream that
was requested. There are various static methods on ParcelFileDescriptor to create
instances of it, such as an open() method that takes a File object as the first
parameter. Note that this works for both files on external storage and files within
your own project’s app-local file storage (e.g., getFilesDir()).

Note that you are welcome to also implement onCreate(), if you wish to do some
initialization when the content provider starts up. Also, you will have to provide do-
nothing implementations of query(), insert(), update(), and delete(), as those
methods are mandatory in ContentProvider subclasses, even if you do not plan to
support them.

Issues with Content Providers
Content providers are not without their issues.

The biggest complaint seems to be the lack of an onDestroy() companion to the
onCreate() method you can implement. Hence, if you open a database in
onCreate(), you close it… never. Sometimes, you can alleviate this by initializing
things on demand and releasing them immediately, such as opening a database as
part of insert() and closing it within the same method. This does not always work,

CONTENT PROVIDER THEORY

1359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

however — for example, you cannot close the database you query in query(), since
the Cursor you return would become invalid.

The fact that ContentProvider is effectively a facade means that a consumer of a
ContentProvider has no idea what to expect. It is up to documentation to explain
what Uri values can be used, what columns can be returned, what query syntax is
supported, and so on. And, the fact that it is a facade means that much of the
richness of the SQLite interface is lost, such as GROUP BY. To top it off, the API
supported by ContentProvider is rather limited — if what you want to share does
not look like a database and does not look like a file, it may be difficult to force it
into the ContentProvider API.

However, perhaps the biggest problem is that, by default, content providers are
exported, meaning they can be accessed by other processes (third party applications
or the Android OS). Sometimes this is desired. Sometimes, it is not. You need to set
android:exported to be false on your manifest entry for the content provider if you
want to keep the provider private to your application. This is the inverse of all other
components, which are private by default, unless they have an <intent-filter>.
Note that API Level 17 changes the default — if your android:targetSdkVersion is
set to 17 or higher, android:exported is false by default, not true as before.

CONTENT PROVIDER THEORY

1360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Provider Implementation
Patterns

The previous chapter focused on the concepts, classes, and methods behind content
providers. This chapter more closely examines some implementations of content
providers, organized into simple patterns.

Prerequisites
Understanding this chapter requires that you have read the preceding chapter, along
with the chapter on permissions.

The Single-Table Database-Backed Content
Provider
The simplest database-backed content provider is one that only attempts to expose a
single table’s worth of data to consumers. The CallLog content provider works this
way, for example.

Step #1: Create a Provider Class

We start off with a custom subclass of ContentProvider, named, cunningly enough,
Provider. Here we need the database-style API methods: query(), insert(),
update(), delete(), and getType().

1361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onCreate()

Here is the onCreate() method for Provider, from the ContentProvider/
ConstantsPlus sample application:

@Override
publicpublic boolean onCreate() {

db=newnew DatabaseHelper(getContext());

returnreturn((db == nullnull) ? falsefalse : truetrue);
}

While that does not seem all that special, the “magic” is in the private
DatabaseHelper object, a fairly conventional SQLiteOpenHelper implementation:

packagepackage com.commonsware.android.constants;

importimport android.content.ContentValuesandroid.content.ContentValues;
importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;

classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";
staticstatic finalfinal String TITLE="title";
staticstatic finalfinal String VALUE="value";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, 1);

}

@Override
publicpublic void onCreate(SQLiteDatabase db) {

Cursor c=db.rawQuery("SELECT name FROM sqlite_master WHERE type='table' AND
name='constants'", nullnull);

trytry {
ifif (c.getCount()==0) {

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY
AUTOINCREMENT, title TEXT, value REAL);");

ContentValues cv=newnew ContentValues();

cv.put(Provider.Constants.TITLE, "Gravity, Death Star I");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Earth");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_EARTH);

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1362

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus

db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Jupiter");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_JUPITER);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Mars");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MARS);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Mercury");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MERCURY);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Moon");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MOON);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Neptune");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_NEPTUNE);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Pluto");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_PLUTO);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Saturn");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SATURN);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Sun");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SUN);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, The Island");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_THE_ISLAND);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Uranus");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_URANUS);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Venus");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_VENUS);
db.insert("constants", Provider.Constants.TITLE, cv);

}
}
finallyfinally {

c.close();
}

}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.util.Log.w("Constants", "Upgrading database, which will destroy all
old data");

db.execSQL("DROP TABLE IF EXISTS constants");
onCreate(db);

}
}

Note that we are creating the DatabaseHelper in onCreate() and are never closing
it. That is because there is no onDestroy() (or equivalent) method in a
ContentProvider. While we might be tempted to open and close the database on
every operation, that will not work, as we cannot close the database and still hand
back a live Cursor from the database. Hence, we leave it open and assume that
SQLite’s transactional nature will ensure that our database is not corrupted when
Android shuts down the ContentProvider.

query()

For SQLite-backed storage providers like this one, the query() method
implementation should be largely boilerplate. Use a SQLiteQueryBuilder to convert
the various parameters into a single SQL statement, then use query() on the builder
to actually invoke the query and give you a Cursor back. The Cursor is what your
query() method then returns.

For example, here is query() from Provider:

@Override
publicpublic Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb=newnew SQLiteQueryBuilder();

qb.setTables(TABLE);

String orderBy;

ifif (TextUtils.isEmpty(sort)) {
orderBy=Constants.DEFAULT_SORT_ORDER;

}
elseelse {

orderBy=sort;
}

Cursor c=
qb.query(db.getReadableDatabase(), projection, selection,

selectionArgs, nullnull, nullnull, orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(c);
}

We create a SQLiteQueryBuilder and pour the query details into the builder,
notably the name of the table that we query against and the sort order (substituting
in a default sort if the caller did not request one). When done, we use the query()
method on the builder to get a Cursor for the results. We also tell the resulting
Cursor what Uri was used to create it, for use with the content observer system.

The query() implementation, like many of the other methods on Provider,
delegates much of the Provider-specific information to private methods, such as:

1. the name of the table (getTableName())
2. the default sort order (getDefaultSortOrder())

insert()

Since this is a SQLite-backed content provider, once again, the implementation is
mostly boilerplate: validate that all required values were supplied by the activity,
merge your own notion of default values with the supplied data, and call insert()
on the database to actually create the instance.

For example, here is insert() from Provider:

@Override
publicpublic Uri insert(Uri url, ContentValues initialValues) {

long rowID=
db.getWritableDatabase().insert(TABLE, Constants.TITLE,

initialValues);

ifif (rowID > 0) {
Uri uri=

ContentUris.withAppendedId(Provider.Constants.CONTENT_URI,
rowID);

getContext().getContentResolver().notifyChange(uri, nullnull);

returnreturn(uri);
}

throwthrow newnew SQLException("Failed to insert row into " + url);
}

The pattern is the same as before: use the provider particulars plus the data to be
inserted to actually do the insertion.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

update()

Here is update() from Provider:

@Override
publicpublic int update(Uri url, ContentValues values, String where,

String[] whereArgs) {
int count=

db.getWritableDatabase()
.update(TABLE, values, where, whereArgs);

getContext().getContentResolver().notifyChange(url, nullnull);

returnreturn(count);
}

In this case, updates are always applied across the entire collection, though we could
have a smarter implementation that supported updating a single instance via an
instance Uri.

delete()

Similarly, here is delete() from Provider:

@Override
publicpublic int delete(Uri url, String where, String[] whereArgs) {

int count=db.getWritableDatabase().delete(TABLE, where, whereArgs);

getContext().getContentResolver().notifyChange(url, nullnull);

returnreturn(count);
}

This is almost a clone of the update() implementation described above.

getType()

The last method you need to implement is getType(). This takes a Uri and returns
the MIME type associated with that Uri. The Uri could be a collection or an
instance Uri; you need to determine which was provided and return the
corresponding MIME type.

For example, here is getType() from Provider:

@Override
publicpublic String getType(Uri url) {

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (isCollectionUri(url)) {
returnreturn("vnd.commonsware.cursor.dir/constant");

}

returnreturn("vnd.commonsware.cursor.item/constant");
}

Step #2: Supply a Uri

You may wish to add a public static member… somewhere, containing the Uri for
each collection your content provider supports, for use by your own application
code. Typically, this is a public static final Uri put on the content provider class
itself:

publicpublic staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.constants.Provider/

constants");

You may wish to use the same namespace for the content Uri that you use for your
Java classes, to reduce the chance of collision with others.

Bear in mind that if you intend for third parties to access your content provider, they
will not have access to this public static data member, as your class is not in their
project. Hence, you will need to publish the string representation of this Uri that
they can hard-wire into their application.

Step #3: Declare the “Columns”

Remember those “columns” you referenced when you were using a content provider,
in the previous chapter? Well, you may wish to publish public static values for those
too for your own content provider.

Specifically, you may want a public static class implementing BaseColumns that
contains your available column names, such as this example from Provider:

publicpublic staticstatic finalfinal classclass ConstantsConstants implementsimplements BaseColumns {
publicpublic staticstatic finalfinal Uri CONTENT_URI=

Uri.parse("content://com.commonsware.android.constants.Provider/
constants");

publicpublic staticstatic finalfinal String DEFAULT_SORT_ORDER="title";
publicpublic staticstatic finalfinal String TITLE="title";
publicpublic staticstatic finalfinal String VALUE="value";

}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Since we are using SQLite as a data store, the values for the column name constants
should be the corresponding column names in the table, so you can just pass the
projection (array of columns) to SQLite on a query(), or pass the ContentValues on
an insert() or update().

Note that nothing in here stipulates the types of the properties. They could be
strings, integers, or whatever. The biggest limitation is what a Cursor can provide
access to via its property getters. The fact that there is nothing in code that enforces
type safety means you should document the property types well, so people
attempting to use your content provider know what they can expect.

Step #4: Update the Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by adding a
<provider> element as a child of the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.constants"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider

android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"
android:exported="false"/>/>

<activity<activity
android:name=".ConstantsBrowser"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</application></application>

</manifest></manifest>

The Local-File Content Provider
Implementing a content provider that supports serving up files based on Uri values
is similar, and generally simpler, than creating a content provider for the database-
style API. In this section, we will examine the ContentProvider/Files sample
project. This project demonstrates a common use of the filesystem-style API: serving
files from internal storage to third-party applications (who, by default, cannot read
your internally-stored files).

Note that this sample project will only work on devices that have an application
capable of viewing PDF files accessed via content:// Uri values.

The FileProvider Class

Our ContentProvider is named FileProvider. However, most of the logic is
contained in an AbstractFileProvider that will be used for a handful of sample
apps in this chapter. We will look at both of those classes, focusing first on the
FileProvider.

onCreate()

We have an onCreate() method. In many cases, this would not be needed for this
sort of provider. After all, there is no database to open. In this case, we use
onCreate() to copy the file(s) out of assets into the app-local file store. In principle,
this would allow our application code to modify these files as the user uses the app
(versus the unmodifiable editions in assets/).

@Override
publicpublic boolean onCreate() {

File f=newnew File(getContext().getFilesDir(), "test.pdf");

ifif (!f.exists()) {
AssetManager assets=getContext().getResources().getAssets();

trytry {
copy(assets.open("test.pdf"), f);

}
catchcatch (IOException e) {

Log.e("FileProvider", "Exception copying from assets", e);

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Files
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Files

returnreturn(falsefalse);
}

}

returnreturn(truetrue);
}

This uses a static copy() method, inherited from AbstractFileProvider, that can
copy an InputStream from an asset to a local File. We will take a peek at this later
in this chapter.

openFile()

We need to implement openFile(), to return a ParcelFileDescriptor
corresponding to the supplied Uri:

@Override
publicpublic ParcelFileDescriptor openFile(Uri uri, String mode)

throwsthrows
FileNotFoundException {

File f=newnew File(getContext().getFilesDir(), uri.getPath());

ifif (f.exists()) {
returnreturn(ParcelFileDescriptor.open(f,

ParcelFileDescriptor.MODE_READ_ONLY));
}

throwthrow newnew FileNotFoundException(uri.getPath());
}

Here, we ignore the supplied mode parameter, treating this as a read-only file. That is
safe in this case, since our only planned use of the provider is to serve read-only
content to a WebView widget. If we wanted read-write access, we would need to
convert the mode to something usable by the open() method on
ParcelFileDescriptor.

getDataLength()

AbstractFileProvider gives us a callback — getDataLength() — where we can
indicate how big a file is, given its Uri. That information will be made available to
clients consuming this stream. The default will be to indicate that the file size is
unknown… and that usually works. However, if it is easy for you to determine the
file size, do so, and it will increase the compatibility of your app with possible
consumers.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, determining the size of a local file is easy:

@Override
protectedprotected long getDataLength(Uri uri) {

File f=newnew File(getContext().getFilesDir(), uri.getPath());

returnreturn(f.length());
}

The AbstractFileProvider Class

AbstractFileProvider is designed to handle a lot of common boilerplate for
streaming providers like the one provided in this sample.

getType()

Just as our database-style ContentProvider needed to implement getType() to
provide a MIME type given a Uri, so too do our streaming providers. The difference
is that a streaming provider usually wants to use “real” MIME types, values that
third-party apps are likely to recognize. For example, a PDF file should use a MIME
type of application/pdf, as that is what PDF viewing apps will expect.

Android has some convenience code for determining a likely MIME type. You can
use MimeTypeMap to convert a file extension to a MIME type, or you can use
guessContentTypeFromName() onURLConnection to get a MIME type for a URL.
Both use the same underlying database — the difference is mostly a matter of
whether you have a bare file extension already or not. So, the default
implementation of getType() in AbstractFileProvider uses
guessContentTypeFromName():

@Override
publicpublic String getType(Uri uri) {

returnreturn(URLConnection.guessContentTypeFromName(uri.toString()));
}

If you know that your MIME type is unlikely to be recognized by Android (e.g., you
invented your own), a subclass of AbstractFileProvider could handle those cases,
chaining to the superclass for other Uri values.

insert(), update(), and delete()

ContentProvider itself is abstract, requiring us to implement a variety of methods
to satisfy the compiler. Three of them — insert(), update(), and delete() — have

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

no role in a pure-streaming ContentProvider, so AbstractFileProvider has stub
implementations:

@Override
publicpublic Uri insert(Uri uri, ContentValues initialValues) {

throwthrow newnew RuntimeException("Operation not supported");
}

@Override
publicpublic int update(Uri uri, ContentValues values, String where,

String[] whereArgs) {
throwthrow newnew RuntimeException("Operation not supported");

}

@Override
publicpublic int delete(Uri uri, String where, String[] whereArgs) {

throwthrow newnew RuntimeException("Operation not supported");
}

A ContentProvider that supports both the database-style and streaming APIs will
need real implementations of those methods for the database operations, perhaps
throwing an Exception for requests to insert, update, or delete a Uri that
represents a stream.

query() and getFileName()

We also need to implement query(). You can get by with having this be a stub
similar to insert() and kin. However, for better compatibility, you should have a
more robust query() implementation, as it will be used by ContentResolver to
retrieve two pieces of metadata about a Uri:

• What is a valid filename to use to represent this Uri, should we need a
human-readable name? After all, a ContentProvider Uri does not have to
represent a human-readable path, and so the last segment of that Uri could
be a cryptic string of hex digits or something, not a filename.

• What is the length of the data that should be delivered by the stream?

query() will be called with a projection that contains either
OpenableColumns.DISPLAY_NAME, OpenableColumns.SIZE, or both. A streaming
ContentProvider ideally supports returning a Cursor with this data. The
AbstractFileProvider implementation of query() handles this for us:

privateprivate finalfinal staticstatic String[] OPENABLE_PROJECTION= {
OpenableColumns.DISPLAY_NAME, OpenableColumns.SIZE };

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
ifif (projection == nullnull) {

projection=OPENABLE_PROJECTION;
}

finalfinal MatrixCursor cursor=newnew MatrixCursor(projection, 1);

MatrixCursor.RowBuilder b=cursor.newRow();

forfor (String col : projection) {
ifif (OpenableColumns.DISPLAY_NAME.equals(col)) {

b.add(getFileName(uri));
}
elseelse if (OpenableColumns.SIZE.equals(col)) {

b.add(getDataLength(uri));
}
elseelse { // unknown, so just add null

b.add(nullnull);
}

}

returnreturn(cursor);
}

If the supplied projection is null, we assume that the caller wants the standard
OpenableColumns; otherwise, we will use the supplied projection.

Our return value will be a MatrixCursor. This amounts to a Cursor interface on a
two-dimensional array, where you build up the rows in that array via a
MatrixCursor.RowBuilder. In our case, there will only be one such row, for the
relevant values for the file to be streamed in support of the requested Uri.

We iterate over the columns in the projection, calling out to getFileName() and
getDataLength() methods for OpenableColumns.DISPLAY_NAME and
OpenableColumns.SIZE respectively (and using null as the result for anything else).
The default implementations of those methods return the last path segment of the
Uri and AssetFileDescriptor.UNKNOWN_LENGTH, respectively:

protectedprotected String getFileName(Uri uri) {
returnreturn(uri.getLastPathSegment());

}

protectedprotected long getDataLength(Uri uri) {
returnreturn(AssetFileDescriptor.UNKNOWN_LENGTH);

}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subclasses can override those as needed, as we saw with getDataLength() in the
concrete FileProvider class.

copy()

AbstractFileProvider also has a convenience copy() static method that copies an
InputStream to a File, used from the FileProvider onCreate() method:

staticstatic protectedprotected void copy(InputStream in, File dst)
throwsthrows IOException {

FileOutputStream out=newnew FileOutputStream(dst);
byte[] buf=newnew byte[1024];
int len;

whilewhile ((len=in.read(buf)) > 0) {
out.write(buf, 0, len);

}

in.close();
out.close();

}
}

The Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by adding a
<provider> element as a child of the <application> element, as with any other
content provider:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cp.files"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="FilesCPDemo"

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<provider<provider
android:name=".FileProvider"
android:authorities="com.commonsware.android.cp.files"
android:exported="true"/>/>

</application></application>

</manifest></manifest>

Note, however, that we have android:exported="true" set in our <provider>
element. This means that this content provider can be accessed from third-party
apps or other external processes (e.g., the media framework for playing back videos).

Using this Provider

The activity is fairly trivial, simply creating an ACTION_VIEW Intent on our PDF file
and starting up an activity for it, then finishing itself:

packagepackage com.commonsware.android.cp.files;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(FileProvider.CONTENT_URI

+ "test.pdf")));
finish();

}
}

Here, we use a CONTENT_URI published by FileProvider as the basis for identifying
the file:

publicpublic staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.cp.files/");

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Protected Provider
The problem with the preceding example is that any app on the device, if it knows
the right Uri to ask for, will be able to access the file. This may be desired, but often
times it will not be. Instead, you may want to specifically indicate which apps, at
specific points in time, can view the file.

Particularly if your objective is to start a third-party app to work with that file,
setting up this sort of security is not that difficult. To see how that works, we will
walk through the ContentProvider/GrantUriPermissions sample project. This is a
clone of the ContentProvider/Files project with this extra security added on.

The way the defense works is by using Android’s permission system. We will mark
the ContentProvider as being not exported, then selectively grant that access to a
specific Uri to the app that we want to view our file.

Step #1: Mark the Provider as Not Exported

Putting android:exported="false" on the <provider> element indicates that no
app has the ability to make requests of your ContentProvider, except for specific
cases where you authorize it:

<provider<provider
android:name="FileProvider"
android:authorities="com.commonsware.android.cp.files"
android:exported="false"
android:grantUriPermissions="false"
tools:ignore="ExportedContentProvider">>
<grant-uri-permission<grant-uri-permission android:path="/test.pdf"/>/>

</provider></provider>

With no other changes, if we tried to use the app, the third-party PDF viewer would
crash when trying to read our PDF file from the Uri.

Step #2: Grant Access to the Uri

To allow third parties to get access only when we specify, we need to make a few
more changes.

This <provider> element also has android:grantUriPermissions="false". That is
the default value for this attribute, shown here purely for illustration purposes. It

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/GrantUriPermissions
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/GrantUriPermissions

also has a <grant-uri-permissions> child element, listing the local path (within the
ContentProvider) to our PDF file.

The <grant-uri-permissions> element (or elements, plural) allow us to override
the permission requirement for certain pieces of content, granting access to that
content on a per-request basis. There are three possibilities:

1. If android:grantUriPermissions is true, then we will be able to grant
access to any content within our provider

2. If android:grantUriPermissions is false, but we have
<grant-uri-permissions> sub-elements, we can only grant access to the
content identified by the Uri paths specified in those sub-elements

3. If android:grantUriPermissions is false, and we have no
<grant-uri-permissions> sub-elements (the default case), we cannot grant
access to any content within our provider

In this case, we specify that we will only grant access to /test.pdf. Since that is the
only content in this provider, we could have the same net effect by setting
android:grantUriPermissions to true.

Then, when we create an Intent used to interact with another component, we can
include a flag indicating what permission we wish to grant:

packagepackage com.commonsware.android.cp.perms;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

Intent i=newnew Intent(Intent.ACTION_VIEW, Uri.parse(FileProvider.CONTENT_URI +
"test.pdf"));

i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);
finish();

}
}

In this revised version of our activity, we add FLAG_GRANT_READ_URI_PERMISSION to
the Intent used with startActivity(). This will grant the activity that responds to

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

our Intent read access to the specific Uri in the Intent, overriding the exported
status. That is why, when you run this app on a device, the PDF viewer will still be
able to view the file.

There is also FLAG_GRANT_WRITE_URI_PERMISSION for granting write access, not
needed here, as our provider only supports read access.

While this is most commonly used with startActivity() (e.g., allowing a mail
program limited access to your attachments provider), this can also be used with
startService(), bindService(), and the various flavors of sending broadcasts (e.g.,
sendBroadcast()).

The Stream Provider
Sometimes, we want a provider that looks like the local-file provider from the
preceding section… but we do not have a file. Instead, we have data in some other
form, such as a byte array, or a String, or an InputStream. Writing that material to a
file may be problematic, or even counterproductive.

For example, imagine an app that stores data on the user’s behalf in an encrypted
fashion. One such file is a PDF, that the user would like to view. There are PDF
viewers that can view files served via content:// Uri values, as the previous section
demonstrated… but that assumes an unencrypted file. While we could decrypt the
file, writing the decrypted results to another file, and serve the decrypted data to the
PDF viewer, now we have a persistent decrypted version of the data. That opens a
window of time when the data might be accessed by people with nefarious intent,
which is something we are trying to avoid by using the encrypted store in the first
place. Rather, it would be nice if we could decrypt the data on the fly and give that
decrypted result to the PDF viewer. Of course, there are security risks intrinsic to
that too — after all, we do not know what the PDF viewer might do with the
unencrypted data — but it is at least an improvement.

The good news is that Android does support streaming options for openFile()-style
ContentProvider implementations. However, as one might expect, they are not the
simplest things to implement.

In this section, we will examine the ContentProvider/Pipe sample project. This is a
near clone of the ContentProvider/Files sample from the preceding section.
However, rather than simply handing the file to Android to serve as content, we will
stream it in ourselves. In principle, as part of this streaming, we could be decrypting

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Pipe
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Pipe

it from an encrypted state. Since this sample shares much code with the previous
sample, we will focus solely on the changes here.

Note that this sample was inspired by the sample found at https://github.com/
nandeeshwar/Pfd-Create-Pipe.

The Pipes

Starting with API Level 9, it is possible to create a pipe between two processes, from
the Android SDK, via ParcelFileDescriptor. In the previous section, we saw how
ParcelFileDescriptor could be used to open a local file and make that available to
other processes — the createPipe() method gives us a pipe.

The “pipe” returned by createPipe() is a two-element array of
ParcelFileDescriptor objects. The first element in the array represents the “read”
end of the pipe. In our case, that is the end that should be used by a PDF viewer to
read in the file contents. The second element of the array represents the “write” end
of the pipe, which we will use to supply the file’s contents to the “read” end (and to
the PDF viewer by extension).

The Revised openFile()

With that in mind, here is our revised openFile() method:

@Override
publicpublic ParcelFileDescriptor openFile(Uri uri, String mode)

throwsthrows
FileNotFoundException {

ParcelFileDescriptor[] pipe=nullnull;

trytry {
pipe=ParcelFileDescriptor.createPipe();
AssetManager assets=getContext().getResources().getAssets();

newnew TransferThread(assets.open(uri.getLastPathSegment()),
newnew AutoCloseOutputStream(pipe[1])).start();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
throwthrow newnew FileNotFoundException("Could not open pipe for: "

+ uri.toString());
}

returnreturn(pipe[0]);
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/nandeeshwar/Pfd-Create-Pipe
https://github.com/nandeeshwar/Pfd-Create-Pipe

We create our pipe via createPipe(), then get an InputStream on our PDF file
stored as an asset — unlike the ContentProvider/Files sample, we do not need to
copy the asset to a local file now. We then kick off a background thread,
implemented in an inner class named TransferThread, to actually copy the data
from the asset to the write end of the pipe.

Rather than supply TransferThread with a ParcelFileDescriptor for the write end
of the pipe, we supply an OutputStream. Specifically, we pass in a
ParcelFileDescriptor.AutoCloseOutputStream. This is an OutputStream that
knows to close the ParcelFileDescriptor when we close the stream. Otherwise, it
behaves like a fairly typical OutputStream.

The Transfer

TransferThread is a fairly conventional copy-data-from-stream-to-stream
implementation:

staticstatic classclass TransferThreadTransferThread extendsextends Thread {
InputStream in;
OutputStream out;

TransferThread(InputStream in, OutputStream out) {
thisthis.in=in;
thisthis.out=out;

}

@Override
publicpublic void run() {

byte[] buf=newnew byte[1024];
int len;

trytry {
whilewhile ((len=in.read(buf)) > 0) {

out.write(buf, 0, len);
}

in.close();
out.flush();
out.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception transferring file", e);

}
}

}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1380

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we read in data in 1KB blocks from the InputStream (our asset) and write the
data to our OutputStream (obtained from the ParcelFileDescriptor).

The Results

Our activity logic has not substantially changed. We still create an ACTION_VIEW
Intent on the content:// Uri from our provider, pointing to our test.pdf asset.
Any PDF viewer capable of handling content:// Uri values will use a
ContentResolver to open an InputStream for our Uri. In the ContentProvider/
Files sample, that InputStream would receive the contents of the file directly from
Android. In this new sample, that InputStream is reading in bytes off of our pipe,
until such time as it has read in all the streamed data and we have closed the
OutputStream.

Not every possible consumer of a Uri will be able to work with our stream, though.
For example, MediaPlayer expects to be able to determine, up front, how big the file
is, and while that works for file-backed ParcelFileDescriptors, it does not work for
those representing a pipe. Hence, MediaPlayer will crash when trying to use a Uri to
a pipe-based stream, which is certainly unfortunate.

The author would like to thank Reuben Scratton for his assistance in tracking down
this MediaPlayer limitation.

FileProvider
The Android Support package now contains its own implementation of a
FileProvider that greatly simplifies serving files from internal or external storage to
another app.

Here, we will see Google’s FileProvider in action via the ContentProvider/
V4FileProvider sample project. This is a near clone of the ContentProvider/Pipe
sample from the preceding section, just without our own ContentProvider
implementation, serving a file from internal storage.

The Rationale

The documentation for FileProvider states:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/12937011/115145
http://stackoverflow.com/a/12937011/115145
http://stackoverflow.com/a/12937011/115145
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html

Apps should generally avoid sending raw filesystem paths across process
boundaries, since the receiving app may not have the same access as the
sender. Instead, apps should send Uri backed by a provider like FileProvider.

This is not just an issue for passing files from internal storage to other apps. On
Android 4.2+ tablets, it could even be an issue for external storage, as each user
account gets its own portion of external storage. There may be scenarios in which
your app (associated with one user) winds up needing to pass the contents of a file
on external storage to another app (associated with another user). Regular filesystem
paths will not work in this case, as one user account cannot directly access another
user account’s files, even on external storage.

The Sources of Files

Google’s FileProvider offers automatic serving of files from three root points:

• getFilesDir() (i.e., the standard portion of internal storage for your app)
• getCacheDir() (i.e., internal storage, but files that the OS can purge if

needed to free up disk space)
• Environment.getExternalStorageDirectory() (i.e., the root of external

storage)

For each of these, you will be able to specify a specific subdirectory’s worth of files
that should be served, if you do not want the entire directory’s contents published
via FileProvider. You will also be able to specify an alias, which serves as the first
path segment (after the authority in the content:// Uri) — FileProvider maps
that path segment to a specific location of files to serve.

The Manifest Entry

The information about what files to serve comes in the form of an XML resource file.
You can name the file whatever you like, but its content needs to be a root <paths>
element, with a series of children for the different directories you wish to serve.
Those directories will be denoted via child elements with specific names:

• <files-path> for getFilesDir()
• <cache-path> for getCacheDir()
• <external-path> for Environment.getExternalStorageDirectory()

For example, our sample project has a res/xml/provider_paths.xml file with the
following contents:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<paths<paths xmlns:android="http://schemas.android.com/apk/res/android">>

<files-path<files-path name="stuff" />/>
</paths></paths>

Here, we are saying that we want to serve the contents of getFilesDir(), using a
virtual root path of stuff. With an authority of
com.commonsware.android.cp.v4file, this means that a Uri of
content://com.commonsware.android.cp.v4file/stuff/test.pdf would serve up a
test.pdf file in the getFilesDir() directory.

The optional path attribute of the <files-path>, etc. elements indicates a particular
subdirectory, relative to the element-specific root, that should be used as the source
of files. So, for example, had the provider_paths.xml file looked like:

<?xml version="1.0" encoding="utf-8"?>
<paths<paths xmlns:android="http://schemas.android.com/apk/res/android">>

<files-path<files-path name="stuff" path="help/" />/>
</paths></paths>

…then content://com.commonsware.android.cp.v4file/stuff/test.pdf would
map to help/test.pdf inside of getFilesDir().

You then point to this XML resource from a <meta-data> element in the <provider>
element in the manifest, teaching FileProvider what to serve. For example, our
<provider> element in this sample app is:

<provider<provider
android:name="android.support.v4.content.FileProvider"
android:authorities="com.commonsware.android.cp.v4file"
android:exported="false"
android:grantUriPermissions="true"
android:readPermission="com.commonsware.android.cp.v4file.READ">>
<meta-data<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/provider_paths"/>/>

</provider></provider>

Here, our android:name points to Google’s FileProvider (or, more accurately,
android.support.v4.content.FileProvider), not some class of our own. We still
provide the android:authorities value, along with any permission rules that we
want. Beyond that, we have a <meta-data> element, with an android:name of
android.support.FILE_PROVIDER_PATHS, that points to our XML resource with the
path information.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will also notice that our android:exported attribute is set to false. As it turns
out, FLAG_GRANT_READ_URI_PERMISSION trumps the exported status of a provider. If
you pass a Uri to an activity using FLAG_GRANT_READ_URI_PERMISSION, the activity
will be able to read the contents of that Uri, even if the provider itself is not
exported.

The Usage

At this point, the FileProvider is ready for use, insofar as we can specify Uri values
like content://com.commonsware.android.cp.v4file/stuff/test.pdf and get
results. Of course, we actually need to have files in our internal storage, and we need
to use such a Uri.

Hence, our activity combines the unpack-the-file-from-assets logic from our own
providers in earlier samples, plus starts up a PDF viewer on our designated test.pdf
file:

packagepackage com.commonsware.android.cp.v4file;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.content.FileProviderandroid.support.v4.content.FileProvider;
importimport android.util.Logandroid.util.Log;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
privateprivate staticstatic finalfinal String AUTHORITY="com.commonsware.android.cp.v4file";

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

File f=newnew File(getFilesDir(), "test.pdf");

ifif (!f.exists()) {
AssetManager assets=getResources().getAssets();

trytry {
copy(assets.open("test.pdf"), f);

}
catchcatch (IOException e) {

Log.e("FileProvider", "Exception copying from assets", e);
}

}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent i=
newnew Intent(Intent.ACTION_VIEW,

FileProvider.getUriForFile(thisthis, AUTHORITY, f));

i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);
finish();

}

staticstatic privateprivate void copy(InputStream in, File dst) throwsthrows IOException {
FileOutputStream out=newnew FileOutputStream(dst);
byte[] buf=newnew byte[1024];
int len;

whilewhile ((len=in.read(buf)) > 0) {
out.write(buf, 0, len);

}

in.close();
out.close();

}
}

FileProvider offers a handy getUriForFile() static helper method that will return
a Uri for a given file, incorporating our specified content provider authority.

The result of running this activity is the same as the other file-serving provider
samples from this chapter: a PDF viewer (if one is available) will display the
test.pdf file.

StreamProvider
FileProvider is rather nice: you can serve up typical file-based content without
having to roll your own implementation of ContentProvider and openFile().
However, it only supports a few sources of data: getFilesDir(), getCacheDir(), and
Environment.getExternalStoragePublicDirectory().

The author of this book has written StreamProvider, a fork of FileProvider that
adds support for serving content from assets, raw resources,
getExternalFilesDir(), and getExternalCacheDir(). StreamProvider can be
found in the CWAC-Provider project.

Once you have added the CWAC-Provider dependency to your project (e.g., added
the JAR to libs/), you use it much the same as you would use FileProvider:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-provider

• Define an XML metadata file with a <paths> root element, containing one or
more elements describing what you want the provider to serve

• Add com.commonsware.cwac.provider.StreamProvider as a <provider> to
your manifest, under your own android:authority, with a <meta-data>
element (with a name of
com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS), pointing to that
XML metadata

• Use FLAG_GRANT_READ_URI_PERMISSION and
FLAG_GRANT_WRITE_URI_PERMISSION in Intent objects you use to have third
parties use the files the StreamProvider serves, to allow those apps selective,
temporary access to the file

The XML metadata can have:

• <external-files-path> for serving files from getExternalFilesDir(null)
• <external-cache-path> for serving files from getExternalCacheDir()
• <raw-resource> for serving a particular raw resource, where the path is the

name of the raw resource (without file extension)
• <asset> for serving files from assets/

These are in addition to the <files-path>, <external-path>, and <cache-path>
supported by FileProvider.

Hence, StreamProvider is especially useful when you want to package some content
— such as a PDF file for online help — that you want to serve from your app. Just
drop the file in assets/ in your project, set up StreamProvider to serve up assets,
and use an appropriate Intent with startActivity() to view that file.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

1386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Loader Framework

One perpetual problem in Android development is getting work to run outside the
main application thread. Every millisecond we spend on the main application thread
is a millisecond that our UI is frozen and unresponsive. Disk I/O, in particular, is a
common source of such slowdowns, particularly since this is one place where the
emulator typically out-performs actual devices. While disk operations rarely get to
the level of causing an “application not responding” (ANR) dialog to appear, they
can make a UI “janky”.

Android 3.0 introduced a new framework to help deal with loading bulk data off of
disk, called “loaders”. The hope is that developers can use loaders to move database
queries and similar operations into the background and off the main application
thread. That being said, loaders themselves have issues, not the least of which is the
fact that it is new to Android 3.0 and therefore presents some surmountable
challenges for use in older Android devices.

This chapter will outline the programming pattern loaders are designed to solve,
how to use loaders (both built-in and third-party ones) in your activities, and how to
create your own loaders for scenarios not already covered.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

1387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Cursors: Issues with Management
Android has had the concept of “managed cursors” since Android 1.0, and perhaps
before that. A managed Cursor is one that an Activity… well… manages. More
specifically:

1. When the activity is stopped, the managed Cursor is deactivated, freeing up
all of the memory associated with the result set, and thereby reducing the
activity’s heap footprint while it is not in the foreground

2. When the activity is restarted, the managed Cursor is requeried, to bring
back the deactivated data, along the way incorporating any changes in that
data that may have occurred while the activity was off-screen

3. When the activity is destroyed, the managed Cursor is closed.

This is a delightful set of functionality. Cursor objects obtained from a
ContentProvider via managedQuery() are automatically managed; a Cursor from
SQLiteDatabase can be managed by startManagingCursor().

The problem is that the requery() operation that is performed when the activity is
restarted is executed on the main application thread. Many times, this is not a huge
deal. However, given the nature of on-device flash and the Linux filesystem that
many Android devices use (YAFFS2), it is entirely possible that what ordinarily is
quick sometimes will not be. Also, you might be testing with small data sets, and
your users might be working with bigger ones. As a result, the requery() may slow
down your UI in ways that the user will notice.

Introducing the Loader Framework
The Loader framework was designed to solve three issues with the old managed
Cursor implementation:

• Arranging for a requery() (or the equivalent) to be performed on a
background thread)

• Arranging for the original query that populated the data in the first place to
also be performed on a background thread, which the managed Cursor
solution did not address at all

• Supporting loading things other than a Cursor, in case you have data from
other sources (e.g., XML files, JSON files, Web service calls) that might be
able to take advantage of the same capabilities as you can get from a Cursor
via the loaders

THE LOADER FRAMEWORK

1388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are three major pieces to the Loader framework: LoaderManager,
LoaderCallbacks, and the Loader itself.

LoaderManager

LoaderManager is your gateway to the Loader framework. You obtain one by calling
getLoaderManager() (or getSupportLoaderManager(), as is described later in this
chapter). Via the LoaderManager you can initialize a Loader, restart that Loader (e.g.,
if you have a different query to use for loading the data), etc.

LoaderCallbacks

Much of your interaction with the Loader, though, comes from your
LoaderCallbacks object, such as your activity if that is where you elect to
implement the LoaderCallbacks interface. Here, you will implement three
“lifecycle” methods for consuming a Loader:

1. onCreateLoader() is called when your activity requests that a
LoaderManager initialize a Loader. Here, you will create the instance of the
Loader itself, teaching it whatever it needs to know to go load your data

2. onLoadFinished() is called when the Loader has actually loaded the data —
you can take those results and pour them into your UI, such as calling
swapCursor() on a CursorAdapter to supply the fresh Cursor’s worth of data

3. onLoaderReset() is called when you should stop using the data supplied to
you in the last onLoadFinished() call (e.g., the Cursor is going to be closed),
so you can arrange to make that happen (e.g., call swapCursor(null) on a
CursorAdapter)

When you implement the LoaderCallbacks interface, you will need to provide the
data type of whatever it is that your Loader is loading (e.g.,
LoaderCallbacks<Cursor>). If you have several loaders returning different data
types, you may wish to consider implementing LoaderCallbacks on multiple objects
(e.g., instances of anonymous inner classes), so you can take advantage of the type
safety offered by Java generics, rather than implementing LoaderCallbacks<Object>
or something to that effect.

Loader

Then, of course, there is Loader itself.

THE LOADER FRAMEWORK

1389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Consumers of the Loader framework will use some concrete implementation of the
abstract Loader class in their LoaderCallbacks onCreateLoader() method. API
Level 11 introduced only one concrete implementation: CursorLoader, designed to
perform queries on a ContentProvider, and described in a later section.

Honeycomb… Or Not
Loader and its related classes were introduced in Android 3.0 (API Level 11). If your
application is only going to be deployed on such devices, you can use loaders
“naturally” via the standard implementation.

If, however, you are interested in using loaders but also want to support pre-
Honeycomb devices, the Android Support package offers its own implementation of
Loader and the other classes. However, to use it, you will need to work within four
constraints:

• You will need to add the Android Support package’s JAR to your project (e.g.,
copy the JAR into your libs/ directory and add it to your build path)

• You will need to inherit from FragmentActivity, not the OS base Activity
class or other refinements (e.g., MapActivity), or from other classes that
inherit from FragmentActivity (e.g., SherlockFragmentActivity).

• You will need to import the support.v4 versions of various classes (e.g.,
android.support.v4.app.LoaderManager instead of
android.app.LoaderManager)

• You will need to get your LoaderManager by calling
getSupportLoaderManager(), instead of getLoaderManager(), on your
FragmentActivity

These limitations are the same ones that you will encounter when using fragments
on older devices. Hence, while loaders and fragments are not really related, you may
find yourself adopting both of them at the same time, as part of incorporating the
Android Support package into your project.

Using CursorLoader
Let’s start off by examining the simplest case: using a CursorLoader to
asynchronously populate and update a Cursor retrieved from a ContentProvider.
This is illustrated in the Loaders/ConstantsLoader sample project, which is the
same show-the-list-of-gravity-constants sample application that we examined
previously, updated to use the Loader framework. Note that this project does not

THE LOADER FRAMEWORK

1390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Loaders/ConstantsLoader
http://github.com/commonsguy/cw-omnibus/tree/master/Loaders/ConstantsLoader

use the Android Support package and therefore only supports API Level 11 and
higher.

In onCreate(), rather than executing a managedQuery() to retrieve our constants, we
ask our LoaderManager to initialize a loader, after setting up our
SimpleCursorAdapter on a null Cursor:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

adapter=newnew SimpleCursorAdapter(thisthis,
R.layout.row, nullnull,
newnew String[] {Provider.Constants.TITLE,

Provider.Constants.VALUE},
newnew int[] {R.id.title, R.id.value});

setListAdapter(adapter);
registerForContextMenu(getListView());
getLoaderManager().initLoader(0, nullnull, thisthis);

}

Using a null Cursor means we will have an empty list at the outset, a problem we
will rectify shortly.

The initLoader() call on LoaderManager (retrieved via getLoaderManager()) takes
three parameters:

• A locally-unique identifier for this loader
• An optional Bundle of data to supply to the loader
• A LoaderCallbacks implementation to use for the results from this loader

(here set to be the activity itself, as it implements the
LoaderManager.LoaderCallbacks<Cursor> interface)

The first time you call this for a given identifier, your onCreateLoader() method of
the LoaderCallbacks will be called. Here, you need to initialize the Loader to use for
this identifier. You are passed the identifier plus the Bundle (if any was supplied). In
our case, we want to use a CursorLoader:

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
returnreturn(newnew CursorLoader(thisthis, Provider.Constants.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull));
}

CursorLoader takes a Context plus all of the parameters you would ordinarily use
with managedQuery(), such as the content provider Uri. Hence, converting existing

THE LOADER FRAMEWORK

1391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

code to use CursorLoader means converting your managedQuery() call into an
invocation of the CursorLoader constructor inside of your onCreateLoader()
method.

At this point, the CursorLoader will query the content provider, but do so on a
background thread, so the main application thread is not tied up. When the Cursor
has been retrieved, it is supplied to your onLoadFinished() method of your
LoaderCallbacks:

publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
adapter.swapCursor(cursor);

}

Here, we call the new swapCursor() available on CursorAdapter, to replace the
original null Cursor with the newly-loaded Cursor.

Your onLoadFinished() method will also be called whenever the data represented
by your Uri changes. That is because the CursorLoader is registering a
ContentObserver, so it will find out about data changes and will automatically
requery the Cursor and supply you with the updated data.

Eventually, onLoaderReset() will be called. You are passed a Cursor object that you
were supplied previously in onLoadFinished(). You need to make sure that you are
no longer using that Cursor at this point — in our case, we swap null back into our
CursorAdapter:

publicpublic void onLoaderReset(Loader<Cursor> loader) {
adapter.swapCursor(nullnull);

}

And that’s pretty much it, at least for using CursorLoader. Of course, you need a
content provider to make this work, and creating a content provider involves a bit of
work.

What Else Is Missing?
The Loader framework does an excellent job of handling queries in the background.
What it does not do is help us with anything else that is supposed to be in the
background, such as inserts, updates, deletes, or creating/upgrading the database. It
is all too easy to put those on the main application thread and therefore possibly
encounter issues. Moreover, since the thread(s) used by the Loader framework are an

THE LOADER FRAMEWORK

1392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

implementation detail, we cannot use those threads ourselves necessarily for the
other CRUD operations.

Issues, Issues, Issues
Unfortunately, not all is rosy with the Loader framework.

There appears to be a bug in the Android Support package’s implementation of the
framework. If you use a Loader from a fragment that has setRetainInstance() set
to true, you will not be able to use the Loader again after a configuration change,
such as a screen rotation. This bug is not seen with the native API Level 11+
implementation of the framework.

Loaders Beyond Cursors
Loaders are not limited to loading something represented by a Cursor. You can load
any sort of content that might take longer to load than you would want to spend on
the main application thread. While the only concrete Loader implementation
supplied by Android at this time loads a Cursor from a ContentProvider, you can
create your own non-Cursor Loader implementation or employ one written by a
third party.

What Happens When…?
Here are some other common development scenarios and how the Loader
framework addresses them.

… the Data Behind the Loader Changes?

According to the Loader documentation, “They monitor the source of their data and
deliver new results when the content changes”.

The documentation is incorrect.

A Loader can “monitor the source of their data and deliver new results when the
content changes”. There is nothing in the framework that requires this behavior.
Moreover, there are some cases where it is clearly a bad idea to do this — imagine a
Loader loading data off of the Internet, needing to constantly poll some server to
look for changes.

THE LOADER FRAMEWORK

1393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/fundamentals/loaders.html
http://developer.android.com/guide/topics/fundamentals/loaders.html

The documentation for a Loader implementation should tell you the rules.
Android’s built-in CursorLoader does deliver new results, by means of a behind-the-
scenes ContentObserver. SQLiteCursorLoader does not deliver new results at this
time. SharedPreferencesLoader hands you a SharedPreferences object, which
intrinsically is aware of any changes, and so SharedPreferencesLoader does nothing
special here.

… the Configuration Changes?

The managed Cursor system that the Loader framework replaces would
automatically requery() any managed Cursor objects when an activity was
restarted. This would update the Cursor in place with fresh data after a
configuration change. Of course, it would do that on the main application thread,
which was not ideal.

Your Loader objects are retained across the configuration change automatically.
Barring bugs in a specific Loader implementation, your Loader should then hand
the new activity instance the data that was retrieved on behalf of the old activity
instance (e.g., the Cursor).

Hence, you do not have to do anything special for configuration changes.

… the Activity is Destroyed?

Another thing the managed Cursor system gave you was the automatic closing of
your Cursor when the activity was destroyed. The Loader framework does this as
well, by triggering a reset of the Loader, which obligates the Loader to release any
loaded data.

… the Activity is Stopped?

The final major feature of the managed Cursor system was that it would
deactivate() a managed Cursor when the activity was stopped. This would release
all of the heap space held by that Cursor while it was not on the screen. Since the
Cursor was refreshed as part of restarting the activity, this usually worked fairly well
and would help minimize pressure on the heap.

Alas, this does not appear to be supported by the Loader framework. The Loader is
reset when an activity is destroyed, not stopped. Hence, the Loader data will
continue to tie up heap space even while the activity is not in the foreground.

THE LOADER FRAMEWORK

1394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For many activities, this should not pose a problem, as the heap space consumed by
their Cursor objects is modest. If you have an activity with a massive Cursor,
though, you may wish to consider what steps you can take on your own, outside of
the Loader framework, to help with this.

THE LOADER FRAMEWORK

1395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ContactsContract Provider

One of the more popular stores of data on your average Android device is the
contact list. This is particularly true with Android 2.0 and newer versions, which
track contacts across multiple different “accounts”, or sources of contacts. Some may
come from your Google account, while others might come from Exchange or other
services.

This chapter will walk you through some of the basics for accessing the contacts on
the device. Along the way, we will revisit and expand upon our knowledge of using a
ContentProvider.

First, we will review the contacts APIs, past and present. We will then demonstrate
how you can connect to the contacts engine to let users pick and view contacts… all
without your application needing to know much of how contacts work. We will then
show how you can query the contacts provider to obtain contacts and some of their
details, like email addresses and phone numbers. We wrap by showing how you can
invoke a built-in activity to let the user add a new contact, possibly including some
data supplied by your application.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

1397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing You to Your Contacts
Android makes contacts available to you via a complex ContentProvider framework,
so you can access many facets of a contact’s data — not just their name, but
addresses, phone numbers, groups, etc. Working with the contacts ContentProvider
set is simple… only if you have an established pattern to work with. Otherwise, it
may prove somewhat daunting.

Organizational Structure

The contacts ContentProvider framework can be found as the set of
ContactsContract classes and interfaces in the android.provider package.
Unfortunately, there is a dizzying array of inner classes to ContactsContract.

Contacts can be broken down into two types: raw and aggregate. Raw contacts come
from a sync provider or are hand-entered by a user. Aggregate contacts represent the
sum of information about an individual culled from various raw contacts. For
example, if your Exchange sync provider has a contact with an email address of
jdoe@foo.com, and your Facebook sync provider has a contact with an email address
of jdoe@foo.com, Android may recognize that those two raw contacts represent the
same person and therefore combine those in the aggregate contact for the user. The
classes relating to raw contacts usually have Raw somewhere in their name, and these
normally would be used only by custom sync providers.

The ContactsContract.Contacts and ContactsContract.Data classes represent the
“entry points” for the ContentProvider, allowing you to query and obtain
information on a wide range of different pieces of information. What is retrievable
from these can be found in the various ContactsContract.CommonDataKinds series
of classes. We will see examples of these operations later in this chapter.

A Look Back at Android 1.6

Prior to Android 2.0, Android had no contact synchronization built in. As a result,
all contacts were in one large pool, whether they were hand-entered by users or were
added via third-party applications. The API used for this is the Contacts
ContentProvider.

In principle, the Contacts ContentProvider should still work, as it is merely
deprecated in Android 2.0.1, not removed. In practice, it has one big limitation: it

THE CONTACTSCONTRACT PROVIDER

1398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

will only report contacts added directly to the device (as opposed to ones
synchronized from Microsoft Exchange, Facebook, or other sources).

Pick a Peck of Pickled People
Let’s start by finding a contact. After all, that’s what the contacts system is for.

Contacts, like anything stored in a ContentProvider, is identified by a Uri. Hence,
we need a Uri we can use in the short term, perhaps to read some data, or perhaps
just to open up the contact detail activity for the user.

We could ask for a raw contact, or we could ask for an aggregate contact. Since most
consumers of the contacts ContentProvider will want the aggregate contact, we will
use that.

For example, take a look at the Contacts/Pick sample project, as this shows how to
pick a contact from a collection of contacts, then display the contact detail activity.
This application gives you a really big “Gimme!” button, which when clicked will
launch the contact-selection logic:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/pick"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Gimme a contact!"
android:layout_weight="1"

/>/>

Our first step is to determine the Uri to use to reference the collection of contacts
we want to pick from. In the long term, there should be just one answer for
aggregate contacts:
android.provider.ContactsContract.Contacts.People.CONTENT_URI. However,
that only works for Android 2.0 (SDK level 5) and higher. On older versions of
Android, we need to stick with the original
android.provider.Contacts.CONTENT_URI. To accomplish this, we will use a pinch
of reflection to determine our Uri via a static initializer when our activity starts:

privateprivate staticstatic Uri CONTENT_URI=nullnull;

staticstatic {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk>=5) {

THE CONTACTSCONTRACT PROVIDER

1399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Pick
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Pick

trytry {
Class<?>

clazz=Class.forName("android.provider.ContactsContract$Contacts");

CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);
}
catchcatch (Throwable t) {

Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
}

}
elseelse {

CONTENT_URI=Contacts.People.CONTENT_URI;
}

}

Then, you need to create an Intent for the ACTION_PICK on the chosen Uri, then
start another activity (via startActivityForResult()) to allow the user to pick a
piece of content of the specified type:

Intent i=newnew Intent(Intent.ACTION_PICK, CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);

When that spawned activity completes with RESULT_OK, the ACTION_VIEW is invoked
on the resulting contact Uri, as obtained from the Intent returned by the pick
activity:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==PICK_REQUEST) {

ifif (resultCode==RESULT_OK) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

data.getData()));
}

}
}

The result: the user chooses a collection, picks a piece of content, and views it.

THE CONTACTSCONTRACT PROVIDER

1400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 428: The PickDemo sample application, as initially launched

Figure 429: The same application, after clicking the “Gimme!” button, showing the list
of available people

THE CONTACTSCONTRACT PROVIDER

1401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 430: A view of a contact, launched by PickDemo after choosing one of the
people from the pick list

Note that the Uri we get from picking the contact is valid in the short term, but
should not be held onto in a persistent fashion (e.g., put in a database). If you need
to try to store a reference to a contact for the long term, you will need to get a
“lookup Uri” on it, to help deal with the fact that the aggregate contact may shift
over time as raw contact information for that person comes and goes.

Spin Through Your Contacts
The preceding example allows you to work with contacts, yet not actually have any
contact data other than a transient Uri. All else being equal, it is best to use the
contacts system this way, as it means you do not need any extra permissions that
might raise privacy issues.

Of course, all else is rarely equal.

Your alternative, therefore, is to execute queries against the contacts
ContentProvider to get actual contact detail data back, such as names, phone
numbers, and email addresses. The Contacts/Spinners sample application will
demonstrate this technique.

THE CONTACTSCONTRACT PROVIDER

1402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Spinners
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Spinners

Contact Permissions

Since contacts are privileged data, you need certain permissions to work with them.
Specifically, you need the READ_CONTACTS permission to query and examine the
ContactsContract content and WRITE_CONTACTS to add, modify, or remove contacts
from the system. This only holds true if your code will have access to personally-
identifying information, which is why the Pick sample above — which just has an
opaque Uri — does not need any permission.

For example, here is the manifest for the Contacts/Spinners sample application:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.contacts.spinners"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS" />/>
<uses-sdk<uses-sdk android:minSdkVersion="3"

android:targetSdkVersion="6" />/>
<supports-screens<supports-screens android:largeScreens="true"

android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name=".ContactSpinners">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>
</manifest></manifest>

Pre-Joined Data

While the database underlying the ContactsContract content provider is private,
one can imagine that it has several tables: one for people, one for their phone
numbers, one for their email addresses, etc. These are tied together by typical
database relations, most likely 1:N, so the phone number and email address tables
would have a foreign key pointing back to the table containing information about
people.

To simplify accessing all of this through the content provider interface, Android pre-
joins queries against some of the tables. For example, you can query for phone

THE CONTACTSCONTRACT PROVIDER

1403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

numbers and get the contact name and other data along with the number — you do
not have to do this join operation yourself.

The Sample Activity

The ContactsDemo activity is simply a ListActivity, though it sports a Spinner to
go along with the obligatory ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>/>
<ListView<ListView

android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"

/>/>
</LinearLayout></LinearLayout>

The activity itself sets up a listener on the Spinner and toggles the list of
information shown in the ListView when the Spinner value changes:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.Spinnerandroid.widget.Spinner;

publicpublic classclass ContactSpinnersContactSpinners extendsextends ListActivity
implementsimplements AdapterView.OnItemSelectedListener {
privateprivate staticstatic String[] options={"Contact Names",

"Contact Names & Numbers",
"Contact Names & Email Addresses"};

privateprivate ListAdapter[] listAdapters=newnew ListAdapter[3];

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

THE CONTACTSCONTRACT PROVIDER

1404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setContentView(R.layout.main);

initListAdapters();

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
options);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);
}

publicpublic void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {

setListAdapter(listAdapters[position]);
}

publicpublic void onNothingSelected(AdapterView<?> parent) {
// ignore

}

privateprivate void initListAdapters() {
listAdapters[0]=ContactsAdapterBridge.INSTANCE.buildNameAdapter(thisthis);
listAdapters[1]=ContactsAdapterBridge.INSTANCE.buildPhonesAdapter(thisthis);
listAdapters[2]=ContactsAdapterBridge.INSTANCE.buildEmailAdapter(thisthis);

}

}

When the activity is first opened, it sets up three Adapter objects, one for each of
three perspectives on the contacts data. The Spinner simply resets the list to use the
Adapter associated with the Spinner value selected.

Dealing with API Versions

Of course, once again, we have to ponder different API levels.

Querying ContactsContract and querying Contacts is similar, yet different, both in
terms of the Uri each uses for the query and in terms of the available column names
for the resulting projection.

Rather than using reflection, this time we ruthlessly exploit a feature of the VM:
classes are only loaded when first referenced. Hence, we can have a class that refers
to new APIs (ContactsContract) on a device that lacks those APIs, so long as we do
not reference that class.

THE CONTACTSCONTRACT PROVIDER

1405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To accomplish this, we define an abstract base class, ContactsAdapterBridge, that
will have a singleton instance capable of running our queries and building a
ListAdapter for each. Then, we create two concrete subclasses, one for the old API:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.Contactsandroid.provider.Contacts;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass OldContactsAdapterBridgeOldContactsAdapterBridge extendsextends ContactsAdapterBridge {
ListAdapter buildNameAdapter(Activity a) {

String[] PROJECTION=newnew String[] { Contacts.People._ID,
Contacts.PeopleColumns.NAME

};
Cursor c=a.managedQuery(Contacts.People.CONTENT_URI,

PROJECTION, nullnull, nullnull,
Contacts.People.DEFAULT_SORT_ORDER);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_1,
c,
newnew String[] {

Contacts.PeopleColumns.NAME
},
newnew int[] {

android.R.id.text1
}));

}

ListAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.Phones._ID,

Contacts.Phones.NAME,
Contacts.Phones.NUMBER

};
Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,

PROJECTION, nullnull, nullnull,
Contacts.Phones.DEFAULT_SORT_ORDER);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {

Contacts.Phones.NAME,
Contacts.Phones.NUMBER

},
newnew int[] {

android.R.id.text1,
android.R.id.text2

}));
}

THE CONTACTSCONTRACT PROVIDER

1406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ListAdapter buildEmailAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.ContactMethods._ID,

Contacts.ContactMethods.DATA,
Contacts.PeopleColumns.NAME

};
Cursor c=a.managedQuery(Contacts.ContactMethods.CONTENT_EMAIL_URI,

PROJECTION, nullnull, nullnull,
Contacts.ContactMethods.DEFAULT_SORT_ORDER);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {

Contacts.PeopleColumns.NAME,
Contacts.ContactMethods.DATA

},
newnew int[] {

android.R.id.text1,
android.R.id.text2

}));
}

}

… and one for the new API:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.CommonDataKinds.Emailandroid.provider.ContactsContract.CommonDataKinds.Email;
importimport android.provider.ContactsContract.CommonDataKinds.Phoneandroid.provider.ContactsContract.CommonDataKinds.Phone;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass NewContactsAdapterBridgeNewContactsAdapterBridge extendsextends ContactsAdapterBridge {
ListAdapter buildNameAdapter(Activity a) {

String[] PROJECTION=newnew String[] { Contacts._ID,
Contacts.DISPLAY_NAME,

};
Cursor c=a.managedQuery(Contacts.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_1,
c,
newnew String[] {

Contacts.DISPLAY_NAME
},
newnew int[] {

android.R.id.text1
}));

THE CONTACTSCONTRACT PROVIDER

1407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

ListAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts._ID,

Contacts.DISPLAY_NAME,
Phone.NUMBER

};
Cursor c=a.managedQuery(Phone.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {

Contacts.DISPLAY_NAME,
Phone.NUMBER

},
newnew int[] {

android.R.id.text1,
android.R.id.text2

}));
}

ListAdapter buildEmailAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts._ID,

Contacts.DISPLAY_NAME,
Email.DATA

};
Cursor c=a.managedQuery(Email.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {

Contacts.DISPLAY_NAME,
Email.DATA

},
newnew int[] {

android.R.id.text1,
android.R.id.text2

}));
}

}

Our ContactsAdapterBridge class then uses the SDK level to determine which of
those two classes to use as the singleton:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;

THE CONTACTSCONTRACT PROVIDER

1408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

abstractabstract classclass ContactsAdapterBridgeContactsAdapterBridge {
abstractabstract ListAdapter buildNameAdapter(Activity a);
abstractabstract ListAdapter buildPhonesAdapter(Activity a);
abstractabstract ListAdapter buildEmailAdapter(Activity a);

publicpublic staticstatic finalfinal ContactsAdapterBridge INSTANCE=buildBridge();

privateprivate staticstatic ContactsAdapterBridge buildBridge() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<5) {
returnreturn(newnew OldContactsAdapterBridge());

}

returnreturn(newnew NewContactsAdapterBridge());
}

}

Accessing Contact Information

The first Adapter shows the names of all of the contacts. Since all the information
we seek is in the contact itself, we can use the CONTENT_URI provider, retrieve all of
the contacts in the default sort order, and pour them into a SimpleCursorAdapter
set up to show each person on its own row:

Assuming you have some contacts in the database, they will appear when you first
open the ContactsDemo activity, since that is the default perspective:

THE CONTACTSCONTRACT PROVIDER

1409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 431: The ContactsDemo sample application, showing all contacts

Figure 432: The ContactsDemo sample application, showing all contacts that have
phone numbers

Similarly, to get a list of all the email addresses, we can use the CONTENT_URI content
provider. Again, the results are displayed via a two-line SimpleCursorAdapter:

THE CONTACTSCONTRACT PROVIDER

1410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 433: The ContactsDemo sample application, showing all contacts with email
addresses

Makin’ Contacts
Let’s now take a peek at the reverse direction: adding contacts to the system. This
was never particularly easy and now is… well, different.

First, we need to distinguish between sync providers and other apps. Sync providers
are the guts underpinning the accounts system in Android, bridging some existing
source of contact data to the Android device. Hence, you can have sync providers for
Exchange, Facebook, and so forth. These will need to create raw contacts for newly-
added contacts to their backing stores that are being sync’d to the device for the first
time. Creating sync providers is outside of the scope of this book for now.

It is possible for other applications to create contacts. These, by definition, will be
phone-only contacts, lacking any associated account, no different than if the user
added the contact directly. The recommended approach to doing this is to collect
the data you want, then spawn an activity to let the user add the contact — this
avoids your application needing the WRITE_CONTACTS permission and all the privacy/
data integrity issues that creates. In this case, we will stick with the new
ContactsContract content provider, to simplify our code, at the expense of
requiring Android 2.0 or newer.

THE CONTACTSCONTRACT PROVIDER

1411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To that end, take a look at the Contacts/Inserter sample project. It defines a
simple activity with a two-field UI, with one field apiece for the person’s first name
and phone number:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"

>>
<TableRow><TableRow>

<TextView<TextView
android:text="First name:"

/>/>
<EditText<EditText android:id="@+id/name"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Phone:"

/>/>
<EditText<EditText android:id="@+id/phone"

android:inputType="phone"
/>/>

</TableRow></TableRow>
<Button<Button android:id="@+id/insert" android:text="Insert!" />/>

</TableLayout></TableLayout>

The trivial UI also sports a button to add the contact:

THE CONTACTSCONTRACT PROVIDER

1412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Inserter
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Inserter

Figure 434: The ContactInserter sample application

When the user clicks the button, the activity gets the data and creates an Intent to
be used to launch the add-a-contact activity. This uses the ACTION_INSERT_OR_EDIT
action and a couple of extras from the ContactsContract.Intents.Insert class:

packagepackage com.commonsware.android.inserter;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.Intents.Insertandroid.provider.ContactsContract.Intents.Insert;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass ContactsInserterContactsInserter extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.insert);

btn.setOnClickListener(onInsert);
}

View.OnClickListener onInsert=newnew View.OnClickListener() {
publicpublic void onClick(View v) {

EditText fld=(EditText)findViewById(R.id.name);

THE CONTACTSCONTRACT PROVIDER

1413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String name=fld.getText().toString();

fld=(EditText)findViewById(R.id.phone);

String phone=fld.getText().toString();
Intent i=newnew Intent(Intent.ACTION_INSERT_OR_EDIT);

i.setType(Contacts.CONTENT_ITEM_TYPE);
i.putExtra(Insert.NAME, name);
i.putExtra(Insert.PHONE, phone);
startActivity(i);

}
};

}

We also need to set the MIME type on the Intent via setType(), to be
CONTENT_ITEM_TYPE, so Android knows what sort of data we want to actually insert.
Then, we call startActivity() on the resulting Intent. That brings up an add-or-
edit activity:

Figure 435: The add-or-edit-a-contact activity

… where if the user chooses “Create new contact”, they are taken to the ordinary add-
a-contact activity, with our data pre-filled in:

THE CONTACTSCONTRACT PROVIDER

1414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 436: The edit-contact form, showing the data from the ContactInserter activity

Note that the user could choose an existing contact, rather than creating a new
contact. If they choose an existing contact, the first name of that contact will be
overwritten with the data supplied by the ContactsInserter activity, and a new
phone number will be added from those Intent extras.

THE CONTACTSCONTRACT PROVIDER

1415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CalendarContract Provider

The Android Open Source Project (AOSP) has had a Calendar application from its
earliest days. This application originally was designed to sync with Google Calendar,
later extended to other sync sources, such as Microsoft’s Exchange. However, this
application was not part of the Android SDK, so there was no way to access it from
your Android application.

At least, no officially documented and supported way.

Many developers poked through the AOSP source code and found that the Calendar
application had a ContentProvider. Moreover, this ContentProvider was exported
(by default). So many developers used undocumented and unsupported means for
accessing calendar information. This occasionally broke, as Google modified the
Calendar app and changed these pseudo-external interfaces.

Android 4.0 added official SDK support for interacting with the Calendar
application via its ContentProvider. As part of the SDK, these new interfaces should
be fairly stable — if nothing else, they should be supported indefinitely, even if new
and improved interfaces are added sometime in the future. So, if you want to tie into
the user’s calendars, you can. Bear in mind, though, that the new CalendarContract
ContentProvider is not identical to the older undocumented providers, so if you are
aiming to support pre–4.0 devices, you have some more work to do.

Of course, similar to the ContactsContract ContentProvider, the
CalendarContract ContentProvider is severely lacking in documentation, and
anything not documented is subject to change.

1417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

You Can’t Be a Faker
While the Android 4.0 emulator has the CalendarContract ContentProvider, it will
do you little good. While you can define a Google account on the emulator, the
emulator lacks any ability to sync content with that account. Hence, you cannot see
any events for your calendars in the Calendar app, and you cannot access any
calendar data via CalendarContract.

Hence, at present, in order to test your use of CalendarContract, you will need to
have hardware that runs Android 4.0 (or higher), with one or more accounts set up
that have calendar data.

Do You Have Room on Your Calendar?
As a ContentProvider, CalendarContract is not significantly different from any
other such provider that Android supplies or that you write yourself, in that there
are Uri values representing collections of data, upon which you can query, insert,
update, and delete as needed.

The Collections

The two main collections of data that you are likely to be interested in are
CalendarContract.Calendars (the collection of all defined calendars) and
CalendarContract.Events (the collection of all defined events across all calendars).
Each of those has a CONTENT_URI static data member that you would use with
ContentResolver or a CursorLoader to perform operations on those collections. An
entry in CalendarContract.Events points back to its corresponding calendar via a
CALENDAR_ID column that you can query upon; the remaining columns on
CalendarContract.Events have names apparently designed to match with the
iCalendar specification (e.g., DTSTART and DTEND for the start and end times of the
event).

THE CALENDARCONTRACT PROVIDER

1418

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ICalendar

Three other collections may be of interest:

1. CalendarContract.Instances has one entry per occurrence of an event, so
recurring events get multiple rows

2. CalendarContract.Attendees has information about each attendee of an
event

3. CalendarContract.Reminders has information about each reminder
scheduled for an event (e.g., when to remind the user), for those events with
associated reminders

Each of those ties back to its associated CalendarContract.Events row via an
EVENT_ID column.

Calendar Permissions

There are two permissions for working with CalendarContract: READ_CALENDAR and
WRITE_CALENDAR. As you might expect, querying CalendarContract requires the
READ_CALENDAR permission; modifying CalendarContract data requires the
WRITE_CALENDAR permission.

These permissions have existed since Android’s earliest days, even in the SDK, as a
side effect of the “meat cleaver” approach the core Android team employed to create
the initial SDK. Hence, you can request these permissions in the manifest with any
Android build target, without compiler errors. Of course, actually referring to
CalendarContract will require a build target of API Level 14 or higher.

Querying for Events

For example, let’s populate a ListView with the roster of all events the user has
across all calendars, using a CursorLoader, showing the name of each event, the
event’s start date, and the event’s end date. You can find this in the Calendar/Query
sample project in the book’s source code.

Our manifest has the READ_CALENDARS permission, as you would expect:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cal.query"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="14"/>/>

THE CALENDARCONTRACT PROVIDER

1419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Calendar/Query
http://github.com/commonsguy/cw-omnibus/tree/master/Calendar/Query

<uses-permission<uses-permission android:name="android.permission.READ_CALENDAR"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".CalendarQueryActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

We will use a simple ListActivity and so therefore do not need an activity layout.
Our row layout (res/layout/row.xml) has three TextView widgets for the three
pieces of data that we want to display:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/linearLayout1"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="4dip"
android:layout_marginRight="4dip"
android:layout_weight="1"
android:ellipsize="end"
android:textSize="20sp"/>/>

<LinearLayout<LinearLayout
android:id="@+id/linearLayout2"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:layout_marginRight="4dip"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/dtstart"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="top"
android:textSize="10sp"/>/>

<TextView<TextView

THE CALENDARCONTRACT PROVIDER

1420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:id="@+id/dtend"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom"
android:textSize="10sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

In our activity (CalendarQueryActivity), in onCreate(), we set up a
SimpleCursorAdapter on a null Cursor at the outset and define the activity as being
the adapter’s ViewBinder:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

adapter=
newnew SimpleCursorAdapter(thisthis, R.layout.row, nullnull, ROW_COLUMNS,

ROW_IDS);
adapter.setViewBinder(thisthis);
setListAdapter(adapter);

getLoaderManager().initLoader(0, nullnull, thisthis);
}

A ViewBinder is a way to tailor how Cursor data is poured into row widgets, without
subclassing the SimpleCursorAdapter. Implementing the
SimpleCursorAdapter.ViewBinder interface requires us to implement a
setViewValue() method, which will be called when the adapter wishes to pour data
from one column of a Cursor into one widget. We will examine this method shortly.

The SimpleCursorAdapter will pour data from the ROW_COLUMNS in our Cursor into
the ROW_IDS widgets in our row layout:

privateprivate staticstatic finalfinal String[] ROW_COLUMNS=
newnew String[] { CalendarContract.Events.TITLE,

CalendarContract.Events.DTSTART,
CalendarContract.Events.DTEND };

privateprivate staticstatic finalfinal int[] ROW_IDS=
newnew int[] { R.id.title, R.id.dtstart, R.id.dtend };

Our onCreate() also initializes the Loader framework, triggering a call to
onCreateLoader(), where we create and return a CursorLoader:

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
returnreturn(newnew CursorLoader(thisthis, CalendarContract.Events.CONTENT_URI,

PROJECTION, nullnull, nullnull,

THE CALENDARCONTRACT PROVIDER

1421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CalendarContract.Events.DTSTART));
}

We query on CalendarContract.Events.CONTENT_URI, asking for a certain set of
columns indicated by our PROJECTION static data member:

privateprivate staticstatic finalfinal String[] PROJECTION=
newnew String[] { CalendarContract.Events._ID,

CalendarContract.Events.TITLE,
CalendarContract.Events.DTSTART,
CalendarContract.Events.DTEND };

The ROW_COLUMNS we map are a subset of the PROJECTION, skipping the _ID column
that SimpleCursorAdapter needs but will not be displayed. Our query is also set up
to sort by the start date (CalendarContract.Events.DTSTART).

When the query is complete, we pop it into the adapter in onLoadFinished() and
remove it in onLoaderReset():

publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
adapter.swapCursor(cursor);

}

publicpublic void onLoaderReset(Loader<Cursor> loader) {
adapter.swapCursor(nullnull);

}

Our setViewValue() implementation then converts the DTSTART and DTEND values
into formatted strings by way of DateUtils and the formatDateTime() method:

@Override
publicpublic boolean setViewValue(View view, Cursor cursor, int columnIndex) {

long time=0;
String formattedTime=nullnull;

switchswitch (columnIndex) {
casecase 2:
casecase 3:

time=cursor.getLong(columnIndex);
formattedTime=

DateUtils.formatDateTime(thisthis, time,
DateUtils.FORMAT_ABBREV_RELATIVE);

((TextView)view).setText(formattedTime);
breakbreak;

defaultdefault:
returnreturn(falsefalse);

}

THE CALENDARCONTRACT PROVIDER

1422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(truetrue);
}

}

The setViewValue() method should return true for any columns it handles and
false for columns it does not — skipped columns are handled by
SimpleCursorAdapter itself.

If you run this on a device with available calendar data, you will get a list of those
events:

Figure 437: The Calendar Query sample application, with some events redacted

Penciling In an Event
What is rarely documented in the Android SDK is what activities might exist that
support the MIME types of a given ContentProvider. In part, that is because device
manufacturers have the right to remove or replace many of the built-in applications.

The Calendar application is considered by Google to be a “core” application. Quoting
the Android 2.3 version of the Compatibility Definition Document (CDD):

THE CALENDARCONTRACT PROVIDER

1423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/2.3/android-2.3.3-cdd.pdf

The Android upstream project defines a number of core applications, such
as a phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.
However, any such alternative versions MUST honor the same Intent
patterns provided by the upstream project. For example, if a device contains
an alternative music player, it must still honor the Intent pattern issued by
third-party applications to pick a song.

Hence, in theory, so long as the CDD does not change and device manufacturers
correctly honor it, those Intent patterns described by the Calendar application’s
manifest should be available across Android 4.0 devices. The Calendar application
appears to support ACTION_INSERT and ACTION_EDIT for both the collection MIME
type (vnd.android.cursor.dir/event) and the instance MIME type
(vnd.android.cursor.item/event). Notably, there is no support for ACTION_PICK to
pick a calendar or event, the way you can use ACTION_PICK to pick a contact.

THE CALENDARCONTRACT PROVIDER

1424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The MediaStore Provider

Playing back media is a popular pastime on Android devices, one in which your app
may want to participate. The easiest way for you to find out what media is available
for you to display, edit, or otherwise work with is via the MediaStore content
provider. MediaStore is part of the Android framework and allows you to query for
images, audio files, and video files that are indexed on the device.

This chapter will review the general workings of MediaStore, plus work through an
example of getting video files — and their thumbnails — from MediaStore.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

It is also a pretty good idea to have read the chapters on media recording and
playback that might be of relevance, depending on what you intend to do with the
MediaStore:

• Audio Playback
• Audio Recording
• Video Playback
• Using the Camera via 3rd-Party Apps
• Working Directly with the Camera

You might also wish to consider skimming through the chapter on files again, as it
will be cross-referenced in several places in this chapter.

1425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Is the MediaStore?
The documentation for MediaStore describes it this way:

The Media provider contains meta data for all available media on both
internal and external storage devices.

This definition… leaves a bit to be desired.

From our standpoint as Android developers, the MediaStore is a ContentProvider,
supplied by Android. We can use it much like we use other system-supplied
providers, like ContactsContract and CalendarContract. In this case, the primary
role of MediaStore is for us to find media, just as the primary role of
ContactsContract is for us to find contacts.

The “meta data” reference in the documentation refers to the fact that MediaStore
itself does not store the media, even though that’s what the name MediaStore would
suggest. MediaMetadataStore would be a more accurate description. We can learn
about available media — names, durations, etc. — and we can get a Uri from
MediaStore pointing to the media, but the media itself lives as a file somewhere else.

Indexed Media

MediaStore has media as a primary focus. Here, “media” refers to:

• Images (typically photos)
• Audio (music, podcasts, etc.)
• Video (whether recorded by the device, downloaded from somewhere, etc.)

MediaStore has intrinsic knowledge of these, particularly for the file formats and
codecs that Android supports. As a result, the index maintained by MediaStore will
contain some metadata in common for all file types, such as:

• title
• MIME type
• dates (when the file was added, when the file was modified)

…and other metadata that will be unique to one or two of the major types, such as:

• duration for audio and video (but not images)

THE MEDIASTORE PROVIDER

1426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/provider/MediaStore.html
http://developer.android.com/reference/android/provider/MediaStore.html

• height and width for images and video (but not audio)
• geotagging for images and video (but not audio)

Indexed Non-Media

As was mentioned in passing in the chapter on files, Android uses MTP for Android
4.0+ as the USB protocol for sharing files with a desktop or notebook computer.

To power this, Android does not go straight to the filesystem, but rather works with
MediaStore. MediaStore maintains an index of all files, not just “media”. Whatever
shows up in MediaStore is what shows up to the user in their Windows drive letter,
OS X mounted volume, etc.

You too can query MediaStore for non-media files. Android will try to maintain a
MIME type — probably based on file extensions — and so you can find all indexed
PDF files, for example, by querying MediaStore.

MediaStore and “Other” External Storage
In the chapter on files, we covered the difference between internal storage and
external storage. Primarily, MediaStore maintains an index of external storage.

However, many Android devices today have multiple locations that could be
considered “external storage”. While the vast majority of Android devices have
“external storage” as a portion of on-board flash memory, Android device
manufacturers are welcome to add other options, such as:

• card slots (typically microSD)
• USB host ports (capable of mounting thumb drives and the like)

From the standpoint of the Android SDK, such secondary storage locations are off-
limits, in that there is nothing in the Android SDK to tell us if there are any such
locations, where they are located (in terms of File objects to their roots), whether
they can be read from, or whether they can be written to. You will find various blog
posts and StackOverflow answers where developers have attempted to catalog all of
the possibilities, using a mix of low-level Linux information and manufacturer-based
heuristics, but these techniques will be generally unreliable across thousands of
device models.

THE MEDIASTORE PROVIDER

1427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, many manufacturers who have added such secondary storage options will
arrange to have that storage be indexed and be part of MediaStore. So, if the user
slides in a microSD card containing audio files, on many devices, when you query
MediaStore for available audio files, you will find those on the microSD card in
addition to those on “traditional” external storage. From the user’s standpoint, in
terms of consuming media, this is sufficient.

How Does My Content Get Indexed?
As was noted back in the chapter on files, if you write files to external storage, you
will want to use MediaScannerConnection to ensure that those files get indexed. In
that chapter, the focus was on ensuring that your files would be visible to attached
desktops/notebooks via MTP. However, what really happens is that
MediaScannerConnection updates MediaStore, which in turn drives the MTP-served
content.

Even if you fail to index content manually, at some point, Android is likely to pick up
the files. For example, Android will scan external storage after a reboot. However,
using MediaScannerConnection to “tap Android on the shoulder” and have it index
your file means that it will show up in MediaStore more quickly. This is very
important for multimedia assets — if you downloaded some media, you want that to
be indexed as soon as possible, so the user can turn around and consume that
media, whether through your app or another one on the user’s device.

How Do I Retrieve Video from the MediaStore?
Video players will need to find out what videos are available on the device, eligible
for playback. They may wish to retrieve other details, such as the video title,
duration, and so forth. And, of course, they will need something that they can use to
actually play back the video itself.

In this section, we will work through the Media/VideoList sample project. This
project has a VideosFragment that will show the roster of available videos; tapping
on a video in the list will launch the user’s video player to watch that video.

Querying for Video

VideosFragment uses the Loader framework, since MediaStore is a ContentProvider
and Loader is a convenient way to asynchronously load content from a

THE MEDIASTORE PROVIDER

1428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoList
http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoList

ContentProvider. VideosFragment implements the
LoaderManager.LoaderCallbacks interface and, in onActivityCreated(), calls
getLoaderManager().initLoader() to initialize its Loader.

That triggers a call to onCreateLoader(), where VideosFragment creates a
CursorLoader to query the MediaStore for videos:

@Override
publicpublic Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {

returnreturn(newnew CursorLoader(
getActivity(),
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
nullnull, nullnull, nullnull,
MediaStore.Video.Media.TITLE));

}

The Uri for video content from MediaStore is
MediaStore.Video.Media.EXTERNAL_CONTENT_URI. Passing in null for the list of
columns to return will return all available columns — not the most efficient
approach, but it is convenient. The sort order of MediaStore.Video.Media.TITLE
has the results sorted by the TITLE column, so the videos are returned alphabetically.

Back up in onActivityCreated(), we initialized a SimpleCursorAdapter to handle
our results, passing in the TITLE and _ID columns into our custom row layout:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="8dp">>

<com.loopj.android.image.SmartImageView<com.loopj.android.image.SmartImageView
android:id="@+id/thumbnail"
android:layout_width="64dp"
android:layout_height="64dp"
android:contentDescription="@string/thumbnail"/>/>

<TextView<TextView
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="8dp"
android:layout_gravity="center_vertical"
android:textSize="24sp"/>/>

</LinearLayout></LinearLayout>

THE MEDIASTORE PROVIDER

1429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will cover the com.loopj.android.image.SmartImageView in the next section;
for the moment, take it on faith that it will be an image, eventually populated by a
thumbnail of the video for that row.

onActivityCreated() also attaches a custom ViewBinder, ThumbnailBinder, that we
will cover in the next section, before eventually attaching the initially-empty
SimpleCursorAdapter to the ListView of our ListFragment:

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

String[] from=
{ MediaStore.Video.Media.TITLE, MediaStore.Video.Media._ID };

int[] to= { android.R.id.text1, R.id.thumbnail };
SimpleCursorAdapter adapter=

newnew SimpleCursorAdapter(getActivity(), R.layout.row, nullnull,
from, to, 0);

adapter.setViewBinder(newnew ThumbnailBinder());
setListAdapter(adapter);

getLoaderManager().initLoader(0, nullnull, thisthis);
}

The rest of our LoaderManager.LoaderCallbacks methods are fairly conventional,
using swapCursor() to load in the results of the query (or null if the loader is reset):

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor c) {

((CursorAdapter)getListAdapter()).swapCursor(c);
}

@Override
publicpublic void onLoaderReset(Loader<Cursor> loader) {

((CursorAdapter)getListAdapter()).swapCursor(nullnull);
}

Showing the Thumbnails

If you have used a video player on Android, most have an activity (or fragment) akin
to the one we are implementing in this section. And, most of those will show
thumbnail images of the videos in question.

However, retrieving and showing those thumbnails is a bit complicated, because
Android may need to generate the thumbnail, if there is not already a thumbnail for

THE MEDIASTORE PROVIDER

1430

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the video, or if its cache of thumbnails was cleared. Generating a thumbnail takes
time, time that we do not want to spend on the main application thread.

So we need to load this image asynchronously. You might think that we would use
Picasso for this, having covered it back in the chapter on Internet access and having
noted that it handles loading from local sources as well as Internet ones. However,
Picasso does not support loading video thumbnails directly, and it is not designed
with extensibility in mind.

So, instead, we will turn to another solution.

Attaching the ViewBinder

First, the thumbnail will need to be displayed using some sort of ImageView. Since
SimpleCursorAdapter cannot populate an ImageView directly, we need some other
way to fill in the ImageView. To handle this, we create an implementation of a
ViewBinder, named ThumbnailBinder — that is what we attached to our
SimpleCursorAdapter via setViewBinder() back in onActivityCreated().

A ViewBinder is a way to tailor how Cursor data is poured into row widgets, without
subclassing the SimpleCursorAdapter. Implementing the
SimpleCursorAdapter.ViewBinder interface requires us to implement a
setViewValue() method, which will be called when the adapter wishes to pour data
from one column of a Cursor into one widget. We will examine this method shortly.

Integrating the SmartImageView

Also, as seen earlier in this section, our row.xml layout resource refers to a
com.loopj.android.image.SmartImageView widget. This comes from a third-party
JAR, written by James Smith. SmartImageView handles the work of populating an
ImageView asynchronously from some data source. It has built-in support for
downloading images from a URL or loading from contacts, much like Picasso. And,
compared to Picasso, SmartImageView is not all that smart, as Picasso has many
more capabilities.

However, SmartImageView is easily extensible to support obtaining images from
arbitrary sources, in stark contrast to the “directly hack the Picasso source code in
cryptic ways” alternative.

THE MEDIASTORE PROVIDER

1431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://loopj.com/android-smart-image-view/
http://loopj.com/android-smart-image-view/

Defining the VideoThumbnailImage

That extensibility model comes in the form of a SmartImage interface.
SmartImageView knows how to populate itself from a SmartImage, where the
getBitmap() method of SmartImage is called on a background thread, where it can
take some time loading in the data.

So, we define a VideoThumbnailImage implementation of SmartImage as follows:

privateprivate staticstatic classclass VideoThumbnailImageVideoThumbnailImage implementsimplements SmartImage {
privateprivate int videoId;
privateprivate int thumbnailKind;

VideoThumbnailImage(int videoId, int thumbnailKind) {
thisthis.videoId=videoId;
thisthis.thumbnailKind=thumbnailKind;

}

@Override
publicpublic Bitmap getBitmap(Context ctxt) {

returnreturn(MediaStore.Video.Thumbnails.getThumbnail(ctxt.getContentResolver(),
videoId,
thumbnailKind,
nullnull));

}
}

Our constructor takes two parameters:

• the ID of the video for which we need a thumbnail, which will come from
our Cursor of retrieved videos

• the type of thumbnail that we want, which needs to be either
MediaStore.Video.Thumbnails.MICRO_KIND or
MediaStore.Video.Thumbnails.MINI_KIND

For ListView rows, MICRO_KIND will usually be more suitable, as it is smaller (96 x
96, as opposed to MINI_KIND at 512 x 384).

In our getBitmap() implementation, we call the static getThumbnail() method on
MediaStore.Video.Thumbnails. This takes our video ID, our thumbnail kind, a
ContentResolver (obtained from the passed-in Context), and an optional
BitmapFactory.Options (here, set to null).

THE MEDIASTORE PROVIDER

1432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A production-grade implementation of this might well use that
BitmapFactory.Options and its inBitmap parameter to reuse an existing Bitmap
object from a pool, to help minimize heap fragmentation.

getThumbnail() may be quick, or it may not, but since getBitmap() is called on a
background thread, the time required to retrieve the thumbnail is less of an issue.

Populating the SmartImageView

Our ThumbnailBinder then uses the VideoThumbnailImage in its setViewValue()
method:

privateprivate staticstatic classclass ThumbnailBinderThumbnailBinder implementsimplements
SimpleCursorAdapter.ViewBinder {

@Override
publicpublic boolean setViewValue(View v, Cursor c, int column) {

ifif (column == c.getColumnIndex(MediaStore.Video.Media._ID)) {
VideoThumbnailImage thumb=

newnew VideoThumbnailImage(
c.getInt(column),
MediaStore.Video.Thumbnails.MICRO_KIND);

((SmartImageView)v).setImage(thumb,
R.drawable.ic_media_video_poster);

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

}

If our ViewBinder is being asked to bind the video ID column
(MediaStore.Video.Media._ID), we create an instance of VideoThumbnailImage
using that ID, and attach it to the SmartImageView via setImage(). We are passed in
that SmartImageView, but it is supplied as a generic View object, so we are forced to
cast it to SmartImageView. setImage() also takes a placeholder drawable resource, to
be used while the real image is being fetched on a background thread.

The net result is that when we populate our ListView with our ViewBinder-
enhanced SimpleCursorAdapter, the ListView rows will initially have the
placeholder image, replaced by the actual video thumbnails as they get loaded.

THE MEDIASTORE PROVIDER

1433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Playing the Selection

VideosFragment extends a version of ContractListFragment, as was used in the
EU4You samples earlier in this book. The activity that hosts this fragment is
obligated to implement the VideosFragment.Contract interface, which in turn
requires an onVideoSelected() method.

In onListItemClick() of VideosFragment, the fragment calls onVideoSelected() on
the Contract, supplying:

• the String representation of the Uri that points to the video itself, pulled
from the MediaStore.Video.Media.DATA column of the Cursor we loaded
from the MediaStore

• the MIME type of that video, pulled from the
MediaStore.Video.Media.MIME_TYPE column of that same Cursor

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

CursorAdapter adapter=(CursorAdapter)getListAdapter();
Cursor c=(Cursor)adapter.getItem(position);
int uriColumn=c.getColumnIndex(MediaStore.Video.Media.DATA);
int mimeTypeColumn=

c.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

getContract().onVideoSelected(c.getString(uriColumn),
c.getString(mimeTypeColumn));

}

The main activity — surprisingly named MainActivity — loads up a
VideosFragment as a static fragment via the res/layout/main.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/videos"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.video.list.VideosFragment"

/>/>

MainActivity implements VideosFragment.Contract and therefore has an
onVideoSelected() method. It simply constructs an Intent to view the video and
starts an activity with it:

packagepackage com.commonsware.android.video.list;

importimport android.app.Activityandroid.app.Activity;

THE MEDIASTORE PROVIDER

1434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport java.io.Filejava.io.File;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
VideosFragment.Contract {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
publicpublic void onVideoSelected(String uri, String mimeType) {

Uri video=Uri.fromFile(newnew File(uri));
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(video, mimeType);
startActivity(i);

}
}

The Results

Running this on a device with videos available should show the list of those videos,
complete with title and thumbnail:

THE MEDIASTORE PROVIDER

1435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 438: The Video List Demo App

Tapping on any entry in the list should bring up a video player on your device,
assuming that one or more such players (that are capable of supporting content://
Uri values) are installed.

THE MEDIASTORE PROVIDER

1436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Encrypted Storage

SQLite databases, by default, are stored on internal storage, accessible only to the
app that creates them.

At least, that is the theory.

In practice, it is conceivable that others could get at an app’s SQLite database, and
that those “others” may not have the user’s best interests at heart. Hence, if you are
storing data in SQLite that should remain confidential despite extreme measures to
steal the data, you may wish to consider encrypting the database.

Perhaps the simplest way to encrypt a SQLite database is to use SQLCipher.
SQLCipher is a SQLite extension that encrypts and decrypts database pages as they
are written and read. However, SQLite extensions need to be compiled into SQLite,
and the stock Android SQLite does not have the SQLCipher extension.

SQLCipher for Android, therefore, comes in the form of a replacement
implementation of SQLite that you add as an NDK library to your project. It also
ships with replacement editions of the android.database.sqlite.* classes that use the
SQLCipher library instead of the built-in SQLite. This way, your app can be largely
oblivious to the actual database implementation, particularly if it is hidden behind a
ContentProvider or similar abstraction layer.

SQLCipher for Android is a joint initiative of Zetetic (the creators of SQLCipher) and
the Guardian Project (home of many privacy-enhancing projects for Android).
SQLCipher for Android is open source, under the Apache License 2.0.

Many developers of enterprise-grade apps for Android (e.g., Salesforce.com,
JPMorgan Chase) use SQLCipher for securing their apps.

1437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://sqlcipher.net/
http://sqlcipher.net/sqlcipher-for-android/
http://www.zetetic.net/
https://guardianproject.info/

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

Scenarios for Encryption
So, why might you want to encrypt a database?

Some developers probably are thinking that this is a way of protecting the app’s
content against “those pesky rooted device users”. In practice, this is unlikely to help.
As with most encryption mechanisms, SQLCipher uses an encryption key. If the app
has the key, such as being hard-coded into the app itself, anyone can get the key by
reverse-engineering the app.

Rather, encrypted databases are to help the user defend their data against other
people seeing it when they should not. The classic example is somebody leaving
their phone in the back of a taxi — if that device winds up in the hands of some
group with the skills to root the device, they can get at any unencrypted content
they want. While some users will handle this via the whole-disk encryption available
since Android 3.0, others might not.

If the database is going anywhere other than internal storage, there is all the more
reason to consider encrypting it, as then it may not even require a rooted device to
access the database. Scenarios here include:

1. Databases stored on external storage
2. Databases backed up using external storage, BackupManager, or another

Internet-based solution
3. Databases explicitly being shared among a user’s devices, or between a user’s

device and a desktop (note that SQLCipher works on many operating
systems, including desktops and iOS)

ENCRYPTED STORAGE

1438

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Obtaining SQLCipher
SQLCipher for Android is available from its GitHub repository. The downloads area
contains ZIP archives of what you need. As of February 2014, the current shipping
version was 3.0.2.

NOTE: If you have been using SQLCipher prior to version 2.2.1, please upgrade to
3.0.x! Some modifications were made in July 2013 “to address a compatibility issue
with an upcoming Android OS release” (presumably Android 4.4). You can read
more in the SQLCipher project’s blog post about the upgrade.

NOTE #2: If you have been using SQLCipher prior to version 3.0.x, and you have
deployed your app in production, you will have some additional work to do to
upgrade your database to the new file format. This is covered later in this chapter.

Employing SQLCipher
Given an existing Android project, to use SQLCipher for Android, you need to
extract the contents of the ZIP archive’s libs/ directory and put them in your own
project’s libs/ directory (creating the latter if needed). The ZIP archive’s libs/
directory contains a few JARs, plus a set of NDK-compiled C/C++ libraries for SQLite
with the SQLCipher extension.

You will also need to copy the contents of the ZIP archive’s assets/ folder into your
project’s assets/ folder (creating the latter if needed).

If you have existing code that uses classic Android SQLite, you will need to change
your import statements to pick up the SQLCipher for Android equivalents of the
classes. For example, you obtain SQLiteDatabase now from
net.sqlcipher.database.sqlcipher, not android.database.sqlite. Similarly, you
obtain SQLException from net.sqlcipher.database instead of android.database.
Unfortunately, there is no complete list of which classes need this conversion —
Cursor, for example, does not. Try converting everything from android.database
and android.database.sqlite, and leave alone those that do not exist in the
SQLCipher for Android equivalent packages.

Before starting to use SQLCipher for Android, you need to call
SQLiteDatabase.loadLibs(), supplying a suitable Context object as a parameter.
This initializes the necessary libraries. If you are using a ContentProvider, just call
this in onCreate() before actually using anything else with your database. If you are

ENCRYPTED STORAGE

1439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/sqlcipher/android-database-sqlcipher
https://github.com/sqlcipher/android-database-sqlcipher/downloads
http://sqlcipher.net/blog/2013/7/10/sqlcipher-for-android-urgent-upgrade-required.html

not using a ContentProvider, you probably will want to create a custom subclass of
Application and make this call from that class’ onCreate(), and reference your
custom Application class in the android:name attribute of the <application>
element in your manifest. Either of these approaches will help ensure that the
libraries are ready before you try doing anything with the database.

Finally, when calling getReadableDatabase() or getWritableDatabase() on
SQLiteDatabase, you need to supply the encryption key to use. This may be
somewhat tricky with a ContentProvider, as there is not an obvious way for you to
get the key to the provider in advance of accessing the database. On older versions
of Android, you will probably wind up using a static data member — before trying to
first use the database, get the encryption key (e.g., based on a password typed by the
user), put it in a static data member, and have your ContentProvider read the value
from there.

However, starting with API Level 11, there is another approach for interacting with a
ContentProvider beyond the scope of the traditional query(), insert(), etc.
methods, by means of the call() method. That is the approach taken in the
Database/ConstantsSecure sample app, yet another variation of the
ConstantsBrowser, but where the information is stored in a SQLCipher for Android
database, to keep our precious gravitational constants away from those who might
abuse them.

Our revised Provider class switches its imports to the ones needed by SQLCipher
for Android:

importimport net.sqlcipher.SQLExceptionnet.sqlcipher.SQLException;
importimport net.sqlcipher.database.SQLiteDatabasenet.sqlcipher.database.SQLiteDatabase;
importimport net.sqlcipher.database.SQLiteQueryBuildernet.sqlcipher.database.SQLiteQueryBuilder;

In onCreate(), it initializes the libraries before creating our DatabaseHelper (our
SQLiteOpenHelper implementation):

@Override
publicpublic boolean onCreate() {

SQLiteDatabase.loadLibs(getContext());
dbHelper=(newnew DatabaseHelper(getContext()));

returnreturn((dbHelper == nullnull) ? falsefalse : truetrue);
}

That DatabaseHelper is unchanged from previous editions, other than altering the
imports to use SQLCipher for Android equivalents. However, in order to really use

ENCRYPTED STORAGE

1440

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsSecure

this DatabaseHelper, we will need the user’s passphrase, which is set via the call()
mechanism.

A client can call call() on a ContentProvider by means of a ContentResolver.
call() takes the Uri of the ContentProvider, the name of the “method” to call, and
an optional String argument and Bundle for additional parameters. For example,
our ConstantsBrowser activity now uses call() to call a “method” on the Provider,
supplying the encryption key (here hard-coded for simplicity):

getContentResolver().call(Provider.Constants.CONTENT_URI,
Provider.SET_KEY_METHOD, "sekrit", nullnull);

That call() routes to a call() implementation on the ContentProvider, which is
supplied all of the parameters except the Uri. It is up to the ContentProvider to
examine the “method” name and handle it accordingly, optionally returning a
Bundle of return values. In the case of our Provider class, if the call is for setting the
encryption key, and the supplied key is not null, we use it to access our
SQLiteDatabase:

@Override
publicpublic Bundle call(String method, String arg, Bundle extras) {

ifif (SET_KEY_METHOD.equals(method) && arg != nullnull) {
db=dbHelper.getWritableDatabase(arg);

}

returnreturn(nullnull);
}

This way, we supply the passphrase to the ContentProvider before trying to use the
database, while also avoiding a static data member. The downside of this approach,
or pretty much anything involving SQLCipher for Android, is that we have to be very
careful to ensure that we are routing the user through the login process before trying
to use the database, no matter how they enter our app (launcher icon, recent tasks,
app widget tap, started by a third-party app, etc.). While in this case, our hard-coded
passphrase avoids this complexity, it results in extremely weak security, as anyone
could decompile the app, find the passphrase, and decrypt the database. We will
touch on keys and passwords more later in this chapter.

Note that we do not hold onto the passphrase, only the opened database. This is for
added security, so somebody with a debugger cannot attach to our process and
inspect the ContentProvider to find the passphrase. Of course, in this particular
implementation, they could just as easily find where we hard-coded it.

ENCRYPTED STORAGE

1441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The implementation of methods like query() then use the already-opened
SQLiteDatabase:

@Override
publicpublic Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb=newnew SQLiteQueryBuilder();

qb.setTables(TABLE);

String orderBy;

ifif (TextUtils.isEmpty(sort)) {
orderBy=Constants.DEFAULT_SORT_ORDER;

}
elseelse {

orderBy=sort;
}

Cursor c=
qb.query(db, projection, selection, selectionArgs, nullnull, nullnull,

orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);

returnreturn(c);
}

Nothing else in the ConstantsBrowser activity needs to change, because the
ContentProvider facade hides the rest of the implementation details.

SQLCipher Limitations
Alas, SQLCipher for Android is not perfect.

It will add a few MB to the size of your APK file per CPU architecture. For most
modern Android devices, this extra size will not be a huge issue, though it will be an
impediment for older devices with less internal storage, or for apps that are getting
close to the size limits imposed by the Play Store or other distribution mechanisms.
The chapter on the NDK contains a section about a technology called libhoudini
that can help reduce this bloat, albeit with a significant performance penalty.

However, the size is mostly from code, and that may cause a problem for Eclipse
users. Eclipse may crash with its own OutOfMemoryError during the final build
process. To address that, find your eclipse.ini file (location varies by OS and

ENCRYPTED STORAGE

1442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

installation method) and increase the -Xmx value shown on one of the lines (e.g.,
change it to -Xmx512m).

Other code that expects to be using native SQLite databases will require alteration
to work with SQLCipher for Android databases. For example, the
SQLiteAssetHelper described elsewhere in this book would need to be ported to use
the SQLCipher for Android implementations of SQLiteOpenHelper, SQLiteDatabase,
etc. This is not too difficult for an open source component like SQLiteAssetHelper.

Passwords and Sessions
Given an encrypted database, there are several ways that an attacker can try to
access the data, including:

1. Use a brute-force attack via the app itself
2. Use a brute-force attack on the database directly, by copying it to some other

machine
3. Obtain the password by the strategic deployment of a $5 wrench

The classic way to prevent the first approach is by having business logic that
prevents lots of failed login attempts in a short period of time. This can be built into
your login dialog (or the equivalent), tracking the number and times of failed logins
and introducing delays, forced app exits, or something to add time and hassle for
trying lots of passwords.

Since manually trying passwords is nasty, brutish, and long, many attackers would
automate the process by copying the SQLCipher database to another machine (e.g.,
desktop) and running a brute-force attack on it directly. SQLCipher for Android has
many built-in protections to help defend against this. So long as you are using a
sufficiently long and complex encryption key, you should be fairly well-protected
against such attacks.

Defending against wrenches is decidedly more difficult and is beyond the scope of
this book.

About Those Passphrases…
Having a solid encryption algorithm, like the AES–256 used by default with
SQLCipher for Android, is only half the battle. The other half is in using a high-

ENCRYPTED STORAGE

1443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xkcd.com/538/

quality passphrase, one that is unlikely to be guessed by anyone looking to break the
encryption.

Upgrading to Encryption

Suppose you have an app already out on the market, and you decide that you want
to add the option for encryption. It is fairly likely that the user will be miffed if they
lose all their data in the process of switching to an encrypted database. Therefore,
you will want to try to retain their data.

SQLCipher for Android does not support in-place encryption of database. However,
it does support working with unencrypted databases and encrypted databases
simultaneously, giving you the option of migration.

The approach boils down to:

• Open the unencrypted database in SQLCipher for Android, using an empty
passphrase

• Use the ATTACH statement to open the encrypted database inside the same
SQLCipher for Android session

• Use a supplied sqlcipher_export() function to migrate most of the data
• Copy the Android database schema version between the databases
• DETACH the encrypted database
• Close the unencrypted database (and, presumably, delete it)
• Use the encrypted database from this point forward

Since both database files will exist at one time, you will find it simplest to use
separate names for them (e.g., stuff.db and stuff-encrypted.db).

To see how this works, take a look at the Database/SQLCipherPassphrase sample
app, which is a variation of the original, non-ContentProvider “constants” sample
app, this time using SQLCipher for Android and supporting an upgrade from a non-
encrypted database to an encrypted one.

The bulk of the logic for handling the encryption upgrade is in a static encrypt()
method on our DatabaseHelper:

staticstatic void encrypt(Context ctxt) {
SQLiteDatabase.loadLibs(ctxt);

File dbFile=ctxt.getDatabasePath(DATABASE_NAME);
File legacyFile=ctxt.getDatabasePath(LEGACY_DATABASE_NAME);

ENCRYPTED STORAGE

1444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/SQLCipherPassphrase
http://github.com/commonsguy/cw-omnibus/tree/master/Database/SQLCipherPassphrase

ifif (!dbFile.exists() && legacyFile.exists()) {
SQLiteDatabase db=

SQLiteDatabase.openOrCreateDatabase(legacyFile, "", nullnull);

db.rawExecSQL(String.format("ATTACH DATABASE '%s' AS encrypted KEY '%s';",
dbFile.getAbsolutePath(), PASSPHRASE));

db.rawExecSQL("SELECT sqlcipher_export('encrypted')");
db.rawExecSQL("DETACH DATABASE encrypted;");

int version=db.getVersion();

db.close();

db=SQLiteDatabase.openOrCreateDatabase(dbFile, PASSPHRASE, nullnull);
db.setVersion(version);
db.close();

legacyFile.delete();
}

}

First, we initialize SQLCipher for Android by calling loadLibs() on the SQLCipher
version of SQLiteDatabase. We could do this someplace else, but for this sample,
this is as good a spot as any.

We then create File objects pointing at the locations of the old, unencrypted
database (with a name represented by a LEGACY_DATABASE_NAME static data member)
and the new encrypted database (DATABASE_NAME). To get the File locations of those
databases, we use getDatabasePath(), a method on Context, which returns the
correct location for a database file given its name.

If the encrypted database exists, there is nothing that we need to do. Similarly, if it
does not exist but the unencrypted database also does not exist, there is nothing
that we can do. In either of those cases, we skip over the rest of the logic. In the first
case, we already did the conversion (presumably); in the latter case, this is a new
installation, and our SQLiteOpenHelper onCreate() logic will handle that. But, in
the case where we do not have the encrypted database but do have the unencrypted
one, we can create the encrypted database from the unencrypted data, which is what
the bulk of the encrypt() method does.

To that, we:

• Use openOrCreateDatabase() to open the already-existing unencrypted
database file in SQLCipher for Android, using "" as the passphrase.

ENCRYPTED STORAGE

1445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Use a rawExecSQL() method available on the SQLCipher for Android version
of SQLiteDatabase to ATTACH the encrypted database, given its path, to our
database session, using the supplied passphrase. This means that we can
access the tables from both databases simultaneously, though we need to
prefix all references to the attached database via its handle, encrypted.

• Use rawExecSQL() to execute SELECT sqlcipher_export('encrypted'),
which copies most of our data from the unencrypted database (the database
we have open) into the encrypted database (the one we attached). The big
thing that sqlcipher_export() does not copy is the schema version number
that Android maintains.

• Use rawExecSQL() to DETACH the attached encrypted database, as we no
longer need it.

• Call getVersion() on the SQLiteDatabase representing the unencrypted
database, to retrieve the schema version number that Android maintains.

• Close the unencrypted database and open the encrypted one using
openOrCreateDatabase().

• Use setVersion() on SQLiteDatabase to set the schema version of the
encrypted database to the value we had from the unencrypted database.

• Close the encrypted database and delete the unencrypted database file. Note
that on API Level 16+, we could use the deleteDatabase() method on
SQLiteDatabase to cleanly delete everything associated with SQLite.

The combination of doing all of that migrates our data from an unencrypted
database to an encrypted one.

Then, we simply need to call encrypt() before we try loading our constants, from
doInBackground() of our LoadCursorTask:

@Override
protectedprotected Void doInBackground(Void... params) {

DatabaseHelper.encrypt(ctxt);
constantsCursor=doQuery();
constantsCursor.getCount();

returnreturn(nullnull);
}

To test this upgrade logic, you will need to:

• Run the original unencrypted version of this sample, found in the Database/
Constants sample application

• Add a new constant using the unencrypted version of the app

ENCRYPTED STORAGE

1446

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants

• Run the encrypted version of the sample from this section, which shares the
same package name as the original and therefore will replace it on your
emulator

You will see your added constant appear along with all of the standard ones, yet if
you examine /data/data/com.commonsware.android.constants/databases on your
ARM emulator via DDMS, you will see that your database is now named
constants-crypt.db instead of constants.db, as we have replaced the unencrypted
database with an encrypted one.

Changing Encryption Passphrases

Another thing the user might wish to do is change their passphrase. Perhaps they
fear that their existing passphrase has been compromised (e.g., a narrow escape
from a $5 wrench). Perhaps they rotate their passphrases as a matter of course.
Perhaps they simply keep typing in their current one incorrectly and want to switch
to one they think they can enter more accurately.

SQLCipher for Android supports a rekey PRAGMA that can accomplish this. Given an
open encrypted database db — opened using the old passphrase – you can change
the password to a newPassword string variable via:

db.execSQL(String.format("PRAGMA rekey = '%s'", newPassword));

Note that this may take some time, as SQLCipher for Android needs to re-encrypt
the entire database.

Dealing with the Version 3.0.x Upgrade

If you are starting with SQLCipher for Android with the 3.0.x release, all is good.

If you have been using SQLCipher for Android from previous releases, but you are
still in development mode, all is still good, so long as you can wipe out your old
databases.

If you have apps in production using SQLCipher for Android from previous releases,
you will have a small headache: the database structure has changed. SQLCipher for
Android provides us with a PRAGMA cipher_migrate that we can run to upgrade the
database in place to the new structure, once we have opened the database with our
passphrase. However:

ENCRYPTED STORAGE

1447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. There is no great built-in place to put the code for calling this pragma
2. You do not want to blindly call this pragma every time you open the

database, as it results in extra processing time

SQLCipher for Android, in an attempt to help with this, offers a modified version of
methods like openOrCreateDatabase() on SQLiteDatabase, ones that take a
SQLiteDatabaseHook implementation as the last parameter. This interface requires
two methods:

1. preKey(), called after the database is opened but before the passphrase is
applied

2. postKey(), called after the database is opened and after the passphrase is
applied, but before anything else is done (e.g., standard SQLiteOpenHelper
schema version checking)

Both methods are passed the SQLiteDatabase as a parameter, for you to do with as
needed. So, for example, you could have a postKey() implementation that does the
postKey() call only if needed:

publicpublic classclass SQLCipherV3HookSQLCipherV3Hook implementsimplements SQLiteDatabaseHook {
privateprivate staticstatic finalfinal String PREFS=

"net.sqlcipher.database.SQLCipherV3Helper";

publicpublic staticstatic void resetMigrationFlag(Context ctxt, String dbPath) {
SharedPreferences prefs=

ctxt.getSharedPreferences(PREFS, Context.MODE_PRIVATE);
prefs.edit().putBoolean(dbPath, falsefalse).commit();

}

@Override
publicpublic void preKey(SQLiteDatabase database) {

// no-op
}

@Override
publicpublic void postKey(SQLiteDatabase database) {

SharedPreferences prefs=
getContext().getSharedPreferences(PREFS, Context.MODE_PRIVATE);

boolean isMigrated=prefs.getBoolean(database.getPath(), falsefalse);

ifif (!isMigrated) {
database.rawExecSQL("PRAGMA cipher_migrate;");
prefs.edit().putBoolean(database.getPath(), truetrue).commit();

}
}

}

ENCRYPTED STORAGE

1448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can also pass a SQLiteDatabaseHook implementation into the SQLiteOpenHelper
constructor as the fifth parameter, which will be used when SQLiteOpenHelper
works with the underlying SQLiteDatabase.

Multi-Factor Authentication

Another way to effectively boost the strength of your security is to implement your
own multi-factor authentication. In this case, the passphrase is not obtained solely
through the user typing in the whole thing, but instead is synthesized from two or
more sources. So, in addition to some EditText widget for entering in a portion of
the passphrase, the rest could come from things like:

• A value written to an NFC tag that the user must tap
• A value encoded in a QR code that the user must scan
• A value obtained by some Bluetooth-connected device via a custom protocol

You, in code, would concatenate the pieces together, possibly using delimiters that
cannot be typed in (e.g., ASCII characters below 32) to denote the sources of each
segment of the passphrase. The result would be the actual passphrase you would use
with SQLCipher for Android.

The objective is to make it easier for users to have more complex passphrases, while
not having to type in something complex every time. Tapping an NFC tag is much
faster than tapping out a passphrase on a typical phone keyboard, for example. Also,
the “something you know and something you have” benefit of multi-factor
authentication can help with defending against $5 wrench attacks: if the NFC tag
was destroyed, and the user never knew the portion of the passphrase stored on it,
the user cannot divulge it.

Of course, this adds risks, such as the NFC tag being destroyed accidentally (e.g.,
“my dog ate it”). This can be mitigated in some cases by some “admin” being able to
reset the password or supply a new NFC tag. In that case, getting the credentials
requires two kidnappings and two $5 wrenches (or the serial application of a single
$5 wrench, if budgets preclude buying two such wrenches), adding to the degree of
difficulty for breaking the encryption by that means.

Detecting Failed Logins

If you try to decrypt a database using the incorrect passphrase — whether an
attempt by outsiders to use the app, or the user “fat-fingering” the passphrase and
making a typo — you will get an exception:

ENCRYPTED STORAGE

1449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

11-19 09:17:22.700: E/SQLiteOpenHelper(1634):
net.sqlcipher.database.SQLiteException: file is encrypted or is not a
database

Alas, this is not a specific exception, making it a bit difficult to detect failed
passphrases specifically. Your options are:

• Assume that your testing is sound and that exceptions when opening a
database represent invalid passphrases, or

• Use a generic error message that hints at an invalid passphrase but leaves
open the possibility of something else being wrong, or

• Read into the exception’s message looking for “file is encrypted or is not a
database”, though this is fragile in the face of changes to SQLCipher for
Android

SQLCipher for Android and Performance

Some developers worry about the overhead that encryption will place on the
database I/O, and therefore worry that SQLCipher for Android will make their app
unacceptably slow.

The impact of SQLCipher is not that bad, particularly for hardware with faster
CPUs. Encryption is CPU-intensive, so faster CPUs reduce the overhead of the
encryption. Also, since the disk I/O is comparable between SQLite and SQLCipher,
the fact that flash memory is slow will mean that disk I/O, not decryption speed,
will be the primary determinant of the speed of your queries. Similarly, disk I/O
will count for more than CPU speed for the encryption needed for INSERT/
UPDATE/DELETE operations.

For example, porting one relatively crude benchmark to use SQLCipher for Android
showed no statistically significant performance difference from the SQLite edition
on a Nexus 5 running Android 4.4.2.

To the extent that encryption adds overhead, it will tend to magnify existing
problems. For example, anything that involves a “table scan” (i.e., a non-indexed
lookup of database contents) will need more pages to be decrypted and, therefore,
more decryption time. If your database I/O is well-tuned for SQLite, such as adding
appropriate indexes, then your SQLCipher for Android overhead should be nominal.

Of course, the worse the CPU, the worse the story, and so older/cheaper devices may
fare worse with SQLCipher for Android by comparison.

ENCRYPTED STORAGE

1450

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ESOS-Lab/mobibench

Encrypted Preferences
There are effectively three forms of data storage in Android:

• SQLite databases
• SharedPreferences
• Arbitrary files, in whatever format you want

You can encrypt SQLite via SQLCipher for Android, as seen in this chapter. You can
encrypt arbitrary files as part of your data format, such as via javax.crypto.

What is not supported, out of the box, is a way to encrypt SharedPreferences.

There are two approaches for encrypting the contents of SharedPreferences:

1. Encrypt the container in which the SharedPreferences are stored
2. Encrypt each preference value as you store it in the SharedPreferences, and

decrypt it when you read the value back out

Encryption via Custom SharedPreferences

SharedPreferences is an interface. Hence, you can create other implementations of
that interface that store their data in something other than unencrypted XML files.

CWSharedPreferences is one such implementation. You can find it in the
cwac-prefs project on GitHub.

CWSharedPreferences handles the SharedPreferences and
SharedPreferences.Editor interfaces, along with the in-memory representations of
the preferences. It then delegates the work of storing the preferences to a strategy
object, implementing a strategy interface (CWSharedPreferences.StorageStrategy).
Two such strategy implementations are supplied in the project: one using ordinary
SQLite, and one using SQLCipher for Android.

The basic recipe for using CWSharedPreferences is:

• Create the strategy object, such as

newnew SQLCipherStrategy(getContext(), NAME, "atestpassword", LoadPolicy.SYNC)

ENCRYPTED STORAGE

1451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-prefs
https://github.com/commonsguy/cwac-prefs

(here, NAME is the name of the set of preferences, "atestpassword" is your
passphrase, and LoadPolicy.SYNC indicates that the preferences should be loaded
from disk immediately, not on a background thread)

• Create a CWSharedPreferences that employs your chosen strategy:

newnew CWSharedPreferences(yourStrategyObjectGoesHere);

• Use the CWSharedPreferences as you would any other SharedPreferences
implementation

• Call close() on the strategy object, to release any resources that it might
hold (e.g., open database connection)

Encryption via Custom Preference UI and Accessors

The big drawback to the custom SharedPreferences is the fact that you cannot get
the PreferenceScreen system to work with it. The preference UI is hard-wired to
use the stock implementation of SharedPreferences and does not appear to support
any way to substitute in some other implementation.

Hence, another approach is to keep things in standard SharedPreferences’ XML
files, but encrypt text values on a preference-by-preference basis. Since the data type
needs to remain the same, most likely you would restrict this to encrypting strings
(e.g., EditTextPreference, ListPreference) rather than numbers, booleans, etc.

To do this, you would need to:

• Implement static methods somewhere for your encryption and decryption
algorithms

• Subclass the Preference classes of interest and override methods that would
deal with the raw preference data, like onDialogClosed(), to encrypt the
values you persist and decrypt the values you read in, using the static
methods mentioned above

• Use your extended Preference classes in your preference XML as needed
• Use those static methods as part of reading (or writing) the preference

values directly via SharedPreferences

The downsides to this approach include:

• Only certain preferences are encrypted, rather than all of them

ENCRYPTED STORAGE

1452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You lose some of the low-level encryption power of SQLCipher for Android,
such as automatic hashing of passphrases, which you would have to handle
yourself

• There may not be a library that supplies these extended Preference classes,
forcing you to roll your own

IOCipher
SQLCipher for Android is also used as the backing store for IOCipher. IOCipher is a
virtual file system (VFS) for Android, allowing you to write code that looks and
works like it uses normal file I/O, yet all of the files are actually saved as BLOBs in a
SQLCipher for Android database. The result is a fully-encrypted VFS, inheriting all
of SQLCipher’s security features, such as default AES–256 encryption. This may be
easier for you to use than encrypting and decrypting files individually via
javax.crypto, for example.

IOCipher is considered to be in pre-alpha state as of November 2012.

ENCRYPTED STORAGE

1453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/guardianproject/IOCipher

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Packaging and Distributing Data

Sometimes, you not only want to ship your code and simple resources with your app,
but you also want to ship other types of data, such as an initial database that your
app will use when first run. This chapter will examine the means by which you can
do those sorts of things.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

Packing a Database To Go
Android’s support for databases is focused on databases you create and populate
entirely at runtime. Even if you want some initial data in the database, the
expectation is that you would add that via Java code, such as the series of insert()
calls we made in the DatabaseHelper of the various flavors of the ConstantsBrowser
sample application.

However, that is tedious and slow for larger initial data sets, even if you make careful
use of transactions to minimize the disk I/O.

What would be nice is to be able to ship a pre-populated database with your app.
While Android does not offer built-in support for this, there are a few ways you can
accomplish it yourself. One of the easiest, though, is to use existing third-party code

1455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that supports this pattern, such as Jeff Gilfelt’s SQLiteAssetHelper, available via a
GitHub repository.

SQLiteAssetHelper replaces your existing SQLiteOpenHelper subclass with one that
handles database creation and upgrading for you. Rather than you writing a lot of
SQL code for each of those, you provide a ZIP file with a pre-populated SQLite
database (for creation) and a series of SQL scripts (for upgrades).
SQLiteAssetHelper then does the work to set up your pre-populated database when
the database is first accessed and running your SQL scripts as needed to handle
schema changes. And, SQLiteAssetHelper is open source, licensed under the same
Apache License 2.0 that is used for Android proper.

To examine SQLiteAssetHelper in action, let’s look at the Database/
ConstantsAssets sample project. This is yet another rendition of the same app as
the other flavors of ConstantsBrowser, but one where we use a pre-populated
database.

Create and Pack the Database

Whereas normally you create your SQLite database at runtime from Java code in
your app, you now create your SQLite database using whatever tools you like, at
development time. Whether you use the command-line sqlite3sqlite3 utility, the SQLite
Manager extension for Firefox, or anything else, is up to you. You will need to set up
all of your tables, indexes, and so forth.

You might think that you would store the SQLite database in your project’s assets/
directory, given the name of the SQLiteAssetHelper class. That is not quite how it
works. Your raw database will need to go somewhere else that can be version-
controlled but is not part of normal APK packaging (e.g., create a misc/ directory in
your project and put it there). Then, you need to:

1. Create an assets/databases/ directory in your project
2. Use a ZIP utility (command-line zipzip, WinZip, native OS ZIP archive

capability, etc.) to compress your database file and put it in assets/
databases/ under the proper name

The “proper name” for the ZIP file is your database’s original name, with the .zip
extension. So, for example, a foo.db raw SQLite database file would need to be ZIP-
compressed and stored in assets/databases/foo.db.zip. Particularly if you are
using Ant, you might consider adding commands to your build script to
automatically do this compression (e.g., using Ant’s <zip> task).

PACKAGING AND DISTRIBUTING DATA

1456

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/jgilfelt/android-sqlite-asset-helper
https://github.com/jgilfelt/android-sqlite-asset-helper
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets

The reason for the ZIP compression comes from an Android limitation – assets that
are compressed by the Android build tools have a file-size limitation (around 1MB).
Hence, you need to store larger files in a file format that will not be compressed by
the Android build tools, and those tools will not try to compress a .zip file.

In the ConstantsAssets project, you will see an assets/databases/
constants.db.zip file, containing a copy of the SQLite database with our constants
table and pre-populated values.

Unpack the Database, With a Little Help(er)

Your compressed database will ship with your APK. To get it into its regular position
on internal storage, you use SQLiteAssetHelper. Simply create a subclass of
SQLiteAssetHelper and override its constructor, supplying the same values as you
would for a SQLiteOpenHelper subclass, notably the database name and schema
revision number. Note that the database name that you use must match the
filename of the compressed database, minus the .zip extension.

So, for example, our new DatabaseHelper looks like this:

packagepackage com.commonsware.android.dbasset;

importimport android.content.Contextandroid.content.Context;
importimport com.readystatesoftware.sqliteasset.SQLiteAssetHelpercom.readystatesoftware.sqliteasset.SQLiteAssetHelper;

classclass DatabaseHelperDatabaseHelper extendsextends SQLiteAssetHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, 1);

}
}

SQLiteAssetHelper will then copy your database out of assets and set it up for
conventional use, as soon as you call getReadableDatabase() or
getWriteableDatabase() on an instance of your SQLiteAssetHelper subclass.

Upgrading Sans Java

Traditionally, with SQLiteOpenHelper, to handle a revision in your schema, you
override onUpgrade() and do the upgrade work in there. With SQLiteAssetHelper,
there is a built-in onUpgrade() method that uses SQL scripts in your APK to do the
upgrade work instead.

PACKAGING AND DISTRIBUTING DATA

1457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

These scripts will also reside in your assets/databases/ directory of your project.
The name of the file will be $NAME_upgrade_$FROM-$TO.sql, where you replace
$NAME with the name of your database (e.g., constants.db), $FROM with the old
schema version number (e.g., 1) and $TO with the new schema version number (e.g.,
2). Hence, you wind up with files like assets/databases/
constants.db_upgrade_1-2.sql. This should contain the SQL statements necessary
to upgrade your schema between the versions.

SQLiteAssetHelper will chain these together as needed. Hence, to upgrade from
schema version 1 to 3, you could either have a single dedicated 1->3 script, or a 1->2
script and a 2->3 script.

Limitations

The biggest limitation comes with disk space. Since APK files are read-only at
runtime, you cannot delete the copy of the database held as an asset in your APK file
once SQLiteAssetHelper has unpacked it. This means that the space taken up by
your ZIP file will be taken up indefinitely. Note, though, that you could use this to
your advantage, offering the user a “start over from scratch” option that deletes their
existing database, so SQLiteAssetHelper will unpack a fresh original copy on the
next run. Or, you could implement a SQLiteDownloadHelper that follows the
SQLiteAssetHelper approach but obtains its database from the Internet instead of
from assets.

In principle, SQLite could change their file format. If that ever happens, you will
need to make sure that you create a SQLite database in the file format that can be
used by Android, more so than what can be used by the latest SQLite standalone
tools.

PACKAGING AND DISTRIBUTING DATA

1458

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Media

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Audio Playback

Whether it comes in the form of simple beeps or in the form of symphonies (or
gangster rap or whatever), Android applications often need to play audio. A few
things in Android can play audio automatically, such as a Notification. However,
once you get past those, you are on your own.

Fortunately for you, Android offers support for audio playback, and we will examine
some of the options in this chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Get Your Media On
In Android, you have five different places you can pull media clips from — one of
these will hopefully fit your needs:

• You can package audio clips as raw resources (res/raw in your project), so
they are bundled with your application. The benefit is that you’re guaranteed
the clips will be there; the downside is that they cannot be replaced without
upgrading the application.

• You can package audio clips as assets (assets/ in your project) and reference
them via file:///android_asset/ URLs in a Uri. The benefit over raw
resources is that this location works with APIs that expect Uri parameters
instead of resource IDs. The downside — assets are only replaceable when
the application is upgraded — remains.

1461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You can store media in an application-local directory, such as content you
download off the Internet. Your media may or may not be there, and your
storage space isn’t infinite, but you can replace the media as needed.

• You can store media — or make use of media that the user has stored herself
— that is on an SD card. There is likely more storage space on the card than
there is on the device, and you can replace the media as needed, but other
applications have access to the SD card as well.

• You can, in some cases, stream media off the Internet, bypassing any local
storage

Remember that on Android 1.x/2.x devices, internal storage space is at a premium.
That means you should only package small clips in your app (assets/ or res/raw/)
and download larger clips to external storage.

MediaPlayer for Audio
If you want to play back music, particularly material in MP3 format, you will want to
use the MediaPlayer class. With it, you can feed it an audio clip, start/stop/pause
playback, and get notified on key events, such as when the clip is ready to be played
or is done playing.

You have three ways to set up a MediaPlayer and tell it what audio clip to play:

• If the clip is a raw resource, use MediaPlayer.create() and provide the
resource ID of the clip

• If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create()

• If you have a string path to the clip, just create a MediaPlayer using the
default constructor, then call setDataSource() with the path to the clip

Next, you need to call prepare() or prepareAsync(). Both will set up the clip to be
ready to play, such as fetching the first few seconds off the file or stream. The
prepare() method is synchronous; as soon as it returns, the clip is ready to play. The
prepareAsync() method is asynchronous — more on how to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback (with
start() picking up playback where pause() paused), and stop() ends playback.
One caveat: you cannot simply call start() again on the MediaPlayer once you have
called stop() — we’ll cover a workaround a bit later in this section.

AUDIO PLAYBACK

1462

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see this in action, take a look at the Media/Audio sample project. The layout is
pretty trivial, with three buttons and labels for play, pause, and stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="4dip"

>>
<ImageButton<ImageButton android:id="@+id/play"

android:src="@drawable/play"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"
android:enabled="false"

/>/>
<TextView<TextView

android:text="Play"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"

/>/>
</LinearLayout></LinearLayout>
<LinearLayout<LinearLayout

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="4dip"

>>
<ImageButton<ImageButton android:id="@+id/pause"

android:src="@drawable/pause"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"

/>/>
<TextView<TextView

android:text="Pause"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"

/>/>
</LinearLayout></LinearLayout>
<LinearLayout<LinearLayout

AUDIO PLAYBACK

1463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/Audio
http://github.com/commonsguy/cw-omnibus/tree/master/Media/Audio

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="4dip"

>>
<ImageButton<ImageButton android:id="@+id/stop"

android:src="@drawable/stop"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"

/>/>
<TextView<TextView

android:text="Stop"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"

/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

The Java, of course, is where things get interesting:

packagepackage com.commonsware.android.audio;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.Contextandroid.content.Context;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.media.MediaPlayerandroid.media.MediaPlayer;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageButtonandroid.widget.ImageButton;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass AudioDemoAudioDemo extendsextends Activity
implementsimplements MediaPlayer.OnCompletionListener {

privateprivate ImageButton play;
privateprivate ImageButton pause;
privateprivate ImageButton stop;
privateprivate MediaPlayer mp;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

play=(ImageButton)findViewById(R.id.play);
pause=(ImageButton)findViewById(R.id.pause);

AUDIO PLAYBACK

1464

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

stop=(ImageButton)findViewById(R.id.stop);

play.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {

play();
}

});

pause.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {

pause();
}

});

stop.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {

stop();
}

});

setup();
}

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

ifif (stop.isEnabled()) {
stop();

}
}

publicpublic void onCompletion(MediaPlayer mp) {
stop();

}

privateprivate void play() {
mp.start();

play.setEnabled(falsefalse);
pause.setEnabled(truetrue);
stop.setEnabled(truetrue);

}

privateprivate void stop() {
mp.stop();
pause.setEnabled(falsefalse);
stop.setEnabled(falsefalse);

trytry {
mp.prepare();
mp.seekTo(0);
play.setEnabled(truetrue);

}

AUDIO PLAYBACK

1465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

catchcatch (Throwable t) {
goBlooey(t);

}
}

privateprivate void pause() {
mp.pause();

play.setEnabled(truetrue);
pause.setEnabled(falsefalse);
stop.setEnabled(truetrue);

}

privateprivate void loadClip() {
trytry {

mp=MediaPlayer.create(thisthis, R.raw.clip);
mp.setOnCompletionListener(thisthis);

}
catchcatch (Throwable t) {

goBlooey(t);
}

}

privateprivate void setup() {
loadClip();
play.setEnabled(truetrue);
pause.setEnabled(falsefalse);
stop.setEnabled(falsefalse);

}

privateprivate void goBlooey(Throwable t) {
AlertDialog.Builder builder=newnew AlertDialog.Builder(thisthis);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("OK", nullnull)
.show();

}
}

In onCreate(), we wire up the three buttons to appropriate callbacks, then call
setup(). In setup(), we create our MediaPlayer, set to play a clip we package in the
project as a raw resource. We also configure the activity itself as the completion
listener, so we find out when the clip is over. Note that, since we use the static
create() method on MediaPlayer, we have already implicitly called prepare(), so
we do not need to call that separately ourselves.

The buttons simply work the MediaPlayer and toggle each others’ states, via
appropriately-named callbacks. So, play() starts MediaPlayer playback, pause()
pauses playback, and stop() stops playback and resets our MediaPlayer to play

AUDIO PLAYBACK

1466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

again. The stop() callback is also used for when the audio clip completes of its own
accord.

To reset the MediaPlayer, the stop() callback calls prepare() on the existing
MediaPlayer to enable it to be played again and seekTo() to move the playback
point to the beginning. If we were using an external file as our media source, it
would be better to call prepareAsync().

The UI is nothing special, but we are more interested in the audio in this sample,
anyway:

Figure 439: The AudioDemo sample application

Streaming Limitations

You can use the same basic code for streaming media, using an http:// or rtsp://
URL. However, bear in mind that Android does not support streaming MP3 over
RTSP, as that exceeds the relevant RTSP specifications. That being said, there are
MP3-over-RTSP streams in the world, and clients and servers that have negotiated
an ad-hoc extension to the specification to accommodate this. Android cannot play
these streams.

AUDIO PLAYBACK

1467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Ways to Make Noise
While MediaPlayer is the primary audio playback option, particularly for content
along the lines of MP3 files, there are other alternatives if you are looking to build
other sorts of applications, notably games and custom forms of streaming audio.

SoundPool

The SoundPool class’s claim to fame is the ability to overlay multiple sounds, and do
so in a prioritized fashion, so your application can just ask for sounds to be played
and SoundPool deals with each sound starting, stopping, and blending while playing.

This may make more sense with an example.

Suppose you are creating a first-person shooter. Such a game may have several
sounds going on at any one time:

1. The sound of the wind whistling amongst the trees on the battlefield
2. The sound of the surf crashing against the beach in the landing zone
3. The sound of booted feet crunching on the sand
4. The sound of the character’s own panting as the character runs on the beach
5. The sound of orders being barked by a sergeant positioned behind the

character
6. The sound of machine gun fire aimed at the character and the character’s

squad mates
7. The sound of explosions from the gun batteries of the battleship providing

suppression fire

And so on.

In principle, SoundPool can blend all of those together into a single audio stream for
output. Your game might set up the wind and surf as constant background sounds,
toggle the feet and panting on and off based on the character’s movement, randomly
add the barked orders, and tie the gunfire based on actual game play.

In reality, your average smartphone will lack the CPU power to handle all of that
audio without harming the frame rate of the game. So, to keep the frame rate up,
you tell SoundPool to play at most two streams at once. This means that when
nothing else is happening in the game, you will hear the wind and surf, but during

AUDIO PLAYBACK

1468

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the actual battle, those sounds get dropped out — the user might never even miss
them — so the game speed remains good.

AudioTrack

The lowest-level Java API for playing back audio is AudioTrack. It has two main roles:

1. Its primary role is to support streaming audio, where the streams come in
some format other than what MediaPlayer handles. While MediaPlayer can
handle RTSP, for example, it does not offer SIP. If you want to create a SIP
client (perhaps for a VOIP or Web conferencing application), you will need
to convert the incoming data stream to PCM format, then hand the stream
off to an AudioTrack instance for playback.

2. It can also be used for “static” (versus streamed) bits of sound that you have
pre-decoded to PCM format and want to play back with as little latency as
possible. For example, you might use this for a game for in-game sounds
(beeps, bullets, or “boing”s). By pre-decoding the data to PCM and caching
that result, then using AudioTrack for playback, you will use the least
amount of overhead, minimizing CPU impact on game play and on battery
life.

ToneGenerator

If you want your phone to sound like… well… a phone, you can use ToneGenerator to
have it play back dual-tone multi-frequency (DTMF) tones. In other words, you can
simulate the sounds played by a regular “touch-tone” phone in response to button
presses. This is used by the Android dialer, for example, to play back the tones when
users dial the phone using the on-screen keypad, as an audio reinforcement.

Note that these will play through the phone’s earpiece, speaker, or attached headset.
They do not play through the outbound call stream. In principle, you might be able
to get ToneGenerator to play tones through the speaker loud enough to be picked up
by the microphone, but this probably is not a recommended practice.

AUDIO PLAYBACK

1469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Dtmf

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Audio Recording

Most Android devices have microphones. On such devices, it might be nice to get
audio input from those microphones, whether to record locally, process locally (e.g.,
speech recognition), or to stream out over the Internet (e.g., voice over IP).

Not surprisingly, Android has some capabilities in this area. Also, not surprisingly,
there are multiple APIs, with varying mixes of power and complexity, to allow you to
capture microphone input. In this chapter, we will examine MediaRecorder for
recording audio files and AudioRecord for raw microphone input.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having read the chapter on audio playback is probably also a good idea. And,
for the section on playing back local streams, you will want to have read up on
content providers, particularly the chapter on provider patterns.

Recording by Intent
Just as the easiest way to take a picture with the camera is to use the device’s built-in
camera app, the easiest way to record some audio is to use a built-in activity for it.
And, as with using the built-in camera app, the built-in audio recording activity has
some significant limitations.

Requesting the built-in audio recording activity is a matter of calling
startActivityForResult() for a MediaStore.Audio.Media.RECORD_SOUND_ACTION
action. You can see this in the Media/SoundRecordIntent sample project, specifically
the MainActivity:

1471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/SoundRecordIntent
http://github.com/commonsguy/cw-omnibus/tree/master/Media/SoundRecordIntent

packagepackage com.commonsware.android.soundrecord;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int REQUEST_ID=1337;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

Intent i=newnew Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);

startActivityForResult(i, REQUEST_ID);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == REQUEST_ID && resultCode == RESULT_OK) {

Toast.makeText(thisthis, "Recording finished!", Toast.LENGTH_LONG)
.show();

}

finish();
}

}

As with a few other sample apps in this book, the Media/SoundRecordIntent uses a
Theme.NoDisplay activity, eschewing its own UI. Instead, in onCreate(), we
immediately call startActivityForResult() for
MediaStore.Audio.Media.RECORD_SOUND_ACTION. That will bring up a recording
activity:

AUDIO RECORDING

1472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 440: Built-In Sound Recording Activity

If the user records some audio via the “record” ImageButton (one with the circle
icon) and the “stop” ImageButton (one with the square icon), you will get control
back in onActivityResult(), where you are passed an Intent whose Uri (via
getData()) will point to this audio recording in the MediaStore.

However:

• You have no control over where the file is stored or what it is named. It
appears that, by default, these files are dumped unceremoniously in the root
of external storage.

• You have no control over anything about the way the audio is recorded, such
as codecs or bitrates. For example, it appears that, by default, the files are
recorded in AMR format.

• ACTION_VIEW may not be able to play back this audio (leastways, it failed to
in testing on a few devices). Whether that is due to codecs, the way the data
is put in MediaStore, or the limits of the default audio player on Android, is
unclear.

AUDIO RECORDING

1473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, in many cases, while this works, it may not work well enough — or
controlled enough — to meet your needs. In that case, you will want to handle the
recording yourself, as will be described in the next couple of sections.

Recording to Files
If your objective is to record a voice note, a presentation, or something along those
lines, then MediaRecorder is probably the class that you want. It will let you specify
what sort of media you wish to record, in what format, and to what location. It then
handles the actual act of recording.

To illustrate this, let us review the Media/AudioRecording sample project.

Our activity’s layout consists of a single ToggleButton widget named record:

<ToggleButton<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/record"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

In onCreate() of MainActivity, we load the layout and set the activity itself up as
the OnCheckedChangedListener, to find out when the user toggles the button:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

((ToggleButton)findViewById(R.id.record)).setOnCheckedChangeListener(thisthis);
}

Also, in onResume(), we initialize a MediaRecorder, setting the activity up as being
the one to handle info and error events about the recording. Similarly, we release()
the MediaRecorder in onPause(), to reduce our overhead when we are not in the
foreground:

@Override
publicpublic void onResume() {

supersuper.onResume();

recorder=newnew MediaRecorder();
recorder.setOnErrorListener(thisthis);
recorder.setOnInfoListener(thisthis);

}

AUDIO RECORDING

1474

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecording
http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecording

@Override
publicpublic void onPause() {

recorder.release();
recorder=nullnull;

supersuper.onPause();
}

Most of the work occurs in onCheckedChanged(), where we get control when the
user toggles the button. If we are now checked, we begin recording; if not, we stop
the previous recording:

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
ifif (isChecked) {

File output=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
BASENAME);

recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
recorder.setOutputFile(output.getAbsolutePath());

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD_MR1) {
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);
recorder.setAudioEncodingBitRate(160 * 1024);

}
elseelse {

recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
}

recorder.setAudioChannels(2);

trytry {
recorder.prepare();
recorder.start();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception in preparing recorder", e);

Toast.makeText(thisthis, e.getMessage(), Toast.LENGTH_LONG).show();
}

}
elseelse {

trytry {
recorder.stop();

}
catchcatch (Exception e) {

Log.w(getClass().getSimpleName(),

AUDIO RECORDING

1475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"Exception in stopping recorder", e);
// can fail if start() failed for some reason

}

recorder.reset();
}

}

To record audio, we:

• Create a File object representing where the recording should be stored, in
this case using Environment.getExternalStoragePublicDirectory() to find
a location on external storage

• Tell the MediaRecorder that we wish to record from the microphone,
through a call to setAudioSource(), that we wish to record a 3GP file via a
call to setOutputFormat(), and that we wish to record the results to our
File via a call to setOutputFile()

• If we are running on Android 2.3.3 or higher, we can also configure our
encoder to be AAC via setAudioEncoder() and set our requested bitrate to
160Kbps via setAudioEncodingBitRate() — otherwise, we use
setAudioEncoder() to request AMR narrowband

• Indicate how many audio channels we want via setAudioChannels(), such
as 2 to attempt to record in stereo

• Kick off the actual recording via calls to prepare() (to set up the output file)
and record()

Stopping the recording, when the user toggles off the button, is merely a matter of
calling stop() on the MediaRecorder.

Because we told the MediaRecorder that our activity was our OnErrorListener and
OnInfoListener, we have to implement those interfaces on the activity and
implement their required methods (onError() and onInfo(), respectively). In the
normal course of events, neither of these should be triggered. If they are, we are
passed an int value (typically named what) that indicates what happened:

@Override
publicpublic void onInfo(MediaRecorder mr, int what, int extra) {

String msg=getString(R.string.strange);

switchswitch (what) {
casecase MediaRecorder.MEDIA_RECORDER_INFO_MAX_DURATION_REACHED:

msg=getString(R.string.max_duration);
breakbreak;

casecase MediaRecorder.MEDIA_RECORDER_INFO_MAX_FILESIZE_REACHED:

AUDIO RECORDING

1476

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

msg=getString(R.string.max_size);
breakbreak;

}

Toast.makeText(thisthis, msg, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onError(MediaRecorder mr, int what, int extra) {

Toast.makeText(thisthis, R.string.strange, Toast.LENGTH_LONG).show();
}

Here, we just raise a Toast in either case, with either a generic message or a specific
message for the cases where the maximum time duration or the maximum file size
for our recording has been reached.

We also need to hold the RECORD_AUDIO and WRITE_EXTERNAL_STORAGE permissions.
RECORD_AUDIO, in particular, is needed to let the user know that we intend to record
information off of the microphone.

The results are that we get a recording on external storage (typically in a Downloads
directory) after we toggle the button on, record some audio, then toggle the button
off.

MediaRecorder is rather fussy about the order of method calls for its configuration.
For example, you must call setAudioEncoder() after the call to setOutputFormat().

Also, the available codecs and file types are rather limited. Notably, Android lacks
the ability to record to MP3 format, perhaps due to patent licensing issues.

On the flip side, MediaRecorder also supports recording video, a topic which is not
presently covered in this book.

Recording to Streams
The nice thing about recording to files is that Android handles all of the actual file
I/O for us. The downside is that because Android handles all of the actual file I/O
for us, it can only write files that are accessible to it and our process, meaning
external storage. This may not be suitable in all cases, such as wanting to record to
some form of private encrypted storage.

The good news is that Android does support recording to streams, in the form of a
pipe created by ParcelFileDescriptor and createPipe(). This follows the same

AUDIO RECORDING

1477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

basic pattern that we saw in the chapter on content provider patterns, where we
served a stream via a pipe. However, as you will see, there are some limits on how
well we can do this.

To demonstrate and explain, let us examine the Media/AudioRecordStream sample
project. This is nearly a complete clone of the previous sample, so we will only focus
on the changes in this section.

The author would like to thank Lucio Maciel for his assistance in getting this
example to work.

Setting Up the Stream

The biggest change, by far, is in our setOutputFile() call. Before, we supplied a
path to external storage. Now, we supply the write end of a pipe:

recorder.setOutputFile(getStreamFd());

Our getStreamFd() method looks a lot like the openFile() method of our pipe-
providing provider:

privateprivate FileDescriptor getStreamFd() {
ParcelFileDescriptor[] pipe=nullnull;

trytry {
pipe=ParcelFileDescriptor.createPipe();

newnew TransferThread(newnew AutoCloseInputStream(pipe[0]),
newnew FileOutputStream(getOutputFile())).start();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
}

returnreturn(pipe[1].getFileDescriptor());
}

We create our pipe with createPipe(), spawn a TransferThread to copy the
recording from an InputStream to a FileOutputStream, and return the write end of
the pipe. However, setOutputFile() on MediaRecorder takes the actual integer file
descriptor, not a ParcelFileDescriptor, so we use getFileDescriptor() to retrieve
the file descriptor and return that.

AUDIO RECORDING

1478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecordStream
http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecordStream
http://stackoverflow.com/a/12935911/115145
http://stackoverflow.com/a/12935911/115145

Our TransferThread is similar to the one from the content provider sample, except
that we pass over a FileOutputStream, so we can not only flush() but also sync()
when we are done writing:

staticstatic classclass TransferThreadTransferThread extendsextends Thread {
InputStream in;
FileOutputStream out;

TransferThread(InputStream in, FileOutputStream out) {
thisthis.in=in;
thisthis.out=out;

}

@Override
publicpublic void run() {

byte[] buf=newnew byte[8192];
int len;

trytry {
whilewhile ((len=in.read(buf)) > 0) {

out.write(buf, 0, len);
}

in.close();

out.flush();
out.getFD().sync();
out.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception transferring file", e);

}
}

}

Changes in Recording Configuration

The biggest limitation of a pipe’s stream is that it is purely a stream. You cannot
rewind re-read earlier bits of data. In other words, the stream is not seekable.

That is a problem with MediaRecorder in some configurations. For example, a 3GP
file contains a header with information about the overall file, information that
MediaRecorder does not know until the recording is complete. In the case of a file,
MediaRecorder can simply rewind and update the header with the final data when
everything is done. However, that is not possible with a pipe-based stream.

AUDIO RECORDING

1479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, some configurations will work, notably “raw” ones that just have the
recorded audio, with no type of header. That is what we use in this sample.

Specifically, we now write to a .amr file:

privateprivate staticstatic finalfinal String BASENAME="recording-stream.amr";

We also set our output format to RAW_AMR, and our encoder to AMR_NB:

recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.RAW_AMR);
recorder.setOutputFile(getStreamFd());
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
recorder.setAudioChannels(2);

This combination works. Other combinations might also work. But our approach of
writing the 3GP file, as in the file-based example, will not work.

Raw Audio Input
Just as AudioTrack allows you to play audio supplied as raw 8- or 16-bit PCM input,
AudioRecord allows you to record audio from the microphone, supplied to you in
PCM format. It is then up to you to actually do something with the raw byte PCM
data, including converting it to some other format and container as needed.

Note that you need RECORD_AUDIO to work with AudioRecord, just as you need it to
work with MediaRecorder.

Requesting the Microphone
As noted in the opening paragraph of this chapter, most Android devices have
microphones. The key word there is most. Not all Android devices will have
microphones, as only some tablets (and fewer Google TV devices) will support
microphone input.

As with most of this optional hardware, the solution is to use <uses-feature>. In
that case, you would request the android.hardware.microphone feature, with
android:required="false" if you felt that you do not absolutely need a
microphone. In that case, you would use hasSystemFeature() on PackageManager to
determine at runtime if you do indeed have a microphone.

AUDIO RECORDING

1480

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the RECORD_AUDIO permission implies that you need a microphone. Hence,
even if you skip the <uses-feature> element, your app will still only ship to devices
that have a microphone. If the microphone is optional, be sure to include
android:required="false", so your app will be available to devices that lack a
microphone.

AUDIO RECORDING

1481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Video Playback

Just as Android supports audio playback, it also supports video playback of local and
streaming content. Unlike audio playback – which supports a mix of high-level and
low-level APIs – video playback offers a purely high-level interface, in the form of the
same MediaPlayer class you used for audio playback. To keep things a bit simpler,
though, Android does offer a VideoView widget you can drop in an activity or
fragment to play back video.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, along with the chapter on audio playback.

Moving Pictures
Video clips get their own widget, the VideoView. Put it in a layout, feed it an MP4
video clip, and you get playback!

For example, take a look at this layout, from the Media/Video sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<VideoView<VideoView
android:id="@+id/video"
android:layout_width="match_parent"
android:layout_height="match_parent"

1483

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/Video
http://github.com/commonsguy/cw-omnibus/tree/master/Media/Video

/>/>
</LinearLayout></LinearLayout>

The layout is simply a full-screen video player. Whether it will use the full screen will
be dependent on the video clip, its aspect ratio, and whether you have the device (or
emulator) in portrait or landscape mode.

Wiring up the Java is almost as simple:

packagepackage com.commonsware.android.video;

importimport java.io.Filejava.io.File;
importimport android.app.Activityandroid.app.Activity;
importimport android.graphics.PixelFormatandroid.graphics.PixelFormat;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.widget.MediaControllerandroid.widget.MediaController;
importimport android.widget.VideoViewandroid.widget.VideoView;

publicpublic classclass VideoDemoVideoDemo extendsextends Activity {
privateprivate VideoView video;
privateprivate MediaController ctlr;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
getWindow().setFormat(PixelFormat.TRANSLUCENT);
setContentView(R.layout.main);

File clip=newnew File(Environment.getExternalStorageDirectory(),
"test.mp4");

ifif (clip.exists()) {
video=(VideoView)findViewById(R.id.video);
video.setVideoPath(clip.getAbsolutePath());

ctlr=newnew MediaController(thisthis);
ctlr.setMediaPlayer(video);
video.setMediaController(ctlr);
video.requestFocus();
video.start();

}
}

}

Here, we:

1. Confirm that our video file exists on external storage
2. Tell the VideoView which file to play

VIDEO PLAYBACK

1484

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Create a MediaController pop-up panel and cross-connect it to the
VideoView

4. Give the VideoView the focus and start playback

The biggest trick with VideoView is getting a video clip onto the device. While
VideoView does support some streaming video, the requirements on the MP4 file are
fairly stringent. If you want to be able to play a wider array of video clips, you need
to have them on the device, preferably on an SD card.

The crude VideoDemo class assumes there is an MP4 file named test.mp4 in the root
of external storage on your device or emulator. Once there, the Java code shown
above will give you a working video player:

Figure 441: The VideoDemo sample application, showing a Creative Commons-
licensed video clip

Tapping on the video will pop up the playback controls:

VIDEO PLAYBACK

1485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 442: The VideoDemo sample application, with the media controls displayed

The video will scale based on space, as shown in this rotated view of the emulator
(<Ctrl>-<F12>):

VIDEO PLAYBACK

1486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 443: The VideoDemo sample application, in landscape mode, with the video
clip scaled to fit

NOTE: playing video on the Android emulator may work for you, but it is not
terribly likely. Video playback requires graphic acceleration to work well, and the
emulator does not have graphics acceleration — regardless of the capabilities of the
actual machine the emulator runs on. Hence, if you try playing back video in the
emulator, expect problems. If you are serious about doing Android development
with video playback, you definitely need to acquire a piece of Android hardware.

VIDEO PLAYBACK

1487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Camera via 3rd-Party Apps

Most Android devices will have a camera, since they are fairly commonplace on
mobile devices these days. You, as an Android developer, can take advantage of the
camera, for everything from snapping tourist photos to scanning barcodes. If you
wish to let other apps do the “heavy lifting” for you, working with the camera can be
fairly straightforward. If you want more control, you can work with the camera
directly, though this control comes with greater complexity.

You can also record videos using the camera. Once again, you have the option of
either using a third-party activity, or doing it yourself.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the material on implicit Intents.

Being Specific About Features
If your app needs a camera — by any of the means cited in this chapter – you should
include a <uses-feature> element in the manifest indicating your requirements.
However, you need to be fairly specific about your requirements here.

For example, the Nexus 7 has a camera… but only a front-facing camera. This
facilitates apps like video chat. However, the android.hardware.camera implies that
you need a high-resolution rear-facing camera, even though this is undocumented.
Hence, to work with the Nexus 7’s camera, you need to:

• Require the CAMERA permission (if you are using the Camera directly)

1489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=35166

• Not require the android.hardware.camera feature
(android:required="false")

• Optionally require the android.hardware.camera.front feature (if your app
definitely needs a front-facing camera)

At runtime, you would use hasSystemFeature() on PackageManager, or interrogate
the Camera class for available cameras, to determine what you have access to.

Note that if you want to record audio when recording videos, you should also
consider the android.hardware.microphone feature.

Still Photos: Letting the Camera App Do It
The easiest way to take a picture is to not take the picture yourself, but let somebody
else do it. The most common implementation of this approach is to use an
ACTION_IMAGE_CAPTURE Intent to bring up the user’s default camera application, and
let it take a picture on your behalf.

To see this in use, take a look at the Camera/Content sample project. This trivial app
will use system-supplied activities to take a picture, then view the result, without
actually implementing any of its own UI.

The Implementation

Of course, we still need an activity, so our code can be launched by the user. We just
set it up with Theme.NoDisplay, so no UI will be created for it:

<activity<activity
android:name=".CameraContentDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

The activity itself — CameraContentDemoActivity — consists solely of onCreate()
and onActivityResult() methods:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

USING THE CAMERA VIA 3RD-PARTY APPS

1490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Content
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Content

supersuper.onCreate(savedInstanceState);

Intent i=newnew Intent(MediaStore.ACTION_IMAGE_CAPTURE);
File dir=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM);

output=newnew File(dir, "CameraContentDemo.jpeg");
i.putExtra(MediaStore.EXTRA_OUTPUT, Uri.fromFile(output));

startActivityForResult(i, CONTENT_REQUEST);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == CONTENT_REQUEST) {

ifif (resultCode == RESULT_OK) {
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(Uri.fromFile(output), "image/jpeg");
startActivity(i);
finish();

}
}

}
}

In onCreate(), we create our ACTION_IMAGE_CAPTURE Intent. We add an extra, keyed
as MediaStore.EXTRA_OUTPUT, indicating where we want the app to save the
resulting picture. In our case, we store that in a CameraContentDemo.jpeg file in the
default external storage directory for photos (identified by
Environment.DIRECTORY_DCIM). The documentation for ACTION_IMAGE_CAPTURE
indicates that this needs to be in the form of a Uri object, which is why we use
Uri.fromFile() to convert our string path into the Uri.

At that point, we call startActivityForResult() to bring up the user’s chosen
camera app to take our picture. We next get control in onActivityResult(). There,
we create an ACTION_VIEW Intent, pointing at our output file, indicating the MIME
type is image/jpeg, and start up an activity for that. This should bring up the Gallery
or another app capable of displaying the photo on the screen.

The Caveats

There are several downsides to this approach.

USING THE CAMERA VIA 3RD-PARTY APPS

1491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, you have no control over the camera app itself. You do not even really know
what app it is. You cannot dictate certain features that you would like (e.g.,
resolution, color effects). You simply blindly ask for a photo and get the result.

Also, since you do not know what the camera app is or behaves like, you cannot
document that portion of your application’s flow very well. You can say things like
“at this point, you can take a picture using your chosen camera app”, but that is
about as specific as you can get.

Finally, some camera apps misbehave, returning odd results, such as a thumbnail-
sized image rather than a max-resolution image. There is little you can do about
this.

So, while this approach is easy, it may pose some quality-control issues.

Scanning with ZXing
If your objective is to scan a barcode, it is much simpler for you to integrate Barcode
Scanner into your app than to roll it yourself.

Barcode Scanner – one of the most popular Android apps of all time — can scan a
wide range of 1D and 2D barcode types. They offer an integration library that you
can add to your app to initiate a scan and get the results. The library will even lead
to the user to the Play Store to install Barcode Scanner if they do not already have
the app.

One limitation is that while the ZXing team (the authors and maintainers of
Barcode Scanner) make the integration library available, they only do so in source
form , requiring you to check out a bunch of source code and run a command-line
build to get a JAR. Or, you can download a JAR that is used in the sample project for
this section, if you prefer.

That sample project — Camera/ZXing – has a UI dominated by a “Scan!” button.
Clicking the button invokes a doScan() method in our sample activity:

publicpublic void doScan(View v) {
(newnew IntentIntegrator(thisthis)).initiateScan();

}

USING THE CAMERA VIA 3RD-PARTY APPS

1492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.google.zxing.client.android
http://code.google.com/p/zxing/source/browse/trunk#trunk%2Fandroid-integration
http://code.google.com/p/zxing/source/browse/trunk#trunk%2Fandroid-integration
https://github.com/commonsguy/cw-omnibus/blob/master/Camera/ZXing/libs/android-integration.jar
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/ZXing
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/ZXing

This passes control to Barcode Scanner by means of the integration JAR and the
IntentIntegrator class. initiateScan() will validate that Barcode Scanner is
installed, then will start up the camera and scan for a barcode.

Once Barcode Scanner detects a barcode and decodes it, the activity invoked by
initiateScan() finishes, and control returns to you in onActivityResult() (as the
Barcode Scanner scanning activity was invoked via startActivityForResult()).
There, you can once again use IntentIntegrator to find out details of the scan,
notably the type of barcode and the encoded contents:

publicpublic void onActivityResult(int request, int result, Intent i) {
IntentResult scan=IntentIntegrator.parseActivityResult(request,

result,
i);

ifif (scan!=nullnull) {
format.setText(scan.getFormatName());
contents.setText(scan.getContents());

}
}

Some notes:

• Barcode Scanner’s scanning activity only works in landscape
• Even though you are not using the camera directly yourself, you should

consider including the <uses-feature> element declaring that you need a
camera, if your app cannot function without barcodes

• If you wish to add Barcode Scanner logic directly to your app, and avoid the
dependency on the third-party APK, that is possible, but the process for
doing it is not well documented

Videos: Letting the Camera App Do It
Just as ACTION_IMAGE_CAPTURE can be used to have a third-party app supply you with
still images, there is an ACTION_VIDEO_CAPTURE on MediaStore that can be used as an
Intent action for asking a third-party app capture a video for you. As with
ACTION_IMAGE_CAPTURE, you use startActivityForResult() with
ACTION_VIDEO_CAPTURE to find out when the video has been recorded.

There are two extras of note for ACTION_VIDEO_CAPTURE:

• MediaStore.EXTRA_OUTPUT, which indicates where on external storage the
video should be written, and

USING THE CAMERA VIA 3RD-PARTY APPS

1493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• MediaStore.EXTRA_VIDEO_QUALITY, which should be an integer, either 0 for
low quality/low size videos or 1 for high quality

If you elect to skip EXTRA_OUTPUT, the video will be written to the default directory
for videos on the device (typically a “Movies” directory in the root of external
storage), and the Uri you receive on the Intent in onActivityResult() will point to
this file.

The impacts of skipping EXTRA_VIDEO_QUALITY are undocumented.

The Media/VideoRecordIntent sample project is a near-clone of the Camera/Content
sample from earlier in this chapter. Instead of requesting a third-party app take a
still image, though, this sample requests that a third-party app record a video:

packagepackage com.commonsware.android.videorecord;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport java.io.Filejava.io.File;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int REQUEST_ID=1337;
privateprivate Uri result=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

File video=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_MOVIES),
"sample.mp4");

ifif (video.exists()) {
video.delete();

}

Intent i=newnew Intent(MediaStore.ACTION_VIDEO_CAPTURE);

result=Uri.fromFile(video);
i.putExtra(MediaStore.EXTRA_OUTPUT, result);
i.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 1);

startActivityForResult(i, REQUEST_ID);
}

USING THE CAMERA VIA 3RD-PARTY APPS

1494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoRecordIntent
http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoRecordIntent

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == REQUEST_ID && resultCode == RESULT_OK) {

Intent view=
newnew Intent(Intent.ACTION_VIEW).setDataAndType(result,

"video/mp4");

startActivity(view);
}

finish();
}

}

onCreate() of MainActivity starts by setting up a File object pointing to a
sample.mp4 file in the standard location for movies on the device. If the file already
exists, onCreate() deletes it. Then, onCreate() sets up the Intent to request that a
third-party app record a movie to that location, at high quality
(EXTRA_VIDEO_QUALITY set to 1).

The call to startActivityForResult() will trigger the third-party app to record the
video. When control returns to MainActivity, onActivityResult() creates an
ACTION_VIEW Intent for the same file, then calls startActivity() to request that
some app play back the video.

Directly Working with the Camera
Of course, you can bypass these third-party apps and work directly with the camera
if you so choose. This is very painful… unless you use some wrapper code published
by the author of this book, in which case working with the camera directly is
somewhat less painful than normal.

The next chapter will explain all of this in great detail.

USING THE CAMERA VIA 3RD-PARTY APPS

1495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working Directly with the Camera

Letting third-party apps take the pictures and videos for you is all well and good, but
there will be times where you need more control than that. It is possible for you to
work directly with the device cameras, via the Camera class.

(note that there are two classes in Android named Camera — the one of relevance for
this chapter is android.hardware.Camera)

Working with Camera is ridiculously complicated, which is why the author of this
book has created a CameraFragment to help streamline the implementation of a
camera-using app.

Hence, first, we will cover the use of CameraFragment for simple picture-taking
scenarios — this may be all that you need for your particular app.

As we get into more complex use cases for CameraFragment, we will explain a bit
about the Camera and MediaRecorder APIs that CameraFragment uses “under the
covers”, so you have some context for how to work with CameraFragment and some
idea of what you need to do if CameraFragment is ill-suited to your particular use
case.

Prerequisites
This chapter assumes that you have read the previous chapter covering Intent-
based uses of the camera and the chapter on audio recording.

1497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic CameraFragment Usage
CameraFragment resides in the CWAC-Camera project. While in principle it is an
Android library project, in practice you will probably use the published JAR instead,
or integrate it as an AAR for your Gradle-based build.

With that in mind the steps for adding a CameraFragment to your app include:

Step #1: Download the JAR and put it in the libs/ directory of your project (or, if
you prefer, clone the GitHub repo and add it as a library project to your main
project). Alternatively, follow the instructions on the CWAC-Camera project to add
it to your build.gradle file.

Step #2: Add a CameraFragment to your UI. You have two versions of CameraFragment
to choose from:

• com.commonsware.cwac.camera.CameraFragment for use with native API
Level 11+ fragments

• com.commonsware.cwac.camera.acl.CameraFragment for use with the
Android Support package’s backport of fragments and ActionBarSherlock,
supporting API Level 9 and 10

(note: if you choose the latter, your project will also need to have the
ActionBarSherlock library project, and you will need a second CWAC-Camera JAR
file containing these backported classes)

The CameraFragment is responsible for rendering your preview, so you need to size
and position it as desired.

Step #3: Call takePicture() on the CameraFragment when you want to take a
picture, which will be stored in the default digital photos directory (e.g., DCIM) on
external storage as Photo_yyyyMMdd_HHmmss.jpg, where yyyyMMdd_HHmmss is replaced
by the current date and time.

Step #3b: Call startRecording() and stopRecording() on the CameraFragment to
record a video. NOTE that this is presently only available on
com.commonsware.cwac.camera.CameraFragment for use with native API Level 11+
fragments. The resulting video will be stored in the default videos directory (e.g.,
Movies) on external storage as Video_yyyyMMdd_HHmmss.mp4, where
yyyyMMdd_HHmmss is replaced by the current date and time.

WORKING DIRECTLY WITH THE CAMERA

1498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-camera
https://github.com/commonsguy/cwac-camera/releases
https://github.com/commonsguy/cwac-camera
http://actionbarsherlock.com/

Step #4: Optionally add android:largeHeap="true" to the <application> element
in the manifest.

And that’s it.

CameraFragment (and its underlying CameraView) will handle:

• Showing the preview using an optimal preview frame size, and managing the
aspect ratio of the on-screen preview View so that your previews do not
appear stretched

• Dealing with configuration changes and screen rotation, so your camera
activity can work in portrait or landscape

• Following the appropriate recipes for taking still pictures and videos,
including choosing the largest-available image size for the resolution

• Opening and closing the camera at the appropriate times, so when you are
in the foreground you have exclusive camera access, but other apps will have
access to the camera while your activity is not in the foreground

• And more!

Simple Configuration and Usage
Of course, there are probably plenty of things that you will want to configure about
the process of taking photos and videos. There are many hooks in CWAC-Camera to
allow you to do just that.

Much of this configuration involves creating a custom CameraHost. CameraHost is
your primary interface with the CWAC-Camera classes for configuring the behavior of
the camera. CameraHost is an interface, one that you are welcome to implement in
full. Most times, though, you will be better served extending SimpleCameraHost, the
default implementation of CameraHost, so that you can override only those methods
where you want behavior different from the default.

SimpleCameraHost also offers SimpleCameraHost.Builder that you can use for
some simple configuration, instead of creating a subclass of SimpleCameraHost and
overriding methods. Create an instance of the Builder (passing in a Context to the
constructor, such as your activity), call the various builder-style setters for
configuration, and call build() to get your customized SimpleCameraHost instance.

You can pass your customized instance of CameraHost to setHost() on your
CameraFragment, to replace the default. Do this in onCreate()onCreate() of a

WORKING DIRECTLY WITH THE CAMERA

1499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CameraFragmentCameraFragment subclass (or, if practical, just after instantiating your fragment) to
ensure that the right CameraHost is used everywhere.

PictureTransaction

The takePicture() method has a zero-argument version that just takes a picture. It
also has a one-argument version, where the argument is an instance of
PictureTransaction. This will allow you to configure details of this particular
picture to be taken. You can create a PictureTransaction using its constructor,
which takes an instance of your CameraHost as a parameter.

Various sections below will mention using builder-style setters on
PictureTransaction to control how a picture is taken.

PictureTransaction has a tag(Object) method that allow you to attach arbitrary
data to the transaction, without having to bother with a subclass. You can retrieve
that object later via the zero-argument tag() method.

Controlling the Names and Locations of Output Files

There are a series of methods that you can override on SimpleCameraHost to control
where photos and videos are stored once taken. These methods will be called for
each takePicture() or startRecording() call, so you can create customized results
for each distinct photo or video.

Specifically:

• Override getPhotoFilename() to return the base name of the file to use to
store the photo

• Override getPhotoDirectory() to return the name of the directory in which
to store the photo

• Override getPhotoPath() to return the complete File object pointing to the
desired file in the desired directory (the default implementation combines
the results of getPhotoDirectory() and getPhotoFilename(), so overriding
getPhotoPath() replaces all of that)

There are equivalent getVideoFilename(), getVideoDirectory(), and
getVideoPath() for controlling the output of the next video to be taken.

SimpleCameraHost.Builder offers photoDirectory() and videoDirectory()
setters, where you provide the File pointing to your desired directory.

WORKING DIRECTLY WITH THE CAMERA

1500

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By default, if you are using SimpleCameraHost, your image will be indexed by the
MediaStore. If you do not want this, override scanSavedImage() to return false in
your SimpleCameraHost subclass (or, call scanSavedImage() and pass in a boolean
to use by default). This is called on a per-image basis.

Controlling Which Camera is Used

If you override useFrontFacingCamera() on SimpleCameraHost to return true, the
front-facing camera will be used, instead of the default rear-facing camera. You can
also call useFrontFacingCamera() on your SimpleCameraHost.Builder, passing in a
boolean default value to use.

Or, override getDeviceId() (available on CameraHost), and you can provide the ID
of the specific camera you want. This would involve your choosing an available
camera based on your own criteria. See the JavaDocs for Android’s Camera class,
notably getNumberOfCameras() and
[getCameraInfo()](http://developer.android.com/reference/android/hardware/
Camera.html#getCameraInfo(int, android.hardware.Camera.CameraInfo)) for
more. You can also call deviceId() on SimpleCameraHost to supply the camera ID
to use.

Controlling FFC Mirror Correction

By default, the pictures taken from the front-facing camera are a mirror image of
what is shown on the preview. If you wish for the front-facing camera photos to
match the preview, override mirrorFFC() on your CameraHost and have it return
true, and CWAC-Camera will reverse the image for you before saving it. Or, call
mirrorFFC() on your SimpleCameraHost.Builder, supplying a boolean value to use
as the default. Or, call mirrorFFC() on your PictureTransaction, to control this for
an individual picture.

Handling Exceptions

There are some exceptions that are thrown by the Camera class (and kin, like
MediaRecorder). Those are passed to your host’s handleException() method. The
default implementation displays a Toast and logs the message to LogCat as an error,
but you probably will want to replace that with something else that integrates better
with your UI.

WORKING DIRECTLY WITH THE CAMERA

1501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/hardware/Camera.html#getNumberOfCameras()
http://developer.android.com/reference/android/hardware/Camera.html#getNumberOfCameras()

Supporting “Full-Bleed Preview”

The original default behavior of CameraFragment and CameraView was to show the
entire preview, as supplied by the underlying Camera API. Since the aspect ratio of
the preview frames may be different than the aspect ratio of the CameraView, this
results in a “letterbox” effect, where the background will show through on one axis
on the sides.

The new default behavior is to completely fill the CameraView, at the cost of
cropping off some of the actual preview frame, what is known as “full-bleed
preview” (stealing some terminology from the world of print media).

To control this behavior:

• Have your CameraHost return true or false from useFullBleedPreview()
• Or, call useFullBleedPreview() on your SimpleCameraHost.Builder,

passing in a boolean value to use by default.

Note that the pictures and videos taken by this library are unaffected by
useFullBleedPreview(). Hence, if useFullBleedPreview() returns true, the
picture or video may contain additional content on the edges that was not visible in
the preview.

Wrapping the Preview UI

From a UI standpoint, the CameraFragment solely handles the preview pane.
Presumably, you will need more to your UI than this, such as buttons to allow users
to take pictures or record videos. You have two major options here:

1. You can put that UI as a peer to the CameraFragment, such as by having
action bar items, as the demo apps do.

2. You can subclass CameraFragment and override onCreateView(). Chain to
the superclass to get the CameraFragment’s own UI, then wrap that in your
own container with additional widgets, and return the combined UI from
your onCreateView(). You can see this in the main demo app, which adds a
SeekBar or VerticalSeekBar for zoom levels.

It is also possible to replace onCreateView() completely with your own
implementation, or otherwise use CameraView from a layout resource. This is
covered later in this document.

WORKING DIRECTLY WITH THE CAMERA

1502

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Auto-Focus

You can call autoFocus() on CameraFragment or CameraView to trigger any auto-
focus behavior that you have configured via setFocusMode() on
Camera.Parameters. You can call cancelAutoFocus() on CameraFragment or
CameraView to ensure that auto-focus mode has been canceled.

Note that auto-focus is only available in certain conditions, notably when the
preview mode is enabled. You can call isAutoFocusAvailable() on
CameraFragment or CameraView to determine if auto-focus is presently available for
use. Calling autoFocus() when auto-focus is not available will have no effect.

CameraHost implementations will need to implement an onAutoFocus() method,
coming from the Camera.AutoFocusCallback interface that CameraHost extends.
SimpleCameraHost has a default implementation of onAutoFocus() that plays a
device-standard sound upon completion (API Level 16+ only).

CameraHost implementations will also need autoFocusAvailable() and
autoFocusUnavailable() methods, to be notified when auto-focus is available or
not. This can be used to trigger whether action bar items are enabled, etc.
SimpleCameraHost has no-op implementations of these callbacks.

Single-Shot Mode

By default, the result of taking a picture is to return the CameraFragment to preview
mode, ready to take the next picture. If, instead, you only need the one picture, or
you want to send the user to some other bit of UI first and do not want preview to
start up again right away, override useSingleShotMode() in your CameraHost to
return true. Or, call useSingleShotMode() on your SimpleCameraHost.Builder,
passing in a boolean to use by default. Or, call useSingleShotMode() on your
PictureTransaction, to control this for an individual picture.

You will then probably want to use your own saveImage() implementation in your
CameraHost to do whatever you want instead of restarting the preview. For example,
you could start another activity to do something with the image. However, bear in
mind that an Intent is limited to ~1MB, and so passing an image to another activity
via a Intent extra is likely to be unreliable. You will need to do something else,
such as (carefully) use a static data member.

WORKING DIRECTLY WITH THE CAMERA

1503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/reference/android/hardware/Camera.AutoFocusCallback.html
https://developer.android.com/reference/android/hardware/Camera.AutoFocusCallback.html

Preview mode will re-enable automatically after an onPause()/onResume() cycle of
your CameraFragment, or you can call restartPreview() on your CameraFragment
(or CameraView).

Zoom Support

To zoom the camera, call zoomTo() on the CameraView or CameraFragment,
supplying the integer zoom level that you want. This level must be between 0 and
what Camera.Parameters returns from getMaxZoom(). The
adjustPreviewParameters() callback method in your CameraHost is a good time to
get this value and configure your UI (e.g., SeekBar) to allow the user to zoom the
camera.

zoomTo() returns a ZoomTransaction. This has a series of builder-style methods
(a.k.a., a fluent interface) that allow you to configure the transaction, where the
methods return the transaction so you can chain on the next call. The
configuration methods are:

• onComplete() to supply a Runnable to be executed when we have reached
the zoom level

• onChange() to supply a Camera.OnZoomChangeListener to be called as we
progress to the desired zoom level

Once configured, call go() to run the transaction.

If the camera supports smooth zoom, the zoom transaction will take a few
moments, and you can cancel the operation by calling cancel() on the
ZoomTransaction. If the camera does not support smooth zoom, the zoom level is
just immediately changed.

Note that your OnZoomChangeListener supplied to onChange() will be called before
the onComplete() Runnable, if you happen to supply both.

The main demo app adds a SeekBar and VerticalSeekBar to control zoom levels,
so you can see how this is used.

Note that some devices lie about their zoom capabilities. For example, the
Motorola RAZR i’s front-facing camera apparently does not support zoom, where
getMaxZoom() still returns a positive value. doesZoomReallyWork() on your
CameraFragment or CameraView will return false if zoom is known to be broken for

WORKING DIRECTLY WITH THE CAMERA

1504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the current camera on the current device. In this case, do not zoom, or your code
may go “boom”.

Camera? #FAIL

If getCameraId() of your CameraHost returns a negative value, CameraView will
assume that there are no valid cameras (e.g., your app is running on a game
console). In addition to avoiding anything that tries to touch the camera, your
CameraHost will be called with onCameraFail(), where you will be supplied with a
FailureReason of NO_CAMERAS_REPORTED.

If anything else goes wrong when trying to open the camera (e.g., a device admin
policy has disabled the camera), your onCameraFail() method will be called with a
FailureReason of UNKNOWN.

While SimpleCameraHost has a trivial onCameraFail() implementation (just
logging to LogCat), you are strongly encouraged to override this and inform your
users of the problem.

Fixing Up Images… And Your Heap

There are a few fixups that the library performs on your images, to provide
consistent output. The biggest one is to rotate the image to the proper orientation,
rather than rely on EXIF headers, as not all image viewers use those headers.

The problem is that these fixups take a lot of heap space. By default, the library will
always try to perform these fixups, and for a high-resolution image on a low-
memory device, an OutOfMemoryError may result.

You have two means of managing this, and you are welcome to apply one or both of
them:

1. You can add android:largeHeap="true" to the <application> element of
your manifest. On API Level 11+ devices, you will get more heap space,
making it more likely that the fixup will succeed. However, this will hurt the
user, in that your app will tend to kick other apps out of memory more
quickly, which the user may not appreciate.

2. Your CameraHost can return a value between 0.0f and 1.0f from
maxPictureCleanupHeapUsage(). The default implementation on
SimpleCameraHost returns 1.0f, which says “the byte array of image data
from the camera can be as big as our heap limit, and we should still try to

WORKING DIRECTLY WITH THE CAMERA

1505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

do the cleanup work”. A value of 0.0f would indicate that the cleanup work
should never be done, and the images will be saved in their natural state. A
value in between represents a portion of the heap space; if the byte array is
that size or smaller, go ahead and try to do the fixups. Note that this
determination is made on the compressed JPEG byte array length, not the
size of the decoded Bitmap, and the JPEG may be compressed ~90%
compared to its uncompressed size.

Core Camera Concepts
This section will outline the basic concepts of working with the Camera and
MediaRecorder APIs for simple operations: displaying a preview, taking a still
picture, and recording some video. It will do so in the context of reviewing the
CWAC-Camera demo application and some of the more advanced configuration
options for working with CameraFragment.

The Permission and the Features

First, you need permission to use the camera. That way, when end users install your
application off of the Internet, they will be notified that you intend to use the
camera, so they can determine if they deem that appropriate for your application.

You simply need the CAMERA permission in your AndroidManifest.xml file, along
with whatever other permissions your application logic might require.

Your manifest also should contain one or more <uses-feature> elements, declaring
what you need in terms of camera hardware. By default, asking for the CAMERA
permission indicates that you need a camera. More specifically, asking for the CAMERA
permission indicates that you need an auto-focus camera.

If you plan to record video, using MediaRecorder, you will also want to request the
RECORD_AUDIO permission, assuming that you were not intending to record a silent
film.

A Camera is Optional

If you would like a camera, but having one is not essential for the use of your app,
put the following <uses-feature> element in your manifest:

<uses-feature<uses-feature android:name="android.hardware.camera" android:required="false" />/>

WORKING DIRECTLY WITH THE CAMERA

1506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-camera/tree/master/demo
https://github.com/commonsguy/cwac-camera/tree/master/demo

This indicates that you would like a camera, but it is not required. This reverses the
default established by the CAMERA permission.

A Camera is Required

Technically, you would not need any <uses-feature> element in your manifest to
indicate that you need a camera, as the CAMERA permission would handle that for
you. However, it is good form to explicitly declare it anyway:

<uses-feature<uses-feature android:name="android.hardware.camera" android:required="true" />/>

Not only does that make your manifest more self-documenting, but it also helps
protect you in case the default behavior of the CAMERA permission changes.

Other Camera Features

There are three other camera features that you could consider having
<uses-feature> elements for:

1. android.hardware.camera.autofocus, to indicate whether or not the device
needs a camera with auto-focus capability.

2. android.hardware.camera.flash, to indicate whether or not the device
must support a camera flash

3. android.hardware.camera.front, to indicate whether or not the app needs
a front-facing camera specifically (android.hardware.camera requests a rear-
facing camera)

Of these, the only one you should definitely include in your app is
android.hardware.camera.autofocus, once again because of the default effects of
requesting the CAMERA permission. In particular, if you do not absolutely need auto-
focus capabilities, you can use android:required="false" to reverse the CAMERA
default requirement.

What the Demo Uses

The CWAC-Camera demo app requests three permissions: CAMERA, RECORD_AUDIO,
and WRITE_EXTERNAL_STORAGE. The latter permission is so that we can save our
photos and videos to external storage.

The demo app also indicates that:

WORKING DIRECTLY WITH THE CAMERA

1507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• A camera is required to use this app (android.hardware.camera)
• Neither a front-facing camera (android.hardware.camera.front) nor an

auto-focus camera (android.hardware.camera.autofocus) is required

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.cwac.camera.demo"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="17"/>/>

<uses-permission<uses-permission android:name="android.permission.CAMERA"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>
<uses-permission<uses-permission android:name="android.permission.RECORD_AUDIO"/>/>

<uses-feature<uses-feature
android:name="android.hardware.camera"
android:required="true"/>/>

<uses-feature<uses-feature
android:name="android.hardware.camera.front"
android:required="false"/>/>

<uses-feature<uses-feature
android:name="android.hardware.camera.autofocus"
android:required="false"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme"
android:largeHeap="true">>
<activity<activity

android:name="MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity

android:name="DisplayActivity"
android:label="@string/app_name">>

</activity></activity>
</application></application>

</manifest></manifest>

WORKING DIRECTLY WITH THE CAMERA

1508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Warning: Do Not Use android.hardware.camera.any Yet

android.hardware.camera.any was added in API Level 17 (Android 4.2), to address
the issues caused by the Nexus 7 and potential other future devices with a front-
facing camera and no rear-facing camera. This feature would indicate that your app
can work with any camera, not just a front-facing or rear-facing camera.

Alas, as of mid-December 2012, the Play Store did not support this specific
<uses-feature> variant, causing your app to be unavailable to most devices.

Until there are signs that android.hardware.camera.any support has been added to
the Play Store, you are best off avoiding this particular <uses-feature> element.

The Preview Surface

The camera preview is basically a stream of images, taken by the camera, usually at
less than full resolution. Mostly, that stream is to be presented to the user on the
screen, to help them “see what the camera sees”, so they can line up the right
picture.

For presenting the preview stream to the user, there are two typical solutions:
SurfaceView and TextureView.

SurfaceView for the Camera

SurfaceView is used as a raw canvas for displaying all sorts of graphics outside of the
realm of your ordinary widgets. In this case, Android knows how to display a live
look at what the camera sees on a SurfaceView, to serve as a preview pane. A
SurfaceView is also used for video playback, and a variation of SurfaceView called
GLSurfaceView is used for OpenGL animations.

That being said, SurfaceView is a subclass of View, and so it can be added to your UI
the same as any other widget:

• Include it in a layout
• Return it as the View from onCreateView() of a Fragment
• Instantiate it in Java and add it to some container via addView()
• Etc.

WORKING DIRECTLY WITH THE CAMERA

1509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=35166
http://code.google.com/p/android/issues/detail?id=35166
http://code.google.com/p/android/issues/detail?id=35166

If your app will support API Level 10 and older, you will want to call
getSurfaceHolder().getType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS) on the
SurfaceView. A “push buffers” SurfaceView is one designed to have images pushed
to the surface, usually from video playback or camera previews. A SurfaceHolder is
a quasi-controller object for the SurfaceView — most interactions with the
SurfaceView come by way of the SurfaceHolder. This bit of configuration is not
needed on API Level 11 and higher, as Android handles it for us automatically as the
SurfaceView is put to use.

TextureView for the Camera

SurfaceView, however, has some limitations. This is mostly tied back to the way it
works, by “punching a hole” in the UI to allow some lower-level component (like the
camera) to render stuff into it. While there is a transparent layer on top of this
“hole”, for use in alpha-compositing in any overlapping widgets, the SurfaceView
content is not rendered as part of the normal view hierarchy. The net effect is that
you cannot readily move, animate, or otherwise transform a SurfaceView.

TextureView was added in API Level 14 and works for camera previews as of API
Level 15. TextureView serves much the same role as does SurfaceView, for showing
camera previews, playing videos, or rendering OpenGL scenes. However,
TextureView behaves as a regular View and so therefore can be animated and such
without issue. However, to do this, TextureView relies upon hardware acceleration,
so environments without hardware acceleration cannot use TextureView.

What CWAC-Camera Does

CWAC-Camera makes a decision of what to use for the preview pane based on the
API level of the device (by default). On Android 4.1 and higher, CWAC-Camera will
use a TextureView; otherwise, CWAC-Camera will use a SurfaceView.

The actual logic for dealing with the preview surfaces is wrapped up in a
PreviewStrategy class, with SurfacePreviewStrategy and
TexturePreviewStrategy implementations. That way, if some device-specific tweaks
are needed, the changes may be able to be isolated into some new PreviewStrategy
flavor.

WORKING DIRECTLY WITH THE CAMERA

1510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Obtaining and Initializing the Camera

Android devices may have zero, one, or more than one camera. Usually, “more than
one” winds up being “two”, a rear-facing camera and a front-facing camera. Usually,
devices with only one camera have that camera be rear-facing, but not always (e.g.,
the Nexus 7 has only a front-facing camera).

Hence, you need to select what camera you want, then arrange to open and close
access to that camera as needed.

Choosing a Camera

The simplest way to choose a camera is to not choose at all, and arrange to open the
default camera. That default camera is the first rear-facing camera on the device.
However, devices that have no rear-facing cameras effectively have no default
camera, and so going with the default is rarely the correct choice.

Instead, you should iterate over the available cameras, to find the one that you want.
Note, however, that this approach only works for API Level 9 and above — on older
devices, you have no choice but to try to open the default camera.

To find out how many cameras there are for the current device, you can call the
static getNumberOfCameras() method on the Camera class.

To find out details about a particular camera, you can call the static
getCameraInfo() method on Camera. This takes two parameters:

• the ID of the camera to open, which will be a number from 0 to the number
of available camera minus 1

• a Camera.CameraInfo object, into which getCameraInfo() will pour details
about the camera

The most notable field on Camera.CameraInfo is facing, which tells you if this is a
rear-facing (Camera.CameraInfo.CAMERA_FACING_BACK) or front-facing
(Camera.CameraInfo.CAMERA_FACING_FRONT) camera.

In CWAC-Camera, the CameraHost interface requires a getCameraId() method
implementation, which returns the camera ID that you choose. SimpleCameraHost
chooses an implementation based upon the available cameras and what you return
from useFrontFacingCamera():

WORKING DIRECTLY WITH THE CAMERA

1511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic int getCameraId() {

ifif (cameraId == -1) {
initCameraId();

}

returnreturn(cameraId);
}

privateprivate void initCameraId() {
int count=Camera.getNumberOfCameras();
int result=-1;

ifif (count > 0) {
result=0; // if we have a camera, default to this one

Camera.CameraInfo info=newnew Camera.CameraInfo();

forfor (int i=0; i < count; i++) {
Camera.getCameraInfo(i, info);

ifif (info.facing == Camera.CameraInfo.CAMERA_FACING_BACK
&& !useFrontFacingCamera()) {

result=i;
breakbreak;

}
elseelse if (info.facing == Camera.CameraInfo.CAMERA_FACING_FRONT

&& useFrontFacingCamera()) {
result=i;
breakbreak;

}
}

}

cameraId=result;
}

If what you want is not available (e.g., you ask for a front-facing camera, and the
device has none), we use the default camera ID (0).

Opening and Closing the Camera

Old code samples would open the camera by calling a zero-parameter static open()
method on the Camera class. This opens the default camera, and as noted above, this
is rarely a good idea. However, it is your only option on API Level 8 and below, if you
are still supporting such devices.

Instead, if you have the ID of the camera that you wish to open, call the one-
parameter static open() method, passing in the ID of the camera.

WORKING DIRECTLY WITH THE CAMERA

1512

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Both flavors of open() return an instance of Camera, which you can hold onto in your
activity or fragment that is working with the camera.

While you have access to this camera, no other process can. Hence, it is important to
release the camera when you are no longer needing it. To release the camera, call
release() on your Camera instance, after which it is no longer safe to use the
camera. A common pattern is to open() the camera in onStart() or onResume() and
release() it in onPause() or onStop(), so you tie up the camera only while you are
in the foreground.

For example, CameraView — the class in CWAC-Camera that contains most of the
smarts behind the two flavors of CameraFragment — opens the camera in
onResume(), among other things:

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH)
publicpublic void onResume() {

addView(previewStrategy.getWidget());

ifif (camera == nullnull) {
cameraId=getHost().getCameraId();

ifif (cameraId >= 0) {
trytry {

camera=Camera.open(cameraId);

ifif (getActivity().getRequestedOrientation() !=
ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED) {

onOrientationChange.enable();
}

setCameraDisplayOrientation();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH
&& getHost() instanceofinstanceof Camera.FaceDetectionListener) {

camera.setFaceDetectionListener((Camera.FaceDetectionListener)getHost());
}

}
catchcatch (Exception e) {

getHost().onCameraFail(FailureReason.UNKNOWN);
}

}
elseelse {

getHost().onCameraFail(FailureReason.NO_CAMERAS_REPORTED);
}

}
}

WORKING DIRECTLY WITH THE CAMERA

1513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Showing the Camera Preview

The user needs some sort of preview of what the camera lens sees, in order to line
up a picture. In some cases, the preview is all that matters, such as so-called “mirror”
apps that use the front-facing camera to show the user what they look like.

To successfully show a preview, you need to configure the preview, then have
Android start (and stop) showing the preview on your supplied SurfaceView or
TextureView.

Configuring the Preview

The biggest thing that we need to do to configure the preview is determine what size
of preview images should be used. Devices cannot support arbitrary-sized previews.
Instead, we need to ask the camera what preview sizes it supports, choose one, then
configure the camera to use that specific preview size.

To do any of this, we need the Camera.Parameters associated with our chosen and
open Camera. Camera.Parameters serves two roles:

• It tells us what is possible, in terms of camera capabilities, above and beyond
the limited information reported by Camera.Info

• It is where we stipulate what behavior we want, by updating the parameters
and associating the updated parameters with the Camera

Getting the Camera.Parameters object from a Camera is a simple matter of calling
getParameters().

To find out what the valid preview sizes are, we can call
getSupportedPreviewSizes() on the Camera.Parameters object. This will return a
List of Camera.Size objects, with each Camera.Size holding a width and a height
as integers.

Choosing a preview size is a bit of an art form. The biggest constraint is that you do
not want a preview size that is bigger than the space you have reserved for the
preview area. Beyond that, it is up to you what to use. Whatever size you choose, you
can pass to setPreviewSize() on the Camera.Parameters.

Then, you can call setParameters() on the Camera, passing in your modified
Camera.Parameters object, to affect this change.

WORKING DIRECTLY WITH THE CAMERA

1514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will wind up with a block of code resembling:

Camera.Parameters parameters=camera.getParameters();
Camera.Size
previewSize=figureOutWhatPreviewSizeYouWant(parameters.getSupportedPreviewSizes());

parameters.setPreviewSize(previewSize.width, previewSize.height);

camera.setParameters(parameters);

(where you get to supply the figureOutWhatPreviewSizeYouWant()
implementation)

In CWAC-Camera, your CameraHost will be called with getPreviewSize(), where
you need to return a valid Camera.Size indicating the desired size of the preview
frames. getPreviewSize() is passed:

• the display orientation, in degrees, with 0 indicating landscape, 90
indicating portrait, etc.

• the available width and height for the preview
• the Camera.Parameters object, from which you can determine the valid

preview sizes by calling getSupportedPreviewSizes()

The CameraUtils class — also in the CWAC-Camera library – contains a pair of
static methods with stock algorithms for choosing the preview size:

1. getOptimalPreviewSize() uses the algorithm found in the SDK camera
sample app

2. getBestAspectPreviewSize() finds the preview size that most closely
matches the aspect ratio of our available space

SimpleCameraHost uses getBestAspectPreviewSize() for the default
implementation of getPreviewSize(). You can override getPreviewSize() and
substitute in your own selection algorithm. Just make sure that the returned size is
one of the ones returned by getSupportedPreviewSizes().

However, SimpleCameraHost also calls mayUseForVideo() on your subclass. If this
returns true (the default), SimpleCameraHost calls
getPreferredPreviewSizeForVideo() on Camera.Parameters, to get a preview size
that will work for both still images and video. If you know that you will not be
recording any video, you can override mayUseForVideo() to return false, and you
may get a better preview size as a result.

WORKING DIRECTLY WITH THE CAMERA

1515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Starting and Stopping the Preview

In principle, there are just three steps:

1. You attach your preview surface to the Camera by calling
setPreviewDisplay() (if you are using a SurfaceView) or
setPreviewTexture() (if you are using a SurfaceTexture)

2. You show the preview on-screen by calling startPreview() on the Camera
3. You stop showing the preview by calling stopPreview() on the Camera

However, timing is important.

You also cannot call setPreviewDisplay() or startPreview() before your preview
surface is ready. To know when that is, you will need to register a listener with your
surface:

• You can register a SurfaceHolder.Callback with the SurfaceHolder of your
SurfaceView by calling addCallback() on the SurfaceHolder. Your
SurfaceHolder.Callback will be called with surfaceChanged() when the
surface is ready for use, at which point it is safe to call setPreviewDisplay()
and startPreview().

• You can register a TextureView.SurfaceTextureListener with your
TextureView by means of the setSurfaceTextureListener() call. Your
TextureView.SurfaceTextureListener will be called with
onSurfaceTextureAvailable() at the point in time when it is safe to call
setPreviewTexture() and startPreview().

You also need to stop the preview before you release() the Camera. And, as we will
see in the next section, you also need to restart your preview after taking a photo.

Taking a Photo

Taking a photo with a Camera is a matter of calling takePicture() on the Camera
object. There are two flavors of takePicture(), for which three parameters are in
common:

• a Camera.ShutterCallback, which will be called the moment the picture is
taken, so that you can customize the “shutter” sound

• two Camera.PictureCallback objects, for raw (uncompressed) and JPEG
photo data

WORKING DIRECTLY WITH THE CAMERA

1516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The four-parameter version of takePicture() also takes a third
Camera.PictureCallback, to be called when “a scaled, fully processed postview
image is available”. This explanation probably means something to somebody, but
the author of this book has no idea what it means.

You cannot call takePicture() until after startPreview() has been called to set up
a preview pane. takePicture() will automatically stop the preview. At some point, if
you want to be able to take another photo, you will need to call startPreview()
again. Note, though, that you cannot call startPreview() until after the final
compressed photo has been delivered to your Camera.PictureCallback object.

Before you call takePicture(), you are going to want to adjust the
Camera.Parameters to configure how the photo should be taken. The primary
setting to adjust is the size of the picture to take. Just as you ask Camera.Parameters
for available preview sizes and choose one, you can call
getSupportedPictureSizes(), which returns a List of Camera.Size objects. You can
then choose a size and pass its width and height to setPictureSize() on the
Camera.Parameters. Other things to potentially adjust include:

• flash mode (getSupportedFlashModes() and setFlashMode())
• focus mode (getSupportedFocusModes() and setFocusMode())
• white balance (getSupportedWhiteBalance() and setWhiteBalance())
• geo-tagging (setGpsLatitude(), setGpsLongitude(), setGpsAltitude(),

etc.)
• JPEG image quality (setJpegQuality())
• and so on

Your CameraHost will be called with getPictureSize(), for you to return the desired
Camera.Size of the still images taken by the camera. You are simply passed the
Camera.Parameters, on which you can call getSupportedPictureSizes() to find out
the possible picture sizes that you can choose from.

CWAC-Camera’s CameraUtils class has a pair of methods for simple algorithms for
choosing a picture size:

1. getLargestPictureSize() returns the Camera.Size that is the largest in area
2. getSmallestPictureSize() returns the Camera.Size that is the smallest in

area

SimpleCameraHost uses getLargestPictureSize() for the default implementation
of getPictureSize(). You can override getPictureSize() and substitute in your

WORKING DIRECTLY WITH THE CAMERA

1517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

own selection algorithm. Just make sure that the returned size is one of the ones
returned by getSupportedPictureSizes().

Your CameraHost can also override adjustPictureParameters(), where you are
passed a Camera.Parameters object and can alter it as needed for settings to apply to
the photo that is about to be taken. In addition, you can override
getShutterCallback() to return the Camera.ShutterCallback to use, where the
default is null to use the device’s default shutter sound.

The Rest of the Demo

Our subclass of CameraFragment is DemoCameraFragment. The reasons we are
extending CameraFragment are:

• The fragment can support either a front-facing camera or a rear-facing
camera, and we need to track which one this particular fragment instance is
supposed to work with, by using the arguments Bundle

• Our fragment contributes items to the action bar to take a picture and to
start/stop video recording

• We have a custom subclass of SimpleCameraHost, called DemoCameraHost,
mostly for indicating whether or not we should be using the front-facing
camera

packagepackage com.commonsware.cwac.camera.demo;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.hardware.Cameraandroid.hardware.Camera;
importimport android.hardware.Camera.Faceandroid.hardware.Camera.Face;
importimport android.hardware.Camera.Parametersandroid.hardware.Camera.Parameters;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.util.Logandroid.util.Log;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.SeekBarandroid.widget.SeekBar;
importimport android.widget.SeekBar.OnSeekBarChangeListenerandroid.widget.SeekBar.OnSeekBarChangeListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.cwac.camera.CameraFragmentcom.commonsware.cwac.camera.CameraFragment;
importimport com.commonsware.cwac.camera.CameraHostcom.commonsware.cwac.camera.CameraHost;
importimport com.commonsware.cwac.camera.CameraUtilscom.commonsware.cwac.camera.CameraUtils;

WORKING DIRECTLY WITH THE CAMERA

1518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport com.commonsware.cwac.camera.SimpleCameraHostcom.commonsware.cwac.camera.SimpleCameraHost;
importimport com.commonsware.cwac.camera.PictureTransactioncom.commonsware.cwac.camera.PictureTransaction;

publicpublic classclass DemoCameraFragmentDemoCameraFragment extendsextends CameraFragment implementsimplements
OnSeekBarChangeListener {

privateprivate staticstatic finalfinal String KEY_USE_FFC=
"com.commonsware.cwac.camera.demo.USE_FFC";

privateprivate MenuItem singleShotItem=nullnull;
privateprivate MenuItem autoFocusItem=nullnull;
privateprivate MenuItem takePictureItem=nullnull;
privateprivate MenuItem flashItem=nullnull;
privateprivate MenuItem recordItem=nullnull;
privateprivate MenuItem stopRecordItem=nullnull;
privateprivate boolean singleShotProcessing=falsefalse;
privateprivate SeekBar zoom=nullnull;
privateprivate long lastFaceToast=0L;
String flashMode=nullnull;

staticstatic DemoCameraFragment newInstance(boolean useFFC) {
DemoCameraFragment f=newnew DemoCameraFragment();
Bundle args=newnew Bundle();

args.putBoolean(KEY_USE_FFC, useFFC);
f.setArguments(args);

returnreturn(f);
}

@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);

setHasOptionsMenu(truetrue);

SimpleCameraHost.Builder builder=
newnew SimpleCameraHost.Builder(newnew DemoCameraHost(getActivity()));

setHost(builder.useFullBleedPreview(truetrue).build());
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View cameraView=
supersuper.onCreateView(inflater, container, savedInstanceState);

View results=inflater.inflate(R.layout.fragment, container, falsefalse);

((ViewGroup)results.findViewById(R.id.camera)).addView(cameraView);
zoom=(SeekBar)results.findViewById(R.id.zoom);
zoom.setKeepScreenOn(truetrue);

returnreturn(results);
}

WORKING DIRECTLY WITH THE CAMERA

1519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onPause() {

supersuper.onPause();

getActivity().invalidateOptionsMenu();
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.camera, menu);

takePictureItem=menu.findItem(R.id.camera);
singleShotItem=menu.findItem(R.id.single_shot);
singleShotItem.setChecked(getContract().isSingleShotMode());
autoFocusItem=menu.findItem(R.id.autofocus);
flashItem=menu.findItem(R.id.flash);
recordItem=menu.findItem(R.id.record);
stopRecordItem=menu.findItem(R.id.stop);

ifif (isRecording()) {
recordItem.setVisible(falsefalse);
stopRecordItem.setVisible(truetrue);
takePictureItem.setVisible(falsefalse);

}

ifif (getDisplayOrientation() != 0 && getDisplayOrientation() != 180) {
recordItem.setVisible(falsefalse);

}
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.camera:

ifif (singleShotItem.isChecked()) {
singleShotProcessing=truetrue;
takePictureItem.setEnabled(falsefalse);

}

PictureTransaction xact=newnew PictureTransaction(getHost());

ifif (flashItem.isChecked()) {
xact.flashMode(flashMode);

}

takePicture(xact);

returnreturn(truetrue);

casecase R.id.record:
trytry {

record();
getActivity().invalidateOptionsMenu();

WORKING DIRECTLY WITH THE CAMERA

1520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception trying to record", e);

Toast.makeText(getActivity(), e.getMessage(),
Toast.LENGTH_LONG).show();

}

returnreturn(truetrue);

casecase R.id.stop:
trytry {

stopRecording();
getActivity().invalidateOptionsMenu();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception trying to stop recording", e);

Toast.makeText(getActivity(), e.getMessage(),
Toast.LENGTH_LONG).show();

}

returnreturn(truetrue);

casecase R.id.autofocus:
takePictureItem.setEnabled(falsefalse);
autoFocus();

returnreturn(truetrue);

casecase R.id.single_shot:
item.setChecked(!item.isChecked());
getContract().setSingleShotMode(item.isChecked());

returnreturn(truetrue);

casecase R.id.show_zoom:
item.setChecked(!item.isChecked());
zoom.setVisibility(item.isChecked() ? View.VISIBLE : View.GONE);

returnreturn(truetrue);

casecase R.id.flash:
item.setChecked(!item.isChecked());

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

boolean isSingleShotProcessing() {
returnreturn(singleShotProcessing);

}

WORKING DIRECTLY WITH THE CAMERA

1521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
ifif (fromUser) {

zoom.setEnabled(falsefalse);
zoomTo(zoom.getProgress()).onComplete(newnew Runnable() {

@Override
publicpublic void run() {

zoom.setEnabled(truetrue);
}

}).go();
}

}

@Override
publicpublic void onStartTrackingTouch(SeekBar seekBar) {

// ignore
}

@Override
publicpublic void onStopTrackingTouch(SeekBar seekBar) {

// ignore
}

Contract getContract() {
returnreturn((Contract)getActivity());

}

interfaceinterface ContractContract {
boolean isSingleShotMode();

void setSingleShotMode(boolean mode);
}

classclass DemoCameraHostDemoCameraHost extendsextends SimpleCameraHost implementsimplements
Camera.FaceDetectionListener {

boolean supportsFaces=falsefalse;

publicpublic DemoCameraHost(Context _ctxt) {
supersuper(_ctxt);

}

@Override
publicpublic boolean useFrontFacingCamera() {

returnreturn(getArguments().getBoolean(KEY_USE_FFC));
}

@Override
publicpublic boolean useSingleShotMode() {

returnreturn(singleShotItem.isChecked());
}

@Override

WORKING DIRECTLY WITH THE CAMERA

1522

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void saveImage(PictureTransaction xact, byte[] image) {
ifif (useSingleShotMode()) {

singleShotProcessing=falsefalse;

getActivity().runOnUiThread(newnew Runnable() {
@Override
publicpublic void run() {

takePictureItem.setEnabled(truetrue);
}

});

DisplayActivity.imageToShow=image;
startActivity(newnew Intent(getActivity(), DisplayActivity.class));

}
elseelse {

supersuper.saveImage(xact, image);
}

}

@Override
publicpublic void autoFocusAvailable() {

autoFocusItem.setEnabled(truetrue);
ifif (supportsFaces)

startFaceDetection();
}

@Override
publicpublic void autoFocusUnavailable() {

stopFaceDetection();
ifif (supportsFaces)

autoFocusItem.setEnabled(falsefalse);
}

@Override
publicpublic void onCameraFail(CameraHost.FailureReason reason) {

supersuper.onCameraFail(reason);

Toast.makeText(getActivity(),
"Sorry, but you cannot use the camera now!",
Toast.LENGTH_LONG).show();

}

@Override
publicpublic Parameters adjustPreviewParameters(Parameters parameters) {

flashMode=
CameraUtils.findBestFlashModeMatch(parameters,

Camera.Parameters.FLASH_MODE_RED_EYE,
Camera.Parameters.FLASH_MODE_AUTO,
Camera.Parameters.FLASH_MODE_ON);

ifif (doesZoomReallyWork() && parameters.getMaxZoom() > 0) {
zoom.setMax(parameters.getMaxZoom());
zoom.setOnSeekBarChangeListener(DemoCameraFragment.this);

WORKING DIRECTLY WITH THE CAMERA

1523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
elseelse {

zoom.setEnabled(falsefalse);
}

ifif (parameters.getMaxNumDetectedFaces() > 0) {
supportsFaces=truetrue;

}
elseelse {

Toast.makeText(getActivity(),
"Face detection not available for this camera",
Toast.LENGTH_LONG).show();

}

returnreturn(supersuper.adjustPreviewParameters(parameters));
}

@Override
publicpublic void onFaceDetection(Face[] faces, Camera camera) {

ifif (faces.length > 0) {
long now=SystemClock.elapsedRealtime();

ifif (now > lastFaceToast + 10000) {
Toast.makeText(getActivity(), "I see your face!",

Toast.LENGTH_LONG).show();
lastFaceToast=now;

}
}

}

@Override
@TargetApi(16)
publicpublic void onAutoFocus(boolean success, Camera camera) {

supersuper.onAutoFocus(success, camera);

takePictureItem.setEnabled(truetrue);
}

}
}

Most of this is fairly straight-forward, except perhaps the video recording action bar
items, which we will examine later in this chapter.

Recording a Video

All of that was simply to set up the camera preview and to take a picture. To record a
video, there is yet more work to be done, once again largely handled for you by
CameraFragment.

WORKING DIRECTLY WITH THE CAMERA

1524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Back in the chapter on recording audio, we saw MediaRecorder and how it can be
used to record audio. MediaRecorder also records video, through a similar process.
However, the particular recipe for recording video is very specific — doing things in
the wrong order can easily screw up the recording.

The MediaRecorder Recipe

First, you need to set up the camera preview, just as you would for taking a still
photo. After all, the user needs to have some idea of what is going to be recorded.

At the point in time of starting the recording, you need to unlock() the Camera. This
basically says that you will want to start using the Camera again later, but you want
to allow another process — specifically, the Stagefright process that implements
MediaRecorder — to be able to use the Camera temporarily.

Then, after creating your MediaRecorder instance, you must do the following, in the
stated sequence:

• Call setCamera() on MediaRecorder, handing it the just-unlocked Camera
• Call setAudioSource() on MediaRecorder, indicating where the audio for

the recording should come from (typically
MediaRecorder.AudioSource.CAMCORDER)

• Call setVideoSource() on MediaRecorder, indicating where the video to be
recorded should come from (typically MediaRecorder.VideoSource.CAMERA)

• Call setProfile() on MediaRecorder, choosing one of the available
recording profiles (e.g., CamcorderProfile.get(cameraId,
CamcorderProfile.QUALITY_HIGH))

• Call setOutputFile() on MediaRecorder, supplying the file path or
FileDescriptor where the recorded video should be stored

• Call setOrientationHint() on MediaRecorder, indicating whether or not
the camera is in portrait or landscape, so that information can be added to
the metadata included in the video

• Call setPreviewDisplay() on MediaRecorder, to connect the MediaRecorder
to the SurfaceView or TextureView that you are using for preview images, so
it knows where to display the “preview” of what is being recorded

• Call prepare(), and then start(), on MediaRecorder to actually do the
recording

Note that prior to Android 2.2, you cannot call setProfile(), but instead have to
call a series of methods, like setOutputFormat() instead.

WORKING DIRECTLY WITH THE CAMERA

1525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When you are done recording, you can call stop() and release() on the
MediaRecorder, then call reconnect() on the Camera to return you to the state you
were in prior to initiating the recording in the first place.

Recording in CWAC-Camera

DemoCameraFragment starts off with a visible/enabled record action bar item. When
clicked, it calls record() on CameraFragment to begin the recording, then calls
invalidateOptionsMenu() to refresh the action bar. Its onCreateOptionsMenu()
takes into account whether or not it is recording (via the isRecording() method on
CameraFragment) and makes the stop action bar item visible (and record invisible)
when recording is going on. Tapping the stop action bar item triggers a call to
stopRecording(), plus refreshes the action bar once again to switch the items back
to normal mode.

casecase R.id.record:
trytry {

record();
getActivity().invalidateOptionsMenu();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception trying to record", e);

Toast.makeText(getActivity(), e.getMessage(),
Toast.LENGTH_LONG).show();

}

returnreturn(truetrue);

casecase R.id.stop:
trytry {

stopRecording();
getActivity().invalidateOptionsMenu();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception trying to stop recording", e);

Toast.makeText(getActivity(), e.getMessage(),
Toast.LENGTH_LONG).show();

}

returnreturn(truetrue);

record() on CameraFragment eventually routes to record() on CameraView, which
goes through the aforementioned recipe:

publicpublic void record() throwsthrows Exception {
ifif (Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {

WORKING DIRECTLY WITH THE CAMERA

1526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

throwthrow newnew UnsupportedOperationException(
"Video recording supported only

on API Level 11+");
}

ifif (displayOrientation != 0 && displayOrientation != 180) {
throwthrow newnew UnsupportedOperationException(

"Video recording supported only
in landscape");

}

Camera.Parameters pictureParams=camera.getParameters();

setCameraPictureOrientation(pictureParams);
camera.setParameters(pictureParams);

stopPreview();
camera.unlock();

trytry {
recorder=newnew MediaRecorder();
recorder.setCamera(camera);
getHost().configureRecorderAudio(cameraId, recorder);
recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
getHost().configureRecorderProfile(cameraId, recorder);
getHost().configureRecorderOutput(cameraId, recorder);
recorder.setOrientationHint(outputOrientation);
previewStrategy.attach(recorder);
recorder.prepare();
recorder.start();

}
catchcatch (IOException e) {

recorder.release();
recorder=nullnull;
throwthrow e;

}
}

record() uses three hooks supplied to CameraHost for configuring the recording:

• configureRecorderAudio(), where SimpleCameraHost uses
MediaRecorder.AudioSource.CAMCORDER:

@Override
publicpublic void configureRecorderAudio(int cameraId,

MediaRecorder recorder) {
recorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);

}

• configureRecorderProfile(), where SimpleCameraHost uses the
QUALITY_HIGH profile:

WORKING DIRECTLY WITH THE CAMERA

1527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void configureRecorderProfile(int cameraId,

MediaRecorder recorder) {
ifif (Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB

|| CamcorderProfile.hasProfile(cameraId,
CamcorderProfile.QUALITY_HIGH)) {

recorder.setProfile(CamcorderProfile.get(cameraId,
CamcorderProfile.QUALITY_HIGH));

}
elseelse if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB

&& CamcorderProfile.hasProfile(cameraId,
CamcorderProfile.QUALITY_LOW)) {

recorder.setProfile(CamcorderProfile.get(cameraId,
CamcorderProfile.QUALITY_LOW));

}
elseelse {

throwthrow newnew IllegalStateException(
"cannot find valid CamcorderProfile");

}
}

• configureRecorderOutput(), where SimpleCameraHost calls
getVideoPath() and uses that location for the output

@Override
publicpublic void configureRecorderOutput(int cameraId,

MediaRecorder recorder) {
recorder.setOutputFile(getVideoPath().getAbsolutePath());

}

Advanced CWAC-Camera Features
CameraFragment and CameraHost provide other hooks as well, for you to use to
further configure the way your app takes pictures and videos.

Controlling Preview Sizes

Your CameraHost will be called with getRecordingHint(), to determine if the
preview should be optimized for possible video recording, or not (i.e., only still
images will be taken). You can return a CameraHost.RecordingHint enum:
STILL_ONLY, VIDEO_ONLY, or ANY.

Usually, your CameraHost will be called with getPreviewSize(), where you need to
return a valid Camera.Size indicating the desired size of the preview frames.
getPreviewSize() is passed:

WORKING DIRECTLY WITH THE CAMERA

1528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• the display orientation, in degrees, with 0 indicating landscape, 90
indicating portrait, etc.

• the available width and height for the preview
• the Camera.Parameters object, from which you can determine the valid

preview sizes by calling getSupportedPreviewSizes()

The CameraUtils class contains three static methods with stock algorithms for
choosing the preview size:

1. getOptimalPreviewSize() uses the algorithm found in the SDK camera
sample app

2. getBestAspectPreviewSize() finds the preview size that most closely
matches the aspect ratio of our available space

3. getBestAspectPreviewSize(double) finds the preview size that offers the
biggest preview size that only differs from the desired aspect ratio by the
supplied closeEnough value (closeEnough of 0.0d would give the same
results as does getBestAspectPreviewSize())

SimpleCameraHost uses getBestAspectPreviewSize() for the default
implementation of getPreviewSize(). You can override getPreviewSize() and
substitute in your own selection algorithm. Just make sure that the returned size is
one of the ones returned by getSupportedPreviewSizes().

If getRecordingHint() returns ANY or VIDEO_ONLY, though, CameraHost supplies the
preview size via getPreferredPreviewSizeForVideo() instead of
getPreviewSize(). If you wish to use a different preview size for video, return it,
otherwise return null and we will use the results from getPreviewSize() instead.
getPreferredPreviewSizeForVideo() is passed a Camera.Size as a hint from the
device for a value to use, instead of anything you might get yourself from
Camera.Parameters — while using the hinted value is probably a good idea (if it is
not null), it is not required.

Controlling Picture Sizes

Similarly, your CameraHost will be called with getPictureSize(), for you to return
the desired Camera.Size of the still images taken by the camera. You are simply
passed the Camera.Parameters, on which you can call
getSupportedPictureSizes() to find out the possible picture sizes that you can
choose from.

WORKING DIRECTLY WITH THE CAMERA

1529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CameraUtils class has a pair of methods for simple algorithms for choosing a
picture size:

1. getLargestPictureSize() returns the Camera.Size that is the largest in area
2. getSmallestPictureSize() returns the Camera.Size that is the smallest in

area

SimpleCameraHost uses getLargestPictureSize() for the default implementation
of getPictureSize(). You can override getPictureSize() and substitute in your
own selection algorithm. Just make sure that the returned size is one of the ones
returned by getSupportedPictureSizes().

Arbitrary Preview Configuration

When setting up the camera preview, your CameraHost will be called with
adjustPreviewParameters(), passing in a Camera.Parameters. Here, you can make
any desired adjustments to the camera preview, except the preview size (which you
should be handling in getPreviewSize()). adjustPreviewParameters() returns the
revised Camera.Parameters, where the stock implementation in SimpleCameraHost
just returns the passed-in parameters unmodified.

Arbitrary Photo Configuration

Shortly after you call takePicture() on your CameraFragment, your CameraHost will
be called with adjustPictureParameters(), passing in a Camera.Parameters. Here,
you can make any desired adjustments to the parameters related to taking photos,
except the image size (which you should be handling in getPictureSize()).
adjustPictureParameters() returns the revised Camera.Parameters, where the
stock implementation in SimpleCameraHost just returns the passed-in parameters
unmodified.

Arbitrary Video Configuration

Shortly after you call startRecording(), your CameraHost will be called with:

• configureRecorderAudio()
• configureRecorderProfile()
• configureRecorderOutput()

WORKING DIRECTLY WITH THE CAMERA

1530

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

in that order. Here, you can help tailor the way videos get recorded. Each of these is
passed the ID of the camera being used for recording plus the MediaRecorder
instance that does the actual recording.

The stock SimpleCameraHost does the following:

• In configureRecorderAudio(), SimpleCameraHost calls
setAudioSource(MediaRecorder.AudioSource.CAMCORDER) on the
MediaRecorder

• In configureRecorderProfile(), SimpleCameraHost calls
setProfile(CamcorderProfile.get(cameraId,
CamcorderProfile.QUALITY_HIGH)) on the MediaRecorder

• In configureRecorderOutput(), SimpleCameraHost calls
setOutputFile(getVideoPath().getAbsolutePath()) on the
MediaRecorder (where getVideoPath() was described earlier in this
document)

While these are reasonable defaults, you are welcome to override these
implementations to do something else.

Overriding Photo Saving

The default SimpleCameraHost logic for saving photos uses the getPhotoPath() and
related methods discussed above. Actually saving the photo is done in
saveImage(), called on your CameraHost, where SimpleCameraHost has a
saveImage() implementation that writes the supplied byte array out to the desired
location.

You are welcome to override saveImage() and do something else with the byte
array, such as send it over the Internet. saveImage() is called on a background
thread, so you do not have to do your own asynchronous work.

Another use for this is to find out when the saving is complete, so that you can use
the resulting image. Just override saveImage(), chain to the superclass
implementation, and when that returns, the image is ready for use.

There is also a saveImage(PictureTransaction, Bitmap) callback, giving you a
decoded Bitmap instead of a byte array.

By default, the saveImage() that takes a byte array will be called, and not
saveImage(PictureTransaction, Bitmap). To change this, call

WORKING DIRECTLY WITH THE CAMERA

1531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

needBitmap(boolean) and/or needByteArray(boolean) on your
PictureTransaction, passing that PictureTransaction to takePicture().

Note that if you say that you need the Bitmap, you are responsible for the Bitmap
(e.g., calling recycle() on it) once it is handed to your host.

Controlling the Shutter Callback

You can subclass PictureTransaction and override onShutter() to do something
when the shutter is pressed.

Also, your CameraHost implementation can return a Camera.ShutterCallback
object via getShutterCallback(), which will be used in the underlying
takePicture() call on the Android Camera, giving you control to play a “shutter
click” sound. SimpleCameraHost returns null from getShutterCallback(), to give
you the device default behavior.

Detecting Faces

If you wish to use the face detection APIs available on API Level 14+, do the
following:

1. Have your CameraHost implementation also implement
Camera.FaceDetectionListener.

2. Override adjustPreviewParameters() in your CameraHost and take that
opportunity to check the value of getMaxNumDetectedFaces(), a method on
Camera.Parameters. If that returns 0, face detection is not supported by the
device. NOTE: a better API for this may be added in the future.

3. Override autoFocusAvailable() in your CameraHost, and if face detection
is enabled, call startFaceDetection() on your CameraFragment or
CameraView. NOTE: a dedicated callback for this may be added in the
future — this is a stop-gap to allow this fix to go in a patch release

4. Similarly, override autoFocusUnavailable() in your CameraHost and, if face
detection is enabled, call stopFaceDetection() on your CameraFragment or
CameraView. NOTE: a dedicated callback for this may be added in the
future.

Note that this capability was added to version 0.5.1 of this library. Also note that,
while you can safely call startFaceDetection() and stopFaceDetection()
regardless of API level, getMaxNumDetectedFaces() should only be called on API
Level 14+ devices, or you will be hit with a VerifyError or the equivalent.

WORKING DIRECTLY WITH THE CAMERA

1532

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choosing a DeviceProfile

CameraHost exists to provide a hook for you to determine how your app should
handle taking pictures and videos. DeviceProfile, on the other hand, provides
information about how the device handles taking pictures and videos. Different
devices do slightly different things when working with the camera. Sometimes this is
based on API level, sometimes it is based on how the device manufacturer tinkered
with Android, and sometimes it is based on the underlying camera hardware.
DeviceProfile provides a place for the CWAC-Camera project to isolate these
differences.

CameraHost has a getDeviceProfile() method that should return an instance of the
DeviceProfile to use for the device that is running the app. The implementation of
getDeviceProfile() on SimpleCameraHost calls the static getInstance() method
on DeviceProfile, which chooses a DeviceProfile based on internal heuristics. If
you encounter problems with certain devices, you can detect those in your
getDeviceProfile() method and return a DeviceProfile that addresses your
needs, otherwise settling for using the library’s own choice of DeviceProfile.

Note that SimpleCameraHost.Builder also has a deviceProfile() setter method
that you can call, passing in a DeviceProfile that will be used as the default,
replacing the system default.

The stock DeviceProfile is largely driven by XML resources. These resources’
names are of the form cwac_camera_profile_XXX_YYY, where XXX is the
Build.MANUFACTURER and YYY is the Build.MODEL. Both Build.MANUFACTURER and
BUILD.MODEL are converted to lowercase and have non-alphanumeric values
converted to underscores, to ensure that we wind up with a valid resource filename.
Each of those XML resource files has a <deviceProfile> root element, containing
child elements for different values that can be overridden:

• <doesZoomActuallyWork> (a boolean, true or false) overrides the default
zoom detection logic, with false meaning that the device lies and zoom is
not really supported

• <maxPictureHeight> (an integer) is the largest number of pixels high to use
for the camera picture; a Camera.Size taller than this is ignored

• <minPictureHeight> (an integer) is the smallest number of pixels high to
use for the camera picture; a Camera.Size shorter than this is ignored

• <pictureDelay> (an integer) is a time in milliseconds to delay taking the
picture after updating Camera.Parameters with the picture settings, for

WORKING DIRECTLY WITH THE CAMERA

1533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

devices that seem to reset themselves when the parameters are updated,
resulting in messed-up pictures

• <portraitFFCFlipped> (a boolean, true or false) indicates if the image
cleanup work needs to flip the image if it was taken in portrait mode from
the front-facing camera

• <useDeviceOrientation> (a boolean, true or false) indicates if we should
skip the setRotation() call on Camera.Parameters due to a device bug, and
instead should just use physical orientation in the image cleanup phase to
get the picture to turn out right

• <useTextureView> (a boolean, true or false) overrides the default choice
of whether to use a SurfaceView or a TextureView for the preview, normally
driven by API level

So long as the resource exists with the right filename, the library should pick it up,
so you can add ones in your app if needed.

Working Directly with CameraView

If you wish to eschew fragments, you are welcome to work with CameraView directly.
To do this:

• Add it in Java code by calling its one-parameter constructor, taking your
Activity as a parameter. At the present time, CameraView does not support
being placed in a layout resource.

• Call setHost() on the CameraView as early as possible, to make sure that the
CameraView is working with the right CameraHost implementation.
Alternatively, override getHost() and return the right CameraHost there.

• Forward the onResume() and onPause() lifecycle events from your activity or
fragment to the CameraView.

Otherwise, CameraView should work as a regular View… so long as you do not try to
use it in a layout resource.

Using CameraView in a Layout Resource

If you want to use CameraView in a layout resource, you can, but your activity will
need to implement the CameraHostProvider interface. This has one required
method: getCameraHost(), which returns the CameraHost instance to be used with
the CameraView. You would implement this in lieu of calling setHost() yourself.

WORKING DIRECTLY WITH THE CAMERA

1534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you want to take advantage of this and use your own layout in a CameraFragment
subclass, simply override onCreateView() and do what you want. The only
requirement, other than the CameraHostProvider mentioned above, is that your
onCreateView() needs to call the setCameraView() method, supplying the
CameraView instance to the superclass.

The demo-layout/ directory contains a small sample project that demonstrates this
technique.

Flash Modes

CameraView, as well as CameraFragment, has a getFlashMode() which returns the
flash mode from Camera.Parameters.

To adjust the flash mode, you can call flashMode() on your PictureTransaction to
specify a mode to apply when the picture is taken. Or, call setFlashMode() on
CameraView or CameraFragment when needed. Or, you can manually configure the
Camera.Parameters object in adjustPictureParameters() and/or
adjustPreviewParameters().

The CameraUtils class has a findBestFlashModeMatch() method that takes a
Camera.Parameters object, plus one or more String names of flash modes (e.g.,
Camera.Parameters.FLASH_MODE_ON), and returns the mode that appears first in
your list of strings that is supported by the current camera.

WORKING DIRECTLY WITH THE CAMERA

1535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Media Routes

Android can send audio and video to a variety of places, such as:

• Bluetooth headsets or headphones
• External displays, like a TV or monitor
• External devices that themselves play back media, such as a Chromecast

There is a common API for determining which of these “places” are available and
allowing the user to choose which of these “places” should be used for a given bit of
media. This common API centers around a MediaRouter, which is the focus of this
chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of the
book. In addition, you should read the chapters on advanced action bar techniques
and the AppCompat action bar backport.

Terminology
First, we need to establish some common ground in terms of…, well, terms.

Media

In this chapter, “media” refers to audio or video. This includes both media that may
be stored on the device as well as media that may be streamed from some other
source, frequently over the Internet.

1537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Route

A route indicates where media should be played. There are three categories of
routes that concern us:

• Where should we be playing live audio, in terms of speakers or headphones
or other things connected to the device?

• Where should we be playing live video: on the device’s own screen or on
some other screen connected via a cable?

• Is there any sort of “remote playback” device available, such as a
Chromecast, that can play back media on its own under our direction,
rather than requiring our own app to play back the media itself

MediaRouter

MediaRouter is the name of a class (actually, two classes) that know what routes are
possible given the current environment and what routes are selected for the
different categories (by default or by user choice).

A Tale of Three MediaRouters
MediaRouter and its related classes represent a curious API. There are two versions
of the MediaRouter class and up to three versions of some of the related support
classes that will concern you as a developer.

android.media

MediaRouter debuted in Android in API Level 16, through classes added to the
android.media package. This version of MediaRouter can work with live audio and
live video routes, but not the Chromecast-style remote playback routes.

android.media also contains other classes that pertain to routes, such as
MediaRouteActionProvider, a way to allow the user to choose media routes via an
action bar item. The version of these classes in android.media work with native API
Level 11 versions of the action bar and fragments.

android.support.v7.media

In 2013, an update to the Android Support package was released that contained
another version of MediaRouter and kin, in android.support.v7 packages. These

MEDIA ROUTES

1538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

are contained in a dedicated Android library project that you can add to your app,
found in the extras/android/support/v7/mediarouter directory of your Android
SDK installation, if you have a current Android Support package installed.

While the native version of MediaRouter is a system service — obtained via
getSystemService() – the v7 version of MediaRouter is a singleton, obtained from
a static getInstance() method on the MediaRouter class.

The good news is that this updated version of MediaRouter can work with all three
categories of routes, including the Chromecast-style remote playback routes.

CWAC-MediaRouter

However, the bad news is that the v7 version of MediaRouter’s support classes only
support the Android Support backports of fragments and the action bar. This
requires you to inherit from ActionBarActivity and use the v4 version of Fragment
and kin. This is a rather annoying limitation, considering that many developers
have specifically started dropping support for older API levels to be able to avoid
using this backport.

Fortunately, you have an alternative.

The author of this book has published the CWAC-MediaRouter library. This library
contains a port of certain MediaRouter support classes to work with the native API
Level 11+ version of fragments and the action bar. These classes are a stop-gap
measure, until Google eventually publishes their own version of those support
classes.

Note that using CWAC-MediaRouter still requires the mediarouter Android library
project, as the CWAC library only contains those classes that needed modification.
Since the mediarouter library requires the appcompat library project and the
support-v4 JAR, you will need all those dependencies, even if you are not using
much from them. While this will add a few MB of space to your APK in debug
mode, much of that extra stuff should get stripped out by ProGuard when you build
the release version of your app.

The samples in this chapter will illustrate the use of both Google’s and
CommonsWare’s versions of the classes.

MEDIA ROUTES

1539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-mediarouter

Attaching to MediaRouter
To be able to take advantage of all that MediaRouter has to offer, we need to obtain
an instance of it and connect to that instance, via method calls and registering
callbacks.

Getting a MediaRouter Instance

To get an instance of the android.support.v7.media.MediaRouter flavor of
MediaRouter, call getInstance() on MediaRouter.

This is in contrast to the android.media.MediaRouter variant, which is a system
service, obtained by calling getSystemService().

Note that the android.support.v7.media.MediaRouter flavor is global for your
process, but weakly held from a garbage collection standpoint. You need to ensure
that you hold onto your instance of MediaRouter as long as you need it. Once your
application code lets go of the MediaRouter instance, it becomes eligible for
garbage collection, disposing of any registered callbacks and such along the way.

Working with Routes

MediaRouter has a getSelectedRoute() method that returns the media route
chosen by the user, or the overall default if the user has not yet had a chance in
your app to choose a route. This method returns a MediaRouter.RouteInfo object,
containing details about the route. In particular, you can call
supportsControlCategory() to determine if the route is a live audio route, a live
video route, or a remote playback route, so you can take advantage of it accordingly.

There is also getDefaultRoute(), which, as the name suggests, returns the
MediaRouter.RouteInfo instance that is the overall default for your app.

You can call getRoutes() to obtain a list of all routes known at the present time.
You might use this to allow the user to choose a route, though
MediaRouteActionProvider is generally a better choice, as will be seen later in this
chapter.

Given that you have a MediaRouter.RouteInfo instance from somewhere, you can
call selectRoute() to make this route the active one, replacing whatever the
previously-selected route was.

MEDIA ROUTES

1540

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Registering a Callback

You can also call addCallback() to provide a MediaRouter.Callback instance that
will be invoked at various points in time based on the changes in media routes.
addCallback() also takes a MediaRouteSelector, which describes what sorts of
routes you are interested in. We will examine MediaRouteSelector in greater detail
in the coverage of MediaRouteActionProvider later in this chapter.

There are two flavors of addCallback(). Both take the MediaRouteSelector and the
MediaRouter.Callback, but one also takes an int supplying flags to control the
behavior of addCallback(). One flag of particular importance is
CALLBACK_FLAG_REQUEST_DISCOVERY. This tells MediaRouter to not only set up the
callback, but to attempt to find new routes previously unknown to it. Mostly, this is
for remote callback routes, which require network I/O to find and are not
necessarily known if not specifically scanned for.

MediaRouter.Callback is a class, not an interface. You create your own subclass of
MediaRouter.Callback and override the callback methods that interest you. Some
noteworthy callback methods include:

• onRouteAdded() and onRouteRemoved(), which are called when routes are
newly detected or have been lost, such as when a user plugs in or unplugs
an HDMI cable from the device

• onRouteSelected() is called when a new route is selected, either by the
user (e.g., via MediaRouteActionProvider) or by you (e.g., via
selectRoute())

• onRouteUnselected() is also called when a new route is selected, but in this
case, you are notified about the old route being unselected

When you are done with the callback, call removeCallback() on the MediaRouter,
passing in the same MediaRouter.Callback instance you supplied to
addCallback().

We will see examples of using MediaRouter.Callback in the next section.

User Route Selection with
MediaRouteActionProvider
To give the user some measure of control over where media is played, you can add a
MediaRouteActionProvider to your action bar. This will add a button that, when

MEDIA ROUTES

1541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

tapped, will allow the user to choose routes of relevance to your app (live audio, live
video, remote playback).

However, this does not really work the way you (or the user) might expect, simply
because some routes are automatically applied by the OS. Depending upon what
the Android device is connected to will determine what routes are automatically
applied and which ones the user can choose via MediaRouteActionProvider. For
example, while Android will route live video to an HDMI-connected external
display automatically, the user must opt into connecting to a Chromecast for
remote playback capability.

This section outlines how to use MediaRouteActionProvider — both the Google
and CWAC versions — and what the user will see for various circumstances. Most
of the sections will be focusing on the MediaRouter/ActionProvider sample project,
which uses the Google version of MediaRouteActionProvider.

The Basic Project and Dependencies

The project has dependency on the mediarouter Android library project. Projects
that need mediarouter will need to have access to the Android Support library from
the SDK Manager and follow the instructions to add it to your project. Since
mediarouter depends upon appcompat, you will need both library projects.

The AppCompat backport of the action bar requires that your activities use a
theme extending from Theme.AppCompat. Hence, we have a res/values/styles.xml
resource that defines AppTheme in the context of
Theme.AppCompat.Light.DarkActionBar:

<resources><resources>

<style<style name="AppBaseTheme" parent="@style/
Theme.AppCompat.Light.DarkActionBar"></style>></style>

<style<style name="AppTheme" parent="AppBaseTheme">>
<!-- All customizations that are NOT specific to a particular API-level can

go here. -->
</style></style>

</resources></resources>

And our <activity> in the manifest, pointing to MainActivity, refers to that
theme:

MEDIA ROUTES

1542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MediaRouter/ActionProvider
https://developer.android.com/tools/support-library/features.html#v7-mediarouter

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.mrap"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="18"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name="com.commonsware.android.mrap.MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

The Menu Resource

Since MediaRouteActionProvider is an action provider, we can to add it to our
action bar via an actionProviderClass attribute in a menu resource. And, since the
Google implementation of MediaRouteActionProvider works with the AppCompat
action bar backport, we specifically need to use the AppCompat approach to adding
actionProviderClass, putting it in our app’s custom XML namespace:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">>

<item<item
android:id="@+id/route_provider"
android:title="@string/route_provider_title"
app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
app:showAsAction="always"/>/>

</menu></menu>

MEDIA ROUTES

1543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Initializing the MediaRouter and Selector

Our activity (MainActivity) is an ActionBarActivity subclass, following the rules
for using the AppCompat action bar backport:

packagepackage com.commonsware.android.mrap;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.MenuItemCompatandroid.support.v4.view.MenuItemCompat;
importimport android.support.v7.app.ActionBarActivityandroid.support.v7.app.ActionBarActivity;
importimport android.support.v7.app.MediaRouteActionProviderandroid.support.v7.app.MediaRouteActionProvider;
importimport android.support.v7.media.MediaControlIntentandroid.support.v7.media.MediaControlIntent;
importimport android.support.v7.media.MediaRouteSelectorandroid.support.v7.media.MediaRouteSelector;
importimport android.support.v7.media.MediaRouterandroid.support.v7.media.MediaRouter;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends ActionBarActivity {
privateprivate MediaRouteSelector selector=nullnull;
privateprivate MediaRouter router=nullnull;
privateprivate TextView selectedRoute=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
selectedRoute=(TextView)findViewById(R.id.selected_route);

router=MediaRouter.getInstance(thisthis);
selector=

newnew
MediaRouteSelector.Builder().addControlCategory(MediaControlIntent.CATEGORY_LIVE_AUDIO)

.addControlCategory(MediaControlIntent.CATEGORY_LIVE_VIDEO)

.addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)
.build();

}

@Override
publicpublic void onResume() {

supersuper.onResume();

router.addCallback(selector, cb,
MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

}

@Override
publicpublic void onPause() {

router.removeCallback(cb);

MEDIA ROUTES

1544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onPause();
}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

provider.setRouteSelector(selector);

returnreturn(truetrue);
}

privateprivate MediaRouter.Callback cb=newnew MediaRouter.Callback() {
@Override
publicpublic void onRouteSelected(MediaRouter router,

MediaRouter.RouteInfo route) {
selectedRoute.setText(route.toString());

}
};

}

In onCreate() we obtain an instance of MediaRouter. More specifically, we obtain
an instance of android.support.v7.media.MediaRouter.

We also will need a MediaRouteSelector instance. MediaRouteSelector expresses
rules for what sorts of media routes we are interested in. The simplest way to set up
a MediaRouteSelector is to use the MediaRouteSelector.Builder inner class,
which follows the fluent API style of other Android Builder classes (e.g.,
Notification.Builder, AlertDialog.Builder). Here, we call
addControlCategory() three times, indicating three categories of routes that we
are interested in:

• MediaControlIntent.CATEGORY_LIVE_AUDIO
• MediaControlIntent.CATEGORY_LIVE_VIDEO
• MediaControlIntent.CATEGORY_REMOTE_PLAYBACK

Calling build() on the resulting Builder gives us our MediaRouteSelector, which
we will use elsewhere in the activity.

MEDIA ROUTES

1545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Configuring the ActionProvider

In onCreateOptionsMenu() of MainActivity, we inflate our menu resource and pull
out the MediaRouteActionProvider. To obtain an action provider from the
AppCompat action bar, the simplest solution is to use the MenuItemCompat helper
class from the Android Support package, calling its static getActionProvider()
method. This will work both with the AppCompat backport of the action bar and
with the native API Level 11+ action bar, though you do not need to use
MenuItemCompat for the latter if you do not want.

We then call the setRouteSelector() method on our MediaRouteActionProvider
instance, passing in the MediaRouteSelector we configured back in onCreate().
This tells the action provider what routes the user should be able to configure. In
our case, that is all three major categories of routes (live audio, live video, and
remote playback).

Registering for Route Changes

Interestingly enough, that is insufficient to make the MediaRouteActionProvider
work. We also need to register a MediaRouter.Callback with the MediaRouter, to
be informed about events related to media routes. Our cb private data member is
an instance of an anonymous inner class extending MediaRouter.Callback,
overriding the onRouteSelected() method. This method will be called whenever a
new route is selected, telling us the MediaRouter.RouteInfo of the newly-selected
route. In our case, we just update a TextView that is our activity’s UI with the
details of that route, courtesy of calling toString() on the RouteInfo object.

To inform MediaRouter about our desire for such callbacks, we need to call
addCallback() on the MediaRouter, and later on call removeCallback() when we
no longer need to know about such events. In MainActivity, these steps are done
in onResume() and onPause(), respectively.

Note that we provide the CALLBACK_FLAG_REQUEST_DISCOVERY flag in the
addCallback() method, to trigger a search for any Chromecast or other remote
playback-capable devices that can serve as media routes.

The Results

Running this on an emulator is largely pointless, as emulators do not emulate
media routes.

MEDIA ROUTES

1546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Running this on a device will give varying results, depending upon what other
media-related accessories are available to that device. If there are no user-selectable
media routes available, the MediaRouteActionProvider is marked as invisible, so
the user does not see the icon and perhaps get confused by why tapping on it has
no effect.

However, our TextView will show some initial route that was chosen by the device:

Figure 444: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route

Live Audio Routes

If you launch the demo with some form of external headset or speakers attached,
such as via Bluetooth, you will see the route for that is automatically selected:

MEDIA ROUTES

1547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 445: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Audio
Route

The MediaRouteActionProvider appears, with a blue highlight, indicating an active
selected route. More importantly, the blue highlight indicates that the route is
configurable by tapping on it to bring up a dialog:

MEDIA ROUTES

1548

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 446: MediaRouter ActionProvider Demo, on a Nexus 4, Live Audio Route
Configuration

Here, we can adjust the volume, plus disconnect from the route. Disconnecting
shows our MediaRouteActionProvider with the default white highlight:

MEDIA ROUTES

1549

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 447: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route
and Provider

The white highlight means that there are possible routes, though none in use.
Tapping the icon brings up a connection dialog:

MEDIA ROUTES

1550

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 448: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available
Routes

Live Video Routes

If you launch the demo with some form of external display attached — HDMI,
MHL, SlimPort, etc. — you still will not see the MediaRouteActionProvider, as live
video routes are automatically selected, at least if there is only one such route.

However, onRouteSelected() will still be called as part of starting up the activity,
so the TextView will reflect the live video route:

MEDIA ROUTES

1551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 449: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Video
Route

Remote Playback Routes

Since the user has to opt into remote playback media routes, the
MediaRouteActionProvider will appear if you configure it to show such routes and
a route is available:

MEDIA ROUTES

1552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 450: MediaRouter ActionProvider Demo, on a Nexus 4, Showing
ActionProvider

The MediaRouteActionProvider, when tapped, will pop up a dialog of available
routes that the user can select:

MEDIA ROUTES

1553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 451: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available
Chromecast Route

Note that if the device has both a Bluetooth audio connection and access to a
remote playback route (like a Chromecast), and you requested both live audio and
remote playback routes, then the route selection dialog could have multiple
choices:

MEDIA ROUTES

1554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 452: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Multiple
Available Routes

If the user chooses a route from the dialog, our onRouteSelected() method will be
called to reflect the new selection:

MEDIA ROUTES

1555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 453: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Selected
Chromecast Route

Also note that the MediaRouteActionProvider color changes from white to blue,
indicating an altered route.

Tapping the action provider again pops up a dialog to control the volume of the
route, plus a “Disconnect” button:

MEDIA ROUTES

1556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 454: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Route Dialog

Tapping that “Disconnect” button returns everything to its original state.

The CWAC-MediaRouter Version

If you wish to use the regular Activity class, in conjunction with native API Level
11+ versions of the action bar and fragments, you can have nearly identical code by
means of the CWAC-MediaRouter library. With that library added to your project,
you can remove the AppCompat code from your app, such as switching to a regular
theme (e.g., Theme.Holo.Light.DarkActionBar) and inheriting from Activity
instead of ActionBarActivity.

However, you will need to use
com.commonsware.cwac.mediarouter.MediaRouteActionProvider as your
android:actionProvider in your menu resource:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/route_provider"

android:actionProviderClass="com.commonsware.cwac.mediarouter.MediaRouteActionProvider"
android:showAsAction="always"

MEDIA ROUTES

1557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:title="@string/route_provider_title"/>/>

</menu></menu>

Similarly, your Java code will need to import
com.commonsware.cwac.mediarouter.MediaRouteActionProvider instead of
android.support.v7.app.MediaRouteActionProvider. However, you will still use
the mediarouter-v7 versions of the other MediaRouter-related classes, such as
MediaRouter itself. The CWAC-MediaRouter library only contains ports for those
classes that depended upon the backported action bar and fragments.

Otherwise, though, your code would be unchanged from the version that uses
mediarouter-v7 for everything, yet your MediaRouteActionProvider will work
using native API Level 11+ fragments and the action bar.

Using Live Audio Routes
Using live audio routes will be covered in a future edition of this book.

Using Live Video Routes
A live video route is designed to be used with Presentation, a class that enables
you to render your own content on the external display, much like how you would
render your own content in a Dialog.

The use of Presentation is covered in an upcoming chapter.

Using Remote Playback Routes
In principle, RemotePlaybackClient allows you to work with remote playback
routes, to specify Uri values to play back.

In practice, not even Google’s own sample code for RemotePlaybackClient works
reliably, let alone as documented.

That being said, let’s take a look at the MediaRouter/RemotePlayback sample
project, to see how RemotePlaybackClient works and where the current problems
lie.

MEDIA ROUTES

1558

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MediaRouter/RemotePlayback

Setting Up MediaRouteActionProvider

Much of the basic setup of this application mirrors the MediaRouteActionProvider
sample shown earlier in this chapter. One difference is that the UI is now
encapsulated in a PlaybackFragment, with MainActivity simply setting up that
fragment when needed:

packagepackage com.commonsware.android.remoteplayback;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.app.ActionBarActivityandroid.support.v7.app.ActionBarActivity;

publicpublic classclass MainActivityMainActivity extendsextends ActionBarActivity {
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==

nullnull) {
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew PlaybackFragment()).commit();

}
}

}

Note that this sample does not use the CWAC-MediaRouter project, so
MainActivity is an ActionBarActivity, and so on.

PlaybackFragment, when it is created, opts into being retained on configuration
changes, tells Android that it wishes to add items to the action bar, and sets up a
MediaRouteSelector for CATEGORY_REMOTE_PLAYBACK routes:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
setHasOptionsMenu(truetrue);
selector=

newnew
MediaRouteSelector.Builder().addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)

.build();
}

Then, in onAttach() — called when the PlaybackFragment is attached to the
hosting activity — we obtain a MediaRouter instance:

@Override
publicpublic void onAttach(Activity host) {

MEDIA ROUTES

1559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onAttach(host);

router=MediaRouter.getInstance(host);
}

In onResume(), we hook a cb data member — an instance of MediaRouter.Callback
up to the MediaRouter, also requesting that the MediaRouter initiate discovery of
available routes. We remove our callback in onPause():

@Override
publicpublic void onResume() {

supersuper.onResume();

router.addCallback(selector, cb,
MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

}

@Override
publicpublic void onPause() {

router.removeCallback(cb);

supersuper.onPause();
}

We will examine cb’s declaration later in this section.

Later on, as part of our onCreateOptionsMenu() processing, we configure the
MediaRouteActionProvider as before:

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

provider.setRouteSelector(selector);

All of this is very similar to the earlier examples. From here, though, we will
actually use the route once the user selects it, to play back some media.

The Rest of the User Interface

The UI of the PlaybackFragment — other than the action bar — consists of a
“transcript”. This is a TextView inside of a ScrollView:

<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView

MEDIA ROUTES

1560

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:id="@+id/transcript"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="20sp"/>/>

</ScrollView></ScrollView>

As with most fragments, we inflate this layout in onCreateView(), holding onto the
TextView and ScrollView widgets:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

scroll=
(ScrollView)inflater.inflate(R.layout.activity_main, container,

falsefalse);

transcript=(TextView)scroll.findViewById(R.id.transcript);

logToTranscript("Started");

returnreturn(scroll);
}

The logToTranscript() method will append a String to the TextView contents on
a new line, plus scroll to the bottom to ensure that the new text is visible:

privateprivate void logToTranscript(String msg) {
ifif (client != nullnull) {

String sessionId=client.getSessionId();

ifif (sessionId != nullnull) {
msg="(" + sessionId + ") " + msg;

}
}

transcript.setText(transcript.getText().toString() + msg + "\n");
scroll.fullScroll(View.FOCUS_DOWN);

}

The client data member referred to in logToTranscript() is our
RemotePlaybackClient instance, which will be covered in the next section.

What the user sees when first running the sample is the action bar (with our
MediaRouteActionProvider) and the transcript, with a simple “Started” message:

MEDIA ROUTES

1561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 455: RemotePlaybackClient Demo, on a Nexus 4, As Initially Launched

As before, tapping on the “cast” action bar item pops up our dialog of available
routes:

MEDIA ROUTES

1562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 456: RemotePlaybackClient Demo, on a Nexus 4, Showing Available Routes

Connecting and Session Management

When the user selects a route, our MediaRouter.Callback (cb) is called with
onRouteSelected(). Similarly, if the user elects to disconnect via the
MediaRouteActionProvider, our Callback is called with onRouteUnselected(). In
the MediaRouter.Callback implementation inside PlaybackFragment, those events
route to connect() and disconnect() methods, respectively, after logging a
message to the transcript:

privateprivate MediaRouter.Callback cb=newnew MediaRouter.Callback() {
@Override
publicpublic void onRouteSelected(MediaRouter router,

MediaRouter.RouteInfo route) {
logToTranscript(getActivity().getString(R.string.route_selected));
connect(route);

}

@Override
publicpublic void onRouteUnselected(MediaRouter router,

MediaRouter.RouteInfo route) {
logToTranscript(getActivity().getString(R.string.route_unselected));
disconnect();

MEDIA ROUTES

1563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
};

The connect() method handles connecting to the remote playback device and
starting a session:

privateprivate void connect(MediaRouter.RouteInfo route) {
client=

newnew RemotePlaybackClient(getActivity().getApplication(), route);

ifif (client.isRemotePlaybackSupported()) {
logToTranscript(getActivity().getString(R.string.connected));

ifif (client.isSessionManagementSupported()) {
client.startSession(nullnull, newnew SessionActionCallback() {

@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus) {
logToTranscript(getActivity().getString(R.string.session_started));
getActivity().supportInvalidateOptionsMenu();

}

@Override
publicpublic void onError(String error, int code, Bundle data) {

logToTranscript(getActivity().getString(R.string.session_failed));
}

});
}
elseelse {

getActivity().supportInvalidateOptionsMenu();
}

}
elseelse {

logToTranscript(getActivity().getString(R.string.remote_playback_not_supported));
client=nullnull;

}
}

All of that, though, requires a bit more explanation.

What’s a Session?

The objective of the connect() method is to establish a “session” with the
RemotePlaybackClient. In Android’s terms, a “session” is the state associated with
an application’s interactions with the remote playback client. In principle, the
session could be shared among several instances of the app, such as several people
contributing tracks to a dynamic playlist for audio playback at a party. Here,

MEDIA ROUTES

1564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

though, we are simply focused on having this one application instance have a
session.

In principle, not all remote playback clients may support session management. In
those cases, everybody is considered to be part of the same session. The test device
for this sample (Chromecast) does support session management, however.

Connecting the Client

Connecting to the remote playback device is simply a matter of creating an instance
of RemotePlaybackClient, specifying the route to connect to:

client=
newnew RemotePlaybackClient(getActivity().getApplication(), route);

Here, we use getActivity().getApplication() in the RemotePlaybackClient
constructor. That is because we want to hold onto this RemotePlaybackClient
instance across configuration changes, so we can easily maintain our session. Since
we do not know what RemotePlaybackClient may hold onto given the supplied
Context, and since we do not want to leak our activity by retaining a reference to it,
we use the global Application instance, for a “leak-resistant” Context.

We also call isRemotePlaybackSupported() to confirm that, indeed, the
RemotePlaybackClient is connected to something that supports remote playback.
This should always return true in this case, as we are only interested in remote
playback routes. But, a little defensive programming never hurts.

Assuming that is all OK, we log a “connected” message to the transcript and
continue on to start our session.

Starting a Session

isSessionManagementSupported() on RemotePlaybackClient will indicate if the
device supports explicit session management or not. If not, we will use the default
implicit session and just continue on.

Otherwise, we call startSession() to explicitly start a session. This takes an
optional Bundle of additional information to send in the start-session request to
the device (or null if unused), plus a SessionActionCallback. The
SessionActionCallback is supposed to be called when the session is ready for use.
Surprisingly enough, this actually works… for startSession().

MEDIA ROUTES

1565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The SessionActionCallback will be called with onResult() for success and
onError() for failure. In either case, we log a message to the transcript indicating
the status.

In addition, if we have a session — either explicitly created via startSession() or
implicitly created for devices without explicit session management — we call
supportInvalidateOptionsMenu(), to force the action bar to be repopulated.

About the Action Bar

The fragment maintains two boolean values representing key states in the
operation of the playback:

1. isPlaying indicates if playback was started and not yet stopped
2. isPaused indicates if playback was paused and not yet resumed

The onCreateOptionsMenu() implementation uses those, plus the existence of a
non-null client, to configure the action bar items:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.main, menu);

ifif (client != nullnull) {
ifif (isPlaying) {

menu.findItem(R.id.stop).setVisible(truetrue);

ifif (isPaused) {
menu.findItem(R.id.play).setVisible(truetrue);

}
elseelse {

menu.findItem(R.id.pause).setVisible(truetrue);
}

}
elseelse {

menu.findItem(R.id.play).setVisible(truetrue);
}

}

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

provider.setRouteSelector(selector);
}

Specifically:

MEDIA ROUTES

1566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• When we are not playing, the play item is visible; when we are playing, the
stop item is visible

• We we are not paused, the pause item is visible (play serves “double duty”,
handling starting playback from a stopped state and resuming playback
from a paused state)

This is also where the logic shown previously for configuring the
MediaRouteActionProvider resides.

Session IDs

A session has a String identifier. In principle, this can be shared with other
instances of your application, to allow for shared management of the session.

In the case of this sample, the session ID is merely logged to the transcript for all
messages that are tied to an active session.

Hence, when the user chooses a remote playback route from the
MediaRouteActionProvider, the resulting UI should resemble:

Figure 457: RemotePlaybackClient Demo, on a Nexus 4, Showing an Active Session

MEDIA ROUTES

1567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We see that we have connected to the client and started our session, and the play
action bar item is now available to start playback of some media.

Playing

The play action bar item is tied to a play() method via onOptionsItemSelected(),
if we are not paused:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.play:

ifif (isPlaying && isPaused) {
resume();

}
elseelse {

play();
}

returnreturn(truetrue);

casecase R.id.stop:
stop();
returnreturn(truetrue);

casecase R.id.pause:
pause();
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

play(), in turn, uses the play() method on RemotePlaybackClient to play back a
copy of “Elephants Dream”, a Creative Commons-licensed video, hosted on
CommonsWare’s corner of the Amazon S3 service:

privateprivate void play() {
logToTranscript(getActivity().getString(R.string.play_requested));

ItemActionCallback playCB=newnew ItemActionCallback() {
@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus,
String itemId, MediaItemStatus itemStatus) {

logToTranscript(getActivity().getString(R.string.playing));
isPlaying=truetrue;
getActivity().supportInvalidateOptionsMenu();

}

MEDIA ROUTES

1568

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.elephantsdream.org/

@Override
publicpublic void onError(String error, int code, Bundle data) {

logToTranscript(getActivity().getString(R.string.play_error)
+ error);

}
};

client.play(Uri.parse("http://misc.commonsware.com/ed_hd_512kb.mp4"),
"video/mp4", nullnull, 0, nullnull, playCB);

}

The play() method on RemotePlaybackClient takes a few parameters:

• The Uri of the media to be played back
• The MIME type of that media (or null if you do not know the MIME type)
• An optional Bundle of metadata about the media to be played, where the
Bundle keys come from MediaItemMetadata class (or null if none)

• The starting offset in the media to begin playback from (use 0 to start from
the beginning)

• An optional Bundle of additional data to pass to the device
• An instance of ItemActionCallback to be notified when playback has

started or has failed

ItemActionCallback is reminiscent of SessionActionCallback, in that onResult()
will be called when playback begins and onError() will return when playback ends.
The method signature of onResult() is slightly different, offering an ID and status
of this particular media item.

In our case, we log a message to the transcript before requesting playback, then
again on success or failure. On success, we also update isPlaying to be true and
refresh the action bar.

Hence, once the user begins playback by tapping the play action bar item, the UI
will look like this:

MEDIA ROUTES

1569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 458: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Started

And, of course, the movie should be showing up on your remote playback device.

Stopping, and a Bug

The stop() action bar item is tied to a stop() method in PlaybackFragment. You
would think that this would be very similar to starting playback — call some
stop() method on RemotePlaybackClient and update the UI after playback has
stopped.

And, indeed, that is what we do… except that we have to deal with a bug:

privateprivate void stop() {
logToTranscript(getActivity().getString(R.string.stop_requested));

StopCallback stopCB=newnew StopCallback();

client.stop(nullnull, stopCB);
transcript.postDelayed(stopCB, 1000);

}

MEDIA ROUTES

1570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The stop() Call, and the Bug

stop() on RemotePlaybackClient takes an optional Bundle (here, null) and a
SessionActionCallback. The SessionActionCallback is supposed to be called
when playback has stopped (onResult()) or if there was some error in processing
the request (onError()).

In practice, neither happen when testing this on a Chromecast. This same behavior
can be seen with Google’s own sample code, so it would not appear to be a problem
with the author’s own sample.

What actually happens is that playback is indeed stopped, but the
SessionActionCallback is not called with onResult() or onError().

The Workaround: RunnableSessionActionCallback

Since we cannot rely upon onResult() to be called for us, if we have work that we
need to do in that case, we have to have some sort of fallback mechanism. One
crude fallback is to assume that the request succeeded if we have not received a
specific response after a period of time (say, 1000 milliseconds).

To that end, this sample has RunnableSessionActionCallback, a
SessionActionCallback that implements Runnable:

classclass RunnableSessionActionCallbackRunnableSessionActionCallback extendsextends SessionActionCallback
implementsimplements Runnable {

@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus) {
run();

}

@Override
publicpublic void run() {

transcript.removeCallbacks(thisthis);
}

}

StopCallback, as seen in the stop() method above, extends
RunnableSessionActionCallback and overrides run():

privateprivate classclass StopCallbackStopCallback extendsextends RunnableSessionActionCallback {
@Override
publicpublic void run() {

supersuper.run();

MEDIA ROUTES

1571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=67032
https://android.googlesource.com/platform/development/+/master/samples/Support7Demos/src/com/example/android/supportv7/media/RemotePlayer.java

isPlaying=falsefalse;
isPaused=falsefalse;
getActivity().supportInvalidateOptionsMenu();
logToTranscript(getActivity().getString(R.string.stopped));

}
}

stop() then not only passes the StopCallback to the stop() implementation on
RemotePlaybackClient, but also schedules it as a Runnable to be invoked in 1000
milliseconds, via a call to postDelayed() on the TextView portion of the transcript.

The run() implementation in StopCallback first chains to the superclass, which
calls removeCallback(). This ensures that our Runnable will be invoked at most
once, since onResult() forwards processing to run(). Hence, if onResult() is called
before the timeout, we remove the Runnable, so it is not executed twice. Alas, this
workaround does not presently handle the case where onResult() is called after
the Runnable has run — this will be addressed in the future, hopefully by simply
ripping out this hack, once the underlying bug is fixed.

The run() implementation in StopCallback also updates our flags, refreshes the
action bar, and logs a message to the transcript. The result will look like:

Figure 459: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Stopped

MEDIA ROUTES

1572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This sample also does not handle the case where the media completes playback on
its own, insofar as this event is not detected, to update the action bar. This will be
added in a future version of this sample, if further bugs allow such support to
actually work.

Pausing and Resuming

Similarly, the pause action bar item forwards to a pause() method that calls
pause() on the RemotePlaybackClient:

privateprivate void pause() {
logToTranscript(getActivity().getString(R.string.pause_requested));

PauseCallback pauseCB=newnew PauseCallback();

client.pause(nullnull, pauseCB);
transcript.postDelayed(pauseCB, 1000);

That, in turn, uses PauseCallback:

privateprivate classclass PauseCallbackPauseCallback extendsextends RunnableSessionActionCallback {
@Override
publicpublic void run() {

supersuper.run();

isPaused=truetrue;
getActivity().supportInvalidateOptionsMenu();
logToTranscript(getActivity().getString(R.string.paused));

}
}

This updates the action bar and logs messages to the transcript, similar to the
stop() behavior. It also should successfully pause playback on the remote device.

The play action bar item routes to resume() if playback is paused:

privateprivate void resume() {
logToTranscript(getActivity().getString(R.string.resume_requested));

ResumeCallback resumeCB=newnew ResumeCallback();

client.resume(nullnull, resumeCB);
transcript.postDelayed(resumeCB, 1000);

}

That, in turn, uses ResumeCallback:

MEDIA ROUTES

1573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate classclass ResumeCallbackResumeCallback extendsextends RunnableSessionActionCallback {
@Override
publicpublic void run() {

supersuper.run();

isPaused=falsefalse;
getActivity().supportInvalidateOptionsMenu();
logToTranscript(getActivity().getString(R.string.resumed));

}
}

This too updates the action bar and logs messages to the transcript, in addition to
resuming playback on the remote device.

Disconnecting

A call to disconnect() on PlaybackFragment is triggered from two locations:

• onRouteUnselected() in our MediaRouter.Callback, such as when the user
uses the MediaRouteActionProvider to disconnect from the route

• onDestroy(), as part of general cleanup of the fragment

disconnect() should reverse the work done in connect(), ending our session and
releasing the client:

privateprivate void disconnect() {
isPlaying=falsefalse;
isPaused=falsefalse;

ifif (client != nullnull) {
logToTranscript(getActivity().getString(R.string.session_ending));
EndSessionCallback endCB=newnew EndSessionCallback();

client.endSession(nullnull, endCB);
transcript.postDelayed(endCB, 1000);

}
}

This simply calls the endSession() method on the RemotePlaybackClient,
supplying an EndSessionCallback to be notified (theoretically) of when the session
has been torn down. To be sure we get complete the disconnection, though, we
schedule the EndSessionCallback as seen in the stop(), pause(), and resume()
methods.

MEDIA ROUTES

1574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

EndSessionCallback calls release() on the RemotePlaybackClient, to indicate
that we are done with it, before setting client to null, refreshing the action bar,
and logging something to the transcript:

privateprivate classclass EndSessionCallbackEndSessionCallback extendsextends
RunnableSessionActionCallback {

@Override
publicpublic void run() {

supersuper.run();

client.release();
client=nullnull;
getActivity().supportInvalidateOptionsMenu();
logToTranscript(getActivity().getString(R.string.session_ended));

}
}

Other Remote Playback Features

There are other things that RemotePlaybackClient offers that are not shown in this
sample:

• enqueue() allows you to build up a queue of media to be played back in the
current session. This could be used by an individual or, in principle, by
several people using the same app with a shared session ID. remove()
allows you to remove specific items from the playback queue. These
methods only work if isQueueingSupported() returns true.

• getStatus() will return information about the currently-playing piece of
media, while getSessionStatus() will return information about the overall
session. You can also find out about these changes on the fly by registering
with setStatusCallback().

• seek() allows you to move the playback to a new offset within the media,
for “rewind” and “fast-forward” functionality. The status APIs (above) can
tell you where you are in the playback, so you can determine the
appropriate offset to seek to.

The CWAC-MediaRouter Version

A version of this sample project, using the CWAC-MediaRouter edition of
MediaRouteActionProvider, can be found in the demo-remoteplayback/ directory
of the CWAC-MediaRouter repository.

MEDIA ROUTES

1575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-mediarouter/tree/master/demo-remoteplayback
https://github.com/commonsguy/cwac-mediarouter/tree/master/demo-remoteplayback
https://github.com/commonsguy/cwac-mediarouter/tree/master/demo-remoteplayback

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Supporting External Displays

Android 4.2 inaugurated support for applications to control what appears on an
external or “secondary” display (e.g., TV connected via HDMI), replacing the default
screen mirroring. This is largely handled through a Presentation object, where you
declare the UI that goes onto the external display, in parallel with whatever your
activity might be displaying on the primary screen.

In this chapter, we will review how Android supports these external displays, how
you can find out if an external display is attached, and how you can use
Presentation objects to control what is shown on that external display.

The author would like to thank Mark Allison, whose “Multiple Screens” blog post
series helped to blaze the trail for everyone in this space.

Prerequisites
In addition to the core chapters, you should read the chapter on dialogs and the
chapter on MediaRouter before reading this chapter.

A History of external displays
In this chapter, “external displays” refers to a screen that is temporarily associated
with an Android device, in contrast with a “primary screen” that is where the
Android device normally presents its user interface. So, most Android devices
connected to a television via HDMI would consider the television to be a “external
display”, with the touchscreen of the device itself as the “primary screen”. However, a
Google TV box or OUYA console connected to a television via HDMI would consider
the television to be the “primary screen”, simply because there is no other screen.

1577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.stylingandroid.com/archives/1394
http://blog.stylingandroid.com/archives/1394

Some devices themselves may have multiple screens, such as the Sony Tablet P —
what those devices do with those screens will be up to the device.

Historically, support for external displays was manufacturer-dependent. Early
Android devices had no ability to be displayed on an external display except through
so-called “software projectors” like Jens Riboe’s Droid@Screen. Some Android 2.x
devices had ports that allowed for HDMI or composite connections to a television or
projector. However, control for what would be displayed resided purely in the hands
of the manufacturer. Some manufacturers would display whatever was on the
touchscreen (a.k.a., “mirroring”). Some manufacturers would do that, but only for
select apps, like a built-in video player.

Android 3.0 marked the beginning of Android’s formal support for external displays,
as the Motorola XOOM supported mirroring of the LCD’s display via an micro-
HDMI port. This mirroring was supplied by the core OS, not via device-dependent
means. Any Android 3.0+ device with some sort of HDMI connection (e.g., micro-
HDMI port) should support this same sort of mirroring capability.

However, mirroring was all that was possible. There was no means for an application
to have something on the external display (e.g., a video) and something else on the
primary screen (e.g., playback controls plus IMDB content about the movie being
watched).

Android 4.2 changed that, with the introduction of Presentation.

What is a Presentation?
A Presentation is a container for displaying a UI, in the form of a View hierarchy
(like that of an activity), on an external display.

You can think of a Presentation as being a bit like a Dialog in that regard. Just as a
Dialog shows its UI separate from its associated activity, so does a Presentation. In
fact, as it turns out, Presentation inherits from Dialog.

The biggest difference between a Presentation and an ordinary Dialog, of course, is
where the UI is displayed. A Presentation displays on an external display; a Dialog
displays on the primary screen, overlaying the activity. However, this difference has a
profound implication: the characteristics of the external display, in terms of size and
density, are likely to be different than those of a primary screen.

SUPPORTING EXTERNAL DISPLAYS

1578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gsmarena.com/sony_tablet_p_3g-4139.php
http://droid-at-screen.ribomation.com/

Hence, the resources used by the UI on an external display may be different than the
resources used by the primary screen. As a result, the ContextContext of the PresentationPresentation
is not the ActivityActivity. Rather, it is a separate Context, one whose Resources object
will use the proper resources based upon the external display characteristics.

This seemingly minor bit of bookkeeping has some rippling effects on setting up
your Presentation, as we will see as this chapter unfolds.

Playing with External Displays
To write an app that uses an external display via a Presentation, you will need
Android 4.2 or higher.

Beyond that, though, you will also need an external display of some form. Presently,
you have three major options: emulate it, use a screen connected via some sort of
cable, or use Miracast for wireless external displays.

Emulated

Even without an actual external display, you can lightly test your Presentation-
enabled app via the Developer Options area of Settings on your Android 4.2 device.
There, in the Drawing category, you will see the “Simulate secondary displays”
preference:

SUPPORTING EXTERNAL DISPLAYS

1579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 460: Nexus 10 “Simulate secondary displays” Preference

Tapping that will give you various options for what secondary display to emulate:

SUPPORTING EXTERNAL DISPLAYS

1580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 461: Nexus 10 “Simulate secondary displays” Options

Tapping one of those will give you a small window in the upper-left corner, showing
the contents of the external display, overlaid on top of your regular screen:

SUPPORTING EXTERNAL DISPLAYS

1581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 462: Nexus 10, Simulating a 720p external display

Normally, that will show a mirrored version of the primary screen, but with a
Presentation-enabled app, it will show what is theoretically shown on the real
external display.

However, there are limits with this technology:

• You will see this option on an Android emulator, but it may not work,
particularly if you are not capable of using the “Host GPU Support” option.
At the time of this writing, it works on the x86 Android 4.2 emulator image,
but not the x86 Android 4.3 or 4.4 emulator image, and the ARM emulators
are likely to be far too slow.

• The external display is rather tiny, making it difficult for you to accurately
determine if everything is sized appropriately.

• The external display occludes part of the screen, overlaying your activities,
making it somewhat of a challenge to work with the upper-left corner of
your app.

In practice, before you ship a Presentation-capable app, you will want to test it with
an actual physical external display.

SUPPORTING EXTERNAL DISPLAYS

1582

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HDMI

If you have a device with HDMI-out capability, and you have the appropriate cable,
you can simply plug that cable between your device and the display. “Tuning” the
display to use that specific HDMI input port should cause your device’s screen
contents to be mirrored to that display. Once this is working, you should be able to
control the contents of that display using Presentation.

MHL

Mobile High-Definition Link, or MHL for short, is a relatively new option for
connections to displays. On many modern Android devices, the micro USB port
supports MHL as well. Some external displays have MHL ports, in which case a
male-to-male MHL direct cable will connect the device to the display. Otherwise,
MHL can be converted to HDMI via adapters, so an MHL-capable device can attach
to any HDMI-compliant display.

SlimPort

SlimPort is another take on the overload-the-micro-USB-port-for-video approach.
MHL is used on substantially more devices, but SlimPort appears on several of the
Nexus-series devices (Nexus 4, Nexus 5, and the 2013 generation of the Nexus 7).
Hence, while users will be more likely to have an MHL device, developers may be
somewhat more likely to have a SlimPort device, given the popularity of Nexus
devices among Android app developers.

From the standpoint of your programming work, MHL and SlimPort are largely
equivalent — there is nothing that you need to do with your Presentation to
address either of those protocols, let alone anything else like native HDMI.

Miracast

There are a few wireless display standards available. Android 4.2 supports Miracast,
based upon WiFiDirect. This is also supported by some devices running earlier
versions of Android, such as some Samsung devices (where Miracast is sometimes
referred to as “AllShare Cast”). However, unless and until those devices get upgraded
to Android 4.2, you cannot control what they display, except perhaps through some
manufacturer-specific APIs.

SUPPORTING EXTERNAL DISPLAYS

1583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On a Miracast-capable device, going into Settings > Displays > Wireless display will
give you the ability to toggle on wireless display support and scan for available
displays:

Figure 463: Nexus 4 Wireless Display Settings

You can then elect to attach to one of the available wireless displays and get your
screen mirrored, and later use this with your Presentation-enabled app.

Of course, you also need some sort of Miracast-capable display. As of early 2013,
there were few of these. However, you can also get add-on boxes that connect to
normal displays via HDMI and make them available via Miracast. One such box is
the Netgear PTV3000, whose current firmware supports Miracast along with other
wireless display protocols.

Note that Miracast uses a compressed protocol, to minimize the bandwidth needed
to transmit the video. This, in turn, can cause some lag.

SUPPORTING EXTERNAL DISPLAYS

1584

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.netgear.com/home/products/hometheater/media-players/PTV3000.aspx

Detecting Displays
Of course, we can only present a Presentation on an external display if there is,
indeed, such a screen available. There are two approaches for doing this: using
DisplayManager and using MediaRouter. We examined MediaRouter for detecting
live video routes in a preceding chapter, so let’s focus here on DisplayManager.

DisplayManager is a system service, obtained by calling getSystemService() and
asking for the DISPLAY_SERVICE.

Once you have a DisplayManager, you can ask it to give you a list of all available
displays (getDisplays() with zero arguments) or all available displays in a certain
category (getDisplays() with a single String parameter). As of API Level 17, the
only available display category is DISPLAY_CATEGORY_PRESENTATION. The difference
between the two flavors of getDisplays() is just the sort order:

• The zero-argument getDisplays() returns the Display array in arbitrary
order

• The one-argument getDisplays() will put the Display objects matching the
identified category earlier in the array

These would be useful if you wanted to pop up a list of available displays to ask the
user which Display to use.

You can also register a DisplayManager.DisplayListener with the DisplayManager
via registerDisplayListener(). This listener will be called when displays are added
(e.g., HDMI cable was connected), removed (e.g., HDMI cable was disconnected), or
changed. It is not completely clear what would trigger a “changed” call, though
possibly an orientation-aware display might report back the revised height and
width.

Note that while DisplayManager was added in API Level 17, Display itself has been
around since API Level 1, though some additions have been made in more recent
Android releases. But, this may mean that you can pass the Display object around to
code supporting older devices without needing to constantly check for SDK level or
add the @TargetApi() annotation.

SUPPORTING EXTERNAL DISPLAYS

1585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Simple Presentation
Let’s take a look at a small sample app that demonstrates how we can display
custom content on an external display using a Presentation. The app in question
can be found in the Presentation/Simple sample project.

The Presentation Itself

Since Presentation extends from Dialog, we provide the UI to be displayed on the
external display via a call to setContentView(), much like we would do in an
activity. Here, we just create a WebView widget in Java, point it to some Web page,
and use it:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate classclass SimplePresentationSimplePresentation extendsextends Presentation {

SimplePresentation(Context ctxt, Display display) {
supersuper(ctxt, display);

}

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

WebView wv=newnew WebView(getContext());

wv.loadUrl("http://commonsware.com");

setContentView(wv);
}

}

However, there are two distinctive elements of our implementation:

• Our constructor takes a Context (typically the Activity), along with a
Display object indicating where the UI should be presented.

• Our call to the WebView constructor uses getContext(), instead of the
Activity object. In this case, that may have no real-world effect, as WebView
is not going to be using any of our resources. But, had we used a
LayoutInflater for inflating our UI, we would need to use one created from
getContext(), not from the activity itself.

SUPPORTING EXTERNAL DISPLAYS

1586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Simple

Detecting the Displays

We need to determine whether there is a suitable external display when our activity
comes into the foreground. We also need to determine if an external display was
added or removed while we are in the foreground.

So, in onResume(), if we are on an Android 4.2 or higher device, we will get
connected to the MediaRouter to handle those chores:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
@Override
protectedprotected void onResume() {

supersuper.onResume();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
ifif (cb==nullnull) {

cb=newnew RouteCallback();
router=(MediaRouter)getSystemService(MEDIA_ROUTER_SERVICE);

}

handleRoute(router.getSelectedRoute(MediaRouter.ROUTE_TYPE_LIVE_VIDEO));
router.addCallback(MediaRouter.ROUTE_TYPE_LIVE_VIDEO, cb);

}
}

Specifically, we:

• Create an instance of RouteCallback, an inner class of our activity that
extends SimpleCallback

• Use getSystemService() to obtain a MediaRouter
• Call a handleRoute() method on our activity that will update our UI based

upon the current video route, obtained by calling getSelectedRoute() on
the MediaRouter

• Register the RouteCallback object with the MediaRouter via addCallback()

The RouteCallback object simply overrides
onRoutePresentationDisplayChanged(), which will be called whenever there is a
change in what screens are available and considered to be the preferred modes for
video. There, we just call that same handleRoute() method that we called in
onResume():

@TargetApi(Build.VERSION_CODES.JELLY_BEAN)
privateprivate classclass RouteCallbackRouteCallback extendsextends SimpleCallback {

@Override
publicpublic void onRoutePresentationDisplayChanged(MediaRouter router,

RouteInfo route) {

SUPPORTING EXTERNAL DISPLAYS

1587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

handleRoute(route);
}

}

Hence, our business logic for showing the presentation is isolated in one method,
handleRoute().

Our onPause() method will undo some of the work done by onResume(), notably
removing our RouteCallback. We will examine that more closely in the next section.

Showing and Hiding the Presentation

Our handleRoute() method will be called with one of two parameter values:

• The RouteInfo of the active route we should use for displaying the
Presentation

• null, indicating that there is no route for such content, other than the
primary screen

If we are passed the RouteInfo, it may represent the route we are already using, or
possibly it may represent a different route entirely.

We need to handle all of those cases, even if some (switching directly from one route
to another) may not necessarily be readily testable.

Hence, our handleRoute() method does its best:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void handleRoute(RouteInfo route) {

ifif (route == nullnull) {
clearPreso();

}
elseelse {

Display display=route.getPresentationDisplay();

ifif (route.isEnabled() && display != nullnull) {
ifif (preso == nullnull) {

showPreso(route);
Log.d(getClass().getSimpleName(), "enabled route");

}
elseelse if (preso.getDisplay().getDisplayId() != display.getDisplayId()) {

clearPreso();
showPreso(route);
Log.d(getClass().getSimpleName(), "switched route");

}
elseelse {

// no-op: should already be set

SUPPORTING EXTERNAL DISPLAYS

1588

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}
elseelse {

clearPreso();
Log.d(getClass().getSimpleName(), "disabled route");

}
}

}

There are five possibilities handled by this method:

• If the route is null, then we should no longer be displaying the
Presentation, so we call a clearPreso() method that will handle that

• If the route exists, but is disabled or is not giving us a Display object, we
also assume that we should no longer be displaying the Presentation, so we
call clearPreso()

• If the route exists and seems ready for use, and we are not already showing a
Presentation (our preso data member is null), we need to show the
Presentation, which we delegate to a showPreso() method

• If the route exists, seems ready for use, but we are already showing a
Presentation, and the ID of the new Display is different than the ID of the
Display our Presentation had been using, we use both clearPreso() and
showPreso() to switch our Presentation to the new Display

• If the route exists, seems ready for use, but we are already showing a
Presentation on this Display, we do nothing and wonder why
handleRoute() got called

Showing the Presentation is merely a matter of creating an instance of our
SimplePresentation and calling show() on it, like we would a regular Dialog:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void showPreso(RouteInfo route) {

preso=newnew SimplePresentation(thisthis, route.getPresentationDisplay());
preso.show();

}

Clearing the Presentation calls dismiss() on the Presentation, then sets the preso
data member to null to indicate that we are not showing a Presentation:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void clearPreso() {

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

SUPPORTING EXTERNAL DISPLAYS

1589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Our onPause() uses clearPreso() and removeCallback() to unwind everything:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
@Override
protectedprotected void onPause() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
clearPreso();

ifif (router != nullnull) {
router.removeCallback(cb);

}
}

supersuper.onPause();
}

The Results

If you run this with no external display, you will just see a plain TextView that is the
UI for our primary screen:

Figure 464: Nexus 10, No Emulated Secondary Display, Showing Sample App

If you run this with an external display, the external display will show our WebView:

SUPPORTING EXTERNAL DISPLAYS

1590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 465: Nexus 10, With Emulated Secondary Display, Showing Sample App

A Simpler Presentation
There was a fair bit of code in the previous sample for messing around with
MediaRouter and finding out about changes in the available displays.

To help simplify apps using Presentation, the author of this book maintains a
library, CWAC-Presentation, with various reusable bits of code for managing
Presentations.

One piece of this is PresentationHelper, which isolates all of the display
management logic in a single reusable object. In this section, we will examine how
to use PresentationHelper, then how PresentationHelper itself works, using
DisplayManager under the covers.

Getting a Little Help

Our Presentation/Simpler sample project has the CWAC-Presentation JAR in its
libs/ directory, giving us access to PresentationHelper. Our MainActivity in the

SUPPORTING EXTERNAL DISPLAYS

1591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-presentation
https://github.com/commonsguy/cwac-presentation
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Simpler

sample creates an instance of PresentationHelper in onCreate(), stashing the
object in a data member:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);
helper=newnew PresentationHelper(thisthis, thisthis);

}

The constructor for PresentationHelper takes two parameters:

• a Context object, one that should be valid for the life of the helper, typically
the Activity that creates the helper, and

• a implementation of PresentationHelper.Listener — in this case, the
interface is implemented on MainActivity itself

The activity that creates the helper must forward onPause() and onResume()
lifecycle methods to the equivalent methods on the helper:

@Override
publicpublic void onResume() {

supersuper.onResume();
helper.onResume();

}

@Override
publicpublic void onPause() {

helper.onPause();
supersuper.onPause();

}

The implementer of PresentationHelper.Listener also needs to have showPreso()
and clearPreso() methods, much like the ones from the original Presentation
sample in this chapter. showPreso() will be passed a Display object and should
arrange to display a Presentation on that Display:

@Override
publicpublic void showPreso(Display display) {

preso=newnew SimplerPresentation(thisthis, display);
preso.show();

}

clearPreso() should get rid of any outstanding Presentation. It is passed a boolean
value, which will be true if we simply lost the Display we were using (and so the
activity might want to display the Presentation contents elsewhere, such as in the

SUPPORTING EXTERNAL DISPLAYS

1592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

activity itself), or false if the activity is moving to the background (triggered via
onPause()):

@Override
publicpublic void clearPreso(boolean showInline) {

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

The implementations here are pretty much the same as the ones used in the
previous example. PresentationHelper has handled all of the Display-management
events – our activity can simply focus on showing or hiding the Presentation on
demand.

Help When You Need It

In many respects, the PresentationHelper from the CWAC-Presentation project
works a lot like the logic in the original Presentation sample’s MainActivity,
detecting various states and calling showPreso() and clearPreso() accordingly.
However, PresentationHelper uses a different mechanism for this —
DisplayManager.

The PresentationHelper constructor just stashes the parameters it is passed in data
members:

publicpublic PresentationHelper(Context ctxt, Listener listener) {
thisthis.ctxt=ctxt;
thisthis.listener=listener;

}

onResume() obtains a DisplayManager via getSystemService(), putting it in another
data member. It calls out to a private handlePreso() method to initialize our state,
and tells the DisplayManager to let it know as displays are attached and detached
from the device, by means of registerDisplayListener():

publicpublic void onResume() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {

mgr=
(DisplayManager)ctxt.getSystemService(Context.DISPLAY_SERVICE);

handleRoute();
mgr.registerDisplayListener(thisthis, nullnull);

}
}

SUPPORTING EXTERNAL DISPLAYS

1593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The PresentationHelper itself implements the DisplayListener interface, which
requires three callback methods:

• onDisplayAdded() is called when a new output display is available
• onDisplayChanged() is called when an existing attached display changes its

characteristics
• onDisplayRemoved() is called whenever a previously-attached output display

has been detached

In our case, all three methods route to the same handleRoute() method, to update
our state:

@Override
publicpublic void onDisplayAdded(int displayId) {

handleRoute();
}

@Override
publicpublic void onDisplayChanged(int displayId) {

handleRoute();
}

@Override
publicpublic void onDisplayRemoved(int displayId) {

handleRoute();
}

handleRoute() is where the bulk of the “business logic” of PresentationHelper
resides:

privateprivate void handleRoute() {
ifif (isEnabled()) {

Display[] displays=
mgr.getDisplays(DisplayManager.DISPLAY_CATEGORY_PRESENTATION);

ifif (displays.length == 0) {
ifif (current != nullnull || isFirstRun) {

listener.clearPreso(truetrue);
current=nullnull;

}
}
elseelse {

Display display=displays[0];

ifif (display != nullnull && display.isValid()) {
ifif (current == nullnull) {

listener.showPreso(display);
current=display;

}

SUPPORTING EXTERNAL DISPLAYS

1594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse if (current.getDisplayId() != display.getDisplayId()) {
listener.clearPreso(truetrue);
listener.showPreso(display);
current=display;

}
elseelse {

// no-op: should already be set
}

}
elseelse if (current != nullnull) {

listener.clearPreso(truetrue);
current=nullnull;

}
}

isFirstRun=falsefalse;
}

}

We get the list of attached displays from the DisplayManager by calling
getDisplays(). By passing in DISPLAY_CATEGORY_PRESENTATION, we are asking for
returned array of Display objects to be ordered such that the preferred display for
presentations is the first element.

If the array is empty, and we already had a current Display from before (or if this is
the first time handlePreso() has run), we call clearPreso() to inform the listener
that there is no Display for presentation purposes.

If we do have a valid Display:

• If we were not displaying anything before, we call showPreso() to inform the
listener to start displaying things, plus keep track of the current Display in
a data member

• If we were displaying something before, but now the preferred Display for a
Presentation is different (the ID value of the Display objects differ), we call
clearPreso() and showPreso() to get the listener to switch to the new
Display

• Otherwise, this was a spurious call to handlePreso(), so we do not do
anything of note

If, for whatever reason, the best Display is not valid, we do the same thing as if we
had no Display at all: call clearPreso().

Finally, in onPause(), we call clearPreso() to ensure that we are no longer
attempting to display anything, plus call unregisterDisplayListener() so we are

SUPPORTING EXTERNAL DISPLAYS

1595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

no longer informed about changes to the mix of Display objects that might be
available:

publicpublic void onPause() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {

listener.clearPreso(falsefalse);
current=nullnull;

mgr.unregisterDisplayListener(thisthis);
}

}

Presentations and Configuration Changes
One headache when using Presentation comes from the fact that it is a Dialog,
which is owned by an Activity. If the device undergoes a configuration change, the
activity will be destroyed and recreated by default, forcing you to destroy and
recreate your Dialog. This, in turn, causes flicker on the external display, as the
display briefly reverts to mirroring while this goes on.

Devices that support external displays may be orientation-locked to landscape when
an external display is attached (e.g., an HDMI cable is plugged in). This reduces the
odds of a configuration change considerably, as the #1 configuration change is an
orientation change. However, that is not a guaranteed “feature” of Android external
display support, and there are other configuration changes that could go on (e.g.,
devices gets plugged into a keyboard dock).

You can either just live with the flicker, or use android:configChanges to try to
avoid the destroy/re-create cycle for the configuration change. As was noted back in
the chapter on configuration changes, this is a risky approach, as it requires you to
remember all your resources that might change on the configuration change and
reset them to reflect the configuration change.

A “middle ground” approach is to ensure that your activity running the
Presentation is orientation-locked to landscape mode, by adding
android:orientation="landscape" to your <activity> in the manifest, then use
android:configChanges to handle the configuration changes related to orientation:

• orientation
• keyboardHidden
• screenSize
• screenLayout

SUPPORTING EXTERNAL DISPLAYS

1596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For those configuration changes, nothing should be needed to be modified in your
activity, since you want to be displaying in landscape all of the time, and so you will
not need to modify your use of resources. This leaves open the possibility of other
configuration changes that would cause flicker on the external display, but those are
relatively unlikely to occur while your activity is in the foreground, and so it may not
be worth trying to address the flicker in all those cases.

Presentations as Fragments
Curiously, the support for Presentation is focused on View. There is nothing built
into Android 4.2 that ties a Presentation to a Fragment. However, this can be a
useful technique, one we can roll ourselves… with a bit of difficulty.

The Reuse Reality

There will be a few apps that will only want to deliver content if there is a external
display on which to deliver it. However, the vast majority of apps supporting external
displays will do so optionally, still supporting regular Android devices with only
primary screens.

In this case, though, we have a problem: we need to show that UI somewhere if there
is no external display to show it on. Our only likely answer is to have it be part of our
primary UI.

Fragments would seem to be tailor-made for this. We could “throw” a fragment to
the external display if it exists, or incorporate it into our main UI (e.g., as another
page in a ViewPager) if the external display does not exist, or even have it be shown
by some separate activity on smaller-screen devices like phones. Our business logic
will already have been partitioned between the fragments — it is merely a question
of where the fragment shows up.

Presentations as Dialogs

The nice thing is that Presentation extends Dialog. We already have a
DialogFragment as part of Android that knows how to display a Dialog populated by
a Fragment implementation of onCreateView(). DialogFragment even knows how to
handle either being part of the main UI or as a separate dialog.

SUPPORTING EXTERNAL DISPLAYS

1597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, one could imagine a PresentationFragment that extends DialogFragment
and adds the ability to either be part of the main UI on the primary screen or shown
on an external display, should one be available.

And, in truth, it is possible to create such a PresentationFragment, though there are
some limitations.

The Context Conundrum

The biggest limitation comes back to the Context used for our UI. Normally, there is
only one Context of relevance: the Activity. In the case of Presentation, though,
there is a separate Context that is tied to the display characteristics of the external
display.

This means that PresentationFragment must manipulate two Context values:

• The Activity, if the fragment should be part of our main UI
• Some other Context supplied by the Presentation, if the fragment should

be displayed in the Presentation on the external display

This makes creating a PresentationFragment class a bit tricky… though not
impossible. After all, if it were impossible, these past several paragraphs would not
be very useful.

A PresentationFragment (and Subclasses)

The Presentation/Fragment sample project has the same UI as the Presentation/
Simple project, if there is an external display. If there is only the primary screen,
though, we will elect to display the WebView side-by-side with our TextView in the
main UI of our activity. And, to pull this off, we will create a PresentationFragment
based on DialogFragment.

Note that this sample project has its android:minSdkVersion set to 17, mostly to cut
down on all of the “only do this if we are on API Level 17” checks and @TargetApi()
annotations. Getting this code to work on earlier versions of Android is left as an
exercise for the reader.

In a simple DialogFragment, we might just override onCreateView() to provide the
contents of the dialog. The default implementation of onCreateDialog() would
create an empty Dialog, to be populated with the View returned by onCreateView().

SUPPORTING EXTERNAL DISPLAYS

1598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Fragment

In our PresentationFragment subclass of DialogFragment, though, we need to
override onCreateDialog() to use a Presentation instead of a Dialog… if we have a
Presentation to work with:

packagepackage com.commonsware.android.preso.fragment;

importimport android.app.Dialogandroid.app.Dialog;
importimport android.app.DialogFragmentandroid.app.DialogFragment;
importimport android.app.Presentationandroid.app.Presentation;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;

abstractabstract publicpublic classclass PresentationFragmentPresentationFragment extendsextends DialogFragment {
privateprivate Display display=nullnull;
privateprivate Presentation preso=nullnull;

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

ifif (preso == nullnull) {
returnreturn(supersuper.onCreateDialog(savedInstanceState));

}

returnreturn(preso);
}

publicpublic void setDisplay(Context ctxt, Display display) {
ifif (display == nullnull) {

preso=nullnull;
}
elseelse {

preso=newnew Presentation(ctxt, display, getTheme());
}

thisthis.display=display;
}

publicpublic Display getDisplay() {
returnreturn(display);

}

protectedprotected Context getContext() {
ifif (preso != nullnull) {

returnreturn(preso.getContext());
}

returnreturn(getActivity());
}

}

We also expose getDisplay() and setDisplay() accessors, to supply the Display
object to be used if this fragment will be thrown onto an external display.

SUPPORTING EXTERNAL DISPLAYS

1599

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setDisplay() also creates the Presentation object wrapped around the display,
using the three-parameter Presentation constructor that supplies the theme to be
used (in this case, using the getTheme() method, which a subclass could override if
desired).

PresentationFragment also implements a getContext() method. If this fragment
will be used with a Display and Presentation, this will return the Context from the
Presentation. If not, it returns the Activity associated with this Fragment.

This project contains a WebPresentationFragment, that pours the same basic
Android source code used elsewhere in this book for a WebViewFragment into a
subclass of PresentationFragment:

packagepackage com.commonsware.android.preso.fragment;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewandroid.webkit.WebView;

publicpublic classclass WebPresentationFragmentWebPresentationFragment extendsextends PresentationFragment {
privateprivate WebView mWebView;
privateprivate boolean mIsWebViewAvailable;

/**
* Called to instantiate the view. Creates and returns the
* WebView.
*/

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

ifif (mWebView != nullnull) {
mWebView.destroy();

}

mWebView=newnew WebView(getContext());
mIsWebViewAvailable=truetrue;
returnreturn mWebView;

}

/**
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
*/

@TargetApi(11)
@Override

SUPPORTING EXTERNAL DISPLAYS

1600

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onPause() {
supersuper.onPause();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();

}
}

/**
* Called when the fragment is no longer resumed. Pauses
* the WebView.
*/

@TargetApi(11)
@Override
publicpublic void onResume() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();

}

supersuper.onResume();
}

/**
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/

@Override
publicpublic void onDestroyView() {

mIsWebViewAvailable=falsefalse;
supersuper.onDestroyView();

}

/**
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/

@Override
publicpublic void onDestroy() {

ifif (mWebView != nullnull) {
mWebView.destroy();
mWebView=nullnull;

}
supersuper.onDestroy();

}

/**
* Gets the WebView.
*/

publicpublic WebView getWebView() {
returnreturn mIsWebViewAvailable ? mWebView : nullnull;

}
}

SUPPORTING EXTERNAL DISPLAYS

1601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(and, as noted in Tutorial #9, where WebViewFragment was introduced, the flawed
comments came from the original Android open source code from which this
fragment was derived)

The only significant difference, besides the superclass, is that the onCreateView()
method uses getContext(), not getActivity(), as the Context to use when creating
the WebView.

And, the project has a SamplePresentationFragment subclass of
WebPresentationFragment, where we use the factory-method-and-arguments
pattern to pass a URL into the fragment to use for populating the WebView:

packagepackage com.commonsware.android.preso.fragment;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass SamplePresentationFragmentSamplePresentationFragment extendsextends WebPresentationFragment {
privateprivate staticstatic finalfinal String ARG_URL="url";

publicpublic staticstatic SamplePresentationFragment newInstance(Context ctxt,
Display display,
String url) {

SamplePresentationFragment frag=newnew SamplePresentationFragment();

frag.setDisplay(ctxt, display);

Bundle b=newnew Bundle();

b.putString(ARG_URL, url);
frag.setArguments(b);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

getWebView().loadUrl(getArguments().getString(ARG_URL));

returnreturn(result);

SUPPORTING EXTERNAL DISPLAYS

1602

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Using PresentationFragment

Our activity’s layout now contains not only a TextView, but also a FrameLayout into
which we will slot the PresentationFragment if there is no external display:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
tools:context=".MainActivity">>

<TextView<TextView
android:id="@+id/prose"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_weight="1"
android:gravity="center"
android:text="@string/secondary"
android:textSize="40sp"/>/>

<FrameLayout<FrameLayout
android:id="@+id/preso"
android:layout_width="0px"
android:layout_height="match_parent"
android:layout_weight="1"
android:visibility="gone"/>/>

</LinearLayout></LinearLayout>

Note that the FrameLayout is initially set to have gone as its visibility, meaning
that only the TextView will appear. Based on the widths and weights, the TextView
will take up the full screen when the FrameLayout is gone, or they will split the
screen in half otherwise.

In the onCreate() implementation of our activity (MainActivity), we inflate that
layout and grab both the TextView and the FrameLayout, putting them into data
members:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

SUPPORTING EXTERNAL DISPLAYS

1603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

inline=findViewById(R.id.preso);
prose=(TextView)findViewById(R.id.prose);

}

Our onResume() method, and our RouteCallback, are identical to those from the
previous sample. Our handleRoute() method is nearly identical to the original, as is
our onPause() method. The difference is that we need to distinguish whether we
have lost an external display (and therefore want to move the Web page into the
main UI) or if we are going away entirely (and therefore just wish to clean up the
external display, if any). Hence, clearPreso() takes a boolean parameter
(switchToInline), true if we want to show the fragment in the main UI, false
otherwise. And, our onPause() and handleRoute() methods pass the appropriate
value to clearPreso():

@Override
protectedprotected void onPause() {

clearPreso(falsefalse);

ifif (router != nullnull) {
router.removeCallback(cb);

}

supersuper.onPause();
}

privateprivate void handleRoute(RouteInfo route) {
ifif (route == nullnull) {

clearPreso(truetrue);
}
elseelse {

Display display=route.getPresentationDisplay();

ifif (route.isEnabled() && display != nullnull) {
ifif (preso == nullnull) {

showPreso(route);
Log.d(getClass().getSimpleName(), "enabled route");

}
elseelse if (preso.getDisplay().getDisplayId() != display.getDisplayId()) {

clearPreso(truetrue);
showPreso(route);
Log.d(getClass().getSimpleName(), "switched route");

}
elseelse {

// no-op: should already be set
}

}
elseelse {

clearPreso(truetrue);
Log.d(getClass().getSimpleName(), "disabled route");

}

SUPPORTING EXTERNAL DISPLAYS

1604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

showPreso() is called when we want to display the Presentation on the external
display. Hence, we need to remove the WebPresentationFragment from the main UI
if it is there:

privateprivate void showPreso(RouteInfo route) {
ifif (inline.getVisibility() == View.VISIBLE) {

inline.setVisibility(View.GONE);
prose.setText(R.string.secondary);

Fragment f=getFragmentManager().findFragmentById(R.id.preso);

getFragmentManager().beginTransaction().remove(f).commit();
}

preso=buildPreso(route.getPresentationDisplay());
preso.show(getFragmentManager(), "preso");

}

Creating the actual PresentationFragment is delegated to a buildPreso() method,
which employs the newInstance() method on the SamplePresentationFragment:

privateprivate PresentationFragment buildPreso(Display display) {
returnreturn(SamplePresentationFragment.newInstance(thisthis, display,

"http://commonsware.com"));
}

clearPreso() is responsible for adding the PresentationFragment to the main UI, if
switchToInline is true:

privateprivate void clearPreso(boolean switchToInline) {
ifif (switchToInline) {

inline.setVisibility(View.VISIBLE);
prose.setText(R.string.primary);
getFragmentManager().beginTransaction()

.add(R.id.preso, buildPreso(nullnull)).commit();
}

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

With an external display, the results are visually identical to the original sample.
Without an external display, though, our UI is presented side-by-side:

SUPPORTING EXTERNAL DISPLAYS

1605

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 466: Nexus 10, With Inline PresentationFragment

Limits

This implementation of PresentationFragment has its limitations, though.

First, we cannot reuse the same fragment instance for both the inline UI and the
Presentation UI, as they use different Context objects. Hence, production code will
need to arrange to get data out of the old fragment instance and into the new
instance when the screen mix changes. You might be able to leverage
onSaveInstanceState() for that purpose, with a more-sophisticated
implementation of PresentationFragment.

Also, depending upon the device and the external display, you may see multiple calls
to handleRoute(). For example, attaching a external display may trigger three calls
to your RouteCallback, for an attach, a detach, and another attach event. It is
unclear why this occurs. However, it may require some additional logic in your app
to deal with these events, if you encounter them.

SUPPORTING EXTERNAL DISPLAYS

1606

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another Sample Project: Slides
At the 2013 Samsung Developer Conference, the author of this book delivered a
presentation on using Presentation. Rather than use a traditional presentation
package driven from a notebook, the author used the Presentation/Slides sample
app. This sample app shows how to show slides on a external display, controlled by a
ViewPager on a device’s touchscreen.

What the audience saw, through most of the presentation, were simple slides. What
the presenter saw was a ViewPager, with tabs, along with action bar items for
various actions:

Figure 467: PresentationSlidesDemo, Showing Overflow

The Slides

The slides themselves are a series of 20 drawable resources (img0, img1, etc.), put
into the res/drawable-nodpi/ resource directory, as there is no intrinsic “density”
that the slides were prepared for. As we use the slides in ImageView widgets, their
images will be resized to fit the available ImageView space alone, not taking screen
density into account.

SUPPORTING EXTERNAL DISPLAYS

1607

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.slideshare.net/commonsguy/secondary-screen-support-with-displaymanager
http://www.slideshare.net/commonsguy/secondary-screen-support-with-displaymanager
http://www.slideshare.net/commonsguy/secondary-screen-support-with-displaymanager
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides

There is a matching set of 20 string resources (title0, title1, etc.) containing a
string representation of the slide titles, for use with getPageTitle() of a
PagerAdapter.

The PagerAdapter

That PagerAdapter, named SlidesAdapter, has each slide be visually represented by
an ImageView widget. In this case, SlidesAdapter extends PagerAdapter directly,
skipping fragments:

packagepackage com.commonsware.android.preso.slides;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;

classclass SlidesAdapterSlidesAdapter extendsextends PagerAdapter {
privateprivate staticstatic finalfinal int[] SLIDES= { R.drawable.img0,

R.drawable.img1, R.drawable.img2, R.drawable.img3,
R.drawable.img4, R.drawable.img5, R.drawable.img6,
R.drawable.img7, R.drawable.img8, R.drawable.img9,
R.drawable.img10, R.drawable.img11, R.drawable.img12,
R.drawable.img13, R.drawable.img14, R.drawable.img15,
R.drawable.img16, R.drawable.img17, R.drawable.img18,
R.drawable.img19 };

privateprivate staticstatic finalfinal int[] TITLES= { R.string.title0,
R.string.title1, R.string.title2, R.string.title3,
R.string.title4, R.string.title5, R.string.title6,
R.string.title7, R.string.title8, R.string.title9,
R.string.title10, R.string.title11, R.string.title12,
R.string.title13, R.string.title14, R.string.title15,
R.string.title16, R.string.title17, R.string.title18,
R.string.title19 };

privateprivate Context ctxt=nullnull;

SlidesAdapter(Context ctxt) {
thisthis.ctxt=ctxt;

}

@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

ImageView page=newnew ImageView(ctxt);

page.setImageResource(getPageResource(position));
container.addView(page,

newnew ViewGroup.LayoutParams(

ViewGroup.LayoutParams.MATCH_PARENT,

SUPPORTING EXTERNAL DISPLAYS

1608

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ViewGroup.LayoutParams.MATCH_PARENT));

returnreturn(page);
}

@Override
publicpublic void destroyItem(ViewGroup container, int position,

Object object) {
container.removeView((View)object);

}

@Override
publicpublic int getCount() {

returnreturn(SLIDES.length);
}

@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn(view == object);
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(TITLES[position]));
}

int getPageResource(int position) {
returnreturn(SLIDES[position]);

}
}

The data for the SlidesAdapter consists of a pair of static int arrays, one holding
the drawable resource IDs, one holding the string resource IDs.

Of note, SlidesAdapter has a getPageResource() method, to return the drawable
resource ID for a given page position, which is used by instantiateItem() for
populating the position’s ImageView.

The PresentationFragment

We also want to be able to show the slide on a external display via a Presentation.
As with the preceding sample app, this one uses a PresentationFragment, here
named SlidePresentationFragment:

packagepackage com.commonsware.android.preso.slides;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;

SUPPORTING EXTERNAL DISPLAYS

1609

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.commonsware.cwac.preso.PresentationFragmentcom.commonsware.cwac.preso.PresentationFragment;

publicpublic classclass SlidePresentationFragmentSlidePresentationFragment extendsextends PresentationFragment {
privateprivate staticstatic finalfinal String KEY_RESOURCE="r";
privateprivate ImageView slide=nullnull;

publicpublic staticstatic SlidePresentationFragment newInstance(Context ctxt,
Display display,
int initialResource) {

SlidePresentationFragment frag=newnew SlidePresentationFragment();

frag.setDisplay(ctxt, display);

Bundle b=newnew Bundle();

b.putInt(KEY_RESOURCE, initialResource);
frag.setArguments(b);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

slide=newnew ImageView(getContext());

setSlideContent(getArguments().getInt(KEY_RESOURCE));

returnreturn(slide);
}

void setSlideContent(int resourceId) {
slide.setImageResource(resourceId);

}
}

Here, in addition to the sort of logic seen in the preceding sample app, we also need
to teach the fragment which image it should be showing at any point in time. We do
this in two ways:

1. We pass in an int named initialResource to the factory method, where
initialResource represents the image to show when the fragment is first
displayed. That value is packaged into the arguments Bundle, and
onCreateView() uses that value.

SUPPORTING EXTERNAL DISPLAYS

1610

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Actually putting the drawable resource into the ImageView for this
Presentation is handled by setSlideContent(). This is called by
onCreateView(), passing in the initialResource value.

The Activity

The rest of the business logic for this application can be found in its overall entry
point, MainActivity.

Setting Up the Pager

onCreate() of MainActivity is mostly focused on setting up the ViewPager:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

pager=(ViewPager)findViewById(R.id.pager);
adapter=newnew SlidesAdapter(thisthis);
pager.setAdapter(adapter);
tabs.setViewPager(pager);
tabs.setOnPageChangeListener(thisthis);

helper=newnew PresentationHelper(thisthis, thisthis);
}

The ViewPager and our SampleAdapter are saved in data members of the activity, for
later reference. We also wire in a TabPageIndicator, from the ViewPagerIndicator
library, and arrange to get control in our OnPageChangeListener methods when the
page changes (whether via the tabs or via a swipe on the ViewPager itself).

onCreate() also hooks up a PresentationHelper, following the recipe used
elsewhere in this chapter. And, as PresentationHelper requires, we forward along
the onResume() and onPause() events to it:

@Override
publicpublic void onResume() {

supersuper.onResume();
helper.onResume();

}

@Override
publicpublic void onPause() {

SUPPORTING EXTERNAL DISPLAYS

1611

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

helper.onPause();
supersuper.onPause();

}

Setting Up the Presentation

In the showPreso() method, required by the PresentationHelper.Listener
interface, we create an instance of SlidePresentationFragment, passing in the
resource ID of the current slide, as determined by the ViewPager:

@Override
publicpublic void showPreso(Display display) {

int drawable=adapter.getPageResource(pager.getCurrentItem());

preso=
SlidePresentationFragment.newInstance(thisthis, display, drawable);

preso.show(getFragmentManager(), "preso");
}

We then show() the PresentationFragment, causing it to appear on the attached
Display.

The corresponding clearPreso() method follows the typical recipe of calling
dismiss() on the PresentationFragment, if one exists:

@Override
publicpublic void clearPreso(boolean showInline) {

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

Controlling the Presentation

However, the SlidesPresentationFragment now is showing the slide that was
current when the Display was discovered or attached. What happens if the user
changes the slide, using the ViewPager?

In that case, our OnPageChangeListener onPageSelected() method will be called,
and we can update the SlidesPresentationFragment to show the new slide:

@Override
publicpublic void onPageSelected(int position) {

ifif (preso != nullnull) {
preso.setSlideContent(adapter.getPageResource(position));

SUPPORTING EXTERNAL DISPLAYS

1612

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Offering an Action Bar

The activity also sets up the action bar with three items:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/first"
android:icon="@android:drawable/ic_media_previous"
android:showAsAction="always"
android:title="@string/first">>

</item></item>
<item<item

android:id="@+id/last"
android:icon="@android:drawable/ic_media_next"
android:showAsAction="always"
android:title="@string/last">>

</item></item>
<item<item
android:id="@+id/present"
android:checkable="true"
android:checked="true"
android:showAsAction="never"
android:title="@string/show_presentation">>

</item></item>

</menu></menu>

Two, first and last, simply set the ViewPager position to be the first or last slide,
respectively. This will also update the SlidesPresentationFragment, as
onPageSelected() is called when we call setCurrentItem() on the ViewPager.

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.present:

boolean original=item.isChecked();

item.setChecked(!original);

SUPPORTING EXTERNAL DISPLAYS

1613

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (original) {
helper.disable();

}
elseelse {

helper.enable();
}

breakbreak;

casecase R.id.first:
pager.setCurrentItem(0);
breakbreak;

casecase R.id.last:
pager.setCurrentItem(adapter.getCount() - 1);
breakbreak;

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

The other action bar item, present, is a checkable action bar item, initially set to be
checked. This item controls what we are showing on the external display:

• If it is checked, we want to show our Presentation
• If it is unchecked, we want to revert to default mirroring

The theory here is that, in a presentation, we could switch from showing the slides
to showing the audience what the presenter has been seeing all along.

Switching between Presentation and default mirroring is a matter of calling
enable() (to show a Presentation) or disable() (to revert to mirroring) on the
PresentationHelper.

Device Support for Presentation
Alas, there is a problem: not all Android 4.2 devices support Presentation, even
though they support displaying content on external displays. Non-Presentation
devices simply support classic mirroring.

Generally speaking, it appears that devices that shipped with Android 4.2 and higher
will support Presentation, assuming that they have some sort of external display
support (e.g., MHL). Devices that were upgraded to Android 4.2 are less likely to
support Presentation.

SUPPORTING EXTERNAL DISPLAYS

1614

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, at the present time, there is no known way to detect whether or not
Presentation will work, let alone any means of filtering on this capability in the
Play Store via <uses-feature>. With luck, this issue will be addressed in the future.

Hey, What About Chromecast?
In February 2014, Google released a long-awaited SDK to allow anyone to write an
app that connects to Chromecast, Google’s streaming-media HDMI stick. A natural
question coming out of that is whether Presentation and DisplayManager work
with Chromecast.

The answer is: not presently.

While Chromecast may physically resemble a wireless display adapter, in truth it is
its own device, running a customized mashup of Android and ChromeOS.
Chromecast’s strength is in playing streaming media from any source, primarily
directly off of the Internet. The expectation with the Chromecast SDK is that apps
are telling the Chromecast what to stream from, not streaming to the Chromecast
itself. As such, the API for Chromecast is distinctly different from that of
Presentation, and while the two both deal with what the Android device would
consider an external display, they are not equivalent solutions.

More coverage of Chromecast can be found in the next chapter.

SUPPORTING EXTERNAL DISPLAYS

1615

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=54505
http://www.google.com/intl/en-US/chrome/devices/chromecast/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Cast and Chromecast

A popular target for MediaRouter, in some countries, is Chromecast, Google’s
lightweight streaming media player for televisions and other HDMI displays.
Originally, Chromecast was a “closed box”, with no official support for third-party
apps (and active work to block unofficial support). In early 2014, though, Google
finally opened up Chromecast to developers.

This chapter covers what it takes to enable an Android app to “cast” content to a
Chromecast, possibly as part of a broader external display strategy.

Prerequisites
In addition to the core chapters, you should read the chapter on MediaRouter
before reading this chapter.

Here a Cast, There a Cast
You will see two terms used in this chapter and in the online literature regarding all
of this: Chromecast and “Google Cast”. Despite the similarities in their names, these
are fairly distinct items.

What is Chromecast?

Chromecast, as noted earlier in this chapter, is a streaming media receiver, sold by
Google under their own brand.

1617

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 468: Google Chromecast

It plugs into an HDMI port of a television or similar display, plus uses micro USB
for supplying power.

However, rather than other streaming media receivers, that use Bluetooth or IR
(infrared) peripherals for controlling the playback, Chromecast appears to use
WiFi, designed to be controlled by a smartphone, tablet, or Chrome Web browser.

Chromecast itself runs its own OS, apparently a hybrid of Android and ChromeOS.

What is Google Cast?

Google Cast can be thought of as a control protocol for Google Cast-enabled
receivers. Through a Google-supplied SDK (or other means), Google Cast client
apps (“senders”) can direct a Google Cast-enabled receiver to play, pause, rewind,
fast-forward, etc. a stream.

Google Cast could, in theory, be “baked into” displays (such as a television), in
addition to being supported by dedicated media receivers like the Chromecast.

GOOGLE CAST AND CHROMECAST

1618

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Cast does assume that, in general, the media receiver runs its own OS and is
capable of playing streaming media without ongoing assistance from the Google
Cast client. Hence, the client is not “locked into” having to keep feeding content to
the Google Cast client, allowing the user to go off and do other things with that
client while playback is going on.

Common Chromecast Development Notes
Chromecast goes to sleep if it detects that it is plugged into a television or monitor
that is turned off (or perhaps even not accepting input from the HDMI port the
Chromecast is using). While it is in this sleep mode, it may not appear as an
available route. You may need to keep the display active to allow Chromecast to
work properly. A 720p-capable pico projector, such as the Vivitek Qumi series, can
be a handy way to have a test display for Chromecast (or for live video media
routes) at your development station, without the bulk of another monitor, if you
have a handy surface to project upon.

Also, note that a Chromecast “uses Google’s DNS regardless of what you have
defined locally”, according to a Google engineer. That will preclude you from using
any local domains on an organization’s own DNS server, without some tricky
firewall configuration to route Google DNS requests to the in-house DNS server.
Similarly, you cannot use machine names as pseudo-domain names, the way you
might be able to using a regular Web browser.

Your API Choices
Chromecast offers up remote playback media routes and works with
RemotePlaybackClient, as is discussed in the chapter on MediaRouter. The sample
app for RemotePlaybackClient was tested on a Chromecast.

If you want greater control than is offered via RemotePlaybackClient, though, you
can use the Cast SDK. This SDK is part of the Play Services framework, not part of
Android itself. It also works solely with Google Cast devices, of which Chromecast
is the only known example, whereas other sorts of devices are able to publish
remote playback media routes. Hence, using the Cast SDK will tie you to Google
Cast — and some of its restrictions, both technical and legal — but will give you
greater developer control over the behavior of both the Google Cast device and
your app.

GOOGLE CAST AND CHROMECAST

1619

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.amazon.com/Vivitek-Qumi-Q2-LITE-3D-Ready-Projector/dp/B009LG0OS2
https://stackoverflow.com/questions/22513868/how-can-i-find-out-what-launch-error-means-in-chromecast/22536319#22536319
https://developers.google.com/cast/

This chapter will focus on the Cast SDK. See the chapter on MediaRouter for
coverage of RemotePlaybackClient.

Senders and Receivers
There are three major components to the Google Cast environment:

• The sources of streaming media, usually out on the Internet
• The software on the playback device that plays that streaming media

(“receiver”)
• The software on the control device (phone, tablet, Chrome Web browser)

that directs the receiver about what to play and when (“sender”)

The Sender App

The sender app is responsible for allowing the user to choose some media to play,
then to control the actual playback (pause, start, stop, rewind, fast-forward, etc.).

The details of how to choose some media will depend heavily on the nature of the
sender app. For example, a subscription-based streaming video service, such as
Netflix, would allow the user to browse and search eligible content hosted by
Netflix itself. Netflix presumably has its own Web service APIs that its own sender
app would use for this purpose, and it is up to Netflix to offer a sensible UI for
choosing a piece of media to watch.

Passing a reference (e.g., URL) to the receiver, and issuing control commands, will
either be handled by RemotePlaybackClient (on Android) or via a Google-supplied
SDK (for Android, iOS, or Chrome Web apps).

The Receiver

The details of how a receiver is implemented is up to the manufacturer of the
Google Cast-enabled device. In the case of Chromecast, it is a version of the
Chrome Web browser. In principle, the implementation could be anything; in
practice, it is likely that the same basic software stack will be used, courtesy of
licensing Google Cast technology from Google for streaming media devices.

Official Google Cast receiver software comes in three flavors: default, styled, and
custom.

GOOGLE CAST AND CHROMECAST

1620

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Default Receiver

The default receiver is what you get by default, as you might have guessed. If you do
nothing else, your sender will be communicating with the default receiver. In effect,
the default receiver is a specific Chrome Web app, running on the Chrome browser
inside of the Chromecast, that is responsible for playback of your chosen media.

Other than providing the URLs to the media, plus requests to pause, start, stop, etc.
the playback, you have no control over the default receiver, particularly from a look-
and-feel standpoint.

Styled Receiver

A styled receiver is one where you, the developer, supply light branding information
that is applied to what otherwise is the default receiver, such as a logo.

Whereas using the default receiver requires no explicit registration with Google,
using the styled receiver does require you to register your sender app with Google,
at which point you will be able to provide a URL pointing to a CSS file that contains
the custom styles.

Custom Receiver

If you would rather replace the default receiver functionality with your own, either
to offer more functionality, or to consume media types that may require additional
configuration (e.g., DRM), you can create a custom receiver. This, in effect, is a
Chrome Web app, where you provide not only CSS, but the HTML and JavaScript as
well. This is substantially more complicated, and it requires registration with
Google (as with the styled receiver). However, you have far greater control over
what appears on the television.

Supported Media Types
The list of supported media types is likely to change over time. At present, Google
Cast-enabled devices are supposed to support major media types, such as:

• MP4 and VP8 for video
• MP3, AAC, and Ogg Vorbis for audio
• PNG, JPEG, GIF, BMP, and WEBP for still images (e.g., photos)
• HLS and MPEG-DASH for streaming

GOOGLE CAST AND CHROMECAST

1621

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/cast/docs/media

Cast SDK Dependencies
Using the Cast SDK to develop for Google Cast devices has a fair number of
dependencies… and not just dependencies on particular libraries.

Developer Registration

If you are going to be using the default receiver, and you do not need to have
debugging access to the device (e.g., to examine JavaScript logs from the Web
rendering engine on the Google Cast device), you are welcome to develop your apps
independently.

However, if you will use a styled or custom receiver, or you wish to gain debugging
access to the device, you will need to register with Google.

This process will involve you agreeing to some terms of service (see below), along
with paying a $5 registration fee.

The Terms of Service

The Google Cast SDK has separate Developer Terms of Service from anything else.
If you are going to use the Google Cast SDK, you will be expected to agree to these
terms as part of the registration processes. You are strongly encouraged to review
these terms with qualified legal counsel. Failure to comply with the terms may
cause your app (or, more accurately, your styled or custom receivers) to “be de-
registered”, presumably meaning that it will no longer work.

These terms contain some curious clauses, worth discussing with your attorney,
including a requirement to adhere to a massive design checklist, controlling the
look-and-feel of your sender and receiver. This includes a specific requirement for
the precise icon to be used for initiating communications with the Google Cast
receiver. Those agreeing to these terms are also barred from doing things that
might allow others to display content on a Google Cast receiver without using the
SDK or breaking through any access controls on the Google Cast device (e.g.,
creating an exploit that roots it).

GOOGLE CAST AND CHROMECAST

1622

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/cast/docs/registration
https://developers.google.com/cast/docs/terms
https://developers.google.com/cast/docs/design_checklist

Device Registration and Development Setup

While registering your device is optional, it may be handy for custom receivers, so
that you can debug your custom HTML and JavaScript that is being rendered by the
Google Cast device.

First, you should configure your device to publish its serial number to Google when
it checks for Google Cast software updates. For the Chromecast, this involves using
whatever means you used to configure the Chromecast in the first place for your
network (e.g., the Chromecast Android app). There should be an option for “Send
this Chromecast’s serial number when checking for updates” — in the Chromecast
Android app, this will be in the “Share Data” section of the device’s settings screen.

Once you have registered as a Cast SDK developer, the Google Cast SDK Developer
Console will have an option for you to “Add New Device”. You will need the Google
Cast device’s serial number — in the case of the Chromecast, this is etched on the
underside of the device.

Note that it may take some time before your device registration will be complete, as
the device will not find out about the registration until it checks for another
update, and there does not appear to be a way to trigger this. Hence, you may need
to wait a few hours. You will know that you have access once you can successfully
connect, via a Web browser, to port 9222 on the IP address of the Google Cast
device. For the Chromecast, the easiest way to get that IP address is through your
Chromecast configuration tool (e.g., the Chromecast Android app). Note that the
Web page may not be much (e.g., “Inspectable WebContents”), but it will not
return a 404 or similar error code.

If you wish to use a styled or custom receiver, you will also need to register your
application, in the same Cast SDK Console area. This will be covered in a future
edition of this book.

The Official Libraries

You will need the Google Play Services SDK, which you may have used already for
other portions of the Play Services framework, such as GCM, Maps V2, and so on.

You will also need the same mediarouter Android library project covered in the
chapter on MediaRouter, along with its dependencies (e.g., the support-v4 library
and the appcompat library).

GOOGLE CAST AND CHROMECAST

1623

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://cast.google.com/publish
https://cast.google.com/publish

The CastCompanionLibrary… Or Not

The Play Services SDK (and its dependencies) is all that you need to write Cast SDK
applications. However, Google has also published the Cast Companion Library
(CCL), containing a lot of helper code to make it a bit easier for you to write apps
that adhere to the design checklist

Developing Google Cast Apps
Coverage of the Cast SDK, including sample apps, will be added to this chapter in a
future edition of this book.

GOOGLE CAST AND CHROMECAST

1624

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/googlecast/CastCompanionLibrary-android
https://github.com/googlecast/CastCompanionLibrary-android
https://developers.google.com/cast/docs/design_checklist

SSL

The traditional approach to securing HTTP operations is by means of SSL. Android
supports SSL, much as ordinary Java does. Most of the time, you can just allow
Android to do its thing with respect to SSL, and you will be fine. However, there may
be times when you have to play a more direct role in SSL communications, to handle
arbitrary SSL-encrypted endpoints, or to help ensure that your app is not the victim
of a man-in-the-middle attack.

This chapter will explore various SSL scenarios and how to address them.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on Internet access.

Basic SSL Operation
Generally speaking, SSL “just works”, for ordinary sites with ordinary certificates.

If you use an https: URL with HttpUrlConnection, HttpClient, or WebView, SSL
handshaking will happen automatically, and assuming the certificates check out OK,
you will get your result, just as if you had requested an http: URL.

However, DownloadManager only recently added support for SSL. Originally,
requesting a download via DownloadManager with an https: scheme would result in
java.lang.IllegalArgumentException: Can only download HTTP URIs. As of
Android 4.0, SSL is supported. Hence, you need to be careful about making SSL

1625

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

requests via DownloadManager to ensure that you are only doing that on a relatively
recent version of Android.

For example, the Retrofit and Picasso sample apps from the chapter on Internet
access both use https://api.stackexchange.com for their service endpoint. As a
result, those requests — for the API JSON, at least — will go over SSL. You would
need to log the URLs used for the image avatars to see whether StackExchange
gives you https URLs or not.

Certificate Verification
The first challenge comes in verifying the SSL certificate.

You can roughly divide SSL certificates into three types:

• Those issued by a certificate authority (CA) that is recognized by Android
(e.g., VeriSign) or was issued by a downstream CA whose upstream CA is one
recognized by Android

• Those issued by a CA that is not recognized by Android
• Self-signed certificates, whether used temporarily (e.g., during development)

or in production

Android can only transparently handle the first set, where the root CA for the
certificate is one recognized by Android. And, for better and for worse, the roster of
CAs recognized by Android varies between OS versions, as Google updates the OS
cacerts roster.

If you encounter an SSL certificate that cannot be verified by Android, you will get a
javax.net.ssl.SSLException: Not trusted server certificate exception from
HttpUrlConnection and HttpClient, and you will need to decide for yourself how to
handle that.

Custom TrustManager

The right solution is to build your own TrustManager that implements your business
policies.

For example, if you want to validate a self-signed SSL certificate, you can implement
a TrustManager that does so, by having a custom TrustStore. A TrustStore is a set
of certificates (from a CA or self-signed) that a TrustManager can validate against.

SSL

1626

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Nikolay Elenkov has an excellent writeup and sample code of implementing such a
TrustStore. He also demonstrates how to have a composite TrustManager, one that
uses the system’s TrustManager and your own (e.g., configured with your custom
TrustStore), so certificates that are validated by either TrustManager are considered
to be valid.

If you are trying to use this technique to validate certificates from a CA that is not
recognized by Android, you may need to use Mr. Elenkov’s technique with multiple
certificates, representing the upstream chain to the root CA.

Wildcard Certificates

Some certificates are difficult to validate, because they use wildcards.

For example, Amazon S3 is a file storage and serving “cloud” solution from
Amazon.com. They allow you to define “buckets” containing “objects”, where each
object then has its own URL. That URL is based on the name of the bucket and the
name of the object. One option is for you to have the domain name of the URL be
based on the name of the bucket, leaving the path to be solely the name of the
object. This works, even with SSL, but Amazon needed to use a “wildcard SSL
certificate”, one that matches *.s3.amazonaws.com, not just a single domain name.
By default, this will fail on Android, as Android’s stock TrustManager will not
validate wildcards for multiple domain name segments (e.g.,
http://misc.commonsware.com.s3.amazonaws.com/foo.txt). You will get an
exception akin to:

javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException:
No subject alternative DNS name matching misc.commonsware.com.s3.amazonaws.com
found

However, you could write a WildcardTrustManager or some such that relies on the
system TrustManager to validate the rest of the certificate, while you validate the
domain name matches the expected value. The OpenDJ project has a series of
available TrustManager implementations, including one that supports wildcards.

Anti-Pattern: Disabling SSL Certificate Validation

You will find various blog posts, StackOverflow answers, and the like that suggest
that you simply disable SSL certificate validation, by implementing an “accept-all”
TrustManager. Such a TrustManager basically implements the interface with empty
stubs for methods like checkServerTrusted(), not throwing any exceptions.

SSL

1627

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://nelenkov.blogspot.ie/2011/12/using-custom-certificate-trust-store-on.html
http://sources.forgerock.org/browse/opendj/trunk/opendj/opendj-core/src/main/java/org/forgerock/opendj/ldap/TrustManagers.java?hb=true%EF%BB%BF
http://sources.forgerock.org/browse/opendj/trunk/opendj/opendj-core/src/main/java/org/forgerock/opendj/ldap/TrustManagers.java?hb=true%EF%BB%BF
http://sources.forgerock.org/browse/opendj/trunk/opendj/opendj-core/src/main/java/org/forgerock/opendj/ldap/TrustManagers.java?hb=true%EF%BB%BF

Technically, this works. And, if you are using this only early on in development and if
you swear upon a stack of $RELIGIOUS_TEXTS that you will replace this hack by the
time you go to production, it is difficult to complain about this technique.

However, in production, ignoring SSL certificate validation errors opens your app up
to man-in-the-middle attacks.

About That Man in the Middle
Man-in-the-middle attacks are a common way of trying to intercept SSL encrypted
communications. The “man” in the “middle” might be a proxy server, a different Web
site you wind up communicating with via DNS poisoning, etc. The objective of the
“man” is to pretend to be the actual Web site or Web service you are trying to
communicate with. If your app “falls for it”, your app will open an encrypted channel
to the attacker, not your site, and the attacker will have access to the unencrypted
data you send over that channel.

Unfortunately, Android apps have a long history of being victims of man-in-the-
middle attacks.

Fahl, Harbach, Muders, and Smith of the Leibniz University of Hannover, and
Baumgärtner and Freisleben of the Philipps University of Marburg, conducted
research on this problem. Their results, as reported in their paper, “Why Eve and
Mallory Love Android: An Analysis of Android SSL (In)Security”, are depressing.
One in six surveyed apps explicitly ignored SSL certificate validation issues, mostly
by means of do-nothing TrustManager implementations as noted above. Out of a
selected 100 apps, 41 could be successfully attacked using man-in-the-middle
techniques, yielding a treasure trove of credit card information, account credentials
for all the major social networks, and so forth.

Their paper outlines a few ways in which apps can screw up SSL management — the
following sections outline some of them.

Disabling SSL Certificate Validation

As mentioned above, if you disable SSL certificate validation, by implementing and
using a do-nothing TrustManager, you are wide open for man-in-the-middle attacks.
A simple transparent proxy server can pretend to be the real endpoint — apps
ignoring SSL validation entirely will trust that the transparent proxy is the real

SSL

1628

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

endpoint and, therefore, perform SSL key exchange with the proxy rather than the
real site. The proxy, as a result, gets access to everything the app sends.

Ignoring Domain Names

A related flaw is when you disable hostname verification. The “common name” (CN)
of the SSL certificate should reflect the domain name being requested. Requesting
https://www.foo.com/something and receiving an SSL certificate for
xkcdhatguy.com would be indicative of a mis-configured Web server at best and a
man-in-the-middle attack at worst.

By default, this is checked, and if there is no match, you will get errors like:

javax.net.ssl.SSLException: hostname in certificate didn't match: <...>

where the ... is replaced by whatever domain name you were requesting.

But some developers disable this check. Perhaps during development they were
accessing the server using a private IP address, and they were getting SSLExceptions
when trying to access that server. It is very important to allow Android to check the
hostname for you, which is the default behavior.

Note that HttpClient’s BrowserCompatHostnameVerifier — which applies standard
Web browser rules for handling hostname verification — is broken on Android 2.1
and earlier, failing to handle wildcard certificates properly.

Hacked CAs

The truly scary issue is when the problem stems from the CA itself.

Comodo, TURKTRUST, and other certificate authorities have been hacked, where
nefarious parties gained the ability to create arbitrary certificates backed by the CA.
For example, in the TURKTRUST case, Google found that somebody had created a
*.google.com certificate that had TURKTRUST as the root CA. Any browser — or
Android app — that implicitly trusted TURKTRUST-issued certificates would believe
that this certificate was genuine. This is the ultimate in man-in-the-middle attacks,
as code that is ordinarily fairly well-written will believe the CA and therefore happily
communicate with the attacker.

SSL

1629

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=17680
https://code.google.com/p/android/issues/detail?id=17680
https://freedom-to-tinker.com/blog/sjs/turktrust-certificate-authority-errors-demonstrate-the-risk-of-subordinate-certificates/

Certificate Memorizing
If your app needs to connect to arbitrary SSL servers — perhaps ones configured by
the user (e.g., email client) or are intrinsic to the app’s usage (e.g., URLs in a Web
browser) — detecting man-in-the-middle attacks boils down to proper SSL
certificate validation… and praying for no hacked CA certificates.

However, one way to incrementally improve security is to use certificate
memorizing. With this technique, each time you see a certificate that you have not
seen before, or perhaps a different certificate for a site visited previously, you ask the
user to confirm that it is OK to proceed. Technically savvy users may be able to
deduce whether the certificate is indeed genuine; slightly less-savvy users might
simply contact the site to see if this is expected behavior. The downside is that
technically unsophisticated users might be baffled by the question of whether or not
they should accept the certificate and may take their confusion out on you, the
developer of the app that is asking the question.

You can write your own TrustManager that maintains a roster of recognized
certificates and takes steps for unrecognized ones. You can also try an existing
implementation of a memorizing TrustManager.

Pinning
One way to limit the possible damage from hacked CAs is to recognize that most
apps do not need to communicate with arbitrary servers. Web browsers, email
clients, chat clients, and the like might need to be able to communicate with
whatever server the user elects to configure. But many apps just need to
communicate back to their developer’s own server, such as a native client adjunct to
a regular Web app.

In this case, the app does not need to accept arbitrary SSL certificates. The developer
knows the actual SSL certificate used by the developer’s server, so the developer can
arrange to accept only that one certificate. Or, the developer knows the CA that they
get their SSL certificates from and can only accept certificates issued by that CA, and
not other CAs. This reduces security a bit, but makes it easier for you to handle SSL
certificate expiration and replacement without major headaches.

This technique is referred to as “pinning”. Chrome is perhaps the most well-known
implementer of pinning: when you access services like Gmail from Chrome, Google
(who wrote the browser) knows the valid certificates for Google (who wrote the

SSL

1630

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ge0rg/MemorizingTrustManager/wiki
https://github.com/ge0rg/MemorizingTrustManager/wiki
https://github.com/ge0rg/MemorizingTrustManager/wiki
http://blog.lumberlabs.com/2012/04/why-app-developers-should-care-about.html

server) and can toss out anything that is invalid… such as the TURKTRUST fake
certificate mentioned earlier in this chapter.

Nikolay Elenkov has another blog post outlining certificate pinning support in
Android 4.2. Moxie Marlinspike has an implementation of pinning, with a
description in a blog post, and has also released a pinning library offering a
PinningTrustManager that you can use following his guidelines. And, the Guardian
Project has an implementation of pinning in StrongTrustManager, discussed in the
next section.

NetCipher
The Guardian Project has released an Android library project called NetCipher —
formerly known as OnionKit — designed to help boost Internet security for Android
applications. It offers two major features: a replacement TrustManager called
StrongTrustManager, and Tor integration.

StrongTrustManager offers pinning, as described in the previous section, along with
a custom set of root certificates, based upon the certificates used by the Debian
Linux distribution. The custom set of root certificates addresses one annoyance with
Android: Android’s set of root certificates varies by OS version (and, occasionally, by
device due to changes from a device manufacturer). StrongTrustManager puts you in
control of the root certificates that are used, so you can eliminate roots that you no
longer trust (e.g., TURKTRUST), as you can tailor the root certificates that
StrongTrustManager uses by means of the CACertMan utility, also published by the
Guardian Project.

NetCipher takes matters a step farther and helps your application integrate with
Orbot, a Tor proxy. Tor (“The Onion Router”) is designed to help with anonymity,
having your Internet requests go through a series of Tor routers before actually
connecting to your targeted server through some Tor endpoint. Tor is used for
everything from mitigating Web site tracking to helping dissidents bypass national
firewalls. NetCipher helps your app:

• Detect if Orbot is installed, and help the user install it if it is not
• Detect if Orbot is running, and help you start it if it is not
• Make HTTP requests by means of Orbot instead of directly over the Internet

SSL

1631

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html
https://github.com/moxie0/AndroidPinning
http://www.thoughtcrime.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha/
https://github.com/moxie0/AndroidPinning
https://guardianproject.info/
https://guardianproject.info/code/netcipher/
https://github.com/guardianproject/cacert
http://www.torproject.org/

Note that we will see the Guardian Project again later in this book, as they were the
initial developers of SQLCipher for Android, a means by which you can readily use
an encrypted database in your Android apps.

SSL

1632

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Security

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Permissions

Adding basic permissions to your app to allow it to, say, access the Internet, is fairly
easy. However, the full permissions system has many capabilities beyond simply
asking the user to let you do something. This chapter explores other uses of
permissions, from securing your own components to using signature-level
permissions (your own or Android’s).

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on permissions and the chapter on signing your app. The
discussion of signature-level permissions will make a bit more sense if you read
through the chapter on plugins as well.

Securing Yourself
Principally, at least initially, permissions are there to allow the user to secure their
device. They have to agree to allow you to do certain things, such as reading
contacts, that they might not appreciate.

The other side of the coin, of course, is to secure your own application. If your
application is mostly activities, security may be just an “outbound” thing, where you
request the right to use resources of other applications. If, on the other hand, you
put content providers or services in your application, you will want to implement
“inbound” security to control which applications can do what with the data.

Note that the issue here is less about whether other applications might “mess up”
your data, but rather about privacy of the user’s information or use of services that

1635

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

might incur expense. That is where the stock permissions for built-in Android
applications are focused – can you read or modify contacts, can you send SMS, etc. If
your application does not store information that might be considered private,
security is less an issue. If, on the other hand, your application stores private data,
such as medical information, security is much more important.

The first step to securing your own application using permissions is to declare said
permissions, once again in the AndroidManifest.xml file. In this case, instead of
uses-permission, you add permission elements. Once again, you can have zero or
more permission elements, all as direct children of the root manifest element.

Declaring a permission is slightly more complicated than using a permission. There
are three pieces of information you need to supply:

• The symbolic name of the permission. To keep your permissions from
colliding with those from other applications, you should use your
application’s Java namespace as a prefix

• A label for the permission: something short that would be understandable
by users

• A description for the permission: something a wee bit longer that is
understandable by your users

<permission<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
android:label="@string/see_sekrits_label"
android:description="@string/see_sekrits_description" />/>

This does not enforce the permission. Rather, it indicates that it is a possible
permission; your application must still flag security violations as they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating where and
under what circumstances they are required. The easier one is to indicate in the
manifest where permissions are required.

Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is required to
access those items:

<activity<activity
android:name=".SekritApp"
android:label="Top Sekrit"

ADVANCED PERMISSIONS

1636

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>
<category<category

android:name="android.intent.category.LAUNCHER"
/>/>

</intent-filter></intent-filter>
</activity></activity>

Only applications that have requested your indicated permission will be able to
access the secured component. In this case, “access” means:

1. Activities cannot be started without the permission
2. Services cannot be started, stopped, or bound to an activity without the

permission
3. Intent receivers ignore messages sent via sendBroadcast() unless the sender

has the permission

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write methods,
you could require separate read versus write permissions in code by checking those
methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This means that
eligible broadcast receivers must hold that permission; those without the permission
are ineligible to receive it. We will examine sendBroadcast() in greater detail
elsewhere in this book.

Requiring Standard System Permissions

While normally you require your own custom permissions using the techniques
described above, there is nothing stopping you from reusing a standard system
permission, if it would fit your needs.

For example, suppose that you are writing YATC (Yet Another Twitter Client). You
decide that in addition to YATC having its own UI, you will design YATC to be a
“Twitter engine” for use by third party apps:

ADVANCED PERMISSIONS

1637

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Send timeline updates via broadcast Intents
• Publish the timeline, the user’s own tweets, @-mentions, and the like via a
ContentProvider

• Offer a command-based service interface for posting updates to the timeline
• And so on

You could, and perhaps should, implement your own custom permission. However,
since any app can get to Twitter just by having the INTERNET permission, one could
argue that a third-party app should just need that same INTERNET permission to use
your API (rather than integrating JTwitter or another third-party JAR).

Signature Permissions
Each permission in Android is assigned a protection level, via an
android:protectionLevel attribute on the <permission> element. By default,
permissions are at a normal level, but they can also be flagged as dangerous,
signatureOrSystem, or signature. In the latter two cases, “signature” means that
the app requesting the permission and the app requiring the permission should have
be signed by the same signing key. In the case of signatureOrSystem — only used by
the firmware – the app requesting the permission either needs to be signed by the
firmware’s signing key or reside on the system partition (e.g., come pre-installed
with the device).

Firmware-Only Permissions

Most of Android’s permissions mentioned in this book are ones that any SDK
application can hold, if they ask for them and the user grants them. INTERNET,
READ_CONTACTS, ACCESS_FINE_LOCATION, and kin all are normal permissions.

BRICK is not.

There is a permission in Android, named BRICK, that, in theory, allows an
application to render a phone inoperable (a.k.a., “brick” the phone). While there is
no brickMe() method in the Android SDK tied to this permission, presumably there
might be something deep in the firmware that is protected by this permission.

The BRICK permission cannot be held by ordinary Android SDK applications. You
can request it all you want, and it will not be granted.

ADVANCED PERMISSIONS

1638

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, applications that are signed with the same signing key that signed the
firmware can hold the BRICK permission.

That is because the system’s own manifest has the following <permission> element:

<permission<permission android:name="android.permission.BRICK"
android:label="@string/permlab_brick"
android:description="@string/permdesc_brick"
android:protectionLevel="signature" />/>

Some other permissions have signatureOrSystem instead of signature for
android:protectionLevel:

<permission<permission android:name="android.permission.REBOOT"
android:label="@string/permlab_reboot"
android:description="@string/permdesc_reboot"
android:protectionLevel="signatureOrSystem" />/>

These permissions can be held by applications that are either signed by the
firmware’s signing key or by applications that are installed on the firmware’s
partition. Mostly, this will be apps that are licensed by a manufacturer or carrier for
pre-distribution on a device.

Your Own Signature Permissions

You too can require signature-level permissions. That will restrict the holders of
that permission to be other apps signed by your signing key. This is particularly
useful for inter-process communication between apps in a suite — by using
signature permissions, you ensure that only your apps will be able to participate in
those communications.

This is what was used in the ContentProvider-based plugin sample from elsewhere
in this book. The plugin required a permission that was declared with
android:protectionLevel="signature", and the host application requested that
permission.

One nice thing about these sorts of signature-level permissions is that the user is
not bothered with them. It is assumed that the user will agree to the communication
between the apps signed by the same signing key. Hence, the user will not see
signature-level permissions at install or upgrade time.

Since in some cases, you may not be sure which app will be installed first, it is best
to have all apps in the suite include the same <permission> element, in addition to

ADVANCED PERMISSIONS

1639

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

the corresponding <uses-permission> element. That way, no matter which app is
installed first, it can declare the permission that all will share.

Though, that has its own problems, as you will see in the next section.

The Custom Permission Vulnerability
NOTE: Some of the material in this section originally appeared in material hosted in
the CWAC-Security project repository. In addition, the author would like to thank
Mark Carter and “Justin Case” for their contributions in this topic area).

Unfortunately, custom permissions have some undocumented limitations that make
them intrinsically risky. Specifically, custom permissions can be defined by anyone,
at any time, and “first one in wins”, which opens up the possibility of unexpected
behavior.

Here, we will walk through some scenarios and show where the problems arise, plus
discuss how to mitigate them as best we can.

Scenarios

All of the following scenarios focus on three major app profiles.

App A is an app that defines a custom permission in its manifest, such as:

<permission<permission
android:name="com.commonsware.cwac.security.demo.OMG"
android:description="@string/perm_desc"
android:label="@string/perm_label"
android:protectionLevel="normal"/>/>

App A also defends a component using the android:permission attribute,
referencing the custom permission:

<provider<provider
android:name="FileProvider"
android:authorities="com.commonsware.cwac.security.demo.files"
android:exported="true"
android:grantUriPermissions="false"
android:permission="com.commonsware.cwac.security.demo.OMG">>
<grant-uri-permission<grant-uri-permission android:path="/test.pdf"/>/>

</provider></provider>

ADVANCED PERMISSIONS

1640

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-security/blob/master/PERMS.md

App B has a <uses-permission> element to declare to the user that it wishes to
access components defended by that permission:

<uses-permission<uses-permission android:name="com.commonsware.cwac.security.demo.OMG"/>/>

App C has the same <uses-permission> element. The difference is that App B also
has the <permission> element, just as App A does, albeit with different descriptive
information (e.g., android:description) and, at times, a different protection level.

All three apps are signed with different signing keys, because in the real world they
would be from different developers.

So, to recap:

• A defines a permission and uses it for defense
• B defines the same permission and requests to hold it
• C just requests to hold this permission

With all that in mind, let’s walk through some possible scenarios, focusing on two
questions:

1. What is the user told, when the app is installed through normal methods
(i.e., not via adbadb), regarding this permission?

2. What access, if any, does App B or App C have to the ContentProvider from
App A?

The Application SDK Case (A, Then C)

Suppose the reason why App A has defined a custom permission is because it wants
third-party apps to have the ability to access its secured components… but only with
user approval. By defining a custom permission, and having third-party apps request
that permission, the user should be informed about the requested permission and
can make an informed decision.

Conversely, if an app tries to access a secured component but has not requested the
permission, the access attempt should fail.

App C has requested the custom permission via the <uses-permission> element. If
the permission — defined by App A — has an android:protectionLevel of normal
or dangerous, the user will be informed about the requested permission at install

ADVANCED PERMISSIONS

1641

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

time. If the user continues with the installation, App C can access the secured
component.

If, however, the android:protectionLevel is signature, the user is not informed
about the requested permission at install time, as the system can determine on its
own whether or not the permission should be granted. In this case, App A and App
C are signed with different signing keys, so Android silently ignores the permission
request. If the user continues with installation, then App C tries to access App A’s
secured component, App C crashes with a SecurityException.

In other words, this all works as expected.

The Application SDK Problem Case (C, Then A)

However, in many cases, there is nothing forcing the user to install App A before
App C. This is particularly true for publicly-distributed apps on common markets,
like the Play Store.

When the user installs App C, the user is not informed about the request for the
custom permission, presumably because that permission has not yet been defined. If
the user later installs App A, App C is not retroactively granted the permission, and
so App C’s attempts to use the secured component fail.

This works as expected, though it puts a bit of a damper on custom permissions.
One way to work around this would be for the user to uninstall App C, then install it
again (with App A already installed). This returns us to the original scenario from
the preceding section. However, if the user has data in App C, losing that data may
be a problem (as in a “let’s give App C, or perhaps App A, one-star ratings on the
Play Store” sort of problem).

The Peer Apps Case, Part One (A, Then B)

Suppose now we augment our SDK-consuming app (formerly App C) to declare the
same permission that App A does, in an attempt to allow the two apps to be
installed in either order. That is what App B is: the same app as App C, but where it
has the same <permission> element as does App A in its manifest.

This scenario is particularly important where both apps could be of roughly equal
importance to the user. In cases where App C is some sort of plugin for App A, it is
not unreasonable for the author of App A to require App A to be installed first. But,

ADVANCED PERMISSIONS

1642

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

if Twitter and Facebook wanted to access components of each others’ apps, it would
be unreasonable for either of those firms to mandate that their app must be
installed first. After all, if Twitter wants to be installed first, and Facebook wants to
be installed first, one will be disappointed.

If the user installs App A (the app defending a component with the custom
permission) before App B, the user will be notified at install time about App B’s
request for this permission. Notably, the information shown on the installation
security screen will contain App A’s description of the permission. And, if the user
goes ahead and installs App B, App B can indeed access App A’s secured component,
since it was granted permission by the user.

Once again, everything is working as expected. Going back to the two questions:

1. The user is informed when App B or App C requests the permission defined
by App A.

2. App B and App C can hold that permission if and only if they meet the
requirements of the protection level

The Peer Apps Case, Part Two (B, Then A)

What happens if we reverse the order of installation? After all, if App A and App B
are peers, from the standpoint of the user, there is roughly a 50% chance that the
user will install App B before App A.

Here is where things go off the rails.

The user is not informed about App B’s request for the custom permission.

The user will be informed about any platform permissions that the app requests via
other <uses-permission> elements. If there are none, the user is told that App B
requests no permissions… despite the fact that it does.

When the user installs App A, the same thing occurs. Of course, since App A does
not have a <uses-permission> element, this is not all that surprising.

However, at this point, even though the user was not informed, App B holds the
custom permission and can access the secured component.

ADVANCED PERMISSIONS

1643

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is bad enough when both parties are ethical. App B could be a piece of malware,
though, designed to copy the data from App A, ideally without the user’s knowledge.
And, if App B is installed before App A, that would happen.

So, going to the two questions:

1. The user is not informed about App B’s request for the permission…
2. …but App B gets it anyway and can access the secured component

The Downgraded-Level Malware Case (B, Then A, Again)

You might think that the preceding problem would only be for normal or dangerous
protection levels. If App A defines a permission as requiring a matching signature,
and App A marks a component as being defended by that permission, Android must
require the signature match, right?

Wrong.

The behavior is identical to the preceding case. Android does not use the defender’s
protection level. It uses the definer’s protection level, meaning the protection level of
whoever was installed first and had the <permission> element.

So, if App A has the custom permission defined as signature, and App B has the
custom permission defined as normal, if App B is installed first, the behavior is as
shown in the preceding section:

1. The user is not informed about App B’s request for the permission…
2. …but App B gets it anyway and can access the secured component, despite

the signatures not matching

The Peer Apps Case With a Side Order of C

What happens if we add App C back into the mix? Specifically, what if App B is
installed first, then App A, then App C?

When App C eventually gets installed, the user is prompted for the custom
permission that App C requests via <uses-permission>. However, the description
that the user sees is from App B, the one that first defined the custom <permission>.
Moreover, the protection level is whatever App B defined it to be. So if App B
downgraded the protection level from App A’s intended signature to be normal,

ADVANCED PERMISSIONS

1644

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

App C can hold that permission and access the secured App A component, even if it
is signed by another signing key.

Not surprisingly, the same results occur if you install App B, then App C, then App
A.

Behavior Analysis

The behavior exhibited in these scenarios is consistent with two presumed
implementation “features” of Android’s permission system:

1. First one in wins. In other words, the first app (or framework, in the case of
the OS’s platform permissions) that defines a <permission> for a given
android:name gets to determine what the description is and what the
protection level is.

2. The user is only prompted to confirm a permission if the app being installed
has a <uses-permission> element, the permission was already defined by
some other app, and the protection level is not signature.

Risk Assessment

The “first one in wins” rule is a blessing and a curse. It is a curse, insofar as it opens
up the possibility for malware to hold a custom permission without the user’s
awareness of that, and even to downgrade a signature-level permission to normal.
However, it is a blessing, in that the malware would have to be installed first; if it is
installed second, either its request to hold the permission will be seen by the user
(normal or dangerous) or the request to hold the permission will be rejected
(signature).

This makes it somewhat unlikely for a piece of malware to try to sneakily make off
with data. Eventually, if enough users start to ask publicly why App B needs access to
App A’s data (for cases where App A was installed first and the user knows about the
permission request), somebody in authority may eventually realize that this is a
malware attack. Of course, “eventually” may be a rather long time.

However, there are some situations where Android’s custom permission behavior
presents risk even greater than that. If the attacker has a means of being sure that
their app was installed first, they can hold any permission from any third-party app
they want to that was known at install time.

For example:

ADVANCED PERMISSIONS

1645

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Somebody could sell a used Android device, and the buyer could neglect to
factory-reset it, and the malware could be installed by the seller

• Somebody could sell a used Android device with a ROM mod preinstalled,
based off of a normal ROM mod (e.g., CyanogenMod), but with an
additional bit of malware installed, to prevent a factory reset from foiling the
attack’

• Somebody could distribute devices to users who might think the device is
“factory clean” and not laden with malware (e.g., devices given as gifts)

• Somebody could distribute devices to users who might think that the pre-
installed malware is actually a legitimate app (e.g., devices given to
employees by an employer wishing to monitor usage by examining protected
data from third-party apps)

Mitigation Using PermissionUtils

The “first one in wins” rule also leads us to a mitigation strategy: On first run of our
app, see if any other app has defined permissions that we have defined. If that has
happened, then we are at risk, and take appropriate steps. If, however, no other app
has defined our custom permissions, then the Android permission system should
work for us, and we can proceed as normal.

The CWAC-Security library provides some helper code, in the form of the
PermissionUtils class, to detect other apps defining the same custom permissions
that you define.

The idea is that you call checkCustomPermissions() — a static method on
PermissionUtils — on the first run of your app. It will return details about what
other apps have already defined custom permissions that your app defines. If
checkCustomPermissions() returns nothing, you know that everything is fine, and
you can move ahead. Otherwise, you can:

• Check to see if the offending app is on some whitelist, or otherwise meets
criteria that suggests that it is OK

• Alert the user, indicating that these already-installed apps will have access to
your app secured components

• Upload details about the offending apps to your server, so you can try to
track down whether they are legitimate users of some API that you are
exposing or are malware

• Whatever else you feel is necessary

ADVANCED PERMISSIONS

1646

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-security

Example: Permission Proxy

The section on ContentProvider proxy plugins involves the use of a custom
signature-level permission, to secure communications between the proxy and the
host app that uses the proxy.

The idea is that the proxy holds some permission (e.g., READ_CONTACTS) and proxies
data to some ContentProvider protected by that proxy (e.g., CallLog). The host app,
rather than holding the permission and accessing the protected ContentProvider
directly, can talk to the proxy. That way, the user only needs to grant permission if
they elect to install the proxy; otherwise, the host app is blocked from having access
to the protected content.

However, to prevent arbitrary other apps from using the proxy themselves, the host
and proxy agree on a custom signature-level permission. The proxy defends itself
using that permission, and the host requests the permission. In theory, this would
limit communications with the proxy to only be from the host, or from other apps
signed with the same signing key as the proxy and host use.

But, as is described above, another app could define the same permission, with a
normal protection level. If that other app is installed first, not only can any other app
access the proxy just by requesting the permission, but the attacker could have
requested the same permission that it defined, so the user is unaware that the
attacker holds this permission.

Hence, these proxies need to use some defensive measures, and the samples shown
in this book employ PermissionUtils from the CWAC-Security library to do just
that.

What the Proxy Does

The proxy is a ContentProvider. Specifically, there is an AbstractCPProxy subclass
of ContentProvider that does the “heavy lifting”, and a CallLogProxy subclass of
AbstractCPProxy that handles some of the details of proxying the CallLog versus
something else.

In onCreate() of the AbstractCPProxy, we use PermissionUtils and
checkCustomPermissions() to determine whether or not anything was installed
before us, that defined our custom permission, other than our known host app:

ADVANCED PERMISSIONS

1647

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic boolean onCreate() {

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(getContext());

ifif (prefs.getBoolean(PREFS_FIRST_RUN, truetrue)) {
SharedPreferences.Editor editor=

prefs.edit().putBoolean(PREFS_FIRST_RUN, falsefalse);

HashMap<PackageInfo, ArrayList<PermissionLint>> entries=
PermissionUtils.checkCustomPermissions(getContext());

forfor (Map.Entry<PackageInfo, ArrayList<PermissionLint>> entry :
entries.entrySet()) {

ifif
(!"com.commonsware.android.cpproxy.consumer".equals(entry.getKey().packageName))
{

tainted=truetrue;
breakbreak;

}
}

editor.putBoolean(PREFS_TAINTED, tainted).apply();
}
elseelse {

tainted=prefs.getBoolean(PREFS_TAINTED, truetrue);
}

returnreturn(truetrue);
}

We use SharedPreferences to hold onto two key pieces of data:

1. Have we already done the check, as determined by PREFS_FIRST_RUN? If yes,
we can just look up the results of the previous check. This is not merely an
optimization — we do not have to worry about apps installed after us
somehow redefining our custom permission.

2. When we did the check, did we find some package that had been installed
before us, other than the host, that defined our custom permission, as
determined by PREFS_TAINTED?

The actual check is accomplished by calling checkCustomPermissions() and
iterating over the results. If there is an entry in the HashMap that represents a
package other than ours, our environment is tainted.

The implementation in the book then uses the tainted data member in a
checkTainted() private method:

ADVANCED PERMISSIONS

1648

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate void checkTainted() {
ifif (tainted) {

throwthrow newnew RuntimeException(getContext().getString(R.string.tainted_abort));
}

}

This is called at the top of each ContentProvider method that we are proxying, such
as insert():

@Override
publicpublic Uri insert(Uri uri, ContentValues values) {

checkTainted();

returnreturn(getContext().getContentResolver().insert(convertUri(uri),
values));

}

The result is that if we feel that our environment is compromised, we fail any
attempt to use the proxy.

Note that the proxy makes no attempt to confirm that the host app really is the host
app, versus some other app with the same package name, perhaps distributed
through other channels. We could augment the proxy with additional logic to
handle that case, covered elsewhere in this book, if we wanted.

Also, we could, in theory, use Binder.getCallingUid() to confirm whether the
request did come from the host app, and in that case, allow the proxy to do its work,
failing in all other cases. We could even consider jettisoning the custom permission
in this case, as if we know the UID of the other party, we can validate it instead of
relying on a permission as a means of validation. However, that only works well in
cases where the list of possible valid callers is knowable inside the app — this is fine
for host-and-plugin or similar sorts of “hub-and-spoke” architectures but may be
impractical in other cases.

What the Provider Could Do

The proxy has no decent means of alerting the user as to the reason for the
lockdown. After all, it is a ContentProvider, not an Activity. In principle, it could
use a Notification.

Another approach is to have the host app perform the same sorts of checks as does
the proxy, and use that information to inform the user on first run of the app.

ADVANCED PERMISSIONS

1649

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Restricted Profiles and UserManager

Android 4.2 introduced the concept of having multiple distinct users of a tablet.
Each user would get their own portion of internal and external storage, as if they
each had their own tablet.

Android 4.3 extends this a bit further, with the notion of setting up restricted
profiles. As the name suggests, a restricted profile is restricted, in terms of what it
can do on the device. Some restrictions will be device-wide (e.g., can the user install
apps?), and some restrictions will be per-app. You can elect to allow your app to be
restricted, where you define the possible ways in which your app can be restricted,
and the one setting up the restricted profile can then configure the desired options
for some specific profile.

This chapter will explain how users set up these restricted profiles, what you can
learn about the device-wide restrictions, and how you can offer your own
restrictions for your own app.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on files and its section on multiple user accounts.

Android Tablets and Multiple User Accounts
The theory is that tablets are likely to be shared, whether among family members,
among team members in a business, or similar sorts of group settings. There are
three levels of “user” in an Android 4.3+ tablet that we will need to consider.

1651

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Primary User

The primary user is whoever first set up the tablet after initial purchase. In a family,
this is probably a parent; in a corporate setting, this might be an IT administrator.

Prior to Android 4.2, there was only one user per device, and that user could
(generally) do anything. In Android 4.2+, the primary user holds this role.

One thing that the primary user can do is set up other users, via the Users option in
the Settings app:

Figure 469: Users Screen in Settings

Tapping the “Add user or profile” entry allows the primary user to set up another
user or restricted profile:

RESTRICTED PROFILES AND USERMANAGER

1652

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 470: Add Dialog in Users Screen in Settings

Secondary User

Choosing “User” from the Add dialog will define a secondary user of the device. This
user has much of the same control as the primary user, in terms of being able to
install and run whatever apps are desired.

RESTRICTED PROFILES AND USERMANAGER

1653

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 471: Add New User Warning Dialog in Users Screen in Settings

Restricted Profile

A restricted profile is akin to a secondary user, in that it gets its own separate
portion of internal and external storage. Beyond that, though, the primary user can
further configure what the restricted profile can access:

RESTRICTED PROFILES AND USERMANAGER

1654

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 472: Restricted Profile Configuration Screen in Settings

The bulk of the restricted profile configuration screen is a list of apps, with Switch
widgets to allow the primary user to allow or deny access to each app.

Some apps will have the “settings” icon to the left of the Switch. Tapping that will
either bring up a dedicated activity for restricting operations within that app, or it
will add new rows to the list with individual restriction options for that app. For
example, tapping the settings icon for the Settings app adds a row where the
primary user can block location sharing:

RESTRICTED PROFILES AND USERMANAGER

1655

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 473: Location Sharing Restrictions

The “settings” icon in the first row, for the profile itself, will allow the primary user
to control things for the entire profile, notably its name.

Switching to the restricted profile (e.g., via the lockscreen) will show the constrained
set of available apps:

RESTRICTED PROFILES AND USERMANAGER

1656

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 474: Apps in a Restricted Profile

Determining What the User Can Do
Your app can find out what device-level restrictions were placed on the current user
by means of the UserManager system service. Specifically, as you can see in
MainActivity of the RestrictedProfiles/Device sample project, all you need to do
is:

• Acquire an instance of a UserManager by calling getSystemService() on a
Context, passing in USER_SERVICE as the service’s name

• Calling getUserRestrictions() on the UserManager:

packagepackage com.commonsware.android.profile.device;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.UserManagerandroid.os.UserManager;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

RESTRICTED PROFILES AND USERMANAGER

1657

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/Device
http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/Device

UserManager mgr=(UserManager)getSystemService(USER_SERVICE);
Bundle restrictions=mgr.getUserRestrictions();

ifif (restrictions.keySet().size() > 0) {
setContentView(R.layout.activity_main);

RestrictionsFragment f=

(RestrictionsFragment)getFragmentManager().findFragmentById(R.id.contents);

f.showRestrictions(restrictions);
}
elseelse {

Toast.makeText(thisthis, R.string.no_restrictions, Toast.LENGTH_LONG)
.show();

finish();
}

}
}

getUserRestrictions() returns a Bundle, whose keys are documented on
UserManager for various device-level restrictions that theoretically can be placed on
the user. Here, “theoretically” means that while UserManager documents several
DISALLOW_* constants, only two seem to be directly accessible to the primary user for
configuration via Settings:

• DISALLOW_MODIFY_ACCOUNTS, to prevent a restricted profile from, among
other things, modifying restricted profiles

• DISALLOW_SHARE_LOCATION, to prevent the apps run in this restricted profile
from gathering location data

MainActivity examines the Bundle and, if it is empty, just displays a Toast and exits
via finish(). This is the behavior you will see if you run this sample app on a non-
restricted profile, such as the primary user. If, however, the Bundle has one or more
keys, we inflate an activity_main layout that contains a RestrictionsFragment in a
<fragment> element:

<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/contents"
android:layout_width="match_parent"
android:layout_height="match_parent"
class="com.commonsware.android.profile.device.RestrictionsFragment"/>/>

We then retrieve the RestrictionsFragment from the FragmentManager and call
showRestrictions() on it, passing in the Bundle.

RESTRICTED PROFILES AND USERMANAGER

1658

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RestrictionsFragment is a ListFragment employing a custom
RestrictionsAdapter. The RestrictionsAdapter wraps around the Bundle and an
ArrayList of its keys. The RestrictionsAdapter constructor creates the ArrayList
by sorting the keySet() of the Bundle. getView() on RestrictionsAdapter lets the
superclass handle inflating the row (android.R.layout.simple_list_item_1), then
puts an icon on the right side by using
setCompoundDrawablesWithIntrinsicBounds(), which can tuck a drawable resource
onto any of the four sides of a TextView.

The resulting list will show green icons for keys where the Bundle has stored a true
Boolean value, and a red icon for false:

Figure 475: Default Device Restrictions, on a Nexus 7 (2013)

Since the keys are negative in tone (e.g., DISALLOW_MODIFY_ACCOUNTS), true means
that the restriction is enforced and the underlying operation (e.g., modifying
accounts) cannot be done.

RESTRICTED PROFILES AND USERMANAGER

1659

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Impacts of Device-Level Restrictions
Your app’s functionality may be limited by these device-level restrictions. This
section outlines some of the results you should expect from a restricted profile.

Restricting Location Access

If a restricted profile is prevented from sharing the device’s location with apps, those
apps simply will not receive location updates. There is no good way to detect this via
the location API (e.g., isProviderEnabled() returns true), so you will have to detect
this via getUserRestrictions() on UserManager as noted above.

Uninstalling Apps

Even without specific configuration, the restricted profile can only uninstall apps
that the are available to that profile. However, since apps are really shared between
profiles, this only removes that app from the restricted profile; it does not actually
uninstall the app from the device as a whole.

Enabling Custom Restrictions
As noted earlier, the list of apps that is shown on the restricted profile configuration
screen in Settings can have “settings” icons. The Settings app itself will have a
settings icon, to allow the primary user to configure device-level restrictions.

But, what if you want your app to have such a settings icon? Maybe it makes sense
for your app to allow the primary user to restrain restricted profiles from doing
certain things within your app:

• Block in-app purchases
• Only show certain categories of content, not the full roster
• Only allow operation during certain times of the day

The means by which the Settings app restricts profiles is also available to you. You
can declare to Android what aspects of your app can be restricted. Android will then
collect that restriction data for you. Your app, at runtime, can then determine what
restrictions are in place (if any) and take appropriate steps.

All of this will be illustrated using the RestrictedProfiles/App sample project.

RESTRICTED PROFILES AND USERMANAGER

1660

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/App
http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/App

Stating Your Restrictions

The biggest thing that you need to do to restrict your app is teach Android how to
collect restrictions. In other words, you need to tell Android what to do when the
user taps that settings icon in the restricted profile entry for your app.

You have two major options:

• Provide a list of the restrictions that Android should render and collect itself,
or

• Provide an Intent that can be used to start up an activity of your own design
where you collect those restrictions

Either approach will require you to set up a manifest-registered BroadcastReceiver,
set to respond to the android.intent.action.GET_RESTRICTION_ENTRIES action:

<receiver<receiver android:name="RestrictionEntriesReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.GET_RESTRICTION_ENTRIES"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

That BroadcastReceiver will be called with sendOrderedBroadcast(), not so much
to affect ordering, but to allow the BroadcastReceiver to send back a result via its
setResultExtras() method. This provides a Bundle that the broadcaster can
eventually retrieve, in this case providing details of what restrictions we wish to
collect from the primary user to restrict the profile.

Option #1: RestrictionEntry List

To collect restrictions the way the Settings app does — with restriction rows
appearing below your app in the restricted profile screen in Settings – your
BroadcastReceiver will need to put an entry into the return Bundle, under the key
of EXTRA_RESTRICTIONS_LIST (a constant defined on the Intent class). The value
needs to be an ArrayList of RestrictionEntry objects, with each
RestrictionEntry describing one restriction to collect.

Another thing that the RestrictionEntry objects contain is their current value.
Android itself retains these values and supplies them to your BroadcastReceiver via
an EXTRA_RESTRICTIONS_BUNDLE extra on the incoming Intent. Your app needs to
use those current values when constructing its list of RestrictionEntry objects to
return.

RESTRICTED PROFILES AND USERMANAGER

1661

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, let’s take a look at RestrictionEntriesReceiver, the receiver we have set up to
handle the android.intent.action.GET_RESTRICTION_ENTRIES action for this
sample app.

The entry point for RestrictionEntriesReceiver is onReceive(), as it is for any
basic BroadcastReceiver:

@Override
publicpublic void onReceive(Context ctxt, Intent intent) {

Bundle current=
(Bundle)intent.getParcelableExtra(Intent.EXTRA_RESTRICTIONS_BUNDLE);

ArrayList<RestrictionEntry> restrictions=
newnew ArrayList<RestrictionEntry>();

restrictions.add(buildBooleanRestriction(ctxt, current));
restrictions.add(buildChoiceRestriction(ctxt, current));
restrictions.add(buildMultiSelectRestriction(ctxt, current));

Bundle result=newnew Bundle();

result.putParcelableArrayList(Intent.EXTRA_RESTRICTIONS_LIST,
restrictions);

setResultExtras(result);
}

In onReceive(), RestrictionEntriesReceiver pulls out the Bundle of current
restrictions, by retrieving the EXTRA_RESTRICTIONS_BUNDLE extra from the Intent
passed into onReceive(). Note that this Bundle could very well be empty, if this is
the first time we are being asked for restrictions.

RestrictionEntriesReceiver creates an empty ArrayList of RestrictionEntry
objects, then calls a series of builder methods to create a total of three such
RestrictionEntry objects, adding each to the list. onReceive() goes on to create a
Bundle representing the results to be returned, packages the ArrayList in that
Bundle under the EXTRA_RESTRICTIONS_LIST key, and returns that Bundle to the
caller by means of setResultExtras().

The three builder methods are each responsible for defining a single
RestrictionEntry, including populating it with the current value from the current
Bundle.

There are three types of RestrictionEntry, for boolean, single-selection lists
(“choice”), and multi-selection lists. The RestrictionEntry constructor takes two
parameters:

RESTRICTED PROFILES AND USERMANAGER

1662

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The String key under which we will later retrieve this restriction value
• The current value of the restriction

The current value is:

• A boolean for boolean restrictions
• A String for choice restrictions
• A String array for multi-select restrictions

Our first builder, buildBooleanRestriction(), populates and returns a
RestrictionEntry designed to collect a boolean value from the primary user, via a
CheckBox:

privateprivate RestrictionEntry buildBooleanRestriction(Context ctxt,
Bundle current) {

RestrictionEntry entry=
newnew RestrictionEntry(RESTRICTION_BOOLEAN,

current.getBoolean(RESTRICTION_BOOLEAN,
falsefalse));

entry.setTitle(ctxt.getString(R.string.boolean_restriction_title));
entry.setDescription(ctxt.getString(R.string.boolean_restriction_desc));

returnreturn(entry);
}

buildBooleanRestriction() retrieves the current value from current Bundle to use
with the RestrictionEntry constructor. In this case, if there is no such entry in the
Bundle, the overall default value is false.

Each RestrictionEntry can have a title (setTitle()), supplying a string which will
be displayed to describe what this restriction is. A boolean restriction can also have a
description (setDescription()), containing another string with a bit more text.
Note that, at the present time, the other two types of restrictions will ignore any
description that you include. Also note that the values supplied to setTitle() and
setDescription() need to be strings, and so if you wish to use a string resource, you
will need to get the actual string value yourself via getString().

The remaining two builder methods have a similar structure:

privateprivate RestrictionEntry buildChoiceRestriction(Context ctxt,
Bundle current) {

RestrictionEntry entry=
newnew RestrictionEntry(RESTRICTION_CHOICE,

current.getString(RESTRICTION_CHOICE));

RESTRICTED PROFILES AND USERMANAGER

1663

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

entry.setTitle(ctxt.getString(R.string.choice_restriction_title));
entry.setChoiceEntries(ctxt, R.array.display_values);
entry.setChoiceValues(ctxt, R.array.restriction_values);

returnreturn(entry);
}

privateprivate RestrictionEntry buildMultiSelectRestriction(Context ctxt,
Bundle current) {

RestrictionEntry entry=
newnew RestrictionEntry(RESTRICTION_MULTI,

current.getStringArray(RESTRICTION_MULTI));

entry.setTitle("A Multi-Select Restriction");
entry.setChoiceEntries(ctxt, R.array.display_values);
entry.setChoiceValues(ctxt, R.array.restriction_values);

returnreturn(entry);
}

As with a ListPreference, you provide two string arrays to the RestrictionEntry,
representing the values the primary user sees (setChoiceEntries()) and the
corresponding values to be supplied to your app based upon the choice(s)
(setChoiceValues()). You can supply these either as Java string arrays or as
<string-array> resources – RestrictionEntriesReceiver goes with the latter
approach.

Option #2: Custom Restriction Activity

It may be that what you want to collect, in terms of restrictions, cannot readily be
represented in the form of Switch widgets and list dialogs. For example, to restrict
use of your app based on time, it would be nice to use a TimePickerDialog or the
equivalent.

The alternative to returning an EXTRA_RESTRICTIONS_LIST roster of
RestrictionEntry objects from your BroadcastReceiver is to have the result Bundle
contain EXTRA_RESTRICTIONS_INTENT. This key should point to an Intent that
identifies the activity that you want to start up when the user taps the settings icon.
Android will call startActivityForResult() on that Intent when the user taps on
the settings icon.

Your job is to collect the restrictions from the user, using the
EXTRA_RESTRICTIONS_BUNDLE from the incoming Intent to pre-populate your
activity, if desired. When the user is done, you should call setResult(), passing in
an Intent that contains another EXTRA_RESTRICTIONS_BUNDLE with the revised data,

RESTRICTED PROFILES AND USERMANAGER

1664

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

or optionally a EXTRA_RESTRICTIONS_LIST (with the RestrictionEntry objects
containing the values to be used).

What the Primary User Sees

Given the RestrictionEntriesReceiver described above, when the primary user
goes to configure a restriction profile, your app will appear with a settings icon next
to it:

Figure 476: Restricted Profile, Showing App Settings Icon

Tapping that settings icon will “unfold” and display the restrictions that you
configured via the RestrictionEntry objects:

RESTRICTED PROFILES AND USERMANAGER

1665

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 477: Restricted Profile, Showing App Restrictions

The primary user can then interact with your restrictions, toggling checkboxes and
popping up the list dialogs:

RESTRICTED PROFILES AND USERMANAGER

1666

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 478: Restricted Profile, Showing Choice Restriction

Figure 479: Restricted Profile, Showing Multi-Select Restriction

RESTRICTED PROFILES AND USERMANAGER

1667

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding Out the Current Restrictions

Now, the rest of your app needs to find out what restrictions are placed upon it, so
behavior can be tailored accordingly. To do this, call getApplicationRestrictions()
on UserManager, passing in your package name, as seen here in MainActivity:

packagepackage com.commonsware.android.profile.app;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.UserManagerandroid.os.UserManager;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

UserManager mgr=(UserManager)getSystemService(USER_SERVICE);
Bundle restrictions=

mgr.getApplicationRestrictions(getPackageName());

ifif (restrictions.keySet().size() > 0) {
setContentView(R.layout.activity_main);

RestrictionsFragment f=

(RestrictionsFragment)getFragmentManager().findFragmentById(R.id.contents);

f.showRestrictions(restrictions);
}
elseelse {

Toast.makeText(thisthis, R.string.no_restrictions, Toast.LENGTH_LONG)
.show();

finish();
}

}
}

This Bundle could be empty, or it could have values specified by the primary user to
restrict the profile that is running your app.

In the case of this sample, we once again set up a RestrictionsAdapter to show the
results, if the Bundle is not empty. However, our adapter is a bit more complicated,
as there are more than boolean restrictions now. getView() has been updated to
handle all three possible restrictions, showing the icon for the boolean restriction,
and showing the value(s) from the lists in the other restrictions:

RESTRICTED PROFILES AND USERMANAGER

1668

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.profile.app;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Collectionsjava.util.Collections;

publicpublic classclass RestrictionsFragmentRestrictionsFragment extendsextends ListFragment {
publicpublic void showRestrictions(Bundle restrictions) {

setListAdapter(newnew RestrictionsAdapter(restrictions));
}

classclass RestrictionsAdapterRestrictionsAdapter extendsextends ArrayAdapter<String> {
Bundle restrictions;

RestrictionsAdapter(Bundle restrictions) {
supersuper(getActivity(), android.R.layout.simple_list_item_1,

newnew ArrayList<String>());

ArrayList<String> keys=
newnew ArrayList<String>(restrictions.keySet());

Collections.sort(keys);
addAll(keys);

thisthis.restrictions=restrictions;
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

TextView row=
(TextView)supersuper.getView(position, convertView, parent);

String key=getItem(position);

ifif (RestrictionEntriesReceiver.RESTRICTION_BOOLEAN.equals(key)) {
int icon=

restrictions.getBoolean(key) ? R.drawable.ic_true
: R.drawable.ic_false;

row.setCompoundDrawablesWithIntrinsicBounds(0, 0, icon, 0);
}
elseelse if (RestrictionEntriesReceiver.RESTRICTION_CHOICE.equals(key)) {

row.setText(String.format("%s (%s)", key,
restrictions.getString(key)));

}
elseelse {

String value=
TextUtils.join(" | ", restrictions.getStringArray(key));

RESTRICTED PROFILES AND USERMANAGER

1669

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

row.setText(String.format("%s (%s)", key, value));
}

returnreturn(row);
}

}
}

The result, when run on a restricted profile with restrictions placed upon our app, is
to show those restrictions:

Figure 480: App Restrictions Demo, on a Restricted Profile

The Uninstall Bug

Note that there appears to be a bug in Android 4.3, where an uninstalled app’s
restrictions remain intact. Your app may continue to show up in the restricted
profile, and if the user reinstalls the app later on, whatever original restrictions were
placed on a restricted profile return.

RESTRICTED PROFILES AND USERMANAGER

1670

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=59097

Implicit Intents May Go “Boom”
The primary user of a tablet, when setting up a restricted profile, can control what
apps are available to that profile. In many cases, if the user is setting up a restricted
profile in the first place, the list of apps available to that profile will be fairly limited,
such as only allowing a young child to access a few games and educational apps.

startActivity() always has the chance of throwing an
ActivityNotFoundException. However, for certain Intent actions, we often ignore
this possibility, because we are certain that there will be an app that can handle our
request:

• All Android devices have Web browsers, right?
• All Android devices have some sort of mapping application, right?
• All Android devices let you pick a contact, right?

Now, with restricted profiles, you will need to deal with the
ActivityNotFoundException case all of the time. You have three basic approaches
for this:

1. Wrap all startActivity() and startActivityForResult() calls in a
try/catch block that catches ActivityNotFoundException and intelligently
handle the problem

2. Use PackageManager and resolveActivity() before trying to start the
activity, where if resolveActivity() returns null, you know that there is no
activity available to handle your desired operation

3. Switch out some of your startActivity() and startActivityForResult()
calls for implementations in your app (e.g., embed Maps V2 rather than try
to launch a potentially-nonexistent activity)

You might consider implementing a safeStartActivity() utility method that wraps
up your particular plan, so you can debug it once.

The Future: App Ops?
Android 4.3 briefly had a leaked activity in the Settings app, that allows users to
enable or disable operations on a per-app basis. These operations cover many
common scenarios identified by permissions (e.g., read contacts, write contacts,
access location), though it is not a pure one-to-one mapping. This activity is referred
to as “App Ops”, based upon the title shown in the action bar.

RESTRICTED PROFILES AND USERMANAGER

1671

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While that activity has since been removed from the Settings app in AOSP, it is
perhaps a sign of things to come. Also, Android 4.4 has introduced an
AppOpsManager that presumably ties into this Settings activity, though that activity
was not enabled in Android 4.4 either. One can imagine that primary users will be
able to restrict specific operations for allowed apps for restricted profiles. So while
App Ops is not an immediate concern for most Android developers, it is something
to keep an eye on.

The author of this book maintains an App Ops developer FAQ with more
information on the subject.

RESTRICTED PROFILES AND USERMANAGER

1672

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com/blog/2013/08/13/app-ops-activity-out-of-aosp.html
http://commonsware.com/blog/2013/07/26/app-ops-developer-faq.html

Tapjacking

On the whole, Android’s security is fairly good for defending an app from another
app. Between using Linux users and filesystems for protecting an application’s files
from other apps, to the use of custom permissions to control access to public
interfaces, an application would seem to be relatively protected.

However, there is one attack vector that existed until Android 4.0.3: tapjacking. This
chapter outlines what tapjacking is and what you can do about it to protect your
app’s users, for as long as you are supporting devices older than 4.0.3.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

What is Tapjacking?
Tapjacking refers to another program intercepting and inspecting touch events that
are delivered to your foreground activity (or related artifacts, such as the input
method editor). At its worst, tapjackers could intercept passwords, PINs, and other
private data.

The term “tapjacking” seems to have been coined by Lookout Mobile Security, in a
blog post that originally demonstrated this issue.

1673

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.mylookout.com/2010/12/android-touch-event-hijacking/

You might be wondering how this is possible. There are a handful of approaches to
implementing this. The Lookout blog post cited perhaps the least useful approach:
making a transparent Toast. The Tapjacking/Jackalope sample application will
illustrate a far more troublesome implementation.

World War Z (Axis)

You may recall that there are three axes to consider with Android user interfaces.
The X and Y axes are the ones you typically think about, as they control the
horizontal and vertical positioning of widgets in an activity. The Z axis — effectively
“coming out the screen towards the user’s eyes” — can be used in applications for
sophisticated techniques, such as a pop-up panel.

Normally, you think of the Z axis within the scope of your activity and its widgets.
However, there are ways to display “system alerts” – widgets that can float over the
top of any activity. A Toast is the one you are familiar with, most likely. A Toast
displays something on the screen, yet touch events on the Toast itself will be passed
through to the underlying activity. Lookout demonstrated that it is possible to create
a fully-transparent Toast. However, the lifetime of a Toast is limited (3.5 seconds
maximum), which would limit how long it can try to grab touch events.

However, any application holding the SYSTEM_ALERT_WINDOW permission can display
their own “system alerts” with custom look and custom duration. By making one
that is fully transparent and lives as long as possible, a tapjacker can obtain touch
events for any application in the system, including lock screens, home screens, and
any standard activity.

Enter the Jackalope

To demonstrate this, let’s take a look at the Jackalope sample application. It consists
of a tiny activity and a service, with the service doing most of the work.

The activity employs Theme.NoDisplay:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="1"
android:versionName="1.0" package="com.commonsware.android.tj.jackalope">>

<uses-permission<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />/>
<application<application android:label="Jackalope">>

<activity<activity android:name=".Jackalope"
android:theme="@android:style/Theme.NoDisplay">>

<intent-filter><intent-filter>

TAPJACKING

1674

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/Jackalope
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/Jackalope

<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>
<service<service android:name=".Tapjacker" />/>

</application></application>
</manifest></manifest>

The activity then just starts up the service and finishes:

packagepackage com.commonsware.android.tj.jackalope;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass JackalopeJackalope extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

startService(newnew Intent(thisthis, Tapjacker.class));
finish();

}
}

The visible effect is… nothing. Tapping the icon in the launcher appears to have no
effect, but it does actually start up the tapjacker. You just cannot see it.

The Tapjacker service does its evil work in a handful of lines of code:

packagepackage com.commonsware.android.tj.jackalope;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.graphics.PixelFormatandroid.graphics.PixelFormat;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport android.view.Gravityandroid.view.Gravity;
importimport android.view.MotionEventandroid.view.MotionEvent;
importimport android.view.Viewandroid.view.View;
importimport android.view.WindowManagerandroid.view.WindowManager;

publicpublic classclass TapjackerTapjacker extendsextends Service implementsimplements View.OnTouchListener {
privateprivate View v=nullnull;
privateprivate WindowManager mgr=nullnull;

@Override
publicpublic void onCreate() {

supersuper.onCreate();

v=newnew View(thisthis);

TAPJACKING

1675

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

v.setOnTouchListener(thisthis);
mgr=(WindowManager)getSystemService(WINDOW_SERVICE);

WindowManager.LayoutParams params
=newnew WindowManager.LayoutParams(

WindowManager.LayoutParams.FILL_PARENT,
WindowManager.LayoutParams.FILL_PARENT,
WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
WindowManager.LayoutParams.FLAG_WATCH_OUTSIDE_TOUCH,
PixelFormat.TRANSPARENT);

params.gravity=Gravity.FILL_HORIZONTAL|Gravity.FILL_VERTICAL;
mgr.addView(v, params);

// stopSelf(); -- uncomment for "component-less" operation
}

@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(nullnull);
}

@Override
publicpublic void onDestroy() {

mgr.removeView(v); // comment out for "component-less" operation

supersuper.onDestroy();
}

publicpublic boolean onTouch(View v, MotionEvent event) {
Log.w("Tapjacker",

String.valueOf(event.getX())+":"+String.valueOf(event.getY()));

returnreturn(falsefalse);
}

}

In onCreate(), we create an invisible View in Java code. Note that while you
normally create a widget by passing in the Activity to the constructor, any Context
will work, and so here we use the Tapjacker service itself.

Then, we access the WindowManager system service and add the invisible View to the
system. To do this, we need to supply a WindowManager.LayoutParams object, much
like you might use LinearLayout.LayoutParams or RelativeLayout.LayoutParams
when putting a View inside of one of those containers. In this case, we:

1. Say that the View is to fill the screen
2. Indicates that the View is to be treated as a “system overlay”

(TYPE_SYSTEM_OVERLAY), which will be at the top of the Z axis, floating above
anything else (activities, dialogs, etc.)

TAPJACKING

1676

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Indicates that we are to receive touch events that are beyond the View itself
(FLAG_WATCH_OUTSIDE_TOUCH), such as on the system bar in API Level 11+
devices

We attach the Tapjacker service itself as the OnTouchListener to the View, and
simply log all touch events to LogCat. In onDestroy(), we remove the system overlay
View.

The result is that every screen tap results in an entry in LogCat – including data
entry via the soft keyboard — even though the user is unaware that anything might
be intercepting these events.

Note, though, that this does not intercept regular key events, including those from
hardware keyboards. Also note that this does not magically give the malware author
access to data entered before the tapjacker was set up. Hence, even if the tapjacker
can sniff a password, if they do not know the account name, the user may still be
safe.

Thinking Like a Malware Author

So, you have touch events. On the surface, this might not seem terribly useful, since
the View cannot see what is being tapped upon.

However, a savvy malware author would identify what activity is in the foreground
and log that information along with the tap details and the screen size, periodically
dumping that information to some server. The malware author can then scan the
touch event dumps to see what interesting applications are showing up. With a
minor investment – and possibly collaboration with other malware authors — the
author can know what touch events correspond to what keys on various input
method editors, including the stock keyboards used by a variety of devices. Loading
a pirated version of the APK on an emulator can indicate which activity has the
password, PIN, or other secure data. Then, it is merely a matter of identifying the
touch events applied to that activity and matching them up with the soft keyboard
to determine what the user has entered. Over time, the malware author can perhaps
develop a script to help automate this conversion.

Hence, the on-device tapjacker does not have to be very sophisticated, other than
trying to avoid detection by the user. All of the real work to leverage the intercepted
touch events can be handled offline.

TAPJACKING

1677

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Detecting Potential Tapjackers
Tapjacking seems bad.

This raises the question: can we identify when a tapjacker is running? That would
allow users and developers to “route around the damage”, such as uninstalling the
tapjacker application.

Unfortunately, this does not appear to be possible. There is no obvious way for an
application — or the user — to determine if some other application has employed
WindowManager to add a TYPE_SYSTEM_OVERLAY View to the screen. Even if there were,
there is no way to determine if this View represents a tapjacker or somebody
exploiting this capability for other, less nefarious ends.

All we can do is identify applications that might pose a problem.

Who Holds a Permission?

The biggest identifier of a possible tapjacker is the SYSTEM_ALERT_WINDOW
permission. This is required to add a TYPE_SYSTEM_OVERLAY View to the screen.
Relatively few applications request this, since built-in system alerts, like Toast, do
not require the permission.

Also, a tapjacker probably needs the INTERNET permission, to deliver the results to
the malware author. In principle, the tapjacker could be split into two applications,
one with SYSTEM_ALERT_WINDOW and one with INTERNET. However, this adds to
deployment complexity and therefore may be avoided by malware authors.

An end user can use programs like RL Permissions to examine the applications that
have these permissions. A developer can use PackageManager to enumerate the
installed applications and see which ones hold these permissions. We will examine
some code for doing this later in this chapter.

Who is Running?

Of course, a tapjacker is only a threat if it is actually running in the background.
Applications might use those two permissions just in the course of normal activity-
centric operations, not with an everlasting service trying to maintain the
interception View.

TAPJACKING

1678

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We can use ActivityManager to enumerate the running processes and what
packages’ code are in each. Any package that holds the permission combination
from the previous section and is running in a process is a possible tapjacking threat.
We will examine some code for doing this in the next section.

Note that it is important to examine running processes, not running services. For
example, the Tapjacker service from earlier in this chapter could add the
interception View and immediately exit. You can see this in action by adjusting the
code as indicated in the comments in onCreate() and onDestroy(). The
interception View will remain intact (with the Tapjacker service object leaked) until
the process is terminated. That process might be terminated quickly or slowly,
depending on what all is going on with the device. A sophisticated malware author
might try to run without a running service to increase stealthiness, at the cost of
occasionally losing some data.

Combining the Two: TJDetect

To see these techniques in action, take a look at the Tapjacking/TJDetect sample
project. This consists of a single ListActivity, whose list is populated with the
applications that hold both SYSTEM_ALERT_WINDOW and INTERNET permissions and are
presently running:

packagepackage com.commonsware.android.tj.detect;

importimport android.app.ActivityManagerandroid.app.ActivityManager;
importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.pm.PackageInfoandroid.content.pm.PackageInfo;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.HashSetjava.util.HashSet;

publicpublic classclass TJDetectTJDetect extendsextends ListActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ActivityManager am=(ActivityManager)getSystemService(ACTIVITY_SERVICE);
HashSet<CharSequence> runningPackages=newnew HashSet<CharSequence>();

forfor (ActivityManager.RunningAppProcessInfo proc :
am.getRunningAppProcesses()) {

forfor (String pkgName : proc.pkgList) {
runningPackages.add(pkgName);

}
}

TAPJACKING

1679

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/TJDetect
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/TJDetect

PackageManager mgr=getPackageManager();
ArrayList<CharSequence> scary=newnew ArrayList<CharSequence>();

forfor (PackageInfo pkg :
mgr.getInstalledPackages(PackageManager.GET_PERMISSIONS)) {

ifif (PackageManager.PERMISSION_GRANTED==
mgr.checkPermission(android.Manifest.permission.SYSTEM_ALERT_WINDOW,

pkg.packageName)) {
ifif (PackageManager.PERMISSION_GRANTED==

mgr.checkPermission(android.Manifest.permission.INTERNET,
pkg.packageName)) {

ifif (runningPackages.contains(pkg.packageName)) {
scary.add(mgr.getApplicationLabel(pkg.applicationInfo));

}
}

}
}

setListAdapter(newnew ArrayAdapter(thisthis,
android.R.layout.simple_list_item_1,
scary));

}
}

To find the unique set of packages that are running across all processes, we iterate
over the RunningAppProcessInfo objects returned by ActivityManager from a call to
getRunningAppProcesses(). One public data member of RunningAppProcessInfo is
a list of all the packages whose code runs in this process (pkgList). We use a simple
HashSet to come up with the unique set of packages.

Then, we find all installed packages via a call to getInstalledPackages() on
PackageManager. For each package, we use checkPermission() on PackageManager
to see if the package in question holds a permission. Packages that pass those two
tests are then checked against the HashSet of running packages, and those that are
running are recorded in an ArrayList, later wrapped in an ArrayAdapter.

If you run TJDetect, it will not detect Jackalope, since Jackalope lacks the INTERNET
permission. And, particularly on production hardware, it will detect several packages
that may not be tapjackers at all, but rather are system applications installed in the
firmware by the device manufacturer.

Defending Against Tapjackers
OK, so users and developers cannot reliably detect tapjackers. And Android 4.0.3
eliminates this attack vector. Surely, for previous versions of Android, there must be

TAPJACKING

1680

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

something in the OS that helps defend users and developers against tapjacking,
right?

The answer is “yes”, for a generous definition of the term “defend” and an equally
generous definition of “users and developers”.

Filtering Touch Events

The only “defense” directly provided by Android is to allow applications to filter out
touch events that had been intercepted by a tapjacker, Toast, or any other form of
system overlay or alert. Those touch events are simply dropped, never delivered to
the underlying activity.

Implementing the Filter

The simplest way to implement the touch event filter is to add the
android:filterTouchesWhenObscured attribute to a widget or container, setting it to
true. The equivalent Java setter method on View is
setFilterTouchesWhenObscured().

For example, take a look at the res/layout/main.xml file in the Tapjacking/
RelativeSecure sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:filterTouchesWhenObscured="true">>
<TextView<TextView android:id="@+id/label"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>/>

<EditText<EditText
android:id="@id/entry"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>/>

<Button<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"

TAPJACKING

1681

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure

android:layout_alignRight="@id/entry"
android:text="OK" />/>

<Button<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_toLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />/>

</RelativeLayout></RelativeLayout>

Here, we have android:filterTouchesWhenObscured="true" on the RelativeLayout
at the root of the layout resource. This property cascades to a container’s children,
and so if a tapjacker (or Toast or whatever) is above any of the widgets in the
RelativeLayout, none of the touch events will be processed.

More fine-grained control can be achieved in custom widgets by overriding
onFilterTouchEventForSecurity(), which gets control before the regular touch
event methods. You can determine if a touch event had been intercepted by looking
for the FLAG_WINDOW_IS_OBSCURED flag in the MotionEvent passed to
onFilterTouchEventForSecurity(), and you can make the decision of how to
handle this on an event-by-event basis.

The User Experience and the Hoped-For Security

Normally, the user will not see a difference when interacting with widgets that have
this attribute set. However, if a tapjacker is intercepting these events, the user will
not see any reaction from the widgets when they are tapped. For example, clicking a
Button will have no visual effect (e.g., orange flash).

The hope is that users will realize that the UI is not responding to their touch events
and therefore will not complete whatever it is they are doing. For example, they
might not complete their PIN entry after realizing that the number pad supplied by
the app is not responding to their taps.

For some users and some apps, this will be an effective defense. However, there will
be some users who will remain oblivious until after completing the attempt to enter
the private information.

The Flaws

The user can still use the soft keyboard to enter data into EditText widgets. While
the soft keyboard will not automatically appear in portrait mode (since the EditText

TAPJACKING

1682

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

will not respond to the tap), if it has the focus, the user can long-press the MENU
button to raise the soft keyboard and enter data that way.

Similarly, if the user is in landscape mode and gets the full-screen soft keyboard,
since this is not the EditText widget defended by the touch event filtering,
everything works normally — including interception by tapjacking. Developers
could try to prevent this by adding flagNoFullscreen to the android:imeOptions
attribute on the EditText in the layout XML, though this may not be honored by all
soft keyboards. Developers could also try to prevent this by locking the activity into
portrait mode (android:screenOrientation="portrait"), but this would be bad for
users with side-slider keyboards, Google TV devices, etc.

And, most importantly, the tapjacking still happens. If users keep trying to enter
their credentials despite the lack of UI feedback, they may eventually enter the
whole thing and therefore become vulnerable to having that information used for ill
ends.

Availability

Filtering touch events when the activity is obscured is supported in API Level 9 and
above — in other words, Android 2.3 and newer. At the time of this writing, that
leaves out ~25% of active Android devices, based on the June 1, 2012 published
edition of the platform versions data from Google.

Detect-and-Warn

You can use the tapjacker detection logic illustrated earlier in this chapter. It is not
particularly accurate, but you may feel it is worthwhile.

To minimize hassle for the user, your application should maintain a “whitelist” of
approved packages. Any time you detect a package that is not on the approved list,
you would raise an AlertDialog (or the equivalent) to let the user know of the
potential tapjacker. If they elect to continue onward in your app, add the new
package(s) to the whitelist, so you do not bother the user again for the same
package.

Why Is This Being Discussed?
Some of you are by this time wondering why this book has a chapter on this subject.

TAPJACKING

1683

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

Google’s security team indicated to the author that
android:filterTouchesWhenObscured is sufficient security. If so, developers need to
realize when to use it, and for that, developers need to understand what tapjacking
is to start with. The code to implement tapjacking is sufficiently trivial that “security
by obscurity” of the code seems pointless.

It is eminently possible that android:filterTouchesWhenObscured is not sufficient
security, despite Google’s claim. Since Google seems to have changed their mind,
eliminating tapjacking in Android 4.0.3, it would appear that Google thinks that
Google’s original solution was insufficient. In that case, developers may be able to
help inform the public about the dangers of applications that request the
SYSTEM_ALERT_WINDOW permission.

There are legitimate uses for tapjacking techniques. Some apps use this to provide a
universal gesture interface, for example, to get control no matter what application is
presently in the foreground. Whether the value that such apps provide is worth the
risks inherent in tapjacking is up for debate.

If you feel that tapjacking is a problem and that
android:filterTouchesWhenObscured is inadequate, you may wish to let Google
know when you have the opportunity to interact with Google engineers at
conferences and similar events. If you come up with other ways to detect and/or
prevent tapjacking, you may wish to distribute that knowledge, so other developers
can learn from your discovery.

What Changed in 4.0.3?
As of Android 4.0.3, the tapjacking attack is no longer possible, at least through the
techniques outlined in this chapter. A View of type TYPE_SYSTEM_OVERLAY cannot
receive touch events.

TAPJACKING

1684

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous Security Techniques

This chapter outlines some additional security measures that you can consider for
your applications that do not necessarily warrant a full chapter on their own at this
time.

In other words, it’s just a pile of interesting security stuff.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. In addition, you should review the app signing chapter if you are unfamiliar
with the signing process. Also, one demo uses remote services, including using the
binding pattern, which is also covered in this book.

Public Key Validation
We sign our apps with signing keys all the time. By default, we are signing with a so-
called “debug signing key”, created automatically by the build tools. For production,
we sign with a different signing key. The primary use of that signing key is to
determine equivalence of authorship:

• Is this APK, representing an upgrade to an already-installed app, signed by
the same signing key that signed that app?

• Is this APK, that requests firmware-defined signature-level permissions,
signed by the same signing key that signed the firmware?

However, as it turns out, information about the public key that signed an APK is
visible to us, for our own APK as well as for any other APK on the device. We can

1685

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

leverage that to help determine whether a given APK was signed by something we
recognize. This goes above and beyond using Android’s built-in signature-based
defenses (e.g., using a custom signature-level permission).

Scenarios

There are several scenarios in which we might imagine that we could employ our
own public key validation. How well the technique will work, though, depends on
what we are checking and the nature of the attack we are defending against.

Checking Yourself

You might consider checking your own app’s public key. After all, if your app is not
signed with your production signing key, something very strange is going on, and
the natural reaction is that “something strange” is unlikely to be a good thing for
you.

However, there are some issues here.

First and foremost, checking your own signing key assumes that whatever caused
you to not be signed by that key did not also modify your validation algorithm. For
example, suppose that you validate your signing key to determine if somebody
perhaps reverse-engineered and modified your app, perhaps to remove some license
checks. This will only catch an attacker that removed the licensing checks and did
not also remove your signature validation, or modify the validation to use the
attacker’s signing key. While it is possible that an attacker will modify one part but
not another, it remains unclear how well this defense will work in practice.

Also, bear in mind that you, as a developer, may be opting into services that
intentionally change your app’s signature. Various providers will “wrap” your app,
whether for interstitial ad banners or for quasi-DRM. There are three possible ways
that they wrap your app:

1. They sign it with their signing key, which means that your runtime
validation of the key will fail, as your app is now signed by their key, not
yours. This is also very risky, as if for whatever reason you are no longer able
to use their service (e.g., they go out of business), you may have difficulty in
upgrading your app, as you will not have the right key to use.

2. They sign it with your signing key, either one that you upload, or one that
they generate for you. In this case, your runtime public key validation logic

MISCELLANEOUS SECURITY TECHNIQUES

1686

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

could still work. On the other hand, now this other firm is perfectly capable
of upgrading your app, or shipping other apps, signed with your production
signing key, and this has its own set of risks.

3. They allow you to download the “wrapped” app and have you sign it yourself
with your own signing key. This is the best alternative from a security
standpoint, but it is the most tedious, as now you have additional work to do
to publish your app.

Checking Arbitrary Other Apps

What will tend to be more reliable is to check other applications’ public keys. While
they might have been cracked, it is unlikely that the same attacker also attacked
your app, and so you can help detect problems in others.

For example, let us consider a specific scenario: a client-side JAR for integration to a
third-party app.

This book outlines many forms of IPC, from content providers to remote services to
broadcast Intents. If you are creating an app that offers such IPC endpoints, you
may wish to consider also shipping a JAR to make using those endpoints a bit easier.
You might create a library that handles all of the details of sending commands to
your remote service, or you might create a library that provides a wrapper around
the AIDL-generated Java proxy classes for remote binding.

Another thing such a JAR could do is check the integrity of your app. The JAR’s code
is in the client’s app, not yours, and while your app might be cracked, the client’s
app might not. You could check the validity of the public key of your own app from
the client’s app, and fail if there is a detected problem.

This might be especially important depending upon the nature of the app and the
JAR that is providing access to it. If the app is an app offering on-device payments
(e.g., a Google Wallet sort of app), and the app offers an API for other apps to do
payments, it is fairly important that those other apps can trust the payment app. By
checking the public key, your JAR can help provide that level of trust… or at least
ensure that nobody else has done something specifically to degrade that trust.

This is particularly important for avoiding device-hosted man-in-the-middle attacks
on your IPC from client apps to your app. In an ideal world, you would only allow
IPC via signature-level permissions, but that will not work in cases where third
parties are writing the clients.

MISCELLANEOUS SECURITY TECHNIQUES

1687

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If your IPC is based upon a service (command pattern or binding pattern), if
multiple service implementations all advertise the same <intent-filter>, Android
needs to decide which service will handle the request. First, it will take into account
the android:priority value on the <intent-filter> (even though this behavior is
currently undocumented). For multiple services with the same priority (e.g., no
priority specified), the first one that was installed will be the one that is chosen. In
either case, the client has no way to know, short of examining the service’s public
key, whether the service that will respond to the requests for IPC is the legitimate
service or something else advertising that it supports the same Intent action.

Examining Public Keys

Let’s start off by seeing how we can get access to these public keys, or what
PackageManager and related classes refer to (somewhat erroneously) as “signatures”.
The MiscSecurity/SigDump sample project will allow us to browse the list of
installed packages, see a decoded public key on the screen for a package that we
select, plus dump the “signature” as a binary file for later comparison using another
app.

The UI Structure

In this sample, we use a SlidingPaneLayout for a master-detail pattern presentation,
as was demonstrated in the chapter on dealing with multiple screen sizes. The
“master” fragment will be the list of packages; the “detail” fragment will be the
decoded public key for the selected package.

The master fragment is implemented as PackagesFragment. It implements a typical
ListFragment for use with the master/detail pattern, utilizing the activated state to
show the context for the detail fragment. The detail will be SignatureFragment,
which will display portions of the decoded public key in a TableLayout:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:shrinkColumns="1"
android:stretchColumns="1">>

<TableRow><TableRow>

<TextView<TextView
android:layout_gravity="center"
android:layout_margin="4dp"
android:text="@string/subject"

MISCELLANEOUS SECURITY TECHNIQUES

1688

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MiscSecurity/SigDump
http://github.com/commonsguy/cw-omnibus/tree/master/MiscSecurity/SigDump

android:textStyle="bold"/>/>

<TextView<TextView android:id="@+id/subject"/>/>
</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_gravity="center"
android:layout_margin="4dp"
android:text="@string/issuer"
android:textStyle="bold"/>/>

<TextView<TextView android:id="@+id/issuer"/>/>
</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_gravity="center"
android:layout_margin="4dp"
android:text="@string/valid_between"
android:textStyle="bold"/>/>

<TextView<TextView android:id="@+id/valid"/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

Listing the Packages

Our PackagesFragment needs the list of packages to display. It expects the hosting
activity to supply that, by using the contract pattern, and having a
getPackageList() method on its Contract:

interfaceinterface ContractContract {
void onPackageSelected(PackageInfo pkgInfo);

List<PackageInfo> getPackageList();
}

The hosting activity — MainActivity — retrieves a PackageManager instance in
onCreate(), caching it in a mgr data member. getPackageList() then calls
getInstalledPackages() on PackageManager, specifically requesting to retrieve
signature information via the GET_SIGNATURES flag. The list we get back from
getInstalledPackages() can be in any order, so we sort the results before returning
it for display purposes:

MISCELLANEOUS SECURITY TECHNIQUES

1689

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic List<PackageInfo> getPackageList() {

List<PackageInfo> result=
mgr.getInstalledPackages(PackageManager.GET_SIGNATURES);

Collections.sort(result, newnew Comparator<PackageInfo>() {
@Override
publicpublic int compare(finalfinal PackageInfo a, finalfinal PackageInfo b) {

returnreturn(a.packageName.compareTo(b.packageName));
}

});

returnreturn(result);
}

Note that this is a List of PackageInfo objects, so we need an ArrayAdapter
subclass to handle rendering that. Here, we have a PackageListAdapter that knows
how to populate list rows using the packageName field of a PackageInfo object, plus
using an activated row layout for API Level 11+ devices:

packagepackage com.commonsware.android.signature.dump;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.content.pm.PackageInfoandroid.content.pm.PackageInfo;
importimport android.os.Buildandroid.os.Build;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.TextViewandroid.widget.TextView;

classclass PackageListAdapterPackageListAdapter extendsextends ArrayAdapter<PackageInfo> {
PackageListAdapter(PackagesFragment packagesFragment) {

supersuper(packagesFragment.getActivity(), getRowResourceId(),
packagesFragment.getContract().getPackageList());

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);

((TextView)result).setText(getItem(position).packageName);

returnreturn(result);
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
privateprivate staticstatic int getRowResourceId() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
returnreturn(android.R.layout.simple_list_item_activated_1);

}

returnreturn(android.R.layout.simple_list_item_1);

MISCELLANEOUS SECURITY TECHNIQUES

1690

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

The result is that our master list is a list of all installed packages, sorted by package
name, with the detail TableLayout peeking out of the right edge when shown on a
phone-sized screen:

Figure 481: Signature Dump Demo, As Initially Launched

Dumping the Key

onListItemClick() of our PackagesFragment routes control to
onPackageSelected() of the Contract interface, which in our case is MainActivity.
There, we need to do some useful stuff based upon the fact that the user tapped on a
particular package:

@Override
publicpublic void onPackageSelected(PackageInfo pkgInfo) {

Signature[] signatures=pkgInfo.signatures;
byte[] raw=signatures[0].toByteArray();

sigDisplay.show(raw);
panes.closePane();

MISCELLANEOUS SECURITY TECHNIQUES

1691

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

File output=
newnew File(getExternalFilesDir(nullnull),

pkgInfo.packageName.replace('.', '_') + ".bin");

newnew WriteThread(output, raw).start();
}

First, we get the Signature array from the PackageInfo object. While this is an array,
usually an app will only be signed once. Signing more than once is not especially
useful, as an upgraded app needs to match the count and contents of each signature.
Hence, we will only pay attention to the first signature. If you are using these
techniques as the basis for your client JAR checking the public key of your app for
IPC protection purposes, and your app is signed with multiple keys, you will want to
check all of those keys.

The public key itself is represented as a byte array in the Signature.
onPackageSelected() does two things with this byte array:

• Writes it to a file on external storage using a background thread, with a
filename based on the app’s package name, with . characters replaced by _
characters

• Passes the byte array to the detail fragment (a SignatureFragment) and
updates the SlidingPaneLayout to ensure that detail fragment is now visible

Decoding the Key

SignatureFragment is mostly comprised of the show() method that MainActivity
uses to pass us the byte array of the “signature” to display:

packagepackage com.commonsware.android.signature.dump;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.io.ByteArrayInputStreamjava.io.ByteArrayInputStream;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport java.security.cert.CertificateFactoryjava.security.cert.CertificateFactory;
importimport java.security.cert.X509Certificatejava.security.cert.X509Certificate;
importimport java.text.DateFormatjava.text.DateFormat;
importimport java.text.SimpleDateFormatjava.text.SimpleDateFormat;
importimport java.util.Localejava.util.Locale;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass SignatureFragmentSignatureFragment extendsextends SherlockFragment {

MISCELLANEOUS SECURITY TECHNIQUES

1692

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DateFormat fmt=newnew SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US);

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

returnreturn(inflater.inflate(R.layout.sig, container, falsefalse));
}

void show(byte[] raw) {
CertificateFactory cf=nullnull;

trytry {
cf=CertificateFactory.getInstance("X509");

}
catchcatch (CertificateException e) {

Log.e(getClass().getSimpleName(),
"Exception getting CertificateFactory", e);

returnreturn;
}

X509Certificate c=nullnull;
ByteArrayInputStream bin=newnew ByteArrayInputStream(raw);

trytry {
c=(X509Certificate)cf.generateCertificate(bin);

}
catchcatch (CertificateException e) {

Log.e(getClass().getSimpleName(),
"Exception getting X509Certificate", e);

returnreturn;
}

TextView tv=(TextView)getView().findViewById(R.id.subject);

tv.setText(c.getSubjectDN().toString());

tv=(TextView)getView().findViewById(R.id.issuer);
tv.setText(c.getIssuerDN().toString());

tv=(TextView)getView().findViewById(R.id.valid);
tv.setText(fmt.format(c.getNotBefore()) + " to "

+ fmt.format(c.getNotAfter()));
}

}

That byte array really represents an X509 certificate, serialized to a byte array.
show() goes through the work to get the X509Certificate object representing that
same data, assuming the byte array is not corrupted somehow. Then, show()
populates some TextView widgets in our TableLayout with the:

• The subject of the signature

MISCELLANEOUS SECURITY TECHNIQUES

1693

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The issuer of the signature
• The range of dates in which this signature is valid

A debug signing key output will resemble:

Figure 482: Signature Dump Demo, Showing Debug Signing Key

A self-signed production signing key will resemble:

MISCELLANEOUS SECURITY TECHNIQUES

1694

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 483: Signature Dump Demo, Showing Production Signing Key

A signing key created by some signing authority would have a subject that is distinct
from its issuer.

Validating a Service’s Public Key

Seeing these public keys is one thing — using them to help protect the user from
man-in-the-middle attacks is another.

In this section, we will look at how to validate the public key of a service that is
exporting some API that a client app will use, so the client app knows that it is
talking to the right service implementation. There are three sample projects that
make up this demonstration, all found in the MiscSecurity/SecureServiceIPC
directory of the GitHub repository.

The Services

The demo contains two separate apps, each implementing a Service. The
GoodService project has GoodService, which contains support for both the

MISCELLANEOUS SECURITY TECHNIQUES

1695

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MiscSecurity/SecureServiceIPC
http://github.com/commonsguy/cw-omnibus/tree/master/MiscSecurity/SecureServiceIPC

command and binding patterns, where the only effective behavior for either of them
is to log positive-sounding messages to LogCat:

packagepackage com.commonsware.android.secsvc.demo1;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.os.RemoteExceptionandroid.os.RemoteException;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.android.secsvc.SomethingUsefulcom.commonsware.android.secsvc.SomethingUseful;

publicpublic classclass GoodServiceGoodService extendsextends Service {

@Override
publicpublic IBinder onBind(Intent arg0) {

returnreturn(newnew GoodBinder());
}

@Override
publicpublic int onStartCommand(Intent intent, int flags, int startId) {

Log.d(getClass().getSimpleName(), "It's all good");

stopSelf();

returnreturn(START_NOT_STICKY);
}

staticstatic classclass GoodBinderGoodBinder extendsextends SomethingUseful.Stub {
@Override
publicpublic void hi() throwsthrows RemoteException {

Log.d(getClass().getSimpleName(), "It's all good");
}

}
}

The BadService project has BadService, with the same implementation, except that
the logging messages indicate that the service is, in fact, evil.

However, both projects have their services defined in the manifest with the same
<intent-filter>, tying each of their services to the
com.commonsware.android.secsvc.SOMETHING custom action:

<service<service
android:name="GoodService"
tools:ignore="ExportedService">>

<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.secsvc.SOMETHING"/>/>

</intent-filter></intent-filter>
</service></service>

MISCELLANEOUS SECURITY TECHNIQUES

1696

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The difference is that the BadService adds a high android:priority value, in an
attempt to masquerade as the GoodService and convince clients to talk to it instead:

<service<service
android:name="BadService"
tools:ignore="ExportedService">>
<intent-filter<intent-filter android:priority="2147483647">>

<action<action android:name="com.commonsware.android.secsvc.SOMETHING"/>/>
</intent-filter></intent-filter>

</service></service>

Using the Services

The third project in the demo, Client, has a MainActivity with a layout consisting
of two Button widgets and a Switch:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".MainActivity">>

<Switch<Switch
android:id="@+id/verify"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dip"
android:text="@string/enable_verification"/>/>

<Button<Button
android:id="@+id/command"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_margin="4dip"
android:layout_weight="1"
android:onClick="testCommand"
android:text="@string/test_command"/>/>

<Button<Button
android:id="@+id/binding"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_margin="4dip"
android:layout_weight="1"
android:onClick="testBinding"
android:text="@string/test_binding"/>/>

</LinearLayout></LinearLayout>

MISCELLANEOUS SECURITY TECHNIQUES

1697

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Not surprisingly, the “Test Command” button sends a command to the
com.commonsware.android.secsvc.SOMETHING service, while the “Test Binding”
button will bind to the service, call the hi() method of the service’s AIDL-defined
API, and then unbind from the service.

And, by default, the Intent used for sending the command or initiating the binding
is simply one that identifies the com.commonsware.android.secsvc.SOMETHING
action string:

privateprivate staticstatic finalfinal String ACTION_SERVICE=
"com.commonsware.android.secsvc.SOMETHING";

privateprivate staticstatic finalfinal Intent INTENT_SERVICE=newnew Intent(ACTION_SERVICE);

Validating the Service

If the Switch is checked, though, we want to validate that the service is the right one
for our activity to talk to.

The buildServiceIntent() method in MainActivity creates the Intent that we will
use for sending the command or binding to the service. In there, if the verify
Switch is checked, we iterate over all possible services that advertise that they
support our custom action string:

Intent buildServiceIntent() {
Intent result=nullnull;

ifif (verify.isChecked()) {
PackageManager mgr=getPackageManager();

forfor (ResolveInfo info : mgr.queryIntentServices(INTENT_SERVICE, 0)) {
trytry {

ifif (validate(info.serviceInfo.packageName,
R.raw.valid_signature)) {

result=newnew Intent(INTENT_SERVICE);
result.setComponent(newnew ComponentName(

info.serviceInfo.packageName,
info.serviceInfo.name));

breakbreak;
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception finding valid service", e);

}
}

}
elseelse {

MISCELLANEOUS SECURITY TECHNIQUES

1698

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

result=INTENT_SERVICE;
}

returnreturn(result);
}

Probably queryIntentServices() will return a list of size 1. If it returns an empty
list, buildServiceIntent() will return null, and the caller can know to avoid trying
to work with the service. However, buildServiceIntent() will also return null if
there is no valid service to talk to — even if queryIntentServices() indicates that
there is a matching Service. That is because buildServiceIntent() calls
validate() to compare the public key of the service with a known good edition of
that key. Here, we package that “known good edition” as a raw resource, named
valid_signature. This is the signature dumped by the SigDump sample application
described earlier in this chapter.

validate(), in turn, finds the signature of the service’s package and compares it
with the contents of the raw resource:

boolean validate(String pkg, int raw) throwsthrows NameNotFoundException,
NotFoundException, IOException {

PackageManager mgr=getPackageManager();
PackageInfo pkgInfo=

mgr.getPackageInfo(pkg, PackageManager.GET_SIGNATURES);
Signature[] signatures=pkgInfo.signatures;
byte[] local=signatures[0].toByteArray();

returnreturn(isEqual(newnew ByteArrayInputStream(local),
getResources().openRawResource(raw)));

}

The isEqual() method is simply some code, found in a StackOverflow answer, that
compares the bytes of two streams, looking for a match:

// from http://stackoverflow.com/a/4245881/115145

privateprivate boolean isEqual(InputStream i1, InputStream i2)
throwsthrows IOException {

byte[] buf1=newnew byte[1024];
byte[] buf2=newnew byte[1024];

trytry {
DataInputStream d2=newnew DataInputStream(i2);
int len;
whilewhile ((len=i1.read(buf1)) > 0) {

d2.readFully(buf2, 0, len);
forfor (int i=0; i < len; i++)

ifif (buf1[i] != buf2[i])
returnreturn falsefalse;

MISCELLANEOUS SECURITY TECHNIQUES

1699

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
returnreturn d2.read() < 0; // is the end of the second file

// also.
}
catchcatch (EOFException ioe) {

returnreturn falsefalse;
}
finallyfinally {

i1.close();
i2.close();

}
}

The buildServiceIntent() method not only calls validate(), but then calls
setComponent() on the Intent for the service with the matching public key. This
ensures that we will only talk to this Service implementation, and not any others.

If you wish to test this behavior, you will need to have the GoodService and the
BadService apps signed with different signing keys, and use the SigDump sample app
to get the binary representation of that signing key to use in your client app.

What you will find is that if validation is enabled, the client app will only work with
GoodService, even if BadService is installed. Without this validation, if BadService
is installed along with GoodService, the client app will work with BadService, due
to the higher android:priority on the BadService.

You might argue that, in this case, we could simply see if the package name is the
right one, rather than fussing around with the public keys. That is true… in this case.
The more likely attack, though, is that the service app is replaced by a modified
version of the same service app, with a bit of additional code that makes use of the
data flowing between client and service. In that case, the package name, and even
the class name of the service, are likely to be unmodified. However, unless the real
services’ author lost control of their production signing key, the attacker’s app would
be signed by a different signing key, making the public key validation important.

Choosing Your Signing Keysize
The documentation for app signing contains a small side note about the -keysize
parameter to keytoolkeytool, the utility used to generate our signing keys:

The size of each generated key (bits). If not supplied, Keytool uses a default
key size of 1024 bits. In general, we recommend using a key size of 2048 bits
or higher.

MISCELLANEOUS SECURITY TECHNIQUES

1700

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/publishing/app-signing.html#cert

The reason for the 2,048-bit key size recommendation is that 1,024-bit RSA (the
keytoolkeytool default) has been considered at risk for a few years.

The recent revelations about state-sponsored decryption research should be
hammering this home. Even if today, forging a 1,024-bit digital signature is still
impractical for all but the largest security agencies, it is well within reason that this
will fall within the reach of large botnets in the not-too-distant future. Once signing
keys can be cracked, apps will be able to be replaced with hacked editions, without
tripping up the signature check, or signature-level permission checks might start
passing due to forged signatures.

Switching to a larger keysize is not that hard… for new apps. Just specify -keysize
4096 when creating your production signing key, and you should be good for a long
time, barring a major decryption breakthrough for RSA signatures.

For existing apps with existing signing keys, though, you cannot change the key
without breaking your ability to update the app.

Create a new, stronger production signing key, as a separate key from whatever you
are using for production. Make note to use that new signing key for any new apps
you create. And, if you have other reasons why you are migrating an existing user
base to a new app (e.g., free app for which you are now offering a paid-app option),
consider using the new signing key.

If you are a consultant, and you create unique signing keys per project, just cut over
to using a stronger key for new clients and projects.

And if you are creating apps for which security is paramount, you might consider
whether it is worthwhile to move your user base to a new version of the app with a
new signing key at some point, just for the added protection.

Avoiding Accidental APIs
One place where developers create their own security problems is with “accidental
APIs”.

An API, of course, is where one code base exposes some interface that another code
base can use. An accidental API is when one code base does not intend to expose
an interface, but does anyway, possibly to the app’s detriment.

MISCELLANEOUS SECURITY TECHNIQUES

1701

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://lists.mayfirst.org/pipermail/guardian-dev/2013-September/002453.html

Bear in mind that if your app becomes popular, other developers will poke and prod
at it, to see if they can connect to your app by one means or another. Perhaps they
want to offer features that you have not gotten to yet. Perhaps they have more
nefarious aims. Regardless, making sure that other code can only work with your
app the way that you intend for such code to work with your app.

Export Only What’s Necessary

A component of your app is only reachable by a third-party app if it is exported.
Otherwise, it is inaccessible to third-party apps.

(Admittedly, content providers have an exception to this rule, which we will get to
shortly)

You normally do not think about exporting components, except when it comes to
content providers. However, your choices for how you implement your app may
lead you to accidentally export things that you did not realize were exported.

Export Defaults

The official way to declare whether or not a component is exported is to have an
android:exported attribute for that component in the manifest (e.g., on an
<activity> element). However, many times, we do not have such an attribute, but
instead rely on the default export behavior.

Activities, services, and broadcast receivers have a simple rule for the default: if the
component has an <intent-filter>, it is exported by default. Otherwise, it is not
exported by default.

This, in turn, leads to a fairly simple development rule: only use an
<intent-filter> and implicit Intents for working with your components if you
also want third party apps to work with those components. Otherwise, do not use
<intent-filter>, and instead communicate with your components using explicit
Intents (e.g., the kind that take a Java class as the second constructor parameter).

For example, the classic MAIN/LAUNCHER <intent-filter> on your launcher activity
is specifically there because you want a third party app — the launcher — to be
able to start your activity. Most, if not all, of your other activities probably do not
need an <intent-filter>, as they are likely to be private to your app.

MISCELLANEOUS SECURITY TECHNIQUES

1702

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Chooser Bug

Some developers choose to still use an <intent-filter> and implicit Intents for
their own private activities, yet then use android:exported to enforce the privacy.

This is not a good plan.

The rest of the system, notably PackageManager, does not pay much attention to
android:exported until the time when the component is to be used, such as when
the activity is to be started. Then, and only then, does Android realize that the
component is not exported, and it fails the request, usually with a cryptic
SecurityException.

A classic example of where this can cause problem came to light in 2012, with the
UPS Mobile app. The following is an excerpt from the author’s blog post on this
incident:

The UPS Mobile app allows you to track packages and do a handful of other things
that you might ordinarily do via the UPS Web site. It generally seems to be well-
regarded, but it has an annoying flaw:

It claims to be Barcode Scanner, and does a lousy job at it.

Barcode Scanner, from ZXing, is a favorite among Android developers for its
integration possibilities. However, some people do not like having a dependence
upon the Barcode Scanner app, so they grab the open source code and attempt to
blend it into their own apps. This is neither endorsed nor supported by the ZXing
team, but since it is open source, it is also perfectly legitimate.

However, UPS (or whoever they hired to build the app) screwed up. They not only
copied the source code, but they copied the manifest entry for the scanning
activity. And, their activity has:

<intent-filter><intent-filter>
<action<action android:name="com.google.zxing.client.android.SCAN" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>

<intent-filter><intent-filter>

This means that on any device that has UPS Mobile installed, they will be an option
for handling Barcode Scanner Intents. What happened was that the person asking
the question was manually invoking startActivityForResult() to bring up

MISCELLANEOUS SECURITY TECHNIQUES

1703

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com/blog/2012/07/09/dont-advertise-intent-filters-that-are-not-yours.html
http://commonsware.com/blog/2012/07/09/dont-advertise-intent-filters-that-are-not-yours.html
https://play.google.com/store/apps/details?id=com.ups.mobile.android
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
http://code.google.com/p/zxing/

Barcode Scanner, was getting a chooser with UPS Mobile in it, and then was
crashing upon choosing UPS Mobile… because UPS Mobile declared this activity to
be not exported.

Due to this bug, Android will display non-exported activities in a chooser, despite
the fact that they can never be successfully used by the user.

So, what should we learn from this?

First, UPS Mobile should not have used that <intent-filter>. As Dianne
Hackborn has pointed out, your <intent-filter> mix is effectively part of your
app’s API, and so you need to think long and hard about every <intent-filter>
you publish. UPS Mobile is not Barcode Scanner and should not be advertising that
they handle such Intents, despite the activity being not exported.

Second, UPS Mobile probably should not have had any <intent-filter> elements
for this activity, if they intend to use it purely internally. They could just as easily
use an explicit Intent to identify the activity and avoid all of this nonsense.

Third, the person who filed the SO question ideally would have been using ZXing’s
IntentIntegrator. As Sean Owen of the ZXing project noted in a comment on my
answer, IntentIntegrator ensures that only Barcode Scanner or official brethren
will handle any scan requests, so this problem would not have appeared.

Fourth, Android really should not be showing non-exported activities in a chooser,
which means probably that PackageManager should be filtering out non-exported
activities from methods like queryIntentActivities(), which I presume lies at the
heart of the chooser.

In summary, if your component is truly private, do not have an <intent-filter> on
it, lest you cause yourself, and your users, problems with other apps.

The ContentProvider Behavior Change

Content providers are a little different… in lots of ways. In the specific scenarios
being covered here, there are two primary differences.

First, third-party apps can still access a provider that has
android:exported="false". However, they can only do so in response to some
operation initiated by your application, using android:grantUriPermissions and

MISCELLANEOUS SECURITY TECHNIQUES

1704

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=29535
http://android-developers.blogspot.com/2011/06/things-that-cannot-change.html
http://android-developers.blogspot.com/2011/06/things-that-cannot-change.html

flags like FLAG_GRANT_READ_URI_PERMISSION. A third-party app will have no
independent access to your non-exported provider.

Second, the default value for android:exported not only does not depend upon
<intent-filter> (since few providers use one), but it has changed over the years:

• For apps with android:minSdkVersion and android:targetSdkVersion set
to 16 or lower, the provider is exported by default

• All other apps, the provider is not exported by default

Lint will complain about your manifest having a <provider> without an
android:exported attribute.

Sanitize Your Input Extras

If you do expose one or more of your components to third-party apps, and you are
supporting certain Intent extras on any Intents used to talk to those components,
make sure that the extras’ values make sense.

Even Google makes this error, as was seen in the PreferenceActivity bug.
PreferenceActivity supports an extra, named :android:show_fragment, to
indicate that the activity should immediately jump to a specific fragment, rather
than start at the top level of the preference navigation. The problem is that
PreferenceActivity did not — and, at the time, could not — validate that the
fragment to be loaded is a fragment that is supposed to be loaded. This would allow
attackers to force apps, like Settings, to load arbitrary fragments, including those
not normally accessible to the current user. This is the reason why we now need to
override isValidFragment() in our PreferenceActivity implementations, so we
can declare whether or not a particular requested fragment is a legitimate choice or
not.

The equivalent behavior for a ContentProvider is to sanitize the inputs to methods
like query(), update(), openFile(), and so on, to make sure that you do not
expose something that you should not. For example, blindly accepting paths to
openFile() could get you in trouble, if the Uri contains relative paths (e.g.,
content://your.authority.here/../databases/your-private.db), perhaps
allowing third parties to get at files that you did not intend for them to access.

MISCELLANEOUS SECURITY TECHNIQUES

1705

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://osvdb.org/100835
http://osvdb.org/100835

Secure Your Output Extras

Similarly, if you send broadcasts or otherwise use IPC to talk to third-party apps,
bear in mind that others might be able to see some of that interaction, depending
on the IPC in question.

The obvious case is with a broadcast Intent for an implicit Intent. Any app with a
registered receiver will be able to “tune into” that broadcast and get whatever data
is inside the Intent. In cases where you cannot use permissions to limit the scope
of the broadcast, you need to make sure that there is nothing in the Intent that is
private to the user.

Sometimes, though, non-obvious cases will emerge. For a few years, Intent extras
on activities might be viewed by third-party apps that held the GET_TASKS
permission, courtesy of the recent-tasks list. The Intent used to launch the task is
available via ActivityManager and getRecentTasks(). While this specific problem
was resolved in Android 4.1.1, there may be other similar scenarios lurking about.

Other Ways to Expose Data
Sometimes, we expose data to third-party apps by using standard Android APIs. We
focus on the normal publisher and consumer of data using those APIs and forget
about other apps that might be monitoring those communications. Or, we might
not realize that one party in those communications may not have the user’s best
interests at heart. This section outlines some examples.

App Widgets

Any data that is put into the widgets inside of your RemoteViews for an app widget
is visible to the home screen, lockscreen, or other app widget host. Those apps are
the ones actually converting the RemoteViews into a view hierarchy, and they can
inspect those views, reading the text in your TextViews, and so forth.

As a result, be careful about exposing potentially sensitive data via an app widget.

Notifications

Custom notifications also use RemoteViews and therefore could suffer from the
same problem.

MISCELLANEOUS SECURITY TECHNIQUES

1706

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On the surface, you might not be worried quite so much about this, because the
Notification object goes to the NotificationManager, for display by the OS itself.

However, as of Android 4.3 (API Level 18), apps can register to listen to added and
removed notifications via a NotificationListenerService. Not only can such a
service read the text from your Notification, but it can also access your
RemoteViews. This includes any RemoteViews that may be generated for you by the
expanded notification classes (e.g., BigPictureStyle).

As a result, be careful about exposing potentially sensitive data via a Notification.

Clipboard

Any app can retrieve text off of the clipboard. After all, that’s the point behind a
clipboard.

However, this does mean that you need to be careful what you put on the clipboard
in the first place. The quintessential problem case is a password manager: putting a
password on the clipboard for easy pasting into an app’s EditText password field
will be popular, but it allows that password to be retrieved by other apps.

You can attempt to help reduce the window of risk by clearing the clipboard after a
period of time. However, bear in mind that your process might be terminated
before that occurs. Also, only clear the clipboard if the clipboard text is still yours
— do not clear the clipboard if another app has already put its own contents there,
lest you confuse and irritate the user in the middle of some other paste operation.

ServerSocket and Kin

If you open up any sort of server-style socket connection — TCP/IP, Bluetooth, etc.
— bear in mind that the Android security framework may not be able to help you
much. You cannot secure a ServerSocket with an android:permission attribute,
for example. It is up to you to validate whether a particular request is expected and
allowed, or not.

MISCELLANEOUS SECURITY TECHNIQUES

1707

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Hardware and System Services

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Accessing Location-Based Services

A popular feature on current-era mobile devices is GPS capability, so the device can
tell you where you are at any point in time. While the most popular use of GPS
service is mapping and directions, there are other things you can do if you know
your location. For example, you might set up a dynamic chat application where the
people you can chat with are based on physical location, so you are chatting with
those you are nearest. Or, you could automatically “geotag” posts to Twitter or
similar services.

GPS is not the only way a mobile device can identify your location. Alternatives
include:

1. Cell tower triangulation, where your position is determined based on signal
strength to nearby cell towers

2. Proximity to public WiFi “hotspots” that have known geographic locations
3. GPS alternatives, such as GLONASS (Russia), Galileo (European Union, still

under development), and Compass (China, still under development)

Android devices may have one or more of these services available to them. You, as a
developer, can ask the device for your location, plus details on what providers are
available. There are even ways for you to simulate your location in the emulator, for
use in testing your location-enabled applications.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads.

1709

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/GLONASS
http://en.wikipedia.org/wiki/Galileo_%28satellite_navigation%29
http://en.wikipedia.org/wiki/Beidou_Navigation_Satellite_System#Global_system_.28BeiDou-2_or_Compass_navigation_system.29

Location Providers: They Know Where You’re
Hiding
Android devices can have access to several different means of determining your
location. Some will have better accuracy than others. Some may be free, while others
may have a cost associated with them. Some may be able to tell you more than just
your current position, such as your elevation over sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the device.
Providers know not only your location, but also their own characteristics, in terms of
accuracy, cost, etc.

You, as a developer, will use a LocationManager, which holds the LocationProvider
set, to figure out which LocationProvider is right for your particular circumstance.
You will also need a permission in your application, or the various location APIs will
fail due to a security violation. Depending on which location providers you wish to
use, you may need ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both. Note
that ACCESS_COARSE_LOCATION may intentionally filter out location fixes that are “too
good” (i.e., more accurate than a city block).

Finding Yourself
The obvious thing to do with a location service is to figure out where you are right
now.

To do that, you need to get a LocationManager — call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it to be
a LocationManager.

The next step to find out where you are is to get the name of the LocationProvider
you want to use. Here, you have two main options:

• Ask the user to pick a provider
• Find the best-match provider based on a set of criteria

ACCESSING LOCATION-BASED SERVICES

1710

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then present to
the user for selection.

Or, you can create and populate a Criteria object, stating the particulars of what
you want out of a LocationProvider, such as:

1. setAltitudeRequired() to indicate if you need the current altitude or not
2. setAccuracy() to set a minimum level of accuracy, in meters, for the

position
3. setCostAllowed() to control if the provider must be free or if it can incur a

cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your LocationManager,
and Android will sift through the criteria and give you the best answer. Note that not
all of your criteria may be met – all but the monetary cost criterion might be relaxed
if nothing matches.

You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownLocation() to find out where you were recently. However, unless
something else is causing the desired provider to collect fixes (e.g., unless the GPS
radio is on), getLastKnownLocation() will return null, indicating that there is no
known position. On the other hand, getLastKnownLocation() incurs no monetary
or power cost, since the provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude and
longitude of the device in degrees as a Java double. If the particular location
provider offers other data, you can get at that as well:

1. For altitude, hasAltitude() will tell you if there is an altitude value, and
getAltitude() will return the altitude in meters.

2. For bearing (i.e., compass-style direction), hasBearing() will tell you if there
is a bearing available, and getBearing() will return it as degrees east of true
north.

3. For speed, hasSpeed() will tell you if the speed is known and getSpeed()
will return the speed in meters per second.

ACCESSING LOCATION-BASED SERVICES

1711

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A more likely approach to getting the Location from a LocationProvider, though, is
to register for updates, as described in the next section.

On the Move
Not all location providers are necessarily immediately responsive. GPS, for example,
requires activating a radio and getting a fix from the satellites before you get a
location. That is why Android does not offer a getMeMyCurrentLocationNow()
method. Combine that with the fact that your users may well want their movements
to be reflected in your application, and you are probably best off registering for
location updates and using that as your means of getting the current location.

The Internet/Weather sample application shows how to register for updates — call
requestLocationUpdates() on your LocationManager instance. This takes four
parameters:

• The name of the location provider you wish to use
• How long, in milliseconds, should have elapsed before we might get a

location update
• How far, in meters, must the device have moved before we might get a

location update
• An implementation of the LocationListener interface that will be notified

of key location-related events

LocationListener requires four methods, the big one being onLocationChanged(),
where you will receive your Location object when an update is ready:

@Override
publicpublic void onLocationChanged(Location location) {

FetchForecastTask task=newnew FetchForecastTask();

task.execute(location);
}

Bear in mind that the time parameter is only a guide to help steer Android from a
power consumption standpoint. You may get many more location updates than this.
To get the maximum number of location updates, supply 0 for both the time and
distance constraints.

When you no longer need the updates, call removeUpdates() with the
LocationListener you registered. If you fail to do this, your application will

ACCESSING LOCATION-BASED SERVICES

1712

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather

continue receiving location updates even after all activities and such are closed up,
which will also prevent Android from reclaiming your application’s memory.

There is another version of requestLocationUpdates() that takes a PendingIntent
rather than a LocationListener. This is useful if you want to be notified of changes
in your position even when your code is not running. For example, if you are logging
movements, you could use a PendingIntent that triggers a BroadcastReceiver
(getBroadcast()) and have the BroadcastReceiver add the entry to the log. This
way, your code is only in memory when the position changes, so you do not tie up
system resources while the device is not moving.

Are We There Yet? Are We There Yet? Are We
There Yet?
Sometimes, you want to know not where you are now, or even when you move, but
when you get to where you are going. This could be an end destination, or it could
be getting to the next step on a set of directions, so you can give the user the next
turn.

To accomplish this, LocationManager offers addProximityAlert(). This registers a
PendingIntent, which will be fired off when the device gets within a certain distance
of a certain location. The addProximityAlert() method takes, as parameters:

1. The latitude and longitude of the position that you are interested in
2. A radius, specifying how close you should be to that position for the Intent

to be raised
3. A duration for the registration, in milliseconds — after this period, the

registration automatically lapses. A value of -1 means the registration lasts
until you manually remove it via removeProximityAlert().

4. The PendingIntent to be raised when the device is within the “target zone”
expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent, if there is an
interruption in location services, or if the device is not in the target zone during the
period of time the proximity alert is active. For example, if the position is off by a bit,
and the radius is a little too tight, the device might only skirt the edge of the target
zone, or go by so quickly that the device’s location isn’t sampled while in the target
zone.

ACCESSING LOCATION-BASED SERVICES

1713

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It is up to you to arrange for an activity or receiver to respond to the Intent you
register with the proximity alert. What you then do when the Intent arrives is up to
you: set up a notification (e.g., vibrate the device), log the information to a content
provider, post a message to a Web site, etc. Note that you will receive the Intent
whenever the position is sampled and you are within the target zone – not just upon
entering the zone. Hence, you will get the Intent several times, perhaps quite a few
times depending on the size of the target zone and the speed of the device’s
movement.

Testing… Testing…
The Android emulator does not have the ability to get a fix from GPS, triangulate
your position from cell towers, or identify your location by some nearby WiFi signal.
So, if you want to simulate a moving device, you will need to have some means of
providing mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes as
Android itself has evolved. It used to be that you could provide mock location data
within your application, which was very handy for demonstration purposes. Alas,
those options have all been removed as of Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug Monitor
Service (DDMS). This is an external program, separate from the emulator, where you
can feed it single location points or full routes to traverse, in a few different formats,
as is mentioned in the chapter on DDMS.

You can also send location fixes via telnettelnet to an emulator. The port number is in
your emulator’s title bar (usually 5554 for the first running emulator instance). You
can then run:

telnet localhost 5554

to access the Android Console within the emulator. Running the geo fix NNN NNN
command, where NNN NNN is your latitude and longitude, will have the emulator
respond as if those coordinates came from GPS.

ACCESSING LOCATION-BASED SERVICES

1714

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alternative Flavors of Updates
There are more ways to get updates from LocationManager than the versions of
requestLocationUpdates() we have seen so far. There are four major axes of
difference:

1. Some versions of requestLocationUpdates() take a Criteria object, having
Android give you fixes based on the best-available provider given the
requirements stipulated in the Criteria

2. Some versions of requestLocationUpdates() take a Looper as a parameter,
allowing you to receive updates on a background HandlerThread instead of
the main application thread

3. Some versions of requestLocationUpdates() take a PendingIntent which
will be executed, instead of calling your LocationListener

4. There are a few flavors of getSingleUpdate(), which, as the name suggests,
gives you just one location fix, rather than a stream until you remove the
request for updates

For the Criteria-flavored versions of requestLocationUpdates() and
requestSingleUpdate(), bear in mind that your code will still crash if there are no
possible providers for your Criteria. For example, even if you use an empty
Criteria object (for maximum possible matches), but GPS is disabled and the
device lacks telephony (e.g., a tablet), you can get a crash like this one:

02-09 13:29:21.549: E/AndroidRuntime(2236): FATAL EXCEPTION: main
02-09 13:29:21.549: E/AndroidRuntime(2236): java.lang.RuntimeException: Unable
to resume activity {com.commonsware.android.mapsv2.location/
com.commonsware.android.mapsv2.location.MainActivity}:
java.lang.IllegalArgumentException: no providers found for criteria
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.performResumeActivity(ActivityThread.java:2564)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.handleResumeActivity(ActivityThread.java:2607)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2088)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.access$600(ActivityThread.java:134)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread$H.handleMessage(ActivityThread.java:1233)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.os.Handler.dispatchMessage(Handler.java:99)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.os.Looper.loop(Looper.java:137)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.main(ActivityThread.java:4699)
02-09 13:29:21.549: E/AndroidRuntime(2236): at

ACCESSING LOCATION-BASED SERVICES

1715

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

java.lang.reflect.Method.invokeNative(Native Method)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
java.lang.reflect.Method.invoke(Method.java:511)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:787)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:554)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
dalvik.system.NativeStart.main(Native Method)
02-09 13:29:21.549: E/AndroidRuntime(2236): Caused by:
java.lang.IllegalArgumentException: no providers found for criteria
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.os.Parcel.readException(Parcel.java:1331)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.os.Parcel.readException(Parcel.java:1281)
02-09 13:29:21.549: E/AndroidRuntime(2236): ... 19 more

Hence, you will still want to use getProviders() or getBestProvider() to ensure
that your Criteria will resolve to something before you try using the Criteria to
actually request fixes.

The Fused Option
Google Play Services — the proprietary API set supported by many Android devices
– offers a fused location provider that simplifies location tracking. This capability is
covered in the next chapter.

ACCESSING LOCATION-BASED SERVICES

1716

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Fused Location Provider

At the 2013 Google I|O conference, Google announced an update to Google Play
Services that offers a “fused location provider”, one that seamlessly uses all available
location data to give you as accurate of a location as possible, as quickly as possible,
with as little power consumption as possible. This serves as an adjunct to the
traditional LocationManager approach for finding one’s position. The fused location
provider has a different API, though one that is similar in some respects to the
LocationManager API.

In this chapter, we will examine how to use the fused location provider.

Prerequisites
This chapter assumes that you have read the preceding chapter on location-based
services, along with that chapter’s prerequisites.

Why Use the Fused Location Provider?
The traditional recipes for using location providers are a bit complicated, if you want
to maximize results. Simply asking for a GPS fix is not that hard, but:

• What if GPS is disabled?
• What if GPS signals are unavailable (e.g., the device is indoors)?
• What about the GPS power drain?

The fused location provider is designed to address these sorts of concerns. Its
implementation will blend data from GPS, cell tower triangulation, and WiFi
hotspot proximity to determine the device’s location, without your having to

1717

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

manually set all of that up. The fused location provider will also take advantage of
sensor data, so it does not try to update your location as frequently if the
accelerometer indicates that you are not moving.

The net result is better location data, delivered more quickly, with (reportedly) less
power consumption.

Why Not Use the Fused Location Provider?
The fused location provider is part of Google Play Services. Google Play Services is
available on hundreds of millions of Android devices. However:

• It is closed source, and so we do not know what the Play Services all do, and
whether anything that it does might be detrimental

• It is proprietary, and so Play Services will not be available on the Kindle Fire
series and other devices working solely from the Android open source
project

• Play Services is only available on devices that have the Play Store, as opposed
to the old Android Market, and so older devices (e.g., Android 2.2 and older)
are far less likely to have Play Services available

If you are aiming to distribute your app solely through the Play Store, relying upon
the Play Services framework is reasonable. If, however, you are distributing through
other channels, you will either need to conditionally use the fused location provider
on devices that offer it, or avoid the fused location provider entirely, falling back to
the traditional LocationManager solution.

Finding Our Location, Once
The fused location provider requires a fair bit of setup, because of its dependence
upon the Play Services framework. However, once that is established, the fused
location provider is as easy to use, if not easier, than is LocationManager.

This section will review the Location/Fused sample application, which is a clone of
the Internet/Weather sample application from the previous chapter, revised to use
the fused location provider to get a one-off weather forecast.

THE FUSED LOCATION PROVIDER

1718

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Location/Fused
http://github.com/commonsguy/cw-omnibus/tree/master/Location/Fused

Installing Google Play Services

If you have not done so already (e.g., for Maps V2), you will need to install the Play
Services framework in your development environment.

You will need to download the “Google Play services” package in your SDK Manager
(see highlighted line):

Figure 484: Android SDK Manager, Showing “Google Play services”

Then, if you are an Eclipse user, you will need to add the Play Services Android
library project to your workspace. You can do this via the “Import Existing Android
Code into Workspace” wizard, pointing Eclipse to the extras/google/
google_play_services/libproject/google-play-services_lib/ directory inside
of your Android SDK.

Attaching Google Play Services

When you create a project that is to use the fused location provider, you will need to
add a reference to the Play Services library project, either via the Eclipse project
properties dialog or via the android update lib-projectandroid update lib-project command. This is the
same process that you use for adding other Android library projects, such as
ActionBarSherlock.

THE FUSED LOCATION PROVIDER

1719

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the Play Services documentation requests that you add the following
stanza to your proguard-project.txt file for use by your production builds:

-keep class * extends java.util.ListResourceBundle {
protected Object[][] getContents();

}

It is unclear if this is strictly needed for the fused location provider, as the Play
Services library is used for other things beyond that provider.

Checking for Google Play Services

At runtime, before we even start bothering to try the fused location provider, we
need to confirm that Play Services is ready for use. As with the samples shown in the
chapter on Maps V2, our revised WeatherDemo activity uses a readyToGo() method to
confirm that it is safe to start the fragment:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==

nullnull) {
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew WeatherFragment()).commit();

}
}

}

In readyToGo(), we call the static isGooglePlayServicesAvailable() method on
GooglePlayServicesUtil. This will return an integer indicating whether Play
Services is available for our use or not:

protectedprotected boolean readyToGo() {
int status=

GooglePlayServicesUtil.isGooglePlayServicesAvailable(thisthis);

ifif (status == ConnectionResult.SUCCESS) {
returnreturn(truetrue);

}
elseelse if (GooglePlayServicesUtil.isUserRecoverableError(status)) {

ErrorDialogFragment.newInstance(status)
.show(getSupportFragmentManager(),

TAG_ERROR_DIALOG_FRAGMENT);
}
elseelse {

THE FUSED LOCATION PROVIDER

1720

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toast.makeText(thisthis, R.string.no_fused, Toast.LENGTH_LONG).show();
finish();

}

returnreturn(falsefalse);
}

If the return value is ConnectionResult.SUCCESS, we return true, to indicate that we
are indeed ready to go. But, what if isGooglePlayServicesAvailable() returns
something else?

There are two major possibilities here:

1. The error is something that the user might be able to rectify, such as by
downloading the Google Play Services app from the Play Store

2. The error is something that the user cannot recover from

We can distinguish these two cases by calling the static isUserRecoverableError()
on GooglePlayServicesUtil, passing in the value we received from
isGooglePlayServicesAvailable(). This will return true if the user might be able
to fix the problem, false otherwise.

In the false case, the user is just out of luck, so we display a Toast to alert them of
this fact, then finish() the activity and return false, so WeatherDemo skips over the
rest of its work.

In the true case, we can display something to the user to prompt them to fix the
problem. One way to do that is to use a dialog obtained from Google code, by calling
the static getErrorDialog() method on the GooglePlayServicesUtil class. In our
case, we wrap that in a DialogFragment named ErrorDialogFragment, implemented
as a static inner class of AbstractMapActivity:

publicpublic staticstatic classclass ErrorDialogFragmentErrorDialogFragment extendsextends DialogFragment {
staticstatic finalfinal String ARG_STATUS="status";

staticstatic ErrorDialogFragment newInstance(int status) {
Bundle args=newnew Bundle();

args.putInt(ARG_STATUS, status);

ErrorDialogFragment result=newnew ErrorDialogFragment();

result.setArguments(args);

returnreturn(result);
}

THE FUSED LOCATION PROVIDER

1721

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

Bundle args=getArguments();

returnreturn GooglePlayServicesUtil.getErrorDialog(args.getInt(ARG_STATUS),
getActivity(), 0);

}

@Override
publicpublic void onDismiss(DialogInterface dlg) {

ifif (getActivity() != nullnull) {
getActivity().finish();

}
}

}

While the code and comments around getErrorDialog() suggest that there is some
way for us to find out if the user performed actions that fix the problem, this code
does not seem to work well in practice. After all, downloading Google Play Services
is asynchronous, so even if the user returns to our app, it is entirely likely that Play
Services is still unavailable. As a result, when the user is done with the dialog, we
finish() the activity, forcing the user to start it again if and when they are done
downloading Play Services.

Testing this code requires an older device, one in which the “Google Play services”
app can be uninstalled… if it can be installed at all.

As it turns out, not all Android devices support the Play Store, or the Google Play
Services by extension. This leads to unpleasant user experiences:

• If the device lacks the Play Store, isUserRecoverableError() returns true,
even though the user cannot recover from this situation (except perhaps via
a firmware update)

• getErrorDialog() apparently can return null for cases where the error is
supposedly user-recoverable

Permissions

To use the fused location provider, you still need the ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION permissions. If you only hold ACCESS_COARSE_LOCATION,
the data you get back will be limited to data that is sufficiently “fuzzy”. Typically, if
you are bothering using this provider, you will request ACCESS_FINE_LOCATION — if
coarse location data is all you need, using LocationManager should be just as good
and is compatible with more devices.

THE FUSED LOCATION PROVIDER

1722

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/gmaps-api-issues/issues/detail?id=4716
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4720
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4720

Clients, Connections, and Callbacks

Play Services runs in its own process, one that appears to be continuously
monitoring the user’s location. In order to get location data from this process, we
need to establish some sort of IPC (inter-process communication) with it. The low-
level implementation of this is handled by the Play Services Android library project.
However, we do need to set some things up ourselves.

Specifically, we need to create and use an instance of LocationClient, our gateway
to the Play Services fused location provider. In the sample app, we create this
LocationClient in onCreate() of our WeatherFragment, holding onto the object in a
client data member:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setRetainInstance(truetrue);

template=getActivity().getString(R.string.url);
client=newnew LocationClient(getActivity(), thisthis, thisthis);

}

The first parameter to the LocationClient constructor is a suitable Context, in this
case our hosting activity. The second and third parameters are callback objects, that
will be invoked when certain events occur in the life and times of the
LocationClient. Specifically, the second parameter is an implementation of
GooglePlayServicesClient.ConnectionCallbacks, and the third parameter is an
implementation of GooglePlayServicesClient.OnConnectionFailedListener. In
our case, WeatherFragment implements both of these interfaces.

Given that we have a LocationClient, we need to connect() to it to be able to start
requesting location data, then disconnect() from it when we no longer need that
location data. In our case, we do that work in onResume() and onPause() of our
WeatherFragment:

@Override
publicpublic void onResume() {

supersuper.onResume();

client.connect();
}

@Override
publicpublic void onPause() {

getWebView().removeCallbacks(thisthis);

THE FUSED LOCATION PROVIDER

1723

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

client.disconnect();

supersuper.onPause();
}

(the call to removeCallbacks() will be explained shortly)

These, in turn, will trigger calls to our onConnected() and onDisconnected()
methods of the GooglePlayServicesClient.ConnectionCallbacks interface,
assuming all goes well. In onConnected(), we can start requesting location data,
which we delegate to the run() method of the WeatherFragment (implemented as
part of implementing the Runnable interface). Our fragment ignores
onDisconnected(), but if we needed to stop something else once we no longer were
eligible for location data, we could stop that here.

@Override
publicpublic void onConnected(Bundle undocumented) {

run();
}

@Override
publicpublic void onDisconnected() {

// unused
}

However, apparently it is possible for this connection attempt to fail. Exactly how
and why it might fail is not well documented. If it fails, the onConnectionFailed()
method from our GooglePlayServicesClient.OnConnectionFailedListener
implementation will be called. onConnectionFailed() is passed a ConnectionResult
indicating what specifically went wrong.

It turns out that this ConnectionResult may contain a PendingIntent that can be
used to try to help the user recover from whatever the problem was. The recipe that
we have been given to try to use this is to call hasResolution() (to see if the
PendingIntent exists) and to use startResolutionForResult() (to invoke the
activity pointed to by the PendingIntent). Of course, hasResolution() may return
false, and apparently the PendingIntent might be broken, so we have to handle
those scenarios as well:

@Override
publicpublic void onConnectionFailed(ConnectionResult result) {

boolean anyLuck=falsefalse;

ifif (result.hasResolution()) {
trytry {

result.startResolutionForResult(getActivity(), REQUEST_ID);

THE FUSED LOCATION PROVIDER

1724

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/training/location/retrieve-current.html

anyLuck=truetrue;
}
catchcatch (IntentSender.SendIntentException e) {

Log.e(getClass().getSimpleName(),
"Exception trying to startResolutionForResult()", e);

}
}

ifif (!anyLuck) {
Toast.makeText(getActivity(), R.string.no_fused,

Toast.LENGTH_LONG).show();
getActivity().finish();

}
}

If we have a resolution and successfully start up the resolution activity, our fragment
will be paused and later resumed, at which point we will wind up trying to
connect() again naturally. If we do not have a resolution, or the resolution itself is
broken, the sample just displays a Toast and finishes the activity, along the same
lines as how we handle the case where Play Services is completely unavailable. A
production-grade application would probably handle this case a bit more gracefully.

Finding the Current Location

Given all that setup, actually getting the location is almost anti-climactic.

To find the current location, given a connected LocationClient, just call
getLastLocation(). This usually will return a non-null Location object, using the
same Location class that you would use with LocationManager.

In the sample, the run() method checks to see if getLastLocation() returns null or
not. If the location is null, it schedules run() to be invoked again in one second,
using postDelayed() on some suitable View (in this case, the WebView for displaying
the results). If, however, we do have a valid location, run() invokes a
FetchForecastTask, as did the original version of this sample:

@Override
publicpublic void run() {

Location loc=client.getLastLocation();

ifif (loc == nullnull) {
getWebView().postDelayed(thisthis, 1000);

}
elseelse {

FetchForecastTask task=newnew FetchForecastTask();

task.execute(loc);

THE FUSED LOCATION PROVIDER

1725

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

The fact that we are using postDelayed() here is why we use removeCallbacks() in
onPause(), to stop polling for getLastLocation() when we are disconnecting from
the LocationClient.

The rest of the sample is unchanged from the original, and the user experience is
identical to the original (except perhaps getting a forecast a bit faster).

Note that the documentation for getLastLocation() states “If a location is not
available, which should happen very rarely, null will be returned.” The “very rarely”
part indicates that Play Services is constantly checking for the user’s location, if it is
able to do so.

Requesting Location Updates
As with LocationManager, you can use LocationClient to be delivered location
updates as the device moves, via requestLocationUpdates(). There are two major
axes of control you have over these updates: the way the locations are delivered to
you, and the LocationRequest that configures what updates you receive.

Delivery Options

A foreground application would use forms of requestLocationUpdates() that take a
LocationListener as a parameter. Despite the class being named the same, this is a
separate implementation of the LocationListener interface. The Play Services one
(com.google.android.gms.location.LocationListener) only requires a single
method: onLocationChanged(), which is handed a Location object representing a
location fix.

A background application would use the requestLocationUpdates() that takes a
PendingIntent instead of a LocationListener, where that PendingIntent can do
whatever you wish (start an activity, start a service, send a broadcast). The location
itself is delivered in the form of an Intent extra, keyed as KEY_LOCATION_CHANGED,
with a value in the form of a Location object.

THE FUSED LOCATION PROVIDER

1726

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Request Options

All forms of requestLocationUpdates() take a LocationRequest object describing
what you want in terms of updates. Unlike with LocationManager, you do not
specify specific location technologies (e.g., GPS). You also lack the fine-grained
control of the Criteria object (e.g., to require the location to have speed data).
However, you do have some measure of control, via various setters on
LocationRequest.

Frequency

Calling setInterval() indicates approximately how frequently you wish to receive
location updates. The key word here is “approximately”, as you will receive updates
more or less frequently than the number of milliseconds you specify as the desired
interval. However, your requested interval is taken into account, and the longer of an
interval you provide, the less power your app will consume.

To help prevent being flooded with location data, you can also call
setFastestInterval(), which will throttle the actual updates to be no more
frequent than the number of milliseconds that you state.

Priority

setPriority() allows you to control the accuracy and power consumption of your
app’s request, by specifying one of three possible priority levels:

• PRIORITY_HIGH_ACCURACY will tend to use GPS and therefore will consume
more power

• PRIORITY_BALANCED_POWER_ACCURACY will try to consume somewhat less
power

• PRIORITY_NO_POWER indicates that you want to consume no additional power
over any other requests, but to get what you can (akin to the “passive
provider” available with LocationManager)

Duration

You can proactively cancel receiving further updates by calling removeUpdates(),
passing in your delivery option from requestLocationUpdates():

• The same LocationListener as you used to request the updates, or

THE FUSED LOCATION PROVIDER

1727

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An equivalent PendingIntent to the one that you used to request the
updates

You can also automatically expire your requested updates by one of three means:

• setNumUpdates() indicates exactly how many location fixes that you want to
receive (e.g., 1) and discontinues the updates after that number

• setExpirationDuration() indicates how long you wish to receive updates,
expressed as a number of milliseconds from now

• setExpirationTime() indicates when you wish to discontinue updates,
expressed in the form of the number of milliseconds since the device turned
on (e.g., the same time base as is used by elapsedRealtime() on the
SystemClock class)

For example, an improved version of the sample shown in this chapter would use a
LocationRequest with setNumUpdates(1), instead of the one-second polling of
getLastLocation().

Gaps in the Fused Location Provider
The fused location provider is governed by the user’s enabled location providers
(e.g., via the Settings app). Unfortunately, there is no way to interrogate
LocationClient to find out whether it is even possible for you to get a location, such
as if all providers are disabled. You just fail to get location data (e.g.,
getLastLocation() perpetually returns null). If you need to detect this case, you
will also need to use LocationManager and methods like isProviderEnabled().

THE FUSED LOCATION PROVIDER

1728

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working with the Clipboard

Being able to copy and paste is something that mobile device users seem to want
almost as much as their desktop brethren. Most of the time, we think of this as
copying and pasting text, and for a long time that was all that was possible on
Android. Android 3.0 added in new clipboard capabilities for more rich content,
which application developers can choose to support as well. This section will cover
both of these techniques.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Using the Clipboard on Android 1.x/2.x
Android has a ClipboardManager that allows you to interact with the clipboard
manually, in addition to built-in clipboard facilities for users (e.g., copy/paste
context menus on EditText). ClipboardManager, like AudioManager, is obtained via
a call to getSystemService():

From there, you have three simple methods:

1. getText() to retrieve the current clipboard contents
2. hasText(), to determine if there are any clipboard contents, so you can react

accordingly (e.g., disable “paste” menus when there is nothing to paste)
3. setText(), to put text on the clipboard

1729

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, the SystemServices/ClipIP sample project contains a little application
that puts your current IP address on the clipboard, for pasting into some EditText
of an application.

The IPClipper activity’s onCreate() does the work of putting text onto the
clipboard via setText() and notifying the user via a Toast:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

trytry {
String addr=getLocalIPAddress();

ifif (addr == nullnull) {
Toast.makeText(thisthis,

"IP address not available -- are you online?",
Toast.LENGTH_LONG).show();

}
elseelse {

ClipboardManager cm=
(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

trytry {
cm.setText(addr);

Toast.makeText(thisthis, "IP Address clipped!",
Toast.LENGTH_SHORT).show();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception clipping IP", e);
Toast.makeText(thisthis, "Exception: " + e.getMessage(),

Toast.LENGTH_SHORT).show();
}

}
}
catchcatch (Exception e) {

Log.e("IPClipper", "Exception getting IP address", e);
Toast.makeText(thisthis, "Could not obtain IP address",

Toast.LENGTH_LONG).show();
}

finish();
}

The work of figuring out what the IP address is can be found in the
getLocalIPAddress() method:

publicpublic String getLocalIPAddress() throwsthrows SocketException {
Enumeration<NetworkInterface> nics=

NetworkInterface.getNetworkInterfaces();

WORKING WITH THE CLIPBOARD

1730

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipIP
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipIP

whilewhile (nics.hasMoreElements()) {
NetworkInterface intf=nics.nextElement();
Enumeration<InetAddress> addrs=intf.getInetAddresses();

whilewhile (addrs.hasMoreElements()) {
InetAddress addr=addrs.nextElement();

ifif (!addr.isLoopbackAddress()) {
returnreturn(addr.getHostAddress().toString());

}
}

}

returnreturn(nullnull);
}

This uses the NetworkInterface and InetAddress classes from the java.net
package to loop through all network interfaces and find the first one that has a non-
localhost (loopback) IP address. The emulator will return 10.0.2.15 all of the time;
your device will return whatever IP address it has from WiFi, 3G, etc. If no such
address is available, it returns null.

The activity itself has no UI, as the application uses Theme.NoDisplay. The activity
avoids a call to setContentView(), and calls finish() when all the work is done in
onCreate(). Hence after starting the activity, the user will hopefully see the
“successful” Toast, and nothing else:

WORKING WITH THE CLIPBOARD

1731

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 485: The IPClipper, shortly after launching

Then, if the user long-taps on an EditText and chooses Paste, the IP address is
added to the EditText contents. Note that the clipboard is system-wide, not merely
application-wide, which is why you can successfully paste the IP address into any
application’s fields.

Note that there is a significant bug in Android 4.3 that, until it is fixed, will require
you to do a bit more error-handling with your clipboard operations. That is why we
have our setText() call wrapped in a try/catch blog, even though setText() does
not throw a checked exception. The rationale for this will be discussed later in this
chapter.

Advanced Clipboard on Android 3.x and Higher
Android 3.0 added in new ways of working with ClipboardManager to clip things
that transcend simple text. In part, this is expected to be used for advanced copy and
paste features between applications. However, this also forms the foundation for a
rich drag-and-drop model within an application.

WORKING WITH THE CLIPBOARD

1732

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that they also moved ClipboardManager to the android.content package. You
can still refer to it via the android.text package, for backwards compatibility.
However, if your project will be on API Level 11 or higher only, you might consider
using the new android.content package edition of the class.

Copying Rich Data to the Clipboard

In addition to methods like setText() to put a piece of plain text on the clipboard,
ClipboardManager (as of API Level 11) offers setPrimaryClip(), which allows you to
put a ClipData object on the clipboard.

What’s a ClipData? In some respects, it is whatever you want. It can hold:

1. plain text
2. a Uri (e.g., to a piece of music)
3. an Intent

The Uri means that you can put anything on the clipboard that can be referenced by
a Uri… and if there is nothing in Android that lets you reference some data via a Uri,
you can invent your own content provider to handle that chore for you.
Furthermore, a single ClipData can actually hold as many of these as you want, each
represented as individual ClipData.Item objects. As such, the possibilities are
endless.

There are static factory methods on ClipData, such as newUri(), that you can use to
create your ClipData objects. In fact, that is what we use in the SystemServices/
ClipMusic sample project and the MusicClipper activity.

MusicClipper has the classic two-big-button layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/pick"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="Pick"
android:onClick="pickMusic"

/>/>
<Button<Button android:id="@+id/view"

android:layout_width="match_parent"

WORKING WITH THE CLIPBOARD

1733

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic

android:layout_height="match_parent"
android:layout_weight="1"
android:text="Play"
android:onClick="playMusic"

/>/>
</LinearLayout></LinearLayout>

Figure 486: The Music Clipper main screen

In onCreate(), we get our hands on our ClipboardManager system service:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

clipboard=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
}

Tapping the “Pick” button will let you pick a piece of music, courtesy of the
pickMusic() method wired to that Button object:

publicpublic void pickMusic(View v) {
Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("audio/*");

WORKING WITH THE CLIPBOARD

1734

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

startActivityForResult(i, PICK_REQUEST);
}

Here, we tell Android to let us pick a piece of music from any available audio MIME
type (audio/*). Fortunately, Android has an activity that lets us do that:

Figure 487: The XOOM tablet’s music track picker

We get the result in onActivityResult(), since we used startActivityForResult()
to pick the music. There, we package up the content:// Uri to the music into a
ClipData object and put it on the clipboard:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == PICK_REQUEST) {

ifif (resultCode == RESULT_OK) {
ClipData clip=

ClipData.newUri(getContentResolver(), "Some music",
data.getData());

trytry {
clipboard.setPrimaryClip(clip);

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception clipping Uri", e);

WORKING WITH THE CLIPBOARD

1735

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toast.makeText(thisthis, "Exception: " + e.getMessage(),
Toast.LENGTH_SHORT).show();

}
}

}
}

Note that there is a significant bug in Android 4.3 that, until it is fixed, will require
you to do a bit more error-handling with your clipboard operations. That is why we
have our setPrimaryClip() call wrapped in a try/catch blog, even though
setPrimaryClip() does not throw a checked exception. The rationale for this will be
discussed later in this chapter.

Pasting Rich Data from the Clipboard

The catch with rich data on the clipboard is that somebody has to know about the
sort of information you are placing on the clipboard. Eventually, the Android
development community will work out common practices in this area. Right now,
though, you can certainly use it within your own application (e.g., clipping a note
and pasting it into another folder).

Since putting ClipData onto the clipboard involves a call to setPrimaryClip(), it
should not be surprising that the reverse operation — getting a ClipData from the
clipboard — uses getPrimaryClip(). However, since you do not know where this
clip came from, you need to validate that it has what you expect and to let the user
know when the clipboard contents are not something you can leverage.

The “Play” button in our UI is wired to a playMusic() method. This will only work
when we have pasted a Uri ClipData to the clipboard pointing to a piece of music.
Since we cannot be sure that the user has done that, we have to sniff around:

publicpublic void playMusic(View v) {
ClipData clip=clipboard.getPrimaryClip();

ifif (clip == nullnull) {
Toast.makeText(thisthis, "There is no clip!", Toast.LENGTH_LONG)

.show();
}
elseelse {

ClipData.Item item=clip.getItemAt(0);
Uri song=item.getUri();

ifif (song != nullnull
&& getContentResolver().getType(song).startsWith("audio/")) {

startActivity(newnew Intent(Intent.ACTION_VIEW, song));
}

WORKING WITH THE CLIPBOARD

1736

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
Toast.makeText(thisthis, "There is no song!", Toast.LENGTH_LONG)

.show();
}

}
}

First, there may be nothing on the clipboard, in which case the ClipData returned
by getPrimaryClip() would be null. Or, there may be stuff on the clipboard, but it
may not have a Uri associated with it (getUri() on ClipData). Even then, the Uri
may point to something other than music, so even if we get a Uri, we need to use a
ContentResolver to check the MIME type (getContentResolver().getType()) and
make sure it seems like it is music (e.g., starts with audio/). Then, and only then,
does it make sense to try to start an ACTION_VIEW activity on that Uri and hope that
something useful happens. Assuming you clipped a piece of music with the “Pick”
button, “Play” will kick off playback of that song.

ClipData and Drag-and-Drop

Android 3.0 also introduced Android’s first built-in drag-and-drop framework. One
might expect that this would be related entirely to View and ViewGroup objects and
have nothing to do with the clipboard. In reality, the drag-and-drop framework
leverages ClipData to say what it is that is being dragged and dropped. You call
startDrag() on a View, supplying a ClipData object, along with some objects to
help render the “shadow” that is the visual representation of this drag operation. A
View that can receive objects “dropped” via drag-and-drop needs to register an
OnDragListener to receive drag events as the user slides the shadow over the top of
the View in question. If the user lifts their finger, thereby dropping the shadow, the
recipient View will get an ACTION_DROP drag event, and can get the ClipData out of
the event.

Monitoring the Clipboard
Android 3.0 added the capability for an app to monitor what is put on the clipboard,
including things put on the clipboard by other apps.

This is a somewhat esoteric feature, but one that perhaps has some valid use cases.
Mostly, it would be used by something not in the foreground, since the foreground
activity is probably what is adding material to the clipboard. A service, or perhaps an
activity that has moved to the background, could use this feature to find out about
new clipboard entries.

WORKING WITH THE CLIPBOARD

1737

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To monitor the clipboard, you simply call addPrimaryClipChangedListener() on
ClipboardMonitor, passing an implementation of an
OnPrimaryClipChangedListener interface. That object, in turn, will be called with
onPrimaryClipChanged() whenever there is a new clipboard entry. Later on, you can
call removePrimaryClipChangedListener() to stop being notified about new
clipboard entries.

For example, here is MainActivity from the SystemServices/ClipboardMonitor
sample project:

packagepackage com.commonsware.android.clipmon;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.ClipboardManagerandroid.content.ClipboardManager;
importimport android.content.ClipboardManager.OnPrimaryClipChangedListenerandroid.content.ClipboardManager.OnPrimaryClipChangedListener;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
OnPrimaryClipChangedListener {

privateprivate ClipboardManager cm=nullnull;
privateprivate TextView lastClip=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

lastClip=(TextView)findViewById(R.id.last_clip);
cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

}

@Override
publicpublic void onResume() {

supersuper.onResume();
cm.addPrimaryClipChangedListener(thisthis);

}

@Override
publicpublic void onPause() {

cm.removePrimaryClipChangedListener(thisthis);
supersuper.onPause();

}

@Override
publicpublic void onPrimaryClipChanged() {

lastClip.setText(cm.getPrimaryClip().getItemAt(0)
.coerceToText(thisthis));

}
}

WORKING WITH THE CLIPBOARD

1738

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipboardMonitor
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipboardMonitor

Here, we:

• Retrieve the ClipboardManager in onCreate()
• Register for clipboard events via addPrimaryClipChangedListener() in
onResume()

• Unregister from clipboard events via removePrimaryClipChangedListener()
in onPause()

• Convert the first item (getItemAt(0)) of the primary clip
(getPrimaryClip()) to text (coerceToText(this)), and stuff the results into
a TextView

In theory, this activity will display new clipboard entries as they arrive. In practice, it
will only do so while it is in the foreground, and so it would require something in
the background to add something to the clipboard. That is not a particularly useful
example… except to test the bug outlined in the next section.

The Android 4.3 Clipboard Bug
AndroidPolice reported on a fairly unpleasant bug in Android 4.3. While this bug
was fixed in Android 4.4, there is little evidence that Google will be releasing a fix for
Android 4.3 devices, which means that this problem will plague developers into 2015
and perhaps beyond.

The bug stems from the clipboard monitoring facility. If an app has used
addPrimaryClipChangedListener(), any other app that tries to paste to the
clipboard will crash.

The first crash will be a SecurityException:

java.lang.SecurityException: uid ... does not have
android.permission.UPDATE_APP_OPS_STATS

The second and subsequent times this occurs on the device, it will be an
IllegalStateException:

java.lang.IllegalStateException: beginBroadcast() called while already
in a broadcast

WORKING WITH THE CLIPBOARD

1739

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.androidpolice.com/2013/08/08/bug-watch-android-4-3-running-an-app-that-watches-the-clipboard-will-cause-other-apps-to-crash-when-you-copy-from-them/
https://code.google.com/p/android/issues/detail?id=58043

The only resolution is to unregister the clipboard listener… and hope that the first
crash has not occurred. If it has, a full reboot of the device is required to fix the
broken system.

If Your App Monitors the Clipboard…

If you have a component, such as a long-running service, that is monitoring the
clipboard, please ensure that the users have an easy way to stop that behavior, even
if it means stopping your whole service. While this may mean that your app has
seriously degraded functionality, the alternative is that the user has to keep
rebooting their device while your app is installed.

If Your App Pastes to the Clipboard…

If you are pasting to the clipboard, with setPrimaryClip() or the older setText(),
you will want to throw a try/catch block around those calls, so you catch the
RuntimeExceptions that will be thrown.

However, you will need to tell your users that they are now fairly well screwed,
needing to both find the clipboard-monitoring app and learn how to control it (or
uninstall/disable it, if needed), plus reboot their device, in order to paste to the
clipboard again.

WORKING WITH THE CLIPBOARD

1740

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Telephony

Many, if not most, Android devices will be phones. As such, not only will users be
expecting to place and receive calls using Android, but you will have the opportunity
to help them place calls, if you wish.

Why might you want to?

1. Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the ability to
call prospects with a single button click, and without them having to keep
those contacts both in your application and in the phone’s contacts
application

2. Maybe you are writing a social networking application, and the roster of
phone numbers that you can access shifts constantly, so rather than try to
“sync” the social network contacts with the phone’s contact database, you let
people place calls directly from your application

3. Maybe you are creating an alternative interface to the existing contacts
system, perhaps for users with reduced motor control (e.g., the elderly),
sporting big buttons and the like to make it easier for them to place calls

Whatever the reason, Android has the means to let you manipulate the phone just
like any other piece of the Android system.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on working with multiple activities.

1741

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Report To The Manager
To get at much of the phone API, you use the TelephonyManager. That class lets you
do things like:

1. Determine if the phone is in use via getCallState(), with return values of
CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call requested
but still being connected), and CALL_STATE_OFFHOOK (call in progress)

2. Find out the SIM ID (IMSI) via getSubscriberId()
3. Find out the phone type (e.g., GSM) via getPhoneType() or find out the data

connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!
You can also initiate a call from your application, such as from a phone number you
obtained through your own Web service. To do this, simply craft an ACTION_DIAL
Intent with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial)
and use that Intent with startActivity(). This will not actually dial the phone;
rather, it activates the dialer activity, from which the user can then press a button to
place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude-
but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Number to dial:"
/>/>

<EditText<EditText android:id="@+id/number"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"

TELEPHONY

1742

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Phone/Dialer
http://github.com/commonsguy/cw-omnibus/tree/master/Phone/Dialer

android:singleLine="true"
/>/>

</LinearLayout></LinearLayout>
<Button<Button android:id="@+id/dial"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
android:onClick="dial"

/>/>
</LinearLayout></LinearLayout>

We have a labeled field for typing in a phone number, plus a button for dialing said
number.

The Java code simply launches the dialer using the phone number from the field:

packagepackage com.commonsware.android.dialer;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass DialerDemoDialerDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

}

publicpublic void dial(View v) {
EditText number=(EditText)findViewById(R.id.number);
String toDial="tel:"+number.getText().toString();

startActivity(newnew Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
}

}

The activity’s own UI is not that impressive:

TELEPHONY

1743

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 488: The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing you the
number you are about to dial:

Figure 489: The Android Dialer activity, as launched from DialerDemo

TELEPHONY

1744

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

No, Really, You Make the Call!
The good news is that ACTION_DIAL works without any special permissions. The bad
news is that it only takes the user to the Dialer – the user still has to take action
(pressing the green call button) to actually place the phone call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION_CALL Intent will immediately place the phone call,
without any other UI steps required. However, you need the CALL_PHONE permission
in order to use ACTION_CALL.

TELEPHONY

1745

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working With SMS

Oh, what a tangled web we weave

When first we practice to work with SMS on Android, Eve

(with apologies to Sir Walter Scott)

Android devices have had SMS capability since Android 1.0. However, from a
programming standpoint, for years, SMS and Android were intensely frustrating.
When the Android SDK was developed, some aspects of working with SMS were put
into the SDK, while others were held back. This, of course, did not stop many an
intrepid developer from working with the undocumented, unsupported SMS APIs,
with varying degrees of success.

After much wailing and gnashing of teeth by developers, Google finally formalized a
more complete SMS API in Android 4.4. However, this too has its issues, where some
apps that worked fine with the undocumented API will now fail outright, in
irreparable fashion, on Android 4.4+.

This chapter starts with the one thing you can do reasonably reliably across Android
device versions – send an SMS, either directly or by invoking the user’s choice of
SMS client. The chapter then examines how to monitor or receive SMS messages
(both pre–4.4 and 4.4+) and the SMS-related ContentProvider (both pre–4.4 and
4.4+).

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents. One of the samples uses the

1747

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Marmion_%28poem%29

ContactsContract provider, so reading that chapter will help you understand that
particular sample.

Sending Out an SOS, Give or Take a Letter
While much of Android’s SMS capabilities are not in the SDK, sending an SMS is.
You have two major choices for doing this:

• Invoke the user’s choice of SMS client application, so they can compose a
message, track its progress, and so forth using that tool

• Send the SMS directly yourself, bypassing any existing client

Which of these is best for you depends on what your desired user experience is. If
you are composing the message totally within your application, you may want to just
send it. However, as we will see, that comes at a price: an extra permission.

Sending Via the SMS Client

Sending an SMS via the user’s choice of SMS client is very similar to the use of
ACTION_SEND described elsewhere in this book. You craft an appropriate Intent, then
call startActivity() on that Intent to bring up an SMS client (or allow the user to
choose between clients).

The Intent differs a bit from the ACTION_SEND example:

1. You use ACTION_SENDTO, rather than ACTION_SEND
2. Your Uri needs to begin with smsto:, followed by the mobile number you

want to send the message to
3. Your text message goes in an sms_body extra on the Intent

For example, here is a snippet of code from the SMS/Sender sample project:

Intent sms=newnew Intent(Intent.ACTION_SENDTO,
Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);

Here, our phone number is coming out of the third column of a Cursor, and the text
message is coming from an EditText — more on how this works later in this
section, when we review the Sender sample more closely.

WORKING WITH SMS

1748

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender

Sending SMS Directly

If you wish to bypass the UI and send an SMS directly, you can do so through the
SmsManager class, in the android.telephony package. Unlike most Android classes
ending in Manager, you obtain an SmsManager via a static getDefault() method on
the SmsManager class. You can then call sendTextMessage(), supplying:

1. The phone number to send the text message to
2. The “service center” address — leave this null unless you know what you are

doing
3. The actual text message
4. A pair of PendingIntent objects to be executed when the SMS has been sent

and delivered, respectively

If you are concerned that your message may be too long, use divideMessage() on
SmsManager to take your message and split it into individual pieces. Then, you can
use sendMultipartTextMessage() to send the entire ArrayList of message pieces.

For this to work, your application needs to hold the SEND_SMS permission, via a child
element of your <manifest> element in your AndroidManifest.xml file.

For example, here is code from Sender that uses SmsManager to send the same
message that the previous section sent via the user’s choice of SMS client:

SmsManager
.getDefault()
.sendTextMessage(c.getString(2), nullnull,

msg.getText().toString(),
nullnull, nullnull);

Inside the Sender Sample

The Sender example application is fairly straightforward, given the aforementioned
techniques.

The manifest has both the SEND_SMS and READ_CONTACTS permissions, because we
want to allow the user to pick a mobile phone number from their list of contacts,
rather than type one in by hand:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sms.sender"
android:installLocation="preferExternal"

WORKING WITH SMS

1749

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.SEND_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="Sender"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

If you noticed the android:installLocation attribute in the root element, that is to
allow this application to be installed onto external storage, such as an SD card —
this will be covered in greater detail elsewhere in this book.

The layout has a Spinner (for a drop-down of available mobile phone numbers), a
pair of RadioButton widgets (to indicate which way to send the message), an
EditText (for the text message), and a “Send” Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"

>>
<Spinner<Spinner android:id="@+id/spinner"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>/>
<RadioGroup<RadioGroup android:id="@+id/means"

WORKING WITH SMS

1750

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>

<RadioButton<RadioButton android:id="@+id/client"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="Via Client" />/>

<RadioButton<RadioButton android:id="@+id/direct"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Direct" />/>

</RadioGroup></RadioGroup>
<EditText<EditText

android:id="@+id/msg"
android:layout_width="match_parent"
android:layout_height="0px"
android:layout_weight="1"
android:singleLine="false"
android:gravity="top|left"

/>/>
<Button<Button

android:id="@+id/send"
android:text="Send!"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="sendTheMessage"

/>/>
</LinearLayout></LinearLayout>

Sender uses the same technique for obtaining mobile phone numbers from our
contacts as is seen in the chapter on contacts. To support Android 1.x and Android
2.x devices, we implement an abstract class and two concrete implementations, one
for the old API and one for the new. The abstract class then has a static method to
get at an instance suitable for the device the code is running on:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;

abstractabstract classclass ContactsAdapterBridgeContactsAdapterBridge {
abstractabstract SpinnerAdapter buildPhonesAdapter(Activity a);

publicpublic staticstatic finalfinal ContactsAdapterBridge INSTANCE=buildBridge();

privateprivate staticstatic ContactsAdapterBridge buildBridge() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<5) {

WORKING WITH SMS

1751

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(newnew OldContactsAdapterBridge());
}

returnreturn(newnew NewContactsAdapterBridge());
}

}

The Android 2.x edition uses ContactsContract to find just the mobile numbers:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.CommonDataKinds.Phoneandroid.provider.ContactsContract.CommonDataKinds.Phone;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass NewContactsAdapterBridgeNewContactsAdapterBridge extendsextends ContactsAdapterBridge {
SpinnerAdapter buildPhonesAdapter(Activity a) {

String[] PROJECTION=newnew String[] { Contacts._ID,
Contacts.DISPLAY_NAME,
Phone.NUMBER

};
String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
Cursor c=a.managedQuery(Phone.CONTENT_URI,

PROJECTION, Phone.TYPE+"=?",
ARGS, Contacts.DISPLAY_NAME);

SimpleCursorAdapter adapter=newnew SimpleCursorAdapter(a,
android.R.layout.simple_spinner_item,
c,
newnew String[] {

Contacts.DISPLAY_NAME
},
newnew int[] {

android.R.id.text1
});

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

returnreturn(adapter);
}

}

… while the Android 1.x edition uses the older Contacts provider to find the mobile
numbers:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;

WORKING WITH SMS

1752

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.Contactsandroid.provider.Contacts;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;

@SuppressWarnings("deprecation")
classclass OldContactsAdapterBridgeOldContactsAdapterBridge extendsextends ContactsAdapterBridge {

SpinnerAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.Phones._ID,

Contacts.Phones.NAME,
Contacts.Phones.NUMBER

};
String[] ARGS={String.valueOf(Contacts.Phones.TYPE_MOBILE)};
Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,

PROJECTION,
Contacts.Phones.TYPE+"=?", ARGS,
Contacts.Phones.NAME);

SimpleCursorAdapter adapter=newnew SimpleCursorAdapter(a,
android.R.layout.simple_spinner_item,
c,
newnew String[] {

Contacts.Phones.NAME
},
newnew int[] {

android.R.id.text1
});

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

returnreturn(adapter);
}

}

For more details on how those providers work, please see the chapter on contacts.

The activity then loads up the Spinner with the appropriate list of contacts. When
the user taps the Send button, the sendTheMessage() method is invoked (courtesy of
the android:onClick attribute in the layout). That method looks at the radio
buttons, sees which one is selected, and routes the text message accordingly:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.telephony.SmsManagerandroid.telephony.SmsManager;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

WORKING WITH SMS

1753

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.widget.RadioGroupandroid.widget.RadioGroup;
importimport android.widget.Spinnerandroid.widget.Spinner;

publicpublic classclass SenderSender extendsextends Activity {
Spinner contacts=nullnull;
RadioGroup means=nullnull;
EditText msg=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

contacts=(Spinner)findViewById(R.id.spinner);

contacts.setAdapter(ContactsAdapterBridge
.INSTANCE
.buildPhonesAdapter(thisthis));

means=(RadioGroup)findViewById(R.id.means);
msg=(EditText)findViewById(R.id.msg);

}

publicpublic void sendTheMessage(View v) {
Cursor c=(Cursor)contacts.getSelectedItem();

ifif (means.getCheckedRadioButtonId()==R.id.client) {
Intent sms=newnew Intent(Intent.ACTION_SENDTO,

Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);
}
elseelse {

SmsManager
.getDefault()
.sendTextMessage(c.getString(2), nullnull,

msg.getText().toString(),
nullnull, nullnull);

}
}

}

SMS Sending Limitations

Apps running on Android 1.x and 2.x devices are limited to sending 100 SMS
messages an hour, before the user starts getting prompted with each SMS message
request to confirm that they do indeed wish to send it.

WORKING WITH SMS

1754

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Apps running on Android 4.x devices, the limits are now 30 SMS messages in 30
minutes, according to some source code analysis by Al Sutton.

Monitoring and Receiving SMS
For the purposes of this section, “monitoring” refers to the ability to inspect
incoming SMS messages, including reading their contents. In contrast, “receiving”
SMS messages is actually consuming the message and storing it somewhere for the
user to use.

As it turns out, “monitoring” and “receiving” are much the same thing prior to
Android 4.4, but are significantly different in the new API made available in Android
4.4

The Undocumented, Unsupported, Pre-Android 4.4 Way

It is possible for an application to monitor or receive an incoming SMS message… if
you are willing to listen on the undocumented
android.provider.Telephony.SMS_RECEIVED broadcast Intent. That is sent by
Android whenever an SMS arrives, and it is up to an application to implement a
BroadcastReceiver to respond to that Intent and do something with the message.
The Android open source project has such an application — Messaging — and
device manufacturers can replace it with something else.

Note that to listen for this broadcast, your app must hold the RECEIVE_SMS
permission.

The BroadcastReceiver can then turn around and use the SmsMessage class, in the
android.telephony package, to get at the message itself, through the following
undocumented recipe:

1. Given the received Intent (intent), call intent.getExtras().get("pdus")
to get an Object array representing the raw portions of the message

2. For each of those “pdus” objects, call SmsMessage.createFromPdu() to
convert the Object into an SmsMessage — though to make this work, you
need to cast the Object to a byte array as part of passing it to the
createFromPdu() static method

The resulting SmsMessage object gets you access to the text of the message, the
sending phone number, etc.

WORKING WITH SMS

1755

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/113331808607528811927/posts/6XP2HcvPkvX

The SMS_RECEIVED broadcast Intent is broadcast a bit differently than most others
in Android. It is an “ordered broadcast”, meaning the Intent will be delivered to one
BroadcastReceiver at a time. This has two impacts of note:

• In your receiver’s <intent-filter> element, you can have an
android:priority attribute. Higher priority values get access to the
broadcast Intent earlier than will lower priority values. The standard
Messaging application has the default priority (undocumented, appears to
be 0 or 1), so you can arrange to get access to the SMS before the application
does.

• Your BroadcastReceiver can call abortBroadcast() on itself to prevent the
Intent from being broadcast to other receivers of lower priority. In effect,
this causes your receiver to consume the SMS — the Messaging application
will not receive it. So, aborting the broadcast means that your app chose to
“receive” the SMS; not aborting the broadcast means that your app is merely
“monitoring” the SMS messages that come in.

However, just because the Messaging application has the default priority does not
mean all SMS clients will, and so you cannot reliably intercept SMS messages this
way. That, plus the undocumented nature of all of this, means that applications you
write to receive SMS messages are likely to be fragile in production, breaking on
various devices due to device manufacturer-installed apps, third-party apps, or
changes to Android itself… such as the changes that came about in Android 4.4.

The Android 4.4+ Way: Monitoring SMS

The code described above still works on Android 4.4, though the formerly-hidden
android.provider.Telephony class is now part of the SDK.

The biggest difference, though, is that even if you call abortBroadcast(), the user’s
chosen SMS messaging client will still receive the message. It is not possible for an
app listening for SMS_RECEIVED broadcasts to prevent the user’s chosen SMS
messaging client from receiving those same messages. This is a substantial change,
one that will break or make obsolete many Android applications.

Regardless, if monitoring SMS fits your needs, SMS_RECEIVED can do it.

So, for example, the SMS/Monitor sample project implements a BroadcastReceiver
for SMS_RECEIVED, one with slightly elevated priority:

WORKING WITH SMS

1756

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Monitor
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Monitor

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sms.monitor"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="3"
android:targetSdkVersion="19"/>/>

<application<application
android:icon="@drawable/cw"
android:label="@string/app_name">>
<receiver<receiver

android:name="Monitor"
android:permission="android.permission.BROADCAST_SMS">>
<intent-filter<intent-filter android:priority="2">>

<action<action android:name="android.provider.Telephony.SMS_RECEIVED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

<activity<activity
android:name="BootstrapActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

You will notice that the BroadcastReceiver not only has the slightly-elevated
priority (android:priority="2"), but also a required permission
(android:permission="android.permission.BROADCAST_SMS"). Only apps that hold
this permission can send this broadcast in a way that will be picked up by the
receiver. Since this permission can only be held by the device firmware, you are
protected from “spoof” SMS messages from rogue apps on the device, sending the
SMS_RECEIVED themselves.

WORKING WITH SMS

1757

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The app also has a do-nothing activity, solely there to activate the manifest-
registered BroadcastReceiver, which will not work until some component of the
app is manually started.

The bulk of the business logic — what little there is of it — lies in the Monitor class
that is the BroadcastReceiver:

packagepackage com.commonsware.android.sms.monitor;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.telephony.SmsMessageandroid.telephony.SmsMessage;
importimport android.util.Logandroid.util.Log;

publicpublic classclass MonitorMonitor extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

Object[] rawMsgs=(Object[])intent.getExtras().get("pdus");

forfor (Object raw : rawMsgs) {
SmsMessage msg=SmsMessage.createFromPdu((byte[])raw);

ifif (msg.getMessageBody().toUpperCase().contains("SEKRIT")) {
Log.w("SMS:"+msg.getOriginatingAddress(),

msg.getMessageBody());

abortBroadcast();
}

}
}

}

Here, we retrieve the raw messages from the Intent extra, iterate over them, and
convert each to an SmsMessage. Those that have the magic word in their message
body will result in the message being dumped to LogCat, plus the broadcast is
aborted. On Android 4.3 and below, this will prevent lower-priority receivers from
receiving the SMS. On Android 4.4, the abort request is ignored.

The Android 4.4+ Way: Receiving SMS

Receiving SMS messages, on Android 4.4+, means that you are implementing an
SMS client application, one the user might be willing to set as their default SMS
client application in Settings. There are other sorts of apps that may temporarily
want to be the default SMS client, such as a backup/restore utility, as only the
default SMS client will be able to work with the SMS ContentProvider suite, such as
the inbox.

WORKING WITH SMS

1758

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Receiving the Broadcasts

The default SMS client should be able to handle both SMS and MMS. This is a
problem, as while supporting SMS is poorly documented, supporting MMS has
almost no documentation whatsoever. However, unless the default SMS client
handles MMS, nobody else can (at least, while saving MMS details to the
ContentProvider suite.

Hence, Google is expecting you to have two BroadcastReceivers registered in the
manifest: one for SMS and one for MMS. Unfortunately, these cannot readily be
combined into a single receiver, because each has its own permission requirement:

• the SMS receiver should require senders to hold BROADCAST_SMS
• the MMS receiver should require senders to hold BROADCAST_WAP_PUSH

In practice, probably both are held by the OS component that is sending these
broadcasts in response to incoming messages of either type. In principle, though,
they could be separate, and an individual <receiver> can only specify one such
permission.

The Android documentation illustrates the <receiver> elements that Google
expects your SMS client application to have:

<!-- BroadcastReceiver that listens for incoming SMS messages -->
<receiver<receiver android:name=".SmsReceiver"

android:permission="android.permission.BROADCAST_SMS">>
<intent-filter><intent-filter>

<action<action android:name="android.provider.Telephony.SMS_DELIVER" />/>
</intent-filter></intent-filter>

</receiver></receiver>

<!-- BroadcastReceiver that listens for incoming MMS messages -->
<receiver<receiver android:name=".MmsReceiver"

android:permission="android.permission.BROADCAST_WAP_PUSH">>
<intent-filter><intent-filter>

<action<action android:name="android.provider.Telephony.WAP_PUSH_DELIVER" />/>
<data<data android:mimeType="application/vnd.wap.mms-message" />/>

</intent-filter></intent-filter>
</receiver></receiver>

Notice that the MMS receiver has both an <action> and a <data> element in its
<intent-filter>, which is rather unusual.

WORKING WITH SMS

1759

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2013/10/getting-your-sms-apps-ready-for-kitkat.html

On the SMS side, the Intent you receive should be the same as the Intent you
would receive for the SMS_RECEIVED broadcast, where you can decode the message(s)
and deal with them as you see fit. On the MMS side… there is little documentation.

Other Expectations

Google expects the default SMS client to be able to handle ACTION_SEND and
ACTION_SENDTO for relevant schemes:

<!-- Activity that allows the user to send new SMS/MMS messages -->
<activity<activity android:name=".ComposeSmsActivity" >>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.SEND" />/>
<action<action android:name="android.intent.action.SENDTO" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>
<data<data android:scheme="sms" />/>
<data<data android:scheme="smsto" />/>
<data<data android:scheme="mms" />/>
<data<data android:scheme="mmsto" />/>

</intent-filter></intent-filter>
</activity></activity>

That may not be terribly surprising. What is surprising is that Google also expects
you to have an exported service for handling “quick response” requests. These
requests come when the user receives a phone call and taps on an icon to reply with
a text message, rather than accept the call. In those cases, Android will invoke a
service in the default SMS client, with an action of
android.intent.action.RESPOND_VIA_MESSAGE. The Intent that you receive in
onStartCommand() (or onHandleIntent(), if you elect to use an IntentService) will
have an EXTRA_TEXT and optionally an EXTRA_SUBJECT as extras, representing the
message to be sent. The Uri in the Intent will indicate the intended recipient of
the message. Your job is to use SmsManager to actually send the message.

The Android documentation cites this as the relevant <service> element:

<!-- Service that delivers messages from the phone "quick response" -->
<service<service android:name=".HeadlessSmsSendService"

android:permission="android.permission.SEND_RESPOND_VIA_MESSAGE"
android:exported="true" >>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.RESPOND_VIA_MESSAGE" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<data<data android:scheme="sms" />/>
<data<data android:scheme="smsto" />/>
<data<data android:scheme="mms" />/>
<data<data android:scheme="mmsto" />/>

WORKING WITH SMS

1760

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</intent-filter></intent-filter>
</service></service>

Note:

• The <service> requires that the sender have the SEND_RESPOND_VIA_MESSAGE
permission, to reduce spoofing

• The android:exported="true" shown in the sample should be superfluous,
as since the <service> has an <intent-filter>, it should be exported by
default

• The <category>, and possibly the <data>, elements may be erroneous… and
since the author cannot find anything in the OS that uses
RESPOND_VIA_MESSAGE, the author cannot validate that these elements
should be here or represent copy-and-paste errors in the documentation

Handling Both Receive Options

If you want to support receiving SMS using both the legacy approach and the
Android 4.4+ approach, you can have two BroadcastReceiver implementations, one
for android.provider.Telephony.SMS_RECEIVED and one for
android.provider.Telephony.SMS_DELIVER. However, you will only need the latter
one on Android 4.4, and by default you would receive both broadcasts.

To handle that, you can define a boolean resource in the res/values-v19/ directory
(e.g., isPreKitKat) to be false, with a default definition in res/values/ of true for
the same resource. Then, in your manifest, you can have android:enabled="@bool/
isPreKitKat" on your SMS_RECEIVED <receiver> element. This will only enable this
component on API Level 18 and below, disabling it on API Level 19+.

You can also define a counterpart resource for the positive case (e.g., @bool/
isKitKat), and use that to selectively enable the SMS and MMS receivers, if desired.

The SMS Inbox
Many users keep their text messages around, at least for a while. These are stored in
an “inbox”, represented by a ContentProvider. How you work with this
ContentProvider — or if you can work with it at all, varies upon whether you are
running on Android 4.4+ or not.

WORKING WITH SMS

1761

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Undocumented, Unsupported, Pre-Android 4.4 Way

When perusing the Internet, you will find various blog posts and such referring to
the SMS inbox ContentProvider, represented by the content://sms/inbox Uri.

This ContentProvider is undocumented and is not part of the Android SDK,
because it is not part of the Android OS.

Rather, this ContentProvider is used by the aforementioned Messaging application,
for storing saved SMS messages. And, as noted, this application may or may not exist
on any given Android device. If a device manufacturer replaces Messaging with their
own application, there may be nothing on that device that responds to that Uri, or
the schemas may be totally different. Plus, Android may well change or even remove
this ContentProvider in future editions of Android.

For all those reasons, developers should not be relying upon this ContentProvider.

The Android 4.4+ Way

Android 4.4 has exposed a series of ContentProviders, in the
android.provider.Telephony namespace, for storing SMS and MMS messages.
These include:

• the Inbox for received messages
• the Outbox for a log of sent messages
• the Draft for messages that were written but have not yet been sent
• etc.

Some are duplicated, such as separate providers for the SMS inbox versus the MMS
inbox. Some are distinct, such as Sms.Conversations and Mms.Rate.

All are largely undocumented.

The user’s chosen default SMS client can write to these providers. Apps with
READ_SMS permission should be able to read from them.

Asking to Change the Default
There are many areas in Android where the user must do two things to use an app:

WORKING WITH SMS

1762

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Install the app (from the Play Store or elsewhere)
2. Go into Settings (or sometimes elsewhere) and indicate that a certain

capability of the newly-installed app should become active

You see this with app widgets, input method editors, device administrators, and
many others.

On Android 4.4+, you also see this with SMS/MMS clients. Devices usually ship with
one. If the user wants a replacement, the user must indicate in Settings that this new
SMS/MMS client should be the default, so it can write to the SMS/MMS
ContentProvider suite.

Your app can determine what the default client is by calling
getDefaultSmsPackage() on the Telephony.Sms class. This will return the package
name of the current default client.

If this is not your package, and you would like the user to make you the default, you
can start an activity to request this change:

Intent i = newnew Intent(thisthis, Sms.Intents.ACTION_CHANGE_DEFAULT);
i.putExtra(Sms.Intents.EXTRA_PACKAGE_NAME, getPackageName());
startActivity(i);

The EXTRA_PACKAGE_NAME will trigger the UI to ask the user if the user wishes to
change the current default to your package (versus anything else on the device that
might also be a possible SMS/MMS client).

Hence, the recommended flow for a backup/restore app is to:

• Make note of the current default, via getDefaultSmsPackage()
• Request to the user to make you the default, via ACTION_CHANGE_DEFAULT
• Confirm that they did this, via getDefaultSmsPackage()
• If they did, do your backup or restore work
• Request to the user to restore the original default, via
ACTION_CHANGE_DEFAULT

SMS and the Emulator
The “Emulator Control” view in DDMS allows you to send fake SMS messages to a
running emulator. This is very useful for light testing.

WORKING WITH SMS

1763

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can also send fake SMS messages to an emulator via the emulator console. This
can be accessed via telnettelnet, where the console is available on localhost on your
development machine, via the port number that appears in the title bar of your
emulator window (e.g., 5554). In the telnettelnet session, you can enter sms sendsms send
[sendingNumber> <txt>[sendingNumber> <txt>, replacing <sendingNumber> with the phone number of the
pretend sender of the SMS, and replacing <txt> with the text message itself.

WORKING WITH SMS

1764

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NFC

NFC, courtesy of high-profile boosters like Google Wallet, is poised to be a
significant new capability in Android devices. While at the time of this writing, only
a handful of Android devices have NFC built in, other handsets are slated to be NFC-
capable in the coming months. Google is hoping that developers will write NFC-
aware applications to help further drive adoption of this technology by device
manufacturers.

This, of course, raises the question: what is NFC? Besides being where the Green Bay
Packers play, that is?

(For those of you from outside of the United States, that was an American football
joke. We now return you to your regularly-scheduled chapter.)

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents and services.

What Is NFC?
NFC stands for Near-Field Communications. It is a wireless standard for data
exchange, aimed at very short range transmissions — on the order of a couple of
centimeters. NFC is in wide use today, for everything from credit cards to passports.
Typically, the NFC data exchange is for simple data — contact information, URLs,
and the like.

1765

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In particular, NFC tends to be widely used where one side of the communications
channel is “passive”, or unpowered. The other side (the “initiator”) broadcasts a
signal, which the passive side converts into power enough to send back its response.
As such, NFC “tags” containing such passive targets can be made fairly small and can
be embedded in a wide range of containers, from stickers to cards to hats.

The objective is “low friction” interaction — no pairing like with Bluetooth, no IP
address shenanigans as with WiFi. The user just taps and goes.

… Compared to RFID?

NFC is often confused with or compared to RFID. It is simplest to think of RFID as
being an umbrella term, under which NFC falls. Not every RFID technology is NFC,
but many things that you hear of being “RFID” may actually be NFC-compliant
devices or tags.

… Compared to QR Codes?

In many places, NFC will be used in ways you might consider using QR codes. For
example, a restaurant could use either technology, or both, on a sign to lead patrons
to the restaurant’s Yelp page, as a way of soliciting reviews. Somebody with a capable
device could either tap the NFC tag on the sign to bring up Yelp or take a picture of
the QR code and use that to bring up Yelp.

NFC’s primary advantage over QR codes is that it requires no user intervention
beyond physically moving their device in close proximity to the tag. QR codes, on
the other hand, require the user to launch a barcode scanning application, center
the barcode in the viewfinder, and then get the results. The net effect is that NFC
will be faster.

QR’s advantages include:

1. No need for any special hardware to generate the code, as opposed to
needing a tag and something to write information into the tag for NFC

2. The ability to display QR codes in distant locations (e.g., via Web sites),
whereas NFC requires physical proximity

NFC

1766

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://yelp.com

To NDEF, Or Not to NDEF
RFID is a concept, not a standard. As such, different vendors created their own ways
of structuring data on these tags or chips, making one vendor’s tags incompatible
with another vendor’s readers or writers. While various standards bodies, like ISO,
have gotten involved, it’s still a bit of a rat’s nest of conflicting formats and
approaches.

The NFC offshoot of RFID has had somewhat greater success in establishing
standards. NFC itself is an ISO and ECMA standard, covering things like transport
protocols and transfer speeds. And a consortium called the NFC Forum created
NDEF — the NFC Data Exchange Format — for specifying the content of tags.

However, not all NFC tags necessarily support NDEF. NDEF is much newer than
NFC, and so lots of NFC tags are out in the wild that were distributed before NDEF
even existed.

You can roughly divide NFC tags into three buckets:

• Those that support NDEF “out of the box”
• Those that can be “formatted” as NDEF
• Those that use other content schemes

Android has some support for non-NDEF tags, such as the MIFARE Classic.
However, the hope and expectation going forward is that NFC tags will coalesce
around NDEF.

NDEF, as it turns out, maps neatly to Android’s Intent system, as you will see as we
proceed through this chapter.

NDEF Modalities
Most developers interested in NFC will be interested in reading NFC tags and
retrieving the NDEF data off of them. In Android, tapping an NDEF tag with an
NFC-capable device will trigger an activity to be started, based on a certain
IntentFilter.

Some developers will be interested in writing to NFC tags, putting URLs, vCards, or
other information on them. This may or may not be possible for any given tag.

NFC

1767

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And while the “traditional” thinking around NFC has been that one side of the
communication is a passive tag, Android will help promote the “peer-to-peer”
approach — having two Android devices exchange data via NFC and NDEF.
Basically, putting the two devices back-to-back will cause each to detect the other
device’s “tag”, and each can read and write to the other via this means. This is
referred to as “Android Beam” and will be discussed later in this chapter.

Of course, all of these are only available on hardware. At the present time, there is
no emulator for NFC, nor any means of accessing a USB NFC reader or writer from
the emulator.

NDEF Structure and Android’s Translation
NDEF is made up of messages, themselves made up of a series of records. From
Android’s standpoint, each tag consists of one such message.

Each record consists of a binary (byte array) payload plus metadata to describe the
nature of the payload. The metadata primarily consists of a type and a subtype.
There are quite a few combinations of these, but the big three for new Android NFC
uses are:

• A type of TNF_WELL_KNOWN and a subtype of RTD_TEXT, indicating that the
payload is simply plain text

• A type of TNF_WELL_KNOWN and a subtype of RTD_URI, indicating that the
payload is a URI, such as a URL to a Web page

• A type of TNF_MIME_MEDIA, where the subtype is a standard MIME type,
indicating that the payload is of that MIME type

When Android scans an NDEF tag, it will use this information to construct a
suitable Intent to use with startActivity(). The action will be
android.nfc.action.NDEF_DISCOVERED, to distinguish the scanned-tag case from,
say, something simply asking to view some content. The MIME type in the Intent
will be text/plain for the first scenario above or the supplied MIME type for the
third scenario above. The data (Uri) in the Intent will be the supplied URI for the
second scenario above. Once constructed, Android will invoke startActivity() on
that Intent, bringing up an activity or an activity chooser, as appropriate.

NFC-capable Android devices have a Tags application pre-installed that will handle
any NFC tag not handled by some other app. So, for example, an NDEF tag with an

NFC

1768

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTTP URL will fire up the Tags application, which in turn will allow the user to
open up a Web browser on that URL.

The Reality of NDEF
The enthusiasm that some have with regards to Android and NFC technology needs
to be tempered by the reality of NDEF, NFC tags in general, and Android’s support
for NFC. It is easy to imagine all sorts of possibilities that may or may not be
practical when current limitations are reached.

Some Tags are Read-Only

Some tags come “from the factory” read-only. Either you arrange for the distributor
to write data onto them (e.g., blast a certain URL onto a bunch of NFC stickers to
paste onto signs), or they come with some other pre-established data. Touchatag, for
example, distributes NFC tags that have Touchatag URLs on them — they then help
you set up redirects from their supplied URL to ones you supply.

While these tags will be of interest to consumers and businesses, they are unlikely to
be of interest to Android developers, since their use cases are already established
and typically do not need custom Android application support. Android developers
seeking customizable tags will want ones that are read-write, or at least write-once.

Some Tags Can’t Be Read-Only

Conversely, some tags lack any sort of read-only flag. An ideal tag for developers is
one that is write-once: putting an NDEF message on the tag and flagging it read-
only in one operation. Some tags do not support this, or making the tag read-only at
any later point. The MIFARE Classic 1K tag is an example — while technically it can
be made read-only, it requires a key known only to the tag manufacturer.

Some Tags Need to be Formatted

The MIFARE Classic 1K NFC tag is NDEF-capable, but must be “formatted” first,
supplying the initial NDEF message contents. You have the option of formatting it
read-write or read-only (turning the Classic 1K a write-once tag).

This is not a problem — in fact, the write-once option may be compelling. However,
it is something to keep in mind.

NFC

1769

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, note that the MIFARE Classic 1K, while it can be formatted as NDEF, uses a
proprietary protocol “under the covers”. Not all Android devices will support the
Classic 1K, as the device manufacturers elect not to pay the licensing fee. Where
possible, try to stick to tags that are natively NDEF-compliant (so-called “NFC
Forum Tag Types 1–4”).

Tags Have Limited Storage

The “1K” in the name “MIFARE Classic 1K” refers to the amount of storage on the tag:
1 kilobyte of information.

And that’s far larger than other tags, such as the MIFARE Ultralight C, some of
which have ~64 bytes of storage.

Clearly, you will not be writing an MP3 file or JPEG photo to these tags. Rather, the
tags will tend to either be a “launcher” into something with richer communications
(e.g., URL to a Web site) or will use the sorts of data you may be used to from QR
codes, such as a vCard or iCalendar for contact and event data, respectively.

NDEF Data Structures Are Documented Elsewhere

The Android developer documentation is focused on the Android classes related to
NFC and on the Intent mechanism used for scanned tags. It does not focus on the
actual structure of the payloads.

For TNF_MIME_MEDIA and RTD_TEXT, the payload is whatever you want. For RTD_URI,
however, the byte array has a bit more structure to it, as the NDEF specification calls
for a single byte to represent the URI prefix (e.g., http://www. versus http:// versus
https://www.). The objective, presumably, is to support incrementally longer URLs
on tags with minuscule storage. Hence, you will need to convert your URLs into this
sort of byte array if you are writing them out to a tag.

Generally speaking, the rules surrounding the structure of NDEF messages and
records is found at the NFC Forum site.

Tag and Device Compatibility

Different devices will have different NFC chipsets. Not all NFC chipsets can read and
write all tags. The expectation is that NDEF-formatted tags will work on all devices,

NFC

1770

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/nfc/package-summary.html
http://developer.android.com/reference/android/nfc/tech/package-summary.html
http://developer.android.com/guide/topics/nfc/index.html
http://developer.android.com/guide/topics/nfc/index.html
http://www.nfc-forum.org/

but if you wander away from that, things get dicier. For example, NXP’s Mifare
Classic tag can only be read and written by NXP’s NFC chip.

This is increasingly a challenge for Android developers, as a Broadcom NFC chip is
becoming significantly more popular. Many new major Android devices, such as the
Samsung Galaxy S4, the Nexus 4, the Nexus 10, and the 2013/2nd generation version
of the Nexus 7, all use the Broadcom chip. Those devices are incompatible with the
Mifare tags, such as the popular Mifare Classic 1K.

That is because NXP is the maker of the Mifare Classic series, and those tags broke
the NFC Forum’s standards to create a tag that was NXP-specific.

Right now, NTAG203 and Topaz tags (like the Topaz 512), are likely candidate tags
that will work across all NFC-capable Android devices, due to their adherence to
NFC standard protocols.

Sources of Tags
NFC tags are not the sort of thing you will find on your grocer’s shelves. In fact, few,
if any, mainstream firms sell them today.

Here are some online sites from which you can order rewritable NFC tags, listed here
in alphabetical order:

1. Andytags
2. Buy NFC Stickers
3. Buy NFC Tags
4. Smartcard Focus
5. tagstand

Note that not all may ship to your locale.

Writing to a Tag
So, let’s see what it takes to write an NDEF message to a tag, formatting it if needed.
The code samples shown in this chapter are from the NFC/URLTagger sample
application. This application will set up an activity to respond to ACTION_SEND
activity Intents, with an eye towards receiving a URL from a browser, then waiting
for a tag and writing the URL to that tag. The idea is that this sort of application

NFC

1771

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.andytags.com/
http://buynfcstickers.com/
http://www.buynfctags.com/
https://www.smartcardfocus.us/
http://www.tagstand.com/
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/URLTagger
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/URLTagger

could be used by non-technical people to populate tags containing URLs to their
company’s Web site, etc.

Getting a URL

First, we need to get a URL from the browser. As we saw in the chapter on
integration, the standard Android browser uses ACTION_SEND of text/plain contents
when the user chooses the “Share Page” menu. So, we have one activity, URLTagger,
that will respond to such an Intent:

<activity<activity
android:name="URLTagger"
android:label="@string/app_name">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

</activity></activity>

Of course, lots of other applications support ACTION_SEND of text/plain contents
that are not URLs. A production-grade version of this application would want to
validate the EXTRA_TEXT Intent extra to confirm that, indeed, this is a URL, before
putting in an NDEF message claiming that it is a URL.

Detecting a Tag

When the user shares a URL with our application, our activity is launched. At that
point, we need to go into “detect a tag” mode – the user should then tap their device
to a tag, so we can write out the URL.

First, in onCreate(), we get access to the NfcAdapter, which is our gateway to much
of the NFC functionality in Android:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

nfc=NfcAdapter.getDefaultAdapter(thisthis);
}

NFC

1772

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We use a boolean data member — inWriteMode — to keep track of whether or not
we are set up to write to a tag. Initially, of course, that is set to be false. Hence,
when we are first launched, by the time we get to onResume(), we can go ahead and
register our interest in future tags:

@Override
publicpublic void onResume() {

supersuper.onResume();

ifif (!inWriteMode) {
IntentFilter discovery=newnew IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);
IntentFilter[] tagFilters=newnew IntentFilter[] { discovery };
Intent i=newnew Intent(thisthis, getClass())

.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP|
Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent pi=PendingIntent.getActivity(thisthis, 0, i, 0);

inWriteMode=truetrue;
nfc.enableForegroundDispatch(thisthis, pi, tagFilters, nullnull);

}
}

When an NDEF-capable tag is within signal range of the device, Android will invoke
startActivity() for the NfcAdapter.ACTION_TAG_DISCOVERED Intent action.
However, it can do this in one of two ways:

• Normally, it will use a chooser (via Intent.createChooser()) to allow the
user to pick from any activities that claim to support this action.

• The foreground application can request via enableForegroundDispatch()
for it to handle all tag events while it is in the foreground, superseding the
normal startActivity() flow. In this case, while Android still will invoke an
activity, it will be our activity, not any other one.

We want the second approach right now, so the next tag brought in range is the one
we will try writing to.

To do that, we need to create an array of IntentFilter objects, identifying the NFC-
related actions that we want to capture in the foreground. In this case, we only care
about ACTION_TAG_DISCOVERED – if we were supporting non-NDEF NFC tags, we
might also need to watch for ACTION_TECH_DISCOVERED.

We also need a PendingIntent identifying the activity that should be invoked when
such a tag is encountered while we are in the foreground. Typically, this will be the
current activity. By adding FLAG_ACTIVITY_SINGLE_TOP and

NFC

1773

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

FLAG_ACTIVITY_CLEAR_TOP to the Intent as flags, we ensure that our current specific
instance of the activity will be given control again via onNewIntent().

Armed with those two values, we can call enableForegroundDispatch() on the
NfcAdapter to register our request to process tags via the current activity instance.

In onPause(), if the activity is finishing, we call disableForegroundDispatch() to
undo the work done in onResume():

@Override
publicpublic void onPause() {

ifif (isFinishing()) {
nfc.disableForegroundDispatch(thisthis);
inWriteMode=falsefalse;

}

supersuper.onPause();
}

We have to see if we are finishing, because even though our activity never leaves the
screen, Android still calls onPause() and onResume() as part of delivering the Intent
to onNewIntent(). Our approach, though, has flaws — if the user presses HOME, for
example, we never disable the NFC dispatch logic. A production-grade application
would need to handle this better.

For any of this code to work, we need to hold the NFC permission via an appropriate
line in the manifest:

<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

Also note that if you have several activities that the user can reach while you are
trying to also capture NFC tag events, you will need to call
enableForegroundDispatch() in each activity — it’s a per-activity request, not a
per-application request.

Reacting to a Tag

Once the user brings a tag in range, onNewIntent() will be invoked with the
ACTION_TAG_DISCOVERED Intent action:

@Override
protectedprotected void onNewIntent(Intent intent) {

ifif (inWriteMode &&
NfcAdapter.ACTION_TAG_DISCOVERED.equals(intent.getAction())) {

Tag tag=intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);

NFC

1774

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

byte[] url=buildUrlBytes(getIntent().getStringExtra(Intent.EXTRA_TEXT));
NdefRecord record=newnew NdefRecord(NdefRecord.TNF_WELL_KNOWN,

NdefRecord.RTD_URI,
newnew byte[] {}, url);

NdefMessage msg=newnew NdefMessage(newnew NdefRecord[] {record});

newnew WriteTask(thisthis, msg, tag).execute();
}

}

If we are in write mode and the delivered Intent is indeed an
ACTION_TAG_DISCOVERED one, we can get at the Tag object associated with the user’s
NFC tag via the NfcAdapter.EXTRA_TAG Parcelable extra on the Intent.

Writing an NDEF message to the tag, therefore, is a matter of crafting the message
and actually writing it. An NDEF message consists of one or more records (though,
typically, only one record is used), with each record wrapping around a byte array of
payload data.

Getting the Shared URL

We did not do anything to get the URL out of the Intent back in onCreate(), when
our activity was first started up. Now, of course, we need that URL. You might think
it is too late to get it, since our activity was effectively started again due to the tag
and onNewIntent().

However, getIntent() on an Activity always returns the Intent used to create the
activity in the first place. The getIntent() value is not replaced when
onNewIntent() is called.

Hence, as part of the buildUrlBytes() method to create the binary payload, we can
go and call getIntent().getStringExtra(Intent.EXTRA_TEXT) to retrieve the URL.

Creating the Byte Array

Given the URL, we need to convert it into a byte array suitable for use in a
TNF_WELL_KNOWN, RTD_URI NDEF record. Ordinarily, you would just call
toByteArray() on the String and be done with it. However, the byte array we need
uses a single byte to indicate the URL prefix, with the rest of the byte array for the
characters after this prefix.

This is efficient. This is understandable. This is annoying.

NFC

1775

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, we need the roster of prefixes, defined in URLTagger as a static data member
cunningly named PREFIXES:

staticstatic privateprivate finalfinal String[] PREFIXES={"http://www.", "https://www.",
"http://", "https://",
"tel:", "mailto:",
"ftp://anonymous:anonymous@",
"ftp://ftp.", "ftps://",
"sftp://", "smb://",
"nfs://", "ftp://",
"dav://", "news:",
"telnet://", "imap:",
"rtsp://", "urn:",
"pop:", "sip:", "sips:",
"tftp:", "btspp://",
"btl2cap://", "btgoep://",
"tcpobex://",
"irdaobex://",
"file://", "urn:epc:id:",
"urn:epc:tag:",
"urn:epc:pat:",
"urn:epc:raw:",
"urn:epc:", "urn:nfc:"};

Then, in buildUrlBytes(), we need to find the prefix (if any) and use it:

privateprivate byte[] buildUrlBytes(String url) {
byte prefixByte=0;
String subset=url;
int bestPrefixLength=0;

forfor (int i=0;i<PREFIXES.length;i++) {
String prefix = PREFIXES[i];

ifif (url.startsWith(prefix) && prefix.length() > bestPrefixLength) {
prefixByte=(byte)(i+1);
bestPrefixLength=prefix.length();
subset=url.substring(bestPrefixLength);

}
}

finalfinal byte[] subsetBytes = subset.getBytes();
finalfinal byte[] result = newnew byte[subsetBytes.length+1];

result[0]=prefixByte;
System.arraycopy(subsetBytes, 0, result, 1, subsetBytes.length);

returnreturn(result);
}

We iterate over the PREFIXES array and find a match, if any, and the best possible
match if there is more than one. If there is a match, we record the NDEF value for

NFC

1776

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the first byte (our PREFIXES index plus one) and create a subset string containing the
characters after the prefix. If there is no matching prefix, the prefix byte is 0 and we
will include the full URL.

Given that, we construct a byte array containing our prefix byte in the first slot, and
the rest taken up by the byte array of the subset of our URL.

Creating the NDEF Record and Message

Given the result of buildUrlBytes(), our onNewIntent() implementation creates a
TNF_WELL_KNOWN, RTD_URI NdefRecord object, and pours that into an NdefMessage
object.

The third parameter to the NdefRecord constructor is a byte array representing the
optional “ID” of this record, which is not necessary here.

Finally, we delegate the actual writing to a WriteTask subclass of AsyncTask, as
writing the NdefMessage to the Tag is… interesting.

Writing to a Tag

Here is the aforementioned WriteTask static inner class:

staticstatic classclass WriteTaskWriteTask extendsextends AsyncTask<Void, Void, Void> {
Activity host=nullnull;
NdefMessage msg=nullnull;
Tag tag=nullnull;
String text=nullnull;

WriteTask(Activity host, NdefMessage msg, Tag tag) {
thisthis.host=host;
thisthis.msg=msg;
thisthis.tag=tag;

}

@Override
protectedprotected Void doInBackground(Void... arg0) {

int size=msg.toByteArray().length;

trytry {
Ndef ndef=Ndef.get(tag);

ifif (ndef==nullnull) {
NdefFormatable formatable=NdefFormatable.get(tag);

ifif (formatable!=nullnull) {

NFC

1777

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

trytry {
formatable.connect();

trytry {
formatable.format(msg);

}
catchcatch (Exception e) {

text="Tag refused to format";
}

}
catchcatch (Exception e) {

text="Tag refused to connect";
}
finallyfinally {

formatable.close();
}

}
elseelse {

text="Tag does not support NDEF";
}

}
elseelse {

ndef.connect();

trytry {
ifif (!ndef.isWritable()) {

text="Tag is read-only";
}
elseelse if (ndef.getMaxSize()<size) {

text="Message is too big for tag";
}
elseelse {

ndef.writeNdefMessage(msg);
}

}
catchcatch (Exception e) {

text="Tag refused to connect";
}
finallyfinally {

ndef.close();
}

}
}
catchcatch (Exception e) {

Log.e("URLTagger", "Exception when writing tag", e);
text="General exception: "+e.getMessage();

}

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

ifif (text!=nullnull) {

NFC

1778

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toast.makeText(host, text, Toast.LENGTH_SHORT).show();
}

host.finish();
}

}

In doInBackground(), after making note of how big the message is in bytes, we first
try to get the Ndef aspect of the Tag object, by calling the static get() method on the
Ndef class. If the tag is an NDEF tag, this should return an Ndef instance. If it does
not, we try to get an NdefFormatable aspect by calling get() on the NdefFormatable
class. If the tag is not NDEF now but can be formatted as NDEF, this should give us
an NdefFormatable object. If both aspect attempts fail, we bail out, displaying a
Toast to let the user know that while the tag they used is NFC, it is not NDEF-
compliant.

If the tag turned out to be NdefFormatable, to put the NdefMessage on it, we first
connect() to the tag, then format() it, supplying the message. NdefFormatable also
supports formatReadOnly() for tags that support that mode — this will write the
message on the tag, then block it from further updates. When we are done, we
close() the connection.

If the tag turned out to be Ndef already, we connect() to it, then see if it is writable
and has enough room. If it meets both of those criteria, we can emit the message via
writeNdefMessage(), which overwrites the NDEF message that had already existed
on the tag (if any). If the tag supported it, a call to makeReadOnly() would block
further updates to the tag. Again, when we are done, we close() the connection.

All of the actual NFC I/O is performed in doInBackground(), because this I/O may
take some time, and we do not want to block the main application thread while
doing it.

Responding to a Tag
Writing to a tag is a bit complicated. Responding to an NDEF message on a tag is
significantly easier.

If the foreground activity is not consuming NFC events — as URLTagger does in
write mode — then Android will use normal Intent resolution with
startActivity() to handle the tag. To respond to the tag, all you need to do is have
an activity set up to watch for an android.nfc.action.NDEF_DISCOVERED Intent. To

NFC

1779

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

get control ahead of the built-in Tags application, also have a <data> element that
describes the sort of content or URL you are expecting to find on the tag.

For example, suppose you used the Android browser to visit some page on the
CommonsWare Web site, and you wrote that to a tag using URLTagger. The
URLTagger application has another activity, URLHandler, that will respond when you
tap the newly-written tag from the home screen or anywhere else. It accomplishes
this via a suitable <intent-filter>:

<activity<activity
android:name="URLHandler"
android:label="@string/app_name">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<data<data
android:host="commonsware.com"
android:scheme="http"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

</activity></activity>

The URLHandler activity can then use getIntent() to retrieve the key pieces of data
from the tag itself, if needed. In particular, the EXTRA_NDEF_MESSAGES Parcelable
array extra will return an array of NdefMessage objects. Typically, there will only be
one of these. You can call getRecords() on the NdefMessage to get at the array of
NdefRecord objects (again, typically only one). Methods like getPayload() will allow
you to get at the individual portions of the record.

The nice thing is that the URL still works, even if URLTagger is not on the device. In
that case, the Tags application would react to the tag, and the user could tap on it to
bring up a browser on this URL. A production application might create a Web page
that tells the user about this great and wonderful app she can install, and provide
links to the Play Store (or elsewhere) to go get the app.

Expected Pattern: Bootstrap
Tags tend to have limited capacity. Even in peer-to-peer settings, the effective
bandwidth of NFC is paltry compared to anything outside of dial-up Internet access.

As a result, NFC will be used infrequently as the complete communications solution
between a publisher and a device. Sometimes it will, when the content is specifically
small, such as a contact (vCard) or event (iCalendar). But, for anything bigger than

NFC

1780

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com
http://commonsware.com

that, NFC will serve more as a convenient bootstrap for more conventional
communications options:

1. Embedding a URL in a tag, as the previous sample showed, allows an
installed application to run or a Web site to be browsed

2. Embedding a Play Store URL in a tag allows for easy access to some
specialized app (e.g., menu for a restaurant)

3. A multi-player game might use peer-to-peer NFC to allow local participants
to rapidly connect into the same shared game area, where the game is played
over the Internet or Bluetooth

4. And so on.

Mobile Devices are Mobile
Reading and writing NFC tags is a relatively slow process, mostly due to low
bandwidth. It may take a second or two to actually complete the operation.

Users, however, are not known for their patience.

If a user moves their device out of range of the tag while Android is attempting to
read it, Android simply will skip the dispatch. If, however, the tag leaves the signal
area of the device while you are writing to it, you will get an IOException. At this
point, the state of the tag is unknown.

You may wish to incorporate something into your UI to let the user know that you
are working with the tag, encouraging them to leave the phone in place until you are
done.

Enabled and Disabled
There are two separate system settings that control NFC behavior:

• The user could have NFC disabled outright, which you would detect by
calling isEnabled() on your NfcAdapter

• The user could have NFC enabled but have Android Beam disabled, which
you would detect by calling isNdefPushEnabled() on your NfcAdapter

As with most enabled/disabled settings, you cannot change these values yourself.
On newer Android SDK versions, though, you can try to bring up the relevant

NFC

1781

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Settings screens for the user to enable these features, by using the following activity
action strings from the android.provider.Settings class:

• ACTION_NFC_SETTINGS for the main NFC settings screen (added in API Level
16)

• ACTION_NFCSHARING_SETTINGS for the Android Beam settings screen (added
in API Level 14)

Android Beam
Android Beam is Google’s moniker for peer-to-peer NFC messaging, with an
emphasis — obviously — on Android apps. Rather than you tapping your NFC-
capable Android device on a smart tag, you put it back-to-back with another NFC-
capable Android device, and romance ensues.

Partially, this is simply one side of the exchange “pushing” an NDEF record, in a
fashion that makes the other side of the exchange think that it is picking up a smart
tag.

Partially, this is the concept of the “Android Application Record” (AAR), another
NDEF record you can place in the NDEF message being pushed. This will identify
the app you are trying to push the message to. If nothing on the device can handle
the rest of the NDEF message, the AAR will lead Android to start up an app, or even
lead the user to the Play Store to go download said app.

As the basis for explaining further how this all works, let’s take a look at the NFC/
WebBeam sample application. The UI consists of a WebViewFragment, in which we can
browse to some Web page. Then, running this app on two NFC-capable devices, one
app can “push” the URL of the currently-viewed Web page to the other app, which
will respond by displaying that page. In this fashion, we are “sharing” a URL, without
one side having to type it in by hand. And, while we are using this to share a URL,
you could use Android Beam to share any sort of bootstrapping data, such as the
user IDs of each person, for use in connecting to some common game server.

The Fragment

The fragment that implements our UI, BeamFragment, extends from the back-ported,
ActionBarSherlock-friendly version of WebViewFragment used in various places in
this book. In onActivityCreated(), we configure the WebView, load up Google’s

NFC

1782

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam

home page, and indicate that would like to participate in the action bar (via a call to
setHasOptionsMenu()):

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

getWebView().setWebViewClient(newnew BeamClient());
getWebView().getSettings().setJavaScriptEnabled(truetrue);
loadUrl("http://google.com");
setHasOptionsMenu(truetrue);

}

To keep all links within the WebView, we attached a WebViewClient implementation,
named BeamClient, that just loads all requested URLs back into the WebView:

classclass BeamClientBeamClient extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView wv, String url) {

wv.loadUrl(url);

returnreturn(truetrue);
}

}

We add one item to the action bar: a toolbar button (R.id.beam) that will be used to
indicate we wish to beam the URL in our WebView to another copy of this application
running on another NFC-capable Android device:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

ifif (getContract().hasNFC()) {
inflater.inflate(R.menu.actions, menu);

}

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.beam) {
getContract().enablePush();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

So, when the app is initially launched, it will look something like this:

NFC

1783

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 490: The WebBeam UI

The user can use Google to find a Web page worth beaming.

Requesting the Beam

Our hosting activity, WebBeamActivity, gets access to our NfcAdapter, as we did in
the previous example:

adapter=NfcAdapter.getDefaultAdapter(thisthis);

When the user taps on our action bar item, the fragment calls enablePush() on the
activity. WebBeamActivity, in turn, calls setNdefPushMessageCallback() on the
NfcAdapter, supplying two parameters:

1. An implementation of the NfcAdapter.CreateNdefMessageCallback
interface, used to let us know when another device is in range for us to beam
to (in our case, WebBeamActivity implements this interface)

2. Our activity that is participating in this push

If something else comes to the foreground, onStop() will call a corresponding
disablePush(), which also calls setNdefPushMessageCallback(), specifying a null
first parameter, to turn off our request to beam:

NFC

1784

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

void enablePush() {
adapter.setNdefPushMessageCallback(thisthis, thisthis);

}

void disablePush() {
adapter.setNdefPushMessageCallback(nullnull, thisthis);

}

In between the calls to enablePush() and disablePush(), if another NFC device
comes in range that supports the NDEF push protocols, we’re beamin’.

Sending the Beam

When our beam-enabled device encounters another beam-capable device, our
NfcAdapter.CreateNdefMessageCallback is called with createNdefMessage(),
where we need to prepare the NfcMessage to beam to the other party:

@Override
publicpublic NdefMessage createNdefMessage(NfcEvent arg0) {

NdefRecord uriRecord=
newnew NdefRecord(NdefRecord.TNF_MIME_MEDIA,

MIME_TYPE.getBytes(Charset.forName("US-ASCII")),
newnew byte[0],
beamFragment.getUrl()

.getBytes(Charset.forName("US-ASCII")));
NdefMessage msg=

newnew NdefMessage(
newnew NdefRecord[] {

uriRecord,

NdefRecord.createApplicationRecord("com.commonsware.android.webbeam") });

returnreturn(msg);

We first create a typical NfcRecord, in this case of TNF_MIME_MEDIA, with a MIME
type defined in a static data member and payload consisting of the URL from our
WebView:

privateprivate staticstatic finalfinal String MIME_TYPE=
"application/vnd.commonsware.sample.webbeam";

You might wonder why we are using TNF_MIME_MEDIA, instead of TNF_WELL_KNOWN
and a subtype of RTD_URI, since our payload is a URL. The reason is that we need to
have a unique MIME type for our message for the whole beam process to work
properly, and TNF_WELL_KNOWN does not support MIME types. This is also why the
MIME type is something distinctive, and not just text/plain — it has to be
something only we will pick up.

NFC

1785

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Our NfcMessage then consists of two NfcRecord objects: the one we just created, and
one created via the static createApplicationRecord() method on NfcRecord. This
helper method creates an AAR record, identifying our application by its Android
package name. This record must go last – Android will try to find an app to work
with based on the other records first, before “failing over” to use the AAR.

Receiving the Beam

To receive our beam, our WebBeamActivity must be configured in the manifest to
respond to NDEF_DISCOVERED actions with our unique MIME type:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.webbeam"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<activity<activity

android:name=".WebBeamActivity"
android:label="@string/app_name"
android:launchMode="singleTask"
android:screenOrientation="landscape">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>

<data<data android:mimeType="application/vnd.commonsware.sample.webbeam"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

NFC

1786

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will also notice that we set android:launchMode="singleTask" on this activity.
That is so we will only have one instance of this activity, regardless of whether it is in
the foreground or not. Otherwise, if we already have an instance of this activity, and
we receive a beam, Android will create a second instance of this activity — when the
user later presses BACK, they return to our first instance, and wonder why our app is
broken.

If we receive the beam, we will get the Intent for the NDEF_DISCOVERED action either
in onCreate() (if we were not already running) or onNewIntent() (if we were). In
either case, we want to handle it the same way: pass the URL from the first record’s
payload to our BeamFragment. However, we cannot do that from onCreate() — the
fragment will not have created the WebView yet. So, we use a trick: calling post()
with a Runnable puts that Runnable on the end of the work queue for the main
application thread. We can delay our processing of the Intent by this mechanism,
so we can safely assume the WebView exists.

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

beamFragment=

(BeamFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

ifif (beamFragment == nullnull) {
beamFragment=newnew BeamFragment();

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content, beamFragment)
.commit();

}

adapter=NfcAdapter.getDefaultAdapter(thisthis);

findViewById(android.R.id.content).post(newnew Runnable() {
publicpublic void run() {

handleIntent(getIntent());
}

});
}

@Override
publicpublic void onNewIntent(Intent i) {

handleIntent(i);
}

privateprivate void handleIntent(Intent i) {
ifif (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {

Parcelable[] rawMsgs=

NFC

1787

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
NdefMessage msg=(NdefMessage)rawMsgs[0];
String url=newnew String(msg.getRecords()[0].getPayload());

beamFragment.loadUrl(url);
}

}

The Scenarios

There are three possible scenarios, when we try beaming from one device to
another:

1. The other device has our application installed, and it is running. In that case,
our activity is brought to the foreground and the Intent is delivered to it,
courtesy of our NDEF_DISCOVERED <intent-filter> with our unique MIME
type.

2. The other device has our application installed, but it is not running.
Android’s Intent system handles this in the same general fashion as the first
scenario, though it starts up a process for us and creates our activity instance
anew in this case.

3. The other device does not have our application installed. Since nothing
(hopefully) claims to support our unique MIME type, the AAR takes effect,
and the user is led to the Play Store to go download our app (or, in this case,
display an error message, as WebBeam is not in the Play Store).

Beaming Files
Android 4.1 (a.k.a., Jelly Bean) added in a far simpler facility for an app to beam a file
to another device using the Android Beam system. You can use setBeamPushUris()
or setBeamPushUrisCallback() on an NfcAdapter to hand Android one or more Uri
objects representing files to be transferred. While the initial connection will be
made via NFC and Android Beam, the actual data transfer will be via Bluetooth or
WiFi, much more suitable than NFC for bulk data.

The difference between the two approaches is mostly when you provide the array of
Uri objects. With setBeamPushUris(), you initiate the beam operation and supply
the Uri values immediately. With setBeamPushUrisCallback(), you initiate the
beam but do not supply the Uri values until the beam connection is established
with the peer app.

The NFC/FileBeam sample application shows file-based beaming in action.

NFC

1788

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/FileBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/FileBeam

In our activity (MainActivity), in onCreate(), we check to make sure that Android
Beam is enabled, via a call to isNdefPushEnabled() on our NfcAdapter. If it is, then
we use ACTION_GET_CONTENT to retrieve some file from the user (MIME type wildcard
of */*):

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
adapter=NfcAdapter.getDefaultAdapter(thisthis);

ifif (!adapter.isNdefPushEnabled()) {
Toast.makeText(thisthis, R.string.sorry, Toast.LENGTH_LONG).show();
finish();

}
elseelse {

Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("*/*");
startActivityForResult(i, 0);

}
}

In onActivityResult(), if we actually got a file (e.g., the result is ACTION_OK), we
turn around and call setBeamPushUris() to pass that file to some peer device. We
also set up a Button as our UI — clicking the Button will finish() the activity:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==0 && resultCode==RESULT_OK) {

adapter.setBeamPushUris(newnew Uri[] {data.getData()}, thisthis);

Button btn=newnew Button(thisthis);

btn.setText(R.string.over);
btn.setOnClickListener(thisthis);
setContentView(btn);

}
}

That is all there is to it. If you run this app and pick a file, then hold the device up to
another Android 4.1+ device, you will be prompted to “Touch to Beam” — doing so
will kick off the transfer. Once the transfer is shown on the receiving device, you can
pull the devices apart a bit, as the transfer will be proceeding over Bluetooth or
WiFi. However, while Bluetooth ranges are much longer than NFC, you still need to
keep the devices within a handful of meters of one another.

NFC

1789

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the receiving device is not running our app. The OS handles the receipt of
the transferred file, not our code. Similarly, the OS on the sending device is really
the one responsible for the file transfer, so our app does not need the INTERNET or
BLUETOOTH permissions. The downside is that we have no control over anything on
the receiving side — the file is stored wherever the OS elects to put it, and the
Notification it displays when complete will simply launch ACTION_VIEW on the
pushed file.

Another Sample: SecretAgentMan
To provide another take on using these features of NfcAdapter, let’s examine the
NFC/SecretAgentMan sample application, originally written for a presentation at the
2012 droidcon UK conference. This combines writing to tags, directly beaming text
to another device, and using Uri-based beaming, all in one app.

The UI of the app is a large EditText widget with an action bar:

Figure 491: The SecretAgentMan UI

There are three action bar items, one each for the three operations: writing to a tag,
directly beaming to another device, and beaming a file (represented via a Uri).

NFC

1790

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/SecretAgentMan
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/SecretAgentMan

Configuration and Initialization

Our app is comprised of a single activity, named MainActivity. As part of our
manifest setup, we request the NFC permission. And, since the app needs NFC to be
useful, we also have a <uses-feature> element, stipulating that the device needs to
have NFC, otherwise the app should not be shown in the Play Store:

<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

<uses-feature<uses-feature
android:name="android.hardware.nfc"
android:required="true"/>/>

In onCreate() of MainActivity, we can then safely get access to an NfcAdapter,
since the NFC hardware should exist and we have rights to use NFC:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

nfc=NfcAdapter.getDefaultAdapter(thisthis);
secretMessage=(EditText)findViewById(R.id.secretMessage);

nfc.setOnNdefPushCompleteCallback(thisthis, thisthis);

ifif (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
readFromTag(getIntent());

}
}

We also get our hands on the EditText widget, storing a reference to it in a data
member named secretMessage. We will cover the rest of the initialization work in
onCreate() later in this section, as we cover the code that needs that initialization.

Writing to the Tag

If the user chooses the “Write to Tag” action bar item, we call a setUpWriteMode()
method from onOptionsItemSelected() of MainActivity. We maintain an
inWriteMode boolean data member to track whether or not we are already trying to
write to an NFC tag. If inWriteMode is false, we go ahead and take control over the
NFC hardware to attempt to write to the next tag we see:

void setUpWriteMode() {
ifif (!inWriteMode) {

IntentFilter discovery=

NFC

1791

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

newnew IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);
IntentFilter[] tagFilters=newnew IntentFilter[] { discovery };
Intent i=

newnew Intent(thisthis, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP
| Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent pi=PendingIntent.getActivity(thisthis, 0, i, 0);

inWriteMode=truetrue;
nfc.enableForegroundDispatch(thisthis, pi, tagFilters, nullnull);

}
}

To do that, we:

• Create an IntentFilter for ACTION_TAG_DISCOVERED
• Create a PendingIntent for an Intent pointing back to this same activity

instance (using getClass() to identify the instance, plus
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to route control
back to our running instance)

• Call enableForegroundDispatch() on our NfcAdapter, to route newly-
discovered tags to us, with the IntentFilter identifying the tag-related
events we are interested in, and the PendingIntent identifying what to do
when such a tag is encountered

Once our activity is finishing (e.g., the user presses BACK), we need to clean up our
write-to-tag logic. This is kicked off in onPause() of MainActivity:

@Override
publicpublic void onPause() {

ifif (isFinishing()) {
cleanUpWritingToTag();

}

supersuper.onPause();

All we do in cleanUpWritingToTag() is discontinue our foreground control over the
NFC hardware:

void cleanUpWritingToTag() {
nfc.disableForegroundDispatch(thisthis);
inWriteMode=falsefalse;

}

If, before that occurs, the device is tapped on a tag, our activity should regain
control in onNewIntent() as a result of our PendingIntent having been executed:

NFC

1792

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
protectedprotected void onNewIntent(Intent i) {

ifif (inWriteMode
&& NfcAdapter.ACTION_TAG_DISCOVERED.equals(i.getAction())) {

writeToTag(i);
}
elseelse if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {

readFromTag(i);
}

}

If we are in write mode, and if the Intent that was just used with startActivity()
was ACTION_TAG_DISCOVERED, we call our writeToTag() method to actually start
writing information to the tag:

void writeToTag(Intent i) {
Tag tag=i.getParcelableExtra(NfcAdapter.EXTRA_TAG);
NdefMessage msg=

newnew NdefMessage(newnew NdefRecord[] { buildNdefRecord() });

newnew WriteTagTask(thisthis, msg, tag).execute();
}

To write to the tag, we get our Tag out of its Intent extra (keyed by EXTRA_TAG).
Then, we build an NfcMessage to write to the tag, getting its NfcRecord from
buildNdefRecord():

NdefRecord buildNdefRecord() {
returnreturn(newnew NdefRecord(NdefRecord.TNF_MIME_MEDIA,

MIME_TYPE.getBytes(), newnew byte[] {},
secretMessage.getText().toString().getBytes()));

}

Our NDEF record will be of a specific MIME type, represented by a static data
member named MIME_TYPE:

privateprivate staticstatic finalfinal String MIME_TYPE="vnd.secret/agent.man";

The payload of the NDEF record is our “secret message” from the secretMessage
EditText widget.

The writeToTag() method then kicks off the same WriteTagTask that we used
earlier in this chapter:

packagepackage com.commonsware.android.jimmyb;

importimport android.nfc.NdefMessageandroid.nfc.NdefMessage;
importimport android.nfc.Tagandroid.nfc.Tag;

NFC

1793

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.nfc.tech.Ndefandroid.nfc.tech.Ndef;
importimport android.nfc.tech.NdefFormatableandroid.nfc.tech.NdefFormatable;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.util.Logandroid.util.Log;
importimport android.widget.Toastandroid.widget.Toast;

classclass WriteTagTaskWriteTagTask extendsextends AsyncTask<Void, Void, Void> {
MainActivity host=nullnull;
NdefMessage msg=nullnull;
Tag tag=nullnull;
String text=nullnull;

WriteTagTask(MainActivity host, NdefMessage msg, Tag tag) {
thisthis.host=host;
thisthis.msg=msg;
thisthis.tag=tag;

}

@Override
protectedprotected Void doInBackground(Void... arg0) {

int size=msg.toByteArray().length;

trytry {
Ndef ndef=Ndef.get(tag);

ifif (ndef == nullnull) {
NdefFormatable formatable=NdefFormatable.get(tag);

ifif (formatable != nullnull) {
trytry {

formatable.connect();

trytry {
formatable.format(msg);

}
catchcatch (Exception e) {

text=host.getString(R.string.tag_refused_to_format);
}

}
catchcatch (Exception e) {

text=host.getString(R.string.tag_refused_to_connect);
}
finallyfinally {

formatable.close();
}

}
elseelse {

text=host.getString(R.string.tag_does_not_support_ndef);
}

}
elseelse {

ndef.connect();

trytry {

NFC

1794

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (!ndef.isWritable()) {
text=host.getString(R.string.tag_is_read_only);

}
elseelse if (ndef.getMaxSize() < size) {

text=host.getString(R.string.message_is_too_big_for_tag);
}
elseelse {

ndef.writeNdefMessage(msg);
text=host.getString(R.string.success);

}
}
catchcatch (Exception e) {

text=host.getString(R.string.tag_refused_to_connect);
}
finallyfinally {

ndef.close();
}

}
}
catchcatch (Exception e) {

Log.e("URLTagger", "Exception when writing tag", e);
text=host.getString(R.string.general_exception) + e.getMessage();

}

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

host.cleanUpWritingToTag();

ifif (text != nullnull) {
Toast.makeText(host, text, Toast.LENGTH_SHORT).show();

}
}

}

The net result is that if the user taps the “Write to Tag” action bar item, then taps
and holds the device to a tag, we will write a message to the tag and display a Toast
when we are done.

And, yes, this is a surprising amount of code for what really should be a simple
operation…

Reading from the Tag

We can set up MainActivity to respond to tags similar to the one we wrote — ones
that have the desired MIME Type — via an android.nfc.action.NDEF_DISCOVERED
<intent-filter>:

NFC

1795

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<intent-filter<intent-filter android:label="@string/app_name">>
<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<data<data android:mimeType="vnd.secret/agent.man"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

In both onCreate() and onNewIntent(), if the Intent that started our activity is an
NDEF_DISCOVERED Intent, we route control to a readFromTag() method:

void readFromTag(Intent i) {
Parcelable[] msgs=

(Parcelable[])i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

ifif (msgs.length > 0) {
NdefMessage msg=(NdefMessage)msgs[0];

ifif (msg.getRecords().length > 0) {
NdefRecord rec=msg.getRecords()[0];

secretMessage.setText(newnew String(rec.getPayload(), US_ASCII));
}

}
}

In principle, there could be several NDEF messages on the tag, but we only pay
attention to the first element, if any, of the EXTRA_NDEF_MESSAGES array of
Parcelable objects on the Intent. Similarly, in principle, there could be several
NDEF records in the first message, but we only examine the first element out of the
array of NdefRecord objects contained in the NdefMessage. From there, we extract
our secret message and display it by means of putting it in the EditText widget.

Beaming the Text

This sample only supports beaming — whether of NDEF messages directly or of a
file — if we are on API Level 16 or higher. Hence, in onCreateOptionsMenu(), we
check our version and only enable our default-disabled beam action bar items if:

• We are on API Level 16 or higher, and
• NDEF push mode is enabled, via a call to isNdefPushEnabled() on our
NfcAdapter:

@TargetApi(16)
@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_main, menu);

NFC

1796

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN) {
menu.findItem(R.id.simple_beam)

.setEnabled(nfc.isNdefPushEnabled());
menu.findItem(R.id.file_beam).setEnabled(nfc.isNdefPushEnabled());

}

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

If the user taps on the “Beam” action bar item, we call an enablePush() method
from onOptionsItemSelected(), which simply enables push mode:

void enablePush() {
nfc.setNdefPushMessageCallback(thisthis, thisthis);

}

We arrange for the activity itself to be the CreateNdefMessageCallback necessary for
push mode. That requires us to implement createNdefMessage(), which will be
called if we are in push mode and a push-compliant device comes within range:

@Override
publicpublic NdefMessage createNdefMessage(NfcEvent event) {

returnreturn(newnew NdefMessage(
newnew NdefRecord[] {

buildNdefRecord(),

NdefRecord.createApplicationRecord("com.commonsware.android.jimmyb") }));
}

Here, we create an NdefMessage similar to the one we wrote to the tag earlier in this
sample. However, we also attach an Android Application Record (AAR), by means of
the static createApplicationRecord() method on NdefRecord. This, in theory, will
help route the push to our app on the other device, including downloading it from
the Play Store if needed (and, of course, if it actually existed on the Play Store, which
it does not).

Back up in onCreate(), we call setOnNdefPushCompleteCallback(), to be notified of
when a push operation is completed. Once again, we set up MainActivity to be the
callback, this time by implementing the OnNdefPushCompleteCallback interface.
That, in turn, requires us to implement onNdefPushComplete(), where we disable
push mode via a call to setNdefPushMessageCallback() with a null listener:

@Override
publicpublic void onNdefPushComplete(NfcEvent event) {

nfc.setNdefPushMessageCallback(nullnull, thisthis);
}

NFC

1797

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To receive the beam, we only need our existing logic to read from the tag, as on the
receiving side, a push is indistinguishable from reading a tag, and we are using the
same MIME type for both the message written to the tag and the message we are
pushing.

Beaming the File

If the user taps the “Beam File” action bar item, we find some file to beam, by means
of an ACTION_GET_CONTENT request and startActivityForResult():

casecase R.id.file_beam:
Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("*/*");
startActivityForResult(i, 0);
returnreturn(truetrue);

In onActivityResult(), if the request succeeded, we use setBeamPushUris() to tell
Android to beam the selected file to another device. Nothing more is needed on our
side, and the receipt of the file is handled entirely by the OS, not our application
code, so there is nothing to be written for that.

This code assumes the NFC adapter is enabled. We could check that via a call to
isEnabled() on our NfcAdapter. If it is not enabled, we could — on user request —
bring up the Settings activity for configuring NFC, via startActivity(new
Intent(Settings.ACTION_NFC_SETTINGS)). However, oddly, this Intent action is
only available on Android 4.1 (API Level 16) and higher, despite NFC having been
available for some time previously.

This code ignores the possibility of doing the simple beam (not the file-based beam)
on Android 4.0.x devices. That is because the isNdefPushEnabled() method was not
added until Android 4.1, and therefore we do not know whether or not we can
actually do a beam.

If isNdefPushEnabled() returns false, we simply disable some action bar items.
Alternatively, we could use startActivity(new
Intent(Settings.ACTION_NFCSHARING_SETTINGS)), on API Level 14 and higher, to
bring up the beam screen in Settings, to allow the user to toggle beam support on.

NFC

1798

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Additional Resources
To help make sense of the tags that you are trying to use with your app, you may
wish to grab the NFC TagInfo application off of the Google Play Store. This
application simply scans a tag and allows you to peruse all the details of that tag,
including the supported technologies (e.g., does it support NDEF? is it
NdefFormatable?), the NDEF records, and so on.

To learn more about NFC on Android — beyond this chapter or the Android
developer documentation – this Google I|O 2011 presentation is recommended.

NFC

1799

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=at.mroland.android.apps.nfctaginfo
http://www.youtube.com/watch?v=49L7z3rxz4Q

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Administration

Balding authors of Android books often point out that enterprises and malware
authors have the same interests: they want to take control of a device away from the
person that is holding it and give that control to some other party. Android, being a
consumer operating system, is designed to defend against malware, and so
enterprises can run into issues.

However, Android does have a growing area of device administration APIs, that
allow carefully-constructed and installed applications to exert some degree of
control over the device, how it is configured, and how it operates.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on broadcast Intents.

Objectives and Scope
One might read the phrase “device administration” and assume that somebody,
using these APIs, could do anything they want on the device.

That’s not quite what “device administration” means in this case.

Rather, the device administration APIs serve three main roles:

1. They allow an application to dictate how well a device is secured, from the
password required in the OS lock screen to whether the device should have
full-disk encryption

1801

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. They allow an application to find out when security issues might arise,
notably failed password attempts

3. They allow an application to lock the device, disable its cameras, or even
perform a “wipe” (i.e., factory reset)

The user, however, has to agree to enable a device administration app. It does not
magically get all these powers simply by being installed. What the user gets from
agreeing to this is access to something that otherwise would be denied (e.g., to use
Enterprise App X, you must agree to allow it to be a device administrator).

Defining and Registering an Admin Component
There are four pieces for defining and registering a device administration app:
creating the metadata, adding the <receiver> to the manifest, implementing that
BroadcastReceiver, and telling Android to ask the user to agree to allow the app to
a device administrator.

Here, we will take a peek at the DeviceAdmin/LockMeNow sample application.

The Feature

Apps implementing device administrators should add a <uses-feature> element
with a name of android.software.device_admin, indicating whether or not they
require this device feature to exist. This can be used by the Play Store to filter your
app from being available on devices that, for one reason or another, do not offer this
capability.

The Metadata

As with app widgets and other Android facilities, you will need to define a metadata
file as an XML resource, describing in greater detail what your device administration
app wishes to do. This information will determine what you will be allowed to do
once the user approves your app, and what you list here will be displayed to the user
when you request such approval.

The DeviceAdminInfo class has a series of static data members (e.g.,
USES_ENCRYPTED_STORAGE) that represent specific policies that your device
administrator app could use. The documentation for each of those static data
members lists the corresponding element that goes in this XML metadata file (e.g.,
<encrypted-storage>). These elements are wrapped in a <uses-policies> element,

DEVICE ADMINISTRATION

1802

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/LockMeNow
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/LockMeNow

which itself is wrapped in a <device-admin> element. The range of possible policies
is shown in the following sample XML metadata file:

<device-admin<device-admin xmlns:android="http://schemas.android.com/apk/res/android">>
<uses-policies><uses-policies>

<disable-camera<disable-camera />/>
<encrypted-storage<encrypted-storage />/>
<expire-password<expire-password />/>
<force-lock<force-lock />/>
<limit-password<limit-password />/>
<reset-password<reset-password />/>
<watch-login<watch-login />/>
<wipe-data<wipe-data />/>

</uses-policies></uses-policies>
</device-admin></device-admin>

Here, we:

• Intend to disable the cameras, if needed
• Will ask the user to encrypt their device storage, if it has not been done

already
• Will set an expiration time for the user’s password, after which they will

need to set up a new one
• Intend to lock the device, if needed
• Will set criteria for password quality, such as minimum length
• Intend to forcibly reset the user’s password, if needed
• Intend to monitor for failed and successful login attempts
• Intend to wipe the device, if needed

Choose which of those policies you need — the fewer you request, the more likely it
is the user will not wonder about your intentions. In your project’s res/xml/
directory, create a file that looks like the above with the policies you wish. You can
name this file whatever you want (e.g., device_admin.xml), within standard Android
resource naming rules.

The Manifest

In the manifest, you will need to declare a <receiver> element for the
DeviceAdminReceiver component that you will write. This component not only is
the embodiment of the device admin capabilities of your app, but it will be the one
notified of failed logins and other events.

For example, here is the <receiver> element from the LockMeNow sample app:

DEVICE ADMINISTRATION

1803

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<receiver<receiver
android:name="AdminReceiver"
android:permission="android.permission.BIND_DEVICE_ADMIN">>
<meta-data<meta-data

android:name="android.app.device_admin"
android:resource="@xml/device_admin"/>/>

<intent-filter><intent-filter>
<action<action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

There are three things distinctive about this element compared to your usual
<receiver> element:

1. It requires that whoever sends broadcasts to it hold the BIND_DEVICE_ADMIN
permission. Since that permission is protected and can only be held by apps
signed with the firmware’s signing key, you can be reasonably assured that
any events sent to you are real.

2. It has the <meta-data> child element pointing to our device administration
metadata from the previous section.

3. It registers for android.app.action.DEVICE_ADMIN_ENABLED broadcasts via
its <intent-filter> — this is the broadcast that will be used to notify you
about failed logins or other events.

The Receiver

The DeviceAdminReceiver itself needs to exist as a component in your app,
registered in the manifest as shown above. At minimum, though, it does not need to
override any methods, such as the implementation from the LockMeNow sample app:

packagepackage com.commonsware.android.lockme;

importimport android.app.admin.DeviceAdminReceiverandroid.app.admin.DeviceAdminReceiver;

publicpublic classclass AdminReceiverAdminReceiver extendsextends DeviceAdminReceiver {
}

By requesting the DEVICE_ADMIN_ENABLED broadcasts, we could get control when we
are enabled by overriding an onEnabled() method. We could also register for other
broadcasts (e.g., ACTION_PASSWORD_FAILED) and implement the corresponding
callback method on our DeviceAdminReceiver (e.g., onPasswordFailed()).

DEVICE ADMINISTRATION

1804

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Demand for Device Domination

Simply having this component in our manifest, though, is insufficient. The user
must proactively agree to allow us to administer their device. And, since this is
potentially very dangerous, a simple permission was deemed to also be insufficient.
Instead, we need to ask the user to approve us as a device administrator from our
app, typically from an activity.

In the case of LockMeNow, the UI is just a really big button, tied to a lockMeNow()
method on our LockMeNowActivity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/Button1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:onClick="lockMeNow"
android:text="@string/lock_me"
android:textColor="#FFFF0000"
android:textSize="40sp"
android:textStyle="bold"/>/>

</LinearLayout></LinearLayout>

In onCreate() of the activity, in addition to loading up the UI via setContentView(),
we create a ComponentName object identifying our AdminReceiver component. We
also request access to the DevicePolicyManager, via a call to getSystemService().
DevicePolicyManager is our gateway for making direct requests for device
administration operations, such as locking the device:

packagepackage com.commonsware.android.lockme;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.admin.DevicePolicyManagerandroid.app.admin.DevicePolicyManager;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass LockMeNowActivityLockMeNowActivity extendsextends Activity {
privateprivate DevicePolicyManager mgr=nullnull;
privateprivate ComponentName cn=nullnull;

DEVICE ADMINISTRATION

1805

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.main);
cn=newnew ComponentName(thisthis, AdminReceiver.class);
mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);

}

publicpublic void lockMeNow(View v) {
ifif (mgr.isAdminActive(cn)) {

mgr.lockNow();
}
elseelse {

Intent intent=
newnew Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

getString(R.string.device_admin_explanation));
startActivity(intent);

}
}

}

In lockMeNow(), we ask the DevicePolicyManager if we have already been registered
as a device administrator, by calling isAdminActive(), supplying the ComponentName
of our DeviceAdminReceiver that should be so registered. If that returns false, then
the user has not approved us as a device administrator yet, so we need to ask them
to do so. To do that, you:

• Create an Intent for the DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN
action

• Add the ComponentName of our DeviceAdminReceiver as an extra, keyed as
DevicePolicyManager.EXTRA_DEVICE_ADMIN

• Add another extra, DevicePolicyManager.EXTRA_ADD_EXPLANATION, which is
some text to show the user as part of the authorization screen, to explain
why we need to be a device admin

• Start up an activity using that Intent, via startActivity()

If you run this on a device, then tap the button, the first time you do so the user will
be prompted to agree to making the app be a device administrator:

DEVICE ADMINISTRATION

1806

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 492: The Activate Device Administrator Screen

The “For experimentation purposes only” is the value of our
DevicePolicyManager.EXTRA_ADD_EXPLANATION extra, loaded from a string resource.

If the user clicks “Activate”, and you overrode onEnabled() in your
DeviceAdminReceiver, that will be called to let you know that you have been
approved and can perform device administration functions. Your component will
also appear in the list of device administrators in the Settings app:

DEVICE ADMINISTRATION

1807

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 493: The Device Administrator List

The user can, at any time, uncheck you in this list and disable you. You can find out
about this by having your DeviceAdminReceiver listen for
ACTION_DEVICE_ADMIN_DISABLE_REQUESTED broadcasts and overriding the
onDisableRequested() method, where you can return the text of a message to be
displayed to the user confirming that they do indeed wish to go ahead with the
disable operation. To find out if they go through with it, your DeviceAdminReceiver
can listen for ACTION_DEVICE_ADMIN_DISABLED broadcasts and override
onDisabled().

Going Into Lockdown
Given that the user has approved your device administration request, and given that
you requested <force-lock> in your metadata, you can call lockNow() on a
DevicePolicyManager. That will immediately lock the device and (generally) turn off
the screen. It is as if the user pressed the POWER button on the device.

The LockItNow sample app does this if, when the user clicks the really big button, it
detects that it is already a device administrator. If you test this on a device, it will

DEVICE ADMINISTRATION

1808

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

behave as though the user pressed POWER; on an emulator, you will need to press
the HOME button to “power on” the screen and be able to re-enter your emulator.

You can also call:

• setCameraDisabled() to disable all cameras, if you requested
<disable-camera> in the metadata. Note that this disables all cameras; there
is no provision at this time to disable individual cameras separately.

• wipeData(), which performs what amounts to a factory reset — it leaves
external storage alone but wipes the contents of internal storage as part of a
reboot. This requires the <wipe-data> policy in the metadata.

• setKeyguardDisabledFeatures(), to control whether or not the lockscreen
allows direct access to the camera and/or app widgets (lockscreen app
widgets are described in the chapter on app widgets)

For example, the latter feature, while available in the Android SDK, is not built into
the Settings app of Android 4.2. As a result, users need a third-party app to toggle on
or off lockscreen access to the camera and app widgets. One such third-party app is
LockscreenLocker, released as open source by the author of this book.

Basically, the app presents you with two Switch widgets to control the camera and
app widgets on the lock screen. First, though, it shows you a message and a Button,
if the app is not set up as a device administrator:

DEVICE ADMINISTRATION

1809

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/LockscreenLocker

Figure 494: LockscreenLocker, On Initial Run

Once that is complete, the Switch widgets become enabled and usable:

DEVICE ADMINISTRATION

1810

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 495: LockscreenLocker, After Being Made a Device Admin

The device admin metadata for this app specifies that we want to control keyguard
features:

<device-admin<device-admin xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-policies><uses-policies>
<disable-keyguard-features/><disable-keyguard-features/>

</uses-policies></uses-policies>

</device-admin></device-admin>

Note that, at the time of this writing, there is a flaw in the Android developer
documentation — the correct element to have in the metadata is
<disable-keyguard-features/>, not <disable-keyguard-widgets>. You can track
this issue to see when this documentation bug has been repaired.

Our device admin component, LockscreenAdminReceiver, is empty, because there
are no events that we are trying to listen to:

publicpublic classclass LockscreenAdminReceiverLockscreenAdminReceiver extendsextends DeviceAdminReceiver {
}

DEVICE ADMINISTRATION

1811

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=41050

However, we still need the LockscreenAdminReceiver, as it is the component that is
tied to our device admin metadata and indicates to the system that we should be an
option in Settings for available device administrators.

Our activity layout contains all the requisite widgets: a TextView for the message, a
Button to jump to the Settings app, a View to serve as a divider, and a pair of Switch
widgets to manage the lockscreen settings:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/setupMessage"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/setup_message"
android:textAppearance="?android:attr/textAppearanceMedium"
android:visibility="gone"/>/>

<Button<Button
android:id="@+id/setup"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showSettings"
android:text="@string/visit_settings"
android:visibility="gone"/>/>

<View<View
android:id="@+id/divider"
android:layout_width="match_parent"
android:layout_height="2dip"
android:layout_marginBottom="4dip"
android:layout_marginTop="4dip"
android:background="#FF000000"
android:visibility="gone"/>/>

<Switch<Switch
android:id="@+id/camera"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/allow_camera"/>/>

<Switch<Switch
android:id="@+id/widgets"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="4dip"
android:text="@string/allow_widgets"/>/>

DEVICE ADMINISTRATION

1812

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</LinearLayout></LinearLayout>

In onCreate() of our activity (MainActivity), we request a DevicePolicyManager,
set up a ComponentName identifying our DeviceAdminReceiver implementation
(LockscreenAdminReceiver), and hook up the activity to know about changes in the
state of the Switch widgets:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);
cn=newnew ComponentName(thisthis, LockscreenAdminReceiver.class);

camera=(CompoundButton)findViewById(R.id.camera);
camera.setOnCheckedChangeListener(thisthis);

widgets=(CompoundButton)findViewById(R.id.widgets);
widgets.setOnCheckedChangeListener(thisthis);

}

In onResume(), we check to see if our DeviceAdminReceiver is active — in other
words, whether the user has set us up as being a device administrator or not:

@Override
publicpublic void onResume() {

supersuper.onResume();

ifif (mgr.isAdminActive(cn)) {
toggleWidgets(truetrue);

int status=mgr.getKeyguardDisabledFeatures(cn);

camera.setChecked(!((status &
DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA) ==
DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA));

widgets.setChecked(!((status &
DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL) ==
DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL));

}
elseelse {

toggleWidgets(falsefalse);
}

}

We toggle the visibility and enabled settings of our widgets based upon whether we
are a device administrator or not, in a toggleWidgets() private method:

DEVICE ADMINISTRATION

1813

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate void toggleWidgets(boolean enable) {
int visibility=(enable ? View.GONE : View.VISIBLE);

camera.setEnabled(enable);
widgets.setEnabled(enable);

findViewById(R.id.divider).setVisibility(visibility);
findViewById(R.id.setup).setVisibility(visibility);
findViewById(R.id.setupMessage).setVisibility(visibility);

}

onResume() also sets the state of our Switch widgets based upon the current state of
the keyguard features, by calling getKeyguardDisabledFeatures() on the
DevicePolicyManager. This returns a bit set of which features are disabled, with
DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA and/or
DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL possibly being set.

At the outset, after being installed, we will not be a device administrator, so the
Switch widgets will be disabled and the Button will be visible. We simply send the
user to the security screen in the Settings app if they click that button:

publicpublic void showSettings(View v) {
startActivity(newnew Intent(Settings.ACTION_SECURITY_SETTINGS));

}

When the user toggles a Switch, our activity will be called with
onCheckedChanged(). There, we need to call setKeyguardDisabledFeatures() with
a new bit set, toggling on or off a bit based on the user’s chosen values in the UI:

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
int status=mgr.getKeyguardDisabledFeatures(cn);

ifif (buttonView == camera) {
ifif (isChecked) {

mgr.setKeyguardDisabledFeatures(cn, status
& ~DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA);

}
elseelse {

mgr.setKeyguardDisabledFeatures(cn, status
| DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA);

}
}
elseelse {

ifif (isChecked) {
mgr.setKeyguardDisabledFeatures(cn, status

& ~DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL);
}

DEVICE ADMINISTRATION

1814

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
mgr.setKeyguardDisabledFeatures(cn, status

| DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL);
}

}
}

Note that we have the Switch widgets set up for positive statements (e.g., “enable
the camera”), while the bit set uses negative statements (e.g., “disable the camera”).
That makes toggling the bit set a “bit” more complicated, to ensure that we are
applying the user’s choices correctly.

Passwords and Device Administration
One popular facet of the device administration APIs is for an app to mandate a
certain degree of password quality. The app might then fail to operate if the current
password does not meet the requested quality standard.

Mandating Quality of Security

You can call various setters on DevicePolicyManager to dictate your minimum
requirements for the password that the user uses to get past the lock screen.
Examples include:

• setPasswordMinimumLength()
• setPasswordQuality() (with an integer flag describing the type of “quality”

you seek, such as PASSWORD_QUALITY_NUMERIC if a PIN is OK, or
PASSWORD_QUALITY_COMPLEX if you require mixed case and numbers and
such)

• setPasswordMinimumLowerCase() (indicating how many lowercase letters are
required at minimum in the user’s password)

All of these require the <limit-password> policy be requested in the metadata.

Then, you can call isActivePasswordSufficient() to determine if the current
password meets your requirements. If it does not, you might elect to disable certain
functionality. Or, if you requested the <reset-password> policy in the metadata, you
can call resetPassword() to force the user to come up with a password meeting your
requirements.

Similarly, you can also call getStorageEncryptionStatus() on
DevicePolicyManager to find out whether full-disk encryption is active, inactive, or

DEVICE ADMINISTRATION

1815

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

unavailable on this particular device. If it is inactive, and you requested the
<encrypted-storage> policy in your metadata, you can call
setStorageEncryption() to demand it, and start the encryption process via starting
the ACTION_START_ENCRYPTION activity.

Establishing Password Requirements

To see password quality enforcement in action, let us examine the DeviceAdmin/
PasswordEnforcer sample application.

The activity (MainActivity) is fairly short, and much of its code is based off of the
earlier LockMeNow sample:

packagepackage com.commonsware.android.pwenforce;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.admin.DevicePolicyManagerandroid.app.admin.DevicePolicyManager;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ComponentName cn=newnew ComponentName(thisthis, AdminReceiver.class);
DevicePolicyManager mgr=

(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);

ifif (mgr.isAdminActive(cn)) {
int msgId;

ifif (mgr.isActivePasswordSufficient()) {
msgId=R.string.compliant;

}
elseelse {

msgId=R.string.not_compliant;
}

Toast.makeText(thisthis, msgId, Toast.LENGTH_LONG).show();
}
elseelse {

Intent intent=
newnew Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

getString(R.string.device_admin_explanation));
startActivity(intent);

DEVICE ADMINISTRATION

1816

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer

}

finish();
}

}

In onCreate(), after obtaining a DevicePolicyManager, we see if our app has been
designated by the user as a device administrator. If not — which will be the case
when the app is first installed — we use an ACTION_ADD_DEVICE_ADMIN Intent and
startActivity() to steer the user towards making our app be a device
administrator.

If the user does make our app be a device administrator, our AdminReceiver will get
control in onEnabled(), as we have registered it for DEVICE_ADMIN_ENABLED
broadcasts in the manifest. In onEnabled(), we mandate that the password for the
device must be alphanumeric, via a call to setPasswordQuality() on the
DevicePolicyManager:

@Override
publicpublic void onEnabled(Context ctxt, Intent intent) {

ComponentName cn=newnew ComponentName(ctxt, AdminReceiver.class);
DevicePolicyManager mgr=

(DevicePolicyManager)ctxt.getSystemService(Context.DEVICE_POLICY_SERVICE);

mgr.setPasswordQuality(cn,
DevicePolicyManager.PASSWORD_QUALITY_ALPHANUMERIC);

onPasswordChanged(ctxt, intent);
}

We will see the role of the onPasswordChanged() method, called late in
onEnabled(), later in this chapter.

Back in onCreate() of our MainActivity, if we are a device administrator, then we
know that the setPasswordQuality() call has been made, and so we can check to
see if the current password meets our standards via a call to
isActivePasswordSufficient() on the DevicePolicyManager. The app displays a
Toast showing whether the password is or is not currently “sufficient”.

Password-Related Events

Via appropriate actions in our <intent-filter> for our DeviceAdminReceiver, and
associated callback methods, we can find out other things that go on with respect to
the password:

DEVICE ADMINISTRATION

1817

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• ACTION_PASSWORD_CHANGED informs us when the user has changed her
password

• ACTION_PASSWORD_FAILED informs us when somebody tries to enter a
password, and the password was incorrect

• ACTION_PASSWORD_SUCCEEDED informs us when the user has successfully
entered the password and unlocked the device… after an attempt had
previously failed

The PasswordEnforcer sample registers for all of these in the manifest:

<receiver<receiver
android:name="AdminReceiver"
android:permission="android.permission.BIND_DEVICE_ADMIN">>
<meta-data<meta-data

android:name="android.app.device_admin"
android:resource="@xml/device_admin"/>/>

<intent-filter><intent-filter>
<action<action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>/>
<action<action android:name="android.app.action.ACTION_PASSWORD_CHANGED"/>/>
<action<action android:name="android.app.action.ACTION_PASSWORD_FAILED"/>/>
<action<action android:name="android.app.action.ACTION_PASSWORD_SUCCEEDED"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

The implementations of the corresponding onPasswordChanged(),
onPasswordFailed(), and onPasswordSucceeded() methods simply display Toast
messages about those events:

@Override
publicpublic void onPasswordChanged(Context ctxt, Intent intent) {

DevicePolicyManager mgr=

(DevicePolicyManager)ctxt.getSystemService(Context.DEVICE_POLICY_SERVICE);
int msgId;

ifif (mgr.isActivePasswordSufficient()) {
msgId=R.string.compliant;

}
elseelse {

msgId=R.string.not_compliant;
}

Toast.makeText(ctxt, msgId, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onPasswordFailed(Context ctxt, Intent intent) {

Toast.makeText(ctxt, R.string.password_failed, Toast.LENGTH_LONG)
.show();

DEVICE ADMINISTRATION

1818

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Override
publicpublic void onPasswordSucceeded(Context ctxt, Intent intent) {

Toast.makeText(ctxt, R.string.password_success, Toast.LENGTH_LONG)
.show();

}

However, these will illustrate some quirks in the behavior of the device
administration APIs:

• onPasswordSucceeded() is not called on every successful password entry,
only those that come after a prior onPasswordFailed() call. One imagines
that perhaps onPasswordSucceededAfterItHadFailedBefore() was deemed
to be too wordy.

• isActivePasswordSufficient() will return a value based on the previous
password in onPasswordChanged(), not the newly-changed password. Since
the system will prevent the user from entering a new password that is
insufficient, you should not need to call isActivePasswordSufficient()
from onPasswordChanged().

• A Toast cannot display over the lockscreen, and so the onPasswordFailed()
Toast will never be seen.

Getting Along with Others
Bear in mind that you might not be the only device administrator on any given
device. If there are multiple administrators, the most secure requirements are in
force. So, for example, if Admin A requests a minimum password length of 7, and
Admin B requests a minimum password length of 10, the user will have to supply a
password that is at least 10 characters long, to meet both device administrators’
requirements.

This also means that certain requests you make may fail. For example, if you decide
to say that you do not need encryption (setStorageEncryption() with a value of
false), if something else needs encryption, the user will still need to encrypt their
device.

DEVICE ADMINISTRATION

1819

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PowerManager and WakeLocks

There are going to be times when you want the device to keep running, even though
it ordinarily would go into a sleep mode, with the CPU powered down and the
screen turned off. Sometimes, that will be based upon user interactions, or the lack
thereof, such as keeping the screen on while playing back a video. Sometimes, that
will be to allow background scheduled work to run to completion, as was introduced
in the chapter on AlarmManager.

This chapter looks a bit more at the details of this sort of power management,
including coverage of how AlarmManager works.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on AlarmManager.

Keeping the Screen On, UI-Style
If your objective is to keep the screen (and CPU) on while your activity is in the
foreground, the simplest solution is to add android:keepScreenOn="true" to
something in the activity’s layout. So long as that widget or container is visible, the
screen will stay on.

If you wish to do this conditionally, setKeepScreenOn() allows you to toggle this
setting at runtime.

Once your activity is no longer in the foreground, or the widget or container is no
longer visible, the effect lapses, and screen operation returns to normal.

1821

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of the WakeLock
Most of the time in Android, you are developing code that will run while the user is
actually using the device. Activities, for example, only really make sense when the
device is fully awake and the user is tapping on the screen or keyboard.

Particularly with scheduled background tasks, though, you need to bear in mind
that the device will eventually “go to sleep”. In full sleep mode, the display, main
CPU, and keyboard are all powered off, to maximize battery life. Only on a low-level
system event, like an incoming phone call, will anything wake up the device.

Another thing that will partially wake up the phone is an Intent raised by the
AlarmManager. So long as broadcast receivers are processing that Intent, the
AlarmManager ensures the CPU will be running (though the screen and keyboard are
still off). Once the broadcast receivers are done, the AlarmManager lets the device go
back to sleep.

You can achieve the same effect in your code via a WakeLock.

One of the changes that the core Android team made to the Linux kernel was to
introduce the concept of the “wakelock”. In simple terms, a wakelock allows a Linux
userland application — such as our Android SDK apps — to control whether or not
the CPU can be powered down as part of a sleep mode. While a wakelock is in force,
the CPU will remain on and processing instructions from the processes and threads
that are on the device.

From the SDK, to access a wakelock, you use a WakeLock object, obtained from the
PowerManager system service. When you call acquire() on that WakeLock, the CPU
will remain on; when you call release() on that WakeLock, the CPU can fall back
asleep, if there are no other outstanding WakeLocks from SDK apps or the operating
system itself.

There are four types of WakeLock objects. All will keep the CPU on. They vary in
their effects on the screen (leave it off, have it display with dim backlight, have it
display with normal backlight) and any physical keys (ignore or accept). You will
pass a flag into newWakeLock() on the PowerManager system service to indicate what
type of WakeLock you want. The most common is the PARTIAL_WAKE_LOCK, which
keeps the CPU on but leaves the screen and keyboard off — ideal for periodic
background work triggered by an AlarmManager event.

POWERMANAGER AND WAKELOCKS

1822

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What WakefulIntentService Does
For a _WAKEUP alarm, the AlarmManager will arrange for the device to stay awake, via
a WakeLock, for as long as the BroadcastReceiver’s onReceive() method is
executing. For some situations, that may be all that is needed. However,
onReceive() is called on the main application thread, and Android will kill off the
receiver if it takes too long.

Your natural inclination in this case is to have the BroadcastReceiver arrange for a
Service to do the long-running work on a background thread, since
BroadcastReceiver objects should not be starting their own threads. Perhaps you
would use an IntentService, which packages up this “start a Service to do some
work in the background” pattern. And, given the preceding section, you might try
acquiring a partial WakeLock at the beginning of the work and release it at the end of
the work, so the CPU will keep running while your IntentService does its thing.

This strategy will work… some of the time.

The problem is that there is a gap in WakeLock coverage, as depicted in the following
diagram:

Figure 496: The WakeLock Gap

The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after onReceive() ends. As a
result, there is a window of time between the end of onReceive() and when your
IntentService can acquire its own WakeLock. During that window, the device might
fall back asleep. Sometimes it will, sometimes it will not.

What you need to do, instead, is arrange for overlapping WakeLock instances. You
need to acquire a WakeLock in your BroadcastReceiver, during the onReceive()

POWERMANAGER AND WAKELOCKS

1823

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

execution, and hold onto that WakeLock until the work is completed by the
IntentService:

Figure 497: The WakeLock Overlap

Then you are assured that the device will stay awake as long as the work remains to
be done.

The WakefulIntentService recipe described in its chapter does not have you
manage your own WakeLock. That is because WakefulIntentService handles it for
you. One reason why WakefulIntentService exists is to manage that WakeLock,
because WakeLocks suffer from one major problem: they are not Parcelable, and
therefore cannot be passed in an Intent extra. Hence, for our BroadcastReceiver
and our WakefulIntentService to use the same WakeLock, they have to be shared via
a static data member… which is icky. WakefulIntentService is designed to hide this
icky part from you, so you do not have to worry about it.

WakefulIntentService also handles various edge and corner cases, such as:

• What happens if Android elects to get rid of your process due to low
memory conditions?

• What happens if your doWakefulWork() crashes, so we do not leak the
acquired WakeLock?

• What if your UI also sends commands to the WakefulIntentService, or your
processing takes longer than your polling period in AlarmManager, so that we
have more than one piece of work outstanding at a point in time?

The one requirement related to a WakeLock that WakefulIntentService imposes
upon you is the WAKE_LOCK permission. Any code in your process that is directly
manipulating WakeLock objects needs this permission, even if that code is from a
third-party JAR like WakefulIntentService.

POWERMANAGER AND WAKELOCKS

1824

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Push Notifications with GCM

Google Cloud Messaging – GCM for short — is Google’s current framework for
asynchronously delivering notifications from the Internet (“cloud”) to Android
devices. Rather than the device waking up and polling on a regular basis at the
behest of your app, your app can register for notifications and then wait for them to
arrive. GCM is engineered with power savings in mind, aiming to minimize the
length of time 3G radios are exchanging data.

The proper use of GCM means better battery life for your users. It can also reduce
the amount of time your code runs, which helps you stay out of sight of users
looking to pounce on background tasks and eradicate them with task killers.

GCM replaces C2DM (“cloud to device messaging”) as Google’s push framework for
Android. While C2DM is still in operation, it is accepting no new developer
registrations. New development should use GCM; apps already using C2DM should
plan to cut over to GCM as soon as is practical.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on:

• broadcast Intents
• service theory
• AlarmManager (though mostly for the discussion of WakefulIntentService

1825

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/google/gcm/index.html

The Precursor: C2DM
C2DM debuted in 2010 as a way for apps to receive “push” messages: messages sent
to it from “the cloud” by the app developer’s server. It quickly became popular, for
everything from triggering near-real-time data synchronization (e.g., Remember the
Milk to-do list updates) to lightweight coordination between multiple players in a
game.

However, C2DM was a Google Labs product and in perpetual beta form. When
Google Labs was shut down, C2DM was in limbo: not canceled, but not converted
into an actual product. Most likely, that was because while they knew the concept
was sound, they wanted to tweak the implementation and APIs and were not ready
with its replacement just yet.

The Replacement: GCM
GCM replaced C2DM in 2012, with C2DM moving into a deprecated state,
continuing to function but accepting no new applications.

GCM follows the same basic structure as C2DM, with the app registering for
messages, and the developer’s server sending messages to the app via a Google-
supplied Web service interface. Hence, apps written to use C2DM should migrate
over to GCM without significant architectural changes.

GCM raises the 1KB limit for the message to 4KB. It also simplifies the server side, by
replacing a fairly clunky authentication model with a “Simple API Key” and lifting
quotas that had hamstrung popular C2DM-enabled apps. Also, if the same message
needs to be delivered to multiple devices, GCM can send to up to 1,000 at a time,
whereas C2DM was limited to a one-device-per-Web-service-call model.

As a result, GCM provides the benefits of C2DM without some of the annoying
limitations. That being said, GCM is not perfect, and we will examine some of the
limitations that remain later in this chapter.

The Re-Replacement: GCM 2013
At Google I|O 2013, Google debuted a substantial update to GCM. The update
enables a handful of new features, most notably an upstream messaging option, so
devices can “push” messages to servers just as servers can push messages to clients.

PUSH NOTIFICATIONS WITH GCM

1826

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Along the way, Google:

• Added a dependency to the Play Services SDK library project
• Deprecated a JAR containing code that you need, in one form or fashion, to

write GCM-enabled apps, forcing you to basically rewrite lots of that JAR
from scratch or “forward-port” the old implementation

• Further weakened their documentation, including all but eliminating any
discussion of actual server implementations

The Pieces of Push
There are many components that you will need to work with in order to enable GCM
in your app, both inside the app itself and in your app server (or other off-app
environment) where you are trying to push messages to the app.

A Suitable Android Environment

GCM is part of Play Services. That means that you probably want to test your app
on hardware that legitimately has the Play Store on it. Some emulator images,
offering “Google APIs”, may have a copy of Play Services on it, though this can
sometimes be out of date or otherwise buggy.

API Key

Since GCM is a Google service, you need a Google API key to use it. To get one of
these:

1. Log into https://cloud.google.com/console with your Google account
2. In the navigation on the left, go into “APIs & auth > APIs”
3. Find “Google Cloud Messaging for Android” and click the “OFF” button next

to it (note: this might involve then agreeing to additional terms of service)
4. In the navigation on the left, go into “APIs & auth > Registered apps”
5. Click the red REGISTER APP button.
6. Give the app a name and choose Web Application, then click Register
7. Click the “Server Key” section for your server key

To confirm that your API key works, if you have the curl program, the gcmtest
script in the Push/GCMClient sample project will help you confirm that the API key
works. Run gcmtestgcmtest, with your API key as a parameter. If you get something like the
following, your API key is good:

PUSH NOTIFICATIONS WITH GCM

1827

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://cloud.google.com/console
http://curl.haxx.se/
http://curl.haxx.se/
http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMClient
http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMClient

{ "multicast_id":7932441338082226994,
"success":0,
"failure":1,
"canonical_ids":0,
"results":[{"error":"InvalidRegistration"}]}

If, instead, you get an HTTP 401 error, then your API key is flawed in some way.

Play Services Framework

In the initial incarnation of GCM, the scaffolding for your client-side code came in
the form of a JAR, accompanied by source code, shipped as part of the “Google
Cloud Messaging for Android Library” entry in the SDK Manager.

The 2013 update to GCM officially deprecated that JAR, in favor of a new
GoogleCloudMessaging object from the Play Services SDK. Hence, you will need to
install the “Google Play services” entry in the SDK Manager, then add to your project
a reference to the Android library project found in the extras/google/
google_play_services/libproject/google-play-services_lib/ directory in your
Android SDK installation.

You will find reference to an older “Google Cloud Messaging for Android Library” in
the SDK Manager. Nowadays, it will only appear there if you have the “Obsolete”
checkbox checked. This is the original, pre-Play Services library for accessing GCM.
The sample GCM client app profiled in this book demonstrates how some of that
old code can be blended in with some of the new Google-supplied GCM samples to
create a framework that minimizes the amount of GCM-specific code needed in
your app. However, since the sample project contains all of the forked code, you do
not need this library, unless you are maintaining some legacy GCM code that still
uses it.

Android App

Beyond the aforementioned library, your application using GCM has several
requirements that you must meet, outlined in the following sections.

Custom Permission

Your application needs to define a custom permission, whose name is your
application’s package name with .permission.C2D_MESSAGE appended to the end.
So, for an app residing in the com.commonsware.android.gcm.client package, the
permission to be defined is:

PUSH NOTIFICATIONS WITH GCM

1828

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<permission<permission
android:name="com.commonsware.android.gcm.client.permission.C2D_MESSAGE"
android:protectionLevel="signature"/>/>

You also need the corresponding <uses-permission> element:

<uses-permission<uses-permission
android:name="com.commonsware.android.gcm.client.permission.C2D_MESSAGE"/>/>

This is all rather odd, considering that nothing else in your project seems to refer to
this permission. Also, it is not required if you are only supporting API Level 16 and
higher (i.e., your android:minSdkVersion is set to at least 16).

Additional Permissions

There are several other permissions that you need to hold:

<uses-permission<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE"/>/>
<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.GET_ACCOUNTS"/>/>
<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>

The first allows you to receive messages from GCM, though it uses c2dm in the name
for backwards compatibility with C2DM. The second allows your GCM library to
access the Internet, while the third allows your GCM library to access information
about your Google account. The last permission allows you to hold a WakeLock to
keep the device awake for a bit — we will use this with a WakefulIntentService to
process incoming messages.

Your Registration Code

Your app will need to use the static register() method on the
GoogleCloudMessaging class supplied by the Play Services SDK to register with GCM
and create a registration ID. That ID, in turn, will be used by your server code to
uniquely identify a copy of your app running on a specific device. Messages sent by
your server to that registration ID will be delivered to your app on that device.

register() is a blocking call, doing network I/O, so you will want to register on a
background thread, such as an AsyncTask.

You will need to send that registration ID to your server — or whatever else will be
pushing messages — by some means. A typical implementation would have your
app call some Web service of yours to hand over the registration ID, perhaps tying it

PUSH NOTIFICATIONS WITH GCM

1829

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to some user account on your Web server. This sort of network I/O also should be
done in a background thread.

Your registration ID is good until you update your app to a new version, as
determined via its android:versionCode in the manifest. Since register() will
generate a new registration ID each time, you will want to cache the registration ID
until such time as you ship a new version of the app, at which time you will need to
generate a fresh ID. Google’s sample code in their documentation demonstrates this.

Google’s sample code also deals with the scenario in which your server somehow
loses the registration ID, generating a fresh registration ID every week. Whether this
is truly necessary, or whether you want to do something else to deal with this use
case, is up to you.

You can place this code wherever makes sense, such as your launcher activity.

Of course, pretty much all of this used to be handled for us by Google’s GCM client
library. They deprecated that library and failed to replace it in the 2013 updates to
GCM. The sample app, presented later in this chapter, will show some replacement
code for that library, synthesized from the old library source code and the newer
GCM samples.

GCM BroadcastReceiver

You will need to implement a BroadcastReceiver that will get control when
messages are received that have been pushed to the device. Specifically:

• The receiver should be registered in the manifest, as push messages can be
delivered at any point in time

• The receiver must have an <intent-filter> with an <action> of
com.google.android.c2dm.intent.RECEIVE and a <category> whose value
is the package name of your app

• The receiver should require the com.google.android.c2dm.permission.SEND
permission, to prevent other apps from spoofing push messages

You will wind up with a <receiver> element reminiscent of the following:

<receiver<receiver
android:name="GCMBroadcastReceiverCompat"
android:permission="com.google.android.c2dm.permission.SEND">>
<intent-filter><intent-filter>

<action<action android:name="com.google.android.c2dm.intent.RECEIVE"/>/>

PUSH NOTIFICATIONS WITH GCM

1830

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/google/gcm/gs.html

<category<category android:name="com.commonsware.android.gcm.client"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

The Intent that comes into your receiver’s onReceive() method will represent a
push message from your server, or possibly a system message. You can call
getMessageType() on a GoogleCloudMessaging instance to help decipher what sort
of event occurred:

• GoogleCloudMessaging.MESSAGE_TYPE_SEND_ERROR means that some error
occurred

• GoogleCloudMessaging.MESSAGE_TYPE_DELETED means that too many
messages had been queued up for your app on this device (e.g., due to a
protracted period of being in airplane mode), and some were deleted

• GoogleCloudMessaging.MESSAGE_TYPE_MESSAGE means that the Intent is an
actual push message from the server

The extras Bundle that is part of the Intent (retrieved via getExtras()) will have
name-value pairs supplied by your server, representing whatever data the server
wanted to push to your app on this device.

It is up to you to do to something useful with these events. However, onReceive() of
a manifest-registered BroadcastReceiver is a precarious place:

• You are running on the main application thread, so you cannot take much
time

• You cannot do much of anything that lives beyond the end of onReceive(),
such as forking a thread, as Android can terminate your process at will once
onReceive() returns

Hence, a typical pattern is for the receiver to delegate the message to an
IntentService for actual processing. And, once again, this used to be done for you
by the GCM client library, which supplied a stock BroadcastReceiver and a base
IntentService class that you could use. The sample app profiled in this chapter
includes replacements for those now-lost classes.

Your Server (a.k.a., the Thing Doing the Pushing)

Something, outside of your app, is going to be pushing messages to devices that are
running your app and registered for such messages. In the GCM documentation, this
is referred to as your “server”.

PUSH NOTIFICATIONS WITH GCM

1831

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Technically speaking, this does not have to be a “server”: something running
constantly with some sort of inbound socket connection. To actually push messages,
you will need Internet access to Google’s servers, but whether you push the message
from a true server, or a desktop app, or a command-line program, is really up to you.

The classic mode for sending push messages to the device involves your server using
HTTP and a REST protocol to hand the messages to Google’s servers, which in turn
forward the messages to devices. There is also a new Cloud Connection Service
option that uses XMPP instead of HTTP, to avoid creating and tearing down sockets
quite so frequently. Cloud Connection Service will be discussed later in this chapter.

GCM supplies a “server” JAR file that handles the REST protocol and gives you Java
objects for building and sending the message. This JAR file has an undocumented
dependency on the json-simple library. If your desired “server” environment is not
in Java, you could re-implement the REST protocol library in some other
programming language (e.g., Ruby) if desired. The GCM documentation describes
the request and response formats that your library would need to handle.

For simplicity, the sample app for this chapter will demonstrate a crude command-
line Java client, based upon the GCM “server” JAR, rather than expecting you to run
some Java-capable Web server just to experiment with GCM.

Google’s Server and the Google Services Framework

One piece of the environment that you do not control is Google’s GCM server farm.
When you send a message to the clients, you do not do so directly, but rather you
send your message to Google by means of a REST-style Web service (or XMPP using
the Cloud Connection Service). Google, in turn, forwards your messages along to the
clients. Google supplies a JAR file that you can use on your server, or you could
implement the REST-style interface in other ways, using anything from curlcurl to a
Ruby gem, if you so choose.

Each device maintains a long-running persistent socket connection to Google’s GCM
server farm. When your server sends a message, it passes the message to Google’s
GCM server farm, which finds the connection to the client(s) and sends along the
message. If a client is unavailable for some reason, the GCM servers will cache your
message for a period of time in hopes of being able to deliver it shortly.

The fact that Google servers have your message for any length of time introduces
some privacy and security issues, which we will examine later in this chapter.

PUSH NOTIFICATIONS WITH GCM

1832

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/google/gcm/gcm.html#server
http://developer.android.com/guide/google/gcm/gcm.html#server

A Simple Push
With all this in mind, we can walk through an example of implementing GCM. This
sample comes in two parts:

1. An app that runs on the Android device that uses GCM
2. A command-line Java app that can send messages via GCM, useful for light

testing

The Client

Our client-side Android app can be found in the Push/GCMClient2 sample project.

Our manifest has all the things outlined earlier in this chapter, including the custom
permission, all those other permission elements, and a suitably-configured
BroadcastReceiver:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.gcm.client"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="17"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

<permission<permission
android:name="com.commonsware.android.gcm.client.permission.C2D_MESSAGE"
android:protectionLevel="signature"/>/>

<uses-permission<uses-permission
android:name="com.commonsware.android.gcm.client.permission.C2D_MESSAGE"/>/>

<uses-permission<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE"/>/>
<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.GET_ACCOUNTS"/>/>
<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>

PUSH NOTIFICATIONS WITH GCM

1833

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMClient
http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMClient

<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<receiver<receiver
android:name="GCMBroadcastReceiverCompat"
android:permission="com.google.android.c2dm.permission.SEND">>
<intent-filter><intent-filter>

<action<action android:name="com.google.android.c2dm.intent.RECEIVE"/>/>

<category<category android:name="com.commonsware.android.gcm.client"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

<service<service android:name=".GCMIntentService"/>/>

<meta-data<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"/>/>

</application></application>

</manifest></manifest>

The rest of the app is made up of an activity (MainActivity) and an IntentService
(GCMIntentService) that represent the app’s “business logic”, plus three additional
classes that represent a partial replacement for the code from the deprecated GCM
client JAR.

The Activity

MainActivity has a highly sophisticated user interface, consisting of one really large
“Register me!” button. The objective of the UI is simply to register the app with
GCM, so that you can test sending messages to your app on the test device.

To do this, MainActivity has GCM-related hooks in onCreate() and the onClick()
handler being used for the Button:

packagepackage com.commonsware.android.gcm.client;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;

PUSH NOTIFICATIONS WITH GCM

1834

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass MainActivityMainActivity extendsextends Activity {
staticstatic finalfinal String SENDER_ID="this is so fake"; // change

// me!

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

GCMRegistrarCompat.checkDevice(thisthis);

ifif (BuildConfig.DEBUG) {
GCMRegistrarCompat.checkManifest(thisthis);

}
}

publicpublic void onClick(View v) {
finalfinal String regId=GCMRegistrarCompat.getRegistrationId(thisthis);

ifif (regId.length() == 0) {
newnew RegisterTask(thisthis).execute(SENDER_ID);

}
elseelse {

Log.d(getClass().getSimpleName(), "Existing registration: "
+ regId);

Toast.makeText(thisthis, regId, Toast.LENGTH_LONG).show();
}

}

privateprivate staticstatic classclass RegisterTaskRegisterTask extendsextends
GCMRegistrarCompat.BaseRegisterTask {

RegisterTask(Context context) {
supersuper(context);

}

@Override
publicpublic void onPostExecute(String regid) {

Log.d(getClass().getSimpleName(), "registered as: " + regid);
Toast.makeText(context, regid, Toast.LENGTH_LONG).show();

}
}

}

Specifically:

• onCreate() calls checkDevice() and checkManifest() static methods on a
GCMRegistrarCompat class

• onClick() tries to retrieve the current registration ID via a call to the static
getRegistrationId() method on GCMRegistrarCompat, then kicks off a

PUSH NOTIFICATIONS WITH GCM

1835

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RegisterTask subclass of GCMRegistrarCompat.BaseRegisterTask if we do
not have a current valid registration ID

The SENDER_ID value, as is noted in the code comment, needs to be replaced with
your sender ID. This is referred to as the “project number” in the Google Developers
Console:

Figure 498: Google Developers Console, Showing Project Number (a.k.a., Sender ID)

GCMRegistrarCompat

The deprecated GCM client JAR contained a class named GCMRegistrar that
handled:

• the communication to the GCM servers for the actual registration process,
and

• caching the registration ID on the device, until such time as it was known to
be invalid (e.g., after an app version upgrade)

Since that JAR is deprecated, but we still need to do this work, this project contains
GCMRegistrarCompat, which incorporates some of the original GCMRegistrar logic,
updated to use the new GoogleCloudMessaging interface. And, as one might expect,
the resulting code is a bit nasty.

The checkDevice() method is simple enough, simply throwing an
UnsupportedOperationException if the device is not running at least API Level 8:

PUSH NOTIFICATIONS WITH GCM

1836

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic staticstatic void checkDevice(Context context) {
int version=Build.VERSION.SDK_INT;
ifif (version < 8) {

throwthrow newnew UnsupportedOperationException(
"Device must be at least "

+ "API Level 8 (instead of "
+ version + ")");

}

The checkManifest() method makes heavy use of PackageManager to validate:

• That you have defined the custom permission
• That there is a receiver listening for GCM broadcasts and requiring the GCM

permission

publicpublic staticstatic void checkManifest(Context context) {
PackageManager packageManager=context.getPackageManager();
String packageName=context.getPackageName();
String permissionName=packageName + ".permission.C2D_MESSAGE";
// check permission
trytry {

packageManager.getPermissionInfo(permissionName,
PackageManager.GET_PERMISSIONS);

}
catchcatch (NameNotFoundException e) {

throwthrow newnew IllegalStateException(
"Application does not define permission "

+ permissionName);
}
// check receivers
PackageInfo receiversInfo;
trytry {

receiversInfo=
packageManager.getPackageInfo(packageName,

PackageManager.GET_RECEIVERS);
}
catchcatch (NameNotFoundException e) {

throwthrow newnew IllegalStateException(
"Could not get receivers for package "

+ packageName);
}
ActivityInfo[] receivers=receiversInfo.receivers;
ifif (receivers == nullnull || receivers.length == 0) {

throwthrow newnew IllegalStateException("No receiver for package "
+ packageName);

}
ifif (Log.isLoggable(TAG, Log.VERBOSE)) {

Log.v(TAG, "number of receivers for " + packageName + ": "
+ receivers.length);

}
Set<String> allowedReceivers=newnew HashSet<String>();
forfor (ActivityInfo receiver : receivers) {

PUSH NOTIFICATIONS WITH GCM

1837

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (PERMISSION_GCM_INTENTS.equals(receiver.permission)) {
allowedReceivers.add(receiver.name);

}
}
ifif (allowedReceivers.isEmpty()) {

throwthrow newnew IllegalStateException("No receiver allowed to receive "
+ PERMISSION_GCM_INTENTS);

}
checkReceiver(context, allowedReceivers, INTENT_FROM_GCM_MESSAGE);

}

privateprivate staticstatic void checkReceiver(Context context,
Set<String> allowedReceivers,
String action) {

PackageManager pm=context.getPackageManager();
String packageName=context.getPackageName();
Intent intent=newnew Intent(action);
intent.setPackage(packageName);
List<ResolveInfo> receivers=

pm.queryBroadcastReceivers(intent,
PackageManager.GET_INTENT_FILTERS);

ifif (receivers.isEmpty()) {
throwthrow newnew IllegalStateException("No receivers for action "

+ action);
}
ifif (Log.isLoggable(TAG, Log.VERBOSE)) {

Log.v(TAG, "Found " + receivers.size() + " receivers for action "
+ action);

}
// make sure receivers match
forfor (ResolveInfo receiver : receivers) {

String name=receiver.activityInfo.name;
ifif (!allowedReceivers.contains(name)) {

throwthrow newnew IllegalStateException("Receiver " + name
+ " is not set with permission " + PERMISSION_GCM_INTENTS);

}
}

GCMRegistrarCompat offers three public methods for working with the registration
ID:

• getRegistrationId() will return the registration ID saved in
SharedPreferences, if it exists, if the app version is the same as before, and
if the registration is not expired

• clearRegistrationId() simply wipes out the saved registration ID, if there
is one

• setRegistrationId() updates SharedPreferences with a newly-retrieved
registration ID, also saving the app version

PUSH NOTIFICATIONS WITH GCM

1838

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic staticstatic String getRegistrationId(Context context) {
finalfinal SharedPreferences prefs=getGCMPreferences(context);
String registrationId=prefs.getString(PROPERTY_REG_ID, "");
// check if app was updated; if so, it must clear
// registration id to
// avoid a race condition if GCM sends a message
int oldVersion=

prefs.getInt(PROPERTY_APP_VERSION, Integer.MIN_VALUE);
int newVersion=getAppVersion(context);
ifif (oldVersion != Integer.MIN_VALUE && oldVersion != newVersion) {

Log.v(TAG, "App version changed from " + oldVersion + " to "
+ newVersion + "; resetting registration id");

clearRegistrationId(context);
registrationId="";

}
elseelse if (isRegistrationExpired(context)) {

Log.v(TAG, "Registration expired; resetting registration id");
clearRegistrationId(context);
registrationId="";

}
returnreturn registrationId;

}

publicpublic staticstatic String clearRegistrationId(Context context) {
returnreturn setRegistrationId(context, "");

}

privateprivate staticstatic String setRegistrationId(Context context, String regId) {
finalfinal SharedPreferences prefs=getGCMPreferences(context);
String oldRegistrationId=prefs.getString(PROPERTY_REG_ID, "");
int appVersion=getAppVersion(context);
long expirationTime=

System.currentTimeMillis() + REGISTRATION_EXPIRY_TIME_MS;
Editor editor=prefs.edit();

editor.putString(PROPERTY_REG_ID, regId);
editor.putInt(PROPERTY_APP_VERSION, appVersion);
editor.putLong(PROPERTY_ON_SERVER_EXPIRATION_TIME, expirationTime);
editor.commit();

returnreturn oldRegistrationId;
}

privateprivate staticstatic int getAppVersion(Context context) {
trytry {

PackageInfo packageInfo=
context.getPackageManager()

.getPackageInfo(context.getPackageName(), 0);
returnreturn packageInfo.versionCode;

}
catchcatch (NameNotFoundException e) {

// should never happen
throwthrow newnew RuntimeException("Coult not get package name: " + e);

}

PUSH NOTIFICATIONS WITH GCM

1839

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

privateprivate staticstatic boolean isRegistrationExpired(Context context) {
finalfinal SharedPreferences prefs=getGCMPreferences(context);
// checks if the information is not stale
long expirationTime=

prefs.getLong(PROPERTY_ON_SERVER_EXPIRATION_TIME, -1);
returnreturn System.currentTimeMillis() > expirationTime;

}

privateprivate staticstatic SharedPreferences getGCMPreferences(Context context) {
returnreturn context.getSharedPreferences(PREFERENCES,

Context.MODE_PRIVATE);
}

GCMRegistrarCompat also has a public static inner class, BaseRegisterTask, that
handles calling register() on a GoogleCloudMessaging instance on a background
thread, calling setRegistrationId() to save the resulting value for later use, plus
calling sendRegistrationIdToServer() on that same background thread:

staticstatic publicpublic classclass BaseRegisterTaskBaseRegisterTask extendsextends
AsyncTask<String, Void, String> {

protectedprotected Context context=nullnull;

BaseRegisterTask(Context context) {
thisthis.context=context;

}

@Override
protectedprotected String doInBackground(String... params) {

GoogleCloudMessaging gcm=
GoogleCloudMessaging.getInstance(context);

String regid=nullnull;

trytry {
regid=gcm.register(params[0]);
setRegistrationId(context, regid);
sendRegistrationIdToServer(regid);

}
catchcatch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}

returnreturn(regid);
}

protectedprotected void sendRegistrationIdToServer(String regid) {
// no-op -- subclasses should override and send
// registration id to server by some means

}

PUSH NOTIFICATIONS WITH GCM

1840

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// override this to do something more, note that it
// is called on a background thread!

protectedprotected void onError(IOException e) {
Log.e(getClass().getSimpleName(),

"Exception registering for GCM", e);
}

}

You can elect to override sendRegistrationIdToServer() to actually send the
registration ID to your Web service or other source of push messages, by whatever
means you feel is appropriate. As it is called on a background thread, you will be
able to do network I/O without freezing the UI. There is also an onError() method
that you can elect to override, if desired, to handle any unexpected IOExceptions
that may be raised while trying to contact the GCM server.

GCMBroadcastReceiverCompat

The BroadcastReceiver that we have receiving GCM broadcasts, named
GCMBroadcastReceiverCompat, serves in a role similar to GCMBroadcastReceiver
from the original GCM client JAR. It forwards the received broadcasts along to a
service for processing, so that work can more easily be done in a background thread.

Since we have no guarantee that the device is going to stay awake very long, this is a
fine use case for the WakefulIntentService profiled earlier in the book:

packagepackage com.commonsware.android.gcm.client;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass GCMBroadcastReceiverCompatGCMBroadcastReceiverCompat extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

intent.setClass(context, GCMIntentService.class);

WakefulIntentService.sendWakefulWork(context, intent);
}

}

To get the broadcasted Intent over to the service, we simply call setClass() on the
Intent, identifying our service (GCMIntentService). This way, it does not matter
what action is on the Intent, as we are specifying the component that this Intent
should be delivered to.

PUSH NOTIFICATIONS WITH GCM

1841

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If your app is going to do something fairly cheap when a message comes in, though,
you are welcome to just do it in the BroadcastReceiver itself. Here, “fairly cheap”
means “can be done in just a few milliseconds”, and so disk or network I/O should
be delegated to a service with a background thread.

GCMBaseIntentServiceCompat

The deprecated GCM client JAR offered a GCMBaseIntentService class that you
could extend, where GCMBaseIntentService would call dedicated methods on your
subclass, like onMessage(), for the different sorts of events that could arrive via the
forwarded broadcast. GCMBaseIntentServiceCompat is a WakefulIntentService that
offers similar behavior:

packagepackage com.commonsware.android.gcm.client;

importimport android.content.Intentandroid.content.Intent;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;
importimport com.google.android.gms.gcm.GoogleCloudMessagingcom.google.android.gms.gcm.GoogleCloudMessaging;

abstractabstract publicpublic classclass GCMBaseIntentServiceCompatGCMBaseIntentServiceCompat extendsextends
WakefulIntentService {

abstractabstract protectedprotected void onMessage(Intent message);

abstractabstract protectedprotected void onError(Intent message);

abstractabstract protectedprotected void onDeleted(Intent message);

publicpublic GCMBaseIntentServiceCompat(String name) {
supersuper(name);

}

@Override
protectedprotected void doWakefulWork(Intent i) {

GoogleCloudMessaging gcm=GoogleCloudMessaging.getInstance(thisthis);
String messageType=gcm.getMessageType(i);

ifif (GoogleCloudMessaging.MESSAGE_TYPE_SEND_ERROR.equals(messageType)) {
onError(i);

}
elseelse if (GoogleCloudMessaging.MESSAGE_TYPE_DELETED.equals(messageType)) {

onDeleted(i);
}
elseelse {

onMessage(i);
}

}
}

PUSH NOTIFICATIONS WITH GCM

1842

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inside of doWakefulWork(), we use a GoogleCloudMessaging instance to examine
the message type of the received broadcast. Depending upon whether it is
MESSAGE_TYPE_SEND_ERROR, MESSAGE_TYPE_DELETED, or a regular message, drives
calls to the abstract onError(), onDeleted(), and onMessage() methods,
respectively.

The Service

Our service, named GCMIntentService, extends GCMBaseIntentServiceCompat and
overrides the three abstract methods (onMessage(), onError(), onDeleted()):

packagepackage com.commonsware.android.gcm.client;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass GCMIntentServiceGCMIntentService extendsextends GCMBaseIntentServiceCompat {
publicpublic GCMIntentService() {

supersuper("GCMIntentService");
}

@Override
protectedprotected void onMessage(Intent message) {

dumpEvent("onMessage", message);
}

@Override
protectedprotected void onError(Intent message) {

dumpEvent("onError", message);
}

@Override
protectedprotected void onDeleted(Intent message) {

dumpEvent("onDeleted", message);
}

privateprivate void dumpEvent(String event, Intent message) {
Bundle extras=message.getExtras();

forfor (String key : extras.keySet()) {
Log.d(getClass().getSimpleName(),

String.format("%s: %s=%s", event, key,
extras.getString(key)));

}
}

}

PUSH NOTIFICATIONS WITH GCM

1843

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Each simply passes the supplied Intent along to a dumpEvent() private method that
iterates over all of the extras and writes them out to LogCat. This way, when we send
a push message, we will be able to see in LogCat what information makes it over to
the service.

The “Server”

Our command-line Java app for sending messages can be found in the Push/
GCMCommand sample project. Note that this is a plain Java project, not an Android
project, as this is designed to run on your desktop or server, not on your device. Also
note that four total JARs are needed to run this app:

1. The project’s own JAR
2. gcm-server.jar, from the GCM portion of your SDK’s extras/ area
3. json-simple-1.1.jar, a compatible implementation of the json-simple

library used by the GCM JAR
4. commons-cli-1.2.jar, which is used for command-line argument processing

for this app

From a GCM standpoint, the GCM class in this sample project has a static
sendMessage() method that does the work of sending a message to one or more
devices:

privateprivate staticstatic void sendMessage(String apiKey, List<String> devices,
Properties data) throwsthrows Exception {

Sender sender=newnew Sender(apiKey);
Message.Builder builder=newnew Message.Builder();

forfor (Object o : data.keySet()) {
String key=o.toString();

builder.addData(key, data.getProperty(key));
}

MulticastResult mcResult=sender.send(builder.build(), devices, 5);

forfor (int i=0; i < mcResult.getTotal(); i++) {
Result result=mcResult.getResults().get(i);

ifif (result.getMessageId() != nullnull) {
String canonicalRegId=result.getCanonicalRegistrationId();

ifif (canonicalRegId != nullnull) {
System.err.println(String.format("%s canonical ID = %s",

devices.get(i),
canonicalRegId));

}

PUSH NOTIFICATIONS WITH GCM

1844

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMCommand
http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMCommand
http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMCommand
http://github.com/commonsguy/cw-omnibus/tree/master/Push/GCMCommand

elseelse {
System.out.println(String.format("%s success", devices.get(i)));

}
}
elseelse {

String error=result.getErrorCodeName();

ifif (Constants.ERROR_NOT_REGISTERED.equals(error)) {
System.err.println(String.format("%s is unregistered",

devices.get(i)));
}
elseelse if (error != nullnull) {

System.err.println(String.format("%s error = %s",
devices.get(i), error));

}
}

}
}

The pieces of information we need to send a message are:

• Our GCM API key
• A list of the device registration IDs to which GCM should deliver our

message
• The key/value pairs of data that form our message payload

The Apache Commons CLI logic in this class’ static main() method will extract these
values from the command line and give them to sendMessage() for processing.

To send the message, sendMessage() first creates a GCM Sender object, supplying
our API key to the constructor. Then, it creates a Message.Builder, which is a
builder for constructing a GCM message to be sent by that Sender. We use
addData() on the builder to attach our key/value pairs, extracted from the
java.util.Properties object that Apache Commons CLI used to give us the key/
value pairs specified on the command line.

Actually sending the message then is a matter of calling send() on the Sender,
supplying the Message built by the builder, the list of device registration IDs, and the
number of retries in case there are issues in delivering the message (e.g., the server
farm is swamped). We get back a MulticastResult object, containing details of what
happened for each device in our list of devices.

MulticastResult is really a collection of individual Result objects, one per device.
Each Result will tell us what happened, with four major possibilities:

PUSH NOTIFICATIONS WITH GCM

1845

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commons.apache.org/cli/

1. Our request to enqueue the message succeeded, and the device should
receive it momentarily if it is online and connected to Google.

2. Our request succeeded, but Google would like us to use a different
registration ID in the future. We are given the revised ID via
getCanonicalRegistrationId(). In a production app, we would have some
sort of database of registered devices; we would replace the old registration
ID with the new canonical one in that database when this result occurs.

3. Our request failed, because the device is no longer registered (e.g., the app
was uninstalled). In a production app, we should remove this device from
our database.

4. Our request failed for some other reason (e.g., our request was attacked by
ninjas). We get an error message as a string indicating the reason for the
failure; a production app would log this somewhere.

In the case of this sample command-line client, these are simply logged to stdout or
stderr.

The sample project has a Linux shell script that wraps up building Java command
line:

java -cp libs/commons-cli-1.2.jar:libs/gcm-server.jar:libs/
json_simple-1.1.jar:dist/gcm-cmd.jar \\
com.commonsware.android.gcm.cmd.GCM "$@"

(note: once again, the trailing \ on the first line indicates that this should be all on
one line)

To use the script, switch to the GCMCommand directory, run ./gcm, supplying the
following command-line switches:

• -a or --apiKey with the value of your API key (note: not your sender ID!)
• -d or --device with the value of a device’s registration ID (can have one or

several of these switches)
• -D or --data, with the key=value pair of some data to send to a device (can

have one or several of these switches)

For example, this command would send foo=bar to a device:

./gcm -a your-api-key-here -D foo=bar -d your-device-reg-id-here

PUSH NOTIFICATIONS WITH GCM

1846

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The results will be printed to standard output, one line per -d switch, in the order of
the -d switches (e.g., first registration ID in the command maps to the first line in
the output).

Message Options and Advanced Features
Most of what you get out of GCM comes just from the code we have implemented so
far. However, there are other things you can configure with your message to tailor
delivery behavior. These come in the form of special key/value pairs added to the
message payload itself, serving in the role of metadata. Note that since they elected
to blend the metadata in with your data, you cannot yourself have data with the
same keys as are used by Google for metadata. And, unfortunately, they did not elect
to namespace their keys — even with something as trivial as a leading underscore –
to help prevent collisions.

Collapse Keys

Google is not considering GCM to be a guaranteed store-and-forward queue system.
In particular, Google reserves the right to try to coalesce messages, in part to reduce
storage demands, but also so as not to flood the device when a connection is re-
established.

Key to this is the collapse_key key on the message request. If a device is
unavailable, and during that time you send two or more messages with the same
collapse_key, the GCM servers may elect to only send one of those messages —
typically the last one, though not necessarily. You can use this to your advantage, to
minimize processing you need to do on the client. For example, if your use of GCM
is to alert your custom email application that “you’ve got mail”, you can use a
consistent collapse_key with messages telling the client how many unread emails
are in their inbox. That can be used by the client to update a Notification and,
eventually, cajole the user into actually reading her mail. In this case, you do not
need the device to receive two messages in a short timespan to raise this
Notification, so collapsing those into a single message is good for everyone.

For example, using the gcm script, -D collapse_key=inbox would set the
collapse_key of the request to inbox, coalescing it with any other messages that
you have sent to this device, with the same collapse_key, that have not yet been
delivered.

PUSH NOTIFICATIONS WITH GCM

1847

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A related optional parameter you can include in your messages is delay_while_idle.
If you specify this key with a value of true, that will indicate to the GCM servers
that, while you want the message to be delivered, it is not important enough to wake
up the device. GCM will hold onto the message (or the last one if several are sent
with the same collapse_key), but it will not push it to the device until it knows the
device is awake (perhaps due to another GCM message for that device lacking this
parameter). You can think of this as being akin to choosing an AlarmManager alarm
type lacking the _WAKEUP suffix. The goal is to minimize battery consumption.

Note that if you eschew collapse_key, and you send a lot of messages without the
device receiving them (e.g., it is powered down), you will run into problems. Right
now, there is a limit of 100 queued messages. If you hit that limit, all queued
messages are dumped, and the device will be sent “a special message indicating that
the limit was reached”. It will be up to your app to handle this scenario, typically by
assuming that your data from the server is very stale and needs to be completely
reloaded. Note that the structure of this “special message” is, alas, undocumented.

The Message.Builder in the GCM server JAR has dedicated collapseKey() and
delayWhileIdle() methods to set these values.

Time-To-Live

If you are using collapse_key, you can also control how long the message will
remain cached on the server, via a time_to_live value specified in seconds. The
default is four weeks. But if you know the message is useless after a shorter period of
time (e.g., after some real-world event has occurred), specifying a time_to_live can
purge this message and prevent the app on the device from displaying something
useless to the user.

The Message.Builder in the GCM server JAR has a dedicated timeToLive() method
to set this value.

Re-Registration
In an ideal world, we would have our apps generate a registration ID once and be
done with it for any given device. However, there are scenarios in which our app will
need to re-register and supply a revised registration ID to the server:

• if the user uninstalls and reinstalls our app

PUSH NOTIFICATIONS WITH GCM

1848

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• if the user taps the “Clear Data” button in the Settings app, to wipe out our
app’s internal storage (where the registration ID is held)

• when we upgrade our app (i.e., ship an app with a different
android:versionCode in the manifest)

While the first two might not be terribly surprising, the latter one might be. The
source code for GCMRegistrar, as of the time of this writing, has the following
comment in getRegistrationId():

// check if app was updated; if so, it must clear registration id to
// avoid a race condition if GCM sends a message

GCMRegistrar keeps our app’s versionCode in the same custom SharedPreferences
that it uses for the registration ID. Whenever registration occurs, it saves our
versionCode. But, the next time we go to retrieve the registration ID, if our
versionCode is different than the one that was saved, GCM clears our saved
registration ID, forcing us to get a new one.

Since this behavior seems to be undocumented, it is possible that in the future they
will find some other solution and perhaps reduce the number of re-registrations that
may be required.

Pre-Release Features
Google I|O 2013’s announcement included several extensions to GCM that were
profiled as being available, but in truth are only available to approved “trial partners”
at this time.

Cloud Connection Services

“Cloud Connection Services” (CCS) is Google’s branding for an XMPP connection
from your server to Google’s GCM server farm, replacing (or operating alongside)
the classic HTTP/REST interface for sending messages.

Partly, the XMPP support is there for performance. Using HTTP as a protocol results
in blocking I/O (send a message, wait to find out if it was sent), typically on a new
socket each time. XMPP, unlike HTTP, uses a long-lived socket connection to the
server, avoiding the socket churn. And XMPP is itself a messaging interface,
originally designed for use with instant messaging clients, and so it specializes in
asynchronous delivery. Hence, your server can send messages as fast as it wants
along a single socket, finding out asynchronously the status of those messages.

PUSH NOTIFICATIONS WITH GCM

1849

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Partly, the XMPP support is used as part of the mechanism behind upstream
messages, described a bit later in this chapter.

At this time, Google is not providing any particular client library to assist with GCM
over CCS, saying that “you can use most XMPP libraries to interact with CCS”
without specifics.

You can learn more about CCS and sign up to be part of the program by visiting the
CCS page in the GCM documentation.

Upstream Messages

If you have signed up for CCS, you can implement support for upstream messages:
“push” messages originating with the client, delivered to your server.

You might wonder: why bother?

The big reason is battery. Upstream messages are delivered asynchronously, as part
of existing GCM operations. There are no new sockets, and GCM takes steps to make
the most efficient use of the mobile radio. For non-real-time delivery of information
via a one-way (device->server) channel, upstream messages has its benefits.

The GoogleCloudMessaging object has a send() method where you can indicate
what server to send messages to (appending @gcm.googleapis.com to the server’s
sender ID), the locally-unique ID for the message, and the message itself, in the
form of a Bundle. The server, in turn, will receive XMPP messages containing a JSON
payload with the key/value pairs from the Bundle, plus metadata (sending app’s
package and registration ID, plus the ID value included in the send() call).

User Notifications

Upstream messaging, in turn, enables support for what Google refers to as “user
notifications”.

As tablets become more popular, it is increasingly likely that a user of your app will
have that app on multiple devices, such as both a phone and a tablet. A sufficiently-
savvy server could track multiple GCM app registration IDs per user account and
then send GCM messages to all the user’s devices, so no matter which one happens
to be in use at the moment, the message is delivered to it.

PUSH NOTIFICATIONS WITH GCM

1850

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/google/gcm/ccs.html
https://developer.android.com/google/gcm/ccs.html

Many times, the end UI result of the GCM message is a Notification, to let the user
know about some event (e.g., “we updated your records”). However, if you are
sending the GCM message to all the user’s devices, you would show the
Notification on all those devices as well. By default, the user would need to
manually dismiss that Notification from all those devices.

Once again, a sufficiently-savvy server and app could deal with this, by telling the
server that the user dismissed the Notification from a certain device, and the
server sending follow-on messages to the other devices that cause the app to dismiss
the Notification programmatically.

GCM’s “user notifications” attempts to simplify this somewhat.

The server can create a “registration key” representing the collection of devices for a
user, then send GCM messages to that key instead of to the individual registration
IDs. GCM automatically will fan out that message and deliver it to all of the devices.

Furthermore, a device can send an upstream message to that registration key, which
will then be delivered by GCM to all of the other devices associated with that key. An
app could use this to notify copies of that app on the user’s other devices that a
Notification was dismissed, so the app can dismiss the Notification on those
other devices. The server does not need to get involved.

Considering Encryption
GCM uses encryption over the air. This includes both your server communicating
with Google’s server via HTTPS and Google’s server communicating with your
device.

However, there is still one party who has access to that data besides you and your
user: Google. Google also knows the identity of your users, since their devices are
the ones registering for GCM messages, and therefore those messages can be traced
back to their devices. The fact that Android 4.1 and beyond eschew the need for a
Google account to use GCM will help privacy somewhat.

Here are two ways of dealing with this, beyond ignoring the issue:

1. Encrypt your payload. Since GCM is expecting key/value pairs, that means
that you would either encrypt each value (and their keys, if the keys might
somehow be leaking data), or creating your own encrypted payload,

PUSH NOTIFICATIONS WITH GCM

1851

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

encoding it in Base64, and using that as a single value in your GCM message.
This, of course, implies that the client will be capable of decrypting your
messages.

2. Have your payload be a URL pointing to some other resource that your client
can access but not Google (at least not readily). In this mode, you are using
GCM purely as a “tickle” to tell the client to go download some data via
another secured means earlier than it might ordinarily do such a download
(e.g., via a daily poll).

Issues with GCM
GCM, of course, is not perfect. As with its C2DM predecessor, it has a variety of
issues, many of which will not be a problem for you, though some might be more
troublesome.

Requires Play Services Framework

GCM only works on devices that have the Play Services Framework. For all intents
and purposes, this means it only works on devices that have the Play Store. While
most Android devices do have the Play Store, some notable ones do not, including
the Kindle Fire.

If you are planning to distribute your app to devices by means other than the Play
Store, you will need to consider a fallback plan.

Requires API Level 8

GCM only works on devices with API Level 8 or higher — the point in time when
the Google Services Framework was formally established and C2DM was added to
the ecosystem.

Since the vast majority of Android devices run API Level 8 or higher, this should
only be an issue for developers specifically aiming to support older devices (e.g., still
have significant customers for the older app).

No SLA

Google does not offer a service level agreement (SLA) for GCM. In other words, what
they offer is a “best efforts” service, but if they fail to deliver your messages for one
reason or another, you have no legal recourse.

PUSH NOTIFICATIONS WITH GCM

1852

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For many situations, this is less a legal problem and more of a usage problem. The
fact that GCM can fail means that, from time to time, it likely will fail. Apps should
not rely upon GCM as their sole means of getting data from a server. Instead, use
GCM as an optimization, to get data faster than some slow poll (e.g., once every 24
hours) would accomplish. That way, even if GCM hiccups and loses a message or
two, the data will still make it down to your users, albeit not as quickly.

Applications that need some sort of guaranteed delivery will need to seek some
alternative solution where the provider offers an SLA.

4K Message Limit

C2DM had a 1K message payload limit. GCM raises that to 4K. This is still relatively
small. The theory behind the increase is that it is more likely that everything you
need to hand the client would be included in the GCM message versus needing
additional network I/O. However, due to the fact that Google has access to GCM
messages, you might need additional network I/O for privacy reasons, regardless of
message size.

Amazon Simple Notification Service and GCM
Amazon has had the Simple Notification Service (SNS) as part of their Amazon Web
Services (AWS) portfolio for some time. SNS has long had support for sending
notification messages to SMS, email, Amazon’s own Simple Queue Service (SQS), or
some form of HTTP endpoint (e.g., for Web hook implementations).

In the summer of 2013, Amazon extended SNS to support GCM, as well as Apple’s
equivalent push notification service, so that you can use a single Web service API to
deliver notifications via any of these means. This competes with other services (e.g.,
PushIO, PushWoosh) for cross-platform mobile push options.

PUSH NOTIFICATIONS WITH GCM

1853

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://aws.amazon.com/sns/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic Use of Sensors

“Sensors” is Android’s overall term for ways that Android can detect elements of the
physical world around it, from magnetic flux to the movement of the device. Not all
devices will have all possible sensors, and other sensors are likely to be added over
time. In this chapter, we will explore the general concept of Android sensors and
how to receive data from them.

Note, however, that this chapter will not get into details of detecting movement via
the accelerometer, etc.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads. Having experience with other system-service-
and-listener patterns, such as fetching locations with LocationManager, is helpful
but not strictly required.

The Sensor Abstraction Model
When fetching locations from LocationManager, you do not have dedicated APIs per
location-finding technology (e.g., GPS vs. WiFi hotspot proximity vs. cell-tower
triangulation vs. …). Instead, you work with a LocationManager system service,
asking for locations using a single API, where location technologies are identified by
name (e.g., GPS_PROVIDER).

Similarly, when working with sensors, you do not have dedicated APIs to get sensor
readings from each sensor. Instead, you work with a SensorManager system service,

1855

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

asking for sensor events using a single API, where sensors are identified by name
(e.g., TYPE_LINEAR_ACCELERATION).

Note, though, that there are some dedicated methods on SensorManager to help you
interpret some of the sensors, particularly the accelerometer. However, those are
merely helper methods; getting at the actual accelerometer data uses the same APIs
that you would use to, say, access the barometer for atmospheric pressure.

Considering Rates
Usually, when working with sensors, you want to find out about changes in the
sensor reading over a period of time. For example, in a driving game, where the user
holds their device like a steering wheel and uses it to “turn” their virtual car, you
need to know information about acceleration and positioning so long as game play
is going on.

Hence, when you request a feed of sensor readings from SensorManager, you will
specify a desired rate at which you should receive those readings. You do that by
specifying an amount of delay in between readings; Android will drop sensor
readings that arrive before the delay period has elapsed.

There are four standard delay periods, defined as constants on the SensorManager
class:

1. SENSOR_DELAY_NORMAL, which is what most apps would use for broad
changes, such as detecting a screen rotating from portrait to landscape

2. SENSOR_DELAY_UI, for non-game cases where you want to update the UI
continuously based upon sensor readings

3. SENSOR_DELAY_GAME, which is faster (less delay) than SENSOR_DELAY_UI, to try
to drive a higher frame rate

4. SENSOR_DELAY_FASTEST, which is the “firehose” of sensor readings, without
delay

The more sensor readings you get, the faster your code has to be for using those
readings, lest you take too long and starve your thread of time to do anything else.
This is particularly important given that you receive these sensor events on the main
application thread, and therefore the time you spend processing these events is time
unavailable for screen updates. Hence, choose the slowest rate that you can that will
give you acceptable granularity of output.

BASIC USE OF SENSORS

1856

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Reading Sensors
Sensors are event-driven. You cannot ask Android for the value of a sensor at a point
in time. Rather, you register a listener for a sensor, then process the sensor events as
they come in. You can unregister the listener when you are done, either because you
have the reading that you need, or the user has done something (like move to
another activity) that indicates that you no longer need the sensor events.

To demonstrate this, we will examine the Sensor/Monitor sample application, which
will list all of the available sensors, plus show the incoming readings from a selected
sensor.

Obtaining a SensorManager

The gateway to the sensor roster on the device is the SensorManager system service.
You obtain one of these by calling getSystemService() on any Context, asking for
the SENSOR_SERVICE, and casting the result to be a SensorManager, as seen in the
onCreate() method of our MainActivity:

mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);

Identifying a Sensor of Interest

There are sensor types, and then there are sensors.

You might think that there would be a one-to-one mapping between these. In truth,
there might be more than one sensor for a given type, the way the SensorManager
API is set up. Regardless, somewhere along the line, you will need to identify the
Sensor that you want to work with.

The most common pattern, if you know the type of sensor that you want, is to call
getDefaultSensor() on SensorManager, supplying the type of the sensor (e.g.,
TYPE_ACCELEROMETER, TYPE_GYROSCOPE), where the type names are constants defined
on the Sensor class. If there is more than one possible Sensor for that type, Android
will give you the “default” one, which is usually a reasonable choice.

Another approach, and the one used by this sample application, is to call
getSensorList() on SensorManager, which returns a List of all Sensor objects
available on this device. The sample’s MainActivity has a getSensorList() that
returns this list, after a bit of manipulation:

BASIC USE OF SENSORS

1857

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Sensor/Monitor
http://github.com/commonsguy/cw-omnibus/tree/master/Sensor/Monitor

@Override
publicpublic List<Sensor> getSensorList() {

List<Sensor> unfiltered=
newnew ArrayList<Sensor>(mgr.getSensorList(Sensor.TYPE_ALL));

List<Sensor> result=newnew ArrayList<Sensor>();

forfor (Sensor s : unfiltered) {
ifif (Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT

|| !isTriggerSensor(s)) {
result.add(s);

}
}

Collections.sort(result, newnew Comparator<Sensor>() {
@Override
publicpublic int compare(finalfinal Sensor a, finalfinal Sensor b) {

returnreturn(a.toString().compareTo(b.toString()));
}

});

returnreturn(result);
}

Android 4.4 started introducing some “trigger sensors”, ones that are designed to
deliver a single reading, then automatically become unregistered. This sample app is
designed to display results from more traditional sensors that provide ongoing
readings. So, getSensorList() calls an isTriggerSensor() method on API Level 19+
devices, and throws out sensors that are trigger sensors. The isTriggerSensor()
method simply checks the sensor type against a list of trigger sensors:

@TargetApi(Build.VERSION_CODES.KITKAT)
privateprivate boolean isTriggerSensor(Sensor s) {

int[] triggers=
{ Sensor.TYPE_SIGNIFICANT_MOTION, Sensor.TYPE_STEP_DETECTOR,

Sensor.TYPE_STEP_COUNTER };

returnreturn(Arrays.binarySearch(triggers, s.getType()) >= 0);
}

The reason for isolating isTriggerSensor() into a separate method, and not having
the array of sensor types as a static final array, is because these sensor types are
not available in all Android versions. Having the array of sensor types as a static
final data member would require putting the @TargetApi annotation on the entire
class, which is unwise if the class will be used on older devices. This way, we can
isolate the new-target code into a dedicated method, with a more locally-scoped
@TargetApi annotation.

BASIC USE OF SENSORS

1858

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Sensor Events

To get sensor events, you need a SensorEventListener. This is an interface, calling
for two method implementations:

1. onAccuracyChanged(), where you are informed about a significant change in
the accuracy of the readings that you are going to get from the sensor

2. onSensorChanged(), where you are passed a SensorEvent representing one
of those readings

To receive events for a given Sensor, you call registerListener() on the
SensorManager, supplying the Sensor, the SensorEventListener, and one of the
SENSOR_DELAY_* values to control the rate of events. Later on, you need to call
unregisterListener(), supplying the same SensorEventListener, to break the
connection. Failing to unregister the listener is bad. The sensor subsystem is
oblivious to things like activity lifecycles, and so if you leak a listener, not only will
you perhaps leak the component that registered the listener, but you will continue to
get sensor events until the process is terminated. As active sensors do consume
power, users will not appreciate the battery drain your leaked listener will incur.

The List of Sensor objects from that getSensorList() method shown previously
will be used to populate a ListView. When the user taps on a Sensor in the list, an
onSensorSelected() method is called on the MainActivity. Here, we unregister our
listener (a SensorLogFragment that we will discuss more in a bit), in case we were
registered for a prior Sensor choice, before registering for the newly-selected Sensor:

@Override
publicpublic void onSensorSelected(Sensor s) {

mgr.unregisterListener(log);
mgr.registerListener(log, s, SensorManager.SENSOR_DELAY_NORMAL);
log.init(isXYZ(s));
panes.closePane();

}

We will discuss the remainder of the onSensorSelected() method a bit later in this
chapter.

Since SensorLogFragment implements SensorEventListener — so we can use it
with registerListener() — we need to implement onAccuracyChanged() and
onSensorChanged():

@Override
publicpublic void onAccuracyChanged(Sensor sensor, int accuracy) {

BASIC USE OF SENSORS

1859

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// unused
}

@Override
publicpublic void onSensorChanged(SensorEvent e) {

Float[] values=newnew Float[3];

values[0]=e.values[0];
values[1]=e.values[1];
values[2]=e.values[2];

adapter.add(values);
}

Once again, we will get into the implementation of onSensorChanged() a bit later in
this chapter.

The big thing to note now about onSensorChanged(), though, is that the
SensorEventSensorEvent object comes from an object pool and gets recycled. It is not safe
for you to hold onto this SensorEvent object past the call to onSensorChanged().
Hence, you need to do something with the data in the SensorEvent, then let go of
the SensorEvent itself, so that instance can be used again later. This is to help
prevent excessive garbage collection, particularly for low-delay requests for sensor
readings (e.g., SENSOR_DELAY_FASTEST).

Interpreting Sensor Events

The key piece of data in the SensorEvent object is values. This is a six-element
float array containing the actual sensor reading. What those values mean will vary
by sensor. For example:

• For accelerometer readings (e.g., TYPE_ACCELEROMETER), the first three
elements of the array represent the reported acceleration, in m/s2, along the
X, Y, and Z axes respectively (X = out the right side of the device, Y = out the
top edge of the device, Z = out the screen towards the user’s eyes)

• TYPE_PRESSURE uses the first element of the values array to report the
barometric pressure in millibars

• TYPE_LIGHT uses the first element of the values array to report the light level
in lux

And so on.

The SensorEvent documentation contains instructions on how to interpret these
events on a per-sensor-type basis.

BASIC USE OF SENSORS

1860

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That being said, sensors can be roughly divided into two groups:

1. Sensors whose readings take into account three axes (X/Y/Z). These include
TYPE_ACCELEROMETER, TYPE_GRAVITY, TYPE_GYROSCOPE,
TYPE_LINEAR_ACCELERATION, and TYPE_MAGNETIC_FIELD.

2. Sensors that have simple single-value readings, such as TYPE_PRESSURE and
TYPE_LIGHT

The isXYZ() method on MainActivity simply returns a boolean indicating whether
or not this particular Sensor is one that uses all three axes (true) or not (false). As
the roster of sensors has changed over the years, it also does some checks based on
API level:

@TargetApi(Build.VERSION_CODES.KITKAT)
privateprivate boolean isXYZ(Sensor s) {

switchswitch (s.getType()) {
casecase Sensor.TYPE_ACCELEROMETER:
casecase Sensor.TYPE_GRAVITY:
casecase Sensor.TYPE_GYROSCOPE:
casecase Sensor.TYPE_LINEAR_ACCELERATION:
casecase Sensor.TYPE_MAGNETIC_FIELD:
casecase Sensor.TYPE_ROTATION_VECTOR:

returnreturn(truetrue);
}

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
ifif (s.getType() == Sensor.TYPE_GAME_ROTATION_VECTOR

|| s.getType() == Sensor.TYPE_GYROSCOPE_UNCALIBRATED
|| s.getType() == Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED) {

returnreturn(truetrue);
}

}

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
ifif (s.getType() == Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR) {

returnreturn(truetrue);
}

}

returnreturn(falsefalse);
}

Wiring Together the Sample

Overall, this sample app uses the SlidingPaneLayout first seen back in the chapter
on large-screen support. We have two fragments, in a master-detail pattern, where
the “master” will be a list of all available sensors, and the “detail” will be a log of
sensor readings from a selected sensor.

BASIC USE OF SENSORS

1861

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Our layout (res/layout/activity_main.xml) wires in a SensorsFragment (master)
and SensorLogFragment (detail) in a SlidingPaneLayout:

<android.support.v4.widget.SlidingPaneLayout<android.support.v4.widget.SlidingPaneLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/panes"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<fragment<fragment
android:id="@+id/sensors"
android:name="com.commonsware.android.sensor.monitor.SensorsFragment"
android:layout_width="300sp"
android:layout_height="match_parent"/>/>

<fragment<fragment
android:id="@+id/log"
android:name="com.commonsware.android.sensor.monitor.SensorLogFragment"
android:layout_width="400dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

</android.support.v4.widget.SlidingPaneLayout></android.support.v4.widget.SlidingPaneLayout>

The SensorsFragment is reminiscent of CountriesFragment from the
SlidingPaneLayout variant of the EU4You sample. The biggest differences are that we
use a SensorListAdapter for representing the list of sensors, that we use
getSensorList() on our SensorsFragment.Contract class to retrieve the model
data, and that we call onSensorSelected() on the contract to report of selections:

packagepackage com.commonsware.android.sensor.monitor;

importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ListViewandroid.widget.ListView;
importimport java.util.Listjava.util.List;

publicpublic classclass SensorsFragmentSensorsFragment extendsextends
ContractListFragment<SensorsFragment.Contract> {

staticstatic privateprivate finalfinal String STATE_CHECKED=
"com.commonsware.android.sensor.monitor.STATE_CHECKED";

privateprivate SensorListAdapter adapter=nullnull;

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

adapter=newnew SensorListAdapter(thisthis);
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
setListAdapter(adapter);

BASIC USE OF SENSORS

1862

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (state != nullnull) {
int position=state.getInt(STATE_CHECKED, -1);

ifif (position > -1) {
getListView().setItemChecked(position, truetrue);
getContract().onSensorSelected(adapter.getItem(position));

}
}

}

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

l.setItemChecked(position, truetrue);

getContract().onSensorSelected(adapter.getItem(position));
}

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

state.putInt(STATE_CHECKED, getListView().getCheckedItemPosition());
}

interfaceinterface ContractContract {
void onSensorSelected(Sensor s);

List<Sensor> getSensorList();
}

}

SensorListAdapter illustrates another approach for handling the difference in
“activated” row support. The EU4You samples used an activated style to apply the
“activated” support on Android 3.0 and higher. Here, our custom ArrayAdapter
subclass dynamically chooses between
android.R.layout.simple_list_item_activated_1 (an activated-capable built-in
row layout) and the classic android.R.layout.simple_list_item_1 based upon API
level:

packagepackage com.commonsware.android.sensor.monitor;

importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.os.Buildandroid.os.Build;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.TextViewandroid.widget.TextView;

classclass SensorListAdapterSensorListAdapter extendsextends ArrayAdapter<Sensor> {
SensorListAdapter(SensorsFragment sensorsFragment) {

BASIC USE OF SENSORS

1863

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper(sensorsFragment.getActivity(), getRowResourceId(),
sensorsFragment.getContract().getSensorList());

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);

((TextView)result).setText(getItem(position).getName());

returnreturn(result);
}

privateprivate staticstatic int getRowResourceId() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {

returnreturn(android.R.layout.simple_list_item_activated_1);
}

returnreturn(android.R.layout.simple_list_item_1);
}

}

We also have to override getView(), as our model is Sensor, whose toString() is
not what we want, so we have to manually populate the list row with getName()
instead.

SensorLogFragment is another SherlockListFragment. In particular, though, we set
it up for TRANSCRIPT_MODE_NORMAL, which means that Android will automatically
scroll the ListView to the bottom if we add new rows to the list and the user has not
scrolled up in the list to view past data:

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

getListView().setTranscriptMode(ListView.TRANSCRIPT_MODE_NORMAL);
}

However, we do not initialize our ListAdapter in onActivityCreated(), as we might
normally do. Instead, we have a dedicated init() method, to be called by
MainActivity, where we set up the SensorLogAdapter and keep track of whether the
Sensor that we are logging is designed to report three-dimensional values (isXYZ is
true) or not:

void init(boolean isXYZ) {
thisthis.isXYZ=isXYZ;
adapter=newnew SensorLogAdapter(thisthis);
setListAdapter(adapter);

}

BASIC USE OF SENSORS

1864

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The init() method, in turn, was called by onSensorSelected() of MainActivity.
Hence, whenever the user taps on a sensor, we set up a fresh log. init() can do this
because MainActivity retrieved our SensorLogFragment up in onCreate(), stashing
it in a log data member:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
log=

(SensorLogFragment)getSupportFragmentManager().findFragmentById(R.id.log);

panes=(SlidingPaneLayout)findViewById(R.id.panes);
panes.openPane();

}

Our onSensorChanged() method in SensorLogFragment copies the values from the
SensorEvent into a separate Float array that is our list’s model data:

@Override
publicpublic void onSensorChanged(SensorEvent e) {

Float[] values=newnew Float[3];

values[0]=e.values[0];
values[1]=e.values[1];
values[2]=e.values[2];

adapter.add(values);
}

SensorLogAdapter uses the isXYZ value to determine how it should format the rows:

• For single-value sensors, we just show the first Float from the array
• For three-dimensional sensors, we show all three dimensions, plus the “net”

(square root of the sum of the squares), separated by slashes

classclass SensorLogAdapterSensorLogAdapter extendsextends ArrayAdapter<Float[]> {
publicpublic SensorLogAdapter(SensorLogFragment sensorLogFragment) {

supersuper(sensorLogFragment.getActivity(),
android.R.layout.simple_list_item_1,
newnew ArrayList<Float[]>());

}

@SuppressLint("DefaultLocale")
@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

BASIC USE OF SENSORS

1865

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TextView row=
(TextView)supersuper.getView(position, convertView, parent);

String content=nullnull;
Float[] values=getItem(position);

ifif (isXYZ) {
content=

String.format("%7.3f / %7.3f / %7.3f / %7.3f",
values[0],
values[1],
values[2],
Math.sqrt(values[0] * values[0] + values[1]

* values[1] + values[2] * values[2]));
}
elseelse {

content=String.format("%7.3f", values[0]);
}

row.setText(content);

returnreturn(row);
}

}

The rest of MainActivity simply manages the SlidingPaneLayout, much like the
EU4YouSlidingPane sample did.

The Results

When the user taps on a sensor in the list, we get a log of readings:

BASIC USE OF SENSORS

1866

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 499: SensorMonitor, On a Nexus 10, Showing Gravity Readings While Being
Wiggled by the Author

Batching Sensor Readings
API Level 19 (Android 4.4) added a new feature to the sensor subsystem: batched
sensor events. Now, registerListener() can take a batch period in microseconds,
and Android may elect to deliver events to you delayed by up to that amount of
time. The objective will be to reduce the power draw of the sensors, for sensor
hardware that supports this sort of batching behavior. Not all hardware will, in
which case your requested batch latency will be ignored.

BASIC USE OF SENSORS

1867

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other System Settings and Services

Android offers a number of system services, usually obtained by
getSystemService() from your Activity, Service, or other Context. These are your
gateway to all sorts of capabilities, from settings to volume to WiFi. Throughout the
course of this book, we have seen several of these system services. In this chapter, we
will take a look at others that may be of value to you in building compelling Android
applications.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Setting Expectations
If you have an Android device, you probably have spent some time in the Settings
application, tweaking your device to work how you want – ringtones, WiFi settings,
USB debugging, etc. Many of those settings are also available via Settings class (in
the android.provider package), and particularly the Settings.System and
Settings.Secure public inner classes.

Basic Settings

Settings.System allows you to get and, with the WRITE_SETTINGS permission, alter
these settings. As one might expect, there are a series of typed getter and setter
methods on Settings.System, each taking a key as a parameter. The keys are class
constants, such as:

1869

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. INSTALL_NON_MARKET_APPS to control whether you can install applications on
a device from outside of the Play Store

2. HAPTIC_MODE_ENABLED to control whether the user receives “haptic feedback”
(vibrations) from things like the MENU button

3. ACCELEROMETER_ROTATION to control whether the screen orientation will
change based on the position of the device

The SystemServices/Settings sample project has a SettingsSetter sample
application that displays a checklist:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

Figure 500: The SettingsSetter application

The checklist itself is filled with a few BooleanSetting objects, which map a display
name with a Settings.System key:

staticstatic classclass BooleanSettingBooleanSetting {
String key;

OTHER SYSTEM SETTINGS AND SERVICES

1870

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Settings
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Settings

String displayName;
boolean isSecure=falsefalse;

BooleanSetting(String key, String displayName) {
thisthis(key, displayName, falsefalse);

}

BooleanSetting(String key, String displayName,
boolean isSecure) {

thisthis.key=key;
thisthis.displayName=displayName;
thisthis.isSecure=isSecure;

}

@Override
publicpublic String toString() {

returnreturn(displayName);
}

boolean isChecked(ContentResolver cr) {
trytry {

int value=0;

ifif (isSecure) {
value=Settings.Secure.getInt(cr, key);

}
elseelse {

value=Settings.System.getInt(cr, key);
}

returnreturn(value!=0);
}
catchcatch (Settings.SettingNotFoundException e) {

Log.e("SettingsSetter", e.getMessage());
}

returnreturn(falsefalse);
}

void setChecked(ContentResolver cr, boolean value) {
trytry {

ifif (isSecure) {
Settings.Secure.putInt(cr, key, (value ? 1 : 0));

}
elseelse {

Settings.System.putInt(cr, key, (value ? 1 : 0));
}

}
catchcatch (Throwable t) {

Log.e("SettingsSetter", "Exception in setChecked()", t);
}

}
}

OTHER SYSTEM SETTINGS AND SERVICES

1871

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Three such settings are put in the list:

settings.add(newnew BooleanSetting(Settings.System.INSTALL_NON_MARKET_APPS,
"Allow non-Market app installs",
truetrue));

settings.add(newnew BooleanSetting(Settings.System.HAPTIC_FEEDBACK_ENABLED,
"Use haptic feedback",
falsefalse));

settings.add(newnew BooleanSetting(Settings.System.ACCELEROMETER_ROTATION,
"Rotate based on accelerometer",
falsefalse));

As the checkboxes are checked and unchecked, the values are passed along to the
settings themselves:

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
supersuper.onListItemClick(l, v, position, id);

BooleanSetting s=settings.get(position);

s.setChecked(getContentResolver(),
l.isItemChecked(position));

}

The SettingsSetter activity also has an option menu containing four items:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item android:id="@+id/app"
android:title="Application"
android:icon="@android:drawable/ic_menu_manage" />/>

<item<item android:id="@+id/security"
android:title="Security"
android:icon="@android:drawable/ic_menu_close_clear_cancel" />/>

<item<item android:id="@+id/wireless"
android:title="Wireless"
android:icon="@android:drawable/ic_menu_set_as" />/>

<item<item android:id="@+id/all"
android:title="All Settings"
android:icon="@android:drawable/ic_menu_preferences" />/>

</menu></menu>

These items correspond to four activity Intent values identified by the Settings
class:

menuActivities.put(R.id.app,
Settings.ACTION_APPLICATION_SETTINGS);

menuActivities.put(R.id.security,

OTHER SYSTEM SETTINGS AND SERVICES

1872

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Settings.ACTION_SECURITY_SETTINGS);
menuActivities.put(R.id.wireless,

Settings.ACTION_WIRELESS_SETTINGS);
menuActivities.put(R.id.all,

Settings.ACTION_SETTINGS);

When an option menu is chosen, the corresponding activity is launched:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

String activity=menuActivities.get(item.getItemId());

ifif (activity!=nullnull) {
startActivity(newnew Intent(activity));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

This way, you have your choice of either directly manipulating the settings or merely
making it easier for users to get to the Android-supplied activity for manipulating
those settings.

Secure Settings

You will notice that if you use the above code and try changing the Play Store
setting, it does not seem to take effect. And, if you look at the LogCat output, you
will see complaints.

Once upon a time, you could modify this setting, and others like it.

Now, though, these settings are ones that Android deems “secure”. The constants
have been moved from Settings.System to Settings.Secure, though the old
constants are still there, flagged as deprecated.

These so-called “secure” settings are ones that Android does not allow applications
to change. While theoretically the WRITE_SECURE_SETTINGS permission resolves this
problem, ordinary SDK applications cannot hold that permission. The only option is
to display the official Settings activity and let the user change the setting.

API Level 17 takes things one step further, moving a number of settings out of
Settings.System and Settings.Secure and placing them in a new
Settings.Global. Like Settings.Secure, ordinary SDK apps cannot modify these

OTHER SYSTEM SETTINGS AND SERVICES

1873

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

settings, as they are secured by WRITE_SECURE_SETTINGS. The distinction between
Settings.Secure and Settings.Global comes with respect to scope:
Settings.Secure is on a per-user basis (for devices set up with multiple users), and
Settings.Global is device-wide.

Can You Hear Me Now? OK, How About Now?
The fancier the device, the more complicated controlling sound volume becomes.

On a simple MP3 player, there is usually only one volume control. That is because
there is only one source of sound: the music itself, played through speakers or
headphones.

In Android, though, there are several sources of sounds:

1. Ringing, to signify an incoming call
2. Voice calls
3. Alarms, such as those raised by the Alarm Clock application
4. System sounds (error beeps, USB connection signal, etc.)
5. Music, as might come from the MP3 player

Android allows the user to configure each of these volume levels separately. Usually,
the user does this via the volume rocker buttons on the device, in the context of
whatever sound is being played (e.g., when on a call, the volume buttons change the
voice call volume). Also, there is a screen in the Android Settings application that
allows you to configure various volume levels.

The AudioService in Android allows you, the developer, to also control these
volume levels, for all five “streams” (i.e., sources of sound). In the SystemServices/
Volume sample project, we create a Volumizer application that displays and modifies
all five volume levels.

Attaching SeekBars to Volume Streams

The standard widget for allowing choice along a range of integer values is the
SeekBar, a close cousin of the ProgressBar. SeekBar has a thumb that the user can
slide to choose a value between 0 and some maximum that you set. So, we will use a
set of five SeekBar widgets to control our five volume levels.

First, we need to create a layout with a SeekBar per stream:

OTHER SYSTEM SETTINGS AND SERVICES

1874

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.syssvc.volume"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1">>

<TableRow<TableRow
android:paddingBottom="20px"
android:paddingTop="10px">>

<TextView<TextView android:text="Alarm:"/>/>

<SeekBar<SeekBar
android:id="@+id/alarm"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow<TableRow android:paddingBottom="20px">>

<TextView<TextView android:text="Music:"/>/>

<SeekBar<SeekBar
android:id="@+id/music"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow<TableRow android:paddingBottom="20px">>

<TextView<TextView android:text="Ring:"/>/>

<SeekBar<SeekBar
android:id="@+id/ring"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow<TableRow android:paddingBottom="20px">>

<TextView<TextView android:text="System:"/>/>

<SeekBar<SeekBar
android:id="@+id/system"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView android:text="Voice:"/>/>

OTHER SYSTEM SETTINGS AND SERVICES

1875

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<SeekBar<SeekBar
android:id="@+id/voice"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

Then, we need to wire up each of those bars in the onCreate() for Volumizer,
calling an initBar() method for each of the five bars:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(AudioManager)getSystemService(Context.AUDIO_SERVICE);

alarm=(SeekBar)findViewById(R.id.alarm);
music=(SeekBar)findViewById(R.id.music);
ring=(SeekBar)findViewById(R.id.ring);
system=(SeekBar)findViewById(R.id.system);
voice=(SeekBar)findViewById(R.id.voice);

initBar(alarm, AudioManager.STREAM_ALARM);
initBar(music, AudioManager.STREAM_MUSIC);
initBar(ring, AudioManager.STREAM_RING);
initBar(system, AudioManager.STREAM_SYSTEM);
initBar(voice, AudioManager.STREAM_VOICE_CALL);

}

In initBar(), we set the appropriate size for the SeekBar bar via setMax(), set the
initial value via setProgress(), and hook up an OnSeekBarChangeListener to find
out when the user slides the bar, so we can set the volume on the stream via the
VolumeManager.

The net result is that when the user slides a SeekBar, it adjusts the stream to match:

OTHER SYSTEM SETTINGS AND SERVICES

1876

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 501: The Volumizer application

The Rest of the Gang
There are quite a few system services you can get from getSystemService(). Beyond
the ones profiled in this chapter, you have access to:

1. AccessibilityManager, for being notified of key system events (e.g.,
activities starting) that might be relayed to users via haptic feedback, audio
prompts, or other non-visual cues

2. AccountManager, for working with Android’s system of user accounts and
synchronization

3. ActivityManager, for getting more information about what processes and
components are presently running on the device

4. AlarmManager, for scheduled tasks (a.k.a., “cron jobs”), covered elsewhere in
this book

5. ConnectivityManager, for a high-level look as to what sort of network the
device is connected to for data (e.g., WiFi, 3G)

6. DevicePolicyManager, for accessing device administration capabilities, such
as wiping the device

OTHER SYSTEM SETTINGS AND SERVICES

1877

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

7. DownloadManager, for downloading large files on behalf of the user, covered
in the chapter on Intents

8. DropBoxManager, for maintaining your own ring buffers of logging
information akin to LogCat

9. InputMethodManager, for working with input method editors
10. KeyguardManager, for locking and unlocking the keyguard, where possible
11. LayoutInflater, for inflating layout XML files into Views, covered elsewhere

in this book
12. LocationManager, for determining the device’s location (e.g., GPS), covered

in the chapter on location tracking
13. NotificationManager, for putting icons in the status bar and otherwise

alerting users to things that have occurred asynchronously, covered in the
chapter on Notification

14. PowerManager, for obtaining WakeLock objects and such, covered elsewhere
in this book

15. SearchManager, for interacting with the global search system – search in
general is covered elsewhere in this book

16. SensorManager, for accessing data about sensors, such as the accelerometer
17. TelephonyManager, for finding out about the state of the phone and related

data (e.g., SIM card details)
18. UiModeManager, for dealing with different “UI modes”, such as being docked

in a car or desk dock
19. Vibrator, for shaking the phone (e.g., haptic feedback)
20. WifiManager, for getting more details about the active or available WiFi

networks
21. WindowManager, mostly for accessing details about the default display for the

device

OTHER SYSTEM SETTINGS AND SERVICES

1878

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dealing with Different Hardware

While a lot of focus is placed on screen sizes, there are many other possible
hardware differences among different Android devices. For example, some have
telephony features, while others do not.

There is a three-phase plan for dealing with these variations:

1. Filter out devices that cannot possibly run your app successfully, so your app
will not appear to them in the Play Store and they will be unable to install
your app if obtained by other means

2. React to varying hardware that you can support, but perhaps might support
differently (e.g., choosing a particular flash mode for a device having a
camera with a flash)

3. Cope with device bugs or regressions that impact your application

This chapter will go through each of these topics.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Filtering Out Devices
Elsewhere in the book, we discussed a few manifest entries that will serve to filter
out devices that cannot run your app:

1879

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• android:minSdkVersion in the <uses-sdk> element, to stipulate that devices
must run a certain version of Android (or higher)

• <supports-screens> and <compatible-screens>, which indicate which
screens sizes and densities you are capable of supporting

This section outlines other “advertisements” that you can put in the manifest to
restrict which devices run your app.

uses-feature

The <uses-feature> element restricts your app to devices that have certain
hardware features. For each element, you supply the name of a feature (e.g.,
android.hardware.telephony) and whether or not it is required:

<uses-feature<uses-feature
android:name="android.hardware.camera"
android:required="false" />/>

By default, android:required is set to true, so typically you will only see it in a
manifest when it is set to false.

You might wonder why we would bother ever setting android:required to false.
After all, that should have the same effect as not listing it at all. In practice, though,
it has two major uses.

First, markets like the Play Store might highlight the fact that you can use a
particular hardware capability, even though you do not strictly require it.

More importantly, you can use android:required="false" to undo a requirement
that Android infers from your permissions. Requesting some permissions causes
Android to assume — for backwards-compatibility reasons — that your app needs
the affiliated hardware. For example, requesting the CAMERA permission causes
Android to assume that you need a camera (android.hardware.camera) and that the
camera support auto-focus (android.hardware.camera.autofocus). If, however, you
are requesting the permission because you would like to use the hardware if
available, but can live without it, you need to expressly add a <uses-feature>
element declaring that the hardware feature is not required.

For example, in February 2010, the Motorola XOOM tablet was released. This was
the first Android device that had the Play Store on it and truly had no telephony
capability. As such, the XOOM would be filtered out of the then-Android Market
(now Play Store) for any app that required permissions like SEND_SMS. Many

DEALING WITH DIFFERENT HARDWARE

1880

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

developers requested this permission, even though their apps could survive without
SMS-sending capability. However, their apps were still filtered out if they did not
have the <uses-feature> element declaring that telephony was not required.

You can find a table listing Android permissions and assumed hardware feature
requirements in the Android developer documentation.

uses-configuration

The <uses-configuration> element is very reminiscent of <uses-feature>: it
dictates hardware requirements. The difference is two-fold:

1. It focuses on hardware elements that represent different device
configurations, meaning that you might use different resources for them

2. It allows you to specify combinations of capabilities that you need

There are three capabilities that you can require via <uses-configuration>:

1. The existence of a five-way navigation control, whether a specific type (D-
pad, trackball, etc.) or any such control

2. The existence of a physical keyboard, whether a specific type (QWERTY,
12-key numeric keypad, etc.) or any such keyboard

3. A touchscreen

You can have as many <uses-configuration> elements as you need – any device
that matches at least one such configuration will be eligible to install your app.

For example, the following <uses-configuration> element restricts your app to
devices that have some sort of navigation control but do not necessarily have a
touchscreen, such as a Google TV device:

<uses-configuration<uses-configuration
android:reqFiveWayNav="true"
android:reqTouchScreen="notouch" />/>

uses-library

The <uses-library> element tells Android that your application wishes to use a
particular firmware-supplied library. The most common case for this was Maps V1,
which is shipped in the form of an SDK add-on and firmware library. This, however,
has been deprecated for quite some time.

DEALING WITH DIFFERENT HARDWARE

1881

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions

However, there are other firmware libraries that you might need. These will typically
be manufacturer-specific libraries, allowing your application to take advantage of
particular beyond-the-Android-SDK capabilities of a particular device. For example,
several Motorola Mobility devices ship with an “Enterprise Device Management”
firmware library, as an extension of Android’s own device admin APIs.

The Google Play Store will filter out your application from devices that lack a
firmware library that you require via <uses-library>. If the user tries installing your
app by some other means (e.g., download from a Web site), your app will fail to
install on devices that lack the firmware library.

If you conditionally want the firmware library — you will use it if available but can
cope if it is not — you can add android:required="false" to your <uses-library>
element. That will allow your app to install and run on devices missing the library in
question. Detecting whether or not the library exists in your process at runtime is a
matter if using Class.forName() to see if you have access to some class from that
library, where a ClassNotFoundException means that you do not have the library.

Runtime Capability Detection
Reacting to device capabilities is the second phase of dealing with different devices.
Some features you might want (e.g., telephony for sending SMSes) but can live
without. Other features may have subtle variations that you cannot filter against and
therefore need to adapt to at runtime (e.g., possible picture resolutions off of a
camera).

This section will cover various techniques for determining what a device can do, at
runtime, so you can react accordingly.

Features

Any feature you do not make required via <uses-feature> can be detected at
runtime by calling hasSystemFeature() on PackageManager. For example, if you
would like to send SMS messages, but only on telephony-capable devices, you could
have the following <uses-feature> element:

<uses-feature<uses-feature
android:name="android.hardware.telephony"
android:required="false" />/>

DEALING WITH DIFFERENT HARDWARE

1882

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.motorola.com/docs/Motorola_Enterprise_Device_Management_SDK_Getting_Started/
http://developer.motorola.com/docs/Motorola_Enterprise_Device_Management_SDK_Getting_Started/

Then, at runtime, you can call hasSystemFeature("android.hardware.telephony")
on aPackageManager` instance to find out if, indeed, the device has telephony
capability and sending SMSes should work.

Other Capabilities

Various subsystems have their own means of helping you determine what is possible
or not:

• The Camera class, via Camera.Parameters, can let you know the capabilities
of a camera (e.g., whether or not it has a flash, and what specific flash modes
are supported).

• The LocationManager will help you determine what location providers are
available that meet your Criteria.

• The sensor subsystem lets you find out what sensors are installed, either
overall or for a particular type (e.g., accelerometer).

Dealing with Device Bugs
Alas, devices are not perfect. Even though the Compatibility Test Suite attempts to
ensure that all Android devices legitimately running the Play Store faithfully
implement the Android SDK, some device manufacturers make changes that
introduce bugs.

Just as Web developers can “sniff” on the User-Agent HTTP header to determine
what sort of browser is requesting a page, you can use the Build class to determine
what sort of device is running your app. If you encounter problems with a specific
device, you may be able to use Build to identify that device at runtime and “route
around the damage”.

DEALING WITH DIFFERENT HARDWARE

1883

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/cts-intro.html

Trail: Integration and Introspection

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to URLs

You may have noticed that Android supports a market: URL scheme. Web pages can
use such URLs so that, if they are viewed on an Android device’s browser, the user
can be transported to a Play Store page, perhaps for a specific app or a list of apps for
a publisher.

Fortunately, that mechanism is not limited to Android’s code — you can get control
for various other types of links as well. You do this by adding certain entries to an
activity’s <intent-filter> for an ACTION_VIEW Intent.

However, be forewarned that this capability is browser-specific. What works on the
original Android “Browser” app and Google’s Chrome may not necessarily work on
Firefox for Android or other browsers.

Prerequisites
Understanding this chapter requires that you have read the chapter on Intent
filters.

Manifest Modifications
First, any <intent-filter> designed to respond to browser links will need to have a
<category> element with a name of android.intent.category.BROWSABLE. Just as
the LAUNCHER category indicates an activity that should get an icon in the launcher,
the BROWSABLE category indicates an activity that wishes to respond to browser links.

You will then need to further refine which links you wish to respond to, via a <data>
element. This lets you describe the URL and/or MIME type that you wish to respond

1885

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to. For example, here is the AndroidManifest.xml file from the Introspection/
URLHandler sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.urlhandler"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/cw"
android:label="@string/app_name">>
<activity<activity

android:name="URLHandler"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

<data<data android:mimeType="application/pdf"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

<data<data
android:host="www.this-so-does-not-exist.com"
android:path="/something"
android:scheme="http"/>/>

</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.MY_ACTION"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>

RESPONDING TO URLS

1886

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler

</manifest></manifest>

Here, we have four <intent-filter> elements for our one activity:

• The first is a standard “put an icon for me in the launcher, please” filter,
with the LAUNCHABLE category

• The second claims that we handle PDF files (MIME type of application/
pdf), and that we will respond to browser links (BROWSABLE category)

• The third claims that we will handle any HTTP request (scheme of "http")
for a certain Web site (host of "www.this-so-does-not-exist.com" and
path of /something), and that we will respond to browser links (BROWSABLE
category)

• The last is a custom action, for which we will generate a URL that Android
will honor, and that we will respond to browser links (BROWSABLE category)
— we will examine this more closely in the next section

What happens for the first two links varies based on browser.

The original Android “Browser” app, and Google Chrome, will do the following:

• Tapping the link to the PDF, on Android 2.3+, will trigger a download of the
PDF. When the user taps on the downloaded file (e.g., from the
Notification in the status bar), the user will have URLHandler as one of the
options in the chooser to view the PDF file.

• Tapping the link to http://www.this-so-does-not-exist.com/something
will bring up a chooser showing all available Web browser, plus URLHandler,
as expected

Firefox for Android will treat the PDF link the same way. However, Firefox for
Android does not check the URL for the second link to see if there is anything else
supporting ACTION_VIEW for the URL, and so it always loads up the Web page. You
see this effect with the link to Barcode Scanner as well — even though a device has
Barcode Scanner installed, Firefox never offers that as an option.

Creating a Custom URL
Responding to MIME types makes complete sense… if we implement something
designed to handle such a MIME type.

RESPONDING TO URLS

1887

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to certain schemes, hosts, paths, or file extensions is certainly usable,
but other than perhaps the file extension approach, it makes your application a bit
fragile. If the site changes domain names (even a sub-domain) or reorganizes its site
with different URL structures, your code will break.

If the goal is simply for you to be able to trigger your own application from your own
Web pages, though, the safest approach is to use an intent: URL. These can be
generated from an Intent object by calling toUri(Intent.URI_INTENT_SCHEME) on a
properly-configured Intent, then calling toString() on the resulting Uri.

For example, the intent: URL for the fourth <intent-filter> from above is:

intent:#Intent;action=com.commonsware.android.MY_ACTION;end

This is not an official URL scheme, any more than market: is, but it works for
Android devices. When the Android built-in Browser encounters this URL, it will
create an Intent out of the URL-serialized form and call startActivity() on it,
thereby starting your activity. Chrome also supports this URL structure. Firefox for
Android does not, indicating instead that it cannot recognize the URL.

Reacting to the Link
Your activity can then examine the Intent that launched it to determine what to do.
In particular, you will probably be interested in the Uri corresponding to the link —
this is available via the getData() method. For example, here is the URLHandler
activity for this sample project:

packagepackage com.commonsware.android.urlhandler;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass URLHandlerURLHandler extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

TextView uri=(TextView)findViewById(R.id.uri);

RESPONDING TO URLS

1888

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (Intent.ACTION_MAIN.equals(getIntent().getAction())) {
String intentUri=(newnew Intent("com.commonsware.android.MY_ACTION"))

.toUri(Intent.URI_INTENT_SCHEME)

.toString();

uri.setText(intentUri);
Log.w("URLHandler", intentUri);

}
elseelse {

Uri data=getIntent().getData();

ifif (data==nullnull) {
uri.setText("Got com.commonsware.android.MY_ACTION Intent");

}
elseelse {

uri.setText(getIntent().getData().toString());
}

}
}

publicpublic void visitSample(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

Uri.parse("http://commonsware.com/sample")));
}

}

This activity’s layout has a TextView (uri) for showing a Uri and a Button to launch a
page of links, found on the CommonsWare site (http://commonsware.com/sample).
The Button is wired to call visitSample(), which just calls startActivity() on the
aforementioned URL to display it in the Browser.

When the activity starts up, though, it first loads up the TextView. What goes in
there depends on how the activity was launched:

1. If it was launched via the launcher (e.g., the action is MAIN), then we display
in the TextView the intent: URL shown in the previous section, generated
from an Intent object designed to trigger our fourth <intent-filter>. This
also gets dumped to LogCat, and is how the author got this URL in the first
place to put on the sample Web page of links.

2. If it was not launched via the launcher, it was launched from a Web link. If
the Uri from the launching Intent is null, though, that means the activity
was launched via the custom intent: URL (which only has an action string),
so we put a message in the TextView to match.

3. Otherwise, the Uri from the launching Intent will have something we can
use to process the link request. For the PDF file, it will be the local path to
the downloaded PDF, so we can open it. For the

RESPONDING TO URLS

1889

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

www.this-so-does-not-exist.com URL, it will be the URL itself, so we can
process it our own way.

Note that for the PDF case, clicking the PDF link in the Browser will download the
file in the background, with a Notification indicating when it is complete. Tapping
on the entry in the notification drawer will then trigger the URLHandler activity.

Also, bear in mind that the device may have multiple handlers for some URLs. For
example, a device with a real PDF viewer will give the user a choice of whether to
launch the downloaded PDF in the real view or URLHandler.

RESPONDING TO URLS

1890

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Plugin Patterns

Plugins have historically been a popular model for extending the functionality of a
base application. Browsers, for example, have long used plugins for everything from
playing Flash animations to displaying calendars.

While Android does not have a specific “plugin framework”, many techniques exist
in Android to create plugins. Which of these patterns is appropriate for you will
depend upon the nature of the host application and, more importantly, on the
nature of the plugin. This chapter will explore some of these plugin patterns.

Prerequisites
Having read the chapters on app widgets (to be exposed to RemoteViews) and the
Loader framework would be useful, though neither is essential for grasping the core
concepts presented in this chapter. Similarly, this chapter has a case study that
covers a lockscreen widget, so knowing a bit about those will help, but is not
absolutely essential. Another sample involves the use of custom permissions, which
are subject to a vulnerability covered in another chapter.

Definitions, Scenarios, and Scope
For the purposes of this chapter, a “plugin model” refers to an app (the plugin
“host”) that is being extended by other apps (the “plugins”) that are largely
dedicated to that job.

Certainly, there are plenty of ways that apps can work together without one being a
plugin to another. The user’s Web browser is not a plugin of your app when you call
startActivity() to view a Web page, for example.

1891

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By contrast, the Locale app can be extended via plugins, written either by two forty
four a.m. (the authors of Locale) or third parties. These plugins have no real value to
the user other than by how they improve what Locale itself can do. This sort of
structure, therefore, qualifies as a plugin model.

In particular, this chapter will focus on two general scenarios for wanting a plugin
model, though others certainly exist:

1. You want to allow third parties to extend the capability of your app, much as
two forty four a.m. wanted with Locale, or

2. You want to reduce the number of permissions in your core app by
delegating some permissions to plugins, so users can “opt into” those
permissions

The Keys to Any Plugin System
There are four essential ingredients for any plugin model:

1. Somehow, the user has to be able to find, download, and install plugins for
the host.

2. Somehow, the host app has to know what plugins are installed and available
for use.

3. Somehow, the host app and the plugin need to communicate, usually
through one form or another of inter-process communication (IPC)

4. All of this needs to be done without compromising the user’s privacy or
security

Depending upon the nature of the host app and plugin system, there may need to be
additional ingredients (e.g., allowing users to configure the behavior of plugins).

Discovery… By the User

A popular thought experiment is:

If a tree falls in a forest and no one is around to hear it, does it make a
sound?

The analog to plugins is:

PLUGIN PATTERNS

1892

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.twofortyfouram.locale

If an app offers a plugin model, and the user cannot find any plugins, is
there really a plugin model?

Somehow, users need to know about available plugins, and frequently that means
that you will need to help steer them towards those plugins.

If you are focused solely on distributing through the Play Store, you could invite all
of your plugin authors to use some particular keyword or phrase, likely to be unique
for your plugins, then use market://search?q=...&c=apps (with ... replaced by
your keyword or phrase) as a Uri for an ACTION_VIEW Intent passed to
startActivity(). This will show the user a list of all apps on the Play Store with
that keyword or phrase. For example, SONY suggested that developers writing
extensions for the SONY SmartWatch use “smartwatch” as a keyword.

Of course, you are welcome to maintain your own roster of available plugins, where
your app can download that roster as needed and display the candidates to your
users. For example, you might have a JSON file on your Web server at a well-known
URL that contains the current lineup of available plugins.

Or, you are welcome to simply offer this sort of information via your Web site, not
from within your app. Depending upon how frequently users will be visiting your
Web site, this may or may not be helpful to them, but it may be simpler than doing
something custom built into your app. For example, you could maintain a simple
static Web page with links to the plugins.

Discovery… By Your App

Once a user installs one or more plugins, your plugin host app needs to know that
they are there. Continuing with the thought experiments:

If an app offers a plugin model, but fails to recognize any plugins, is there
really a plugin model?

Conversely, once a user removes a plugin, your host app needs to know about that as
well, so that you do not try to use a plugin that no longer exists.

There are any number of possible strategies for finding available plugins; the
following sections outline a few candidates.

PLUGIN PATTERNS

1893

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Broadcast-and-Response

One approach is to send a custom broadcast Intent, at relevant points in time, that
is an advertisement to plugins, saying “Hey! Tell me that you exist!”. Plugins, as part
of your instructions for writing a plugin, are obligated to respond to that broadcast
by doing something to let you know about them, such as:

• Sending their own broadcast back to your host app, providing details about
the plugin

• Inserting or updating an entry in a host-published ContentProvider
• Sending a command to a host-supplied IntentService
• Etc.

Any previously-existing plugins that do not respond within some specific period of
time are considered “gone”, possibly with the host app using PackageManager and
getPackageInfo() to confirm that it is gone.

This is fairly easy to set up, but suffers from non-deterministic timing of broadcasts.
The host app can only guess when the broadcast has had enough time to reach all of
the plugins and gather responses. It also forces all of those plugin apps to run (to
respond to the broadcast), which will cause Android to eject other apps from
memory, possibly irritating the user.

Another limitation is that a newly-installed plugin will not respond to a broadcast,
on Android 3.1+, until something manually runs one of that plugin’s components,
such as the user tapping on the plugin’s activity in the launcher. Not only does this
require the plugin to have such an activity (which might not otherwise be needed),
but it means that the plugin is useless until this happens. We will discuss this issue a
bit more later in this chapter.

Scanning with PackageManager

You could skip the broadcast and directly use PackageManager to find plugins. The
benefit here is that the timing is deterministic — you know precisely when you are
done with PackageManager. However, somehow, you will need to know what is and is
not a plugin, in a way that you can determine by information returned from
PackageManager.

If you happen to know the complete list of possible plugins, you could iterate over
that list and use getPackageInfo() to see which ones exist and do not exist.

PLUGIN PATTERNS

1894

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, this reduces your flexibility, as it requires you to know up front the
package names of all possible plugins.

Or, you could use queryIntentActivities(), queryIntentServices(), or
queryBroadcastReceivers(), providing an Intent that identifies some operation a
plugin is obligated to implement, to see what matches are found.

There is also a queryContentProviders(), but as it does not take an Intent, you
would have to iterate over each returned ProviderInfo to try to determine if it is a
ContentProvider representing a plugin.

Alternatively, you could call getInstalledPackages() on PackageManager, to find
out about everything that is installed, then iterate over them looking for something.

Watching Package-Related Broadcasts

If using PackageManager to examine all possible plugins is still too slow, you could
optimize things a bit by watching for ACTION_PACKAGE_ADDED,
ACTION_PACKAGE_REPLACED, and ACTION_PACKAGE_REMOVED broadcasts, to monitor
changes to the mix of installed packages. If a known plugin is removed, you can
remove it from your roster of installed plugins. When packages are added or
replaced, you could use PackageManager and getPackageInfo() to learn about that
specific package, to determine if it represents one of your plugins.

This, however, increases the complexity of your app, as now you need to monitor
these broadcasts and maintain your own roster of available plugins somewhere.

Discovery and Usage of the IPC Endpoints

Given that you know that you have a certain number of plugins, represented by a
certain set of packages, you can work on actually communicating with them, using
any of the available IPC mechanisms. Also, for static data, you have the option of
using manifest metadata or well-known resources to publish that data.

No matter what you settle upon, though, you need to consider the impacts of
changes to your host app, that might require changes to your interaction with
plugins. Everything in this section qualifies as an API that your host app offers to
plugins; changes to that API will require you to consider versioning and backwards
compatibility.

PLUGIN PATTERNS

1895

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Component IPC Options

Your plugin could:

• Have an activity, supporting an agreed-upon Intent structure, that your app
opens as needed

• Have a service, supporting an agreed-upon Intent structure, that your app
sends commands to or binds to as needed

• Have a BroadcastReceiver, supporting an agreed-upon Intent structure,
that your app can send broadcasts to as needed

For any of those, you would use setComponentName() as part of the Intent, to
specifically identify the plugin that you are talking to.

Your plugin could also have a ContentProvider that your host communicates with.
That, however, requires that you somehow find out the appropriate authority to use.
That authority might be obtained by an agreed-upon algorithm based upon the
package name (e.g., the authority is the plugin’s package name plus .PROVIDER). Or,
that authority might be determined by some static data, techniques for which are
described in the next section.

In any of these cases, your host’s plugin model would document the expectations
the host would have of the plugins:

• What Intent extras are supported, what their meanings are, and what the
data types are for the extras’ keys

• What the schema is for the ContentProvider
• Etc.

Your host could also be publishing activities, services, receivers, or providers for the
plugin to use. So, for example, your host could send a command to a plugin’s
IntentService, that turns around and modifies data in your host’s exported
ContentProvider.

What data is transferred between the host and plugin, of course, is up to you. Bear
in mind, though, that IPC cannot handle arbitrary objects. You will need to stick to
primitives and basic collections, framework-supplied Parcelable classes (e.g.,
Bundle), or your own custom Parcelable classes.

PLUGIN PATTERNS

1896

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Static Data Options

Some information that you might need about the plugin is static. In those cases, you
do not need to use IPC to get the data, thereby saving the cost of loading the plugin
into memory just to invoke some component inside of it.

One option for static data is to use manifest metadata. Any <activity>, <service>,
or <receiver> element can have one or more child <meta-data> elements. These
can hold static data that your host app can read in. There are two major flavors of
<meta-data> elements:

• A simple key/value pair, where the key is provided by android:name and the
value is provided by android:value

• A key pointing to a resource ID to some other resource, frequently an XML
resource (i.e., file in res/xml/), providing more details, where the key is in
android:name and the resource ID is android:resource

You will see this approach used in places like app widgets, which use a <meta-data>
element to point to the app widget metadata, which resides in a separate XML
resource.

Your app reads in these values — as literals or identifiers to resources — by
retrieving an ActivityInfo or ServiceInfo object from PackageManager for the
component (e.g., getActivityInfo(), getReceiverInfo(), getServiceInfo()), then
examining the Bundle in the metaData field of that ...Info object.

There is nothing stopping you from requiring your plugins implement certain
resources or assets in agreed-upon paths. You could then access those resources —
or ones from android:resource in a <meta-data> element — via a Context created
from createPackageContext(). createPackageContext() is available on any
Context, such as an Activity or Service. Given the package name of your plugin, it
gives you a Context object that you can use to retrieve resources (getResources())
or assets (getAssets()) much as you do with one of your own contexts.

Versioning

Any time you are providing programmatic access to your app to others, or any time
you are expecting others to provide programmatic access to their apps based upon
your specification, you need to bear in mind that your needs may change over time.
You may want additional extras, or new bits of static data, or new Intent actions.
And while you can change your app to take into account your new requirements:

PLUGIN PATTERNS

1897

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You have no means of forcing third-party developers to update their apps in
lock-step with yours

• You have no means of forcing users to update their plugins and such in lock-
step with updating your host app

Hence, you are going to need to deal with versioning your plugin API and
supporting older API versions, to offer backwards compatibility for not-yet-updated
plugins.

A <meta-data> element is perhaps the easiest way to have plugins declare what API
version they support. This way, you can find out what “language” the plugin speaks
before you try talking to it.

When you then communicate via IPC to the plugins, you will need to take into
account what API version the plugin speaks, and adjust your communications
accordingly. For example, if you are binding to a plugin’s service, you would need to
make sure that you are using the right AIDL, to get the right client-side proxy object,
one that has the methods and parameters that the plugin supports.

Conversely, if you are providing ways for plugins to initiate communications back to
you, you will have to take into account that plugins could be using any outstanding
API version. You might elect to use different Intent actions or provider authorities
to help distinguish the API versions. For example, the plugin sending a command to
your service might use com.suchandso.app.ACTION_PLUGIN.V1 or
com.suchandso.app.ACTION_PLUGIN.V2 in its Intent, so you have the flexibility of
having a single Service handle both of those operations, or splitting them into
separate Service classes if you feel that will help improve maintainability.

On the whole:

• Be careful in what you send to the plugins. If you claim that certain extras
are of certain data types, stick with that, trying to avoid sending other data
types that the plugins might not expect.

• Be generous in what you accept from the plugins, particularly where you are
changing what you accept from version to version of your API. If you
declared that an extra sent to you was originally an int and now is a String,
ideally your new-version code would accept either an int or a String, to help
ease the transition.

• Be slow to discontinue support for old API versions. You might use analytics
or other data collection mechanisms to get a sense for how many devices are
using plugins that speak a particular API version, to give you an idea of how

PLUGIN PATTERNS

1898

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

much grief you will get from users if you drop support for that API version
and therefore disable certain plugins in an upgrade to your app.

Security

Any time you have inter-process communication, you open up security risks. Hence,
intentionally doing IPC means that you intentionally have to consider how best to
secure that IPC, to reduce those risks.

Here are three areas of security for you to consider with your plugin model:

User Safe from Permission Leakage

Your plugins, and perhaps the plugin host, may hold various Android permissions,
like READ_CONTACTS or INTERNET. It is incumbent upon you to make sure that either:

• You do not expose information tied to such permissions through your plugin
model API (either the host talking to a plugin or vice versa) in a way that
other apps could intercept, or

• You ensure that the other party holds the same permission, so that the user
knows that the secured information is moving from point to point

For example, suppose that your host app does not hold READ_CONTACTS, but a plugin
does, specifically to allow the host app to get access to contact information. You
need to make sure that, while the host app can get this contact information from the
plugin, nobody else can.

Ideally, a plugin developer can be confident that, when the plugin sends information
via IPC to the host app, that it is really the host app that the plugin is talking to. If
some other app can pretend to be the host app, and intercept that information, that
other app could potentially use that information to nefarious ends.

Partially, this is an extension of the permission leakage issue described above. It’s
bad enough that a plugin might leak data to a host app that is not authorized for
that data; it is worse if some other app can intercept that data as well.

However, it may be that the data being transferred is not covered by an explicit
Android permission, yet might represent information that the user is expecting to
keep secure. A financial planner host app using plugins to collect a user’s financial
data from various banks and brokerages should be taking steps to ensure that the
plugin data only flows back to the host app, and not to any other apps. This comes

PLUGIN PATTERNS

1899

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

despite the fact that Android does not have an ACCESS_FINANCIAL_DATA permission
as part of the core operating system.

Mostly, this involves having the plugin explicitly state the component that it is
communicating with via IPC, rather than relying upon Android derive that
information via Intent resolution or similar approaches. So, for example, rather
than calling startService() with just an Intent action identifying the host, also set
the ComponentName on the Intent to specifically direct the command to the host
app, not to something else advertising that same Intent action.

If the host and all its plugins are written by the same firm, you can also use
signature-level permissions to restrict access, limiting the IPC to only apps signed by
the same signing key.

Host Safe from Trojans

Conversely, if the host app supplies information to the plugins that might represent
private or secure data, we need to make sure that the user is comfortable with that
data being transferred.

Partially, this involves creating a custom permission that plugins must hold, letting
the user know at the time of installing the plugin that this data will be transferred.

Partially, this is making sure that this data is only delivered to the plugins (and, if
possible, only to the plugins that specifically need this data). Hence, rather than
broadcast Intents — even ones where you require a specific permission be held by
the receiver — consider using other IPC options that are more “point-to-point”, such
as sending commands to a specific service identified by its ComponentName.

Case Study: DashClock
A Googler’s take on an app with a plugin model can be found in DashClock, written
by Roman Nurik. DashClock is open source, making it easy to see how he elected to
implement his plugin model.

What is DashClock?

Android 4.2 added the notion of lockscreen widgets, app widgets that can go on the
lockscreen. DashClock is one such lockscreen widget, designed to replace the
standard clock. But, more importantly, it offers a plugin model, so third-party apps

PLUGIN PATTERNS

1900

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=net.nurik.roman.dashclock
http://code.google.com/p/dashclock/

can provide dynamic data to be displayed by DashClock, without themselves having
to have a lockscreen widget. Similarly, the user can just add DashClock to the
lockscreen, not a whole bunch of individual lockscreen widgets.

Discovery… By the User

DashClock helps users find extensions by linking to the Play Store via the following
URL: http://play.google.com/store/search?q=DashClock+Extension&c=apps.

Anyone publishing a DashClock extension merely needs to describe their app as
having (or being) a DashClock extension, and they will automatically show up when
the user requests to get more extensions from within DashClock’s configuration
activity.

DashClock extensions do not have to be installed via the Play Store, but DashClock
will not directly help improve the “findability” of extensions distributed by other
means.

Discovery… By Your App

At its core, DashClock finds extensions by scanning via PackageManager. Each
extension is obligated to implement a service that advertises an <action> of
com.google.android.apps.dashclock.Extension. DashClock then uses
queryIntentServices() on PackageManager to find these services.

DashClock, however, has the notion of installed versus active extensions. Just
because a user installed some app that happens to implement a DashClock
extension does not necessarily mean that the user wants that app’s content
cluttering up her DashClock lockscreen widget. Instead, the user not only has to
install the app, but tell DashClock to activate that extension. Hence, DashClock has
an activity that shows a list of all installed extensions and allows the user to toggle
them between active and inactive states (plus order them, etc.).

It is conceivable that the user installs a DashClock extension while this extension-
configuration activity is running. Hence, while this activity is running, DashClock
registers a BroadcastReceiver, via registerReceiver(), for the package-
management broadcasts (e.g., ACTION_PACKAGE_ADDED). Upon receipt of the
broadcast, DashClock goes through the original logic to scan using PackageManager
to find available extensions, then updates the list to match any changes (added
extensions, removed extensions, etc.).

PLUGIN PATTERNS

1901

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DashClock also monitors for the many of the same broadcasts via a manifest-
registered receiver, so it knows when extensions are replaced or removed. In those
cases, DashClock needs to determine whether the extension had been active, and if
so, what is now required (e.g., removing the extension from the lockscreen widget
once it is uninstalled).

Discovery and Usage of the IPC Endpoints

The DashClock app, serving as the plugin host, communicates with its plugins in
three main ways:

• Via the aforementioned service, usually implemented as a
DashClockExtension, which allows DashClock to proactively request that
plugins publish updates to their data

• Via an optional “settings activity”, which DashClock links to from the
extension list, so users can configure the behavior of this specific extension

• Via metadata in the <service> element for the DashClockExtension

One of the key pieces of metadata is the protocolVersion, which tells DashClock
what version of the DashClock plugin API the plugin supports.

The plugin turns around and communicates back to DashClock via a service,
exported by DashClock under an agreed-upon action. The extension uses this
service to publish updates to the data that should be shown for this extension in
DashClock’s lockscreen widget, much along the lines of how an AppWidgetProvider
tells the AppWidgetManager to update an app widget.

Security

DashClock defines a custom READ_EXTENSION_DATA permission. Extensions protect
their services by requiring this permission (android:permission =
"com.google.android.apps.dashclock.permission.READ_EXTENSION_DATA"), so
that the user knows about apps seeking to communicate with the extension. Such
apps need to hold the READ_EXTENSION_DATA permission, meaning that the user will
be informed at installation time about the app wishing to speak with DashClock
extensions.

PLUGIN PATTERNS

1902

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Plugin Examples
DashClock shows one way of implementing a plugin model, but it is certainly not
the only possible implementation. The following sections review some other
approaches, to contrast with DashClock’s approach.

Plugins by Remote

The biggest challenge with plugins comes at the UI level. While there are many ways
to integrate applications for background work (remote services, broadcast Intents,
etc.), blending user interfaces is a problem. It is unsafe to have an application
execute some plugin’s code in its own process, as the plugin may be malicious in
nature. Yet, the plugin cannot directly add widgets to the host app’s activities any
other way.

The key word in that last sentence, of course, is “directly”.

There is an indirect way of having one app supply UI components to another app, in
the form of the RemoteViews object. This is used by app widgets and custom
Notifications, covered elsewhere in this book.

The plugin can create a RemoteViews structure describing the desired UI and deliver
that RemoteViews to the host app, which can then render that RemoteViews wherever
it is needed.

This section will outline some of the mechanics behind creating such a UI-centric
plugin mechanism.

RemoteViews, Beyond App Widgets

RemoteViews are used in a few other places besides app widgets, such as custom
Notification views. However, you can use RemoteViews yourself easily enough. You
create one as you would for any other circumstance, like an app widget. To display
one, you can use the apply() method on the RemoteViews object. The apply()
method takes two parameters:

1. Your Context, typically your Activity
2. The container into which the contents of the RemoteViews will eventually

reside

PLUGIN PATTERNS

1903

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The apply() method returns the View specified by the rules poured into the
RemoteViews object… but it does not add it to the container specified in that second
parameter. Hence, apply() is a bit like calling the three-parameter inflate() on a
LayoutInflater and passing false for the third parameter — you are still responsible
for actually adding the View to the parent when appropriate.

And that’s pretty much it.

Since a RemoteViews object implements the Parcelable interface, you can store a
RemoteViews in an Intent extra, a Bundle, or anything else that works with
Parcelable (e.g., AIDL-defined remote service interfaces). This is what makes
RemoteViews so valuable – you can pass one to another process, which can apply()
it to its own UI.

As a result, RemoteViews are a secure way for a plugin to contribute to some host
activity’s UI. In fact, you can think of an app widget as being a “plugin” for the UI of
the home screen.

Thinking About Plugins

So, what does our plugin implementation need?

You have one application (the host) that will be able to display the RemoteViews
supplied by other applications (the plugins). Somehow, the host will need to know:

1. What plugins are installed
2. How to get RemoteViews from the plugins to the host
3. Whether there are plugins that are installed that the user does not want

(e.g., app widgets not added to the home screen) or if the user wants to see
multiple RemoteViews from the same plugin (e.g., multiple instances of an
app widget)

As is discussed earlier in this chapter, there are any number of ways of implementing
these. The sample shown below will use a broadcast Intent to find plugins and
another broadcast Intent to retrieve RemoteViews on demand, while assuming that
each plugin will deliver exactly one RemoteViews.

Similarly, the plugin will need to know:

1. How it will be activated by the host

PLUGIN PATTERNS

1904

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. How it is supposed to deliver RemoteViews to the host (broadcast Intent?
remote service API? something else?)

3. When it is supposed to deliver RemoteViews to the host (pulled by the host?
pushed to the host? both?)

4. How many distinct instances of the plugin does the user want (e.g., multiple
instances of the app widget), and what is the configuration data for each
instance that makes one distinct from the next?

Let’s take a look at the RemoteViews/Host and RemoteViews/Plugin sample
applications. These are two apps, each in their own package, implementing a host/
plugin relationship, with RemoteViews being generated by the plugin and displayed
by the host.

In this sample, the plugin will respond to a broadcast Intent from the host with a
broadcast of its own, signaling that it wishes to serve as a plugin. When the host
sends a broadcast to retrieve the RemoteViews, the plugin will send a broadcast in
response that contains the RemoteViews. And, to keep things simple, each plugin
will only have one instance (and we will only have one plugin).

Finding Available Plugins

Our host is a simple activity containing a TextView as its only content. The
expectation is that when the user chooses a Refresh options menu item, we will pull
a RemoteViews from the plugin and display it.

That, of course, assumes that we have a plugin.

To find plugins, we will send a broadcast, with a custom action,
ACTION_CALL_FOR_PLUGINS. Any plugin implementation would need a
BroadcastReceiver set up in the manifest to respond to such an action.

To keep things simple, the host will only have one plugin. The plugin itself will be
represented by a ComponentName object, identifying the implementation of the
plugin, held in a pluginCN data member:

privateprivate ComponentName pluginCN=nullnull;

In onResume(), if we do not have a plugin yet, we send the broadcast to try to find
one:

@Override
publicpublic void onResume() {

PLUGIN PATTERNS

1905

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Host
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Host
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Plugin
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Plugin

supersuper.onResume();

IntentFilter pluginFilter=newnew IntentFilter();

pluginFilter.addAction(ACTION_REGISTER_PLUGIN);
pluginFilter.addAction(ACTION_DELIVER_CONTENT);

registerReceiver(plugin, pluginFilter, PERM_ACT_AS_PLUGIN, nullnull);

ifif (pluginCN == nullnull) {
sendBroadcast(newnew Intent(ACTION_CALL_FOR_PLUGINS));

}
}

Responding to the Call for Plugins

Over in our plugin implementation, we do indeed have a BroadcastReceiver —
cunningly named Plugin — with a manifest entry set up to respond to our
ACTION_CALL_FOR_PLUGINS broadcast.

What the host wants in response is to receive a broadcast from the plugin, with an
action of ACTION_REGISTER_PLUGIN, and an extra of EXTRA_COMPONENT, containing the
ComponentName of the BroadcastReceiver that is the plugin implementation. So,
when Plugin receives an ACTION_CALL_FOR_PLUGINS broadcast, it does just that:

packagepackage com.commonsware.android.rv.plugin;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass PluginPlugin extendsextends BroadcastReceiver {
publicpublic staticstatic finalfinal String ACTION_CALL_FOR_PLUGINS=

"com.commonsware.android.rv.host.CALL_FOR_PLUGINS";
publicpublic staticstatic finalfinal String ACTION_REGISTER_PLUGIN=

"com.commonsware.android.rv.host.REGISTER_PLUGIN";
publicpublic staticstatic finalfinal String ACTION_CALL_FOR_CONTENT=

"com.commonsware.android.rv.host.CALL_FOR_CONTENT";
publicpublic staticstatic finalfinal String ACTION_DELIVER_CONTENT=

"com.commonsware.android.rv.host.DELIVER_CONTENT";
publicpublic staticstatic finalfinal String EXTRA_COMPONENT="component";
publicpublic staticstatic finalfinal String EXTRA_CONTENT="content";
privateprivate staticstatic finalfinal String HOST_PACKAGE="com.commonsware.android.rv.host";

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (ACTION_CALL_FOR_PLUGINS.equals(i.getAction())) {
Intent registration=newnew Intent(ACTION_REGISTER_PLUGIN);

PLUGIN PATTERNS

1906

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

registration.setPackage(HOST_PACKAGE);
registration.putExtra(EXTRA_COMPONENT,

newnew ComponentName(ctxt, getClass()));

ctxt.sendBroadcast(registration);
}
elseelse if (ACTION_CALL_FOR_CONTENT.equals(i.getAction())) {

RemoteViews rv=
newnew RemoteViews(ctxt.getPackageName(), R.layout.plugin);

Intent update=newnew Intent(ACTION_DELIVER_CONTENT);

update.setPackage(HOST_PACKAGE);
update.putExtra(EXTRA_CONTENT, rv);
ctxt.sendBroadcast(update);

}
}

}

For added security, we use setPackage() in the plugin, so the
ACTION_REGISTER_PLUGIN broadcast can only be received by the host.

The host activity needs to receive ACTION_REGISTER_PLUGIN broadcasts. Hence, it has
a BroadcastReceiver implementation, in the plugin data member, that it registers
for ACTION_REGISTER_PLUGIN in onResume(). The plugin BroadcastReceiver, upon
receiving an ACTION_REGISTER_PLUGIN broadcast, grabs the ComponentName out of
the EXTRA_COMPONENT extra and stores it in pluginCN:

privateprivate BroadcastReceiver plugin=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (ACTION_REGISTER_PLUGIN.equals(i.getAction())) {
pluginCN=(ComponentName)i.getParcelableExtra(EXTRA_COMPONENT);

}
elseelse if (ACTION_DELIVER_CONTENT.equals(i.getAction())) {

RemoteViews rv=(RemoteViews)i.getParcelableExtra(EXTRA_CONTENT);
ViewGroup frame=(ViewGroup)findViewById(android.R.id.content);

frame.removeAllViews();

View pluginView=rv.apply(RemoteViewsHostActivity.this, frame);

frame.addView(pluginView);
}

}
};

At this point, we wait for the user to click the Refresh options menu item.

PLUGIN PATTERNS

1907

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Requesting RemoteViews

When the user does indeed choose Refresh, we call a refreshPlugin() method on
the host activity:

privateprivate void refreshPlugin() {
Intent call=newnew Intent(ACTION_CALL_FOR_CONTENT);

call.setComponent(pluginCN);
sendBroadcast(call);

}

Here, we send an ACTION_CALL_FOR_CONTENT broadcast, with the target component
set to be the plugin implementation, as identified by its ComponentName. This
ensures that this broadcast will only go to that plugin app and nobody else.

Responding with RemoteViews

Our Plugin is also registered in the manifest to respond to
ACTION_CALL_FOR_CONTENT. So, when that broadcast arrives, it can create the
RemoteViews in response, sending it out via an ACTION_DELIVER_CONTENT broadcast
back to the host. Once again, we use setPackage() to restrict the broadcast to be
the host’s package. The broadcast also has the RemoteViews tucked in an
EXTRA_CONTENT extra.

Our host activity registered the plugin BroadcastReceiver for
ACTION_DELIVER_CONTENT as well. So, when that broadcast arrives, it can utilize the
RemoteViews. We find the ViewGroup that is the root of our content
(android.R.id.content), wipe out whatever is in it now, apply() the RemoteViews
to that ViewGroup, and add the resulting View to the ViewGroup. This has the net
effect of getting rid of our original TextView content, replacing it with whatever the
plugin poured into the RemoteViews. Or, if the user chooses Refresh again, the older
RemoteViews-generated content is replaced with fresh content.

Dealing with Android 3.1+

To test this, install the Host application, followed by the Plugin application. On
Android 3.0 and older, running the Host and choosing the Refresh options menu
item will change the display from its original state to the one with the plugin’s
RemoteViews.

However, that will not work right away on Android 3.1 and higher.

PLUGIN PATTERNS

1908

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On these versions of Android, applications are installed into a “stopped” state, where
no BroadcastReceiver in the manifest will work, until the user manually runs the
application. The simplest way to do that is via an activity. So, the Plugin project has
a trivial activity that just displays a Toast and exits:

packagepackage com.commonsware.android.rv.plugin;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass PluginActivationActivityPluginActivationActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

Toast.makeText(thisthis, R.string.activated, Toast.LENGTH_LONG).show();
finish();

}
}

You will need to run this activity on Android 3.1 and higher first, then run the Host
project’s activity, to get the plugin to work.

If you happen to install these on an Android 3.0 or older device, though, you may
wonder if the author has lost his marbles. That is because you will not see any
activity associated with the Plugin application.

Since the author has not owned marbles in a few decades, clearly there must be
some other answer. In this case, we use a variation of a trick pointed out by Daniel
Lew.

Our <activity> element in the manifest has an android:enabled attribute. A
disabled activity does not show up in the launcher. But rather than have
android:enabled specifically tied to true or false in the manifest, it references a
boolean resource:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.rv.plugin"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="7"/>/>

<uses-permission<uses-permission android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"/>/>

PLUGIN PATTERNS

1909

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver

android:name="Plugin"
android:permission="com.commonsware.android.rv.host.ACT_AS_HOST">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_PLUGINS"/>/>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_CONTENT"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

<activity<activity
android:name="PluginActivationActivity"
android:enabled="@bool/i_has_needs_activity"
android:excludeFromRecents="true"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

In res/values/bools.xml, we define that boolean resource to be false, meaning the
activity will not appear in the launcher:

<resources><resources>

<bool<bool name="i_has_needs_activity">>false</bool></bool>

</resources></resources>

But, in res/values-v12/bools.xml, we define that boolean resource to be true,
causing the activity to appear on Android 3.1 and higher:

<resources><resources>

<bool<bool name="i_has_needs_activity">>true</bool></bool>

</resources></resources>

This way, our extraneous activity does not clutter up older devices where it is not
needed. Mr. Lew’s blog post on this subject points out that this trick can be used to
have different implementations of an app widget for different Android versions (e.g.,
one that uses a ListView for API Level 11 and higher, plus one that does not for older
devices).

PLUGIN PATTERNS

1910

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://daniel-codes.blogspot.com/2012/01/another-app-widget-compatibility-trick.html

The Permission Scheme

Another thing that these sample projects use are custom permissions, to help with
security.

To serve as a plugin host, you must hold the ACTS_AS_HOST permission. To serve as a
plugin implementation, you must hold the ACTS_AS_PLUGIN permission. These are
defined in the Host project’s manifest:

<permission<permission
android:name="com.commonsware.android.rv.host.ACT_AS_HOST"
android:description="@string/host_desc"
android:label="@string/host_label">>

</permission></permission>
<permission<permission

android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"
android:description="@string/plugin_desc"
android:label="@string/plugin_label">>

</permission></permission>

Each application then has its appropriate <uses-permission> element for the role
that it plays, such as the Plugin holding the ACTS_AS_PLUGIN permission:

<uses-permission<uses-permission android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"/>/>

The BroadcastReceiver defined by the Plugin project has, in its <receiver>
element, the android:permission attribute, indicating that whoever sends a
broadcast to this receiver must holds ACTS_AS_HOST:

<receiver<receiver
android:name="Plugin"
android:permission="com.commonsware.android.rv.host.ACT_AS_HOST">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_PLUGINS"/>/>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_CONTENT"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

Similarly, the BroadcastReceiver defined dynamically by the host activity uses a
version of registerReceiver() that takes the permission the sender must hold:

registerReceiver(plugin, pluginFilter, PERM_ACT_AS_PLUGIN, nullnull);

That permission is defined in a static data member:

publicpublic staticstatic finalfinal String PERM_ACT_AS_PLUGIN=
"com.commonsware.android.rv.host.ACT_AS_PLUGIN";

PLUGIN PATTERNS

1911

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This way, the user is informed about the host/plugin relationship and can make
appropriate decisions when they install plugins.

Note, though, that for this to work, the host application must be installed first, to
define the custom permissions. If a plugin is installed before the host, there is no
error, but the plugin will not be granted the as-yet-undefined custom permissions,
and so the plugin will not work. The user would have to uninstall and reinstall the
plugin after installing the host to fix this problem.

Other Plugin Features and Issues

It is possible for the apply() method on RemoteViews to throw a RuntimeException.
For example, the RemoteViews might contain a reference to a widget ID that does
not exist within the inflated views of the RemoteViews itself. Since apply() does not
throw a checked exception, it is easy to do what we did in the sample app and
assume apply() will succeed, but it very well may not. A robust implementation of
this plugin system would wrap the apply() call in an exception handler that would
do something useful if the plugin’s RemoteViews has a bug.

You need to be a bit careful to make sure that a plugin can only update itself. The
sample app assumes that the only thing that will send an ACTION_DELIVER_CONTENT
broadcast to it will be the plugin, but that is not necessarily the case. In principle,
anything that holds the ACTS_AS_PLUGIN permission could send an
ACTION_DELIVER_CONTENT to the host, and thereby specify what the RemoteViews are.
A robust plugin system would have some sort of shared secret, such as an identifier,
between the host and the plugin, so another component cannot readily masquerade
as being the plugin itself.

ContentProvider Plugins

Another way to extend your application at runtime is via plugins implemented via
the ContentProvider framework. You could create new ContentProvider
implementations that offer up data, perhaps using a consistent schema. Then, you
could find those providers via a naming convention (e.g., for a main application with
a package of com.foo.abc, your plugin apps would be com.foo.abc.plugin.*) and
PackageManager, perhaps using a provider Uri naming convention to allow the host
to know how to query the plugin.

PLUGIN PATTERNS

1912

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, there are other ways of employing a ContentProvider to help as a plugin,
and this section explores one specific scenario: reducing the host app’s permission
requirements.

The Problem: Permission Creep

At the moment, for standard versions of Android, apps cannot request “conditional”
or “optional” permissions, that the user could elect to opt out of. Instead, apps must
request in their manifest all possible permissions that they could need. This is
considered by many to be a significant limitation, but Google has stated repeatedly
that they are not considering alternative strategies.

The net effect, though, is that an app often times needs a lot of permissions, or
needs to add new permissions (requiring existing users to agree to the new
permission list). Such lists of permissions can dissuade potential users from
installing the app in the first place.

However, even though Android does not provide a simple and clean way for users to
opt into (or out of) certain permissions for certain apps, plugins can offer a similar
model. The base app can require some permissions for some features, with other
features (and their respective permissions) added via plugins. Users can elect to
install the plugins and agree to those permissions, or abandon or never install the
plugins in the first place.

The hassle, of course, is in implementing the plugin APK and connecting to it from
the main app. The plugin needs to have all the functionality that must directly use
classes and methods secured by the permission. This can increase the complexity in
maintaining the overall app.

A Solution: ContentProvider Proxies

Some permissions exist primarily to protect a ContentProvider, such as
READ_CONTACTS and WRITE_CONTACTS for the ContactsContract provider.

The nice thing about the ContentProvider framework is that it is simply a contract.
You use a ContentResolver and some magic values (Uri, “projection” of columns to
return, etc.), and you get results. In fact, you can even change some of those magic
values – any Uri supporting the same columns could be used with all the same client
Java code, just by changing the Uri itself.

PLUGIN PATTERNS

1913

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That allows us to create a proxy for ContentProvider. The proxy APK will hold the
permission and call the real ContentProvider as needed. The proxy APK will expose
its own ContentProvider, with a different Uri. Done properly — such that only the
host app can use the proxy — the proxy will isolate the permission(s) for the real
ContentProvider in the plugin. A ContactsContract proxy, for example, could hold
READ_CONTACTS and WRITE_CONTACTS, proxying requests on behalf of a main app that
lacks those permissions.

To secure the proxy, we need to ensure that only our apps can use the proxy, not
anyone else’s apps. Otherwise, those third-party apps could get at, say, contacts
without the READ_CONTACTS permission.

The simplest way to accomplish this is to use a signature-level custom permission.

Any app can declare a new permission via the <permission> element in the
manifest. Normally, any app can request to hold this permission via
<uses-permission>, and the user will be able to grant or deny this request at install
time, just like any system-defined permission.

However, it is possible to add an android:protectionLevel="signature" attribute
to the <permission> element. In this case, only apps signed by the same signing key
will be able to request the permission — everyone else is automatically denied.
Furthermore, apps signed by the same signing key will automatically get the
permission without the user having to approve it.

So, you can have the proxy require a signature-level custom permission, thereby
limiting possible consumers of the proxy to be signed by the same signing key.

Let’s look at a pair of projects that create and consume a proxy for the CallLog
ContentProvider. These projects are located in the Introspection/CPProxy
directory and are named Provider and Consumer, respectively.

Note that this sample works only on API Level 11 and higher, due to the consumer’s
use of the native implementation of the Loader framework.

Provider

Most of the logic for our provider proxy can be found in the AbstractCPProxy base
class. It implements the mandatory methods for the ContentProvider contract —
such as insert() — and simply turns around and forwards those requests along to
another provider:

PLUGIN PATTERNS

1914

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Consumer
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Consumer

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
checkTainted();

Cursor result=
getContext().getContentResolver().query(convertUri(uri),

projection, selection,
selectionArgs,
sortOrder);

returnreturn(newnew CrossProcessCursorWrapper(result));
}

@Override
publicpublic Uri insert(Uri uri, ContentValues values) {

checkTainted();

returnreturn(getContext().getContentResolver().insert(convertUri(uri),
values));

}

@Override
publicpublic int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
checkTainted();

returnreturn(getContext().getContentResolver().update(convertUri(uri),
values, selection,
selectionArgs));

}

@Override
publicpublic int delete(Uri uri, String selection, String[] selectionArgs) {

checkTainted();

returnreturn(getContext().getContentResolver().delete(convertUri(uri),
selection,
selectionArgs));

}

@Override
publicpublic String getType(Uri uri) {

checkTainted();

returnreturn(getContext().getContentResolver().getType(convertUri(uri)));
}

The checkTainted() calls are part of our confirming that our custom permission is
OK, and that is covered in the chapter on advanced permissions. For the purposes of
this chapter, just ignore them (along with the onCreate() method not shown here).

PLUGIN PATTERNS

1915

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It is up to a subclass of AbstractCPProxy to implement the convertUri() method,
which takes the Uri supplied by the consumer and transforms it into the proper Uri
to use for making the real request. In this case, our subclass is CallLogProxy:

packagepackage com.commonsware.android.cpproxy.provider;

importimport android.content.ContentUrisandroid.content.ContentUris;
importimport android.net.Uriandroid.net.Uri;
importimport android.provider.CallLogandroid.provider.CallLog;

publicpublic classclass CallLogProxyCallLogProxy extendsextends AbstractCPProxy {
protectedprotected Uri convertUri(Uri uri) {

long id=ContentUris.parseId(uri);

ifif (id >= 0) {
returnreturn(ContentUris.withAppendedId(CallLog.Calls.CONTENT_URI, id));

}

returnreturn(CallLog.Calls.CONTENT_URI);
}

}

Here, we grab the instance ID off the end of the Uri (if it exists) and generate a new
Uri based on CallLog.CONTENT_URI, indicating that we want to forward our requests
to the CallLog.

The biggest complexity of the standard CRUD ContentProvider methods comes
with query(). The Cursor returned by query() must implement the
CrossProcessCursor interface. The SQLiteCursor implementation supports this
interface, which is why typical providers do not worry about this requirement.
However, the Cursor returned by query() on ContentResolver is not necessarily a
CrossProcessCursor. Hence, we need to wrap it in a CursorWrapper that does
implement CrossProcessCursor:

privateprivate staticstatic finalfinal String PREFS_TAINTED="tainted";
privateprivate boolean tainted=falsefalse;

publicpublic AbstractCPProxy() {
supersuper();

}

@Override
publicpublic boolean onCreate() {

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(getContext());

The resulting CrossProcessCursorWrapper, as originally shown in a StackOverflow
answer, looks like this:

PLUGIN PATTERNS

1916

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/5243978/115145
http://stackoverflow.com/a/5243978/115145

checkTainted();

Cursor result=
getContext().getContentResolver().query(convertUri(uri),

projection, selection,
selectionArgs,
sortOrder);

returnreturn(newnew CrossProcessCursorWrapper(result));
}

@Override
publicpublic Uri insert(Uri uri, ContentValues values) {

checkTainted();

returnreturn(getContext().getContentResolver().insert(convertUri(uri),
values));

}

@Override
publicpublic int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
checkTainted();

returnreturn(getContext().getContentResolver().update(convertUri(uri),
values, selection,
selectionArgs));

}

@Override
publicpublic int delete(Uri uri, String selection, String[] selectionArgs) {

checkTainted();

returnreturn(getContext().getContentResolver().delete(convertUri(uri),
selection,
selectionArgs));

}

@Override
publicpublic String getType(Uri uri) {

checkTainted();

returnreturn(getContext().getContentResolver().getType(convertUri(uri)));
}

privateprivate void checkTainted() {
ifif (tainted) {

throwthrow newnew RuntimeException(getContext().getString(R.string.tainted_abort));
}

}

// following from
// http://stackoverflow.com/a/5243978/115145

PLUGIN PATTERNS

1917

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass CrossProcessCursorWrapperCrossProcessCursorWrapper extendsextends CursorWrapper
implementsimplements CrossProcessCursor {

publicpublic CrossProcessCursorWrapper(Cursor cursor) {

Note that this implementation has been largely untested by this book’s author,
though it appears to work.

The manifest for this project has three items of note:

• It has the <uses-permission> element for READ_CONTACTS, while our
consumer project will not

• It has a <permission> element, defining a custom
com.commonsware.android.cpproxy.PLUGIN permission that has signature-
level protection

• It has our <provider>, requiring that custom permission, and declaring its
authority to be com.commonsware.android.cpproxy.CALL_LOG

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cpproxy.provider"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>

<permission<permission
android:name="com.commonsware.android.cpproxy.PLUGIN"
android:protectionLevel="signature">>

</permission></permission>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider

android:name=".CallLogProxy"
android:authorities="com.commonsware.android.cpproxy.CALL_LOG"
android:permission="com.commonsware.android.cpproxy.PLUGIN">>

</provider></provider>
</application></application>

</manifest></manifest>

Note that a complete AbstractCPProxy implementation should forward along all the
other methods as well (e.g., call()).

PLUGIN PATTERNS

1918

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Consumer

Our Consumer project is nearly identical to the CalendarContract sample from
elsewhere in this book.

However, instead of the READ_CONTACTS permission, we declare that we need the
com.commonsware.android.cpproxy.PLUGIN permission instead:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cpproxy.consumer"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="11"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="com.commonsware.android.cpproxy.PLUGIN"/>/>

<permission<permission
android:name="com.commonsware.android.cpproxy.PLUGIN"
android:protectionLevel="signature">>

</permission></permission>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".CPProxyConsumerActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Also, our CONTENT_URI is no longer the one found on CallLog, but rather one
identifying our proxy:

privateprivate staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.cpproxy.CALL_LOG");

And there are minor changes because we are querying CallLog (indirectly) rather
than CalendarContract, such as a change in the columns for our projection:

PLUGIN PATTERNS

1919

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate staticstatic finalfinal String[] PROJECTION=newnew String[] {
CallLog.Calls._ID, CallLog.Calls.NUMBER, CallLog.Calls.DATE };

Otherwise, the consumer projects are the same. The difference is that our consumer
project does not need the READ_CONTACTS permission the same way that the original
needed the READ_CALENDAR permission.

In this case, the consumer project depends entirely upon the existence of the plugin
— otherwise, the consumer project has no value. Hence, in this case, going the
plugin route is silly. But an application that could use the CallLog but does not
depend upon it could use this approach to isolate the READ_CONTACTS requirement in
a plugin, so users could elect to install the plugin or not, and the main app would
not need to request READ_CONTACTS and add to the roster of permissions the user
must agree to up front.

Note that, in principle, the consumer should contain some of the same defenses
against custom permission changes that the proxy does (in the form of those
checkTainted() calls). This is covered in greater detail in the chapter on advanced
permissions.

Limitations of the Approach

There will be additional overhead in using the proxy, which will hamper
performance. Ideally, this plugin mechanism is only used for features that need light
use of the protected ContentProvider, so the overhead will not be a burden to the
user.

PLUGIN PATTERNS

1920

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PackageManager Tricks

PackageManager is your primary means of introspection at the component level, to
determine what else is installed on the device and what components they export
(activities, etc.). As such, there are many ways you can use PackageManager to
determine if something you want is possible or not, so you can modify your behavior
accordingly (e.g., disable action bar items that are not possible).

This chapter will outline some ways you can use PackageManager to find out what
components are available to you on a device.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Asking Around
The ways to find out whether there is an activity that will respond to a given Intent
are by means of queryIntentActivityOptions() and the somewhat simpler
queryIntentActivities().

The queryIntentActivityOptions() method takes the caller ComponentName, the
“specifics” array of Intent instances, the overall Intent representing the actions you
are seeking, and the set of flags. It returns a List of Intent instances matching the
stated criteria, with the “specifics” ones first.

1921

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you would like to offer alternative actions to users, but by means other than
addIntentOptions(), you could call queryIntentActivityOptions(), get the Intent
instances, then use them to populate some other user interface (e.g., a toolbar).

A simpler version of this method, queryIntentActivities(), is used by the
Introspection/Launchalot sample application. This presents a “launcher” — an
activity that starts other activities — but uses a ListView rather than a grid like the
Android default home screen uses.

Here is the Java code for Launchalot itself:

packagepackage com.commonsware.android.launchalot;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.ActivityInfoandroid.content.pm.ActivityInfo;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;

publicpublic classclass LaunchalotLaunchalot extendsextends ListActivity {
AppAdapter adapter=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

PackageManager pm=getPackageManager();
Intent main=newnew Intent(Intent.ACTION_MAIN, nullnull);

main.addCategory(Intent.CATEGORY_LAUNCHER);

List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);

Collections.sort(launchables,
newnew ResolveInfo.DisplayNameComparator(pm));

adapter=newnew AppAdapter(pm, launchables);
setListAdapter(adapter);

}

PACKAGEMANAGER TRICKS

1922

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Launchalot
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Launchalot

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
ResolveInfo launchable=adapter.getItem(position);
ActivityInfo activity=launchable.activityInfo;
ComponentName name=newnew ComponentName(activity.applicationInfo.packageName,

activity.name);
Intent i=newnew Intent(Intent.ACTION_MAIN);

i.addCategory(Intent.CATEGORY_LAUNCHER);
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
i.setComponent(name);

startActivity(i);
}

classclass AppAdapterAppAdapter extendsextends ArrayAdapter<ResolveInfo> {
privateprivate PackageManager pm=nullnull;

AppAdapter(PackageManager pm, List<ResolveInfo> apps) {
supersuper(Launchalot.this, R.layout.row, apps);
thisthis.pm=pm;

}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
ifif (convertView==nullnull) {

convertView=newView(parent);
}

bindView(position, convertView);

returnreturn(convertView);
}

privateprivate View newView(ViewGroup parent) {
returnreturn(getLayoutInflater().inflate(R.layout.row, parent, falsefalse));

}

privateprivate void bindView(int position, View row) {
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(getItem(position).loadLabel(pm));

ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageDrawable(getItem(position).loadIcon(pm));
}

}
}

In onCreate(), we:

PACKAGEMANAGER TRICKS

1923

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Get a PackageManager object via getPackageManager()
2. Create an Intent for ACTION_MAIN in CATEGORY_LAUNCHER, which identifies

activities that wish to be considered “launchable”
3. Call queryIntentActivities() to get a List of ResolveInfo objects, each

one representing one launchable activity
4. Sort those ResolveInfo objects via a ResolveInfo.DisplayNameComparator

instance
5. Pour them into a custom AppAdapter and set that to be the contents of our

ListView

AppAdapter is an ArrayAdapter subclass that maps the icon and name of the
launchable Activity to a row in the ListView, using a custom row layout.

Finally, in onListItemClick(), we construct an Intent that will launch the clicked-
upon Activity, given the information from the corresponding ResolveInfo object.
Not only do we need to populate the Intent with ACTION_MAIN and
CATEGORY_LAUNCHER, but we also need to set the component to be the desired
Activity. We also set FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED flags, following Android’s own launcher
implementation from the Home sample project. Finally, we call startActivity()
with that Intent, which opens up the activity selected by the user.

The result is a simple list of launchable activities:

PACKAGEMANAGER TRICKS

1924

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 502: The Launchalot sample application

There is also a resolveActivity() method that takes a template Intent, as do
queryIntentActivities() and queryIntentActivityOptions(). However,
resolveActivity() returns the single best match, rather than a list.

Preferred Activities
Users, when presented with a default activity chooser, usually have the option to
check a CheckBox indicating that they want to make their next choice be the default
for this action for now on. The next time they do whatever they did to bring up the
chooser, it should go straight to this default. This is known in the system as the
“preferred activity” for an Intent structure, and is stored in the system as a set of
pairs of IntentFilter objects and the corresponding ComponentName of the preferred
activity.

To find out what the preferred activities are on a given device, you can ask
PackageManager to getPreferredActivities(). You pass in a List<IntentFilter>
and a List<ComponentName>, and Android fills in those lists with the preferred
activity information.

PACKAGEMANAGER TRICKS

1925

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see this in action, take a look at the Introspection/PrefActivities sample
application. This simply loads all of the information into a ListView, using
android.R.layout.simple_list_item_2 as a row layout for a title-and-description
pattern.

The PackageManager logic is confined to onCreate():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

PackageManager mgr=getPackageManager();

mgr.getPreferredActivities(filters, names, nullnull);
setListAdapter(newnew IntentFilterAdapter());

}

In this case, the two lists are data members of the activity:

ArrayList<IntentFilter> filters=newnew ArrayList<IntentFilter>();
ArrayList<ComponentName> names=newnew ArrayList<ComponentName>();

Most of the logic is in formatting the ListView contents. IntentFilter,
unfortunately, does not come with a method that gives us a human-readable dump
of its definition. As a result, we need to roll that ourselves. Compounding the
problem is that IntentFilter tends to return Iterator objects for its collections
(e.g., roster of actions), rather than something Iterable. The activity leverages an
Iterator-to-Iterable wrapper culled from a StackOverflow answer to help with
this. The IntentFilterAdapter and helper code looks like this:

// from http://stackoverflow.com/a/8555153/115145

publicpublic staticstatic <T> Iterable<T> in(finalfinal Iterator<T> iterator) {
classclass SingleUseIterableSingleUseIterable implementsimplements Iterable<T> {

privateprivate boolean used=falsefalse;

@Override
publicpublic Iterator<T> iterator() {

ifif (used) {
throwthrow newnew IllegalStateException("Already invoked");

}
used=truetrue;
returnreturn iterator;

}
}
returnreturn newnew SingleUseIterable();

}

PACKAGEMANAGER TRICKS

1926

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/PrefActivities
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/PrefActivities
http://stackoverflow.com/a/8555153/115145

classclass IntentFilterAdapterIntentFilterAdapter extendsextends ArrayAdapter<IntentFilter> {
IntentFilterAdapter() {

supersuper(PreferredActivitiesDemoActivity.this,
android.R.layout.simple_list_item_2, android.R.id.text1,
filters);

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
TextView filter=(TextView)row.findViewById(android.R.id.text1);
TextView name=(TextView)row.findViewById(android.R.id.text2);

filter.setText(buildTitle(getItem(position)));
name.setText(names.get(position).getClassName());

returnreturn(row);
}

String buildTitle(IntentFilter filter) {
StringBuilder buf=newnew StringBuilder();
boolean first=truetrue;

ifif (filter.countActions() > 0) {
forfor (String action : in(filter.actionsIterator())) {

ifif (first) {
first=falsefalse;

}
elseelse {

buf.append('/');
}

buf.append(action.replaceAll("android.intent.action.", ""));
}

}

ifif (filter.countDataTypes() > 0) {
first=truetrue;

forfor (String type : in(filter.typesIterator())) {
ifif (first) {

buf.append(" : ");
first=falsefalse;

}
elseelse {

buf.append('|');
}

buf.append(type);
}

}

ifif (filter.countDataSchemes() > 0) {
buf.append(" : ");

PACKAGEMANAGER TRICKS

1927

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

buf.append(filter.getDataScheme(0));

ifif (filter.countDataSchemes() > 1) {
buf.append(" (other schemes)");

}
}

ifif (filter.countDataPaths() > 0) {
buf.append(" : ");
buf.append(filter.getDataPath(0));

ifif (filter.countDataPaths() > 1) {
buf.append(" (other paths)");

}
}

returnreturn(buf.toString());
}

}

The resulting activity shows a simple description of the IntentFilter along with the
class name of the corresponding activity in each row:

Figure 503: Preferred Activities on a Stock HTC One S

Another way to think about preferred activities is to determine what specific activity
will handle a startActivity() call on some Intent. If there is only one alternative,

PACKAGEMANAGER TRICKS

1928

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

or the user chose a preferred activity, that activity should handle the Intent.
Otherwise, the activity handling the Intent should be one implementing a chooser.
The resolveActivity() method on PackageManager can let us know what will
handle the Intent.

To examine what resolveActivity() returns, take a look at the Introspection/
Resolver sample application.

The activity — which uses Theme.NoDisplay and so has no UI of its own — is fairly
short:

packagepackage com.commonsware.android.resolver;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass ResolveActivityDemoActivityResolveActivityDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

PackageManager mgr=getPackageManager();
Intent i=

newnew Intent(Intent.ACTION_VIEW,
Uri.parse("http://commonsware.com"));

ResolveInfo ri=
mgr.resolveActivity(i, PackageManager.MATCH_DEFAULT_ONLY);

Toast.makeText(thisthis, ri.loadLabel(mgr), Toast.LENGTH_LONG).show();

startActivity(i);
finish();

}
}

We get a PackageManager, create an Intent to test, and pass the Intent to
resolveActivity(). We include MATCH_DEFAULT_ONLY so we only get activities that
have CATEGORY_DEFAULT in their <intent-filter> elements. We then use
loadLabel() on the resulting ResolveInfo object to get the display name of the
activity, toss that in a Toast, and invoke startActivity() on the Intent to confirm
the results.

PACKAGEMANAGER TRICKS

1929

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver

On a device with only one option, or with a default chosen, the Toast will show the
name of the preferred activity (e.g., Browser). On most devices with more than one
option, the startActivity() call will display a chooser, and the Toast will show the
display name of the chooser (e.g., “Android System”).

However, on some devices — notably newer models from HTC distributed in the US
— resolveActivity() indicates that HTCLinkifyDispatcher is the one that will
handle ACTION_VIEW on a URL… even if there is more than one browser installed and
no default has been specified. This is part of a workaround that HTC added in 2012
to help deal with a patent dispute with Apple.

Middle Management
The PackageManager class offers much more than merely queryIntentActivities()
and queryIntentActivityOptions(). It is your gateway to all sorts of analysis of
what is installed and available on the device where your application is installed and
available. If you want to be able to intelligently connect to third-party applications
based on whether or not they are around, PackageManager is what you will want.

Finding Applications and Packages

Packages are what get installed on the device — a package is the in-device
representation of an APK. An application is defined within a package’s manifest.
Between the two, you can find out all sorts of things about existing software
installed on the device.

Specifically, getInstalledPackages() returns a List of PackageInfo objects, each of
which describes a single package. Here, you can find out:

1. The version of the package, in terms of a monotonically increasing number
(versionCode) and the display name (versionName)

2. Details about all of the components — activities, services, etc. — offered by
this package

3. Details about the permissions the package requires

Similarly, getInstalledApplications() returns a List of ApplicationInfo objects,
each providing data like:

1. The user ID that the application will run as
2. The path to the application’s private data directory

PACKAGEMANAGER TRICKS

1930

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Whether or not the application is enabled

In addition to those methods, you can call:

1. getApplicationIcon() and getApplicationLabel() to get the icon and
display name for an application

2. getLaunchIntentForPackage() to get an Intent for something launchable
within a named package

3. setApplicationEnabledSetting() to enable or disable an application

Finding Resources

You can access resources from another application, apparently without any security
restrictions. This may be useful if you have multiple applications and wish to share
resources for one reason or another.

The getResourcesForActivity() and getResourcesForApplication() methods on
PackageManager return a Resources object. This is just like the one you get for your
own application via getResources() on any Context (e.g., Activity). However, in
this case, you identify what activity or application you wish to get the Resources
from (e.g., supply the application’s package name as a String).

There are also getText() and getXml() methods that dive into the Resources object
for an application and pull out specific String or XmlPullParser objects. However,
these require you to know the resource ID of the resource to be retrieved, and that
may be difficult to manage between disparate applications.

Finding Components

Not only does Android offer “query” and “resolve” methods to find activities, but it
offers similar methods to find other sorts of Android components:

1. queryBroadcastReceivers()
2. queryContentProviders()
3. queryIntentServices()
4. resolveContentProvider()
5. resolveService()

For example, you could use resolveService() to determine if a certain remote
service is available, so you can disable certain UI elements if the service is not on the

PACKAGEMANAGER TRICKS

1931

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

device. You could achieve the same end by calling bindService() and watching for a
failure, but that may be later in the application flow than you would like.

There is also a setComponentEnabledSetting() to toggle a component (activity,
service, etc.) on and off. While this may seem esoteric, there are a number of
possible uses for this method, such as:

1. Flagging a launchable activity as disabled in your manifest, then enabling it
programmatically after the user has entered a license key, achieved some
level or standing in a game, or any other criteria

2. Controlling whether a BroadcastReceiver registered in the manifest is
hooked into the system or not, replicating the level of control you have with
registerReceiver() while still taking advantage of the fact that a manifest-
registered BroadcastReceiver can be started even if no other component of
your application is running

PACKAGEMANAGER TRICKS

1932

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Searching with SearchManager

One of the firms behind the Open Handset Alliance — Google — has a teeny weeny
Web search service, one you might have heard of in passing. Given that, it’s not
surprising that Android has some amount of built-in search capabilities.

Specifically, Android has “baked in” the notion of searching not only on the device
for data, but over the air to Internet sources of data.

Your applications can participate in the search process, by triggering searches or
perhaps by allowing your application’s data to be searched.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

Hunting Season
There are two types of search in Android: local and global. Local search searches
within the current application; global search searches the Web via Google’s search
engine. You can initiate either type of search in a variety of ways, including:

1. You can call onSearchRequested() from a button or menu choice, which will
initiate a local search (unless you override this method in your activity)

2. You can directly call startSearch() to initiate a local or global search,
including optionally supplying a search string to use as a starting point

1933

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. You can elect to have keyboard entry kick off a search via
setDefaultKeyMode(), for either local search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL)) or global search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_GLOBAL))

In either case, the search appears as a set of UI components across the top of the
screen, with a suggestion list (where available) and IME (where needed).

Figure 504: The Android local search popup, showing the IME and a previous search

SEARCHING WITH SEARCHMANAGER

1934

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 505: The Android global search popup

Where that search suggestion comes from for your local searches will be covered
later in this chapter.

Search Yourself
Over the long haul, there will be two flavors of search available via the Android
search system:

• Query-style search, where the user’s search string is passed to an activity
which is responsible for conducting the search and displaying the results

• Filter-style search, where the user’s search string is passed to an activity on
every keypress, and the activity is responsible for updating a displayed list of
matches

Since the latter approach is decidedly under-documented, let’s focus on the first
one.

SEARCHING WITH SEARCHMANAGER

1935

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Craft the Search Activity

The first thing you are going to want to do if you want to support query-style search
in your application is to create a search activity. While it might be possible to have a
single activity be both opened from the launcher and opened from a search, that
might prove somewhat confusing to users. Certainly, for the purposes of learning the
techniques, having a separate activity is cleaner.

The search activity can have any look you want. In fact, other than watching for
queries, a search activity looks, walks, and talks like any other activity in your
system.

All the search activity needs to do differently is check the intents supplied to
onCreate() (via getIntent()) and onNewIntent() to see if one is a search, and, if so,
to do the search and display the results.

For example, let’s look at the Search/Lorem sample application. This starts off as a
version of the list-of-lorem-ipsum-words application seen in various places in this
book. Now, we update it to support searching the list of words for ones containing
the search string.

The main activity and the search activity both share a common layout: a ListView
plus a TextView showing the selected entry:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" >>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
<ListView<ListView

android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"

/>/>
</LinearLayout></LinearLayout>

In terms of Java code, most of the guts of the activities are poured into an abstract
LoremBase class:

SEARCHING WITH SEARCHMANAGER

1936

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Search/Lorem
http://github.com/commonsguy/cw-omnibus/tree/master/Search/Lorem

packagepackage com.commonsware.android.search;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.app.SearchManagerandroid.app.SearchManager;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.ArrayListjava.util.ArrayList;
importimport org.xmlpull.v1.XmlPullParserorg.xmlpull.v1.XmlPullParser;

abstractabstract publicpublic classclass LoremBaseLoremBase extendsextends ListActivity {
abstractabstract ListAdapter makeMeAnAdapter(Intent intent);

privateprivate staticstatic finalfinal int LOCAL_SEARCH_ID = Menu.FIRST+1;
privateprivate staticstatic finalfinal int GLOBAL_SEARCH_ID = Menu.FIRST+2;
TextView selection;
ArrayList<String> items=newnew ArrayList<String>();

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

trytry {
XmlPullParser xpp=getResources().getXml(R.xml.words);

whilewhile (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
ifif (xpp.getEventType()==XmlPullParser.START_TAG) {

ifif (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(0));

}
}

xpp.next();
}

}
catchcatch (Throwable t) {

Toast
.makeText(thisthis, "Request failed: "+t.toString(), 4000)
.show();

}

setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL);

onNewIntent(getIntent());
}

SEARCHING WITH SEARCHMANAGER

1937

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onNewIntent(Intent intent) {

ListAdapter adapter=makeMeAnAdapter(intent);

ifif (adapter==nullnull) {
finish();

}
elseelse {

setListAdapter(adapter);
}

}

publicpublic void onListItemClick(ListView parent, View v, int position,
long id) {

selection.setText(parent.getAdapter().getItem(position).toString());
}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

menu.add(Menu.NONE, LOCAL_SEARCH_ID, Menu.NONE, "Local Search")
.setIcon(android.R.drawable.ic_search_category_default);

menu.add(Menu.NONE, GLOBAL_SEARCH_ID, Menu.NONE, "Global Search")
.setIcon(android.R.drawable.ic_menu_search)
.setAlphabeticShortcut(SearchManager.MENU_KEY);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase LOCAL_SEARCH_ID:

onSearchRequested();
returnreturn(truetrue);

casecase GLOBAL_SEARCH_ID:
startSearch(nullnull, falsefalse, nullnull, truetrue);
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

}

This activity takes care of everything related to showing a list of words, even loading
the words out of an XML resource. What it does not do is come up with the
ListAdapter to put into the ListView – that is delegated to the subclasses.

The main activity — LoremDemo — just uses a ListAdapter for the whole word list:

packagepackage com.commonsware.android.search;

SEARCHING WITH SEARCHMANAGER

1938

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.content.Intentandroid.content.Intent;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;

publicpublic classclass LoremDemoLoremDemo extendsextends LoremBase {
@Override
ListAdapter makeMeAnAdapter(Intent intent) {

returnreturn(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_list_item_1,
items));

}
}

The search activity, though, does things a bit differently.

First, it inspects the Intent supplied to the abstract makeMeAnAdapter() method.
That Intent comes from either onCreate() or onNewIntent(). If the intent is an
ACTION_SEARCH, then we know this is a search. We can get the search query and, in
the case of this silly demo, spin through the loaded list of words and find only those
containing the search string. That list then gets wrapped in a ListAdapter and
returned for display:

@Override
ListAdapter makeMeAnAdapter(Intent intent) {

ListAdapter adapter=nullnull;

ifif (intent.getAction().equals(Intent.ACTION_SEARCH)) {
String query=intent.getStringExtra(SearchManager.QUERY);
List<String> results=searchItems(query);

adapter=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_list_item_1,
results);

setTitle("LoremSearch for: "+query);
}

returnreturn(adapter);
}

The logic in the searchItems() method that actually finds the matches looks like:

List<String> results=newnew ArrayList<String>();

forfor (String item : items) {
ifif (item.indexOf(query)>-1) {

results.add(item);
}

}

returnreturn(results);

SEARCHING WITH SEARCHMANAGER

1939

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see the rest of that method later in this chapter.

Update the Manifest

While this implements search, it doesn’t tie it into the Android search system. That
requires a few changes to the auto-generated AndroidManifest.xml file:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="Lorem Ipsum">>
<activity<activity

android:name=".LoremDemo"
android:label="LoremDemo">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.app.default_searchable"
android:value=".LoremSearch"/>/>

</activity></activity>
<activity<activity

android:name=".LoremSearch"
android:label="LoremSearch"
android:launchMode="singleTop">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.SEARCH"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.app.searchable"
android:resource="@xml/searchable"/>/>

</activity></activity>
</application></application>

</manifest></manifest>

SEARCHING WITH SEARCHMANAGER

1940

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The changes that are needed are:

• The LoremDemo main activity gets a meta-data element, with an
android:name of android.app.default_searchable and a android:value of
the search implementation class (.LoremSearch)

• The LoremSearch activity gets an intent filter for
android.intent.action.SEARCH, so search intents will be picked up

• The LoremSearch activity is set to have android:launchMode =
"singleTop", which means at most one instance of this activity will be open
at any time, so we don’t wind up with a whole bunch of little search activities
cluttering up the activity stack

• Add android:label and android:icon attributes to the application
element — these will influence how your application appears in the Quick
Search Box among other places

• The LoremSearch activity gets a meta-data element, with an android:name of
android.app.searchable and an android:value of an XML resource
containing more information about the search facility offered by this activity
(@xml/searchable)

<searchable<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/searchLabel"
android:hint="@string/searchHint"

android:searchSuggestAuthority="com.commonsware.android.search.LoremSuggestionProvider"
android:searchSuggestSelection=" ? "
android:searchSettingsDescription="@string/global"
android:includeInGlobalSearch="true"

/>/>

That XML resource provides many bits of information, of which only two are needed
for simple search-enabled applications:

• What name should appear in the search domain button to the left of the
search field, identifying to the user where she is searching (android:label)

• What hint text should appear in the search field, to give the user a clue as to
what they should be typing in (android:hint)

The other attributes found in that file, and the other search-related bits found in the
manifest, will be covered later in this chapter.

SEARCHING WITH SEARCHMANAGER

1941

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Searching for Meaning In Randomness
Given all that, search is now available — Android knows your application is
searchable, what search domain to use when searching from the main activity, and
the activity knows how to do the search.

The options menu for this application has both local and global search options. In
the case of local search, we just call onSearchRequested(); in the case of global
search, we call startSearch() with true in the last parameter, indicating the scope is
global.

Figure 506: The Lorem sample application, showing the local search popup

Typing in a letter or two, then clicking Search, will bring up the search activity and
the subset of words containing what you typed, with your search query in the
activity title bar:

SEARCHING WITH SEARCHMANAGER

1942

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 507: The results of searching for ‘co’ in the Lorem search sample

You can get the same effect if you just start typing in the main activity, since it is set
up for triggering a local search.

May I Make a Suggestion?
When you do a global search, you are given “suggestions” of search words or phrases
that may be what you are searching for, to save you some typing on a small
keyboard:

SEARCHING WITH SEARCHMANAGER

1943

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 508: Search suggestions after typing some letters in global search

Your application, if it chooses, can offer similar suggestions. Not only will this give
you the same sort of drop-down effect as you see with the global search above, but it
also ties neatly into the Quick Search Box, as we will see later in this chapter.

To provide suggestions, you need to implement a ContentProvider and tie that
provider into the search framework. You have two major choices for implementing a
suggestion provider: use the built-in “recent” suggestion provider, or create your own
from scratch.

SearchRecentSuggestionsProvider

The “recent” suggestions provider gives you a quick and easy way to remember past
searches and offer those as suggestions on future searches.

To use this facility, you must first create a custom subclass of
SearchRecentSuggestionsProvider. Your subclass may be very simple, perhaps just
a two-line constructor with no other methods. However, since Android does not
automatically record recent queries for you, you will also need to give your search
activity a way to record them such that the recent-suggestions provider can offer
them as suggestions in the future.

SEARCHING WITH SEARCHMANAGER

1944

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Below, we have a LoremSuggestionProvider, extending
SearchRecentSuggestionsProvider, that also supplies a “bridge” for the search
activity to record searches:

packagepackage com.commonsware.android.search;

importimport android.content.Contextandroid.content.Context;
importimport android.content.SearchRecentSuggestionsProviderandroid.content.SearchRecentSuggestionsProvider;
importimport android.provider.SearchRecentSuggestionsandroid.provider.SearchRecentSuggestions;

publicpublic classclass LoremSuggestionProviderLoremSuggestionProvider
extendsextends SearchRecentSuggestionsProvider {
privateprivate staticstatic String

AUTH="com.commonsware.android.search.LoremSuggestionProvider";

staticstatic SearchRecentSuggestions getBridge(Context ctxt) {
returnreturn(newnew SearchRecentSuggestions(ctxt, AUTH,

DATABASE_MODE_QUERIES));
}

publicpublic LoremSuggestionProvider() {
supersuper();

setupSuggestions(AUTH, DATABASE_MODE_QUERIES);
}

}

The constructor, besides the obligatory chain to the superclass, simply calls
setupSuggestions(). This takes two parameters:

1. The authority under which you will register this provider in the manifest
(see below)

2. A flag indicating where the suggestions will come from — in this case, we
supply the required DATABASE_MODE_QUERIES flag

Of course, since this is a ContentProvider, you will need to add it to your manifest:

<provider<provider
android:name=".LoremSuggestionProvider"

android:authorities="com.commonsware.android.search.LoremSuggestionProvider"/>/>

The other thing that LoremSuggestionProvider has is a static method that creates a
properly-configured instance of a SearchRecentSuggestions object. This object
knows how to save search queries to the database that the content provider uses, so
they will be served up as future suggestions. It needs to know the same authority
and flag that you provide to setupSuggestions().

SEARCHING WITH SEARCHMANAGER

1945

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That SearchRecentSuggestions is then used by our LoremSearch class, inside its
searchItems() method that actually examines the list of nonsense words for
matches:

privateprivate List<String> searchItems(String query) {
LoremSuggestionProvider

.getBridge(thisthis)

.saveRecentQuery(query, nullnull);

List<String> results=newnew ArrayList<String>();

forfor (String item : items) {
ifif (item.indexOf(query)>-1) {

results.add(item);
}

}

returnreturn(results);
}

In this case, we always record the search, though you can imagine that some
applications might not save searches that are invalid for one reason or another.

Custom Suggestion Providers

If you want to provide search suggestions based on something else – actual data,
searches conducted by others that you aggregate via a Web service, etc. — you will
need to implement your own ContentProvider that supplies that information. As
with SearchRecentSuggestionsProvider, you will need to add your
ContentProvider to the manifest so that Android knows it exists.

The details for doing this will be covered in a future edition of this book. For now,
you are best served with the Android SearchManager documentation on the topic.

Integrating Suggestion Providers

Before your suggestions will appear, though, you need to tell Android to use your
ContentProvider as the source of suggestions. There are two attributes on your
searchable XML that make this connection:

1. android:searchSuggestAuthority indicates the content authority for your
suggestions — this is the same authority you used for your ContentProvider

SEARCHING WITH SEARCHMANAGER

1946

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/app/SearchManager.html#Suggestions

2. android:searchSuggestSelection is how the suggestion should be
packaged as a query in the ACTION_SEARCH Intent — unless you have some
reason to do otherwise, " ? " is probably a fine value to use

The result is that when we do our local search, we get the drop-down of past
searches as suggestions:

Figure 509: The Android local search popup, showing the IME and a previous search

There is also a clearHistory() method on SearchRecentSuggestions that you can
use, perhaps from a menu choice, to clear out the search history, in case it is
cluttered beyond usefulness.

Putting Yourself (Almost) On Par with Google
The Quick Search Box is Android’s new term for the search widget at the top of the
home screen. This is the same UI that appears when your application starts a global
search. When you start typing, it shows possible matches culled from both the
device and the Internet. If you choose one of the suggestions, it takes you to that
item – choose a contact, and you visit the contact in the Contacts application. If you
choose a Web search term, or you just submit whatever you typed in, Android will

SEARCHING WITH SEARCHMANAGER

1947

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

fire up a Browser instance showing you search results from Google. The order of
suggestions is adaptive, as Android will attempt to show the user the sorts of things
the user typically searches for (e.g., if the user clicks on contacts a lot in prior
searches, it may prioritize suggested contacts in the suggestion list).

Your application can be tied into the Quick Search Box. However, it is important to
understand that being in the Quick Search Box does not mean that your content will
be searched. Instead, your suggestions provider will be queried based on what the
user has typed in, and those suggestions will be blended into the overall results.

And, your application will not show up in Quick Search Box suggestions
automatically — the user has to “opt in” to have your results included.

And, until the user demonstrates an interest in your results, your application’s
suggestions will be buried at the bottom of the list.

This means that integrating with the Quick Search Box, while still perhaps valuable,
is not exactly what some developers will necessarily have in mind. That being said,
here is how to achieve this integration.

NOTE: there is some flaw in the Android 2.2 emulator that prevents this from
working, though it works fine on Android 2.2 hardware.

Implement a Suggestions Provider

Your first step is to implement a suggestions provider, as described in the previous
section. Again, Android does not search your application, but rather queries your
suggestions provider. If you do not have a suggestions provider, you will not be part
of the Quick Search Box. As we will see below, this approach means you will need to
think about what sort of suggestion provider to create.

Augment the Metadata

Next, you need to tell Android to tie your application into the Quick Search Box
suggestion list. To do that, you need to add the android:includeInGlobalSearch
attribute to your searchable XML, setting it to true. You probably also should
consider adding the android:searchSettingsDescription, as this will be shown in
the UI for the user to configure what suggestions the Quick Search Box shows.

SEARCHING WITH SEARCHMANAGER

1948

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Convince the User

Next, the user needs to activate your application to be included in the Quick Search
Box suggestion roster. To do that, the user needs to go into Settings, find where the
“Searchable Items” screen is, and check the checkbox associated with your
application:

Figure 510: The Searchable Items settings screen

The precise location of the “Searchable Items” screen varies by OS version and
possibly by device.

Your application’s label and the value of android:searchSettingsDescription are
what appears to the left of the checkbox.

You have no way of toggling this on yourself — the user has to do it. You may wish
to mention this in the documentation for your application.

The Results

If you and the user do all of the above, now when the user initiates a search, your
suggestions will be poured into the suggestions list, at the bottom:

SEARCHING WITH SEARCHMANAGER

1949

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 511: The Quick Search Box, showing application-supplied suggestions

On versions of Android prior to 2.2, to actually see your suggestions, the user also
needs to click the arrow to “fold open” the actual suggestions:

SEARCHING WITH SEARCHMANAGER

1950

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 512: The Quick Search Box, showing another placeholder for application-
supplied suggestions

Even here, we do not see the actual suggestion. However, if the user clicks on that
item, your suggestions then take over the list:

SEARCHING WITH SEARCHMANAGER

1951

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 513: The Quick Search Box, showing application-supplied suggestions

Again, Android is not showing actual data from your application – our list of
nonsense words does not contain the value “dol”. Instead, Android is showing
suggestions from your suggestion provider based on what the user typed in. In this
case, our application’s suggestion provider is based on the built-in
SearchRecentSuggestionsProvider class, meaning the suggestions are past queries,
not actual results.

Hence, what you want to have appear in the Quick Search Box suggestion list will
heavily influence what sort of suggestion provider you wish to create. While a
SearchRecentSuggestionsProvider is simple, what you get in the Quick Search Box
suggestions may not be that useful to users. Instead, you may wish to create your
own custom suggestions provider, providing suggestions from actual data or other
more useful sources, perhaps in addition to saved searches.

SEARCHING WITH SEARCHMANAGER

1952

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Handling System Events

If you have ever looked at the list of available Intent actions in the SDK
documentation for the Intent class, you will see that there are lots of possible
actions.

There are even actions that are not listed in that spot in the documentation, but are
scattered throughout the rest of the SDK documentation.

The vast majority of these you will never raise yourself. Instead, they are broadcast
by Android, to signify certain system events that have occurred and that you might
want to take note of, if they affect the operation of your application.

This chapter examines a couple of these, to give you the sense of what is possible
and how to make use of these sorts of events. Note that we examined another
similar one of these, to get control at boot time, back in the chapter on
AlarmManager.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on BroadcastReceiver. Also, it might be a good idea to read the
section on the BOOT_COMPLETED system broadcast in the chapter on AlarmManager.

I Sense a Connection Between Us…
Generally speaking, Android applications do not care what sort of Internet
connection is being used — 3G, GPRS, WiFi, lots of trained carrier pigeons, or
whatever. So long as there is an Internet connection, the application is happy.

1953

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.faqs.org/rfcs/rfc1149.html

Sometimes, though, you may specifically want WiFi. This would be true if your
application is bandwidth-intensive and you want to ensure that, should WiFi stop
being available, you cut back on your work so as not to consume too much 3G/GPRS
bandwidth, which is usually subject to some sort of cap or metering.

There is an android.net.wifi.WIFI_STATE_CHANGED Intent that will be broadcast,
as the name suggests, whenever the state of the WiFi connection changes. You can
arrange to receive this broadcast and take appropriate steps within your application.

This Intent requires no special permission. Hence, all you need to do is register a
BroadcastReceiver for android.net.wifi.WIFI_STATE_CHANGED, either via
registerReceiver(), or via the <receiver> element in AndroidManifest.xml, such
as the one shown below, from the SystemEvents/OnWiFiChange sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.sysevents.wifi"
xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<receiver<receiver android:name=".OnWiFiChangeReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.net.wifi.WIFI_STATE_CHANGED" />/>
</intent-filter></intent-filter>

</receiver></receiver>
</application></application>

</manifest></manifest>

All we do in the manifest is tell Android to create an OnWiFiChangeReceiver object
when a android.net.wifi.WIFI_STATE_CHANGED Intent is broadcast, so the receiver
can do something useful.

In the case of OnWiFiChangeReceiver, it examines the value of the
EXTRA_WIFI_STATE “extra” in the supplied Intent and logs an appropriate message:

packagepackage com.commonsware.android.sysevents.wifi;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.wifi.WifiManagerandroid.net.wifi.WifiManager;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnWiFiChangeReceiverOnWiFiChangeReceiver extendsextends BroadcastReceiver {
@Override

HANDLING SYSTEM EVENTS

1954

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnWiFiChange
http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnWiFiChange

publicpublic void onReceive(Context context, Intent intent) {
int state=intent.getIntExtra(WifiManager.EXTRA_WIFI_STATE, -1);
String msg=nullnull;

switchswitch (state) {
casecase WifiManager.WIFI_STATE_DISABLED:

msg="is disabled";
breakbreak;

casecase WifiManager.WIFI_STATE_DISABLING:
msg="is disabling";
breakbreak;

casecase WifiManager.WIFI_STATE_ENABLED:
msg="is enabled";
breakbreak;

casecase WifiManager.WIFI_STATE_ENABLING:
msg="is enabling";
breakbreak;

casecase WifiManager.WIFI_STATE_UNKNOWN :
msg="has an error";
breakbreak;

defaultdefault:
msg="is acting strangely";
breakbreak;

}

ifif (msg!=nullnull) {
Log.d("OnWiFiChanged", "WiFi "+msg);

}
}

}

The EXTRA_WIFI_STATE “extra” tells you what the state has become (e.g., we are now
disabling or are now disabled), so you can take appropriate steps in your application.

Note that, to test this, you will need an actual Android device, as the emulator does
not specifically support simulating WiFi connections.

Feeling Drained
One theme with system events is to use them to help make your users happier by
reducing your impacts on the device while the device is not in a great state. In the
preceding section, we saw how you could find out when WiFi was disabled, so you
might not use as much bandwidth when on 3G/GPRS. However, not every
application uses so much bandwidth as to make this optimization worthwhile.

HANDLING SYSTEM EVENTS

1955

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, most applications are impacted by battery life. Dead batteries run no apps.

So whether you are implementing a battery monitor or simply want to discontinue
background operations when the battery gets low, you may wish to find out how the
battery is doing.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging (e.g., the
device is now plugged into AC power). You simply need to register to receive this
Intent when it is broadcast, then take appropriate steps.

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver as shown in the preceding
two sections.

In the SystemEvents/OnBattery sample project, you will find a layout containing a
ProgressBar, a TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<ProgressBar<ProgressBar android:id="@+id/bar"

style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content" />/>

<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView android:id="@+id/level"

android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
android:textSize="16pt"

/>/>
<ImageView<ImageView android:id="@+id/status"

android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"

/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

HANDLING SYSTEM EVENTS

1956

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBattery
http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBattery

This layout is used by a BatteryMonitor activity, which registers to receive the
ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in onPause():

packagepackage com.commonsware.android.sysevents.battery;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.BatteryManagerandroid.os.BatteryManager;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass BatteryMonitorBatteryMonitor extendsextends Activity {
privateprivate ProgressBar bar=nullnull;
privateprivate ImageView status=nullnull;
privateprivate TextView level=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

bar=(ProgressBar)findViewById(R.id.bar);
status=(ImageView)findViewById(R.id.status);
level=(TextView)findViewById(R.id.level);

}

@Override
publicpublic void onResume() {

supersuper.onResume();

registerReceiver(onBatteryChanged,
newnew IntentFilter(Intent.ACTION_BATTERY_CHANGED));

}

@Override
publicpublic void onPause() {

supersuper.onPause();

unregisterReceiver(onBatteryChanged);
}

BroadcastReceiver onBatteryChanged=newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {

int pct=100*intent.getIntExtra("level", 1)/intent.getIntExtra("scale", 1);

bar.setProgress(pct);
level.setText(String.valueOf(pct));

HANDLING SYSTEM EVENTS

1957

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

switchswitch(intent.getIntExtra("status", -1)) {
casecase BatteryManager.BATTERY_STATUS_CHARGING:

status.setImageResource(R.drawable.charging);
breakbreak;

casecase BatteryManager.BATTERY_STATUS_FULL:
int plugged=intent.getIntExtra("plugged", -1);

ifif (plugged==BatteryManager.BATTERY_PLUGGED_AC ||
plugged==BatteryManager.BATTERY_PLUGGED_USB) {

status.setImageResource(R.drawable.full);
}
elseelse {

status.setImageResource(R.drawable.unplugged);
}
breakbreak;

defaultdefault:
status.setImageResource(R.drawable.unplugged);
breakbreak;

}
}

};
}

The key to ACTION_BATTERY_CHANGED is in the “extras”. Many “extras” are packaged in
the Intent, to describe the current state of the battery, such as the following
constants defined on the BatteryManager class:

1. EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD
2. EXTRA_LEVEL, which is the proportion of battery life remaining as an integer,

specified on the scale described by the scale “extra”
3. EXTRA_PLUGGED, which will indicate if the device is plugged into AC power

(BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)
4. EXTRA_SCALE, which indicates the maximum possible value of level (e.g., 100,

indicating that level is a percentage of charge remaining)
5. EXTRA_STATUS, which will tell you if the battery is charging

(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

6. EXTRA_TECHNOLOGY, which indicates what sort of battery is installed (e.g.,
"Li-Ion")

7. EXTRA_TEMPERATURE, which tells you how warm the battery is, in tenths of a
degree Celsius (e.g., 213 is 21.3 degrees Celsius)

8. EXTRA_VOLTAGE, indicating the current voltage being delivered by the battery,
in millivolts

HANDLING SYSTEM EVENTS

1958

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the case of BatteryMonitor, when we receive an ACTION_BATTERY_CHANGED Intent,
we do three things:

• We compute the percentage of battery life remaining, by dividing the level
by the scale

• We update the ProgressBar and TextView to display the battery life as a
percentage

• We display an icon, with the icon selection depending on whether we are
charging (status is BATTERY_STATUS_CHARGING), full but on the charger
(status is BATTERY_STATUS_FULL and plugged is BATTERY_PLUGGED_AC or
BATTERY_PLUGGED_USB), or are not plugged in

If you plug this into a device, it will show you the device’s charge level:

Figure 514: The BatteryMonitor application

Sticky Intents and the Battery

Android has a notion of “sticky broadcast Intents”. Normally, a broadcast Intent
will be delivered to interested parties and then discarded. A sticky broadcast Intent
is delivered to interested parties and retained until the next matching Intent is
broadcast. Applications can call registerReceiver() with an IntentFilter that

HANDLING SYSTEM EVENTS

1959

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

matches the sticky broadcast, but with a null BroadcastReceiver, and get the sticky
Intent back as a result of the registerReceiver() call.

This may sound confusing. Let’s look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to get
information about the battery delivered to you. You can also, though, get the latest
battery information without registering a receiver. Just create an IntentFilter to
match ACTION_BATTERY_CHANGED (as shown above) and call registerReceiver()
with that filter and a null BroadcastReceiver. The Intent you get back from
registerReceiver() is the last ACTION_BATTERY_CHANGED Intent that was broadcast,
with the same extras. Hence, you can use this to get the current (or near-current)
battery status, rather than having to bother registering an actual
BroadcastReceiver.

Battery and the Emulator

Your emulator does not really have a battery. If you run this sample application on
an emulator, you will see, by default, that your device has 50% fake charge remaining
and that it is being charged. However, it is charged infinitely slowly, as it will not
climb past 50%… at least, not without help.

While the emulator will only show fixed battery characteristics, you can change
what those values are, through the highly advanced user interface known as telnettelnet.

You may have noticed that your emulator title bar consists of the name of your AVD
plus a number, frequently 5554. That number is not merely some engineer’s favorite
number. It is also an open port, on your emulator, to which you can telnettelnet into, on
localhost (127.0.0.1) on your development machine.

There are many commands you can issue to the emulator by means of telnettelnet. To
change the battery level, use power capacity NN, where NN is the percentage of
battery life remaining that you wish the emulator to return. If you do that while you
have an ACTION_BATTERY_CHANGED BroadcastReceiver registered, the receiver will
receive a broadcast Intent, informing you of the change.

You can also experiment with some of the other power subcommands (e.g., power
ac on or power ac off), or other commands (e.g., geo, to send simulated GPS fixes,
just as you can do from DDMS).

HANDLING SYSTEM EVENTS

1960

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Power Triggers

If you are only interested in knowing when the device has been attached to, or
detached from, a source of external power, there are different broadcast Intent
actions you can monitor: ACTION_POWER_CONNECTED and
ACTION_POWER_DISCONNECTED. These are only broadcast when the power source
changes, not just every time the battery changes charge level. Hence, these will be
more efficient, as your code will be invoked less frequently. Better still, you can use
manifest-registered broadcast receivers for these, bypassing the limits the system
puts on ACTION_BATTERY_CHANGED.

HANDLING SYSTEM EVENTS

1961

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Remote Services and the Binding
Pattern

Earlier in this book, we covered using services by sending commands to them to be
processed. That “command pattern” is one of two primary means of interacting with
a service — the binding pattern is the other. With the binding pattern, your service
exposes a more traditional API, in the form of a “binder” object with methods of
your choosing. On the plus side, you get a richer interface. However, it more tightly
ties your activity to your service, which may cause you problems with configuration
changes.

Either the command pattern or the binding pattern can be used, if desired, across
process boundaries, with the client being some third-party application. In either
case, you will need to export your service via an <intent-filter>. And, in the case
of the binding pattern, your “binder” implementation will have some restrictions.

This chapter covers the binding pattern for local services, plus inter-process
commands and binding (a.k.a., remote services).

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

1963

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Binding Pattern
Implementing the binding pattern requires work on both the service side and the
client side. The service will need to have a full implementation of the onBind()
method, which typically just returns null for a service solely implementing the
command pattern. And, the client (e.g., an activity) will need to ask to bind to the
service, instead of (or perhaps in addition to) starting the service.

What the Service Does

The service implements a subclass of Binder that represents the service’s exposed
API. For a local service, your Binder can have pretty much whatever methods you
want: method names, parameters, return types, and exceptions thrown are up to
you. When you get into remote services, your Binder implementation will be
substantially more constrained, to support inter-process communication.

Then, your onBind() method returns an instance of the Binder.

What the Client Does

Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an
optional BIND_AUTO_CREATE flag. As with startService(), bindService() is
asynchronous. The client will not know anything about the status of the binding
until the ServiceConnection object is called with onServiceConnected(). This not
only indicates the binding has been established, but for local services it provides the
Binder object that the service returned via onBind(). At this point, the client can use
the Binder to ask the service to do work on its behalf.

Note that if the service is not already running, and if you provide BIND_AUTO_CREATE,
then the service will be created first before being bound to the client. If you skip
BIND_AUTO_CREATE, and the service is not already running, bindService() is
supposed to return false, indicating there was no existing service to bind to.
However, in actuality, Android returns true, due to an apparent bug.

Eventually, the client will need to call unbindService(), to indicate it no longer
needs to communicate with the service. For example, an activity might call
bindService() in its onCreate() method, then call unbindService() in its
onDestroy() method. Once you call unbindService(), your Binder object is no
longer safe to be used by the client. If there are no other bound clients to the

REMOTE SERVICES AND THE BINDING PATTERN

1964

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=41085

service, Android will shut down the service as well, releasing its memory. Hence, we
do not need to call stopService() ourselves – Android handles that, if needed, as a
side effect of unbinding.

Your ServiceConnection object will also need an onServiceDisconnected()
method. This will be called only if there is an unexpected disconnection, such as the
service crashing with an unhandled exception.

A Binding Sample

Our sample revolves around a scripting language called BeanShell. BeanShell is, in
effect, a Java interpreter for Java. We will go into greater detail about BeanShell
elsewhere in this book. For here, most of what you need to know is that you can
have BeanShell interpret a chunk of source code by creating an Interpreter object
and calling eval().

In the AdvServices/Binding sample project, we have an activity, displaying a
fragment, containing the world’s smallest IDE:

Figure 515: Binding Demo, As Initially Launched

REMOTE SERVICES AND THE BINDING PATTERN

1965

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://beanshell.org
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/Binding
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/Binding

When the user types in some Java code and clicks the button, we want to execute
that code. And, in this case, we will use a service and the binding pattern to do so.

We start by defining an interface that will serve as the “contract” between the client
(fragment) and service. This interface, IScript, contains a single executeScript()
method:

packagepackage com.commonsware.android.advservice.binding;

// Declare the interface.
interfaceinterface IScriptIScript {

void executeScript(String script);
}

Our service, BshService, implements just one method, onBind(), which returns an
instance of a BshBinder:

packagepackage com.commonsware.android.advservice.binding;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Binderandroid.os.Binder;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport bsh.EvalErrorbsh.EvalError;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshServiceBshService extendsextends Service {
@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(newnew BshBinder(thisthis));
}

privateprivate staticstatic classclass BshBinderBshBinder extendsextends Binder implementsimplements IScript {
privateprivate Interpreter i=newnew Interpreter();

BshBinder(Context ctxt) {
trytry {

i.set("context", ctxt);
}
catchcatch (EvalError e) {

Log.e("BshService", "Error executing script", e);
}

}

publicpublic void executeScript(String script) {
trytry {

i.eval(script);
}
catchcatch (bsh.EvalError e) {

REMOTE SERVICES AND THE BINDING PATTERN

1966

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Log.e("BshService", "Error executing script", e);
}

}
};

}

BshBinder implements the IScript interface and is where our BeanShell “business
logic” resides:

• In the BshBinder initializers, we create an instance of the BeanShell
Interpreter class

• In the BshBinder constructor, we inject an object — the BshService instance
— into the BeanShell interpreted environment as what amounts to a global
object, named context

• In the executeScript() method, we just pass the supplied BeanShell source
to the eval() method of our Interpreter

Our fragment, BshFragment, loads our layout, res/layout/main.xml, containing a
Button and a multi-line EditText:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/eval"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/go"/>/>

<EditText<EditText
android:id="@+id/script"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="top"
android:inputType="textMultiLine"/>/>

</LinearLayout></LinearLayout>

The implementation of onCreateView() simply loads that layout, gets the Button,
sets up the fragment as being the click listener for the Button, and disables the
Button:

publicpublic View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {

REMOTE SERVICES AND THE BINDING PATTERN

1967

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

View result=inflater.inflate(R.layout.main, container, falsefalse);

btn=(Button)result.findViewById(R.id.eval);
btn.setOnClickListener(thisthis);
btn.setEnabled(service!=nullnull);

setRetainInstance(truetrue);

returnreturn(result);
}

The reason why we disable the Button is because we are not connected to our
service at this point, and until we are, we cannot allow the user to try to execute a
BeanShell script.

In onActivityCreated() of our fragment, we bind to the service:

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

getActivity().getApplicationContext()
.bindService(newnew Intent(getActivity(),

BshService.class), thisthis,
Context.BIND_AUTO_CREATE);

}

You will notice something curious here: getApplicationContext(). Technically, we
could bind to the service directly from the Activity, by calling bindService() on it,
as bindService() is a method on Context. However, our service binding represents
some state, and it is possible that this state will hold a reference to the Context that
created the binding. In that case, we run the risk of leaking our original activity
during a configuration change. The getApplicationContext() method returns the
global Application singleton, which is a Context suitable for binding, but one that
cannot be leaked, since it is already in a global scope.

Some time after onActivityCreated() is called and we call bindService(), our
onServiceConnected() method will be called, as we designated our fragment to be
the ServiceConnection. Here, we can cast the IBinder object we receive to be our
IScript interface to the service, and we can enable the Button:

@Override
publicpublic void onServiceConnected(ComponentName className, IBinder binder) {

service=(IScript)binder;
btn.setEnabled(truetrue);

}

REMOTE SERVICES AND THE BINDING PATTERN

1968

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Since we are implementing the ServiceConnection interface, our fragment also
needs to implement the onServiceDisconnected() method, invoked if our service
crashes. Here, we delegate responsibility to a disconnect() private method, which
removes our link to the IScript object and disables our Button:

@Override
publicpublic void onServiceDisconnected(ComponentName className) {

disconnect();
}

privateprivate void disconnect() {
service=nullnull;
btn.setEnabled(falsefalse);

}

And, when our fragment is destroyed, we unbind from the service (using the same
Context as before, from getApplicationContext()) and disconnect():

@Override
publicpublic void onDestroy() {

getActivity().getApplicationContext().unbindService(thisthis);
disconnect();

supersuper.onDestroy();
}

However, in between onServiceConnected() and either onServiceDisconnected()
or onDestroy(), the user can type in and submit a script, triggering a call to
onClick() when the user clicks the “Go!” button:

@Override
publicpublic void onClick(View view) {

EditText script=(EditText)getView().findViewById(R.id.script);
String src=script.getText().toString();

service.executeScript(src);
}

Here, we get the source code from the EditText and pass it to the IScript interface
for processing. In this case, we happen to do so on the main application thread,
which means that the script will be evaluated on the main application thread as
well.

The result is that the user can enter in a script — including referencing our context
global Context object — and execute it by clicking “Go!”:

REMOTE SERVICES AND THE BINDING PATTERN

1969

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 516: Binding Demo, Waiting For a Script

For example, you can type in:

importimport android.widget.Toastandroid.widget.Toast;

Toast.makeText(context, "Hi, Mom!", Toast.LENGTH_LONG).show();

and it will display your requested Toast:

REMOTE SERVICES AND THE BINDING PATTERN

1970

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 517: Binding Demo, Running a Script

The BshServiceDemo activity that uses our BshFragment not only adds BshFragment
via a FragmentTransaction, but it offers an overflow menu item to launch another
instance of the activity itself:

packagepackage com.commonsware.android.advservice.binding;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

publicpublic classclass BshServiceDemoBshServiceDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) ==
nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew BshFragment()).commit();
}

}

REMOTE SERVICES AND THE BINDING PATTERN

1971

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getSupportMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.add) {
startActivity(newnew Intent(thisthis, thisthis.getClass()));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

}

If you run multiple instances of the activity — and hence multiple instances of the
fragment — you will see that each gets its own binding to the service, and each can
execute scripts with the help of that service.

Starting and Binding

Some developers will use both startService() and bindService() at the same time.
The typical argument is that they need frequent updates from the service (e.g.,
percentage of progress, for updating a ProgressBar) in the client and are concerned
about the overhead of sending broadcasts.

With the advent of LocalBroadcastManager and other event bus implementations,
binding to a service you are using with startService() should no longer be
necessary.

When IPC Attacks!
If you wish to extend the binding pattern to serve in the role of IPC, whereby other
processes can get at your Binder and call its methods, you will need to use AIDL: the
Android Interface Description Language. If you have used IPC mechanisms like
COM, CORBA, or the like, you will recognize the notion of IDL. AIDL describes the
public IPC interface, and Android supplies tools to build the client and server side of
that interface.

With that in mind, let’s take a look at AIDL and IPC.

REMOTE SERVICES AND THE BINDING PATTERN

1972

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Write the AIDL

IDLs are frequently written in a “language-neutral” syntax. AIDL, on the other hand,
looks a lot like a Java interface. For example, here is some AIDL:

packagepackage com.commonsware.android.advservice;

// Declare the interface.
interfaceinterface IScriptIScript {

void executeScript(String script);
}

As you will notice, this looks suspiciously like the regular Java interface we used in
the simple binding example earlier in this chapter.

As with a Java interface, you declare a package at the top. As with a Java interface,
the methods are wrapped in an interface declaration (interface IScript { ... }).
And, as with a Java interface, you list the methods you are making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

1. Primitive values (int, float, double, boolean, etc.)
2. String and CharSequence
3. List and Map (from java.util)
4. Any other AIDL-defined interfaces
5. Any Java classes that implement the Parcelable interface, which is

Android’s flavor of serialization

In the case of the latter two categories, you need to include import statements
referencing the names of the classes or interfaces that you are using (e.g., import
com.commonsware.android.ISomething). This is true even if these classes are in your
own package — you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or inout
can be changed by the service and those changes will be propagated back to the
client. Primitives (e.g., int) can only be in; we included in for the AIDL for enable()
just for illustration purposes.

REMOTE SERVICES AND THE BINDING PATTERN

1973

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, you cannot throw any exceptions. You will need to catch all exceptions in your
code, deal with them, and return failure indications some other way (e.g., error code
return values).

Name your AIDL files with the .aidl extension and place them in the proper
directory based on the package name.

When you build your project, either via an IDE or via Ant, the aidl utility from the
Android SDK will translate your AIDL into a server stub and a client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the service, either
directly in the stub, or by routing the stub implementation to other methods you
have already written.

The mechanics of this are fairly straightforward:

1. Create a private instance of the AIDL-generated .Stub class (e.g.,
IScript.Stub)

2. Implement methods matching up with each of the methods you placed in
the AIDL

3. Return this private instance from your onBind() method in the Service
subclass

Note that AIDL IPC calls are synchronous, and so the caller is blocked until the IPC
method returns. Hence, your services need to be quick about their work.

We will see examples of service stubs later in this chapter.

Service From Afar
So, given our AIDL description, let us examine a sample implementation, using
AIDL for a remote service.

Our sample applications — shown in the AdvServices/RemoteService and
AdvServices/RemoteClient sample projects — integrate BeanShell into a remote
service, along the lines of the local binding sample from earlier in this chapter. If you
actually wanted to use scripting in an Android application, with scripts loaded off of
the Internet, isolating their execution into a service might not be a bad idea. In the

REMOTE SERVICES AND THE BINDING PATTERN

1974

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteService
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteService
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClient
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClient
http://beanshell.org

service, those scripts are sandboxed, only able to access files and APIs available to
that service. The scripts cannot access your own application’s databases, for
example. If the script-executing service is kept tightly controlled, it minimizes the
mischief a rogue script could possibly do.

Service Names

To bind to a service’s AIDL-defined API, you need to craft an Intent that can identify
the service in question. In the case of a local service, that Intent can use the local
approach of directly referencing the service class.

Obviously, that is not possible in a remote service case, where the service class is not
in the same process, and may not even be known by name to the client.

When you define a service to be used by remote, you need to add an intent-filter
element to your service declaration in the manifest, indicating how you want that
service to be referred to by clients. The manifest for RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.advservice"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-sdk<uses-sdk android:minSdkVersion="3"
android:targetSdkVersion="6" />/>

<supports-screens<supports-screens android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<service<service android:name=".BshService">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.advservice.IScript" />/>
</intent-filter></intent-filter>

</service></service>
</application></application>

</manifest></manifest>

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IScript. So long as the client uses this
name to identify the service, it can bind to that service’s API.

In this case, the name is not an implementation, but the AIDL API, as you will see
below. In effect, this means that so long as some service exists on the device that
implements this API, the client will be able to bind to something.

REMOTE SERVICES AND THE BINDING PATTERN

1975

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Service

Beyond the manifest, the service implementation is not too unusual. There is the
AIDL interface, IScript:

packagepackage com.commonsware.android.advservice;

// Declare the interface.
interfaceinterface IScriptIScript {

void executeScript(String script);
}

And there is the actual service class itself, BshService:

packagepackage com.commonsware.android.advservice;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport bsh.EvalErrorbsh.EvalError;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshServiceBshService extendsextends Service {
@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(newnew BshBinder(thisthis));
}

privateprivate staticstatic classclass BshBinderBshBinder extendsextends IScript.Stub {
privateprivate Interpreter i=newnew Interpreter();

BshBinder(Context ctxt) {
trytry {

i.set("context", ctxt);
}
catchcatch (EvalError e) {

Log.e("BshService", "Error executing script", e);
}

}

@Override
publicpublic void executeScript(String script) {

trytry {
i.eval(script);

}
catchcatch (bsh.EvalError e) {

Log.e("BshService", "Error executing script", e);
}

}

REMOTE SERVICES AND THE BINDING PATTERN

1976

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

};
}

This is identical to the local binding example, with one key difference: BshBinder
now extends IScript.Stub rather than the generic Binder class.

Also note that, in this implementation, the script is executed directly by the service
on the calling thread. One might think this is not a problem, since the service is in
its own process and, therefore, cannot possibly be using the client’s UI thread.
However, AIDL IPC calls are synchronous, so the client will still block waiting for the
script to be executed. This too will be corrected later in this chapter.

The Client

The client — a revised version of BshFragment — connects to the remote service to
ask it to execute BeanShell scripts on the user’s behalf:

importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.android.advservice.IScriptcom.commonsware.android.advservice.IScript;

publicpublic classclass BshFragmentBshFragment extendsextends Fragment implementsimplements OnClickListener,
ServiceConnection {

privateprivate IScript service=nullnull;
privateprivate Button btn=nullnull;

publicpublic View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.main, container, falsefalse);

btn=(Button)result.findViewById(R.id.eval);
btn.setOnClickListener(thisthis);
btn.setEnabled((service!=nullnull));

returnreturn(result);
}

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);
getActivity().getApplicationContext()

.bindService(newnew Intent(

"com.commonsware.android.advservice.IScript"),
thisthis, Context.BIND_AUTO_CREATE);

REMOTE SERVICES AND THE BINDING PATTERN

1977

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Override
publicpublic void onDestroy() {

getActivity().getApplicationContext().unbindService(thisthis);

supersuper.onDestroy();
}

@Override
publicpublic void onClick(View view) {

EditText script=(EditText)getView().findViewById(R.id.script);
String src=script.getText().toString();

trytry {
service.executeScript(src);

}
catchcatch (RemoteException e) {

Toast.makeText(getActivity(), e.toString(), Toast.LENGTH_LONG)
.show();

}
}

@Override
publicpublic void onServiceConnected(ComponentName className, IBinder binder) {

service=IScript.Stub.asInterface(binder);
btn.setEnabled(truetrue);

}

@Override
publicpublic void onServiceDisconnected(ComponentName className) {

service=nullnull;
}

}

This is the same as with the local binding scenario, except:

• We use a different Intent with bindService(), one identifying the remote
service by name

• Our onServiceConnected() uses IScript.Stub.asInterface() to convert
the raw IBinder into an IScript object for use

• We have to catch a RemoteException when we try to call executeScript(),
in case the service crashed or is otherwise inaccessible at this moment

Note that the client needs its own copy of IScript.aidl. After all, it is a totally
separate application, and therefore does not share source code with the service. In a
production environment, we might craft and distribute a JAR file that contains the
IScript classes, so both client and service can work off the same definition (see the

REMOTE SERVICES AND THE BINDING PATTERN

1978

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

upcoming chapter on reusable components). For now, we will just have a copy of the
AIDL.

If you compile both applications and upload them to the device, then start up the
client, you can enter in Beanshell code and have it be executed by the service. Note,
though, that you cannot perform UI operations (e.g., raise a Toast) from the service,
because in that process, the executeScript() method is not running on the main
application thread. If you choose some script that is long-running, you will see that
the “Go!” button is blocked until the script is complete.

Servicing the Service
The preceding section outlined two flaws in the implementation of the Beanshell
remote service:

• The client received no results from the script execution
• The client blocked waiting for the script to complete

If we were not worried about the blocking-call issue, we could simply have the
executeScript() exported API return some sort of result (e.g., toString() on the
result of the Beanshell eval() call). However, that would not solve the fact that calls
to service APIs are synchronous even for remote services.

Another approach would be to pass some sort of callback object with
executeScript(), such that the server could run the script asynchronously and
invoke the callback on success or failure. This, though, implies that there is some
way to have the client export an API to the service.

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (AdvServices/RemoteServiceEx and AdvServices/
RemoteClientEx).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces and stub
implementations. In the preceding example, we used AIDL to have the service flesh
out the stub implementation and have the client access the service via the AIDL-
defined interface. However, there is nothing magic about services implementing and
clients accessing — it is equally possible to reverse matters and have the client
implement something the service uses via an interface.

REMOTE SERVICES AND THE BINDING PATTERN

1979

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteServiceEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteServiceEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx

So, for example, we could create an IScriptResult.aidl file:

packagepackage com.commonsware.android.advservice;

// Declare the interface.
interfaceinterface IScriptResultIScriptResult {

void success(String result);
void failure(String error);

}

Then, we can augment IScript itself, to pass an IScriptResult with
executeScript():

packagepackage com.commonsware.android.advservice;

importimport com.commonsware.android.advservice.IScriptResultcom.commonsware.android.advservice.IScriptResult;

// Declare the interface.
interfaceinterface IScriptIScript {

void executeScript(String script, IScriptResult cb);
}

Notice that we need to specifically import IScriptResult, just like we might import
some “regular” Java interface. And, as before, we need to make sure the client and
the server are working off of the same AIDL definitions, so these two AIDL files need
to be replicated across each project.

But other than that one little twist, this is all that is required, at the AIDL level, to
have the client pass a callback object to the service: define the AIDL for the callback
and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to make use
of this callback object.

Revising the Client

On the client, we need to implement an IScriptResult. On success(), we can do
something like raise a Toast; on failure(), we can perhaps show an AlertDialog.

The catch is that we cannot be certain we are being called on the UI thread in our
callback object.

So, the safest way to do that is to make the callback object use something like
runOnUiThread() to ensure the results are displayed on the UI thread. And, of

REMOTE SERVICES AND THE BINDING PATTERN

1980

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

course, we need to update our call to executeScript() to pass the callback object to
the remote service.

packagepackage com.commonsware.android.advservice.client;

importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.ServiceConnectionandroid.content.ServiceConnection;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.os.RemoteExceptionandroid.os.RemoteException;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.View.OnClickListenerandroid.view.View.OnClickListener;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.android.advservice.IScriptcom.commonsware.android.advservice.IScript;
importimport com.commonsware.android.advservice.IScriptResultcom.commonsware.android.advservice.IScriptResult;

publicpublic classclass BshFragmentBshFragment extendsextends Fragment implementsimplements OnClickListener,
ServiceConnection {

privateprivate IScript service=nullnull;
privateprivate Button btn=nullnull;

publicpublic View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.main, container, falsefalse);

btn=(Button)result.findViewById(R.id.eval);
btn.setOnClickListener(thisthis);
btn.setEnabled((service!=nullnull));

returnreturn(result);
}

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);
getActivity().getApplicationContext()

.bindService(newnew Intent(

"com.commonsware.android.advservice.IScript"),
thisthis, Context.BIND_AUTO_CREATE);

}

@Override

REMOTE SERVICES AND THE BINDING PATTERN

1981

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onDestroy() {
getActivity().getApplicationContext().unbindService(thisthis);

supersuper.onDestroy();
}

@Override
publicpublic void onClick(View view) {

EditText script=(EditText)getView().findViewById(R.id.script);
String src=script.getText().toString();

trytry {
service.executeScript(src, callback);

}
catchcatch (RemoteException e) {

Toast.makeText(getActivity(), e.toString(), Toast.LENGTH_LONG)
.show();

}
}

@Override
publicpublic void onServiceConnected(ComponentName className, IBinder binder) {

service=IScript.Stub.asInterface(binder);
btn.setEnabled(truetrue);

}

@Override
publicpublic void onServiceDisconnected(ComponentName className) {

service=nullnull;
}

privateprivate finalfinal IScriptResult.Stub callback=newnew IScriptResult.Stub() {
publicpublic void success(finalfinal String result) {

getActivity().runOnUiThread(newnew Runnable() {
publicpublic void run() {

Toast.makeText(getActivity(), result, Toast.LENGTH_LONG)
.show();

}
});

}

publicpublic void failure(finalfinal String error) {
getActivity().runOnUiThread(newnew Runnable() {

publicpublic void run() {
Toast.makeText(getActivity(), error, Toast.LENGTH_LONG)

.show();
}

});
}

};
}

REMOTE SERVICES AND THE BINDING PATTERN

1982

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Revising the Service

The service also needs changing, to both execute the scripts asynchronously and use
the supplied callback object for the end results of the script’s execution.

BshService from AdvServices/RemoteServiceEx uses a ThreadPoolExecutor to
manage a background thread. An ExecuteScriptJob wraps up the script and
callback; when the job is eventually processed, it uses the callback to supply the
results of the eval() (on success) or the message of the Exception (on failure):

packagepackage com.commonsware.android.advservice;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport bsh.Interpreterbsh.Interpreter;
importimport java.util.concurrent.ExecutorServicejava.util.concurrent.ExecutorService;
importimport java.util.concurrent.LinkedBlockingQueuejava.util.concurrent.LinkedBlockingQueue;
importimport java.util.concurrent.ThreadPoolExecutorjava.util.concurrent.ThreadPoolExecutor;
importimport java.util.concurrent.TimeUnitjava.util.concurrent.TimeUnit;

publicpublic classclass BshServiceBshService extendsextends Service {
privateprivate finalfinal ExecutorService executor=

newnew ThreadPoolExecutor(1, 1, 60, TimeUnit.SECONDS,
newnew LinkedBlockingQueue<Runnable>());

privateprivate finalfinal Interpreter i=newnew Interpreter();

@Override
publicpublic void onCreate() {

supersuper.onCreate();

trytry {
i.set("context", thisthis);

}
catchcatch (bsh.EvalError e) {

Log.e("BshService", "Error executing script", e);
}

}

@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(newnew BshBinder());
}

@Override
publicpublic void onDestroy() {

executor.shutdown();

supersuper.onDestroy();
}

REMOTE SERVICES AND THE BINDING PATTERN

1983

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate classclass ExecuteScriptJobExecuteScriptJob implementsimplements Runnable {
IScriptResult cb;
String script;

ExecuteScriptJob(String script, IScriptResult cb) {
thisthis.script=script;
thisthis.cb=cb;

}

@Override
publicpublic void run() {

trytry {
cb.success(i.eval(script).toString());

}
catchcatch (Throwable e) {

Log.e("BshService", "Error executing script", e);

trytry {
cb.failure(e.getMessage());

}
catchcatch (Throwable t) {

Log.e("BshService", "Error returning exception to client", t);
}

}
}

}

privateprivate classclass BshBinderBshBinder extendsextends IScript.Stub {
@Override
publicpublic void executeScript(String script, IScriptResult cb) {

executor.execute(newnew ExecuteScriptJob(script, cb));
}

};
}

Notice that the service’s own API just needs the IScriptResult parameter, which
can be passed around and used like any other Java object. The fact that it happens to
cause calls to be made synchronously back to the remote client is invisible to the
service.

The net result is that the client can call the service and get its results without tying
up the client’s UI thread.

You may be wondering why we do not simply use an AsyncTask. The reason is that
remote service methods exposed by AIDL are not invoked on the main application
thread — one of the few places in Android where Android calls your code from a
background thread. An AsyncTask expects to be created on the main application
thread.

REMOTE SERVICES AND THE BINDING PATTERN

1984

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Thinking About Security
Remote services, by definition, are available for anyone to connect to. This may or
may not be a good idea.

If the only client of your remote service is some other app of yours, you could
protect the service using a custom signature-level permission.

If you anticipate third-party apps communicating with your service, you should
strongly consider protecting the service with an ordinary custom permission, so the
user can vote on whether the communication is allowed.

For local services, the simplest way to secure the service is to not export it, typically
by not having an <intent-filter> element for the <service> in the manifest. Then,
your app is the only app that can work with the service.

The “Everlasting Service” Anti-Pattern
One anti-pattern that is all too prevalent in Android is the “everlasting service”. Such
a service is started via startService() and never stops — the component starting it
does not stop it and it does not stop itself via stopSelf().

Why is this an anti-pattern?

1. The service takes up memory all of the time. This is bad in its own right if
the service is not continuously delivering sufficient value to be worth the
memory.

2. Users, fearing services that sap their device’s CPU or RAM, may attack the
service with so-called “task killer” applications or may terminate the service
via the Settings app, thereby defeating your original goal.

3. Android itself, due to user frustration with sloppy developers, will terminate
services it deems ill-used, particularly ones that have run for quite some
time.

Occasionally, an everlasting service is the right solution. Take a VOIP client, for
example. A VOIP client usually needs to hold an open socket with the VOIP server
to know about incoming calls. The only way to continuously watch for incoming
calls is to continuously hold open the socket. The only component capable of doing
that would be a service, so the service would have to continuously run.

REMOTE SERVICES AND THE BINDING PATTERN

1985

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, in the case of a VOIP client, or a music player, the user is the one
specifically requesting the service to run forever. By using startForeground(), a
service can ensure it will not be stopped due to old age for cases like this.

As a counter-example, imagine an email client. The client wishes to check for new
email messages periodically. The right solution for this is the AlarmManager pattern
described elsewhere in this book. The anti-pattern would have a service running
constantly, spending most of its time waiting for the polling period to elapse (e.g.,
via Thread.sleep()). There is no value to the user in taking up RAM to watch the
clock tick. Such services should be rewritten to use AlarmManager.

Most of the time, though, it appears that services are simply leaked. That is one
advantage of using AlarmManager and an IntentService – it is difficult to leak the
service, causing it to run indefinitely. In fact, IntentService in general is a great
implementation to use whenever you use the command pattern, as it ensures that
the service will shut down eventually. If you use a regular service, be sure to shut it
down when it is no longer actively delivering value to the user.

REMOTE SERVICES AND THE BINDING PATTERN

1986

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Manifest Tips

If you have been diligent about reading this book (versus having randomly jumped
to this chapter), you will already have done a fair number of things with your
project’s AndroidManifest.xml file:

1. Used it to define components, like activities, services, content providers, and
manifest-registered broadcast receivers

2. Used it to declare permissions your application requires, or possibly to
define permissions that other applications need in order to integrate with
your application

3. Used it to define what SDK level, screen sizes, and other device capabilities
your application requires

In this chapter, we continue looking at things the manifest offers you, starting with a
discussion of controlling where your application gets installed on a device, and
wrapping up with a bit of information about activity aliases.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Just Looking For Some Elbow Room
On October 22, 2008, the HTC Dream was released, under the moniker of “T-Mobile
G1”, as the first production Android device.

1987

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/HTC_Dream

Complaints about the lack of available storage space for applications probably
started on October 23rd.

The Dream, while a solid first Android device, offered only 70MB of on-board flash
for application storage. This storage had to include:

1. The Android application (APK) file
2. Any local files or databases the application created, particularly those

deemed unsafe to put on the SD card (e.g., privacy)
3. Extra copies of some portions of the APK file, such as the compiled Dalvik

bytecode, which get unpacked on installation for speed of access

It would not take long for a user to fill up 70MB of space, then have to start
removing some applications to be able to try others.

Users and developers alike could not quite understand why the Dream had so little
space compared to the available iPhone models, and they begged to at least allow
applications to install to the SD card, where there would be more room. This,
however, was not easy to implement in a secure fashion, and it took until Android
2.2 for the feature to become officially available.

If your app’s android:minSdkVersion is 11 or higher, you can probably ignore all of
this. At that time, what the Android SDK refers to as “internal storage” and “external
storage” were moved to be part of one filesystem partition, and so there is no
artificial division of space between the two.

But, if you are still supporting Android 2.2 and 2.3, you may wish to consider
supporting having your app be installed to, or moved to, external storage.

Configuring Your App to Reside on External Storage

Indicating to Android that your application can reside on the SD card is easy… and
necessary, if you want the feature. If you do not tell Android this is allowed, Android
will not install your application to the SD card, nor allow the user to move the
application to the SD card.

All you need to do is add an android:installLocation attribute to the root
<manifest> element of your AndroidManifest.xml file. There are three possible
values for this attribute:

ADVANCED MANIFEST TIPS

1988

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• internalOnly, the default, meaning that the application cannot be installed
to the SD card

• preferExternal, meaning the application would like to be installed on the
SD card

• auto, meaning the application can be installed in either location

If you use preferExternal, then your application will be initially installed on the SD
card in most cases. Android reserves the right to still install your application on
internal storage in cases where that makes too much sense, such as there not being
an SD card installed at the time.

If you use auto, then Android will make the decision as to the installation location,
based on a variety of factors. In effect, this means that auto and preferExternal are
functionally very similar – all you are doing with preferExternal is giving Android a
hint as to your desired installation destination.

Because Android decides where your application is initially installed, and because
the user has the option to move your application between the SD card and on-board
flash, you cannot assume any given installation spot. The exception is if you choose
internalOnly, in which case Android will honor your request, at the potential cost
of not allowing the installation at all if there is no more room in on-board flash.

For example, here is the manifest from the SMS/Sender sample project, profiled in
another chapter, showing the use of preferExternal:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sms.sender"
android:installLocation="preferExternal"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.SEND_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"

ADVANCED MANIFEST TIPS

1989

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender

android:label="@string/app_name">>
<activity<activity

android:name="Sender"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

Since this feature only became available in Android 2.2, to support older versions of
Android, just have your build tools target API level 8 (e.g., target=android-8 in
project.properties for those of you building via Ant, or Project > Properties >
Android for those of you building with Eclipse) while having your minSdkVersion
attribute in the manifest state the lowest Android version your application supports
overall. Older versions of Android will ignore the android:installLocation
attribute. So, for example, in the above manifest, the Sender application supports
API level 4 and above (Android 1.6 and newer), but still can use
android:installLocation="preferExternal", because the build tools are targeting
API level 8.

What the User Sees

On newer devices, such as those running Android 4.2, the user will see nothing
different. That is because internal and external storage share a common pool of
space, and therefore there is no advantage in having your application installed to
external storage.

However, on, say, Android 2.3, you will see a difference in behavior.

For an application that wound up on external storage, courtesy of your choice of
preferExternal or auto, the user will have an option to move it to the phone’s
internal storage. This can be done by choosing the application in the Manage
Applications list in the Settings application, then clicking the “Move to phone”
button.

Conversely, if your application is installed in on-board flash, and it is movable to
external storage, they will be given that option with a “Move to SD card” button.

ADVANCED MANIFEST TIPS

1990

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What the Pirate Sees

Ideally, the pirate sees nothing at all.

One of the major concerns with installing applications to the SD card is that the SD
card is usually formatted FAT32 (vfat), offering no protection from prying eyes. The
concern was that pirates could then just pluck the APK file off external storage and
distribute it, even for paid apps from the Play Store.

Apparently, they solved this problem.

To quote the Android developer documentation:

The unique container in which your application is stored is encrypted with
a randomly generated key that can be decrypted only by the device that
originally installed it. Thus, an application installed on an SD card works
for only one device.

Moreover, this “unique container” is not normally mounted when the user mounts
external storage on their host machine. The user mounts /mnt/sdcard; the “unique
container” is /mnt/asec.

What Your App Sees… When External Storage is Inaccessible

So far, this has all seemed great for users and developers. Developers need to add a
single attribute to the manifest, and Android 2.2+ users gain the flexibility of where
the app gets stored.

Alas, there is a problem, and it is a big one: on Android 1.x and 2.x, either the host
PC or the device can have access to the SD card, but not both. As a result, if the user
makes the SD card available to the host PC, by plugging in the USB cable and
mounting the SD card as a drive via a Notification or other means, that SD card
becomes unavailable for running applications.

So, what happens?

1. First, your application is terminated forcibly, as if your process was being
closed due to low memory. Notably, your activities and services will not be
called with onDestroy(), and instance state saved via
onSaveInstanceState() is lost.

ADVANCED MANIFEST TIPS

1991

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/appendix/install-location.html

2. Second, your application is unhooked from the system. Users will not see
your application in the launcher, your AlarmManager alarms will be canceled,
and so on.

3. When the user makes external storage available to the phone again, your
application will be hooked back into the system and will be once again
available to the user (for example, your icon will reappear in the launcher)

The upshot: if your application is simply a collection of activities, otherwise not
terribly connected to Android, the impact on your application is no different than if
the user reboots the phone, kills your process via a so-called “task killer” application,
etc. If, however, you are doing more than that, the impacts may be more dramatic.

Perhaps the most dramatic impact, from a user’s standpoint, will be if your
application implements app widgets. If the user has your app widget on her home
screen, that app widget will be removed when the SD card becomes unavailable to
the phone. Worse, your app widget cannot be re-added to the home screen until the
phone is rebooted (a limitation that hopefully will be lifted sometime after Android
2.2).

The user is warned about this happening, at least in general:

Figure 518: Warning when unmounting the SD card

ADVANCED MANIFEST TIPS

1992

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Two broadcast Intents are sent out related to this:

• ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE, when the SD card (and
applications installed upon it) become unavailable

• ACTION_EXTERNAL_APPLICATIONS_AVAILABLE, when the SD card and its
applications return to normal

Note that the documentation is unclear as to whether your own application, that
had been on the SD card, can receive ACTION_EXTERNAL_APPLICATIONS_AVAILABLE
once the SD card is back in action. There is an outstanding issue on this topic in the
Android issue tracker.

Also note that all of these problems hold true for longer if the user physically
removes the SD card from the device. If, for example, they replace the card with a
different one — such as one with more space — your application will be largely lost.
They will see a note in their applications list for your application, but the icon will
indicate it is on external storage, and the only thing they can do is uninstall it:

Figure 519: The Manage Applications list, with an application shown from a removed
SD card

ADVANCED MANIFEST TIPS

1993

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=8485

Choosing Whether to Support External Storage

Given the huge problem from the previous section, the question of whether or not
your application should support external storage is far from clear.

As the Android developer documentation states:

Large games are more commonly the types of applications that should
allow installation on external storage, because games don’t typically provide
additional services when inactive. When external storage becomes
unavailable and a game process is killed, there should be no visible effect
when the storage becomes available again and the user restarts the game
(assuming that the game properly saved its state during the normal Activity
lifecycle).

Conversely, if your application implements any of the following features, it may be
best to not support external storage:

1. Polling of Web services or other Internet resources via a scheduled alarm
2. Account managers and their corresponding sync adapters, for custom

sources of contact data
3. App widgets, as noted in the previous section
4. Device administration extensions
5. Live folders
6. Custom soft keyboards (“input method engines”)
7. Live wallpapers
8. Custom search providers

But, as noted earlier, this is not even usually necessary on API Level 11+ devices.
Hence, even if your app would otherwise qualify for being installed to external
storage, you may not wish to bother. If few devices (Android 2.2 and Android 2.3)
might need the capability, it may not be worth the extra testing burden.

Using an Alias
As was mentioned in the chapter on integration, you can use the PackageManager
class to enable and disable components in your application. This works at the
component level, meaning you can enable and disable activities, services, content
providers, and broadcast receivers. It does not support enabling or disabling
individual <intent-filter> stanzas from a given component, though.

ADVANCED MANIFEST TIPS

1994

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/appendix/install-location.html#Should

Why might you want to do this?

1. Perhaps you have an activity you want to be available for use, but not
necessarily available in the launcher, depending on user configuration or
unlocking “pro” features or something

2. Perhaps you want to add browser support for certain MIME types, but only if
other third-party applications are not already installed on the device

While you cannot control individual <intent-filter> stanzas directly, you can have
a similar effect via an activity alias.

An activity alias is another manifest element — <activity-alias> – that provides
an alternative set of filters or other component settings for an already-defined
activity. For example, here is the AndroidManifest.xml file from the Manifest/Alias
sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.alias"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name="AliasActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>
<activity-alias<activity-alias android:label="@string/app_name2"

android:name="ThisIsTheAlias"
android:targetActivity="AliasActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity-alias></activity-alias>

</application></application>
</manifest></manifest>

Here, we have one <activity> element, with an <intent-filter> to put the activity
in the launcher. We also have an <activity-alias> element… which puts a second
icon in the launcher for the same activity implementation.

ADVANCED MANIFEST TIPS

1995

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Alias
http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Alias

An activity alias can be enabled and disabled independently of its underlying
activity. Hence, you can have one activity class have several independent sets of
intent filters and can choose which of those sets are enabled at any point in time.

For testing purposes, you can also enable and disable these from the command line.
Use the adb shell pm disableadb shell pm disable command to disable a component:

adb shell pm disable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

… and the corresponding adb shell pm enableadb shell pm enable command to enable a component:

adb shell pm enable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

In each case, you supply the package of the application
(com.commonsware.android.alias) and the class of the component to enable or
disable (com.commonsware.android.alias.ThisIsTheAlias), separated by a slash.

Getting Meta (Data)
Sometimes, you may want to put more data in the manifest, associated with your
components. You will frequently see this for use with libraries or plugin distribution
models, where sharing some configuration data between parties could eliminate a
bunch of API code that a reuser might need to implement.

To support this, Android offers a <meta-data> element as a child of <activity>,
<activity-alias>, <receiver>, or <service>. Each <meta-data> element has an
android:name attribute plus an associated value, supplied by either an
android:value attribute (typically for literals) or an android:resource attribute (for
references to resources).

Other parties can then get at this information via PackageManager. So, for example,
the implementer of a plugin could have <meta-data> elements indicating details of
how the plugin should be used (e.g., desired polling frequency), and the host of the
plugin could then get that configuration data without the plugin author having to
mess around with implementing some Java API for it.

For example, Roman Nurik’s DashClock is a lockscreen app widget designed to serve
as a replacement for the clock app widget that ships with many Android 4.2+
devices. Not only does it display the time, but it is a plugin host, allowing third party

ADVANCED MANIFEST TIPS

1996

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/dashclock

developers to supply “extensions” that can also display data in the app widget. This
way, users can set up a single lockscreen app widget and get at a bunch of useful
information.

DashClock’s extension API makes use of <meta-data> to pass configuration data
from the extension to DashClock itself. The implementation of a DashClock
extension is a service, and so the extension’s <service> element will have a batch of
<meta-data> elements with this configuration data:

<service<service android:name=".ExampleExtension"
android:icon="@drawable/ic_extension_example"
android:label="@string/extension_title"

android:permission="com.google.android.apps.dashclock.permission.READ_EXTENSION_DATA">>
<intent-filter><intent-filter>

<action<action android:name="com.google.android.apps.dashclock.Extension" />/>
</intent-filter></intent-filter>
<meta-data<meta-data android:name="protocolVersion" android:value="1" />/>
<meta-data<meta-data android:name="description"

android:value="@string/extension_description" />/>
<!-- A settings activity is optional -->
<meta-data<meta-data android:name="settingsActivity"

android:value=".ExampleSettingsActivity" />/>
</service></service>

(sample from the DashClock documentation)

Here, the developer can specify:

• What version of the communications protocol is supported, so DashClock
can update its protocol over time yet remain backwards-compatible with
older extensions, via the protocolVersion entry

• What the description is for the extension, used in DashClock’s configuration
screens to let the user know what available extensions there are, via the
description entry

• What activity, if any, does the extension supply that allows the user to
configure that extension, that DashClock should provide access to from its
own settings activity, via the settingsActivity entry

In all three cases, DashClock uses android:value. Note that android:value does
support the use of resources — the value of description is a reference to the
extension_description string resource, for example.

To retrieve that metdata, an app can ask for PackageManager.GET_META_DATA as a
flag on PackageManager methods for introspection, like queryIntentActivities().

ADVANCED MANIFEST TIPS

1997

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://api.dashclock.googlecode.com/git/reference/com/google/android/apps/dashclock/api/DashClockExtension.html

In the case of DashClock, it retrieves all implementations of its plugin by asking
Android what services have an <intent-filter> with an <action> of
com.google.android.apps.dashclock.Extension, via queryIntentServices(),
asking for PackageManager to also supply each service’s metadata:

List<ResolveInfo> resolveInfos = pm.queryIntentServices(
newnew Intent(DashClockExtension.ACTION_EXTENSION),

PackageManager.GET_META_DATA);

(from the ExtensionManager.java file in the DashClock source code)

Each ResolveInfo object that comes back in the list will have a serviceInfo field
containing details of the service. Because GET_META_DATA was passed in as a flag, the
serviceInfo will have a Bundle named metaData which will contain the key/value
pairs specified by the <meta-data> elements. DashClock can then grab that data and
use it to populate its own object model:

forfor (ResolveInfo resolveInfo : resolveInfos) {
ExtensionListing listing = newnew ExtensionListing();
listing.componentName = newnew

ComponentName(resolveInfo.serviceInfo.packageName,
resolveInfo.serviceInfo.name);

listing.title = resolveInfo.loadLabel(pm).toString();
Bundle metaData = resolveInfo.serviceInfo.metaData;
ifif (metaData != nullnull) {

listing.protocolVersion = metaData.getInt("protocolVersion");
listing.description = metaData.getString("description");
String settingsActivity = metaData.getString("settingsActivity");
ifif (!TextUtils.isEmpty(settingsActivity)) {

listing.settingsActivity = ComponentName.unflattenFromString(
resolveInfo.serviceInfo.packageName + "/" +

settingsActivity);
}

}

(from the ExtensionManager.java file in the DashClock source code)

The <meta-data> element supports five data types for android:value:

• String
• Integer
• Boolean (specified as true or false in the android:value attribute)
• Float

It also supports colors, specified in #AARRGGBB and similar formats, which,
according to the documentation, is returned as a string.

ADVANCED MANIFEST TIPS

1998

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
http://developer.android.com/guide/topics/manifest/meta-data-element.html

In this fashion, extension developers can supply enough information for DashClock
to allow the user to see the list of installed extensions, choose which one(s) they
want, and configure those (where applicable). Actually getting the content to display
will need to be done at runtime, in this case via making requests of the service to
supply a ExtensionData structure with the messages, icon, and so forth to be
displayed.

ADVANCED MANIFEST TIPS

1999

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous Integration Tips

This chapter is a collection of other miscellaneous integration and introspection tips
and techniques that you might find useful in your Android apps.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Take the Shortcut
Another way to integrate with Android is to offer custom shortcuts. Shortcuts are
available from the home screen. Whereas app widgets allow you to draw on the
home screen, shortcuts allow you to wrap a custom Intent with an icon and caption
and put that on the home screen. You can use this to drive users not just to your
application’s “front door”, like the launcher icon, but to some specific capability
within your application, like a bookmark.

In our case, in the Introspection/QuickSender sample project, we will allow users
to create shortcuts that use ACTION_SEND to send a pre-defined message, either to a
specific address or anywhere, as we have seen before in this chapter.

Once again, the key is in the intent filter.

Registering a Shortcut Provider

Here is the manifest for QuickSender:

2001

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/QuickSender
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/QuickSender

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.qsender"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name="QuickSender">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.CREATE_SHORTCUT" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>
</manifest></manifest>

Our single activity does not implement a traditional launcher <intent-filter>.
Rather, it has one that watches for a CREATE_SHORTCUT action. This does two things:

• It means that our activity will show up in the list of possible shortcuts a user
can configure

• It means this activity will be the recipient of a CREATE_SHORTCUT Intent if the
user chooses this application from the shortcuts list

Implementing a Shortcut Provider

The job of a shortcut-providing activity is to:

1. Create an Intent that will be what the shortcut launches
2. Return that Intent and other data to the activity that started the shortcut

provider
3. Finally, finish(), so the caller gets control

You can see all of that in the QuickSender implementation:

packagepackage com.commonsware.android.qsender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

MISCELLANEOUS INTEGRATION TIPS

2002

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass QuickSenderQuickSender extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void save(View v) {
Intent shortcut=newnew Intent(Intent.ACTION_SEND);
TextView addr=(TextView)findViewById(R.id.addr);
TextView subject=(TextView)findViewById(R.id.subject);
TextView body=(TextView)findViewById(R.id.body);
TextView name=(TextView)findViewById(R.id.name);

ifif (!TextUtils.isEmpty(addr.getText())) {
shortcut.putExtra(Intent.EXTRA_EMAIL,

newnew String[] { addr.getText().toString() });
}

ifif (!TextUtils.isEmpty(subject.getText())) {
shortcut.putExtra(Intent.EXTRA_SUBJECT, subject.getText()

.toString());
}

ifif (!TextUtils.isEmpty(body.getText())) {
shortcut.putExtra(Intent.EXTRA_TEXT, body.getText().toString());

}

shortcut.setType("text/plain");

Intent result=newnew Intent();

result.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortcut);
result.putExtra(Intent.EXTRA_SHORTCUT_NAME, name.getText()

.toString());
result.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,

Intent.ShortcutIconResource.fromContext(thisthis,
R.drawable.icon));

setResult(RESULT_OK, result);
finish();

}
}

The shortcut Intent is the one that will be launched when the user taps the
shortcut icon on the home screen. The result Intent packages up shortcut plus the
icon and caption, where the icon is converted into an
Intent.ShortcutIconResource object. That result Intent is then used with the
setResult() call, to pass that back to whatever called startActivityForResult() to
open up QuickSender. Then, we finish().

MISCELLANEOUS INTEGRATION TIPS

2003

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

At this point, all the information about the shortcut is in the hands of Android (or,
more accurately, the home screen application), which can add the icon to the home
screen.

Using the Shortcuts

To create a custom shortcut using QuickSender, long-tap on the background of the
home screen to bring up the customization options:

Figure 520: The home screen customization options list

Choose Shortcuts, and scroll down to find QuickSender in the list:

MISCELLANEOUS INTEGRATION TIPS

2004

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 521: The available types of shortcuts

Click the QuickSender entry, which will bring up our activity with the form to define
what to send:

MISCELLANEOUS INTEGRATION TIPS

2005

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 522: The QuickSender configuration activity

Fill in the name, either the subject or body, and optionally the address. Then, click
the Create Shortcut button, and you will find your shortcut sitting on your home
screen:

MISCELLANEOUS INTEGRATION TIPS

2006

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 523: The QuickSender-defined shortcut, labeled Shortcut

If you launch that shortcut, and if there is more than one application on the device
set up to handle ACTION_SEND, Android will bring up a special chooser, to allow you
to not only pick how to send the message, but optionally make that method the
default for all future requests:

MISCELLANEOUS INTEGRATION TIPS

2007

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 524: The ACTION_SEND request, as triggered by the shortcut

Depending on what you choose, of course, will dictate how the message actually gets
sent.

Homing Beacons for Intents
If you are encountering problems with Intent resolution — you create an Intent for
something and try starting an Activity or Service with it, and it does not work —
you can add the FLAG_DEBUG_LOG_RESOLUTION flag to the Intent. This will dump
information to LogCat about how the Intent resolution occurred, so you can better
diagnose what might be going wrong.

ShareActionProvider
Earlier in this book, we saw how you can bring up a chooser when using
startActivity() on an implicit Intent action, such as ACTION_SEND.

And, earlier in this book, we saw how PackageManager and methods like
queryIntentActivities() can be used to create your own means for the user to
choose some implementation of an implicit Intent action, such as how a home
screen lets the user choose an implementation of ACTION_MAIN.

MISCELLANEOUS INTEGRATION TIPS

2008

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Nowadays, there is another option, if you are using the action bar (native or via
ActionBarSherlock): ShareActionProvider. Designed for use with ACTION_SEND,
ShareActionProvider supplies a drop-down menu in the action bar to let the user
invoke some implementation of an Intent that you configure and supply.

To see how you can add a ShareActionProvider to your activity or fragment, let us
take a look at the ActionBar/Share sample project.

Our activity — MainActivity — will utilize the action bar, in this case via
ActionBarSherlock. Its action bar items are contained in a res/menu/actions.xml
file:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/share"

android:actionProviderClass="com.actionbarsherlock.widget.ShareActionProvider"
android:showAsAction="ifRoom"/>/>

</menu></menu>

In addition to specifying an ID and indicating that the item should always be shown
in the action bar, we also include the android:actionProviderClass attribute. This
points to a concrete implementation of the ActionProvider abstract base class,
which is responsible for rendering the action bar item. In our case, we are using
ShareActionProvider, specifically the one from ActionBarSherlock. There is an
equivalent class for the native action bar in the Android SDK, should you be
developing without ActionBarSherlock.

Our activity UI is simply a large EditText widget:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="left|top"
android:inputType="textMultiLine"/>/>

We load that layout in onCreate() of MainActivity, along with intializing an Intent
to be used when we employ the ShareActionProvider:

packagepackage com.commonsware.android.sap;

importimport android.content.Intentandroid.content.Intent;

MISCELLANEOUS INTEGRATION TIPS

2009

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/Share
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/Share

importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.actionbarsherlock.app.SherlockActivitycom.actionbarsherlock.app.SherlockActivity;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.widget.ShareActionProvidercom.actionbarsherlock.widget.ShareActionProvider;

publicpublic classclass MainActivityMainActivity extendsextends SherlockActivity implementsimplements
ShareActionProvider.OnShareTargetSelectedListener, TextWatcher {

privateprivate ShareActionProvider share=nullnull;
privateprivate Intent shareIntent=newnew Intent(Intent.ACTION_SEND);
privateprivate EditText editor=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.activity_main);

shareIntent.setType("text/plain");
editor=(EditText)findViewById(R.id.editor);
editor.addTextChangedListener(thisthis);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getSupportMenuInflater().inflate(R.menu.actions, menu);

share=
(ShareActionProvider)menu.findItem(R.id.share)

.getActionProvider();
share.setOnShareTargetSelectedListener(thisthis);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onShareTargetSelected(ShareActionProvider source,

Intent intent) {
Toast.makeText(thisthis, intent.getComponent().toString(),

Toast.LENGTH_LONG).show();

returnreturn(falsefalse);
}

@Override
publicpublic void afterTextChanged(Editable s) {

shareIntent.putExtra(Intent.EXTRA_TEXT, s.toString());
share.setShareIntent(shareIntent);

}

@Override

MISCELLANEOUS INTEGRATION TIPS

2010

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void beforeTextChanged(CharSequence s, int start, int count,
int after) {

// ignored
}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
// ignored

}
}

We also register the activity itself to be a TextWatcher, to find out when the user
types something into the EditText widget.

onCreateOptionsMenu() is where we configure the ShareActionProvider, which we
obtain by calling findItem() on our Menu to get the item associated with the
provider, then calling getActionProvider() on the supplied MenuItem. Specifically:

• We supply an Intent — configured with the action, MIME type, etc. that we
wish to invoke — to setShareIntent()

• We supply MainActivity itself, as an implementation of
OnShareTargetSelectedListener, via
setOnShareTargetSelectedListener()

In the afterTextChanged() method needed by the TextWatcher interface, we update
the EXTRA_TEXT extra in the Intent to be the current contents of the EditText. This
way, as the user types, we keep the Intent “fresh” with respect to what should be
shared. Many consumers of a ShareActionProvider will have less dynamic contents,
in which case you can just set up the Intent up front before you register it with the
ShareActionProvider.

If the user chooses an item from the ShareActionProvider, we are notified via a call
to our onShareTargetSelected() method. Registering as the
OnShareTargetSelectedListener is optional — Android will automatically start the
selected activity without our involvement. onShareTargetSelected() is there if you
wish to know the means of sharing that the user chose. In our case, we just flash a
Toast to indicate that the callback worked.

MISCELLANEOUS INTEGRATION TIPS

2011

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Reusable Components

In the world of Java outside of Android, reusable components rule the roost.
Whether they are simple JARs, are tied in via inversion-of-control (IoC) containers
like Spring, or rely on enterprise service buses like Mule, reusable Java components
are a huge portion of the overall Java ecosystem. Even full-fledged applications, like
Eclipse or NetBeans, are frequently made up of a number of inter-locking
components, many of which are available for others to use in their own applications.

Android, too, supports this sort of reuse. In some cases, it follows standard Java
approaches. However, in other cases, unique Android aspects, such as resources,
steer developers in different directions for reuse.

This chapter will outline what reuse models are in use today and how you can
package your own components for reuse.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Where Do I Find Them?
Android historically has not had a “go-to” place to find reusable components.

AndroidViews.net is probably the leading contender at present, though their
emphasis is definitely on UI components. OpenIntents was the original catalog, but
it does not get a lot of attention nowadays.

2013

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.springframework.org/
http://www.mulesource.org
http://www.eclipse.org/
http://www.netbeans.org/
http://www.androidviews.net/
http://www.openintents.org/en/libraries

Beyond that, look for recommendations in StackOverflow answers, blog posts, and
the like.

How Are They Packaged?
There are three main ways that reusable code gets packaged on Android: as a
traditional Java JAR, as an Android library project, or (technically) as an APK. The
last approach is usually used by apps that have user value in their own right, but also
expose some sort of integration API for use by other apps, that you can take
advantage of.

JARs

Android code that is pure code, without requiring its own resources, can be
packaged into a JAR, no differently than can regular Java code outside of Android.

As was covered earlier in the book, to use such a JAR, just drop it into libs/. Its
contents will be added to your compile path (so you can reference classes from the
library) and its contents will be packaged in your APK (so those references will work
at runtime).

Library Projects

Android code that relies upon resources — such as many reusable UI components,
such as custom widgets — cannot be packaged as a simple JAR, as there is no way of
packaging the Android resources in that JAR. Instead, Google created the Android
library project as the “unit of reuse” for such cases.

Most published Android library projects include full source code, as they are usually
open source projects. However, it is possible to create a binary-only Android library
project, one where the source code is replaced by a JAR that accompanies the
resources. Google’s Play Services SDK is distributed as one such “binary-only” library
project.

As was covered earlier in the book, using an Android library project involves making
it available to your build environment (e.g., importing it into your Eclipse
workspace) and then teaching your application project to reference the library
project (e.g., Project > Properties > Android in Eclipse). This approach works
regardless of whether the library project includes source code or not.

REUSABLE COMPONENTS

2014

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

APKs

Using JARs or library projects fits in the “traditional” model of compile-time reuse.
Android’s many IPC mechanisms offer plenty of options for run-time reuse, where
your app communicates with another app, having that app do things on your behalf.
In this case, the primary unit of reuse is not the JAR, or the library project, but the
APK.

For example, the ZXing project publishes the Barcode Scanner app. This app not
only allows users to scan barcodes, but allows other apps to scan barcodes, by asking
Barcode Scanner to scan the barcodes and return results.

To integrate with such an app, you will need to find the instructions from the app’s
developers on how to do that. Sometimes, they will tell you things that you would
use directly (e.g., “call startActivityForResult() with an Intent that contains…”).
Sometimes, they will distribute a client-side JAR that you can use that wraps up the
low-level IPC details into something a bit easier to consume. For example, ZXing
distributes an IntentIntegrator.java class file that you can use that not only
handles requesting the scans, but also helping the user install Barcode Scanner if it
is not already installed.

How Do I Create Them?
To create a reusable component, you start by getting a working code base, one that
implements whatever it is that you desire. From there, you need to choose which of
those aforementioned distribution patterns you believe is appropriate:

• JAR
• Standard library project
• Binary-only library project
• APK (with optional client-side JAR)

That, in turn, will drive how you take your code and create such a package. The
basics of how to do that for the different alternatives is described in the following
sections.

JARs

Creating a JAR for a reusable chunk of Android-related code is not significantly
different than is creating a JAR for a reusable chunk of “ordinary” Java code.

REUSABLE COMPONENTS

2015

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/zxing/
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
http://code.google.com/p/zxing/source/browse/trunk/android-integration/src/com/google/zxing/integration/android/IntentIntegrator.java
http://code.google.com/p/zxing/source/browse/trunk/android-integration/src/com/google/zxing/integration/android/IntentIntegrator.java

First, you need a project that represents the “resuable chunk of Android-related
code”. An easy way to do this is to just create a standard Android library project, but
one where you do not bother creating any resources.

Once the code is ready for distribution, you can create a JAR from the compiled Java
classes by your favorite traditional means. The author of this book, for example,
adds a custom Ant target that uses the standard Ant <jar> task to package things
up:

<target<target name="jar" depends="release">>
<delete<delete file="bin/WhateverYouWantToCallYourLibrary.jar" />/>
<jar<jar destfile="bin/WhateverYouWantToCallYourLibrary.jar">>

<fileset<fileset dir="bin/classes">>
<exclude<exclude name="**/BuildConfig.class" />/>
<exclude<exclude name="**/R.class" />/>
<exclude<exclude name="**/R$*.class" />/>

</fileset></fileset>
</jar></jar>

</target></target>

This way, running ant jarant jar creates a JAR. The three <exclude> elements strip out
compiled classes from your project’s gen/ directory that you would not want to ship
— BuildConfig and everything from R.java.

If your reusable code is pure Java, not involving Android at all, you are welcome to
create a plain Java project and create your JAR from that. The only major
recommendation would be to ensure that you are using some android.jar from the
SDK, rather than a JDK rt.jar, to ensure that you are sticking with classes and
methods that are in Android’s subset of the Java SE class library.

Standard Library Projects

In many respects, distributing a standard Android library project is even easier: just
ZIP it up. Or, if it is in a public source control repository (e.g., GitHub), reusers can
obtain it from that repository.

Of course, this will distribute the source code along with the resources and
everything else. This is typical for an open source library project.

Binary-Only Library Projects

It is possible to create a binary-only library project, one where your source code is
replaced by a JAR. This can be useful for proprietary library projects, for example.

REUSABLE COMPONENTS

2016

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, there is one noteworthy limitation with today’s tools: the library project
cannot itself depend upon a JAR or another library project. For complex scenarios
like that, you will need to hold out for the AAR solution that is forthcoming.

For simpler library projects, the recipe is straightforward, given an already-existing
Android library project:

1. Compile the Java source (e.g., via Ant) and turn it into a JAR file.
2. Create a copy of your original Android library project to serve as a

distribution Android library project.
3. Place the compiled JAR from step #1 and put it in libs/ of the distribution

library project from step #2.
4. Delete everything in src/ of the distribution library project (but leave the

now-empty src/ directory there).
5. Distribute the distribution library project (e.g., ZIP it up)

For example, given an Ant jar target as shown earlier in this chapter, an Ant target
to create a distribution ZIP might be:

<target<target name="dist" depends="jar">>
<copy<copy todir="/tmp/WhateverYouWantToCallYourLibrary/libs">>

<fileset<fileset dir="libs/" />/>
</copy></copy>
<copy<copy todir="/tmp/WhateverYouWantToCallYourLibrary/res">>

<fileset<fileset dir="res/" />/>
</copy></copy>
<copy<copy

file="bin/WhateverYouWantToCallYourLibrary.jar"
todir="/tmp/WhateverYouWantToCallYourLibrary/libs" />/>

<copy<copy
file="AndroidManifest.xml"
todir="/tmp/WhateverYouWantToCallYourLibrary" />/>

<copy<copy file="build.xml" todir="/tmp/WhateverYouWantToCallYourLibrary" />/>
<copy<copy

file="project.properties"
todir="/tmp/WhateverYouWantToCallYourLibrary" />/>

<copy<copy file="LICENSE" todir="/tmp/WhateverYouWantToCallYourLibrary" />/>
<mkdir<mkdir dir="/tmp/WhateverYouWantToCallYourLibrary/src" />/>
<zip<zip

destfile="/tmp/WhateverYouWantToCallYourLibrary.zip"
basedir="/tmp/"
includes="WhateverYouWantToCallYourLibrary/**"
whenempty="create" />/>

<delete<delete dir="/tmp/WhateverYouWantToCallYourLibrary" />/>
</target></target>

REUSABLE COMPONENTS

2017

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Assuming the existence of a /tmp/ directory (e.g., OS X or Linux), this will result in a
WhateverYouWantToCallYourLibrary.zip file in /tmp/. Along the way, we:

• Copy the libs/ and res/ trees from your source library project to a
temporary distribution directory

• Copy your compiled JAR into the libs/ subdirectory of the temporary
distribution directory

• Copy other miscellaneous files, like your LICENSE file for your software
license terms, into the root of the temporary distribution directory

• Create an empty src/ subdirectory in the temporary distribution directory
• ZIP up the temporary distribution directory to a ZIP file
• Delete the temporary distribution directory

APK

Most of your work for this distribution model is in writing and distributing the app
to your end users, through the Play Store or your other chosen distribution
channels.

In addition to that, you need to either document to reusers what sorts of IPC your
app supports, or create a JAR or library project that reusers can use to perform that
sort of integration. In the latter case, you would have a separate project representing
that JAR or library project that you would distribute using any of the
aforementioned approaches.

The Future: AAR
Google is hard at work on creating a new build system, to replace the combination
of Ant and Eclipse’s internal build system. This new build system, based upon
Gradle, will package Android library projects as AAR (.aar) files. These files, in
principle, should package up the entire library project, in binary form, as a single
file.

Other Considerations for Publishing Reusable
Code
Of course, there is more to publishing a resuable component than code and perhaps
Android resources. The following sections outline some other things to consider as
you contemplate offering some code base up for reuse by third parties.

REUSABLE COMPONENTS

2018

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/

Licensing

Your reusable code should be accompanied by adequate licensing information.

Your License

The first license you should worry about is your own. Is your component open
source? If so, you will want to ship a license file containing those terms. If your
component is not open source, make sure there is a license agreement shipped with
the component that lets the reuser know the terms of use.

Bear in mind that not all of your code necessarily has to have the same license. For
example, you might have a proprietary license for the component itself, but have
sample code be licensed under Apache License 2.0 for easy copy-and-paste.

Third-Party License Impacts

You may need to include licenses for third party libraries that you have to ship along
with your own JAR. Obviously, those licenses would need to give you redistribution
rights — otherwise, you cannot ship those libraries in the first place.

Sometimes, the third party licenses will impact your project more directly, such as:

1. Incorporating a GPL library may require your project to be licensed under
the same license

2. Adding support for Facebook data may require you to limit your API or
require reusers to supply API access keys, since you probably do not have
rights to redistribute Facebook data

Documenting the Usage

If you are expecting people to reuse your code, you are going to have to tell them
how to do that. Usually, these sorts of packages ship documentation with them,
sometimes a clone of what is available online. That way, developers can choose the
local or hosted edition of the documentation as they wish.

Note that generated documentation (e.g., Javadocs) may still need to be shipped or
otherwise supplied to reusers, if you are not providing the source code in the
package. Without the source code, reusers cannot regenerate the Javadocs.

REUSABLE COMPONENTS

2019

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Many open source projects eschew formal documentation in favor of simple
JavaDocs, plus “documentation in the form of a test suite” or “documentation in the
form of sample apps”. While test suites and sample apps are useful supplements,
they are not always an effective replacement for written documentation. And, while
JavaDocs are useful for reference material, they are often difficult to comprehend for
those trying to get started with the code and not knowing where to begin.

Naming Conventions

Make sure that your Java code is in a package that is likely to be distinct from any
others that reusers might already have. Typically, this means that the package name
is based on a domain name that you control, much like the package name for
Android apps themselves. Whatever you do, please do not publish your own code as
android.*, unless you are contributing this code to the Android open source project,
as android.* is reserved for use by Android itself.

(The author of this book would also appreciate it if you would not use
com.commonsware.*)

Also, be careful about the names of your resources. While your Java code resides in
its own namespace, your resources are pooled with all other resources in use by the
app. As a result, if you decide to reference R.layout.main thinking that it will be
your main.xml layout resource, it might actually be replaced by a main.xml resource
written by the app developer. You may wish to use some sort of a prefix convention
on your resource names to reduce the odds of accidental collision:

• ActionBarSherlock uses abs__
• ViewPagerIndicator uses vpi__
• And so on

REUSABLE COMPONENTS

2020

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/ActionBarSherlock
https://github.com/JakeWharton/Android-ViewPagerIndicator

Trail: Scripting Languages

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of Scripting Languages

A scripting language, for the purpose of this book, has two characteristics:

1. It is interpreted from source and so does not require any sort of compilation
step

2. It cannot (presently) be used to create a full-fledged Android application
without at least some form of custom Java-based stub, and probably much
more than that

In this part of the book, we will look at scripting languages on Android and what
you can accomplish with them, despite any limitations inherent in their collective
definition.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

All Grown Up
Interpreted languages have been a part of the programming landscape for decades.
The language most associated with the desktop computer revolution — BASIC —
was originally an interpreted language. However, the advent of MS-DOS and the
IBM PC (and clones) led developers in the direction of C for “serious programming”,
for reasons of speed. While interpreted languages continued to evolve, they tended
to be described as “scripting” languages, used to glue other applications together.
Perl, Python, and the like were not considered “serious” contenders for application
development.

2023

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The follow-on revolution, for the Internet, changed all of that. Most interactive Web
sites were written as CGI scripts using these “toy” languages, Perl first and foremost.
Even in environments where Perl was unpopular, such as Windows, Web
applications were still written using scripting languages, such as VBScript in Active
Server Pages (ASP). While some firms developed Web applications using C/C++,
scripting languages ruled the roost. That remains to this day, where you are far more
likely to find people writing Web applications in PHP or Ruby than you will find
them writing in C or C++. The most likely compiled language for Web development
— Java — is still technically an interpreted language, albeit not usually considered a
scripting language.

Nowadays, writing major components of an application using a scripting language is
not terribly surprising. While this is still most common with Web applications, you
can find scripting languages used in the browser (JavaScript), games (Lua), virtual
worlds (LSL), and so on. Even though these languages execute more slowly than
there C/C++ counterparts, they offer much greater flexibility, and faster CPUs make
the performance of scripts less critical.

Following the Script
Scripting languages are not built into Android, beyond the JavaScript interpreter in
the WebKit Web browser. Despite this, there is quite a bit of interest in scripting on
Android, and the biggest reasons for this come down to experience and comfort
level.

Your Expertise

Perhaps you have spent your entire career writing Python scripts, or you cut your
teeth on Perl CGI programs, or you have gotten seriously into Ruby development.

Maybe you used Java in previous jobs and hate it with the fiery passion of a
thousand suns.

Regardless of the cause, your expertise may lie outside the traditional Android realm
of Java-based development. Perhaps you would never touch Android if you had to
write in Java, or maybe you feel you would just be significantly more productive in
some other language. How much that productivity gain is real versus “in your head”
is immaterial — if you want to develop in some other language, you owe it to
yourself to try.

THE ROLE OF SCRIPTING LANGUAGES

2024

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your Users’ Expertise

Maybe you are looking to create a program where not only you can write scripts, but
so can your users. This might be a utility, or a game, or rulesets for email
management, or whatever.

In that case, you need:

1. Something interpreted, so you can execute what the user types in
2. Something embeddable, so your larger application (typically written in Java,

of course) is capable of executing those scripts
3. Something your users will be comfortable using for scripting

The last criterion is perhaps the toughest, as non-developers typically have limited
experience in writing scripts in any language, let alone one that runs on Android.
Perhaps the most popular such language is Basic, in the form of VBA and VBScript
on Windows… but there are no interpreters for those languages for Android at this
time.

Crowd-Developing

Perhaps your users will not only be entering scripts for their own benefit, but for
others’ benefit as well.

Many platforms have been improved by power users and amateur developers alike.
Browser users gain from those writing GreaseMonkey scripts. Bloggers benefit from
those writing WordPress themes. And so on.

To facilitate this sort of work, not only do you need an interpreted, embeddable,
user-familiar scripting environment, but you need some means for users to publish
their scripts and download the scripts of others. Fortunately, with Android having
near-continuous connectivity, your challenge will lie more on organizing and
hosting the scripts, more so than getting them on and off of devices.

Going Off-Script
Scripting languages on Android have their fair share of issues. It is safe to say that
while Android does not prohibit the use of scripting languages, its architecture does
not exactly go out of its way to make them easy to use, either.

THE ROLE OF SCRIPTING LANGUAGES

2025

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Security

For a scripting language to do much that is interesting, it is going to need some
amount of privileges. A script cannot access the Internet unless its process has that
right. A script cannot modify the user’s contacts unless its process has that right.
And so on.

For scripts you write, so long as those scripts cannot be modified readily by malware
authors, security is whatever you define it to be. If your script-based application
needs Internet access, so be it.

For scripts your users write, things get a bit more challenging, since permissions
cannot be modified on the fly by applications. Many interpreters will tend to request
(or otherwise have access to) permissions that are broader than any individual user
might need, because those permissions are needed by somebody. However, the risk
is still minimal to the user, so long as they are careful with the scripts they write.

For scripts your users might download, written by others, security becomes a big
problem. If the interpreter has a wide range of permissions, downloaded scripts can
easily host malware that exploits those permissions for nefarious ends. An
interpreter with both Internet access and the right to read the user’s contacts means
that any script the user might download and run could copy the user’s contact data
and send it to spammers or identity thieves.

Performance

Java, as interpreted by the Dalvik virtual machine, is reasonably fast, particularly on
Android 2.2 and newer versions. C/C++, through the NDK, is far faster.

Scripting languages are a mixed bag.

Some scripting languages for Android have interpreters that are implemented in C
code. Those interpreters’ performance is partly a function of how well they were
written and ported over to the chipsets Android runs on. However, if those
interpreters expose Android APIs to the language, that can add considerable
overhead. For example, the Scripting Layer for Android (SL4A) makes Android APIs
available to scripting languages via a tiny built-in Java Web server and a Web service
API. While convenient for language integration, converting simple Java calls into
Web service calls slows things down quite a bit.

THE ROLE OF SCRIPTING LANGUAGES

2026

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some scripting languages have interpreters that themselves are written in Java and
run on the virtual machine. Those are likely to perform worse on an Android device
than when they are run on a desktop or server, simply because of the performance
differences between the standard Java VMs and the Dalvik VM. However, they will
have quicker access to the Java class libraries that make up much of Android than
will C-based interpreters.

Cross-Platform Compatibility

Most of the scripting languages for Android are ports from versions that run across
multiple platforms. This is one of their big benefits – that is where you and your
users may have gained experience with those languages. However, just as, say, Perl
and Python run a bit differently on Windows than on Linux or OS X, there will be
some differences in how those languages run on Android. The Android operating
system is not a traditional Linux environment, and so file paths, environment
variables, available pre-installed programs, and the like will not be the same. Some
of those may, in turn, impact how the scripting languages operate. You may need to
make some modification to any existing scripts for those languages that you attempt
to run on Android.

Maturity… On Android

Some scripting languages that have been ported to Android are rather old, like Perl
and Python. Others are old and somewhat abandoned for traditional development,
like BeanShell. Yet others are fairly new to the programming scene altogether, like
JRuby.

However, none of them have a long track record on Android, simply because
Android itself has not been around very long. This has several implications:

1. There is more likely to be bugs in newer ports of a language than older ports
2. Fewer people will have experience in supporting these languages on Android

(compared to supporting them on Linux, for example)
3. The number of production applications built using these languages on

Android is minuscule compared to their use on more traditional
environments

THE ROLE OF SCRIPTING LANGUAGES

2027

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Scripting Layer for Android

When it comes to scripting languages on Android, the first stop should always be
the Scripting Layer for Android (SL4A). Led by Damon Kohler, this project is rather
popular, both among hardcore Android developers and those people looking to
automate a bit more of their Android experience.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

The Role of SL4A
What started as an experiment to get Python and Lua going on Android, back in late
2008, turned into a more serious endeavor in June 2009, when the Android Scripting
Environment (now called the Scripting Layer for Android, or SL4A) was announced
on the Google Open Source blog and the Google Code site for it was established.
Since then, SL4A has been a magnet for people interested in getting their favorite
language working on Android or advancing its support.

On-Device Development

Historically, the primary role of SL4A was as a tool to allow people to put together
scripts, often written on the device itself, to take care of various chores. This
appealed to developers who were looking for something lightweight compared to
the Android SDK and Java. For those used to tinkering with scripts on other mobile
Linux platforms (e.g., the Nokia N800 running Maemo), SL4A promised a similar
sort of capability.

2029

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/
http://google-opensource.blogspot.com/2009/06/introducing-android-scripting.html

Over time, SL4A’s scope in this area has grown, including preliminary support for
SL4A scripts packaged as APK files, much like an Android application written in Java
or any of the alternative frameworks described in this book.

Getting Started with SL4A
SL4A is a bit more difficult to install than is the average Android application, due to
the various interpreters it uses and their respective sizes. That being said, none of
the steps involved with getting SL4A set up are terribly difficult, and most are just
part of the application itself.

Installing SL4A

At the time of this writing, SL4A is not distributed via the Android Market. Instead,
you can download it to your device off of the SL4A Web site. Perhaps the easiest way
to do that is to scan the QR code on the SL4A home page using Barcode Scanner or
a similar utility.

Installing Interpreters

When you first install SL4A, the only available scripting language is for shell scripts,
as that is built into Android itself. If you want to work with other interpreters, you
will need to download those. That is why the base SL4A download is so small
(~200KB) — most of the smarts are separate downloads, largely due to size.

To add interpreters, launch SL4A from the launcher, then choose View > Interpreters
from the option menu. You will be presented with the (presently short) list of
installed interpreters:

THE SCRIPTING LAYER FOR ANDROID

2030

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/
http://code.google.com/p/zxing/

Figure 525: The initial list of installed SL4A interpreters

Then, to install additional interpreters, choose Add from the option menu. You will
be given a roster of SL4A-compatible interpreters to choose from:

THE SCRIPTING LAYER FOR ANDROID

2031

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 526: The list of available SL4A interpreters

Click on one of the interpreters, and this will trigger the download of an APK file for
that specific interpreter. Slide down the notification drawer and click on that APK
file to continue the installation process. When the APK itself is installed, open up
that interpreter (e.g., click the “Open” button when the install is done). That will
bring up an activity to let you download the rest of the interpreter binaries:

THE SCRIPTING LAYER FOR ANDROID

2032

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 527: Downloading the Python SL4A interpreter, continued

Click the Install button, and SL4A will download and install the interpreter’s
component parts:

THE SCRIPTING LAYER FOR ANDROID

2033

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 528: Downloading the Python SL4A interpreter

This may take one or several downloads, depending on the interpreter. When done,
and after a few progress dialogs’ worth of unpacking, the interpreter will appear in
the list of interpreters:

THE SCRIPTING LAYER FOR ANDROID

2034

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 529: The updated list of installed SL4A interpreters

Note that the interpreters will be installed on your device’s “external storage”
(typically some flavor of SD card), due to their size. You will find an SL4A/ directory
on that card with the interpreters and scripts.

Running Supplied Scripts

Back on the Scripts activity (e.g., what you see when you launch SL4A from the
launcher), you will be presented with a list of the available scripts. Initially, these
will be ones that shipped with the interpreters, as examples for how to write SL4A
scripts in that language:

THE SCRIPTING LAYER FOR ANDROID

2035

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 530: The list of SL4A scripts

Tapping on any of these scripts will bring up a “quick actions” balloon:

THE SCRIPTING LAYER FOR ANDROID

2036

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 531: Quick actions for the speak.py script

Click the little shell icon to run it, showing its terminal output along the way:

THE SCRIPTING LAYER FOR ANDROID

2037

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 532: The visual results of running the speak.py SL4A script

Writing SL4A Scripts
While the scripts supplied with the interpreters are… entertaining, they only scratch
the surface of what an SL4A script can accomplish. Of course, to go beyond what is
there, you will need to start writing some scripts.

Editing Options

Since scripts are stored on your SD card (or whatever the “external storage” is for
your device), you can create scripts using some other computer — one with fancy
things like “mice” and “ergonomic keyboards” — and transfer it over via USB, like
you would transfer over an MP3 file. This eases typing, but it will make for an
awkward development cycle, since your computer and the Android device cannot
both have access to the SD card simultaneously. The mount/unmount process may
get a bit annoying. On the other hand, this is a great way to transfer over a script you
obtained from somebody else.

THE SCRIPTING LAYER FOR ANDROID

2038

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another option is to edit your scripts on the device. SL4A has a built in script editor
designed for this purpose. Of course, the screen may be a bit small and the keyboard
may be a bit… soft, but this is a great answer for small scripts.

To add a new script, from the Scripts activity, choose Add from the option menu.
This will bring up a roster of available scripting languages and other items (e.g., add
a folder):

Figure 533: The add-script language selection dialog

(the “Scan Barcode” option gives you an easy route to install a third-party script, one
encoded in a QR code)

Tap the language you want, and you will be taken into the script editor:

THE SCRIPTING LAYER FOR ANDROID

2039

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 534: The script editor

The field at the top is for the script name, and the large text area at the bottom is for
the script itself. A file extension and boilerplate code will be supplied for you
automatically.

In fact, that boilerplate code is rather important, as you will see momentarily.

To edit an existing script, long-tap on the script in the list and choose Edit from the
context menu.

To save your changes to a new or existing script, choose the Save option from the
script editor option menu. You can also “Save and Run” to test the script
immediately.

Calling Into Android

In the real world, Perl knows nothing about Android. Neither does Python,
BeanShell, or most of the other scripting languages available for SL4A. This would
be rather limiting, as most of what you would want a script to do will have to deal
with the device to some level: collect input, get a location, say some text using
speech synthesis, dial the phone, etc.

THE SCRIPTING LAYER FOR ANDROID

2040

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fortunately, SL4A has a solution, one of those “so crazy, it just might work” sorts of
solutions: SL4A has a built-in RPC server. While implementing a server on a
smartphone is not something one ordinarily does, it provides an ingenious bridge
from the scripting language to the device itself.

Each scripting language is given a local object proxy that works with the RPC server.
For example, here is a Python script that speaks the current time:

Figure 535: The script editor, showing the say_time.py script

The import android and droid=android.Android() statements establish a
connection between the Python interpreter and the SL4A RPC server. From that
point, the droid object is available for use to access Android capabilities — in this
case, speaking a message.

Python does not strictly realize that it is accessing local functionality. It simply
makes RPC calls, ones that just so happen to be fulfilled on the device rather than
via some remote RPC server accessed over the Internet.

THE SCRIPTING LAYER FOR ANDROID

2041

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Browsing the API

Therefore, SL4A effectively exposes an API to each of its scripting languages, via this
RPC bridge. While the API is not huge, it accomplishes a lot and is ever-growing.

If you are editing scripts on the device, you can browse the API by choosing the API
Browser option menu from the script editor. This brings up a list of available
methods on your RPC proxy (e.g., droid) that you can call:

Figure 536: The script editor’s API browser

Tapping on any item in the list will “unfold” it to provide more details, such as the
parameter list. Long-tapping on an item brings up a context menu where you can:

1. insert a template call to the method into your script at the cursor position
2. “prompt” you for the parameter values for the method, then insert the

completed method call into your script

It is also possible to browse the API in a regular Web browser, if you are developing
scripts off-device.

THE SCRIPTING LAYER FOR ANDROID

2042

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/wiki/ApiReference

Running SL4A Scripts
Scripts are only useful if you run them, of course. We have seen two options for
running scripts: tapping on them in the scripts list, or choosing “Save & Run” from
the script editor. Those are not your only options, however.

Background

If you long-tap on a script in the script list, you will see a context menu option to
“Start in Background”. As the name suggests, this kicks off the script in the
background. Rather than seeing the terminal window for the script, the script just
runs. A notification will appear in the status bar, with the SL4A icon, indicating that
the RPC server is in operation and that script(s) may be running.

Shortcuts

Rather than have to open up SL4A every time, you can set up shortcuts on your
home screen to run individual scripts.

Android 1.x/2.x

Just long-tap on the home screen background and choose Shortcuts from the
context menu, then Scripts from the available shortcuts. This brings up the scripts
list, but this time, when you choose a script, you are presented with a quick actions
balloon for how to start it: in a terminal or in the background:

THE SCRIPTING LAYER FOR ANDROID

2043

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 537: Configuring an SL4A shortcut

Choose one, and at this point, a shortcut, with the interpreter’s icon and the name
of the script, will appear on your home screen. Tapping it runs the script.

Android 3.0+

Go to where you install home screen widgets (e.g., “Widgets” tab in launcher), and
you should see a “Scripts” entry:

THE SCRIPTING LAYER FOR ANDROID

2044

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 538: SL4A Shortcuts Option on Nexus S, Android 4.1

Add that to your home screen, the same as you would any other app widget (e.g.,
long press, then drag to the desired spot). That, in turn, will bring up the list of
available scripts. Tapping on a script, as with Android 1.x/2.x, brings up a quick
actions balloon for how to start it: in a terminal or in the background (see
screenshot in previous section). This will then set up your shortcut on your home
screen, so tapping it will launch your chosen script.

Other Alternatives

Users of Locale — an application designed to trigger events at certain times or when
you get to certain locations — can trigger SL4A scripts in addition to invoking
standard built-in tools.

In addition, there is preliminary support in SL4A for packaging scripts as APK files
for wider distribution.

THE SCRIPTING LAYER FOR ANDROID

2045

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/wiki/SharingScripts

Potential Issues
As the SL4A Web site indicates, SL4A is “alpha-quality”. It is not without warts. How
much those warts are an issue for you, in terms of crafting and running utility
scripts, is up to you.

Security… From Scripts

SL4A itself holds a long list of Android permissions, including:

1. The ability to read your contact data
2. The ability to call phone numbers and place SMS messages
3. Access to your location
4. Access to your received SMS/MMS messages
5. Bluetooth access
6. Internet access
7. The ability to write to the SD card
8. The ability to record audio and take pictures
9. The ability to keep your device awake

10. The ability to retrieve the list of running applications and restart other
applications

11. And so on

Hence, its scripts — via the RPC-based API — can perform all of those actions. For
example, a script you download from a third party could read all your contacts and
send that information to a spammer. Hence, you should only run scripts that you
trust, since SL4A effectively “wires open” many aspects of Android’s standard
security protections.

Security… From Other Apps

Originally, the on-device Web service supplying the RPC-based API was wide open.
Any program that could find the port could connect to that Web service and invoke
operations. That would not necessarily be all that bad… except that the Web service
runs in its own process with its own permissions, and it may have permissions that
other applications lack (e.g., right to access the Internet or to read contacts). Given
that, malware could use SL4A to do things that it, by itself, could not do, allowing it
to sneak onto more devices.

THE SCRIPTING LAYER FOR ANDROID

2046

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SL4A now uses a token-based authentication mechanism for using the Web service,
to help close this loophole. In principle, only SL4A scripts should be able to use the
RPC server.

THE SCRIPTING LAYER FOR ANDROID

2047

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JVM Scripting Languages

The Java virtual machine (JVM) is a remarkably flexible engine. While it was
originally developed purely for Java, it has spawned its own family of languages, just
as Microsoft’s CIL supports multiple languages for the Windows platform. Some
languages targeting the JVM as a runtime will work on Android, since the regular
Java VM and Android’s Dalvik VM are so similar.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Some of the sample code demonstrates JUnit test cases, so reading the chapter
on unit testing may be useful.

Languages on Languages
Except for the handful of early language interpreters and compilers hand-
constructed in machine code, every programming language is built atop earlier ones.
C and C++ are built atop assembly language. Many other languages, such as Java
itself, are built atop C/C++.

Hence, it should not come as much of a surprise that an environment as popular as
Java has spawned another generation of languages whose implementations are in
Java.

There are a few flavors of these languages. Some, like Scala and Clojure, are
compiled languages whose compilers created JVM bytecodes, no different than
would a Java compiler. These do not strictly qualify as a “scripting language”,
however, since they typically compile their source code to bytecode ahead of time.

2049

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Java-based scripting languages use fairly simple interpreters. These
interpreters convert scripting code into parsed representations (frequently so-called
“abstract syntax trees”, or ASTs), then execute the scripts from their parsed forms.
Most scripting languages at least start here, and some, like BeanShell, stick with this
implementation.

Other scripting languages try to bridge the gap between a purely interpreted
language and a compiled one like Scala or Clojure. These languages turn the parsed
scripting code into JVM bytecode, effectively implementing their own just-in-time
compiler (JIT). Since many Java runtimes themselves have a JIT to turn bytecode
into machine code (“opcode”), languages with their own JIT can significantly
outperform their purely-interpreted counterparts. JRuby and Rhino are two
languages that have taken this approach.

A Brief History of JVM Scripting
Back in the beginning, the only way to write for the JVM was in Java itself. However,
since writing language interpreters is a common pastime, it did not take long for
people to start implementing interpreters in Java. These had their niche audiences,
but there was only modest interest in the early days — interpreters made Java
applets too large to download, for example.

Things got a bit more interesting in 1999, when IBM released the Bean Scripting
Framework (BSF). This offered a uniform API for scripting engines, meaning that a
hosting Java application could write to the BSF API, then plug in arbitrary
interpreters at runtime. It was even possible, with a bit of extra work, to allow new
interpreters to be downloaded and used on demand, rather than having to be pre-
installed with the application. BSF also standardized how to inject Java objects into
the scripting engines themselves, for access by the scripts. This allowed scripts to
work with the host application’s objects, such as allowing scripts to manipulate the
contents of the jEdit text editor.

This spurred interest in scripting. In addition to some IBM languages (e.g.,
NetREXX) supporting BSF natively, other languages, like BeanShell, created BSF
adapters to allow their languages to participate in the BSF space. On the consumer
side, various Web frameworks started supporting BSF scripting for dynamic Web
content generation, and so forth.

Interest was high enough that Apache took over stewardship of BSF in 2003. Shortly
thereafter, Sun and others started work on JSR–223, which added the javax.script

JVM SCRIPTING LANGUAGES

2050

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.alphaworks.ibm.com/tech/bsf
http://jedit.org
http://www.ibm.com/software/awdtools/netrexx/
http://beanshell.org
http://jakarta.apache.org/bsf/
http://jcp.org/en/jsr/detail?id=223

framework to Java 6. The javax.script framework advanced the BSF concept and
standardized it as part of Java itself.

At this point, most JVM scripting languages that are currently maintained support
javax.script integration, and may also support integration with the older BSF API
as well.

Android does not include javax.script as part of its subset of the Java SE class
library from the Apache Harmony project. This certainly does not preclude
integrating scripting languages into Android applications, but it does raise the
degree of difficulty a bit.

Limitations
Of course, JVM scripting languages do not necessarily work on Android without
issue. There may be some work to get a JVM language going on Android, above and
beyond the challenges for scripting languages in general on Android.

Android SDK Limits

Android is not Java SE, or Java ME, or even Java EE. While Android has many
standard Java classes, it does not have a class library that matches any traditional
pattern. As such, languages built assuming Java SE, for example, may have some
dependency issues.

For languages where you have access to the source code, removing these
dependencies may be relatively straightforward, particularly if they are ancillary to
the operation of the language itself. For example, the language may come with
miniature Swing IDEs, support for scripted servlets, or other capabilities that are not
particularly relevant on Android and can be excised from the source code.

Wrong Bytecode

Android runs Dalvik bytecode, not Java bytecode. The conversion from Java bytecode
to Dalvik bytecode happens at compile time. However, the conversion tool is rather
finicky — it wants bytecode from Sun/Oracle’s Java 1.5 or 1.6, nothing else. This can
cause some problems:

1. You may encounter a JAR that is old enough to have been compiled with Java
1.4.2

JVM SCRIPTING LANGUAGES

2051

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. You may encounter JARs compiled using other compilers, such as the GNU
Compiler for Java (GCJ), common on Linux distributions

3. Java 7 has bytecode differences from Java 6; users of Java 7 need to compile
their Java classes to Java 6 bytecode

4. Languages that have their own JIT compilers will have problems, because
their JIT compilers will be generating Java bytecodes, not Dalvik bytecodes,
meaning that the JIT facility needs to be rewritten or disabled

Again, if you have the source code, recompiling on an Android-friendly Java
compiler should be a simple process.

Age

The heyday of some JVM languages is in the past. As such, you may find that
support for some languages will be limited, simply because few people are still
interested in them. Finding people interested in those languages on Android — the
cross-section of two niches – may be even more of a problem.

SL4A and JVM Languages
SL4A supports three JVM languages today:

1. BeanShell
2. JRuby
3. Rhino (JavaScript)

You can use those within your SL4A environment no different than you can any
other scripting language (e.g., Perl, Python, PHP). Hence, if what you are looking for
is to create your own personal scripts, or writing small applications, SL4A saves you
a lot of hassle. If there is a JVM scripting language you like but is not supported by
SL4A, adding support for new interpreters within SL4A is fairly straightforward,
though the APIs may change as SL4A is undergoing a fairly frequent set of revisions.

Embedding JVM Languages
While SL4A will drive end users towards writing their own scripts or miniature
applications using JVM languages, another use of these languages is for embedding
in a full Android application. Scripting may accelerate development, if the
developers are more comfortable with the scripted language than with Java. Also, if

JVM SCRIPTING LANGUAGES

2052

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the scripts are able to be modified or expanded by users, an ecosystem may emerge
for user-contributed scripts.

Architecture for Embedding

Embedding a scripting language is not something to be undertaken lightly, even on a
desktop or server application. Mobile devices running Android will have similar
issues.

Asynchronous

One potential problem is that a script may take too long to execute. Android’s
architecture assume that work triggered by buttons, menus, and the like will either
happen very quickly or will be done on background threads. Particularly for user-
generated scripts, the script execution time is unknowable in advance — it might be
a few milliseconds, or it might be several seconds. Hence, any implementation of a
scripting extension for an Android application needs to consider executing all
scripts in a background thread. This, of course, raises its own challenges for
reflecting those scripts’ results on-screen, since GUI updates cannot be done on a
background thread.

Security

Scripts in Android inherit the security restrictions of the process that runs the
script. If an application has the right to access the Internet, so will any scripts run in
that application’s process. If an application has the right to read the user’s contacts,
so will any scripts run in that application’s process. And so on. If the scripts in
question are created by the application’s authors, this is not a big deal — the rest of
the application has those same permissions, after all. But, if the application supports
user-authored scripts, it raises the potential of malware hijacking the application to
do things that the malware itself would otherwise lack the rights to do.

Inside the InterpreterService

One way to solve both of those problems is to isolate the scripting language in a self-
contained low-permission APK — “sandboxing” the interpreter so the scripts it
executes are less able to cause harm. This APK could also arrange to have the
interpreter execute its scripts on a background thread. An even better
implementation would allow the embedding application to decide whether or not

JVM SCRIPTING LANGUAGES

2053

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the “sandbox” is important — applications with a controlled source of scripts may
not need the extra security or the implementation headaches it causes.

With that in mind, let us take a look at the JVM/InterpreterService sample project,
one possible implementation of the strategy described above.

The Interpreter Interface

The InterpreterService can support an arbitrary number of interpreters, via a
common interface. This interface provides a simplified API for having an interpreter
execute a script and return a result:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface I_InterpreterI_Interpreter {
Bundle executeScript(Bundle input);

}

As you can see, it is very simplified, offering just a single executeScript() method.
That method accepts a Bundle (a key-value store akin to a Java HashMap) as a
parameter — that Bundle will need to contain the script and any other objects
needed to execute the script.

The interpreter will return another Bundle from executeScript(), containing
whatever data it wants the script’s requester to have access to.

For example, here is the implementation of EchoInterpreter, which just returns the
same Bundle that was passed in:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EchoInterpreterEchoInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

returnreturn(input);
}

}

A somewhat more elaborate sample is the SQLiteInterpreter:

packagepackage com.commonsware.abj.interp;

importimport android.database.Cursorandroid.database.Cursor;

JVM SCRIPTING LANGUAGES

2054

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JVM/InterpreterService
http://github.com/commonsguy/cw-omnibus/tree/master/JVM/InterpreterService

importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SQLiteInterpreterSQLiteInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

Bundle result=newnew Bundle(input);
String script=input.getString(InterpreterService.SCRIPT);

ifif (script!=nullnull) {
SQLiteDatabase db=SQLiteDatabase.create(nullnull);
Cursor c=db.rawQuery(script, nullnull);

c.moveToFirst();

forfor (int i=0;i<c.getColumnCount();i++) {
result.putString(c.getColumnName(i), c.getString(i));

}

c.close();
db.close();

}

returnreturn(result);
}

}

This class accepts a script, in the form of a SQLite database query. It extracts the
script from the Bundle, using a pre-defined key (InterpreterService.SCRIPT).
Assuming there is such a script, it creates an empty in-memory database and
executes the SQLite query against that database.

The results come back in the form of a Cursor — itself a key-value store.
SQLiteInterpreter takes those results and pours them into a Bundle to be returned.

The Bundle being returned starts from a copy of the input Bundle, so the script
requester can embed in the input Bundle any identifiers it needs to determine how
to handle the results from executing this script.

SQLiteInterpreter is not terribly flexible, but you can use it for simple numeric and
string calculations, such as the following script:

SELECT 1+2 AS result, 'foo' AS other_result, 3*8 AS third_result;

This would return a Bundle containing a key of result with a value of 3, a key of
other_result with a value of foo, and a key of third_result with a value of 24.

JVM SCRIPTING LANGUAGES

2055

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Of course, it would be nice to support more compelling interpreters, and we will
examine a pair of those later in this chapter.

Loading Interpreters and Executing Scripts

Of course, having a nice clean interface to the interpreters does nothing in terms of
actually executing them on a background thread, let alone sandboxing them. The
InterpreterService class itself handles that.

InterpreterService is an IntentService, which automatically routes incoming
Intent objects (from calls to startService()) to a background thread via a call to
onHandleIntent(). IntentService will queue up Intent objects if needed, and
IntentService even automatically shuts down if there is no more work to be done.

Here is the implementation of onHandleIntent() from InterpreterService:

@Override
protectedprotected void onHandleIntent(Intent intent) {

String action=intent.getAction();
I_Interpreter interpreter=interpreters.get(action);

ifif (interpreter==nullnull) {
trytry {

interpreter=(I_Interpreter)Class.forName(action).newInstance();
interpreters.put(action, interpreter);

}
catchcatch (Throwable t) {

Log.e("InterpreterService", "Error creating interpreter", t);
}

}

ifif (interpreter==nullnull) {
failure(intent, "Could not create interpreter: "+intent.getAction());

}
elseelse {

trytry {
success(intent,

interpreter.executeScript(intent.getBundleExtra(BUNDLE)));
}
catchcatch (Throwable t) {

Log.e("InterpreterService", "Error executing script", t);

trytry {
failure(intent, t);

}
catchcatch (Throwable t2) {

Log.e("InterpreterService",
"Error returning exception to client",
t2);

JVM SCRIPTING LANGUAGES

2056

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

}
}

We keep a cache of interpreters, since initializing their engines may take some time.
That cache is keyed by the interpreter’s class name, and that key comes in to the
service by way of the action on the Intent that was used to start the service. In other
words, the script requester tells us, by way of the Intent used in startService(),
which interpreter to use.

Those interpreters are created using reflection. This way, InterpreterService has
no compile-time knowledge of any given interpreter class. Interpreters can come and
go, but InterpreterService remains the same.

Assuming an interpreter was found (either cached or newly created), we have it
execute the script, with the input Bundle coming from an “extra” on the Intent.
Methods named success() and failure() are then responsible for getting the
results to the script requester… as will be seen in the next section.

Delivering Results

Script requesters can get the results of the script back — in the form of the
interpreter’s output Bundle — in one of two ways.

One option is a private broadcast Intent. This is a broadcast Intent where the
broadcast is limited to be delivered only to a specific package, not to any potential
broadcast receiver on the device.

The other option is to supply a PendingIntent that will be sent with the results. This
could be used by an Activity and createPendingIntent() to have control routed to
its onActivityResult() method. Or, an arbitrary PendingIntent could be created,
to start another activity, for example.

The implementations of success() and failure() in InterpreterService simply
build up an Intent containing the results to be delivered:

privateprivate void success(Intent intent, Bundle result) {
Intent data=newnew Intent();

data.putExtras(result);
data.putExtra(RESULT_CODE, SUCCESS);

JVM SCRIPTING LANGUAGES

2057

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

send(intent, data);
}

privateprivate void failure(Intent intent, String message) {
Intent data=newnew Intent();

data.putExtra(ERROR, message);
data.putExtra(RESULT_CODE, FAILURE);

send(intent, data);
}

privateprivate void failure(Intent intent, Throwable t) {
Intent data=newnew Intent();

data.putExtra(ERROR, t.getMessage());
data.putExtra(TRACE, getStackTrace(t));
data.putExtra(RESULT_CODE, FAILURE);

send(intent, data);
}

These, in turn, delegate the actual sending logic to a send() method that delivers
the result Intent via a private broadcast or a PendingIntent, as indicated by the
script requester:

privateprivate void send(Intent intent, Intent data) {
String broadcast=intent.getStringExtra(BROADCAST_ACTION);

ifif (broadcast==nullnull) {
PendingIntent pi=(PendingIntent)intent.getParcelableExtra(PENDING_RESULT);

ifif (pi!=nullnull) {
trytry {

pi.send(thisthis, Activity.RESULT_OK, data);
}
catchcatch (PendingIntent.CanceledException e) {

// no-op -- client must be gone
}

}
}
elseelse {

data.setPackage(intent.getStringExtra(BROADCAST_PACKAGE));
data.setAction(broadcast);

sendBroadcast(data);
}

}

JVM SCRIPTING LANGUAGES

2058

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Packaging the InterpreterService

There are three steps for integrating InterpreterService into an application.

First, you need to decide what APK the InterpreterService goes in – the main one
for the application (no sandbox) or a separate low-permission one (sandbox).

Second, you need to decide what interpreters you wish to support, writing
I_Interpreter implementations and getting the interpreters’ JARs into the project’s
libs/ directory.

Third, you need to add the source code for InterpreterService along with a
suitable <service> entry in AndroidManifest.xml. This entry will need to support
<intent-filter> elements for each scripting language you are supporting, such as:

<service<service
android:name=".InterpreterService"
android:exported="false">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.EchoInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.SQLiteInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.BshInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.RhinoInterpreter"/>/>
</intent-filter></intent-filter>

</service></service>

From there, it is a matter of adding in appropriate startService() calls to your
application wherever you want to execute a script, and processing the results you get
back.

Using the InterpreterService

To use the InterpreterService, you need to first determine which I_Interpreter
engine you are using, as that forms the action for the Intent to be used with the
InterpreterService. Create an Intent with that action, then add in an
InterpreterService.BUNDLE extra for the script and other data to be supplied to the
interpreter. Also, you can add an InterpreterService.BROADCAST_ACTION, to be
used by InterpreterService to send results back to you via a broadcast Intent.

JVM SCRIPTING LANGUAGES

2059

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finally, call startService() on the Intent, and the results will be delivered to you
asynchronously.

For example, here is a test method from the EchoInterpreterTests test case:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EchoInterpreterTestsEchoInterpreterTests extendsextends InterpreterTestCase {
protectedprotected String getInterpreterName() {

returnreturn("com.commonsware.abj.interp.EchoInterpreter");
}

publicpublic void testNoInput() {
Bundle results=execServiceTest(newnew Bundle());

assertNotNull(results);
assertassert (results.size() == 0);

}

publicpublic void testWithSomeInputJustForGrins() {
Bundle input=newnew Bundle();

input.putString("this", "is a value");

Bundle results=execServiceTest(input);

assertNotNull(results);
assertEquals(results.getString("this"), "is a value");

}
}

The echo “interpreter” simply echoes the input Bundle into the output. The
execServiceTest() method is inherited from the InterpreterTestCase base class:

protectedprotected Bundle execServiceTest(Bundle input) {
Intent i=newnew Intent(getInterpreterName());

i.putExtra(InterpreterService.BUNDLE, input);
i.putExtra(InterpreterService.BROADCAST_ACTION, ACTION);

getContext().startService(i);

trytry {
latch.await(5000, TimeUnit.MILLISECONDS);

}
catchcatch (InterruptedException e) {

// just keep rollin'
}

JVM SCRIPTING LANGUAGES

2060

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(results);
}

The execServiceTest() method uses a CountDownLatch to wait on the interpreter to
do its work before proceeding (or 5000 milliseconds, whichever comes first). The
broadcast Intent containing the results, registered to watch for
com.commonsware.abj.interp.InterpreterTestCase broadcasts, stuffs the output
Bundle in a results data member and drops the latch, allowing the main test thread
to continue.

BeanShell on Android

What if Java itself were a scripting language? What if you could just execute a
snippet of Java code, outside of any class or method? What if you could still import
classes, call static methods on classes, create new objects, as well?

That was what BeanShell offered, back in its heyday. And, since BeanShell does not
use sophisticated tricks with its interpreter – like JIT compilation of scripting code
— BeanShell is fairly easy to integrate into Android.

What is BeanShell?

BeanShell is Java on Java.

With BeanShell, you can write scripts in loose Java syntax. Here, “loose” means:

1. In addition to writing classes, you can execute Java statements outside of
classes, in a classic imperative or scripting style

2. Data types are optional for variables
3. Not every language feature is supported, particularly things like annotations

that did not arrive until Java 1.5
4. Etc.

BeanShell was originally developed in the late 1990’s by Pat Niemeyer. It enjoyed a
fair amount of success, even being considered as a standard interpreter to ship with
Java (JSR–274). However, shortly thereafter, BeanShell lost momentum, and it is no
longer being actively maintained. That being said, it works quite nicely on Android…
once a few minor packaging issues are taken care of.

JVM SCRIPTING LANGUAGES

2061

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://beanshell.org/
http://jcp.org/en/jsr/detail?id=274

Getting BeanShell Working on Android

BeanShell has two main problems when it comes to Android:

• The publicly-downloadable JAR was compiled for Java 1.4.2, and Android
requires Java 5 or newer

• The source code includes various things, like a Swing-based GUI and a
servlet, that have no real place in an Android app and require classes that
Android lacks

Fortunately, with BeanShell being open source, it is easy enough to overcome these
challenges. You could download the source into an Android library project, then
remove the classes that are not necessary (e.g., the servlet), and use that library
project in your main application. Or, you could use an Android project for creating a
JAR file that was compiled against the Android class library, so you are certain
everything is supported.

However, the easiest answer is to use SL4A’s BeanShell JAR, since they have solved
those problems already. The JAR can be found in the SL4A source code repository,
though you will probably need to check out the project using Mercurial, since JARs
cannot readily be downloaded from the Google Code Web site.

Integrating BeanShell

The BeanShell engine is found in the bsh.Interpreter class. Wrapping one of these
in an I_Interpreter interface, for use with InterpreterService, is fairly simple:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshInterpreterBshInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

Interpreter i=newnew Interpreter();
Bundle output=newnew Bundle(input);
String script=input.getString(InterpreterService.SCRIPT);

ifif (script != nullnull) {
trytry {

i.set(InterpreterService.BUNDLE, input);
i.set(InterpreterService.RESULT, output);

Object eval_result=i.eval(script);

JVM SCRIPTING LANGUAGES

2062

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/source/browse/beanshell/bsh-2.0b4.jar

output.putString("result", eval_result.toString());
}
catchcatch (Throwable t) {

output.putString("error", t.getMessage());
}

}

returnreturn(output);
}

}

BeanShell interpreters are fairly inexpensive objects, so we create a fresh
Interpreter for each script, so one script cannot somehow access results from prior
scripts. After setting up the output Bundle and extracting the script from the input
Bundle, we inject both Bundle objects into BeanShell itself, where they can be
accessed like global variables, named _bundle and _result.

At this point, we evaluate the script, using the eval() method on the Interpreter
object. If all goes well, we convert the object returned by the script into a String and
tuck it into the output Bundle, alongside anything else the script may have put into
the Bundle. If there is a problem, such as a syntax error in the script, we put the
error message into the output Bundle.

So long as the InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.BshInterpreter action, and so long as we have a
BeanShell JAR in the project’s libs/ directory, InterpreterService is now capable
of executing BeanShell scripts as needed.

With our inherited execServiceTest() method handling invoking the
InterpreterService and waiting for responses, we can “simply” put our script as the
InterpreterService.SCRIPT value in the input Bundle, and see what we get out.
The first test script returns a simple value; the second test script directly calls
methods on the output Bundle to return its results.

Rhino on Android

JavaScript arrived on the language scene hot on the heels of Java itself. The name
was chosen for marketing purposes more so than for any technical reason. Java and
JavaScript had little to do with one another, other than both adding interactivity to
Web browsers. And while Java has largely faded from mainstream browser usage,
JavaScript has become more and more of a force on the browser, and even now on
Web servers.

JVM SCRIPTING LANGUAGES

2063

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And, along the way, the Mozilla project put JavaScript on Java and gave us Rhino.

What is Rhino?

If BeanShell is Java in Java, Rhino is JavaScript in Java.

As part of Netscape’s failed “Javagator” attempt to create a Web browser in Java, they
created a JavaScript interpreter for Java, code-named Rhino after the cover of
O’Reilly Media’s JavaScript: The Definitive Guide. Eventually, Rhino was made
available to the Mozilla Foundation, which has continued maintaining it. At the
present time, Rhino implements JavaScript 1.7, so it does not support the latest and
greatest JavaScript capabilities, but it is still fairly full-featured.

Interest in Rhino has ticked upwards, courtesy of interest in using JavaScript in
places other than Web browsers, such as server-side frameworks. And, of course, it
works nicely with Android.

Getting Rhino Working on Android

Similar to BeanShell, Rhino has a few minor source-level incompatibilities with
Android. However, these can be readily pruned out, leaving you with a still-
functional JavaScript interpreter. However, once again, it is easiest to use SL4A’s
Rhino JAR, since all that work is done for you.

Integrating Rhino

Putting an I_Interpreter facade on Rhino is incrementally more difficult than it is
for BeanShell, but not by that much:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;
importimport org.mozilla.javascript.*org.mozilla.javascript.*;

publicpublic classclass RhinoInterpreterRhinoInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

String script=input.getString(InterpreterService.SCRIPT);
Bundle output=newnew Bundle(input);

ifif (script != nullnull) {
Context ctxt=Context.enter();

trytry {
ctxt.setOptimizationLevel(-1);

JVM SCRIPTING LANGUAGES

2064

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.mozilla.org/rhino/
http://oreilly.com/catalog/9780596101992/
https://github.com/damonkohler/sl4a/blob/master/rhino/rhino1_7R2.jar
https://github.com/damonkohler/sl4a/blob/master/rhino/rhino1_7R2.jar

Scriptable scope=ctxt.initStandardObjects();
Object jsBundle=Context.javaToJS(input, scope);
ScriptableObject.putProperty(scope, InterpreterService.BUNDLE,

jsBundle);

jsBundle=Context.javaToJS(output, scope);
ScriptableObject.putProperty(scope, InterpreterService.RESULT,

jsBundle);
String result=

Context.toString(ctxt.evaluateString(scope, script,
"<script>", 1, nullnull));

output.putString("result", result);
}
finallyfinally {

Context.exit();
}

}

returnreturn(output);
}

}

As with BshInterpreter, RhinoInterpreter sets up the output Bundle and extracts
the script from the input Bundle. Assuming there is a script, RhinoInterpreter then
sets up a Rhino Context object, which is roughly analogous to the BeanShell
Interpreter object. One key difference is that you need to clean up the Context, by
calling a static exit() method on the Context class, whereas with a BeanShell
Interpreter, you just let garbage collection deal with it.

Rhino has a JIT compiler, one that unfortunately will not work with Android, since it
generates Java bytecode, not Dalvik bytecode. However, Rhino lets you turn that off,
by calling setOptimizationLevel() on the Context object with a value of -1
(meaning, in effect, disable all optimizations).

After that, we:

1. Create a language scope for our script and inject standard JavaScript global
objects into that scope

2. Wrap our two Bundle objects with JavaScript proxies via calls to javaToJS(),
then injecting those objects into the scope as

_bundle and _result via putProperty() calls

JVM SCRIPTING LANGUAGES

2065

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Execute the script via a call to evaluateString() on the Context object,
converting the resulting object into a String and pouring it into the output
Bundle

If our InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.RhinoInterpreter action, and so long as we have a
Rhino JAR in the project’s libs/ directory, InterpreterService can now invoke
JavaScript.

Other JVM Scripting Languages
As mentioned previously, there are many languages that, themselves, are
implemented in Java and can be ported to Android, with varying degrees of
difficulty. Many of these languages are fairly esoteric. Some, like JRuby, have evolved
to the point where they transcend a simple “scripting language” on Android.

However, there are two other languages worth mentioning, as they are fairly well-
known in Java circles: Groovy and Jython.

Groovy

Groovy is perhaps the most popular Java-based language that does not have its roots
in some other previous language (Java, JavaScript, Python, etc.). Designed in some
respects to be a “better Java than Java”, Groovy gives you access to Java classes while
allowing you to write scripts with dynamic typing, closures, and so forth. Groovy has
an extensive community, complete with a fair number of Groovy-specific libraries
and frameworks, plus some books on the market.

At the time of this writing, it does not appear that Groovy has been successfully
ported to work on Android, though.

Jython

Jython is an implementation of a Python language interpreter in Java. It has been
around for quite some time, and gives you Python syntax with access to standard
Java classes where needed. While the Jython community is not as well-organized as
that of Groovy, there are plenty of books covering the use of Jython.

Jython’s momentum has flagged a bit in recent months, in part due to Sun’s waning
interest in the technology and the departure of Sun employees from the project.

JVM SCRIPTING LANGUAGES

2066

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://groovy.codehaus.org/
http://www.jython.org/

One attempt to get Jython working with Android has been shut down, with people
steered towards SL4A. It is unclear if others will make subsequent attempts.

JVM SCRIPTING LANGUAGES

2067

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/jythonroid/

Trail: Testing

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JUnit and Android

Presumably, you will want to test your code, beyond just playing around with it
yourself by hand.

To that end, Android includes the JUnit test framework in the SDK, along with
special test classes that will help you build test cases that exercise Android
components, like activities and services. Even better, Android has “gone the extra
mile” and can pre-generate your test harness for you, to make it easier for you to add
in your own tests.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

This chapter also assumes you have some familiarity with JUnit, though you
certainly do not need to be an expert. You can learn more about JUnit at the JUnit
site, from various books, and from the JUnit Yahoo forum.

You Get What They Give You
An Android test project is a complete set of Android project artifacts: manifest,
source directories, resources, etc. Much of its structure is identical to a regular
project. In fact, the generated test project is all ready to go, other than not having
any tests. For example, the Testing/JUnit project has a tests/ subdirectory
containing a test project set up to test various facets of one of our “show a list of 25
nonsense words” samples.

2069

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.junit.org/
http://www.junit.org/
http://tech.groups.yahoo.com/group/junit
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit

To create one of these test projects, you can either use Eclipse or the command line,
as is the case with regular Android projects.

Eclipse

In the standard Eclipse new-project dialog (File > New > Project), choose “Android
Test Project”.

The first page of the wizard will ask for your Eclipse settings, such as the project
name:

Figure 539: Eclipse Android Test Project Wizard, First Page

The second page of the wizard has you pick from one of your Android projects the
one that you wish to test:

JUNIT AND ANDROID

2070

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 540: Eclipse Android Test Project Wizard, Second Page

The last page of the wizard lets you specify the build target, which will be based on
the build target of the project you specified in the second page:

JUNIT AND ANDROID

2071

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 541: Eclipse Android Test Project Wizard, Third Page

Command Line

From the command line, you use android create projectandroid create project to create a regular
Android project. To create a project designed to test another project — what we will
call a “test project” — you use the android create test-projectandroid create test-project command. From
Eclipse, you can create a test project using the appropriate wizard. You will need to
tell it which project to test, where you want the test project to reside, etc.

Your Test Cases
A JUnit test project is made up of one (or potentially more) test suites, each
comprising one (or usually more) test cases. A test case is a class, containing a series
of test methods, designed to test some specific functionality. When a test case is run,
JUnit:

• Creates an instance of the test case class
• Calls setUp(), where you can do any preperatory work
• Calls one of your test methods
• Calls tearDown() for post-test cleanup work

JUNIT AND ANDROID

2072

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Repeats the above steps for each test method

Hence, you need to write a series of test cases with test methods, and optionally
setUp() and tearDown() as you see fit.

POJTCs (Plain Old JUnit Test Cases)

For tests that have nothing much to do with Android, you can use the standard
JUnit TestCase base class. This works the same as JUnit would outside of Android,
and is useful for testing business logic on POJOs (plain old Java objects) and the like.

For example, here is a test case that is, well, silly:

packagepackage com.commonsware.android.abf.test;

importimport junit.framework.TestCasejunit.framework.TestCase;

publicpublic classclass SillyTestSillyTest extendsextends TestCase {
protectedprotected void setUp() throwsthrows Exception {

supersuper.setUp();

// do initialization here, run on every test method
}

protectedprotected void tearDown() throwsthrows Exception {
// do termination here, run on every test method

supersuper.tearDown();
}

publicpublic void testNonsense() {
assertTrue(1==1);

}
}

All we have is a single test method — testNonsense() that validates that 1 really
does equal 1. Fortunately, this test usually succeeds. Our TestCase subclass
(SillyTest) also implements setUp() and tearDown() for illustration purposes, as
there is little preparation needed for our rigorous and demanding test method.

ActivityInstrumentationTestCase2

While ordinary JUnit tests are certainly helpful, they are still fairly limited, since
much of your application logic may be tied up in activities, services, and the like.

JUNIT AND ANDROID

2073

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To that end, Android has a series of TestCase subclasses that you can extend
designed specifically to assist in testing these sorts of components.

The one most people focus on is ActivityInstrumentationTestCase2. As the name
suggests, this class will run your activity for you, giving you access to the Activity
object itself. You can then:

1. Access your widgets
2. Invoke public and package-private methods (more on this below)
3. Simulate key events

Here are the steps to making use of ActivityInstrumentationTestCase2:

• Extend the class to create your own implementation. Since
ActivityInstrumentationTestCase2 is a generic, you need to supply the
name of the activity being tested:

ActivityInstrumentationTestCase2<ActionBarFragmentActivity>

• In the constructor, when you chain to the superclass, supply the activity class
itself.

• In setUp(), use getActivity() to get your hands on your Activity object,
already typecast to the proper type (e.g., ActionBarFragmentActivity)
courtesy of our generic. You can also at this time access any widgets, since
the activity is up and running by this point.

• If needed, clean up stuff in tearDown(), no different than with any other
JUnit test case.

• Implement test methods to exercise your activity.

For example, here is a short test case that exercises ActionBarFragmentActivity:

packagepackage com.commonsware.android.abf.test;

importimport android.test.ActivityInstrumentationTestCase2android.test.ActivityInstrumentationTestCase2;
importimport android.widget.ListViewandroid.widget.ListView;
importimport com.commonsware.android.abf.ActionBarFragmentActivitycom.commonsware.android.abf.ActionBarFragmentActivity;

publicpublic classclass DemoActivityTestDemoActivityTest
extendsextends ActivityInstrumentationTestCase2<ActionBarFragmentActivity> {
privateprivate ListView list=nullnull;

publicpublic DemoActivityTest() {
supersuper(ActionBarFragmentActivity.class);

}

JUNIT AND ANDROID

2074

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
protectedprotected void setUp() throwsthrows Exception {

supersuper.setUp();

ActionBarFragmentActivity activity=getActivity();

list=(ListView)activity.findViewById(android.R.id.list);
}

publicpublic void testListCount() {
assertTrue(list.getAdapter().getCount()==25);

}
}

In setUp(), we get access to the ListView that makes up the bulk of our UI, so we
have access to that widget in any test method. In testListCount(), we check our
ListAdapter in the ListView to make sure we have all 25 of our nonsense words at
the outset. This is fairly trivial and non-interactive. However, you could use methods
like sendKeys() to simulate user input, to drive changes in your UI, so you can
confirm the results worked as expected.

If you are looking at your emulator or device while this test is running, you will
actually see the activity launched on-screen. ActivityInstrumentationTestCase2
creates a true running copy of the activity. This means you get access to everything
you need; on the other hand, it does mean that the test case runs slowly, since the
activity needs to be created and destroyed for each test method in the test case. If
your activity does a lot on startup and/or shutdown, this may make running your
tests a bit sluggish.

Note that our ActivityInstrumentationTestCase2 resides in a different package
than the Activity it is testing. This restricts us to pure black-box testing. If,
however, we elected to put the test case in the same package as the activity, we could
also call any package-private methods, for a test that is closer to white-box in style.
At runtime, the contents of both your regular application and the test application
are combined into a single process in a single copy of the Dalvik VM, which is why
your test code can access your application classes.

AndroidTestCase

For tests that only need access to your application resources, you can skip some of
the overhead of ActivityInstrumentationTestCase2 and use AndroidTestCase. In
AndroidTestCase, you are given a Context and not much more, so anything you can
reach from a Context is testable, but individual activities or services are not.

JUNIT AND ANDROID

2075

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While this may seem somewhat useless, bear in mind that a lot of the static testing
of your activities will come in the form of testing the layout: are the widgets
identified properly, are they positioned properly, does the focus work, etc. As it turns
out, none of that actually needs an Activity object — so long as you can get the
inflated View hierarchy, you can perform those sorts of tests.

Similarly, if you need to test business objects, but because they come from a
database you need a Context for use with SQLiteOpenHelper, you could test those
with an AndroidTestCase.

Here is a sample AndroidTestCase:

packagepackage com.commonsware.android.abf.test;

importimport android.test.AndroidTestCaseandroid.test.AndroidTestCase;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport com.commonsware.android.abf.Rcom.commonsware.android.abf.R;

publicpublic classclass DemoContextTestDemoContextTest extendsextends AndroidTestCase {
privateprivate View field=nullnull;
privateprivate View root=nullnull;

@Override
protectedprotected void setUp() throwsthrows Exception {

supersuper.setUp();

LayoutInflater inflater=LayoutInflater.from(getContext());

root=inflater.inflate(R.layout.add, nullnull);
root.measure(800, 480);
root.layout(0, 0, 800, 480);

field=root.findViewById(R.id.title);
}

publicpublic void testExists() {
assertNotNull(field);

}

publicpublic void testPosition() {
assertEquals(0, field.getTop());
assertEquals(0, field.getLeft());

}
}

Here, we manually inflate the contents of the res/layout/add.xml resource, and lay
them out as if they were really in an activity, via calls to measure() and layout() to
simulate a WVGA800 display. At that point, we can start testing the widgets inside

JUNIT AND ANDROID

2076

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

of that layout, from simple assertions to confirm that they exist, to testing their size
and position.

Other Test Cases

Android also offers various other test case base classes designed to assist in testing
Android components, such as:

1. ServiceTestCase, used for testing services, as you might expect given the
name

2. ActivityUnitTestCase, a TestCase that creates the Activity (like
ActivityInstrumentationTestCase), but does not fully connect it to the
environment, so you can supply a mock Context, a mock Application, and
other mock objects to test out various scenarios

3. ApplicationTestCase, for testing custom Application subclasses

Your Test Suite
You will want to organize your test cases into one or more test suites. Many test
projects have a single suite. However, elaborate test projects may have different
suites for different situations, each representing some subset of the total roster of
test cases defined in the project.

The simplest way to set up a test suite is to use Android’s built-in TestSuiteBuilder
class, that pulls in a series of test cases based upon package name, such as the
FullSuite class in our sample test project:

packagepackage com.commonsware.android.abf.test;

importimport android.test.suitebuilder.TestSuiteBuilderandroid.test.suitebuilder.TestSuiteBuilder;
importimport junit.framework.Testjunit.framework.Test;
importimport junit.framework.TestSuitejunit.framework.TestSuite;

publicpublic classclass FullSuiteFullSuite extendsextends TestSuite {
publicpublic staticstatic Test suite() {

returnreturn(newnew TestSuiteBuilder(FullSuite.class)
.includeAllPackagesUnderHere()
.build());

}
}

Here, we are telling Android to find everything in this package (and sub-packages, if
there were any) that implements TestCase and include it in the suite. Hence,

JUNIT AND ANDROID

2077

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

organizing multiple suites would be a matter of organizing their test cases into
separate packages and creating TestSuite classes per package.

Running Your Tests
As with most things in Android, you can either use Eclipse or the command line to
run your test suites.

Eclipse

You run a test project in Android the same way that you run a regular project.
However, when you get the “Run As” dialog, choose “Android JUnit Test”. However, if
you have a single TestCase class selected in your Package Explorer, Android can run
just that single test case, rather than the full thing — again, choose “Android JUnit
Test” in the “Run As” dialog:

Figure 542: Eclipse “Run As” Dialog for JUnit Test

The results will be displayed in a JUnit view added to your Eclipse workspace,
showing the successful and failed tests:

JUNIT AND ANDROID

2078

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 543: Eclipse Android JUnit Test Results

Command Line

Android ships with a very rudimentary console JUnit runner, called
InstrumentationTestRunner. Since this class resides in the Android environment
(emulator or device), you need to invoke the runner to run your tests on the
emulator or device itself. To do this, you can run ant testant test from a console. You
should see results akin to:

test:
[echo] Running tests ...
[exec]
[exec] com.commonsware.android.abf.test.DemoActivityTest:.
[exec] com.commonsware.android.abf.test.DemoContextTest:...
[exec] com.commonsware.android.abf.test.SillyTest:.
[exec] Test results for InstrumentationTestRunner=.....
[exec] Time: 0.173
[exec]
[exec] OK (5 tests)
[exec]

JUNIT AND ANDROID

2079

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MonkeyRunner and the Test Monkey

Many GUI environments have some means or another of “fuzz” or “bash” testing,
where some test driver executes a bunch of random input, in hopes of catching
errors (e.g., missing validation logic). Android offers the Test Monkey for this.

Many GUI environments have some means or another of scripting GUI events from
outside the application itself, to simulate button clicks or touch events. Android
offers MonkeyRunner for this.

As the names suggest, there is a bit of commonality in their implementation. And,
as you might expect, there is a bit of commonality in their coverage in this book —
we will examine both MonkeyRunner and the Test Monkey in this chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

MonkeyRunner
MonkeyRunner is a means of creating test suites for Android applications based off
of scripted UI input. Rather than write a series of JUnit test cases or the like, you
create Jython (JVM implementation of Python) scripts that run commands to install
apps, execute GUI events, and take screenshots of results.

2081

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Writing a MonkeyRunner Script

The primary object you will work with in a MonkeyRunner script is a MonkeyDevice,
which represents your connection to the device or emulator that you are testing. You
obtain a MonkeyDevice by calling waitForConnection() on MonkeyRunner; this will
return once it has established a connection.

From there, MonkeyDevice lets you send events to the device or emulator:

• installPackage() allows you to install an APK from your development
machine, and removePackage() allows you to get rid of it

• startActivity() and broadcastIntent() allow you to start up components
of your app

• press() to simulate key events, including QWERTY keys, standard device
keys like BACK, D-pad/trackball events, and anything else represented by a
standard Android KeyEvent

• type() to simulate entering a whole string, as a simplification over calling
press() once per letter

• touch() and drag() let you simulate touch events
• and so on

The biggest limitation is in getting data out of the device, to determine if your test
worked successfully. Your options are:

• takeSnapshot(), which will capture a screenshot that you can save to disk,
compare with other screenshots, etc.

• shell() executes adb shelladb shell commands, returning any results
• …and that’s about it

Unlike JUnit-based testing, you have no visibility into the activity beyond what
appears on the screen — you cannot inspect widgets, call methods, or the like.

For example, here is a script that installs an app, runs an activity from it, and presses
the down button on the D-pad three times:

fromfrom com.android.monkeyrunnercom.android.monkeyrunner importimport MonkeyRunner, MonkeyDevice

device = MonkeyRunner.waitForConnection()
device.installPackage('bin/JUnitDemo.apk')
device.startActivity(component='com.commonsware.android.abf/
com.commonsware.android.abf.ActionBarFragmentActivity')
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)

MONKEYRUNNER AND THE TEST MONKEY

2082

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
result = device.takeSnapshot()
result.writeToFile('tests/monkey_sample_shots/test1.png', 'png')

Executing MonkeyRunner

To execute your MonkeyRunner script, have your device or emulator set up at a
likely starting point (e.g., home screen), then execute the monkeyrunnermonkeyrunner command,
passing it the path to your script (e.g., monkeyrunner monkey_sample.py). You will
see the script executing on the screen of your device or emulator, and your console
will contain whatever output you might emit from your test script itself. For
example, you might take screenshots, compare them against a master copy (using
methods on MonkeyImage to help with this), and emit warnings if they differ
unexpectedly.

Monkeying Around
Independent from the JUnit system and MonkeyRunner is the Test Monkey (referred
to here as “the Monkey” for short).

The Monkey is a test program that simulates random user input. It is designed for
“bash testing”, confirming that no matter what the user does, the application will not
crash. The application may have odd results — random input entered into a Twitter
client may, indeed, post that random input to Twitter. The Monkey does not test to
make sure that results of random input make sense; it only tests to make sure
random input does not blow up the program.

You can run the Monkey by setting up your initial starting point (e.g., the main
activity in your application) on your device or emulator, then running a command
like this:

adb shell monkey -p com.commonsware.android.abf -v --throttle
100 600

(substituting the package name of a project on your device or emulator for
com.commonsware.android.abf)

Working from right to left, we are asking for 600 simulated events, throttled to run
every 100 milliseconds. We want to see a list of the invoked events (-v) and we want
to throw out any event that might cause the Monkey to leave our application, as
determined by the application’s package (-p com.commonsware.android.abf).

MONKEYRUNNER AND THE TEST MONKEY

2083

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Monkey will simulate keypresses (both QWERTY and specialized hardware
keys, like the volume controls), D-pad/trackball moves, and sliding the keyboard
open or closed. Note that the latter may cause your emulator some confusion, as the
emulator itself does not itself actually rotate, so you may end up with your screen
appearing in landscape while the emulator is still, itself, portrait. Just rotate the
emulator a couple of times (e.g., <Ctrl>-<F12>) to clear up the problem.

For playing with a Monkey, the above command works fine. However, if you want to
regularly test your application this way, you may need some measure of repeatability.
After all, the particular set of input events that trigger your crash may not come up
all that often, and without that repeatable scenario, it will be difficult to repair the
bug, let alone test that the repair worked.

To deal with this, the Monkey offers the -s switch, where you provide a seed for the
random number generator. By default, the Monkey creates its own seed, giving
totally random results. If you supply the seed, while the sequence of events is
random, it is random for that seed — repeatedly using the same seed will give you
the same events. If you can arrange to detect a crash and know what seed was used
to create that crash, you may well be able to reproduce the crash.

There are many more Monkey options, to control the mix of event types, to generate
profiling reports as tests are run, and so on. The Monkey documentation in the
SDK’s Developer’s Guide covers all of that and more.

MONKEYRUNNER AND THE TEST MONKEY

2084

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/developing/tools/monkey.html

Testing with UIAutomator

Yet another approach for testing Android applications arose with the R21 release of
the Android developer tools, in the form of uiautomatoruiautomator. This blends JUnit and Test
Monkey approaches, offering some unique advantages over either of those
individual frameworks.

Prerequisites
This chapter assumes that you have read the chapter on JUnit-based testing, mostly
for comparison purposes. Having read the chapter on monkeyrunner and the Test
Monkey is also a good idea, again for comparison purposes.

What Is UIAutomator?
uiautomatoruiautomator, as the name suggests, automates UIs. It simulates user input, in the
form of tapping on items and the like. It does so without modifying your process’
contents, and so in that respect it behaves like the Test Monkey.

However, unlike the Test Monkey, tests run by uiautomatoruiautomator are implemented in
JUnit, and those tests have limited access to the widgets inside of a UI. Such access
not only allows for directing simulated user input (e.g., “click the OK button”), but
also for asserting that various test conditions are true (e.g., “does the list have five
rows?”). In this respect, uiautomatoruiautomator behaves like traditional Android JUnit testing.

Why Choose UIAutomator Over Alternatives?
In some respects, uiautomatoruiautomator represents the worst of both worlds. You have to use
JUnit, making test authoring a challenge for those not skilled with Java. Yet you only

2085

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

have fairly generic access to an activity’s widgets, versus the complete white-box
capability of normal instrumentation-based JUnit testing.

Hence, why would anyone bother?

The big thing that uiautomatoruiautomator offers over classic JUnit testing is greater ability to
test an application versus testing individual components. The classic JUnit test cases
are organized around testing some specific component, such as using
ActivityInstrumentationTestCase2 to exercise some specific activity. Testing the
flow of work between activities is difficult from classic JUnit, but is relatively easy
with uiautomatoruiautomator.

Similarly, classic JUnit testing cooks up activity instances “out of thin air”. Instead,
uiautomatoruiautomator executes normal UI operations to create the activities, such as tapping
on your app’s icon in the home screen launcher. This more accurately simulates what
a user will do — users are far more likely to tap on a launcher than to hack into your
Dalvik VM and manually instantiate an activity.

Creating Some Tests
As with JUnit, creating test cases for uiautomatoruiautomator involves creating a separate
project. In this case, though, the project will create just an ordinary Java JAR file, not
an APK, let alone one designed to run in the same process as your main app.
uiautomatoruiautomator can then run that JAR to execute your tests, as we will see later in this
chapter.

You can see a set of uiautomatoruiautomator tests in a suitable project in the Testing/JUnit/
uiautomator directory. This is where the various code samples shown in this chapter
come from.

Using this project straight from the GitHub repo will require some modifications,
discussed below.

Setting Up for Command-Line Builds

While some pieces of the process for creating and executing uiautomatoruiautomator tests can
be done from an IDE, not all can. Hence, you will need to be set up to support
command-line builds in addition to any IDE you might already have configured.

TESTING WITH UIAUTOMATOR

2086

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit/uiautomator
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit/uiautomator
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit/uiautomator
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit/uiautomator

Creating the Test Project

First, create an ordinary Java project, not an Android application project or an
Android test project. You can place this project wherever you want on your
development machine’s filesystem — it does not have to be in some “magic
directory” relative to the application being tested.

In that project, you will need to add two JARs to your classpath: uiautomator.jar
and android.jar. The latter is the standard compile-time edition of the Android
SDK, what you normally get in an Android application project by specifying your
build target. The former, as the name might suggest, contains classes related to
writing uiautomatoruiautomator tests.

These two JARs are Android version-specific, insofar as there are different editions of
these JARs for each Android API level from API Level 16 on up. Since tests written
using these JARs are backwards-compatible, you will typically choose the most
recent edition of the JARs for your project.

In Eclipse, you would add those JARs via right-clicking on the project, choosing
Build Path > Configure Build Path from the context menu, switching to the Libraries
tab, clicking “Add External JARs…”, navigating to the appropriate platforms/
subdirectory in your SDK installation (e.g., platforms/android-17/, and choosing
those two JARs. Outside of Eclipse, you would add those two JARs to your compile-
time classpath via whatever means are appropriate.

You also need to attach JUnit to the project. In Eclipse, to do this, you would right-
click on the project, choose Build Path > Add Libraries…, choose JUnit from the
resulting dialog, then choose JUnit3 from the final dialog. You would need to do
something similar outside of Eclipse to attach JUnit to your compile-time classpath.

Then, you will need to make the project files necessary to prepare your code for use
as a uiautomatoruiautomator test JAR. To do that, you will need to run the android create
uitest-project command:

android create uitest-project -n <name> -t android-17 -p <path>

where:

• -n is the name you wish to give the JAR, minus the .jar file extension. Note
that the documentation presently claims that this is optional; it is not.

TESTING WITH UIAUTOMATOR

2087

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• -t to indicate what API level’s JARs you are using. This needs to be the name
of the directory from which you pulled the JARs (e.g., android-17). Note that
the documentation presently shows something else (a value of 1), which is
incorrect.

• -p [path> needs to point to the directory in which your test project will
reside (note: not your production project!)

If you are trying to use the sample test project from the GitHub repo, you will need
to adjust the references to the external JARs (android.jar and uiautomator.jar) to
point to your own SDK installation, as the project configuration files will be pointing
elsewhere (unless your development environment is set up exactly the same as that
of the author of this book, which would be really surprising).

Creating a Test Case

Your test case classes should inherit from
com.android.uiautomator.core.UiAutomatorTestCase, supplied by the
uiautomator.jar library. This will initialize the uiautomatoruiautomator connection to your
device or emulator and give you access to it via a UiDevice object, retrieved by
calling getUiDevice(). You will use this object as your primary gateway into the
device for events and retrieving information about your UI, as will be seen in the
next few sections.

Note that UiAutomatorTestCase itself inherits from the standard JUnit TestCase
class, and so you are also welcome to create setUp() and tearDown() methods as
you see fit.

Performing Device-Level Actions

The UiDevice you get from getUiDevice() has many methods that allow you to
perform device-level actions, such as calling pressHome() to press the HOME button
(and thereby bring up the home screen). Similarly, you can call:

• pressBack() and pressMenu() for the BACK and MENU buttons
• pressDPadUp(), pressDPadLeft(), etc. for D-pad events
• pressRecentApps() to bring up the recent tasks list
• pressKeyCode() to press an arbitrary key based on the keycode from
KeyEvent

…and so on.

TESTING WITH UIAUTOMATOR

2088

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inspecting and Interacting with the UI

Of course, pressing some buttons is not especially useful on its own, only as a means
to an end, such as launching your activity. To do more than this, you will need to get
your hands on widgets and containers, to perform operations related to them.

The key is that you can “get your hands on widgets and containers” from whatever
activity is in the foreground. This is not limited to your own app, but rather works for
any app, including the home screen itself.

The following sections will work through some common uiautomatoruiautomator operations, in
the context of the openActivity() from the ListTests class in the sample project.
This method, called from setUp(), consolidates the work to bring an instance of our
production activity to the foreground, by means of interacting with the home
screen:

privateprivate void openActivity() throwsthrows UiObjectNotFoundException {
getUiDevice().pressHome();

UiObject allAppsButton=
newnew UiObject(newnew UiSelector().description("Apps"));

allAppsButton.clickAndWaitForNewWindow();

UiObject appsTab=newnew UiObject(newnew UiSelector().text("Apps"));

appsTab.click();

UiScrollable appViews=
newnew UiScrollable(newnew UiSelector().scrollable(truetrue));

appViews.setAsHorizontalList();

UiObject ourApp=
appViews.getChildByText(newnew

UiSelector().className("android.widget.TextView"),
"Action Bar Fragment Demo");

ourApp.clickAndWaitForNewWindow();

UiObject appValidation=
newnew UiObject(

newnew
UiSelector().packageName("com.commonsware.android.abf"));

assertTrue("Could not open test app", appValidation.exists());
}

TESTING WITH UIAUTOMATOR

2089

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding and Interaction with Widgets

openActivity() starts by calling pressHome() on the UiDevice, to ensure that the
home screen is in the foreground:

getUiDevice().pressHome();

Next, we want to bring up the home screen’s launcher, showing the available
launchable activities, so that we can find our app and launch it. What a user would
do, on a stock Android environment like an emulator, would be to click on the
appropriate button to bring up the launcher. We need to do the same thing, except
from our test code. This implies:

• Finding that widget
• Simulating a click of that widget

Web developers are used to finding DOM nodes by CSS queries. Developers using
XML are used to using XPath queries to find particular elements. Along the same
lines, uiautomatoruiautomator gives us a flexible system to find widgets in the foreground
activity, by means of a UiSelector object, typically created using the public zero-
argument constructor (i.e., new UiSelector()).

In CSS, a “selector” can identify DOM nodes by class, id, or ones with particular
properties. A UiSelector can do much the same thing. So, the first UiSelector
created in openActivity() will find a widget in the foreground activity whose
“description” is Apps (new UiSelector().description("Apps")). Here, “description”
will mean either the text of a TextView or the android:contentDescription of other
types of widgets.

How do we know that this particular button has a “description” of Apps? In this case,
we found out using uiautomatorvieweruiautomatorviewer, which will be discussed later in this
chapter.

By passing our UiSelector to the constructor of UiObject, we get a UiObject that,
hopefully, knows how to interact with this particular button of the home screen. In
particular, we call clickAndWaitForNewWindow() on it, which taps the button and
blocks until something else (e.g., a new activity) has taken over the foreground:

UiObject allAppsButton=
newnew UiObject(newnew UiSelector().description("Apps"));

allAppsButton.clickAndWaitForNewWindow();

TESTING WITH UIAUTOMATOR

2090

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The stock Android launcher has two tabs, one for apps and one for (app) widgets.
We need to ensure that the apps tab is selected. So, once again, we create a
UiSelector and use it to create a UiObject to represent the apps tab. This time, we
use text() instead of description(). text() will find a widget based solely on its
display text (e.g., android:text of a TextView). In truth, we could have used
description() here as well, with the same results.

Then, we call click() on the UiObject, to simulate a tap on this tab, to ensure that
is the selected tab.

UiObject appsTab=newnew UiObject(newnew UiSelector().text("Apps"));

appsTab.click();

Dealing with Collections

Finding widgets by text or description is fairly easy when there is only one possible
widget that has that text or description. Things get more complicated when you are
dealing with a collection of widgets, such as an AdapterView.

For example, the Apps tab of the standard Android launcher uses a GridView to
show up to 20 launchable activities. Then, you need to swipe horizontally, courtesy
of a ViewPager, to uncover additional GridView collections of launchable activities.

A UiCollection helps deal with this, in terms of allowing you to inspect a collection
of widgets, including performing the necessary swipe operations to access all of the
contents.

A UiSelector called with scrollable(true) will return a widget that is scrollable.
Creating a UiCollection with that UiSelector will create a UiCollection around
the first scrollable widget. In the case of the Apps tab, that will be the ViewPager-
and-GridView combination.

In our case, to get to other elements in the collection, you need to swipe
horizontally. To configure the UiCollection that way, we have to call
setAsHorizontalList() on the UiCollection:

UiScrollable appViews=
newnew UiScrollable(newnew UiSelector().scrollable(truetrue));

appViews.setAsHorizontalList();

TESTING WITH UIAUTOMATOR

2091

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding Widgets By Type

In that collection, we want to find the item that contains our app’s caption. This test
project is designed to test the same sample app that was tested in the JUnit chapter,
a slightly modified version of an early action bar sample. Our launcher entry’s name
will be “Action Bar Fragment Demo”, as that is what we set up in the production
project’s manifest and string resources. So, we need to find the entry in the
ViewPager-of-GridViews that has that title.

To do that, we will create yet another UiSelector. This time, though, we will find
widgets by type, specifying className("android.widget.TextView") to only work
with TextView widgets.

That UiSelector is passed into the getChildByText() method of UiCollection,
which will iterate over the children to find the first one that matches the UiSelector
and where the selected widget contains the supplied text:

UiObject ourApp=
appViews.getChildByText(newnew

UiSelector().className("android.widget.TextView"),
"Action Bar Fragment Demo");

Then, we again call clickAndWaitForNewWindow(), to tap on our launcher entry,
triggering our app’s activity to come to the foreground:

ourApp.clickAndWaitForNewWindow();

Asserting Conditions

UiSelector and UiObject can also be used for some odd operations that do not fit
the normal widgets-and-containers pattern shown above.

For example, now that we have opened a window from our app to be tested, it would
be nice to confirm that, indeed, this is our app, and that our openActivity()
method did not open some other app by mistake.

To do this, we can create a UiSelector and apply packageName(), to constrain the
selection to widgets coming from an app with our desired package name:

UiObject appValidation=
newnew UiObject(

newnew
UiSelector().packageName("com.commonsware.android.abf"));

TESTING WITH UIAUTOMATOR

2092

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The UiObject we create always exists (i.e., is not null), as we are creating it via the
constructor. However, it is entirely possible that our UiSelector cannot match any
widget, such as would be the case if we accidentally opened the wrong app and tried
to find a widget stemming from our package. The exists() method on a UiObject
returns true if the UiObject is pointing at an actual widget, false otherwise. Hence,
we can assert that we indeed have a widget coming from our package:

assertTrue("Could not open test app", appValidation.exists());

The net result is that we open our main activity and confirm that, indeed, that is
what we opened.

Two Sample Test Methods

All of that was just to get the activity for testing onto the screen.

Now the real testing begins.

The ListTests class has two test methods, testContents() and testAdd(),
designed to (lightly) exercise the UI.

testContents()

The objective of the testContents() method is to confirm that the 25 words all
appear in the ListView.

To do that, we:

• Create a UiScrollable for a UiSelector that finds the ListView in our
activity

• Mark that UiScrollable as being a vertical list, where swipes up and down
will expose the various children

• Iterate over the array of words, finding the TextView for each word and
confirming that this widget does indeed exist

publicpublic void testContents() throwsthrows UiObjectNotFoundException {
UiScrollable words=

newnew UiScrollable(
newnew UiSelector().className("android.widget.ListView"));

words.setAsVerticalList();

forfor (String s : items) {

TESTING WITH UIAUTOMATOR

2093

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

assertNotNull("Could not find " + s,
words.getChildByText(newnew

UiSelector().className("android.widget.TextView"),
s));

}
}

testAdd()

The objective of the testAdd() method is to add a new word to the list, via the
EditText widget in our action bar, then confirm that the new word was actually
added to the list.

To do that, we:

• Retrieve the EditText by finding the widget whose text is “Word” (the hint
of our EditText)

• Call setText() to fill in snicklefritz into the EditText widget, which
UiObject accomplishes by actually typing in the value

• Call pressEnter() on the UiDevice to simulate pressing the Enter key of a
keyboard, which will trigger our action listener in the test activity and will
add the word to the list

• Create a UiScrollable for a UiSelector that finds the ListView in our
activity

• Mark that UiScrollable as being a vertical list, where swipes up and down
will expose the various children

• Try to find a TextView whose text is snicklefritz and assert that it was
found

publicpublic void testAdd() throwsthrows UiObjectNotFoundException {
UiObject add=newnew UiObject(newnew UiSelector().text("Word"));

add.setText("snicklefritz");
getUiDevice().pressEnter();

UiScrollable words=
newnew UiScrollable(

newnew UiSelector().className("android.widget.ListView"));

words.setAsVerticalList();

assertNotNull("Could not find snicklefritz",
words.getChildByText(newnew

UiSelector().className("android.widget.TextView"),
"snicklefritz"));

}

TESTING WITH UIAUTOMATOR

2094

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Cleaning Up

Our ListTests class also has a tearDown() method, invoked by JUnit after each test
method. Here, we press BACK twice, to return us to the main home screen from our
activity, setting things back up for the next test method:

@Override
publicpublic void tearDown() {

getUiDevice().pressBack();
getUiDevice().pressBack();

}

Running Your Tests
At the present time, running your tests is a fairly manual process, driven from the
command line. In the future, with luck, there will be better tooling to assist with
this, particularly Eclipse integration.

Building and Pushing the JAR

Your test project, created via android create uitest-projectandroid create uitest-project, should contain an
Ant build.xml file. Hence, running ant buildant build from the root of your test project’s
directory should create a JAR file in bin/ containing your compiled test code.

You then need to push that to the device’s temporary directory, /data/local/tmp,
such as via the adb pushadb push command:

adb push bin/NameOfYour.jar /data/local/tmp/

Executing uiautomator

To actually run the tests, you will use adb shelladb shell to run the uiautomator command
on the connected device or emulator:

adb shell uiautomator runtest <jar> -c <tests>

where:

• <jar> is the name of the test JAR that you pushed to the device in the
preceding step.

• <tests> is the fully-qualified name of your test class (e.g.,
com.commonsware.android.abf.uiautomator.ListTests), optionally with a

TESTING WITH UIAUTOMATOR

2095

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

suffix identifying a single test method to run (e.g.,
com.commonsware.android.abf.uiautomator.ListTests#testContents.
Without this suffix, all test methods on the class will be run. You can specify
two or more classes (or class+methods) using a space as a separator between
them.

There are other command-line switches that you can optionally provide to further
customize the behavior of your tests, though the ones listed above are all that is
needed.

As with running a classic set of JUnit tests, the output of the test run is dumped to
your terminal window, showing you the successes and failures.

Note that the device or emulator will have to be set up with your production app, so
that your test code that launches it will succeed. Since the test project and the
production project are decoupled, simply running the uiautomatoruiautomator does not
automatically push a new copy of your app to the device or emulator, though you
could augment some build scripts or a wrapper shell script/batch file to do this for
you.

Finding Your Widgets
The key to finding your desired widgets stems in large part from the text() or
description() methods on UiSelector. Of those two, the latter is more flexible, as
it will use the android:contentDescription from any widget, while text() is
limited to TextView and its subclasses.

However, this implies that your widgets have android:contentDescription defined.
This is also important for accessibility, and therefore is a good idea regardless of its
use with uiautomatoruiautomator.

Limitations of uiautomator
While handy, uiautomatoruiautomator is not without its issues. In addition to the ones
mentioned throughout this chapter:

• There is no way for uiautomatoruiautomator to test multi-touch operations at this time.
• uiautomatoruiautomator works with ARM-powered devices and emulators. It notably

does not work with x86 emulators, due to some differences between the
actual Linux shell that is invoked via the adb shell command. This is

TESTING WITH UIAUTOMATOR

2096

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/uiautomator/index.html#options

unfortunate, given the clear speed advantages of the x86 emulators. With
luck, this will be repaired in a future edition of the Intel-supplied emulator
images.

TESTING WITH UIAUTOMATOR

2097

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Gradle and the New Build
System

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing Gradle

Two major shifts in Android application development began in mid–2013 before
hitting the mainstream in 2014. One is Android Studio, the new IDEA-based IDE.
The other is “the new build system”, which is based upon a build engine called
Gradle.

This chapter, and the chapters that follow, will give you a foundation in the use of
this new build system, as it will be a useful adjunct to developers using IDEs, as well
as being a core capability for developers who have elected to not use any IDE.

This chapter specifically will explain what Gradle is, how it relates to Android
application development, how to get Gradle on your development machine, and
some security issues with Gradle-based development.

Prerequisites and Warnings
Understanding this chapter requires that you have read the core chapters of this
book.

NOTE: This chapter discusses a pre-release technology. The technology is
undergoing rapid revision and suffers from a dearth of documentation. More so than
with other chapters in this book, you may encounter behavior that differs from what
is documented. As the saying goes, “your mileage may vary”.

The Big Questions
First, let us “set the stage” by examining what this is all about, through a series of
fictionally-asked questions (FAQs).

2099

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What is Gradle?

Primarily, Gradle is a replacement for Ant for doing builds at the command line.

Ant and Gradle are build systems. They are software designed to build other
software, much as makemake is a build system. These tools know — via intrinsic
capabilities and rules that you teach them — how to determine what needs to be
created (e.g., based on file changes) and how to create them. A build system does
not compile, link, package, etc. applications directly, but instead directs separate
compilers, linkers, and packagers to do that work.

Ant used XML as the way of providing project-specific instructions for indicating
what to build. By means of <import> elements, a project’s build file (e.g., build.xml)
could incorporate common instructions. And Ant could be extended through
custom JARs that defined new elements that a build file could use.

Gradle, at its core, does the same basic thing. However, rather than using XML and
elements, it uses a domain-specific language (DSL) built on top of Groovy to
accomplish the same ends.

What is Groovy?

There are many programming languages that are designed to run on top of the Java
VM. Some of these, like JRuby and Jython, are implementations of other common
programming languages (Ruby and Python, respectively). Other languages are
unique, and Groovy is one of those.

Groovy scripts look a bit like a mashup of Java and Ruby. As with Java, Groovy
supports:

• Defining classes with the class keyword
• Creating subclasses using extends
• Importing classes from external JARs using import
• Defining method bodies using braces ({ and })
• Objects are created via the new operator

As with Ruby, though:

• Statements can be part of a class, or simply written in an imperative style,
like a scripting language

• Parameters and local variables are not typed

INTRODUCING GRADLE

2100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/
http://groovy.codehaus.org/

• Values can be automatically patched into strings, though using slightly
different syntax ("Hello, $name" for Groovy instead of "Hello, #{name}"
for Ruby)

Groovy is an interpreted language, like Ruby and unlike Java. Groovy scripts are run
by executing a groovygroovy command, passing it the script to run. The Groovy runtime,
though, is a Java JAR and requires a JVM in order to operate.

One of Groovy’s strengths is in creating a domain-specific language (or DSL).
Gradle, for example, is a Groovy DSL for doing software builds. Gradle-specific
capabilities appear to be first-class language constructs, generally indistinguishable
from capabilities intrinsic to Groovy. Yet, the Groovy DSL is largely declarative, like
an XML file.

To some extent, we get the best of both worlds: XML-style definitions (generally
with less punctuation), yet with the ability to “reach into Groovy” and do custom
scripting as needed.

What Does Android Have To Do with Gradle?

“The new build system” for Android apps is based upon Gradle. It is expected that
Ant support will become deprecated and, eventually, abandoned.

Why Are We Moving to Gradle?

There appear to be several contributing factors, including:

• Maintaining two separate build systems (Ant and Eclipse’s native approach)
was becoming time-consuming, and would become worse with the advent of
Android Studio and yet another build system. Hence, Google wishes to
standardize on a single build system, based upon Gradle, for IDE and
command-line scenarios.

• Getting Ant scripts to do everything that Google needed for builds was
getting a bit creaky.

• Ant has no first-class support for “external artifacts” (e.g., libraries) and
dependency management of those libraries. While there are ways to graft
Maven onto Ant, there are apparently limits to that solution. Gradle offers
much better support in this area, and will help make it easier for developers
to reliably consume libraries from a variety of authors.

• Gradle is designed to be integrated into IDEs as a library, much more than
Ant is.

INTRODUCING GRADLE

2101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Domain-specific_language
http://tools.android.com/tech-docs/new-build-system
http://maven.apache.org/

How Does Gradle Relate to Android Studio?

Android Studio uses the new Gradle-based build system as its native approach for
building Android projects. While IDEA also has its own build system (much like
Eclipse has one), IDEA is more amenable to replaceable build systems.

Over time, this will allow Google to focus on a single build system (Gradle) for all
supported scenarios, rather than having to deal with a collection of independent
build systems.

How Does Gradle Relate to Eclipse?

At the time of this writing (October 2013), Eclipse has no ability to use Gradle build
scripts, either directly or as a source of project configuration data for imports. The
Android Developer Tools (ADT) plugin for Eclipse does have the ability to export a
generated Gradle build file for a project.

It is expected that sometime in the future, Google will attempt to have Eclipse be
able to use Gradle for builds. How successful this attempt will be remains to be seen.

Obtaining Gradle
As with any build system, to use it, you need the build system’s engine itself. There
are a few ways of going about this, described in the following sections.

Direct Installation

What most developers will wind up doing is installing Gradle directly.

The Gradle download page contains links to ZIP archives for Gradle itself: binaries,
source code, or both.

You can unZIP this archive to your desired location on your development machine.

Linux Packages

You may be able to obtain Gradle via a package manager on Linux environments. For
example, there is an Ubuntu PPA for Gradle.

INTRODUCING GRADLE

2102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/downloads
https://launchpad.net/~cwchien/+archive/gradle

The gradlew Wrapper

If you are starting from a project that somebody else has published, you may find a
gradlewgradlew and gradlew.batgradlew.bat file in the project root. This is the “Gradle Wrapper”,
which will automatically download and install Gradle to an undocumented location
on your development machine, then use it (instead of any existing installed copy of
Gradle) for the project build.

However, this implies that you trust the source of the gradlewgradlew script.

If you are in an enterprise setting, and you know exactly who created gradlewgradlew, and
therefore trust it, feel free to use it. On the other hand, do not use a gradlewgradlew script
obtained from semi-random sources on the Internet – install Gradle yourself directly
from the Gradle Web site, so that you are sure that you know where your Gradle
installation came from.

Versions of Gradle and Gradle for Android
The Gradle for Android plugin that we will use to give Gradle “super Android
powers!” is updated periodically. Each update has its corresponding required version
of Gradle:

• The 0.5.x generation of Gradle for Android required Gradle 1.8
• The 0.7.x generation of Gradle for Android required Gradle 1.9
• The 0.8.x generation of Gradle for Android requires Gradle 1.10
• The 0.9.x generation of Gradle for Android requires Gradle 1.10, but works

with 1.11

If you are using the gradlewgradlew wrapper, you are using an installation of Gradle that is
local to the project. So long as the version of Gradle in the project matches the
version of Gradle for Android requested in the build.gradle file — as will be
covered in the next chapter — you should be in fine shape.

If you are not using the gradlewgradlew wrapper, you will need to decide when to take on a
new Gradle for Android release and plan to update your Gradle installation and
build.gradle files in tandem at that point.

INTRODUCING GRADLE

2103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html

Gradle Environment Variables
You will want to define a GRADLE_HOME environment variable, pointing to where you
installed Gradle, and to add the bin/ directory inside of Gradle to your PATH
environment variable.

You may also consider setting up a GRADLE_USER_HOME environment variable,
pointing to a directory in which Gradle can create a .gradle subdirectory, for per-
user caches and related materials. By default, Gradle will use your standard home
directory.

Some Brief Words About Maven
Maven is a tool-slash-site-slash-philosophy used by many Java developers outside of
Android. You can roughly divide Maven into two parts:

• A build system (using the mvnmvn command)
• Maven Central, a repository of “artifacts”, such as libraries

Gradle does not use the Maven build system, but rather replaces it. However, Gradle
can integrate with Maven Central, so you can obtain libraries and such from it as
part of the build process.

Learning More About Gradle
The Gradle Web site hosts documentation, links to Gradle-specific books, and links
to other Gradle educational resources.

As the new build system is still in a pre-release state, the documentation is limited
and mostly appears on the Android tools site. Of note is the top-level page about the
new build system, and the Gradle plugin user guide, though both may be out of date
compared to the actual tools themselves.

INTRODUCING GRADLE

2104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/documentation
http://www.gradle.org/books
http://www.gradle.org/learn
http://tools.android.com
http://tools.android.com/tech-docs/new-build-system
http://tools.android.com/tech-docs/new-build-system
http://tools.android.com/tech-docs/new-build-system/user-guide

Gradle and Legacy Projects

Projects fall into two main categories: those using the new Gradle-specific directory
structure, and those that use the legacy structure that everyone used from 2008
through 2013 (and, to some extent, beyond).

However, Gradle is capable of building projects in either directory layout. This
chapter will review how to add Gradle support to an existing Android project,
without having to change your directory structure. Along the way, we will begin
examining what Gradle build files look like, so you can start to create your own from
scratch.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapter that introduces
Gradle.

NOTE: This chapter discusses a pre-release technology. The technology is
undergoing rapid revision and suffers from a dearth of documentation. More so than
with other chapters in this book, you may encounter behavior that differs from what
is documented. As the saying goes, “your mileage may vary”.

“Legacy”?
Here, “legacy directory structure” means a project tree that looks a bit like this:

2105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 544: Legacy Directory Structure

It is dominated by a traditional Java src/ tree, plus the Android-specific items like
res/, AndroidManifest.xml, and so forth.

This directory structure will work perfectly fine with Gradle, and you may need to
keep this structure for a while in order to maintain compatibility with other tools,
like Eclipse.

Creating Your Gradle Build File
The default name for an Ant build file is build.xml. The default name for a Gradle
build file is build.gradle. Just as you need a build.xml file to be able to build your
project with Ant, you need a build.gradle file to be able to build your project with
Gradle.

As noted in the introductory chapter on Gradle, Gradle is the native build system for
Android Studio. Hence, if you are using that IDE, you should get a build.gradle file
automatically.

GRADLE AND LEGACY PROJECTS

2106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are not using Android Studio, though, there are two main ways of getting a
build.gradle file today: export one from an Eclipse project, or create one by hand.

Exporting from Eclipse

If you have an existing Eclipse project, the easiest way to get a build.gradle file for
that project is to let the ADT plugin export one for you.

Performing the Export

To export build.gradle, either choose File > Export from the Eclipse main menu, or
choose “Export…” from the context menu in the Package Explorer. Either of those
should bring up a wizard-style dialog where you can choose what you want to
export:

Figure 545: Eclipse Export Wizard, First Page

Here, choose “Generate Gradle build files”. If that is not an option, you may be on an
older version of the ADT plugin and would need to upgrade.

GRADLE AND LEGACY PROJECTS

2107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking Next will then bring up a list of all installed projects, where you will need to
check the project that you wish to export:

Figure 546: Eclipse Export Wizard, Second Page

Note that your project may not already be checked, due to a bug in the wizard.

Once you have checked the project, the Next button should be enabled. Clicking
that will bring up a confirmation wizard page:

GRADLE AND LEGACY PROJECTS

2108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 547: Eclipse Export Wizard, Third Page

It should show the project you checked in the wizard. There is a “Force overriding of
existing files” checkbox — use that if you had previously exported the Gradle files
and wish to replace them with a freshly-exported copy.

Clicking the Finish button will do the export and bring up a report page:

GRADLE AND LEGACY PROJECTS

2109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 548: Eclipse Export Wizard, Fourth Page

After carefully reviewing the notes here (or possibly just ignoring them), click Finish
to close the wizard.

What Gets Generated

What you get for your troubles is:

• A build.gradle file, akin to the one that we will examine later in this
chapter.

• A Gradle wrapper, in the form of a gradlew and/or gradlew.bat file and a
gradle/ subdirectory, as was discussed in the previous chapter. If you will
not be using the wrapper, feel free to delete these files.

• A .gradle/ hidden subdirectory, containing cached data used by the Gradle
build process, such as a parsed copy of your build.gradle file, for faster
execution if you run Gradle without having modified build.gradle since
your last Gradle run.

GRADLE AND LEGACY PROJECTS

2110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hand-Writing

Of course, you are welcome to create your own build.gradle from scratch, or by
copying an existing one from elsewhere and making modifications to it. For
advanced features, this will be the typical approach.

When you first use your build.gradle file, Gradle will create the .gradle/ directory
for you.

Running a Gradle Build
With Ant, to run Ant tasks, you run ant ...ant ... at a command prompt, where the is
replaced by one or more task names.

Gradle works much the same way, except with a gradlegradle command instead of antant.
What is substantially different is the roster of tasks and the results of the build.

Key Build-Related Tasks

To find out what tasks are available to you, you can run gradle tasksgradle tasks from the
project directory. That will result in output akin to:

:tasks

--
All tasks runnable from root project
--

Android tasks

androidDependencies - Displays the Android dependencies of the project
signingReport - Displays the signing info for each variant

Build tasks

assemble - Assembles all variants of all applications and secondary packages.
assembleDebug - Assembles all Debug builds
assembleRelease - Assembles all Release builds
assembleTest - Assembles the Test build for the Debug build
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend
on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
clean - Deletes the build directory.

Build Setup tasks

GRADLE AND LEGACY PROJECTS

2111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setupBuild - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

dependencies - Displays all dependencies declared in root project 'Hello'.
dependencyInsight - Displays the insight into a specific dependency in root
project 'Hello'.
help - Displays a help message
projects - Displays the sub-projects of root project 'Hello'.
properties - Displays the properties of root project 'Hello'.
tasks - Displays the tasks runnable from root project 'Hello'.

Install tasks

installDebug - Installs the Debug build
installTest - Installs the Test build for the Debug build
uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build
uninstallRelease - Uninstalls the Release build
uninstallTest - Uninstalls the Test build for the Debug build

Verification tasks

check - Runs all checks.
connectedCheck - Runs all device checks on currently connected devices.
connectedInstrumentTest - Installs and runs the tests for Build 'Debug' on
connected devices.
deviceCheck - Runs all device checks using Device Providers and Test Servers.
lint - Runs lint on all variants.

Rules

Pattern: build<ConfigurationName>: Assembles the artifacts of a configuration.
Pattern: upload<ConfigurationName>: Assembles and uploads the artifacts
belonging to a configuration.
Pattern: clean<TaskName>: Cleans the output files of a task.

To see all tasks and more detail, run with --all.

BUILD SUCCESSFUL

Total time: 7.341 secs

This list is dynamically generated based on the contents of build.gradle, notably
including tasks defined by the android plugin.

In principle, you are supposed to specify the entire task name when running that
task. However, you can use shorthand, so long as it uniquely identifies the task.

GRADLE AND LEGACY PROJECTS

2112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Probably the most common task that a developer will use, at least in the short term,
is installDebug (or iD for short). This will build a debug version of the app and
install it on an available device or emulator. This roughly corresponds to antant
install debuginstall debug.

Just as there is installDebug, there can also be installRelease. The Debug and
Release portions of the task are not hard-coded, but rather are derived from the
“build types” defined in the build.gradle file. The concept, role, and usage of build
types will be covered in the next chapter. However, installRelease is not available,
because installing an app requires that the APK be signed, and Gradle for Android
does not know how to sign it. We will address this in the next chapter as well.

If you just want to build the app, without installing it, assembleDebug (aD) or
assembleRelease (aR) will accomplish that aim. If you want to uninstall the app
from a device or emulator, uninstallDebug (uD) and uninstallRelease (uR) should
work.

Discussion of other tasks, such as the “check” tasks, will be covered in later chapters.

Results

With Ant, the build output went in a bin/ directory. With Gradle, the build output
goes into a build/ directory.

Specifically, your APKs will go into build/apk, with different APK editions based
upon whether you did a debug or release build.

Gradle has a clean task that wipes out the build/ directory. However, note that
Eclipse and Ant use the bin/ directory, so a Gradle clean will not “clean” the pre-
compiled classes and such that Eclipse and Ant use. The reverse is also true: antant
cleanclean does not touch the build/ directory and so will not “clean” the Gradle pre-
compiled classes.

Examining the Gradle File
The book’s sample code contains a Gradle/Hello sample project. This is just a stock
“Hello, world” app, as created by the Eclipse new-project wizard.

However, it also contains a build.gradle, exported by Eclipse:

GRADLE AND LEGACY PROJECTS

2113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/Hello
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/Hello

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}
apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...
instrumentTest.setRoot('tests')

// Move the build types to build-types/<type>
// For instance, build-types/debug/java, build-types/debug/

AndroidManifest.xml, ...
// This moves them out of them default location under src/<type>/...

which would
// conflict with src/ being used by the main source set.
// Adding new build types or product flavors should be accompanied
// by a similar customization.
debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

In this section, we will examine what is in this generated file and what it means to
you, an Android app developer.

GRADLE AND LEGACY PROJECTS

2114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

buildscript

The buildscript block in Gradle is where you configure the JARs and such that
Gradle itself will use for interpreting the rest of the file. Hence, here you are not
configuring your project so much as you are configuring the build itself.

The generated build.gradle file has code to bootstrap installation of Android SDK
components necessary to complete the build:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

The repositories block indicates where dependencies can come from, typically in
the form of Maven-style repositories. Here, mavenCentral() is a built-in method that
returns the repository information for Maven Central, where Google is now
publishing its required libraries.

The dependencies block indicates what is required to be able to run the rest of the
build script. classpath 'com.android.tools.build:gradle:0.9.0' is not
especially well-documented by the Gradle team. However the
'com.android.tools.build:gradle:0.9.0' portion means:

• Find the com.android.tools.build group of artifacts in a repository
• Find the gradle artifact within that group
• Ensure that we have version 0.9.0

You will sometimes find these dependencies with a + instead of a specific version
number in the last segment (e.g., 0.9.+). This means “0.9.0 or anything higher in
the 0.9.x series”. This assumes that all of the 0.9.x series are compatible, meaning
that a script for version 0.9.0 of the Gradle for Android plugin will also work with
0.9.1, etc.

The first time you run your build, with the buildscript block as shown above,
Gradle will notice that you do not have this dependency. It will then visit Maven
Central and find the com.android.tools.build group and the gradle artifact
within that group, then download version 0.9.0.

GRADLE AND LEGACY PROJECTS

2115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://search.maven.org/
http://search.maven.org/
http://goo.gl/wc6isc
http://goo.gl/wc6isc

apply plugin

The 'com.android.tools.build:gradle:0.9.0' dependency contains an
implementation of an android plugin for Gradle, to teach Gradle Android-specific
constructs, such as those found in the android block covered later in this chapter.
However, just downloading the dependency does not actually apply anything in it.

The apply plugin: 'android' statement actually adds the android plugin to the
Gradle DSL.

dependencies

The dependencies block in the buildscript block specifies dependencies for the
build script. The dependencies block in the root of the build.gradle file, by
contrast, specifies dependencies for the app.

However, the definition of “dependency” is largely the same: it is some library or
similar artifact that we need in addition to our project’s source code.

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

The compile fileTree(dir: 'libs', include: '*.jar') statement indicates that
all JARs found in the project’s libs/ directory should be included as part of the
compile process. This is to support the classic way of building Android apps, with
JARs in libs/.

android

The android block contains all of the Android-specific configuration information.
This block is what the Android plugin enables.

While there are lots of possibilities for what can go in this block, the Eclipse-
generated build.gradle has two statements (compileSdkVersion and
buildToolsVersion) and a sourcesets block.

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

sourceSets {
main {

GRADLE AND LEGACY PROJECTS

2116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...
instrumentTest.setRoot('tests')

// Move the build types to build-types/<type>
// For instance, build-types/debug/java, build-types/debug/

AndroidManifest.xml, ...
// This moves them out of them default location under src/<type>/...

which would
// conflict with src/ being used by the main source set.
// Adding new build types or product flavors should be accompanied
// by a similar customization.
debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

compileSdkVersion replaces the target line in project.properties, or the build
target in Eclipse (Project > Properties > Android). Here, you specify the API level to
be compiled against, as a simple API level (e.g., 18). Note that if you are still using
Maps V1, or otherwise need to specify a build target that is not a pure API level, you
can pass the appropriate string to compileSdkVersion. For example, if your
project.properties file had target=Google Inc.:Google APIs:10 for Ant and
Eclipse, the equivalent in Gradle is compileSdkVersion "Google Inc.:Google
APIs:10".

buildToolsVersion indicates the version of the Android SDK build tools that you
wish to use with this project. While downloading the android plugin from Maven
Central gives us parts of what is needed, it is not complete. The rest comes from the
“Android SDK Build-tools” entry in the SDK Manager:

GRADLE AND LEGACY PROJECTS

2117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 549: SDK Manager, Showing “Android SDK Build-tools”

Note that the SDK Manager will allow you to download the latest version of the
Gradle build tools (appearing as 18.1 in the above screenshot) plus prior versions
(18.0.1 and 17 in the above screenshot).

Beyond this, buildToolsVersion is presently undocumented. Therefore, it is unclear
if this is a minimum value (and a newer set of tools will work) or if this is a specific
value (and if you have a different set installed, your build will fail).

sourcesets

The bulk of the android-specific configuration in the exported build.gradle file
comes in the sourceSets block inside the android block. Here, we specify what
should be compiled.

Much of this is in the main block, defining a single set of sources:

main {
manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']

GRADLE AND LEGACY PROJECTS

2118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

assets.srcDirs = ['assets']
}

The new build system allows for separate locations for items presently all dumped
into src/: Java source, AIDL interface definitions, RenderScript source files, and
Java-style resources (not to be confused with Android resources). Since this build file
is for a classic directory structure, though, each of those types of input files will still
be found in src/, so the main sourceSet points Android to src/ for each of them. In
addition, main indicates the name of the manifest file and the location of the res/
and assets/ trees.

The rest of the sourceSets block consists of:

• Indicating where tests can be found, which is invalid in this case, as this
project has no tests (this would appear to be a bug in the stock template).

• Indicating where details for specific build types could be found, for debug
and release builds. This concept will be explored in greater detail in the next
chapter.

GRADLE AND LEGACY PROJECTS

2119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle and the New Project Structure

The preceding chapter showed how you can use Gradle, and the Gradle for Android
plugin, to do command-line builds of projects that can also work with Eclipse,
IntelliJ IDEA, Ant, etc.

However, while the legacy project directory structure works, it does not let you
leverage the full power of the Gradle for Android plugin. To take advantage of the
build flexibility of the new build system, you will need to organize your source,
resources, assets, and related files somewhat differently.

This chapter will outline this “new project structure” and show you how the new
build system’s concepts of build types and product flavors will make it easier for you
to have multiple different forms of output from a single, albeit reorganized, project
tree.

NOTE: The projects demonstrated in this chapter are not set up to be used by
Eclipse, as Eclipse does not support Gradle as of the time of this writing.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, in the context of covering the
use of Gradle with the legacy project structure.

NOTE: This chapter discusses a pre-release technology. The technology is
undergoing rapid revision and suffers from a dearth of documentation. More so than
with other chapters in this book, you may encounter behavior that differs from what
is documented. As the saying goes, “your mileage may vary”.

2121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Objectives of the New Project Structure
In the beginning, Android apps tended to be pretty simple, as we only had a handful
of devices, a smattering of users, one primary distribution channel (the then-
Android Market) and few major investors in the Android ecosystem.

Times have changed.

Now, Android apps for public consumption can be terribly complex, let alone apps
for internal enterprise use (which seem to be complex as a side effect of being
developed by an enterprise). We have multiple distribution channels, such as the
Amazon AppStore for Android and Yandex.Store. We have a billion devices and
nearly a billion users. Brands large and small are flocking to Android, bringing with
them their own challenges.

The new build system is designed to simplify creating complex Android
applications, while, ideally, not making simple Android applications a lot harder. It
is designed for scenarios like:

• Supporting multiple distribution channels, which may require multiple in-
app purchasing engines

• Supporting one app that is customized for individual clients, such as for use
by different enterprises

• Supporting an app that really needs to have different APKs for different types
of devices, despite all efforts to support all devices from a single APK

• Supporting an app that is part of a much larger integrated system and
needing to be built as part and parcel of that larger system

• Supporting a fleet of apps that depend upon common code, resources, third-
party libraries, and the like

• And so on

The new project structure, coupled with the Gradle for Android plugin and Gradle
itself, makes all of this possible… albeit with a bit of a learning curve.

Terminology
To understand what the new project structure entails, we need to define a few terms,
from Gradle and the Gradle for Android plugin.

GRADLE AND THE NEW PROJECT STRUCTURE

2122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Source Sets

To quote the Gradle documentation: “A source set is simply a group of source files
which are compiled and executed together.”

Source sets, on their own, have no particular semantic meaning. You can elect to
have your project use a single source set, or several source sets, for organizing your
code. You might have different source sets for:

• Production code versus test code, replacing the separate test project that we
historically used in Android development

• Interface code versus implementation code
• Different major functional areas within the app, particularly if they are

maintained by separate teams or developer pairs
• And so on

As we will see, the new project structure assumes the existence of at least one source
set, typically named main, but other features of the new build system will involve
additional source sets.

Build Types

A build type is one axis of possible alternative outcomes from the build process.

By default, the Gradle for Android plugin assumes that you want two build types:
release and debug. These may go through somewhat different build steps, such as
applying ProGuard to the release build but skipping it for the debug build.

With Ant and Eclipse, those two build types were “baked in” — you had them, you
had only them, and you had limited ability to configure anything different beyond
what the build tools would do differently automatically.

The Gradle for Android plugin though allows build types to have slightly different
configurations, such as adding a .debug suffix to the APK’s package name, so that
you can have a release build and a debug build of your app on the same device at the
same time. You also can create new build types for handling different scenarios. The
new build system documentation, for example, suggests a separate “jnidebug” build
type, where you can indicate that the Linux .so files for a project should be
compiled in debug mode.

GRADLE AND THE NEW PROJECT STRUCTURE

2123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/docs/current/userguide/java_plugin.html

As we will see, creating a new build type involves modifications to the build.gradle
file and adding a matching source set.

Product Flavors

A build type is one axis for varying your output. A product flavor is another,
independent axis for varying your output.

Product flavors are designed for scenarios where you want different release output
for different cases. For example, you may want to have one version of your app built
to use Google’s in-app purchasing APIs (for distribution through the Play Store) and
another version of your app built to use Amazon’s in-app purchasing APIs (for
distribution through the Amazon AppStore for Android). In this case, both versions
of the app will be available in release form, and you may wish to have separate debug
builds as well. And most of the code for the two versions of the app will be the same.
However, you will have different code for the different distribution channels — not
only does the right code have to run for the right channel, but there is no particular
value in distributing the code for one channel through the other channel.

Another example would be an app that is branded and configured for different
enterprise customers. You see this a lot with Web apps — the vendor sells a
branded-and-configured version of the Web app to the customer, whether that app
runs on vendor-supplied hardware or customer-supplied hardware. Similarly, the
maker of an Android app for collecting employee timesheets might want to offer to
its customers for their version of the timesheet app to sport the customer’s logo, tie
into the customer’s specific accounting server, enable or disable features based upon
how the customer uses timesheets, and so on. However, most of the code is shared
between all customers, and so when the app is updated to add features or fix bugs,
new builds are needed for all of the customers. In this case, each customer can be
set up as an independent product flavor, sharing much of the code, but with slightly
different code, resources (e.g., logo), and configuration based upon that customer’s
needs.

Product flavors are optional. If you do not describe any product flavors in your
build.gradle file, it is assumed that you have a single product flavor, referred to
internally as default. Many apps will not need product flavors; this is a feature that
you will opt into as needed.

As we will see, creating a new product flavor involves modifications to the
build.gradle file and adding a matching source set.

GRADLE AND THE NEW PROJECT STRUCTURE

2124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Build Variants

The term “build variant” is used for the cross product of the build types and the
product flavors. So, a project with debug and release build types and google and
amazon product flavors will result in a total of four build variants by default:

1. debug + google
2. debug + amazon
3. release + google
4. release + amazon

Flavor Groups

Sometimes, even this is insufficient flexibility.

For example, you might make heavy use of the NDK, directly or indirectly (e.g.,
using SQLCipher for Android). Normally, you would build a single APK that
contains compiled NDK binaries for all CPU architectures that you wish to support.
However, that can substantially increase the size of your APK, and if you are
bumping up against the file size limit of a distribution channel (e.g., the 50MB limit
of the Play Store), you might want to consider separate APKs per architecture.
Notably, the Play Store supports this, allowing you to upload one APK per
architecture for the same product (with the same package name), and the Play Store
infrastructure will deliver the right APK to the device based upon its CPU type.

You could use product flavors to arrange to have separate builds for the different
CPU architectures, to support this process. However, you might also want to have
different output for other reasons, such as the google and amazon scenario described
earlier in this section. Or, you might need separate free versus paid editions, if you
want to have an up-front fee for accessing a premium version of your app.

By default, product flavors are considered to be part of a single “flavor group”.
However, you can organize your flavors into your own separate flavor groups (e.g.,
one for CPU architecture, one for distribution channel).

These then add another factor into the cross-product that determines your build
variants. Suppose we have a cpu flavor group, consisting of arm and x86 product
flavors, and we have a channel flavor group, consisting of google and amazon flavors.
Now, we have a total of 8 possible build variants, when we factor in the build types:

1. debug + google + arm

GRADLE AND THE NEW PROJECT STRUCTURE

2125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. debug + amazon + arm
3. release + google + arm
4. release + amazon + arm
5. debug + google + x86
6. debug + amazon + x86
7. release + google + x86
8. release + amazon + x86

Creating a Project in the New Structure
As of the time of this writing, there are two major ways of getting a project into the
new project structure: use Android Studio, or do it by hand.

Android Studio’s native build system is Gradle with the Gradle for Android plugin.
When you create a new project through that IDE, it will automatically be set up with
the new project structure.

Unfortunately, at the time of this writing, there is no way to get a project organized
into the new structure out of Eclipse, simply because Eclipse does not support the
new structure. Similarly, there is no command-line tool, akin to android createandroid create
projectproject that will create a Gradle project. Both of these limitations are likely to be
lifted in the future.

Hence, in the short term, if you are not using Android Studio, and you want a
project in the new structure, you will need to craft the directory tree and
build.gradle file yourself. That could be a matter of creating them from scratch, or
it could be a matter of copying a project structure from an existing source. Martin
Liersch (a.k.a., “Goddchen”) has published a GitHub repository with a variety of
sample projects that you can use as a source of inspiration, along with the samples
presented over the rest of this chapter.

What the New Project Structure Looks Like
With all that as background, let’s take a look at the Gradle/HelloNew sample
project. This project is a clone of the Eclipse-generated “Hello, World” sample seen
in the previous chapter, but reorganized to follow the new project structure.

GRADLE AND THE NEW PROJECT STRUCTURE

2126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/Goddchen/Android-Gradle-Examples
https://github.com/Goddchen/Android-Gradle-Examples
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloNew
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloNew

The Directory Tree

The original sample directory tree is fairly conventional, just with some added
Gradle-specific files:

Hello
|—— AndroidManifest.xml
|—— assets/
|—— build.gradle
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— res/
| |—— drawable-hdpi/
| | |—— ic_launcher.png
| |—— drawable-ldpi/
| |—— drawable-mdpi/
| | |—— ic_launcher.png
| |—— drawable-xhdpi/
| | |—— ic_launcher.png
| |—— layout/
| | |—— activity_main.xml
| |—— menu/
| | |—— main.xml
| |—— values/
| | |—— dimens.xml
| | |—— strings.xml
| | |—— styles.xml
| |—— values-sw600dp/
| | |—— dimens.xml
| |—— values-sw720dp-land/
| | |—— dimens.xml
| |—— values-v11/
| | |—— styles.xml
| |—— values-v14/
| |—— styles.xml
|—— src/

|—— com/
|—— commonsware/

|—— android/
|—— gradle/

|—— hello/
|—— MainActivity.java

(note: above listing includes only files of relevance for the current discussion)

GRADLE AND THE NEW PROJECT STRUCTURE

2127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The new project structure, though, is a bit different:

HelloNew
|—— build.gradle
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— src/

|—— main/
|—— AndroidManifest.xml
|—— assets/
|—— java/
| |—— com/
| |—— commonsware/
| |—— android/
| |—— gradle/
| |—— hello/
| |—— MainActivity.java
|—— res/

|—— drawable-hdpi/
| |—— ic_launcher.png
|—— drawable-ldpi/
|—— drawable-mdpi/
| |—— ic_launcher.png
|—— drawable-xhdpi/
| |—— ic_launcher.png
|—— layout/
| |—— activity_main.xml
|—— menu/
| |—— main.xml
|—— values/
| |—— dimens.xml
| |—— strings.xml
| |—— styles.xml
|—— values-sw600dp/
| |—— dimens.xml
|—— values-sw720dp-land/
| |—— dimens.xml
|—— values-v11/
| |—— styles.xml
|—— values-v14/

|—— styles.xml

While the libs/ directory is in its original spot, along with build.gradle and
related build files, the rest has shifted.

GRADLE AND THE NEW PROJECT STRUCTURE

2128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With the new project structure, src/ is the root of the source sets, not just where
the source code goes. There is one source set, named main, in the src/main/
directory. In there is where the assets/ and res/ directories go, along with the
AndroidManifest.xml file. And, there is a java/ directory that contains the Java
source tree (what had been in the original src/ directory).

The build.gradle File

You might think that the build.gradle file would be more complicated. In reality, it
is simpler, because a lot of the complexity of the original sample was because we
were retrofitting the legacy project structure. So, we are left with:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.8.+'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

}

We still have the buildscript block to describe what we need for our build tools,
the android plugin, a pointer to our libs/ directory, and details for what version of
Android we are compiling against and what version of the build tools we are using.

And, as a result, we have the same tasks as before, including installDebug but still
not an installRelease task.

Configuring the Stock Build Types
The debug and release build types are ready “out of the box” for your use, with a
reasonable set of defaults. However, you can change those defaults and make other
adjustments to how those build types work, in addition to defining your own build

GRADLE AND THE NEW PROJECT STRUCTURE

2129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

types. Here, we will look at the options for changing the behavior of any build type,
focusing on the stock debug and release build types.

Specifically, we will examine the Gradle/HelloConfig sample project, which builds
upon the previous sample, modifying the behavior of both debug and release.

Source Set

Each build type can have its own associated source set. If you skip the directory for
it, that means that the build type is not contributing changes to the main source set.

So, in this sample project, we have a replacement version of the strings.xml
resource, in a debug source set:

HelloConfig
|—— build.gradle
|—— HelloConfig.keystore
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— src/

|—— debug/
| |—— res/
| |—— values/
| |—— strings.xml
|—— main/

|—— AndroidManifest.xml
|—— assets/
|—— java/
| |—— com/
| |—— commonsware/
| |—— android/
| |—— gradle/
| |—— hello/
| |—— MainActivity.java
|—— res/

|—— drawable-hdpi/
| |—— ic_launcher.png
|—— drawable-ldpi/
|—— drawable-mdpi/
| |—— ic_launcher.png
|—— drawable-xhdpi/
| |—— ic_launcher.png
|—— layout/

GRADLE AND THE NEW PROJECT STRUCTURE

2130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloConfig
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloConfig

| |—— activity_main.xml
|—— menu/
| |—— main.xml
|—— values/
| |—— dimens.xml
| |—— strings.xml
| |—— styles.xml
|—— values-sw600dp/
| |—— dimens.xml
|—— values-sw720dp-land/
| |—— dimens.xml
|—— values-v11/
| |—— styles.xml
|—— values-v14/

|—— styles.xml

That strings.xml contains a revised version of the app_name, to help make it more
obvious that we are running the debug version of the app:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>HelloGradle DEBUG</string></string>

</resources></resources>

As we will see, resources in build types’ source sets replace their counterparts in the
main. Or, a build type could add a new resource that is missing from main, if desired.

build.gradle Settings

We can also use the sourcesets block in build.gradle to configure the behavior of
the debug and/or release build types. In this sample project, we alter both, plus
make some other changes:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

GRADLE AND THE NEW PROJECT STRUCTURE

2131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
debug {

packageNameSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}
}

}

The defaultConfig block allows us to change aspects of what is found in the
AndroidManifest.xml file, replacing anything found in the actual file from the main
source set.

Notable properties that we can specify include:

• versionCode (to override android:versionCode in the root <manifest>
element)

• versionName (to override android:versionName in the root <manifest>
element)

• minSdkVersion (to override android:minSdkVersion from the <uses-sdk>
element)

• targetSdkVersion (to override android:targetSdkVersion from the
<uses-sdk> element)

• packageName (to override package in the root <manifest> element)

GRADLE AND THE NEW PROJECT STRUCTURE

2132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The buildTypes block is where we configure the behavior of the build types. Each
build type to be configured gets its own block inside of buildTypes, and in there we
can override various properties.

Notable properties that we can specify for a build type include:

• debuggable (to override android:debuggable from the <application>
element in the manifest, to indicate that the app should be considered
debuggable)

• packageNameSuffix (to append to the package name specified by the
manifest or the defaultConfig packageName property)

• versionNameSuffix (to append to the version name specified by the
manifest or the defaultConfig versionName property)

Our debug build type adds suffixes to the version name and the package name. Note
that altering the package name only affects the package name as seen by Android
when the app is installed and when the app is run. It does not affect the directory in
which the R class is built, which uses the package name from the
AndroidManifest.xml file. It also does not affect any of the Java packages for our
own classes, which are whatever we used when we wrote them. Hence, much of our
code will be oblivious to the package name change. However, if you want to
reference the real package name, such as for looking things up in PackageManager or
for use with constructing a ComponentName, use getPackageName() on any Context
(like an Activity), rather than some hard-coded string, as getPackageName()
returns what the runtime environment thinks the package is, which will include any
suffixes added during the build process.

We can also have a signingConfig property, referencing the name of a signing
configuration specified in the signingConfigs block. This is used to provide rules
for how to sign the APK that is assembled by Grade. In this project’s build.gradle
file, we have a release block in signingConfigs, supplying the requisite information
about the keystore:

• The storeFile path, specified as a file() pointing to a keystore in the
project’s root directory

• The keyAlias given to the signing key inside the keystore
• The storePassword and keyPassword used to access the keystore

The signingConfig property in the release block in buildTypes references the
signing configuration we want as signingConfigs.release. All of these Groovy
blocks of properties in the build.gradle file are effectively building up a data

GRADLE AND THE NEW PROJECT STRUCTURE

2133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

structure, which we can access. So, signingConfigs.release says to find the
release definition in the signingConfigs block.

This sample bakes in the keystore data into the build.gradle file, including the
passwords, and has the keystore in the root of the project. That is for demonstration
simplicity and will not be suitable for all projects. In particular, keystores and their
credentials should not be stored in a publicly accessible repository, as that would
allow others to sign their apps with your signing key, which is not good. There are a
variety of strategies for handling this, from using environment variables to
requesting the data be entered on the command line, as are discussed in this
StackOverflow question.

Adding a signingConfig property in our release build type enables the
installRelease task. Running gradle tasksgradle tasks will show installRelease as an
available option, because now Gradle for Android knows how to sign the APK. Of
course, there could be flaws in the signing configuration (e.g., mis-entered key alias),
and that will result in build errors when you try to installRelease the project.

Order of Precedence

Properties defined for a build type, and the properties defined for the
defaultConfig will override their equivalents in the AndroidManifest.xml file.
However, a build type’s source set can also have its own AndroidManifest.xml file.
The overall order of precedence is:

• What is in build.gradle takes precedence over…
• …what is in a build type’s AndroidManifest.xml file, which takes precedence

over…
• …what is in the main AndroidManifest.xml file

Resources from the build type’s source set are merged into the resources from the
main source set, and if there are collisions, the build type’s resource takes
precedence. The same is true for assets.

However, the behavior of Java source is slightly different. The build type’s source set
is still merged with the main source set, but if there is a collision, the result is a build
error. Either the build type or the main source set can define any given source file,
not both. So, while debug could have one version of your/package/name/Foo.java
and release could have a different version of your/package/name/Foo.java, main
could not also have your/package/name/Foo.java. Hence, if you define a class in a

GRADLE AND THE NEW PROJECT STRUCTURE

2134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/18328730/how-to-create-a-release-signed-apk-file-using-gradle
http://stackoverflow.com/questions/18328730/how-to-create-a-release-signed-apk-file-using-gradle

build type, most likely you will need to define that class in all build types, so that
any references from main to that class are satisfied for all build types.

Adding Build Types
Many developers will fare just fine with the debug and release build types, perhaps
with some adjustments as shown above. A few developers, though, will have other
scenarios that warrant new build types. Fortunately, adding a new build type is
rather easy, as seen in the Gradle/HelloBuildType sample project, which builds
upon the previous sample, adding a new build type.

As with the built-in build types, your new build types can have their own source
sets, by adding the appropriately-named directories underneath src/. And, as with
the built-in build types, you can configure the new build types in the buildTypes
block in build.gradle:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

GRADLE AND THE NEW PROJECT STRUCTURE

2135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildType
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildType

}
}

buildTypes {
debug {

packageNameSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}

mezzanine.initWith(buildTypes.release)

mezzanine {
packageNameSuffix ".mezz"
debuggable truetrue
signingConfig signingConfigs.release

}
}

}

In this project, we want a third build type, named mezzanine, representing a “middle
ground” between a regular debug build and the release build.

To tell Android about the new build type, we need to initialize one. That is handled
by the mezzanine.initWith(buildTypes.release) statement, which initializes the
new mezzanine build type configuration based upon the already-defined release
build type. From there, the subsequent mezzanine block can amend the properties
of that build type. In this case we:

• Put a .mezz suffix on the package name
• Flag the project as debuggable
• Sign with the release signing key

Since the mezzanine build type started with the release build configuration, the net
effect is that we have a build that is equivalent to the release build, just with the
debuggable flag set (and a unique package name).

Now, we gain Gradle tasks with Mezzanine in the name, like installMezzanine, to
go along with their Debug and Release counterparts.

GRADLE AND THE NEW PROJECT STRUCTURE

2136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding Product Flavors and Getting Build Variants
Many apps will not need product flavors, but some will. Adding a product flavor is
similar, in many respects, to adding a build type, as we will see in the Gradle/
HelloProductFlavors sample project, which builds upon the previous sample,
adding a pair of product flavors: vanilla and chocolate.

(note: product flavors do not have to be named after actual flavors)

Each product flavor, as with each build type, can have its own source set. In this
sample, we have src/vanilla/ and src/chocolate/ directories representing a
source set for each product flavor:

HelloProductFlavors
|—— build.gradle
|—— HelloConfig.keystore
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— src/

|—— chocolate/
| |—— java/
| |—— com/
| |—— commonsware/
| |—— android/
| |—— gradle/
| |—— hello/
| |—— MainActivityOptionsStrategy.java
|—— debug/
| |—— res/
| |—— values/
| |—— strings.xml
|—— main/
| |—— AndroidManifest.xml
| |—— assets/
| |—— java/
| | |—— com/
| | |—— commonsware/
| | |—— android/
| | |—— gradle/
| | |—— hello/
| | |—— MainActivity.java
| |—— res/
| |—— drawable-hdpi/

GRADLE AND THE NEW PROJECT STRUCTURE

2137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors

| | |—— ic_launcher.png
| |—— drawable-ldpi/
| |—— drawable-mdpi/
| | |—— ic_launcher.png
| |—— drawable-xhdpi/
| | |—— ic_launcher.png
| |—— layout/
| | |—— activity_main.xml
| |—— menu/
| | |—— main.xml
| |—— values/
| | |—— dimens.xml
| | |—— strings.xml
| | |—— styles.xml
| |—— values-sw600dp/
| | |—— dimens.xml
| |—— values-sw720dp-land/
| | |—— dimens.xml
| |—— values-v11/
| | |—— styles.xml
| |—— values-v14/
| |—— styles.xml
|—— vanilla/

|—— java/
|—— com/

|—— commonsware/
|—— android/

|—— gradle/
|—— hello/

|—— MainActivityOptionsStrategy.java

In the source sets, we have a MainActivityOptionsStrategy class, one
implementation per product flavor. This class is referenced by a new
implementation of the MainActivity class in the main source set, to delegate the
handling of onOptionsItemSelected():

packagepackage com.commonsware.android.gradle.hello;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.app.Activityandroid.app.Activity;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;

publicpublic classclass MainActivityMainActivity extendsextends Activity {

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

GRADLE AND THE NEW PROJECT STRUCTURE

2138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar
// if it is present.
getMenuInflater().inflate(R.menu.main, menu);
returnreturn truetrue;

}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

returnreturn(MainActivityOptionsStrategy.onOptionsItemSelected(item));
}

}

Since we do not have anything much to do in the menu option, each product flavor’s
implementation of MainActivityOptionsStrategy simply logs a flavor-specific
message to LogCat, such as the one shown here for vanilla:

packagepackage com.commonsware.android.gradle.hello;

importimport android.util.Logandroid.util.Log;
importimport android.view.MenuItemandroid.view.MenuItem;

publicpublic classclass MainActivityOptionsStrategyMainActivityOptionsStrategy {
publicpublic staticstatic boolean onOptionsItemSelected(MenuItem item) {

Log.d("HelloProductFlavors", "vanilla!");

returnreturn(falsefalse);
}

}

To tell Gradle for Android about our product flavors, and to configure their behavior,
we have a new productFlavors block in the build.gradle file:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {

GRADLE AND THE NEW PROJECT STRUCTURE

2139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

compileSdkVersion 18
buildToolsVersion "19.0.1"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
debug {

packageNameSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}

mezzanine.initWith(buildTypes.release)

mezzanine {
packageNameSuffix ".mezz"
debuggable truetrue
signingConfig signingConfigs.release

}
}

productFlavors {
vanilla {

packageName "com.commonsware.android.gradle.hello.vanilla"
}

chocolate {
packageName "com.commonsware.android.gradle.hello.chocolate"

}
}

}

The defaultConfig is implemented using the same object type as is used for
product flavors. Hence, we can configure the same things on a product flavor that we
can on the defaultConfig, such as packageName, as is done in this build.gradle file.

GRADLE AND THE NEW PROJECT STRUCTURE

2140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In terms of order of precedence:

• Product flavors override the main source set and the defaultConfig
• Build types override the product flavors

So, a debug build of the vanilla product flavor will result in a package name of
com.commonsware.android.gradle.hello.vanilla.d.

Our task names get more numerous and more complicated, to reflect the cross
product of the product flavors and build types. Now, rather than installDebug,
installMezzanine, and installRelease, we have:

• installChocolateDebug
• installChocolateMezzanine
• installChocolateRelease
• installVanillaDebug
• installVanillaMezzanine
• installVanillaRelease

Revisiting the Legacy Gradle File
Given all of this, let’s revisit the original build.gradle file, exported from Eclipse:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}
apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']

GRADLE AND THE NEW PROJECT STRUCTURE

2141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...
instrumentTest.setRoot('tests')

// Move the build types to build-types/<type>
// For instance, build-types/debug/java, build-types/debug/

AndroidManifest.xml, ...
// This moves them out of them default location under src/<type>/...

which would
// conflict with src/ being used by the main source set.
// Adding new build types or product flavors should be accompanied
// by a similar customization.
debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

The main block in the sourceSets block overrides the default locations of files that
comprise the source set. For example, in the new project structure, the Java source
code goes in java/ within the source set, but in the old project structure, it goes in a
src/ directory in the project root. The setRoot() calls on the stock debug and
release build types indicate that their source sets, if they exist, should be in a
separate build-types/ directory, as the normal src/ location is being used for Java
source code.

Discussion of the instrumentTest is covered in the chapter on Gradle and testing.

GRADLE AND THE NEW PROJECT STRUCTURE

2142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle and Dependencies

John Donne wrote “no man is an island”. Nowadays, few apps are islands, either. It is
the rare app that can avoid using all third-party code bases. Most apps will need a
backport or other class (e.g., ViewPager) from the Android Support package, or will
rely upon the Play Services SDK, or will use any number of third party JARs and
Android library projects.

The good news is that Gradle adds a lot of power for referencing these third-party
code bases when you build your app. While it increases the complexity a bit for
“reuse in the small” (e.g., a simple JAR), it can greatly simplify “reuse in the large”
(e.g., several Android library projects).

This chapter will outline what sorts of “dependencies” your app can have and how
you can configure Gradle to support them.

NOTE: The projects demonstrated in this chapter are not set up to be used by
Eclipse, as Eclipse does not support Gradle as of the time of this writing.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, including both the legacy
project structure and the new project structure.

NOTE: This chapter discusses a pre-release technology. The technology is
undergoing rapid revision and suffers from a dearth of documentation. More so than
with other chapters in this book, you may encounter behavior that differs from what
is documented. As the saying goes, “your mileage may vary”.

2143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“Dependencies”?
In case the term is new to you, in this chapter, and in the Gradle documentation,
“dependencies” means “code external to your project that your project depends
upon”.

In the case of Gradle-built Android apps, this includes:

• local JARs
• NDK-built local Linux .so files
• local Android library projects
• other types of “sub-projects”
• “artifacts” obtained from “repositories”, like Maven Central

Each of these will be covered in turn in this chapter.

The Dependencies Block… and the Other
Dependencies Block
A build.gradle file is likely to have two dependencies blocks.

One will be inside the buildscript block, and this set of dependencies are
dependencies for the build process itself. Here, we will list dependencies such as the
Android build tools, the ones that define the android options we can configure.

The dependencies block that is a peer of buildscript and android lists the
dependencies for the project that is being build by this particular build.gradle file.

In other words, the buildscript dependencies are tooling dependencies, while the
regular dependencies are compile-time sources of third-party code.

Depending Upon a JAR
Since early 2012, Ant and Eclipse shared a common rule for third-party JARs: put
them in your project’s libs/ directory, and both build environments would take it
from there. Specifically, they would:

• Add those JARs to the compile-time classpath, so your code that references
those JARs’ public APIs would compile, and

GRADLE AND DEPENDENCIES

2144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Add the contents of those JARs to your APK, so at runtime, your references
to those JARs’ classes can be resolved

And it worked.

The new Gradle-based build system does not automatically use the contents of your
libs/ directory in the same way. That is why our build.gradle files that use simple
local JARs will wind up with a dependencies block that looks like this:

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

The fileTree() will walk the directory tree rooted in the dir property (here, libs)
and look for files matching the include wildcard pattern (here, *.jar). This will
return all JAR files in libs/, which are then added to the compile process.

And, while we do not explicitly say to include those JARs in the resulting APK file,
that is actually handled for us as part of android processing.

Note that this is configurable. So, if for some reason, you would prefer to have your
JARs be in a directory other than libs/, such as jars/ or localDependencies/ or
wheeMakingLongDirectoryNamesIsFun/, you are welcome to do so.

…And Why Some Do Not Like This

However, using simple JARs this way is frowned upon, at least in the absence of
better options.

The reason is that a JAR file does not necessarily contain any information about the
version of that JAR file. JARs are frequently updated, and unless the author of the
JAR is “mangling in” the version information into the filename, you cannot tell by
looking at a JAR whether it is old or new.

For example, the classic Android Support package’s JAR is android-support-v4.jar.
Some developers see the -v4 part and assume that this means that this specific JAR
is version 4 of the library. In reality, -v4 means that it contains primarily the classes
from android.support.v4 and is designed for use with apps looking to support back
to API Level 4. However, this JAR is updated every couple of months with new
classes and bug fixes. Hence, two files named android-support-v4.jar may have
radically different contents, if one is from 2011 and one is from 2013, for example.

GRADLE AND DEPENDENCIES

2145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is what causes the Ant/Eclipse build process to hiccup when it encounters
multiple copies of the same JAR file (e.g., one in your project and one with the same
name in an Android library project). Name alone cannot distinguish whether they
are the same. The build tools wound up using MD5 hashes to try to determine if the
contents were indeed identical, which works but is not an ideal solution.

In classic Java development, “artifacts” and “repositories” were introduced to help
provide some wrapper metadata around a JAR, to help developers find the right
version and determine when updates are needed. Using artifacts and repositories is
recommended with Gradle, and Gradle makes it comparatively easy to use these
structures, as we will see later in this chapter.

Depending Upon NDK Binaries
It is possible to use the NDK with Gradle for Android. However, this is complicated
enough that it is relegated to the chapter on advanced Gradle for Android
techniques.

Depending Upon an Android Library Project
Android library projects have become popular ways of sharing code between
projects, as they encompass resources in addition to Java code. Some developers will
use Android library projects purely internally, for reusable code between projects.
Some developers will depend upon third-party library projects, such as widget
libraries or Google’s AppCompat backport of the action bar pattern. Some
developers will publish their own libraries for third-party use.

At their core, Android library projects do not change a lot when built with Gradle as
opposed to being built with Ant or Eclipse. However, the way you tell Android that a
project is a library project, and how you consume such library projects, has changed
substantially.

Creating a Library Project

The primary difference between a regular Android project and an Android library
project, in terms of Gradle configuration, is which plugin you use. Regular
application projects will use the android plugin, while Android library projects use
the android-library plugin:

GRADLE AND DEPENDENCIES

2146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android-library'

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

}

Source sets will behave the same as they do for regular apps, and otherwise your
code is no different than it would be for a regular app. However, as always, an
Android library project is not designed to create an APK file, but rather to serve as a
library.

However, Android library projects can have associated test code, which will is
covered in the chapter on Gradle and testing

Depending Upon the Library Project

Unfortunately, depending upon an Android library project is a bit more complex
than before.

In most cases, you will need to publish the library project to some repository as an
AAR artifact, such as a local repository, then reference that AAR as a dependency.
Coverage of artifacts and repositories appears later in this chapter.

You can skip that step if you can reorganize your code base into a project and set of
sub-projects, which is covered in the next section.

Depending Upon Sub-Projects
In classic Ant/Eclipse projects, we did not have the concept of a sub-project.
However, Gradle and Android Studio both support a structure of a top-level
directory (sometimes referred to as a “module”) containing a series of projects.

For example, the Gradle/HelloMultiProject directory contains:

GRADLE AND DEPENDENCIES

2147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloMultiProject
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloMultiProject

• a HelloLibraryConsumer project
• a libraries/ subdirectory containing a HelloLibrary project

In this case, HelloLibrary is an Android library project, the one from which we saw
the build.gradle file earlier in this chapter. HelloLibraryConsumer is a regular app
that uses code found in the HelloLibrary Android library project.

If your library project is solely for use with one app, you might elect to structure
your code using this approach.

The top-level directory must have a settings.gradle file, listing the Gradle projects
found in the directory (and any of its subdirectories):

include ':HelloLibraryConsumer', ':libraries:HelloLibrary'

The leading : refers to the overall root directory, so :HelloLibraryConsumer is a
reference to the HelloLibraryConsumer/ directory under the root. Other : values
represent levels in the hierarchy, so :libraries:HelloLibrary refers to the
libraries/HelloLibrary/ subdirectory. : is used instead of / as / is used by Gradle
for other purposes.

Hence, the include statement tells Gradle that this aggregate project is made up of
the two sub-projects.

To indicate that HelloLibraryConsumer wishes to consume code from the
HelloLibrary library, another line is added to the dependencies block, referencing
the sub-project:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')
compile project(':libraries:HelloLibrary')

}

android {
compileSdkVersion 18

GRADLE AND DEPENDENCIES

2148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

buildToolsVersion "19.0.1"
}

Whereas fileTree() is finding the JARs in the libs/ directory,
project(':libraries:HelloLibrary') is identifying the sub-project, and we are
telling Gradle to compile that sub-project into our project.

From the overall root directory (the one with the settings.gradle file), you can run
gradlegradle tasks for the overall app. This also works from the main app’s directory (in
this case, HelloLibraryConsumer/).

While this approach is fine for some applications, this structure will not work well if
the library has multiple possible consuming apps, particularly if those apps might be
by other authors. In that case, the library will need to be published as an artifact to a
repository, which is covered in the next section.

Depending Upon Artifacts
While JARs and sub-projects are certainly possible using Gradle for Android, the
predominant approach for specifying dependencies is by referencing artifacts hosted
in repositories.

What Is an Artifact?

In the context of Java-based programming, an artifact usually refers to a JAR (or
other compiled output, like a Java EE WAR), accompanied by metadata that provides
version information, a roster of the artifact’s own dependencies, and related
information.

What Is a Repository?

A repository is a collection of artifacts, stored in some location, that can be referred
to in order to find and resolve requests for dependencies.

Such repositories tend to be sub-divided into “local” and “remote”. A local repository
is one that resides on your own development machine; a remote repository is one
that resides on some server. That server could be relatively local (e.g., a repository in
support of a corporate development team), or it could be somewhere else. Perhaps
the best-known “somewhere else” is Maven Central, a repository used by many open
source projects for distributing their artifacts.

GRADLE AND DEPENDENCIES

2149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Types of Artifacts and Repositories

There are two types of repositories, and associated artifact structures, supported by
Gradle: Maven and Ivy. Each has their own format for the metadata and their own
structure for how the files are stored.

Maven

Apache Maven is a full-fledged build system. Part of that build system is a system of
artifacts and repositories. While Gradle does not use Maven’s build system — rather,
it largely replaces it — Gradle can consume artifacts published in a Maven-
structured repository. Maven Central, as one might expect, is one such repository,
but it is eminently possible to set up your own, and some organizations have done
that.

As Maven seems to be the more popular of the two, this book will focus on Maven-
structured repositories and Maven-style artifacts.

Ivy

Apache Ivy is an off-shoot of the Apache Ant project that gave us the Ant build
system. Ivy is simply a way of declaring dependencies between components,
including handling “transitive dependencies” (i.e., App A depends upon Library B,
which in turn depends upon Libraries C and D).

General Artifact Dependency Setup

To depend upon artifacts, you need to teach Gradle two things:

1. Where can artifacts be found?
2. What artifact(s) do you need?

The former comes from a repositories block in your build.gradle file, to specify
the repositories that you wish to search for artifacts.

The latter comes from other variations on the compile statement in your
dependencies block. Rather than using compile with something like a fileTree(),
you will specify the artifacts that you wish to use.

Artifacts are identified by three pieces of data:

GRADLE AND DEPENDENCIES

2150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://maven.apache.org/
http://ant.apache.org/ivy/

1. A group
2. An artifact ID
3. A version number

These are separated by colons, so compile
'com.commonsware.cwac:colormixer:0.5' would indicate that you are seeking the
artifact that:

• …is in the com.commonsware.cwac group…
• …has the colormixer artifact ID, and…
• …is version 0.5

Depending Upon Maven Central Artifacts

The single most common place to get artifacts is Maven Central. This is roughly
analogous to the RubyGems repository for Ruby developers, or CPAN for Perl
developers. Maven Central is a warehouse of many, many artifacts, only a subset of
which will be relevant for Android, as Maven Central has been used for many other
Java environments (e.g., Java Web containers).

Your build.gradle file will need a repositories block, at the top level (i.e., distinct
from the one inside the buildscript block), that requests mavenCentral():

repositories {
mavenCentral()

}

Then, you can have compile statements in your dependencies block that list
artifacts that can be found on Maven Central. One way to find out what you can
include is to visit the “Gradle, please” Web site, where you can type in the name of a
popular library (e.g., otto) and get the corresponding dependencies block:

dependencies {
compile 'com.squareup:otto:1.3.4'

}

If you have several dependencies, list them in the one dependencies block, one after
the next. So, for example, to depend both upon Otto and local JARs, you would have:

dependencies {
compile 'com.squareup:otto:1.3.4'
compile fileTree(dir: 'libs', include: '*.jar')

}

GRADLE AND DEPENDENCIES

2151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://maven.org/
http://gradleplease.appspot.com/

Depending Upon Googly Artifacts

However, not all artifacts are stored at Maven Central.

One important set of artifacts stored elsewhere are Google’s. Rather than have you
depend upon Maven Central, they offer their own repositories, ones that you can
download to your development machine via the SDK Manager. They are called
“Android repository” and “Google repository”, where the former is the home for
things like the Android Support package, and the latter is the home for things like
the Play Services SDK.

Figure 550: SDK Manager Showing Downloadable Repositories

These repositories, if found, are automatically added to your Gradle environment.
So, unlike with Maven Central, you do not need to add them manually to a
repositories block.

There are several artifacts of note in these repositories, with the versions current as
of this writing shown:

• com.android.support:support-v4:19.0.0 and
com.android.support:support-v13:19.0.0 for the -v4 and -v13 editions of
the Android Support package

• com.android.support:appcompat-v7:19.0.0 for the AppCompat action bar
backport

GRADLE AND DEPENDENCIES

2152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• com.android.support:gridlayout-v7:19.0.0 for the GridLayout backport
• com.google.android.gms:play-services:4.0.30 for the Play Services SDK

By referencing these artifacts, you no longer need to mess around with copying JARs
or attaching Android library projects to your own projects.

Depending Upon Other Artifact Repositories

Gradle supports custom artifact repositories, in Maven or Ivy style, for retrieval of
artifacts. For example, your development team might have a common artifact
repository for your projects, shared among the developers and a continuous
integration server. Or, you may elect to publish your reusable components in your
own repository, eschewing Maven Central.

The Gradle documentation covers the various possibilities, such as how to include
authentication credentials for secured repositories. Typically, though, you will use a
simple URL:

repositories {
maven {

url "https://repo.commonsware.com"
}

}

This repositories block adds a Maven-style repository, located at
http://repo.commonsware.com.

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

This is an equivalent repositories block, but specifies https as the scheme, for
secure downloads of the artifacts. Since this particular repository happens to be
hosted at Amazon S3, the SSL certificate requires that we use the full Amazon S3
domain name (repo.commonsware.com.s3.amazonaws.com) rather than the CNAME
shorthand (repo.commonsware.com).

From there, you can then request to compile against whatever artifacts the publisher
of that repository makes available.

GRADLE AND DEPENDENCIES

2153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

Your Very Own Repository

You may want to have your own local repository, just on your own development
machine. For example, if you are writing an Android library project, and using sub-
projects to reference it is inappropriate (e.g., the library is being used by several
disparate apps), you can publish your AAR artifact to your local repository, then
have your other apps depend upon that artifact as found in that repository.

Consuming artifacts from your local repository is just a matter of having a
mavenLocal() entry in your repositories block:

repositories {
mavenLocal()

}

The precise location of this repository will be platform-dependent. On Linux, for
example, it is in ~/.m2/. However, it will be on your local machine.

NOTE: On some versions of Gradle, mavenLocal() does not work. The workaround
is:

repositories {
maven { url "${System.env.HOME}/.m2/repository" } // mavenLocal()

}

You can have your own hosted repository, if you wish. For example, the author of
this book is slowly converting his CWAC projects over to be available as JAR and
AAR artifacts from the repo.commonsware.com repository mentioned above. From
Gradle’s (and Maven’s) standpoint, there is no real difference between a repository
hosted on a nearby file server or some remote Web server. A discussion of how to get
your artifacts to such a repository is outside the scope of this book.

Publishing Libraries as Artifacts

Of course, having a local (or remote) repository is only as good as is your ability to
put things into that repository. And, right now, that is a place where the current
Gradle for Android plugin falls down. The documentation mentions the AAR format
but offers no instructions related to publishing it, and changes in the plugin have
broken many cobbled-together solutions from 2013.

GRADLE AND DEPENDENCIES

2154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The current simplest solution comes in the form of android-maven-plugin, which,
as the name suggests, is a plugin for Gradle that improves the publishing of Maven
artifacts from Android builds.

To use this plugin, add classpath
'com.github.dcendents:android-maven-plugin:1.0' to your buildscript
dependencies block in your Android library project’s build.gradle:

buildscript {
repositories {

mavenCentral()
}

dependencies {
classpath 'com.github.dcendents:android-maven-plugin:1.0'

}
}

Then, after the apply plugin: 'android-library' statement, add apply plugin:
'android-maven'. At this point, the gradle installgradle install command will build your AAR
and deploy it to your local Maven repository, where it can be picked up by apps that
have the mavenLocal() repository configured in their own build.gradle files.

However, for this to work, you will need to tailor the group, artifact ID, and version
for your library. The version and group are configured via simple statements at the
top level of your build.gradle file for the library project:

version '0.5'
group 'com.commonsware.cwac'

The artifact ID is determined by default from the name of the directory that
contains the library project. So a library project in a colormixer/ directory will be
given the artifact ID of colormixer.

Publishing Legacy-Structured Libraries as Artifacts

Note that there is no particular requirement that your AARs be created from
Android projects that use the new build system’s preferred directory structure. Your
AARs can come from a project that retains the legacy directory structure. This is key
for the next few years, while AAR support slowly becomes dominant, so that you can
support your Android library project being used in traditional source form as well.

We will see examples of using legacy structures for AAR-creating library projects
later in this chapter.

GRADLE AND DEPENDENCIES

2155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/dcendents/android-maven-plugin
https://github.com/dcendents/android-maven-plugin

About Artifact Updates

The version of the artifact that you get is determined by the version qualified in your
stated dependency. There does not appear to be anything in Gradle itself to tell you
about cases where there are artifacts with upgraded versions available to you. Ben
Manes has published a Gradle plugin that adds a dependencyUpdates task that
generates a report of what the status is of all of your dependencies.

Creating Android JARs from Gradle
Gradle has a long history of being used in Java development, and the standard java
plugin for Gradle knows how to create JAR files.

However, we are not using the java plugin. Instead, we are using the android or
android-library plugin. In the latter case, you could argue that it should support
JAR-creation tasks, for libraries that do not actually use resources and so forth.
Unfortunately, it does not, at least as of the time of this writing. Hence, there is no
JAR-creation task available from android or android-library projects.

As is common in these cases, Jake Wharton has come to the rescue.

Jake posted an answer on a StackOverflow question providing a quick-and-dirty bit
of Gradle code to add JAR-creation tasks to an android-library project:

android.libraryVariants.all { variant ->
def name = variant.buildType.name
ifif (name.equals(com.android.builder.BuilderConstants.DEBUG)) {

returnreturn; // Skip debug builds.
}
def task = project.tasks.create "jar${name.capitalize()}", Jar
task.dependsOn variant.javaCompile
task.from variant.javaCompile.destinationDir

}

The Gradle DSL in Groovy primarily involves building up data structures. Hence, all
of our build variants wind up in a collection of objects available at
android.libraryVariants. Jake’s snippet iterates over those, tosses out those that
are for debug builds, and dynamically defines a new task. That new task will be
named jar..., where the ... is the name of the build type. His snippet then
configures that task to create a JAR file, after the Java code has been compiled,
putting the result in the destination directory for Java compilation.

GRADLE AND DEPENDENCIES

2156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ben-manes/gradle-versions-plugin
http://stackoverflow.com/a/19484146/115145

The net result is that including this snippet at the bottom of your build.gradle file
will add tasks like jarRelease that will create a JAR in build/libs/ of your project.
Note that the jarRelease task does not appear when you run gradle tasksgradle tasks, though
it will appear if you run gradle tasks --allgradle tasks --all to get the complete list.

This does not create a full artifact around the JAR, so if your plan was to submit this
JAR to an artifact repository, you would have additional work to do. However, for the
simple case of creating a JAR for manual distribution (e.g., through the “releases”
area of a GitHub repository), it should work fine.

A Property of Transitive (Dependencies)
One thing to watch out for when specifying dependencies is where your
dependencies’ dependencies come from. Short of examining configuration files for
those dependencies (e.g., their Maven POM file), you have no good way to know
what your dependencies’ dependencies are, let alone where they are supposed to
come from.

Despite that, according to Gradleware:

Only the repository declarations for the project whose configuration is
currently resolved are taken into account, even when transitive
dependencies are involved.

So, for example, suppose App A depends upon Library B, which in turn depends
upon Library C. Library B is in your team’s own Maven repository, while Library C
comes from Maven Central. App A will need to have both your own Maven
repository and Maven Central defined in the repositories block, in order for Gradle
to be able to obtain both libraries.

Dependencies By Build Type
A build type can have its own dependencies.

The compile statement in a dependencies block defines dependencies for all build
types. However, each build type has its own version of the compile statement, like
debugCompile, that will add a dependency for use solely by that build type.

If you create your own custom build types, note that you will need to have your
dependencies block after you define the build type in the build.gradle file. Only

GRADLE AND DEPENDENCIES

2157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/20530181/115145

after Gradle has defined your build type will your custom compile statement be
available.

There is also instrumentTestCompile, which defines dependencies solely for use
with testing. This is covered in greater detail in the next chapter.

Dependencies By Flavor
Similarly, if you define product flavors, you can have dependencies that are tied only
to a particular flavor.

For example, suppose you were writing an app for various wearables, and you set up
three product flavors:

productFlavors {
standard {

packageName "com.commonsware.android.wearable.qr"
}

imwatch {
packageName "com.commonsware.android.wearable.qr.imwatch"

}

sony {
packageName "com.commonsware.android.wearable.qr.sony"

}
}

A dependencies block after the android block containing the above productFlavors
configuration could have a mix of per-flavor dependencies and flavor-specific
dependencies, such as:

dependencies {
compile 'com.android.support:support-v4:19.0.1'
compile 'com.google.code.gson:gson:2.2.4'
compile 'com.squareup.okhttp:okhttp:1.3.0'
compile 'com.squareup.retrofit:retrofit:1.4.0'
compile 'com.squareup.picasso:picasso:2.2.0'
sonyCompile 'com.sonyericsson.extras.liveware.aef:SmartExtensionUtils:2.1.0'

}

Here, the last dependency uses sonyCompile, rather than compile, indicating that it
is a dependency to be used only for the sony product flavor.

Note that the artifact listed for the sonyCompile directive does not actually exist, at
least as of the time of this writing. It is possible to convert SONY’s code samples into

GRADLE AND DEPENDENCIES

2158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

local artifacts, for reference via mavenLocal(), until such time as SONY starts
hosting them on Maven Central or their own artifact repository.

Examining Some CWAC Builds
The author of this book publishes several open source libraries, known as the
CommonsWare Android Components (CWAC). These pose an interesting challenge
for conversion to Gradle, insofar as the libraries have many existing users, some of
whom are still using Eclipse, Ant, or other tools based on the legacy project
structure. Hence, these projects need to be able to be built sans Gradle, yet still be
able to publish artifacts that can be used by Gradle.

In this section, we will examine a few of these projects, to see how the Gradle
support was implemented, with a particular eye on dependencies.

A Simple CWAC Project: cwac-layouts

Most of the CWAC projects are fairly simple. Beyond having relatively few classes,
most CWAC projects have no dependencies beyond Android itself. These are fairly
straightforward to support with Gradle, both for building the library itself and for
publishing a Gradle-compatible artifact.

For example, the CWAC-Layouts project is discussed in the chapter on custom
Views, as it offers a few such views, particularly the mirroring classes.

The CWAC-Layouts repository has two projects: layouts and demo. The layouts
project is the one for the library itself, while demo demonstrates the use of the
library.

When built using Eclipse, Ant, or related tools, layouts is an Android library
project, which demo depends upon via its project.properties file:

This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!
#
This file must be checked in Version Control Systems.
#
To customize properties used by the Ant build system edit
"ant.properties", and override values to adapt the script to your
project structure.
#
To enable ProGuard to shrink and obfuscate your code, uncomment this
(available properties: sdk.dir, user.home):

GRADLE AND DEPENDENCIES

2159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-layouts

#proguard.config=${sdk.dir}/tools/proguard/
proguard-android.txt:proguard-project.txt

Project target.
target=android-17
android.library.reference.1=../layouts

For the Gradle build, the demo version of build.gradle depends upon the layouts
AAR file, published as a Maven artifact to the CommonsWare artifact repository:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.8.+'
}

}

apply plugin: 'android'

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:layouts:0.3.0'

}

android {
compileSdkVersion 17
buildToolsVersion "19.0.1"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

GRADLE AND DEPENDENCIES

2160

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In all other respects, the demo project’s build.gradle file is a conventional “please
use the legacy project structure” implementation.

The library’s build.gradle file is a bit more involved:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.8.+'
classpath 'com.github.dcendents:android-maven-plugin:1.0'

}
}

apply plugin: 'android-library'
apply plugin: 'android-maven'

version '0.3.0'
group 'com.commonsware.cwac'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 17
buildToolsVersion "19.0.1"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

// from http://stackoverflow.com/a/19484146/115145

android.libraryVariants.all { variant ->
def name = variant.buildType.name
ifif (name.equals(com.android.builder.BuilderConstants.DEBUG)) {

returnreturn; // Skip debug builds.
}
def task = project.tasks.create "jar${name.capitalize()}", Jar

GRADLE AND DEPENDENCIES

2161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

task.dependsOn variant.javaCompile
task.from variant.javaCompile.destinationDir
// artifacts.add('archives', task);

}

It uses the android-maven plugin to enable the install task, as mentioned earlier in
this chapter. That will compile the library project into an AAR and publish it to the
development machine’s local Maven repository. Separately, the author has a script
that will push the necessary files to the Amazon S3-hosted CommonsWare Maven
repository.

The library’s build.gradle file also contains the custom Gradle code that adds a
jarRelease task, as described earlier in this chapter. Hence, when the author wishes
to push a new version of the library, the steps are:

1. Modify the version property to the proper value (shown here as 0.3.0)
2. Run gradle installgradle install to generate the AAR and publish it locally
3. Use an external mechanism to publish the AAR to the CommonsWare repo
4. Run gradle jarReleasegradle jarRelease to generate the JAR version of the project
5. Publish that JAR via the GitHub “releases” portion of the GitHub repository

CWAC-Upon-CWAC: cwac-presentation

One CWAC project that has a dependency is the CWAC-Presentation project. This is
discussed in the chapter on Presentation and external display support, offering the
PresentationHelper and related classes to ease the creation of apps that support
external displays.

Some of those related classes use the CWAC-Layouts mirroring classes. For example,
MirrorPresentationFragment is designed to display a mirror of a part of the
primary display on an external display, such as mirroring only the slides, with the
primary display also having controls for the slide presenter. Hence, CWAC-
Presentation depends upon CWAC-Layouts, and that needs to be taken into account
in the project build files.

As with CWAC-Layouts, the CWAC-Presentation repository has the library
(presentation) and a demo project (demo). And, as before, for the purposes of an
Ant/Eclipse build, the demo project has a project.properties file that adds a
dependency upon the presentation library project:

This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!
#

GRADLE AND DEPENDENCIES

2162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-presentation

This file must be checked in Version Control Systems.
#
To customize properties used by the Ant build system edit
"ant.properties", and override values to adapt the script to your
project structure.
#
To enable ProGuard to shrink and obfuscate your code, uncomment this
(available properties: sdk.dir, user.home):
#proguard.config=${sdk.dir}/tools/proguard/
proguard-android.txt:proguard-project.txt

Project target.
target=android-17
android.library.reference.1=../presentation

And, other than switching the dependency to be on presentation rather than
layouts, the build.gradle file of the demo project is the same as the one for the
CWAC-Layouts:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.8.+'
}

}

apply plugin: 'android'

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:presentation:0.3.0'

}

android {
compileSdkVersion 17
buildToolsVersion "19.0.1"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

GRADLE AND DEPENDENCIES

2163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

The library’s build.gradle file is the same as the one for the CWAC-Layouts library,
with two exceptions:

1. It contains a repositories block, supplying the URL to the CommonsWare
Maven repository

2. It adds a dependency on the CWAC-Layouts library in its dependencies
block

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:layouts:0.3.0'
compile fileTree(dir: 'libs', include: '*.jar')

}

The resulting AAR will have, in its Maven POM metadata file, a dependency upon
CWAC-Layouts. Hence, when we build the demo project, it will download both the
presentation AAR and the layouts AAR, to fulfill all its dependencies.

GRADLE AND DEPENDENCIES

2164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle and Testing

Of course, it is always nice when these apps that we write actually work as expected.

Android has a variety of tools available for testing, and these are incrementally
moving into the Gradle for Android arena. In this chapter, we will examine how to
set up JUnit-style instrumentation tests in Gradle for Android and how Gradle for
Android improves upon what we have had before. Also, we will examine how other
testing frameworks can be employed from Gradle for Android.

NOTE: The projects demonstrated in this chapter are not set up to be used by
Eclipse, as Eclipse does not support Gradle as of the time of this writing.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, including both the legacy
project structure and the new project structure. Having read the chapter on Gradle
dependencies would also be a pretty good idea.

Since this chapter also covers testing, the chapters on testing are also prerequisites:

• JUnit and Android
• MonkeyRunner and the Test Monkey
• Testing with UIAutomator

NOTE: This chapter discusses a pre-release technology. The technology is
undergoing rapid revision and suffers from a dearth of documentation. More so than
with other chapters in this book, you may encounter behavior that differs from what
is documented. As the saying goes, “your mileage may vary”.

2165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JUnit/Instrumentation Testing
Android has supported “instrumentation testing” from the outset. The primary way
we employ instrumentation testing is via JUnit-based unit tests. We would write
JUnit test suites and run them with a JUnit test runner, either from an IDE or from
the command line.

In many respects, that has not changed.

However, Gradle for Android not only provides a simplified way to execute a test
suite from the command line, it also:

• Makes it easier for us to write these tests, by dumping the dedicated test
project in favor of a special source set

• Generates more readable output than running instrumentation tests through
the stock Ant task

• Adds other benefits, such as “going wide” and testing on multiple devices or
emulators simultaneously

Testing Applications

Most of the time, we are testing Android application projects. And, much of the
time, those projects stand alone or are tied to dependencies that we did not write. In
those cases, instrumentation testing follows a fairly standard recipe, covered in this
section. Later sections will cover testing Android library projects.

The androidTest Source Set

We used to have a dedicated test project for our instrumentation tests, where the
code for those tests would reside.

Now, we have a dedicated source set for our instrumentation tests, named
androidTest, where the code for those tests would reside.

NOTE: The name androidTest is for version 0.9.0 or higher of the Gradle for
Android plugin. Older versions used instrumentTest.

As with any source set, androidTest can have Java code, resources, etc. It does not
need an AndroidManifest.xml file, though, as that will be auto-generated.

GRADLE AND TESTING

2166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Gradle/HelloInstrumentTest sample project contains an androidTest source
set with a single file, java/com/commonsware/android/gradle/hello/
SillyTest.java, containing the same SillyTest as was seen in the chapter on
JUnit and Android:

packagepackage com.commonsware.android.gradle.hello;

importimport junit.framework.TestCasejunit.framework.TestCase;

publicpublic classclass SillyTestSillyTest extendsextends TestCase {
protectedprotected void setUp() throwsthrows Exception {

supersuper.setUp();

// do initialization here, run on every test method
}

protectedprotected void tearDown() throwsthrows Exception {
// do termination here, run on every test method

supersuper.tearDown();
}

publicpublic void testNonsense() {
assertTrue(1==1);

}
}

In your own androidTest, you can have whatever JUnit TestCase classes you like,
using all the same capabilities that you used in crafting JUnit test cases in a
separate project. If, however, your JUnit test code relies on third-party libraries, you
will need to configure those dependencies; this is covered later in this chapter.

The Gradle Configuration

Your defaultConfig block will need to define a couple of properties for the testing
to work:

• testPackageName is the name of the package to be used for the instrument
test APK. For testing apps, this needs to be a separate package name from
the package name of the app.

• testInstrumentationRunner is the name of the Java class that implements
the JUnit test runner to use for executing your tests. Usually, you will use
android.test.InstrumentationTestRunner, though third-party libraries
may offer alternative test runners.

GRADLE AND TESTING

2167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloInstrumentTest
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloInstrumentTest

For example, the build.gradle file for the HelloInstrumentTest project contains
both of these properties:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

defaultConfig {
testPackageName "com.commonsware.android.gradle.hello.test"
testInstrumentationRunner "android.test.InstrumentationTestRunner"

}
}

The Gradle Tasks

The primary task that you will use related to testing is connectedCheck. This task
will build the main app, then, build the test app (using a generated manifest to go
along with the code from your androidTest source set).

At that point, the task will iterate over all compatible connected devices and
running emulator instances. For each such Android environment, the task will
install both apps, run the tests, and uninstall both apps.

Hence, running gradle connectedCheckgradle connectedCheck offers a few conveniences over the
equivalent ant testant test command:

• It runs tests in parallel, across multiple devices/emulators, where available
• It cleans up after itself, by uninstalling the apps

GRADLE AND TESTING

2168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Test Results

Raw test results, in XML format, will be written to build/androidTest-results/
connected. These will primarily be of interest to toolsmiths, such as those adding
support for Android Gradle-based builds to continuous integration (CI) servers.

For others, the HTML reports will be of greater use. These will be written to build/
reports/androidTests/connected, with an index.html file serving as your entry
point. These will show the results of all of your tests, with hyperlinked pages to be
able to “drill down” into the details, such as to investigate failed tests.

Testing Library Projects

Before Gradle, to test an Android library project, you would create a separate test
project and set it up to “test itself” (i.e., the package being tested was the test
project’s own package). You could then add the Android library project to the test
project and write test cases to exercise the library.

What Gradle for Android gives us is a bit of a “mashup” between the original
approach and what we have with testing regular apps using Gradle.

A Gradle-built Android library project can have an androidTest source set, just like
a regular app. And, a Gradle-built Android library project can be tested via the
connectedCheck task. However, that task will create and install a single APK,
consisting of the code from the androidTest source set combined with the library
project’s own code.

From the standpoint of what you do as a developer, though, it works just like
testing an app: add your test cases to the androidTest source set and use
connectedCheck to run the tests.

Test Dependencies

Sometimes, your test code will have no dependencies, other than the app (or library)
being tested.

Sometimes, your test code will have its own dependencies, such as on libraries like
Robotium. You need those dependencies for your test code, but you do not want
those dependencies to be part of the production app.

GRADLE AND TESTING

2169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/robotium/

To handle this, Gradle for Android supports an androidTestCompile statement in
the dependencies block. Where compile states dependencies for the entire project;
androidTestCompile states dependencies only for the instrumentation testing:

dependencies {
// regular dependencies
compile 'com.android.support:support-v4:19.0.0'
// ...

// test dependencies
androidTestCompile 'com.jayway.android.robotium:robotium-solo:4.3.+'
// ...

}

This works similarly to specifying dependencies for a particular build type.

Testing Legacy Project Structures

Suppose that you have a project that you still need to be buildable using Eclipse or
Ant, yet you want to start using Gradle. For ordinary projects, using an Eclipse-
exported build.gradle file will have a setup that supports this. However, your test
project will be a standalone Android project, not merely some source set, as Ant and
Eclipse do not know what a “source set” even is.

However, just as you can teach the main source set where it can find its files, you
can do the same thing with the androidTest source set.

For example, suppose that you have an Android project, one that has a test project
located in tests/. Both projects follow the legacy project structure. The android
block of your build.gradle file could look like this:

android {
sourceSets {

main {
manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

androidTest {
java.srcDirs = ['tests/src']
resources.srcDirs = ['tests/src']
aidl.srcDirs = ['tests/src']

GRADLE AND TESTING

2170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

renderscript.srcDirs = ['tests/src']
res.srcDirs = ['tests/res']
assets.srcDirs = ['tests/assets']

}
}

}

(from Xavier Ducrohet’s answer on StackOverflow)

Here, we teach both the main and the androidTest source sets where their
respective files are. In the case of the androidTest source set, we point it to files in
the tests/ subdirectory.

Given this, Gradle can run the tests, just as Ant and Eclipse can.

Other Types of Testing
While JUnit-style instrumentation testing is the bedrock of many test plans, it is far
from the only way of testing Android applications. Some of the alternatives are also
available for use from Gradle for Android, though not necessarily by officially-
supported means.

Notably:

• Novoda offers a Gradle plugin for exercising an application using
monkeyrunnermonkeyrunner

• Aaron Newell offers a Gradle recipe for launching uiautomatoruiautomator tests from
Gradle

GRADLE AND TESTING

2171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/21173961/115145
https://github.com/novoda/gradle-android-command-plugin
http://blog.denevell.org/android-uiautomator-gradle.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Gradle for Android Tips

There are lots of things you can do given a full scripting language as the basis for
your build system. This chapter represents a collection of tips for things that you can
do that go beyond stock capabilities provided by the Gradle for Android plugin.

NOTE: The projects demonstrated in this chapter are not set up to be used by
Eclipse, as Eclipse does not support Gradle as of the time of this writing.

Prerequisites
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, including both the legacy
project structure and the new project structure. Having read the chapter on Gradle
dependencies would also be a pretty good idea.

The chapter on using the NDK is a prerequisite for one section of this chapter,
covering using Gradle with the NDK.

NOTE: This chapter discusses a pre-release technology. The technology is
undergoing rapid revision and suffers from a dearth of documentation. More so than
with other chapters in this book, you may encounter behavior that differs from what
is documented. As the saying goes, “your mileage may vary”.

Supporting AIDL
If your application is using AIDL, to export a service to third parties or to consume a
service from third parties, the default location for your AIDL files is a dedicated
aidl/ directory, as a peer of your java/ and res/ directories in your source set.

2173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, you can configure Gradle for Android to pull your AIDL files from a
different location by configuring the aidl.srcDirs of a source set, such as the main
source set.

You can see this in the Gradle/HelloAIDL sample project. This is a clone of one of
the AIDL sample apps from the chapter on binding and remote services.

This project consists of two sub-projects: one for the remote service and one for its
client. However, they both share a common AIDL definition. Rather than having two
copies of the AIDL or relying on OS-level tricks like symlinks, we have an aidl/
directory in the project’s root, outside either sub-project. That aidl/ directory then
has the classic set of sub-directories based upon the Java package name used in the
AIDL, leading eventually to the .aidl file.

The build.gradle file for each of the sub-projects then configures the main
sourceset to point to this common AIDL directory, as can be seen in the Client/
sub-project’s build.gradle file:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion "19.0.1"

sourceSets {
main {

aidl.srcDirs=[rootProject.file('aidl')]
}

}
}

Here, rootProject.file('aidl') means “use the root project’s location to derive
the location of a file named aidl”. Otherwise, since this code resides in a sub-

ADVANCED GRADLE FOR ANDROID TIPS

2174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloAIDL
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloAIDL

project, we would need to use file('../aidl'), which works, but is less flexible in
the face of possible project reorganization.

The fact that we have AIDL files in an AIDL source directory provides enough
information to the Android build tools to run those files through the AIDL
processor, to generate the Java code for our client proxy and interface stub, and to
make those files available to the rest of the compile process.

Supporting the NDK
Version 0.7 of the Gradle for Android plugin added preliminary support for the
NDK. However, this support has its issues, and so you may wish to pursue other
approaches, at least in the short term.

Official Support, for Externally-Built Binaries

Sometimes, you may have a project for which you want to use NDK-compiled
binaries that somebody else supplies.

For example, at the time of this writing, SQLCipher for Android is not available as
an AAR dependency from any repo. To use it, you need to include a handful of JARs
in your project, along with NDK-compiled binaries for the core SQLCipher library
and related libraries. Once this is available as an AAR, you could get all of that via a
dependency; in the short term, you need to teach Gradle how to pick up the NDK-
compiled binaries.

Using 0.7.+ (or higher) of the Gradle for Android plugin, you can have a jniLibs/
directory in a source set. Underneath that directory would go your pre-compiled
binaries, in the standard CPU architecture directories (e.g., jniLibs/x86/, jniLibs/
armeabi-v7a/).

The Gradle/ConstantsSecure sample project is a clone of the same-named project
from the SQLCipher for Android chapter, but with the code reorganized into a
Gradle source set:

ConstantsSecure
|—— build.gradle
|—— libs
| |—— commons-codec.jar
| |—— guava-r09.jar
| └—— sqlcipher.jar

ADVANCED GRADLE FOR ANDROID TIPS

2175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/ConstantsSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/ConstantsSecure

|—— local.properties
|—— proguard.cfg
|—— project.properties
└—— src

└—— main
|—— AndroidManifest.xml
|—— assets
| └—— icudt46l.zip
|—— java
| └—— com
| └—— commonsware
| └—— android
| └—— sqlcipher
| |—— ConstantsBrowser.java
| |—— DatabaseHelper.java
| └—— Provider.java
|—— jniLibs
| |—— armeabi
| | |—— libdatabase_sqlcipher.so
| | |—— libsqlcipher_android.so
| | └—— libstlport_shared.so
| └—— x86
| |—— libdatabase_sqlcipher.so
| |—— libsqlcipher_android.so
| └—— libstlport_shared.so
└—— res

|—— drawable-hdpi
| └—— ic_launcher.png
|—— drawable-ldpi
| └—— ic_launcher.png
|—— drawable-mdpi
| |—— add.png
| |—— cw.png
| |—— delete.png
| |—— eject.png
| └—— ic_launcher.png
|—— drawable-xhdpi
| └—— ic_launcher.png
|—— layout
| |—— add_edit.xml
| |—— main.xml
| └—— row.xml
└—— values

└—— strings.xml

(note: above listing includes only files of relevance for the current discussion)

ADVANCED GRADLE FOR ANDROID TIPS

2176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The JARs remain in libs/, but the associated NDK .so files go in jniLibs/ of the
main source set.

When organized this way, the build.gradle file needs no changes to incorporate the
.so files. If you wanted to have the JNI .so files in some other directory, you can
modify jniLibs.srcDirs of your source set to point to where you want the files to
reside.

Official Support, for Building NDK Binaries

To use the official NDK support for invoking the NDK build process from your
build.gradle file, you need to have a local.properties file, defining an ndk.dir
property, pointing to where your NDK is installed.

You can add an ndk block to your defaultConfig, describing how your NDK code
can be built:

defaultConfig {
ndk {

moduleName "anddown"
}

}

In addition to moduleName, you can specify:

• cFlags for compiler flags
• ldLibs for libraries to link in

Your productFlavors can also have ndk blocks with abiFilter properties,
identifying a particular set of NDK binaries to be included in that flavor. For
example, here is a build.gradle sample file from a test project for the Gradle for
Android plugin:

buildscript {
repositories {

maven { url '../../../../out/host/gradle/repo' }
}
dependencies {

classpath 'com.android.tools.build:gradle:0.6.2-SNAPSHOT'
}

}
apply plugin: 'android'

android {
compileSdkVersion 15

ADVANCED GRADLE FOR ANDROID TIPS

2177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/tools/build/+/master/tests/ndkSanAngeles/
https://android.googlesource.com/platform/tools/build/+/master/tests/ndkSanAngeles/

buildToolsVersion "18.0.1"

defaultConfig {
ndk {

moduleName "sanangeles"
cFlags "-DANDROID_NDK -DDISABLE_IMPORTGL"
ldLibs "-lGLESv1_CM -ldl -llog"

}
}

productFlavors {
x86 {

ndk {
abiFilter "x86"

}
}
arm {

ndk {
abiFilter "armeabi-v7a"

}
}
mips {

ndk {
abiFilter "mips"

}
}

}
}

In here, we define three product flavors, one each for x86, ARM, and MIPS. Each
resulting binary will only contain that architecture’s version of the compiled NDK
code.

Also, you need to tell Gradle for Android where your C/C++ source code resides. The
default location is a jni/ directory in your source sets, such as the main/ source set.
However, you can override that using jni.srcDirs in your configuration of a source
set.

For example, let us take a peek at the CWAC-AndDown project.

CWAC-AndDown is mentioned in passing in the chapter on rich text handling. It is
an Android library that wraps hoedown, a C-based Markdown-to-HTML converter.
The hoedown project itself is a fork of sundown, which itself was used by many sites,
like GitHub, for their Markdown processing. CWAC-AndDown is great for projects
that take in Markdown and want to render the results in a WebView (though you can
use Html.fromHtml() to put the results in a TextView if you want).

ADVANCED GRADLE FOR ANDROID TIPS

2178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-anddown
https://github.com/hoedown/hoedown

Since CWAC-AndDown uses hoedown’s C code, it has a jni/ directory containing
the JNI wrapper C code, the appropriate makefiles, plus a src/ subdirectory
containing the hoedown source code.

The classic way to build the project was to manually run the ndk-build script in the
project root, then use Ant to compile the demo. CWAC-AndDown itself is an
Android library project, designed to be used by apps like the demo app.

To get this library project to build using Ant and Eclipse, in addition to Gradle, we
needed to leave the jni/ directory in its original spot, alongside the res/, src/, and
related directories and files. Since that is not where Gradle for Android goes looking
for C/C++ files, we needed to teach Gradle for Android where our JNI code resides,
by configuring jni.srcDirs for our main sourceset in build.gradle:

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']
jni.srcDirs = ['jni']

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}

The CWAC-AndDown build.gradle file also contains the ndk block shown earlier in
this section, to name the module that we are generating.

Unofficial Support for Makefiles

We also needed to reorganize the CWAC-AndDown source code, due to some
fundamental limitations in the current official Android support. Specifically, Gradle
for Android ignores your own makefiles, preferring instead to generate its own. The
generation algorithms are rather limited and make some assumptions about the
organization of your code. Having all of your C/C++ source and header files in one
big directory seems to work; having other structures may or may not work.

The fact that Gradle for Android ignores your makefiles means that if your makefiles
do anything beyond very vanilla stuff, your build may well not work.

ADVANCED GRADLE FOR ANDROID TIPS

2179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The alternative to using the built-in NDK support is to add in your own tasks that
use the ndk-buildndk-build command with your original makefiles. One such set of tasks was
published by David Weinstein in a GitHub Gist. Mostly, it involves adding the
following to the bottom of your build.gradle file:

task packageNativeLibs_ARM(type: Jar) {
baseName 'libtestlib'
classifier 'armeabi'
from(file('libs/armeabi/')) {

include '**/*.so'
}
into('lib/armeabi')
destinationDir(file('libs/'))

}

task packageNativeLibs_x86(type: Jar) {
baseName 'libtestlib'
classifier 'x86'
from(file('libs/x86/')) {

include '**/*.so'
}
into('lib/x86')
destinationDir(file('libs/'))

}

task packageNativeLibs(description: "package native libraries") {

}

packageNativeLibs.dependsOn 'packageNativeLibs_ARM'
packageNativeLibs.dependsOn 'packageNativeLibs_x86'

task ndkBuild(type: Exec, description: "Task to run ndk-build") {
commandLine ndkDir + '/ndk-build'

}

packageNativeLibs.dependsOn 'ndkBuild'

tasks.withType(JavaCompile) { compileTask -> compileTask.dependsOn
packageNativeLibs }

clean.dependsOn 'cleanPackageNativeLibs'

This task also assumes that you have set an ndkDir property. To set properties in
Gradle, add a gradle.properties file to your project, using the typical properties
format:

ndkDir=/opt/android-ndk

ADVANCED GRADLE FOR ANDROID TIPS

2180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/dweinstein/7528167

The Gradle code snippet does several things:

1. It defines two tasks, one each to package the ARM and x86 version of the
binaries. If you have a different mix of NDK build targets (e.g., ARMv7,
MIPS), you could add or alter these tasks to suit.

2. It defines a packageNativeLibs task, that depends upon each of the CPU
architecture-specific tasks from the previous point. If you add, change, or
remove those architecture-specific tasks, you will need to add, change, or
remove the corresponding packageNativeLibs.dependsUpon statements.

3. It defines an ndkBuild task, that simply executes the ndk-build script found
in your NDK directory (defined by that ndkDir property).

4. It has packageNativeLibs depend upon ndkBuild.
5. It has all JavaCompile tasks in the build depend upon the

packageNativeLibs task. This ensures that when we compile our Java code,
we also compile the NDK code, if it is not already up to date.

6. It adds the auto-generated cleanPackageNativeLibs task as a dependency
for the clean task, so gradle cleangradle clean will clean the NDK build as well as
cleaning everything else.

Gradle supports other ways of defining where the NDK directory is, such as
depending upon an environment variable, so you have alternatives.

Gradle, DRY
Ideally, your build scripts do not repeat themselves any more than is logically
necessary. For example, a project and sub-projects probably should use the same
version of the build tools, yet by default, we define them in each build.gradle file.
This section outlines some ways to consolidate this sort of configuration

It’s build.gradle All The Way Down

If you have sub-projects, you can have build.gradle files at each level of your
project hierarchy. Your top-level build.gradle file is also applied to the sub-projects
when they are built.

In particular, you can “pass data” from the top-level build.gradle file to sub-
projects by configuring the project.ext object via a block. Xavier Ducrohet of
Google demonstrated this with an example of consolidating your
compileSdkVersion across sub-projects. In the top-level build.gradle file, you
would put common values to be used:

ADVANCED GRADLE FOR ANDROID TIPS

2181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/20404476/how-to-define-common-android-properties-for-all-modules-using-gradle/20436423#20436423
http://stackoverflow.com/questions/20404476/how-to-define-common-android-properties-for-all-modules-using-gradle/20436423#20436423
http://stackoverflow.com/questions/20404476/how-to-define-common-android-properties-for-all-modules-using-gradle/20436423#20436423

project.ext {
compileSdkVersion 19

}

Sub-projects can then reference rootProject.ext to retrieve those values:

android {
compileSdkVersion rootProject.ext.compileSdkVersion

}

By this means, you can ensure that whatever needs to be synchronized at build time
is synchronized, by defining it once.

Another way that a top-level build.gradle file can configure subprojects is via the
subprojects block. This contains bits of configuration that will be applied to each of
the subprojects as a part of their builds.

The HelloAIDL sample project mentioned earlier in this chapter demonstrates this.
The build.gradle in the overall project root (outside the Client/ and Service/
sub-projects) has a subprojects block to define the code-signing rules for these two
applications:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

subprojects {
apply plugin: 'android'

android {
signingConfigs {

release {
storeFile file('HelloAIDL.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
release {

signingConfig signingConfigs.release
}

}

ADVANCED GRADLE FOR ANDROID TIPS

2182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

The subprojects block contains its own reference to the android plugin for Gradle,
in addition to android block for configuring the signingConfigs and buildTypes.
Because this code is written in the root project’s build.gradle file, file()
references refer to the root project’s directory, which is why
file('HelloAIDL.keystore') will find the keystore in the root project’s directory.

Note that subprojects applies to all sub-projects, which limits its utility. For
example, a top-level project with one sub-project for an app and another sub-project
for a library used by that app cannot readily use subprojects. That is because the
library sub-project needs to configure the android-library plugin, while the
application sub-project needs to configure the android plugin. The subprojects
block is only good for common configuration to apply to all sub-projects regardless
of project type.

gradle.properties

Another approach would be to add a gradle.properties file to your project root
directory. Those properties are automatically read in and would be available up and
down your project hierarchy.

So, to achieve the synchronized compileSdkVersion value, you could have a
gradle.properties file with:

COMPILE_SDK_VERSION=19

Then, your sub-projects’ build.gradle files could use:

android {
compileSdkVersion COMPILE_SDK_VERSION

}

Per-developer properties can go in a gradle.properties file in the user’s Gradle
home directory (e.g., ~/.gradle on Linux), where they will not be accidentally
checked into version control.

The Gradle/HelloProperties sample project illustrates this. It is a clone of the
HelloAIDL sample application from earlier in this chapter, but one where we have a
gradle.properties file in the root project’s directory:

ADVANCED GRADLE FOR ANDROID TIPS

2183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProperties
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProperties

BUILD_TOOLS_VERSION=18.1.0

Here, we are defining a build tools version for use with the buildToolsVersion
property in the android block. The sub-projects use the BUILD_TOOLS_VERSION
property that we defined in gradle.properties in their own build.gradle files,
such as the one from the Client/ sub-project:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

apply plugin: 'android'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 18
buildToolsVersion BUILD_TOOLS_VERSION

sourceSets {
main {

aidl.srcDirs=[rootProject.file('aidl')]
}

}
}

With both sub-projects referencing their build tools version from the common
gradle.properties file, we can change the version once and have it reflect
automatically in both sub-projects.

Custom Properties Files

You are also welcome to use your own custom properties files. For example, perhaps
you want to use gradle.properties for properties that you are willing to put in
version control (e.g., BUILD_TOOLS_VERSION), but you would also like to use a
properties file to keep your code-signing details outside of your build.gradle file
and out of version control.

ADVANCED GRADLE FOR ANDROID TIPS

2184

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Loading in custom properties files is slightly clunky, as it does not appear to be built
into Gradle itself. However, you can take advantage of the fact that Gradle is backed
by Groovy and use some ordinary Groovy code to load the properties.

This can also be seen in the HelloProperties sample project, where the
build.gradle in the root project’s directory uses a signing.properties file to
isolate sensitive data:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:0.9.0'
}

}

subprojects {
apply plugin: 'android'

android {
def signingPropFile = rootProject.file('signing.properties')

ifif (signingPropFile.canRead()) {
def Properties signingProps = newnew Properties()

signingProps.load(newnew FileInputStream(signingPropFile))

signingConfigs {
release {

storeFile rootProject.file('HelloAIDL.keystore')
keyAlias signingProps['KEY_ALIAS']
storePassword signingProps['STORE_PASSWORD']
keyPassword signingProps['KEY_PASSWORD']

}
}

buildTypes {
release {

signingConfig signingConfigs.release
}

}
}

}
}

Let’s look at the key lines, one at a time:

def signingPropFile = rootProject.file('signing.properties')

ADVANCED GRADLE FOR ANDROID TIPS

2185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This statement grabs the signing.properties file from the root project and assigns
it to the signingPropFile variable. Groovy, by default, is a dynamic language and
does not use data types for its variables. Under the covers, signingPropFile is a
java.io.File object, just like you are used to in ordinary Java/Android
development.

ifif (signingPropFile.canRead()) {
}

Since signingPropFile is a File, we can call a canRead() method to confirm that
the file exists and is readable.

def Properties signingProps = newnew Properties()

This creates an empty instance of a java.util.Properties object and assigns it to
the signingProps variable.

signingProps.load(newnew FileInputStream(signingPropFile))

This creates a standard java.io.FileInputStream for the properties file, then passes
it to the load() method on the Properties object, to read in the properties file.

keyAlias signingProps['KEY_ALIAS']
storePassword signingProps['STORE_PASSWORD']
keyPassword signingProps['KEY_PASSWORD']

These statements access properties from the Properties object, where Groovy has
augmented Properties to support square-bracket syntax to access individual
properties.

The author would like to thank Gabriele Mariotti for his blog post that, among other
things, depicted this technique.

Automating APK Version Information
Once Gradle for Android started catching on, one of the first things many
developers raced to do was automate the android:versionCode and
android:versionName properties from the manifest. Since those can be defined in a
Gradle file (overriding values from any AndroidManifest.xml files), and since Gradle
is backed by Groovy, it is possible to programmatically assign values to those
properties.

ADVANCED GRADLE FOR ANDROID TIPS

2186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://gmariotti.blogspot.ru/2013/10/common-tips-about-gradle.html

This section outlines a few approaches to that problem.

Auto-Incrementing the versionCode

Since the android:versionCode is a monotonically increasing integer, one approach
for automating it is to simply increment it on each build. While this may seem
wasteful, two billion builds is a lot of builds, so a solo developer is unlikely to run
out. Synchronizing such versionCode values across a team will get a bit more
complex, but for an individual case (developer, build server, etc.), it is eminently
doable using Groovy.

The Gradle/HelloVersioning sample project uses a version.properties file as the
backing store for the version information:

def versionPropsFile = file('version.properties')

ifif (versionPropsFile.canRead()) {
def Properties versionProps = newnew Properties()

versionProps.load(newnew FileInputStream(versionPropsFile))

def code = versionProps['VERSION_CODE'].toInteger() + 1

versionProps['VERSION_CODE']=code.toString()
versionProps.store(versionPropsFile.newWriter(), nullnull)

defaultConfig {
versionCode code
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}
}
elseelse {

throwthrow newnew GradleException("Could not read version.properties!")
}

First, we try to open a version.properties file and fail if it does not exist, requiring
the developer to create a starter file manually:

VERSION_CODE=1

Of course, a more robust implementation of this script would handle this case and
supply a starter value for the developer.

ADVANCED GRADLE FOR ANDROID TIPS

2187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloVersioning
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloVersioning

The script then uses the read-the-custom-properties logic illustrated in the
preceding section to read the existing value… but it increments the old value by 1 to
get the new code to use. The revised code is then written back to the properties file
before it is applied in the defaultConfig block.

In this case, the script throws a GradleException to halt the build if the
version.properties file could not be found or otherwise could not be read.

Synchronizing the versionName… with the versionCode

If you do not want to automatically increment the android:versionCode value, you
could use it to also create a matching android:versionName value. Jake Wharton
illustrated this in a Google+ post, showing how you can build the versionCode up
from parts representing the major, minor, and patch-level numbers, then use those
same numbers to generate a standard dot-notation versionName.

Synchronizing the versionName… with the APK File Name

You can also use the android:versionCode and android:versionName elsewhere in
your Gradle build file, to apply to other aspects of your build. For example, a
StackOverflow user named codaR0y posted a snippet of code showing how to embed
your versionName into your compile APK’s filename. The HelloVersioning sample
uses a modified version of this same approach as part of its buildTypes block:

buildTypes {
debug {

packageNameSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}

mezzanine.initWith(buildTypes.release)

mezzanine {
packageNameSuffix ".mezz"
debuggable truetrue
signingConfig signingConfigs.release

}

applicationVariants.all { v ->
def f = v.outputFile
def fname = f.name.replace(".apk",

"-${defaultConfig.versionName}.apk")

ADVANCED GRADLE FOR ANDROID TIPS

2188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/+JakeWharton/posts/6f5TcVPRZij
http://stackoverflow.com/a/18334677/115145

v.outputFile = newnew File(f.parent, fname)
}

}

When defining the build types, we iterate over all application variants (build type/
product flavor combinations) and modify the outputFile property of the variant to
embed the defaultConfig.versionName value.

Adding to BuildConfig
The Android development tools have been code-generating the BuildConfig class
for some time now. The sole element of that class is the DEBUG flag, which is true for
a debug build and false otherwise. This is useful for doing runtime changes based
upon build type, such as only configuring StrictMode in debug builds.

However, you can add your own data members to BuildConfig, by including a
buildConfigField statement in the defaultConfig block of your android block:

android {
defaultConfig {

buildConfigField "int", "FOO", '5'
}

}

You can use this to embed any sort of information you want into BuildConfig, so
long as it is knowable at compile time.

Moreover, you can also have buildConfigField statements in build types. This
would be useful if you have custom build types, beyond just debug and release, and
you need runtime configuration for those. For example, you could put server URLs
in buildConfigField, so your debug server is different from your integration test
server, which in turn is different than your production server.

You can see this approach used in the Gradle/HelloBuildConfig sample project. Its
buildTypes block defines three different variations of a SERVER_URL field on the
BuildConfig object:

buildTypes {
debug {

packageNameSuffix ".d"
versionNameSuffix "-debug"
buildConfigField "String", "SERVER_URL",

'"http://test.this-is-so-fake.com"'
}

ADVANCED GRADLE FOR ANDROID TIPS

2189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildConfig
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildConfig

release {
signingConfig signingConfigs.release
buildConfigField "String", "SERVER_URL",

'"http://prod.this-is-so-fake.com"'
}

mezzanine.initWith(buildTypes.release)

mezzanine {
packageNameSuffix ".mezz"
debuggable truetrue
signingConfig signingConfigs.release
buildConfigField "String", "SERVER_URL",

'"http://stage.this-is-so-fake.com"'
}

}

The Java code can refer to BuildConfig.SERVER_URL to retrieve this value. Since it is
defined for all current build types, there will always be a value at compile time. Note,
though, that if you add a build type, you need to ensure that it will have a
SERVER_URL defined.

As of version 0.8 of the Gradle for Android plugin, if you redefine the same
buildConfigField name, it replaces the previous value. So, in the build.gradle
segment shown above, we define the SERVER_URL on the release build type before
using release as the basis for the mezzanine build type. Right after the
mezzanine.initWith(buildTypes.release) statement, the mezzanine build type
has the same buildConfigField value for SERVER_URL as did release. But, we then
replace that value in the mezzanine block, to have a different server URL for
mezzanine builds than we use for release or debug builds.

ADVANCED GRADLE FOR ANDROID TIPS

2190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Other Tools

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Emulator Capabilities

The Android emulator, at its core, is not that complex. Once you have one or more
Android virtual devices (AVDs) defined, using them is a matter of launching the
emulator and installing your app upon it. With Eclipse, those two steps can even be
combined — Eclipse will automatically start an emulator instance if one is needed.

However, there is much more to the Android emulator. This chapter will explore
various advanced features of the emulator and how you can use them.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

x86 Images
Normally, the Android emulator emulates a device with an ARM-based CPU. That
matches with most Android devices available to users today. However, most
developers are developing on an x86-based development machine, not one powered
by ARM. As a result, the normal Android emulator has to convert ARM instructions
to x86 instructions before executing them, slowing down performance.

Some versions of the Android emulator, though, have an x86 version as well. Where
available, these can run much more quickly than will their ARM counterparts on an
x86 development machine.

The emphasis on can is that your development machine must have things set up
properly first. Linux users need KVM, while Mac and Windows users need the “Intel

2193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hardware Accelerated Execution Manager” (available from the SDK Manager). The
latter must be manually installed once downloaded — please consult the Android
tools documentation for details.

Also, this only works for certain CPU architectures, ones that support virtualization
in hardware:

• Intel Virtualization Technology (VT, VT-x, vmx) extensions
• AMD Virtualization (AMD-V, SVM) extensions (Linux only)

Those virtualization extensions must also be enabled in your device’s BIOS, and
other OS-specific modifications may be required.

Android 4.0.3

An x86 image for Android 4.0.3 is available from your SDK Manager:

Figure 551: SDK Manager, Showing “Intel x86 Atom System Image”

When you download that, the next time you choose API Level 15 for an AVD, you
will have an option of CPU architecture:

ADVANCED EMULATOR CAPABILITIES

2194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/devices/emulator.html#accel-vm
http://developer.android.com/tools/devices/emulator.html#accel-vm

Figure 552: AVD Manager, Showing CPU/ABI Options

Note that this only works for the plain Android API Level 15 AVD, not the one
containing Google Maps, which is only available for ARM at this time.

There are similar x86 images available for other newer Android versions, such as 4.1
and 4.2.

Android 2.3.3

An x86 image for Android 2.3.3 is also available from your SDK Manager, though
with a slightly different entry:

ADVANCED EMULATOR CAPABILITIES

2195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 553: SDK Manager, Showing “Intel Atom x86 System Image”

This shows up as a separate target in your AVD Manager (“Intel Atom x86 System
Image”), rather than a CPU/ABI value that you toggle.

Hardware Graphics Acceleration
The other way to speed up the emulator is to have it use the graphic card or GPU of
your development machine to accelerate the graphics rendering of the emulator
window. By default, the emulator will use software-based rendering, without the
GPU, which is slow in general and worse when running an ARM-based image.

Whether this will work or not for you will depend in part upon your graphics drivers
of your development machine.

There are two ways to configure GPU emulation, depending upon when you created
your AVD.

Old AVDs

To try using GPU emulation, for an AVD (new or existing), click the “New…” button
to the right of the list of hardware options in the AVD configuration editor:

ADVANCED EMULATOR CAPABILITIES

2196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 554: AVD Configuration Editor, With “New…” Button Focused

In the dialog that appears, choose “GPU Emulation” in the drop-down:

Figure 555: AVD Hardware Options Dialog

Then click OK, which will add “GPU Emulation” to the table:

ADVANCED EMULATOR CAPABILITIES

2197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 556: AVD Configuration Editor, Showing “GPU Emulation” Option

If it has “no” as the corresponding value — and it should by default — click on the
“no” to display a drop-down where you can toggle it to “yes”.

Also, you need to make sure that the “Enabled” checkbox in the Snapshot group box
is unchecked.

New AVDs

On a newer AVD configuration editor, there is a “Use Host GPU” checkbox that you
can check to try using GPU emulation:

ADVANCED EMULATOR CAPABILITIES

2198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 557: New AVD Configuration Editor, Showing “Use Host GPU” Option

Defining New Devices
Your Android development environment will have several device definitions ready
for you to use. Some will come from Google. Others may come from device vendors,
such as Amazon shipping device definitions for the Kindle Fire series. And you can
define your own, to attempt to (roughly) model other devices beyond those already
in your roster.

In the AVD Manager, on the Device Definitions tab, you can click the “New Device…”
button on the right:

ADVANCED EMULATOR CAPABILITIES

2199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 558: AVD Manager, Device Definitions Tab

That will bring up an empty device definition dialog:

ADVANCED EMULATOR CAPABILITIES

2200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 559: AVD Manager, Device Definitions Dialog

Alternatively, you can highlight an existing definition. If it is one you defined
yourself, you will have an “Edit…” button to modify the definition. If it is a definition
that came from Google or another vendor, that button will be labeled “Clone…” and
will allow you to create a new definition cloned from the existing one. You can clone
one of your own as well, by editing it and giving it a new name.

There are lots of things that you can configure for a device definition. The major
ones are:

• The name of the definition, to control what it is called in the drop-down of
available devices when you go to create an AVD

• The diagonal screen size of the device in inches, plus its resolution in pixels
• The screen size, ratio (long or not-long), and density buckets the emulator

should use — note that these will be pre-populated based on your size and
resolution values, but you can override them if needed

• What sensors the device should claim to have (e.g., accelerometer)
• What cameras the device should claim to have
• Whether the device has a keyboard for input and/or some sort of navigation

pointer (e.g., a trackball)
• How much system RAM should be on the device

ADVANCED EMULATOR CAPABILITIES

2201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Whether or not the HOME, BACK, etc. buttons are implemented in
hardware or in software

• What orientations are supported (and if you specified a keyboard, whether
the keyboard is available in those orientations)

Keyboard Behavior
The Android emulator can emulate devices that have, or do not have, a physical
keyboard. Most Android devices do not have a physical keyboard, and so the
emulator is set up to behave the same. However, this means that typing on your
development machine’s keyboard will not work in EditText widgets and the like —
you have to tap out what you want to type on the on-screen keyboard.

If you wish to switch your emulator to emulate a device with a physical keyboard –
either “for realz” or just to simplify working with the emulator on your development
machine — you can do so.

For older AVDs, click that “New…” button next to the list of hardware options, as
described in the preceding section. Choose “Keyboard support” from the drop-down,
click OK, and toggle the value for that hardware option to “yes”.

For newer AVDs, check the “Hardware keyboard present” checkbox.

Headless Operation
Sometimes, you want an emulator without a GUI. Typically, this is used for
continuous integration or some other server-based testing solution — you use the
“headless” emulator to run tests, even on a machine that lacks any GUI capability.

To do this, you will need to run the emulator from the command-line. Run
emulator -no-window -avd ..., where ... is the name of your AVD (e.g., the value
in the left column of the list of AVDs in the AVD Manager). To test this first in
normal mode, run the command without the -no-window switch.

The simplest solution to get rid of the emulator instance is to kill its process.

There are many other command-line switches for the emulator that you may wish to
investigate. While most of these have UI analogues in the AVD Manager, the
switches would be necessary to replicate some of those for headless operation.

ADVANCED EMULATOR CAPABILITIES

2202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/emulator.html#startup-options

Using Lint

As C/C++ developers are well aware, lintlint is not merely something that collects in
pockets and belly buttons.

lintlint is a long-standing C/C++ utility that points out issues in a code base that are
not errors or warnings, but are still indicative of a likely flaw in the code. After all,
what might be legal from a syntax standpoint may still be a bug when used.

The Android tools now have their own equivalent tool, Lint, integrated into Eclipse
and available from the command line, for reporting similar sorts of issues with an
Android project’s Java code, resources, and manifest.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

What It Is
Lint can be best described as “a pest, but a good pest”.

Normally, what stops you from building your app are compiler errors: bad Java
syntax, malformed XML resource files, and the like. At the command line, these stop
an in-progress build and dump error messages to the console. In Eclipse, these result
in red “X” notations on the files in the Package Explorer, and frequently result in red
sqiggle lines underneath the offending Java or XML when viewed in an editor. You
also may get yellow squiggle lines for warnings — things the compiler will allow but
the compiler thinks may be a problem.

2203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, there are many things that might be syntactically valid but are not a good
idea from an Android standpoint. For example, if you specify a minimum SDK
version of API Level 8, and you try using a class that only exists on API Level 11,
that’s a problem if you are not handling it correctly and avoiding this class on the
older-yet-supported devices. Yet, if your build target is API Level 11 or higher, it is
perfectly valid syntax and would compile just fine.

Lint is designed to encapsulate rules that transcend syntax, to add more errors and
warnings that reflect good Android practices beyond simple validity.

When It Runs
By default, in Eclipse, Lint will run when you save a file and when you export an APK
(e.g., to distribute in production). You can also force a full Lint run in Eclipse at any
point by clicking its toolbar button (looks like a green checkmark in a box), or by
right-clicking over a project and choosing Android Tools > Run Lint from the
context menu. In addition to giving you classic Eclipse error and warning markers in
the files, there is also a “Lint Warnings” view showing a table of all the errors and
warnings in one place:

Figure 560: Eclipse Lint Warnings View

To run Lint from the command line, just run lint, passing it the path to some
directory. If the directory is an Android project directory, lint will dump the errors
and warnings to the console. If the directory is not an Android project directory,
lint will sweep all subdirectories to find any Android projects, then report those
projects’ errors and warnings.

$ lint .

Scanning .:

USING LINT

2204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

...
Scanning . (Phase 2): ..
res/drawable/eject.png: Warning: The resource R.drawable.eject appears to be
unused [UnusedResources]
res/values/strings.xml:3: Warning: The resource R.string.app_name appears to be
unused [UnusedResources]

<string name="app_name">AudioDemo</string>
^

res/drawable-hdpi: Warning: Missing the following drawables in drawable-hdpi:
cw.png (found in drawable-mdpi) [IconDensities]
res: Warning: Missing density variation folders in res: drawable-xhdpi
[IconMissingDensityFolder]
res/layout/main.xml:13: Warning: [Accessibility] Missing contentDescription
attribute on image [ContentDescription]

<ImageButton android:id="@+id/play"
^

res/layout/main.xml:35: Warning: [Accessibility] Missing contentDescription
attribute on image [ContentDescription]

<ImageButton android:id="@+id/pause"
^

res/layout/main.xml:56: Warning: [Accessibility] Missing contentDescription
attribute on image [ContentDescription]

<ImageButton android:id="@+id/stop"
^

res/layout/main.xml:21: Warning: [I18N] Hardcoded string "Play", should use
@string resource [HardcodedText]

android:text="Play"
^

res/layout/main.xml:42: Warning: [I18N] Hardcoded string "Pause", should use
@string resource [HardcodedText]

android:text="Pause"
^

res/layout/main.xml:63: Warning: [I18N] Hardcoded string "Stop", should use
@string resource [HardcodedText]

android:text="Stop"
^

0 errors, 10 warnings

However, frequently it is more convenient as a developer to have the command-line
lint generate an HTML report, instead of dumping everything just to the console.
To do that, use the --html switch, passing a path to the report file to be generated.
For local use, that is all you need. If you wish to host the report somewhere, also add
the --url switch, indicating where the report will live on a Web server (e.g., your
continuous integration server). For example, this command runs lint in the current
working directory, generating a /tmp/lint.html file (plus a /tmp/lint_files/
directory of images and CSS files), mapping the URLs to work on a specific base
URL:

lint --html /tmp/lint.html --url .=http://misc.commonsware.com/lint

USING LINT

2205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This report can be viewed in your Web browser to see what the output looks like.

What to Fix
Inside of Eclipse, some of the Lint warnings and errors come with “quick fixes”,
which you can bring up via <Ctrl>-<1>. For example:

• Errors related to accessing classes or methods higher than your
minSdkVersion have “quick fixes” to add the @TargetApi annotation to the
class or method containing your code

• Warnings related to hard-coded strings in layouts or the manifest have
“quick fixes” to convert those strings into string resources

All warnings and errors will have “quick fixes” to suppress that warning or error in
the future, by adding notations to the file to that effect.

What to Configure
You have some measure of control over Lint’s behavior. The exact means of doing so
varies significantly depending upon whether you are using Eclipse or running Lint
from the command line.

Eclipse

In Eclipse, you can configure Lint’s behavior via Eclipse’s Preferences dialog. Go into
Android > Lint Error Checking to see your available options:

USING LINT

2206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/lint.html

Figure 561: Lint Error Checking Preferences

In addition to configuring the automatic Lint checks (e.g., on each file save), you can
change some details about the specific checks that Lint makes:

• the severity of the issue, usually set to Warning or Error
• whether the specific issue should be ignored rather than executed

To change Lint behavior on a per-project basis, go into the project properties, click
on the “Android Lint Preferences” category, and you will see a similar table of issues,
which you can configure for this specific project.

Also, from the “Lint Warnings” view, you can elect to suppress certain warnings,
either for the entire workspace, the entire project, or for the specific file in which the
warning is being presented.

USING LINT

2207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Command Line

One way to suppress issues from the command line is to add the --disable switch,
listing the issues (or categories of issues) to skip. You can use the --list switch to
see what checks are available:

$ lint --list
Valid issue categories:

Correctness
Correctness:Messages
Security
Performance
Usability:Typography
Usability:Icons
Usability
Accessibility
Internationalization

Valid issue id's:
"ContentDescription": Ensures that image widgets provide a contentDescription
"FloatMath": Suggests replacing java.lang.Math calls with

android.util.FloatMath to avoid conversions
"FieldGetter": Suggests replacing uses of getters with direct field access

within a class
"SdCardPath": Looks for hardcoded references to /sdcard
"NewApi": Finds API accesses to APIs that are not supported in all targeted

API versions
"DuplicateIncludedIds": Checks for duplicate ids across layouts that are

combined with include tags
"DuplicateIds": Checks for duplicate ids within a single layout
"UnknownId": Checks for id references in RelativeLayouts that are not defined

elsewhere
...

(where the ... is simply a truncation of the list shown here, which is very long)

If, for example, you wanted to run lint and skip all performance issues, you could
use lint --disable Performance. If you are uncertain what a particular issue
means, the --show switch can dump details about the issue:

$ lint --show FieldGetter
FieldGetter

Summary: Suggests replacing uses of getters with direct field access within a
class

Priority: 4 / 10
Severity: Warning
Category: Performance
NOTE: This issue is disabled by default!

USING LINT

2208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can enable it by adding --enable FieldGetter

Accessing a field within the class that defines a getter for that field is at
least 3 times faster than calling the getter. For simple getters that do
nothing other than return the field, you might want to just reference the
local field directly instead.

More information: http://developer.android.com/guide/practices/design/
performance.html#internal_get_set

Another option is to create a lint.xml file, in the root directory of your project,
containing information about which particular issues should be suppressed for that
project. The benefit here is that you can configure suppression at a finer granularity,
blocking issues for certain files or directories and allowing them for others. The
sample lint.xml from the Lint documentation looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<lint><lint>

<!-- Disable the given check in this project -->
<issue<issue id="IconMissingDensityFolder" severity="ignore" />/>

<!-- Ignore the ObsoleteLayoutParam issue in the given files -->
<issue<issue id="ObsoleteLayoutParam">>

<ignore<ignore path="res/layout/activation.xml" />/>
<ignore<ignore path="res/layout-xlarge/activation.xml" />/>

</issue></issue>

<!-- Ignore the UselessLeaf issue in the given file -->
<issue<issue id="UselessLeaf">>

<ignore<ignore path="res/layout/main.xml" />/>
</issue></issue>

<!-- Change the severity of hardcoded strings to "error" -->
<issue<issue id="HardcodedText" severity="error" />/>

</lint></lint>

You can also have a similar lint.xml file that you use outside of any project, by
passing in the --config switch pointing to it.

USING LINT

2209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://tools.android.com/tips/lint/suppressing-lint-warnings

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Hierarchy View

Android comes with a Hierarchy View tool, designed to help you visualize your
layouts as they are seen in a running activity in a running emulator. So, for example,
you can determine how much space a certain widget is taking up, or try to find
where a widget is hiding that does not appear on the screen.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Launching Hierarchy View
To use the Hierarchy View, you first need to fire up your emulator, install your
application, launch your activity, and navigate to the spot you wish to examine. Note
that you cannot use Hierarchy View with a production Android device without some
help.

To launch Hierarchy View, you have two options:

1. From Eclipse, open the Hierarchy View perspective
2. From the command line, run the monitormonitor program to bring up the Android

Device Monitor, choose Window > Open Perspective from the main menu,
and open Hierarchy View

2211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 562: Hierarchy View, in Eclipse, As Originally Opened

The roots of the tree-table on the left show the emulator instances presently
running on your development machine. The leaves represent applications running
on that particular emulator. Your activity will be identified by application package
and class (e.g., com.commonsware.android.files/...).

Viewing the View Hierarchy
Where things get interesting, though, is when you double-click on your activity in
the tree-table. After a few seconds, the details spring into, er, view:

USING HIERARCHY VIEW

2212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 563: Hierarchy View, in Eclipse, Showing an Activity

The main area of the Layout View shows a tree of the various widgets and stuff that
make up your activity, starting from the overall system window and driving down
into the individual UI widgets that users are supposed to interact with. This includes
both widgets and containers defined by your application and others that are
supplied by the system, including the title bar.

Clicking on one of the views adds more information to this perspective:

USING HIERARCHY VIEW

2213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 564: Hierarchy View, in Eclipse, Showing a View’s Details

Now, we get:

• In the left region of the Viewer, we see the properties of the selected widget
or container, in its own tree-table.

• In the Tree View in the middle, the selected widget or container has a pop-
up bubble with what that particular View looks like on the screen, along with
some performance timing data.

• In the Tree Overview in the upper-right portion of the tool, our selected
View is highlighted in green.

• In the Layout View in the lower-right portion of the tool, our selected View is
highlighted in red in the wireframe.

From the toolbar above the Tree View, you can:

• Save the tree diagram as a PNG file
• Save the UI as a Photoshop PSD file, with different layers for the different

widgets and containers
• Force the UI to repaint in the emulator or re-load the hierarchy, in case you

have made changes to a database or to the app’s contents and need a fresh
diagram

USING HIERARCHY VIEW

2214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ViewServer
One major limitation of Hierarchy View is that it only works with the emulator by
default. There is no means for it to pull information from random activities running
on production hardware.

However, Romain Guy, one of the core Android engineers, has published a
ViewServer open-source component that gets around this limitation.

If you add the ViewServer source code to your project, and register your activities as
they are created (and remove them when they are destroyed), you will be able to use
Hierarchy View with them. However, this is a bit dangerous on a production app, so
you should strongly consider using BuildConfig.DEBUG to only enable this logic in
debug builds.

Blending in the BuildConfig.DEBUG concept with Mr. Guy’s supplied sample usage,
we get something like this:

publicpublic classclass MyActivityMyActivity extendsextends Activity {
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

// Set content view, etc.

ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).addWindow(thisthis);
}

publicpublic void onDestroy() {
ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).removeWindow(thisthis);

supersuper.onDestroy();
}

publicpublic void onResume() {
supersuper.onResume();

ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).setFocusedWindow(thisthis);
}

}

Also note that ViewServer requires that your application hold the INTERNET
permission, which you may already have requested for other reasons.

USING HIERARCHY VIEW

2215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using DDMS

Another tool in the Android developer’s arsenal is the Dalvik Debug Monitor Service
(DDMS). This is a “Swiss army knife”, allowing you to do everything from browse log
files, update the GPS location provided by emulator, simulate incoming calls and
messages, and browse the on-emulator storage to push and pull files.

We have already seen the use of DDMS for viewing your logs via the LogCat view.
This chapter will explore a few other uses of DDMS beyond LogCat.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on using LogCat.

While not strictly a prerequisite, you will find detailed coverage of other features of
DDMS in the chapter on memory leak analysis using MAT and the chapter on
measuring bandwidth consumption.

Starting DDMS
As a reminder, to launch DDMS, you have two options:

1. From Eclipse, choose the DDMS perspective
2. From the command line, run the monitormonitor program to bring up the Android

Device Monitor — the DDMS perspective should appear by default

2217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DDMS will initially display a tree of emulators and devices and the running
programs on each. Clicking on an emulator or device allows you to use the rest of
the tools to work with that specific Android environment.

Figure 565: DDMS, with Emulator Selected

File Push and Pull
The File Explorer view in DDMS allows you to upload and download files from your
selected device or emulator. The view shows a typical file explorer-type tree of
available folders and files on your selected device or emulator, which you can
navigate as you would similar sorts of explorers you have no doubt seen elsewhere.

The toolbar above the view gives you three choices, once you have a folder or file
selected:

• Push a file to the device, either into a selected folder or to replace a selected
file

• Pull a file from the device to your development machine
• Delete a selected file

There are a few caveats to this:

1. You cannot pull or delete a folder.
2. You cannot create directories through this tool. You will either need to use

adb shelladb shell or create them from within your application.
3. While you can putter through most of the files on an emulator, you can

access very little outside of /mnt/sdcard on an actual device, due to Android
security restrictions.

USING DDMS

2218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screenshots
To take a screenshot of the Android emulator or device, click on the camera icon in
the toolbar in the Devices view. This will bring up a dialog box containing an image
of the current screen:

Figure 566: DDMS Screen Capture Dialog

From here, you can click “Save” to save the image as a PNG file somewhere on your
development machine, “Refresh” to update the image based on the current state of
the emulator or device, “Rotate” to change the orientation of the screenshot, or
“Done” to close the dialog.

Location Updates
To use DDMS to supply location updates to your application, the first thing you
must do is have your application use the GPS LocationProvider, as that is the one
that DDMS is set to update.

USING DDMS

2219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, in the Emulator Control view, you will see a Location Controls section. Here,
you will find a smaller tabbed pane with three options for specifying locations:
Manual, GPX, and KML:

Figure 567: DDMS Emulator Control View

The Manual tab is fairly self-explanatory: provide a longitude and latitude, in
decimal degrees, and click the Send button to submit that location to the emulator.
The emulator, in turn will notify any location listeners of the new position. The
fields are pre-populated with the longitude and latitude of a building on
Ampitheater Parkway, in Mountain View, CA, USA.

Note that you cannot simulate GPS on a device this way, only on an emulator.

Placing Calls and Messages
If you want to simulate incoming calls or SMS messages to the Android emulator,
DDMS can handle that as well.

On the Emulator Control view, above the Location Controls group, is the Telephony
Actions group.

USING DDMS

2220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To simulate an incoming call, fill in a phone number, choose the Voice radio button,
and click Call. At that point, the emulator will show the incoming call, allowing you
to accept it (via the green phone button) or reject it (via the red phone button):

To simulate in an incoming text message, fill in a phone number, choose the SMS
radio button, enter a message in the provided text area, and click Send. The text
message will then be delivered to the emulator as if it came in over the air.

Note that you cannot simulate SMSes on a device this way, only on an emulator.

USING DDMS

2221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Development in IntelliJ IDEA

JetBrains’ IntelliJ IDEA has long been an important counterweight to Eclipse in Java
development, being popular enough to help prevent a slide into an IDE
monoculture.

IDEA has supported Android application development for a while, and it is the IDE
of choice among many Android “power developers”, both inside and outside of
Google.

IDEA’s Android support comes in the form of a plugin, albeit one that ships
standard with IDEA, including with the open source Community Edition. Google
has taken over maintenance of that plugin, as part of its effort to create Android
Studio, an IDEA-based Android-focused IDE.

This chapter will cover some of the more important operations in Android
application development (outside of standard Java programming) and how you can
accomplish those using IDEA, specifically IDEA Community Edition 12.1.

Prerequisites
Understanding this chapter requires that you have read the core chapters of the
book.

Creating a New Project
When you first start up IDEA, by default you will be greeted with a dialog allowing
you to open recent projects or perform some “quick actions”:

2223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.jetbrains.com/idea/
http://developer.android.com/sdk/installing/studio.html
http://developer.android.com/sdk/installing/studio.html

Figure 568: IDEA Splash Dialog

From here, you can choose “Create New Project”. Or, given an open IDE, you can use
File > New Project… from the main menu to get to the same spot:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 569: IDEA New Project Wizard, Initial Page

The list on the left indicates the type of “module” that you wish to create. To create a
new Android application, choose “Application Module”.

You can then give the project:

• A name
• A location on the filesystem where the project files will be stored
• The Android build target
• Various IDEA-specific settings, such as the project file format

Clicking the “Next” button will allow you to configure additional Android-specific
properties:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 570: IDEA New Project Wizard, Second Page

Specifically, you can choose:

• The application name (used for the app_name string resource)
• The Java package name (used for the package attribute in the root
<manifest> element of the manifest)

• Whether or not you want a “Hello, world!” activity to be created (and, if you
do, what the Java class name should be)

• How you want to run the project by default (e.g., show a device chooser
dialog)

Clicking “Finish” will then create the empty project for you.

Importing an Existing Project
Of course, you may have existing projects, particularly if you have been doing
development using Eclipse or something else previously and now wish to move to
IDEA. You can import those projects into IDEA, much like how you import projects
into Eclipse.

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

From the main menu, you can choose File> Import Project to begin importing a
project. Or, you can choose “Import Project” from the startup dialog.

Either way, you will be presented with a typical browse-the-filesystem dialog, where
you can pick the root directory of your project. Clicking OK will bring up an “Import
Project” dialog:

Figure 571: IDEA Import Wizard, Initial Page

What happens now depends upon the build process for the project that you are
importing. Here, we will examine the two most common options: Eclipse or a
command-line build:

Eclipse

If the project that you are trying to import is an Eclipse project, choose Eclipse in
the “Import Project” dialog and click “Next”. This will bring up the second page of
the wizard:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 572: IDEA Import Wizard, Second Page

The defaults here should be fine in many cases. Clicking “Next” brings up the third
page of the wizard:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2228

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 573: IDEA Import Wizard, Third Page

Here, you can choose the project(s) to import. Typically, there will be just one.
Clicking “Next” will bring you to the fourth and final page of the wizard:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 574: IDEA Import Wizard, Fourth Page

Here, you specify what the “project SDK”. This is not the build target, nor anything
else seen in Eclipse. Instead, this appears to determine what set of tools are used for
the build process, and seems to be independent of the build target in IDEA. It is not
obvious what impact this has; in particular, choosing a plain Java (e.g., “Java 1.6”) or
an Android SDK seems to have no apparent effect.

Command Line

The process for a command-line build is similar. However, instead of choosing
Eclipse, you will need to toggle the radio button from “Import project from external
model” to “Create project from existing sources”. Clicking “Next” will bring up a
slightly different version of the second page, where you can only specify the name
and location of the project:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 575: IDEA Import Wizard, Second Page, Command-Line Build

Clicking “Next” here will bring up another version of the third wizard page, where
you indicate which directories contain files of relevance to your project — most
likely, you will accept the defaults:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 576: IDEA Import Wizard, Third Page, Command-Line Build

Clicking “Next” here will bring up the contents of your libs/ directory, if any, that
you can choose to keep:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 577: IDEA Import Wizard, Fourth Page, Command-Line Build

Clicking “Next” here will bring up a wizard page for you to “review [the] suggested
module structure for the project”:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 578: IDEA Import Wizard, Fifth Page, Command-Line Build

Clicking “Next” here will bring up the wizard page that matches the fourth wizard
page of the Eclipse import, where you can specify the “project SDK”:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2234

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 579: IDEA Import Wizard, Sixth Page, Command-Line Build

One more click of “Next” brings up a wizard page showing “frameworks” that were
“detected” by the import process. An Android project should show up, along with a
reference to the manifest:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 580: IDEA Import Wizard, Seventh Page, Command-Line Build

Finally, clicking “Finish” will import the project.

Attaching a JAR
In Eclipse, adding a JAR is a matter of copying the JAR to the project’s libs/
directory (and, on the R22 version of the Android Developer Tools or higher,
confirming the “Order & Export” portion of your project build path).

In IDEA, the equivalent is to copy the JAR into libs/, then ensure that libs/ is
listed as a dependency. To do this:

• Choose File > Project Structure from the main menu, to bring up the
“Project Structure” dialog:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2236

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/16596969/libraries-do-not-get-added-to-apk-anymore-after-upgrade-to-adt-22/16596990#16596990

Figure 581: IDEA Project Structure Dialog

• Choose Modules in the “Project Settings” list on the left:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 582: IDEA Project Structure Dialog, Showing Modules

• Click on the Dependencies tab (shown selected above)
• Click on the + icon to the left of the list of dependencies, to show a small fly-

out menu, and choose “Jars or directories” from there to bring up a
directory-chooser dialog

• In the chooser, click on your project’s libs/ directory, then click OK to close
that dialog

• Click OK on the “Project Structure” dialog to close it

At that point, your JAR is available for use.

Accessing Android Tools
The Tools > Android option in the main menu will give you access to many common
Android tools, including:

• Monitor (for access to DDMS and Hierarchy View)
• Draw 9 Patch
• AVD Manager
• SDK Manager

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note, though, that once you open the AVD Manager this way, you cannot close it
without closing the IDE itself. You may wish to open the AVD Manager from the
command line instead (android avdandroid avd).

Figure 583: IDEA Android Tools Menu

To access LogCat, look for a minimized docked view labeled Android:

Figure 584: IDEA Android View, Minimized

Tapping on it will open it up to show you LogCat messages:

Figure 585: LogCat in IDEA

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Run and Debug a Project
Much as with Eclipse, there are “run” and “debug” toolbar buttons in IDEA to run or
debug your project.

Also, much as with Eclipse, there are “run configurations” that indicate what should
happen when you run or debug a project. If you created a new project from scratch,
the new-project wizard asked what behavior you would like (e.g., bring up a device
chooser). If you imported a project, though, IDEA made a default selection, which
may require adjustment.

To change run configurations, click the drop-arrow next to your project name in the
toolbar:

Figure 586: IDEA Project Drop-Down

From there, choose “Edit Configurations” to bring up the “Run/Debug
Configurations” dialog:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 587: IDEA Run/Debug Configurations Dialog

Of note, the “Target Device” group can be set to “Show chooser dialog”, “USB device”
(to always prefer hardware), or “Emulator” (to always prefer an emulator). In the
latter case, you can specifically state an emulator AVD to launch, if it is not already
running. Beyond that, the behavior of this dialog is analogous to its Eclipse
equivalent.

Editing Android-Specific Files
In Eclipse, editing Android-specific XML files brings up dedicated editors, with sub-
tabs to allow you to edit the raw XML. In IDEA, for most files, including the
manifest and most resources, opening the file only gives you an XML editor.

The exception is opening a layout resource, which brings up the IDEA graphical
layout editor:

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 588: IDEA Graphical Layout Editor

The contents of IDEA’s graphical layout editor is equivalent to Eclipse’s, albeit
organized slightly differently:

• The widget-and-container palette is docked on the right by default, and the
categorization is via checkboxes rather than accordion-style headers

• The tree of widgets and containers is docked in the upper-left corner by
default

• The properties of a selected widget or container is docked in the lower-left
corner by default

• The raw XML is available from a “Text” sub-tab, rather than a sub-tab named
the same as the layout file itself

Otherwise, you will find the behavior of the graphical layout editor to be reasonably
similar, with a few platform-specific differences to reflect the preferred styling of
IDEA versus Eclipse.

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

IDEA-Specific Files
IDEA uses an out/ directory where Eclipse and Ant use a bin/ directory for the
compiled output. Hence, you will find your APK files in there.

IDEA also creates:

• An .iml file in the root of your project, representing this IDEA module
• An .idea hidden directory in your project, containing a substantial number

of configuration files

Using MAT
In Eclipse, you have the option of installing MAT as a plugin. With that installed,
capturing and examining a heap dump can be accomplished completely within the
IDE:

• Use DDMS to capture the heap dump
• Use MAT to examine the heap dump (opened automatically once the dump

is captured in many circumstances)

In IDEA, you need to use the external Android Debug Monitor tool to capture the
heap dump. The Monitor is available from the Tools > Android menu. There, you
will see views matching DDMS from inside of Eclipse, so you can choose your
process and dump its heap as before, albeit to a file on your filesystem.

To view the heap dump, though, you will need to install the standalone “RCP”
version of MAT, that runs outside of Eclipse.

ANDROID DEVELOPMENT IN INTELLIJ IDEA

2243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Production

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Signing Your App

Perhaps the most important step in preparing your application for production
distribution is signing it with a production signing key. While mistakes here may not
be immediately apparent, they can have significant long-term impacts, particularly
when it comes time for you to distribute an update.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Role of Code Signing
There are many reasons why Android wants you to sign your application with a
production key. Here are perhaps the top three:

• It will help distinguish your production applications from debug versions of
the same applications

• Multiple applications signed with the same key can access each other’s
private files, if they are set up to use a shared user ID in their manifests

• You can only update an application if it has a signature from the same digital
certificate

The latter one is the most important for you, if you plan on offering updates of your
application. If you sign version 1.0 of your application with one key, and you sign
version 2.0 of your application with another key, version 2.0 will not install over top
version 1.0 — it will fail with a certificate-match error.

2245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Happens In Debug Mode
Of course, you may be wondering how you got this far in life without worrying about
keys and certificates and signatures (unless you are using Google Maps, in which
case you experienced a bit of this when you got your API key).

The Android build process, whether through Ant or Eclipse, creates a debug key for
you automatically. That key is automatically applied when you create a debug
version of your application (e.g., ant debugant debug or ant installant install). This all happens
behind the scenes, so it is very possible for you to go through weeks and months of
development and not encounter this problem.

In fact, the most likely place where you might encounter this problem is in a
distributed development environment, such as an open source project. There, you
might have encountered problem #3 from the previous section, where a debug
application compiled by one team member cannot install over the debug application
from another team member, since they do not share a common debug key. You may
have run into similar problems just on your own if you use multiple development
machines (e.g., a desktop in the home office and a notebook for when you are on the
road delivering Android developer training).

So, developing in debug mode is easy. It is mostly when you move to production that
things get a bit more interesting.

Creating a Production Signing Key
To create a production signing key, you will need to use keytoolkeytool. This comes with
the Java SDK, and so it should be available to you already.

The keytoolkeytool utility manages the contents of a “keystore”, which can contain one or
more keys. Each “keystore” has a password for the store itself, and keys can also have
their own individual passwords. You will need to supply these passwords later on
when signing an application with the key.

Here is an example of running keytool:

Figure 589: Running keytool

SIGNING YOUR APP

2246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The parameters used here are:

1. -genkey, to indicate we want to create a new key
2. -v, to be verbose about the key creation process
3. -keystore, to indicate what keystore we are manipulating

(cw-release.keystore), which will be created if it does not already exist
4. -alias, to indicate what human-readable name we want to give the key

(cw-release)
5. -keyalg, to indicate what public-key encryption algorithm to be using for

this key (RSA)
6. -validity, to indicate how long this key should be valid, where 10,000 days

or more is recommended
7. -keysize, for indicating the length of the signing key (2,048 bits

recommended, or go higher if you prefer)

The length of the validity is important. Once your key expires, you can no longer use
it for signing new applications, which means once the key expires, you cannot
update existing Android applications. 10,000 days, presumably, is beyond the
expected lifespan of this signing mechanism. Also, the Play Store requires your key
to be valid beyond October 22, 2033.

If you run the above command, you will be prompted for a number of pieces of
information. If you have ever created an SSL certificate, the prompts will be familiar:

Figure 590: Results of running keytool

SIGNING YOUR APP

2247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will note that this is a self-signed certificate — you do not have to purchase a
certificate from Verisign or anyone. These keys are for creating immutable identity,
but are not for creating confirmed identity. In other words, these certificates do not
prove you are such-and-so person, but can prove that the same key signed two
different APKs.

In theory, you only need to do the above steps once per business.

Signing with the Production Key

To sign an application with a production key, you must first create an unsigned
version of the APK. By default (e.g., ant debugant debug), you get an APK signed with the
debug key. Instead, specifically build a release version (e.g., ant releaseant release), which
should give you an -unsigned.apk file in your project’s bin/ directory.

Next, to apply the key, you will use the jarsignerjarsigner tool. Like keytoolkeytool, jarsignerjarsigner
comes with the Java SDK, and so you should already have it on your development
machine.

Here is an example of running jarsignerjarsigner:

Figure 591: Running jarsigner

In this case, the parameters supplied are:

1. -verbose, to explain what is going on as the program runs
2. -keystore, to indicate where the keystore that contains the production key

resides (~/cw-release.keystore)
3. the path to the APK to sign (bin/vidtry-unsigned.apk)
4. the alias of the key in the keystore to apply (cw-release)

At this point, jarsignerjarsigner will prompt you for the keystore’s password (and the key’s
password if you supplied a distinct password for it to keytoolkeytool), then it will apply the
signature:

SIGNING YOUR APP

2248

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 592: Results of running jarsigner

Next, you should test the signature by jarsigner -verify -verbose
-certs on the same APK file, which now has a signature. You will get output akin to:

1090 Sat Aug 08 13:56:38 EDT 2009 META-INF/MANIFEST.MF
1211 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.SF
946 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.RSA

sm 1683 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 743 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_disabled.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1030 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_disabled_selected.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1220 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_pressed.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1471 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_selected.9.png

SIGNING YOUR APP

2249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 576 Sat Aug 08 13:54:46 EDT 2009
res/drawable/ic_media_pause.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 938 Sat Aug 08 13:54:46 EDT 2009
res/drawable/ic_media_play.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1176 Sat Aug 08 13:54:46 EDT 2009
res/drawable/media_button_background.xml

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2668 Sat Aug 08 13:54:46 EDT 2009 res/layout/main.xml

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1368 Sat Aug 08 13:54:46 EDT 2009 AndroidManifest.xml

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2888 Sat Aug 08 13:54:46 EDT 2009 resources.arsc

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 16860 Sat Aug 08 13:54:46 EDT 2009 classes.dex

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore

SIGNING YOUR APP

2250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

i = at least one certificate was found in identity scope

jar verified.

In particular, you want to make sure that the name of the key is what you expect and
is not “Android Debug”, which would indicate the APK was signed with the debug
key instead of the production key.

At this point, you should also rename the APK, at least to remove the now-erroneous
-unsigned portion of the filename.

Now, you have a production-signed APK, ready for distribution… or, hopefully, ready
for more testing, then distribution.

Two Types of Key Security

There are two facets to securing your production key that you need to think about:

• You need to make sure nobody steals your production keystore and its
password. If somebody does, they could publish replacement versions of
your applications — since they are signed with the same key, Android will
assume the replacements are legitimate.

• You need to make sure you do not lose your production keystore and its
password. Otherwise, even you will be unable to publish replacement
versions of your applications.

For solo developers, the latter scenario is more probable. There already have been
cases where developers had to rebuild their development machine and wound up
with new keys, locking themselves out from updating their own applications. As
with everything involving computers, having a solid backup regimen is highly
recommended.

For teams, the former scenario may be more likely. If more than one person needs to
be able to sign the application, the production keystore will need to be shared,
possibly even stored in the revision control system for the project. The more people
who have access to the keystore, the more likely it is somebody will wind up doing
something evil with it. This is particularly true for projects with public revision
control systems, such as open source projects — developers might not think of the
implications of putting the production keystore out for people to access.

SIGNING YOUR APP

2251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Distribution

It is entirely possible that the user base for your app consists solely of yourself.

However, in most cases, you are going to be giving your app to others, free or for
some sort of fee.

This chapter outlines things you will need to think about when distributing your
app.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on signing your app.

Get Ready To Go To Market
While being able to sign your application reliably with a production key is necessary
for publishing a production application, it is not sufficient. Particularly for the Play
Store, there are other things you must do, or should do, as part of getting ready to
release your application.

Versioning

You need to supply android:versionCode and android:versionName attributes in
your <manifest> element in your AndroidManifest.xml file. The value of
android:versionName is what users and prospective users will see in terms of the
label associated with your application version (e.g., “1.0.1”, “System V”, “Loquacious
Llama”). More important, though, is the value of android:versionCode, which needs

2253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to be an integer increasing with each release — that is how Android tells whether
some edition of your APK is an upgrade over what the user currently has.

Package Name

You also need to make sure that your package name — as denoted by the package
attribute of the root <manifest> element — is going to be unique. If somebody tries
downloading your application onto their device, and some other application is
already installed with that same package name, your application will fail to install.

Since the manifest’s package name also provides the base Java package for your
project, and since you hopefully named your Java packages with something based off
of a domain name you own or something else demonstrably unique, this should not
cause a huge problem.

Also, bear in mind that your package name must be unique across all applications
on the Play Store, should you choose to distribute that way.

Icon and Label

Your <application> element needs to specify android:icon and android:name
attributes, to supply the name and icon that will be associated with the application
in the My Applications list on the device and related screens. Your activities will
inherit the icon if they do not specify icons of their own.

If you have graphic design skills, the Android developer site has guidelines for
creating icons that will match other icons in the system.

Logging

In production, try to minimize unnecessary logging, particularly at low logging
levels (e.g., debug). Remember that even if Android does not actually log the
information, whatever processing is involved in making the Log.d() call will still be
done, unless you arrange to skip the processing somehow. You could outright delete
the extraneous logging calls, or wrap them in an if() test:

ifif (BuildConfig.DEBUG) {
Log.d(TAG, "This is what happened");

}

DISTRIBUTION

2254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Here, BuildConfig.DEBUG is a public static final boolean value, supplied by
Android, that indicates whether you are building for debug or production. Whether
you adjust the definition by hand or by automating the build process is up to you.
But, when BuildConfig.DEBUG is false, any work that would have been done to
build up the actual Log invocation will be skipped, saving CPU cycles and battery
life.

Conversely, error logs become even more important in production. Sometimes, you
have difficult reproducing bugs “in the lab” and only encounter them on customer
devices. Being able to get stack traces from those devices could make a major
difference in your ability to get the bug fixed rapidly.

First, in addition to your regular exception handlers, consider catching everything
those handlers miss, notably runtime exceptions:

Thread.setDefaultUncaughtExceptionHandler(onBlooey);

This will route all uncaught exceptions to an onBlooey handler:

privateprivate Thread.UncaughtExceptionHandler onBlooey=
newnew Thread.UncaughtExceptionHandler() {
publicpublic void uncaughtException(Thread thread, Throwable ex) {

Log.e(TAG, "Uncaught exception", ex);
}

};

There, you can log it, raise a dialog if appropriate, etc.

Then, offer some means to get your logs off the device and to you, via email or a
Web service. Some Android analytics firms, like Flurry, offer exception stack trace
collection as part of their service. There are also open source projects that support
this feature, such as ACRA.

Testing

As always, testing, particularly acceptance testing, is important.

Bear in mind that the act of creating the production signed version of your
application could introduce errors, such as having the wrong Google Maps API key.
Hence, it is important to do user-level testing of your application after you sign, not
just before you sign, in case the act of signing messed things up. After all, what you
are shipping to those users is the production signed edition — you do not want your
users tripping over obvious flaws.

DISTRIBUTION

2255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://flurry.com
http://code.google.com/p/acra/

As you head towards production, also consider testing in as many distinct
environments as possible, such as:

1. Trying more than one device, particularly if you can get devices with
different display sizes

2. If you rely on the Internet, try your application with WiFi, with 3G, with
EDGE/2G, and with the Internet unavailable

3. If you rely on GPS, try your application with GPS disabled, GPS enabled and
working, and GPS enabled but not available (e.g., underground)

EULA

End-user license agreements — EULAs — are those long bits of legal prose you are
supposed to read and accept before using an application, Web site, or other
protected item. Whether EULAs are enforceable in your jurisdiction is between you
and your qualified legal counsel to determine.

In fact, many developers, particularly of free or open source applications, specifically
elect not to put a EULA in their applications, considering them annoying, pointless,
or otherwise bad.

However, the Play Store developer distribution agreement has one particular clause
that might steer you towards having a EULA:

You agree that if you use the Market to distribute Products, you will protect
the privacy and legal rights of users. If the users provide you with, or your
Product accesses or uses, user names, passwords, or other login information
or personal information, you must make the users aware that the
information will be available to your Product, and you must provide legally
adequate privacy notice and protection for those users… But if the user has
opted into a separate agreement with you that allows you or your Product
to store or use personal or sensitive information directly related to your
Product (not including other products or applications) then the terms of
that separate agreement will govern your use of such information.

Hence, if you are concerned about being bound by what Google thinks appropriate
privacy is, you may wish to consider a EULA just to replace their terms with your
own.

Unfortunately, having a EULA on a mobile device is particularly annoying to users,
because EULAs tend to be long and screens tend to be short.

DISTRIBUTION

2256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Tuning Android Applications

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Speed

Mobile devices are never fast enough. Either they are slow in general (e.g., slow
CPU) or they are slow for particular operations (e.g., advanced game graphics).

What you do not want is for your application to be unnecessarily slow, where the
user determines what is and is not “necessary”. Your opinion of what is “necessary”,
alas, is of secondary importance.

This part of the book will focus on speed, including how you can measure and
reduce lag in your applications. First, though, let’s take a look at some of the specific
issues surrounding speed.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

Getting Things Done
In some cases, you simply cannot seem to get the work done that you want to
accomplish. Your database query seems slow. Your encryption algorithm seems slow.
Your image processing logic seems slow. And so on.

The limits of the device will certainly make this more of a problem than it might
otherwise be. Even a current-era dual-core device will be slow compared to your
average notebook or desktop. Also, this sort of speed issue is pervasive throughout
computing, with decades of experience to help developers learn how to write leaner
code.

2259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This part of the book will aim to help you identify where the problem spots are, so
you know what needs optimization, and then some Android-specific techniques for
trying to improve matters.

Your UI Seems… Janky
Sometimes, the speed would be less of an issue for the user, if it was not freezing the
UI or otherwise making it appear sluggish and “janky”.

The Android widget framework operates in a single-threaded mode. All UI changes
— from setting the text of a TextView to handling scrolling of a GridView — are
processed as events on an event queue by the main application thread. That same
thread is used for most UI callbacks, including activity lifecycle methods (e.g.,
onCreate()) and UI event methods (e.g., onClick() of a Button, getView() of an
Adapter). Any time you take in those methods on the main application thread tie up
that thread, preventing it from processing other GUI events or dispatching user
input. For example, if your getView() processing in an Adapter takes too long,
scrolling a ListView may appear slow compared to other ListView widgets in other
applications.

Your objective is to identify where things are slow and move them into background
operations. Some of this has been advised since the early days of Android, such as
moving all network I/O to background threads. Some of this has arisen more
recently, such as the move to use the “loader” framework to help you get data from
data stores in the background for populating your UI.

This part of the book will point out ways for you to find out where you may be doing
unfortunate things on the main application thread and techniques for getting that
work handled by a background thread, or possibly eliminated outright.

Not Far Enough in the Background
Sometimes, even work you are trying to do in the background will seem to impact
the foreground.

For example, you might think that your Service is automatically in the background.
An IntentService does indeed use a background thread for processing commands
via onHandleIntent(). However, all lifecycle methods of any Service, including
onStartCommand(), are called on the main application thread. Hence, any time you
take in those lifecycle methods will steal time away from GUI processing for the

ISSUES WITH SPEED

2260

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wiktionary.org/wiki/janky

main application thread. The same holds true for onReceive() of a
BroadcastReceiver and all the main methods of a ContentProvider (e.g., query()).

Even your background threads may not be sufficiently in the background. A process
runs with a certain priority, using Linux process management APIs, based upon its
state (e.g., if there is an activity in the foreground, it runs at a higher priority than if
the process solely hosts some service). This will help to cap the CPU utilization of
the background work, but only to a point. Similarly, threads that you fork — directly
or via something like IntentService — may run at default priority rather than a
lower priority. Even with lower priorities for the thread or process, every CPU
instruction executed in the background is one clock tick that cannot be utilized by
the foreground.

This part of the book will help you identify where you are taking lots of time on
various threads and will help you manually manage priorities to help minimize the
foreground impact of those threads, in addition to helping you reduce the amount of
work those threads have to do.

Playing with Speed
Games, more so than most other applications, are highly speed-dependent.
Everyone is seeking the “holy grail” of 60 frames per second (FPS) necessary for
smooth animated effects. Not achieving that frame rate overall may mean the
application will not appear quite as smooth; sporadically falling below that frame
rate will result in jerky animation effects, much like the “janky” UIs in a non-game
Android application.

For example, a classic problem with Android game development is garbage
collection (GC). Only since the Gingerbread release of Android is the garbage
collector concurrent, meaning that it runs in tandem with application code on a
parallel thread. Historically, the Android garbage collector was a “stop the world”
implementation, that would freeze the game long enough for a bit of GC work to be
done before the game could continue. This behavior pretty much guaranteed
sporadic failures to maintain a consistent frame rate. This caused game developers
to have to take particular steps to avoid generating any garbage, such as maintaining
its own object pools, to minimize or eliminate garbage collection pauses.

This book does not focus much on specific issues related to game development,
though many of the techniques outlined here will be relevant for game developers.

ISSUES WITH SPEED

2261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding CPU Bottlenecks

CPU issues tend to manifest themselves in three ways:

• The user has a bad experience when using your app directly — scrolling is
sluggish, activities take too long to display, etc.

• The user has a bad experience when your app is running in the background,
such as having slower frame rates on their favorite game because you are
doing something complex in a service

• The user has poor battery performance, driven by your excessive CPU
utilization

Regardless of how the issue appears to the user, in the end, it is a matter of you
using too much CPU time. That could be simply because your application is written
to be constantly active (e.g., you have an everlasting service that uses TimerTask to
wake up every second and do something). There is little anyone can do to help that
short of totally rethinking the app’s architecture (e.g., switch to AlarmManager and
allow the user to configure the polling period).

However, in many cases, the problem is that you are using algorithms – yours or
ones built into Android — that simply take too long when used improperly. This
chapter will help you identify these bottlenecks, so you know what portions of your
code need to be optimized in general or apply the techniques described in later
chapters of this part of the book.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

2263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Traceview
The #1 tool in your toolbox for finding out where bottlenecks are occurring in your
application is Traceview. This is available both within the Eclipse environment —
though not as a separate perspective — and as a standalone tool.

What Is Traceview?

Traceview is Android’s take on a method profiler. Profilers have existed for most
other platforms, in one form or fashion, dating back to the mainframe days.

Technically, the profiling in Android is performed by the Dalvik virtual machine,
under the direction of either DDMS or requests from your application code. Dalvik
will write the “trace data” (call graphs showing methods, what they call, and the
amount of time in each) to a file on external storage of the device or emulator.
Traceview then views these trace files in a GUI, allowing you to visualize “hot spots”,
drill down to find where the time is being taken, and so forth.

At the time of this writing, Traceview is designed for use on single-core devices.
Results on multi-core devices may be difficult to interpret.

Collecting Trace Data

Hence, the first step for finding where your CPU bottlenecks lie comes in the form of
collecting trace data, to analyze with Traceview. As mentioned, there are two
approaches for requesting trace data be logged: using the Debug class, and using
DDMS.

Debug Class

If you know what chunk of code you want to profile, one way to arrange for the
profile is to call startMethodTracing() on the Debug class. This takes the name of a
trace file as a parameter and will begin recording all activity to that file, stored in the
root of your external storage. You need to call stopMethodTracing() at some point
to stop the trace — failing to do so will leave you with a corrupt trace file in the end.

Note that your application will need the WRITE_EXTERNAL_STORAGE permission for
this to work. If your application does not normally need this permission, make
yourself a note to remove it before you ship the production edition of your product,
as there is no sense asking for any more permissions than you absolutely need. Also,

FINDING CPU BOTTLENECKS

2264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your device or emulator will need enough external storage to hold the file, which can
get very large for long traces — 100MB a minute is well within reason.

DDMS

Alternatively, you can initiate tracing via a toolbar button in DDMS. In both the
DDMS perspective in Eclipse and the standalone DDMS, there is a button in the
toolbar above the tree-table of devices and processes that toggles tracing on and off:

Figure 593: Toolbar button to start and stop method tracing

On Android 2.1 and earlier, this will write the trace out to a file on external storage,
much as startMethodTracing() does. Hence, your application will need
WRITE_EXTERNAL_STORAGE in this case, plus have enough external storage space to
hold the file.

On Android 2.2 and newer, though, this data is written straight to the development
machine, bypassing external storage. This means you do not need to worry about
permissions or free space on your external storage. Hence, unless your problem only
exists on Android 2.1 and earlier, you may find it easier to do your Traceview work on
a newer Android device or emulator image. The file will wind up in your
development machine’s temporary directory (e.g., /tmp on Linux).

Performance While Tracing

Writing out each method invocation to a trace file adds significant overhead to your
application. Run times can easily double or more. Hence, absolute times while
tracing is enabled are largely meaningless — instead, as you analyze the data in
Traceview, the goal is to examine relative times (i.e., such-and-so method takes up
X% of the CPU time shown in the trace).

FINDING CPU BOTTLENECKS

2265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, running Traceview disables the JIT engine in Dalvik, further harming
performance. Notably, this will not affect any native code you have added via the
NDK, so an application run in Traceview will give you unusual results (much worse
Java performance, more normal native performance).

Displaying Trace Data

Given that we have collected a trace file with data, the next step is to open up
Traceview on that file. Depending on how you collected the file, Traceview may
appear “automagically”, or it may require you to manually start it up and point it to
the trace file.

Eclipse/DDMS

If you used the DDMS perspective in Eclipse to record the trace data, the Debug
perspective in Eclipse will automatically open up when you stop the tracing,
showing you a Traceview tool:

Figure 594: Debug perspective in Eclipse showing Traceview (middle left)

FINDING CPU BOTTLENECKS

2266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Standalone Traceview

If you used standalone DDMS and run a trace on Android 2.2 and up, it will
automatically launch in the standalone Traceview utility.

If your trace file wound up on external storage on your device or emulator, you will
need to download it to your development machine, whether using the File Manager
within DDMS, or via the adb pulladb pull command. Once on your development machine,
you can view it in the standalone Traceview tool using the traceviewtraceview command:

traceview <path-to-trace-file>

Or, you can import the file into your Eclipse project, then double-click on it in the
Project Explorer to view it in the Traceview tool.

Interpreting Trace Data

Of course, the challenge is in making sense of what Traceview is trying to present.

For example, a classic performance bug in Java development is using string
concatenation:

packagepackage com.commonsware.android.traceview;

importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StringConcatActivityStringConcatActivity extendsextends BaseActivity {
StringConcatTask createTask(TextView msg, View v) {

returnreturn(newnew StringConcatTask(msg, v));
}

classclass StringConcatTaskStringConcatTask extendsextends BaseTask {
StringConcatTask(TextView msg, View v) {

supersuper(msg, v);
}

protectedprotected String doTest() {
String result="This is a string";

result+=" -- that varies --";
result+=" and also has ";
result+=String.valueOf(4);
result+=" hyphens in it";

returnreturn(result);

FINDING CPU BOTTLENECKS

2267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

}

Here is a Traceview screen showing that code executed 100,000 times, as packaged in
a StringPerfConcat activity in the Tuning/Traceview sample project:

Figure 595: Expanded look at Traceview tool

The bars in the top portion of the display show different threads in the running
application, in a timeline fashion, with time running from left to right. The “main”
bar shows the main application thread, spending most of its time initializing the
activity. The GC and HeapWorker threads are involved in garbage collection,
popping in from time to time to collect garbage during 100,000 iterations of the
above algorithm. Those 100,000 iterations are run in an AsyncTask, so we do not
encounter an application-not-responding (ANR) dialog, and that is the “AsyncTask
#1” thread at the top of the diagram.

FINDING CPU BOTTLENECKS

2268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tuning/Traceview
http://github.com/commonsguy/cw-omnibus/tree/master/Tuning/Traceview

Figure 596: Zoomed in look at the TraceView thread timelines

You will notice that the horizontal timeline bars are not contiguous – there are gaps.
In fact, if you were to combine all of the timelines into one, the “holes” in most of
the rows would be filled by time in another row. This is illustrating that there is only
one core on most Android device CPUs (these images were taken from a test run on
a single-core Nexus One). We think of AsyncTask as moving work to the
background, but it is important to remember that it still is consuming CPU time,
even if the background thread means that we are not tying up the main application
thread.

The bottom half of the display shows what methods are taking up all of the time,
inclusively, in descending order. By “inclusively”, Traceview means “code executed in
this method and any methods it invokes”. Hence, the top “100.0%” line shows the
entry point to the whole application, and the next line shows where the AsyncTask’s
background thread is being forked, and so on.

Typically, you want to find lines that reference your code. In this case, lines 7–9 are
from the com.commonsware package. Let’s focus on those:

Figure 597: Sample application method calls in Traceview

On their own, these lines are not especially informative. However, if we fold open
the bottom row, using the arrow indicator on the left, we can drill down into what is
going on inside that particular method, which happens to be the algorithm shown
earlier in this section:

FINDING CPU BOTTLENECKS

2269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 598: Drilling down in Traceview

The “self” line refers to code that is directly executed in the method, not involving a
nested method call, such as variable declarations and returning values. We see the
valueOf() calls, along with three rows showing references to StringBuilder. On the
surface, that may seem odd, considering that we are not referring to StringBuilder
in the source code.

It turns out that the javacjavac compiler replaces string concatenation with append()
calls on a StringBuilder, created on the fly for that specific concatenation. So, of
the 83.9% of the time taken up in the entire run by the doTest() method, 26.7% is
taken up by creating these temporary StringBuilder objects, 28.8% is consumed by
calling append() on the StringBuilder, and another 18.4% is used by calling
toString() to get the resulting String out of the StringBuilder.

This suggests an optimization: we could create our own StringBuilder and use it
for concatenating the text, thereby saving us creating a few temporary ones and
calling toString() extra times:

packagepackage com.commonsware.android.traceview;

importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StringBuilderActivityStringBuilderActivity extendsextends BaseActivity {
StringBuilderTask createTask(TextView msg, View v) {

returnreturn(newnew StringBuilderTask(msg, v));
}

classclass StringBuilderTaskStringBuilderTask extendsextends BaseTask {
StringBuilderTask(TextView msg, View v) {

supersuper(msg, v);
}

protectedprotected String doTest() {
StringBuilder result=newnew StringBuilder("This is a string");

FINDING CPU BOTTLENECKS

2270

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

result.append(" -- that varies --");
result.append(" and also has ");
result.append(String.valueOf(4));
result.append(" hyphens in it");

returnreturn(result.toString());
}

}
}

This implementation of the algorithm runs about twice as fast as the first.

The “Exclusive” and “Excl %” columns show how much time is taken in an individual
method itself, not including any children. If you sort on that, you see the specific
local spots where time is being taken up. For example, here is a Traceview roster
from testing the second algorithm shown above (the StringPerfBuilder activity):

Figure 599: Traceview, sorted by exclusive time

We see that the top three culprits are all Android/Dalvik methods, which we cannot
optimize. Instead, the fact that they are taking up so much time is indicative of the
fact that we are calling them a lot, also in evidence by the Calls/Total column. You
can examine the parents of a call to see where those calls come from, to see if you
can change upstream code to result in fewer such calls:

FINDING CPU BOTTLENECKS

2271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 600: Traceview, showing parents of a method call

Here, we can see that all those append0() calls are triggered by calls to append() on
the StringBuilder, which is not terribly surprising.

You can also zoom in to take a very narrow look at the data. Simply click-drag a bar
in the timeline to select a region to zoom into. The timeline will switch to show just
that range of milliseconds and the calls that take place there:

Figure 601: Traceview, zoomed in on ~230 milliseconds of run time

If you zoom in far enough, you will start seeing solid blocks of color, corresponding
to the color-coded methods in the table of results on the bottom half of the screen.
You can tap on any block of color to bring up that specific method in the table:

FINDING CPU BOTTLENECKS

2272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 602: Traceview, zoomed in on ~1 millisecond of run time, highlighting one
specific method

Zooming back out, though, is somewhat of a pain. If you drag the timeline itself (not
one of the bars, but the “meter stick” showing the milliseconds) from left to right,
you will zoom out. Do this enough times, and you can return approximately to the
original state.

Other General CPU Measurement Techniques
While Traceview is great for narrowing down a general performance issue to a
specific portion of code, it does assume that you know approximately where the
problem is, or that you even have a problem in the first place. There are other
approaches to help you identify if and (roughly) where you have problems, which
you can then attack with Traceview to try to refine.

Logging

Traceview can be useful, if you have a rough idea of where your performance
problem lies and need to narrow it down further. If you have a large and complicated
application, though, trying to sift through all of it in Traceview may be difficult.

FINDING CPU BOTTLENECKS

2273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, there is nothing stopping you from using good old-fashioned logging to
get a rough idea of where your problems lie, for further analysis via Traceview. Just
sprinkle your code with Log.d() calls, logging SystemClock.uptimeMillis() with an
appropriate label to identify where you were at that moment in time. “Eyeballing”
the LogCat output can illustrate areas where unexpected delays are occurring — the
areas in which you can focus more time using Traceview.

A useful utility class for this is TimingLogger, in the android.util package. It will
collect a series of “splits” and can dump them to LogCat along with the overall time
between the creation of the TimingLogger object and the corresponding
dumpToLog() method call. Note, though, that this will only log to LogCat when you
call dumpToLog() — all of the calls to split() to record intermediate times have
their results buffered until dumpToLog() is called. Also note that logging needs to be
set to VERBOSE for this information to actually be logged — use the command adbadb
shell setprop log.tag.LOG_TAG VERBOSEshell setprop log.tag.LOG_TAG VERBOSE, substituting your log tag (supplied to
the TimingLogger constructor) for LOG_TAG.

FPS Calculations

Sometimes, it may not even be strictly obvious how bad the problem is. For example,
consider scrolling a ListView. Some performance issues, like sporadic “hiccups” in
the scrolling, will be visually apparent. However, absent those, it may be difficult to
determine whether your particular ListView is behaving more slowly than you
would expect.

A classic measurement for games is frames per second (FPS). Game developers aim
for a high FPS value — 60 FPS is considered to be fairly smooth, for example.
However, this sort of calculation can only really be done for applications that are
continuously drawing – such as Romain Guy’s WindowBackground sample
application. Ordinary Android widget-based UIs are only drawing based upon user
interaction or, possibly, upon background updates to data. In other words, if the UI
will not even be trying to draw 60 times in a second, trying to measure FPS to get 60
FPS is pointless.

You may be able to achieve similar results, though, simply by logging how long it
takes to, say, fling a list (use setOnScrollListener() and watch for
SCROLL_STATE_FLING and other events).

FINDING CPU BOTTLENECKS

2274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/

UI “Jank” Measurement
A user interface is considered “janky” if it stutters or otherwise fails to operate
smoothly, particularly during animated effects like scrolling. Sometimes, janky
behavior is obvious to all. Sometimes, janky behavior is only noticeable to those
sensitive to small hiccups in the UI.

This section will outline what “jank” is and how to determine, concretely, if your UI
suffers from it.

What, Exactly, is Jank?

Prior to Android 4.0, it was difficult to come up with a concrete definition of jank. In
effect, we were stuck with “I know it when I see it” ad-hoc analysis, rather than being
able to rely on concrete measurements.

Project Butter changed that.

Android 4.0 ties all graphic operations to a 60 frames-per-second “vsync” frequency.
If everything is working smoothly, your UI will update 60 times per second,
uniformly (versus varying amounts of times between changes).

The converse is also true: if everything is not working smoothly, your UI will not
update 60 times per second. This is the source of the term “dropped frames”: when
the time came around for an update, you were not ready, and that frame was
skipped.

There are two main ways in which you will drop a frame:

1. You spend too much time on the main application thread, preventing
Android from processing your requested UI updates in a timely fashion

2. Your UI changes are too complex to be rendered before time runs out for the
current frame, causing your changes to spill over into the next frame

Each frame is ~16ms in duration on-screen (1/60th of a second). Hence, if we cause
per-frame work to exceed 16ms, we will skip, or “drop”, a frame.

So, what we need is some way to determine if our code is actually delivering frames
on time.

FINDING CPU BOTTLENECKS

2275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/I_know_it_when_I_see_it

Using gfxinfo

To determine if our problem is in the actual rendering of our UI updates, we can use
the GPU profiling feature added in Android 4.2.

Enabling Developer Options

To toggle on GPU profiling, you will need to be able to get to the Developer Options
portion of your Settings app. If you see this — typically towards the bottom of the
list on the initial Settings screen — just tap on the entry.

If, however, Developer Options is missing, then you will need to use the super-secret
trick for enabling Developer Options:

1. Tap on “About Phone”, “About Tablet”, or the equivalent at the bottom of
your Settings list

2. Tap on the “Build Number” entry seven times in succession
3. Press BACK, and “Developer Options” should now be in the list

Toggling on GPU Profiling

There are two checkboxes in Developer Options that need to be checked for GPU
profiling to be enabled.

The first is “Force GPU rendering”, in the Drawing section. As the name suggests,
this will force your application to use the GPU for drawing, even if your application
may have requested that hardware acceleration be disabled. Since most applications
do not force hardware acceleration to be disabled, this checkbox probably will have
no real effect on your app. Note that if you disabled hardware acceleration due to
specific rendering problems, this checkbox will probably cause those rendering
artifacts to re-appear during your testing.

The second is “Profile GPU rendering”, in the Monitoring section. This will cause the
device to keep track of graphics performance on a per-process basis, in a way that we
can dump later on.

FINDING CPU BOTTLENECKS

2276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 603: Developer Options, Showing “Force GPU rendering” and “Profile GPU
rendering”

If your app was already running, you will need to get rid of its process (e.g., via
swiping it off the recent-tasks list) after you check the “Profile GPU rendering”
checkbox. At the present time, whether or not this profiling takes effect is
determined at process startup time and is not changed on the fly when you toggle
the checkbox. Besides, as noted above, starting with a fresh process should give you
more accurate results.

Collecting Data

At this point, you can run your app and conduct your specific test, whether
manually or via instrumentation (e.g., a targeted JUnit test suite).

When complete, run adb shell dumpsys gfxinfo ...adb shell dumpsys gfxinfo ... in a terminal window, where
... is replaced by the package name of your app (e.g.,
com.commonsware.android.anim.threepane). This will dump a fair amount of
information to the terminal display:

mmurphy@xps15:~$ adb shell dumpsys gfxinfo com.commonsware.android.anim.threepane
Applications Graphics Acceleration Info:

FINDING CPU BOTTLENECKS

2277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Uptime: 482460 Realtime: 482454

** Graphics info for pid 3469 [com.commonsware.android.anim.threepane] **

Recent DisplayList operations
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
DrawPatch
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawPatch

FINDING CPU BOTTLENECKS

2278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RestoreToCount

Caches:
Current memory usage / total memory usage (bytes):

TextureCache 1078032 / 25165824
LayerCache 7864320 / 16777216
GradientCache 0 / 524288
PathCache 0 / 4194304
CircleShapeCache 0 / 1048576
OvalShapeCache 0 / 1048576
RoundRectShapeCache 0 / 1048576
RectShapeCache 0 / 1048576
ArcShapeCache 0 / 1048576
TextDropShadowCache 0 / 2097152
FontRenderer 0 262144 / 262144

Other:
FboCache 3 / 16
PatchCache 89 / 512

Total memory usage:
9204496 bytes, 8.78 MB

Profile data in ms:

com.commonsware.android.anim.threepane/
com.commonsware.android.anim.threepane.MainActivity/
android.view.ViewRootImpl@4131e788

Draw Process Execute
14.45 59.67 10.44
10.91 1.06 1.20
1.73 12.80 1.19
1.45 0.64 0.94
2.15 0.47 0.57
0.79 0.50 0.60
2.23 0.49 0.73
1.56 0.57 0.52
6.14 0.47 1.92
0.84 0.53 0.59
1.58 0.52 0.60
1.46 0.55 0.54
1.74 0.75 0.68
1.74 0.61 0.61
1.05 0.62 1.00
1.05 0.71 1.28
1.29 0.50 0.56
2.22 0.60 0.75
0.90 0.65 1.42
1.70 0.86 0.61
0.81 1.07 0.93
6.66 2.35 0.98
0.93 5.18 0.73
0.34 1.24 0.51
0.45 1.28 0.46
1.85 4.38 1.45
1.32 3.15 1.03

FINDING CPU BOTTLENECKS

2279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1.50 3.16 0.98
1.42 3.00 1.00
0.90 2.94 1.00
0.69 2.36 1.15
1.08 2.72 0.86
1.49 4.22 1.49
0.97 2.91 0.91
0.89 3.05 0.90
1.36 3.02 1.07
1.12 2.95 0.95
1.63 3.47 1.02
0.96 2.95 0.98
2.75 5.55 1.83
2.11 1.47 0.51
0.44 1.50 0.48
0.67 1.46 0.51
2.07 3.93 3.13
0.71 4.36 1.93
1.75 3.31 1.15
2.39 1.79 1.02
0.96 1.71 0.81
0.57 1.70 0.73
1.88 1.81 0.58
0.59 1.72 0.55
2.28 3.74 1.72
2.66 0.84 0.70
0.64 0.82 0.64
0.30 0.80 0.62
1.78 0.70 0.63
7.20 2.35 1.04
0.49 0.21 0.50
9.99 0.26 0.54
4.28 0.23 0.66
0.04 0.26 1.94
3.55 0.52 0.66
4.56 0.59 0.62
5.38 0.33 0.68
4.44 0.33 0.65
4.35 0.30 0.73
3.76 0.27 0.60
3.72 0.30 0.64
3.75 0.26 0.58
4.79 0.33 0.75
4.68 0.33 0.85
3.00 0.22 0.53
2.44 0.26 0.83
14.87 0.69 1.59
8.68 0.96 1.96
3.44 0.47 0.96
3.73 0.22 0.65
3.06 0.72 0.65
3.86 0.35 1.13
3.32 0.26 0.57
3.21 0.26 0.62

FINDING CPU BOTTLENECKS

2280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3.84 0.26 0.60
4.85 0.33 0.72
4.16 0.32 0.70
3.96 0.30 0.69
2.60 0.82 0.66
8.72 0.47 0.69
0.49 0.31 1.50
0.46 0.28 0.77
7.54 3.66 0.90
7.50 0.27 0.71
0.06 0.32 2.37
6.07 0.28 0.97
3.68 0.27 0.52
6.39 5.86 4.48
4.66 0.29 1.28
0.05 0.26 11.86
8.87 12.64 1.25
3.32 0.26 0.58
6.22 4.77 1.26
3.49 0.31 0.86
11.32 10.49 1.26
10.27 15.09 1.78
12.50 1.34 2.53
7.66 4.74 0.58
0.03 0.24 0.32
4.43 0.30 0.56
9.75 2.94 1.68
17.93 0.47 0.56
3.81 0.35 1.04
0.20 2.84 2.72
10.06 0.28 0.92
5.74 0.72 1.92
0.07 0.87 0.53
2.05 0.95 2.03

View hierarchy:

com.commonsware.android.anim.threepane/
com.commonsware.android.anim.threepane.MainActivity/
android.view.ViewRootImpl@4131e788

50 views, 4.48 kB of display lists, 115 frames rendered

Total ViewRootImpl: 1
Total Views: 50
Total DisplayList: 4.48 kB

We will discuss what this means in just a bit.

FINDING CPU BOTTLENECKS

2281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Disabling GPU Profiling

When you are done with your test, it is a good idea to undo the settings changes you
made, at least “Profile GPU rendering”. That way, the act of collecting this data does
not itself add overhead to unrelated tests in the future.

Analyzing the Results

The key bit for our performance analysis is that long table labeled “Profile data in
ms:”. This reports, for a series of UI requests, how much time is spent:

• drawing your UI changes (e.g., onDraw() calls to various widgets and
containers)

• processing the low-level drawing commands created via the draw phase, to
create the contents of the frame

• executing the frame, sending it to the compositor to display on the screen

One way to interpret this table is to paste it into your favorite spreadsheet program,
then use that program to draw a stacked column chart of the data. You can
download a spreadsheet in ODS format (for use with LibreOffice, OpenOffice, or
other tools that can handle that format) that contains the above table along with a
stacked column chart:

Figure 604: gfxinfo Output, In Stacked Column Chart

FINDING CPU BOTTLENECKS

2282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/gfxinfo.ods

What you are looking for are columns that come close to, or exceed, the 16ms mark,
with milliseconds on the Y axis. As you can see, many operations towards the end of
the table are near or above 16ms, indicating that we are probably dropping some
frames.

Using systrace

Another way we could determine whether or not we are dropping frames is to use
systrace to collect system-level tracing information about the entire device,
including our app.

systrace is a very powerful tool, one that 20 or 30 people on the planet truly
understand, due to cryptic output and limited documentation. Using gfxinfo for
detecting dropped frames is simple by comparison. On the other hand, systrace
works for Android 4.1 and higher, versus the Android 4.2 requirement of gfxinfo.

Using systrace involves collecting a trace, which is saved in the form of an HTML
file. The HTML file is then used to determine what went on during the period of the
trace itself.

Enabling and Collecting a Trace: Command-Line

The original means of using systrace was from the command line. There is a
systrace.py Python script located in the tools/systrace/ directory of your SDK
installation. If you have a Python interpreter (e.g., your development machine does
not run Windows), you can use this approach.

To indicate what specific bits of information to collect, on Android 4.2 and higher,
you can tap the “Enable traces” entry in the Monitoring section of the Developer
Options page in Settings. This displays a multi-select dialog of the possible major
categories of information that systrace should collect:

FINDING CPU BOTTLENECKS

2283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 605: “Enable traces” In Settings

Alternatively, when you run the systrace.py script, you can include the --set-tags
switch, with a comma-delimited list of specific traces (“tags”) that you want to
collect. The list of available tag names can be found in the developer
documentation.

For detecting “jank”, you will want the Graphics and View traces enabled, which
equates to --set-tags gfx,view.

To actually collect the trace, you run the systrace.py script, optionally with
--set-tags or other command-line switches:

python systrace.py --set-tags gfx,view

By default, this will collect trace data for five seconds. While that seems short, bear
in mind that this will result in a large HTML file (a few MB). You can use the -t
switch to specify a different time period in seconds, if you wish.

The resulting HTML file will be written as trace.html in the current working
directory, or in whatever location you specify using the -o switch.

FINDING CPU BOTTLENECKS

2284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/systrace.html
http://developer.android.com/tools/help/systrace.html

Once you run the script, quickly go to your device and run your test scenario, as the
trace starts immediately upon running the script.

Enabling and Collecting a Trace: Eclipse

The current version of the ADT plugin for Eclipse also allows you to collect a trace
using systrace. There is a “Capture system wide trace using systrace” button in the
toolbar in the Devices view, typically found in the DDMS perspective:

Figure 606: Systrace Toolbar Button in Devices View

Tapping that toolbar button brings up a dialog that allows you to configure the trace
you wish to collect, with checkboxes and fields replacing the variety of command-
line switches you might use manually with systrace.py:

FINDING CPU BOTTLENECKS

2285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 607: Systrace Dialog in Eclipse

Notable settings that you will wish to tailor include:

• Where the trace will be written (by default, as trace.html in your home or
user directory)

• The duration of the trace (by default, 10 seconds, as opposed to 5 seconds for
running systrace.py from the command line)

• Which trace tags you wish to use — for detecting jank, you want the gfx and
view tags

Clicking OK will then initiate the trace collection, at which point you will want to go
to your test device and run through your test scenario.

Viewing and Interpreting the Results

What you get as output is an HTML file that can be viewed in the Chrome browser,
though you will tend to want to use a development machine for this instead of, say,
an Android tablet. That is because the navigation of the Web page is designed for
use with a hardware QWERTY keyboard, which most Android devices lack.

FINDING CPU BOTTLENECKS

2286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can find a sample trace from a Nexus 7 online, though note that the HTML is a
bit large and may take a few seconds to download. Initially, you will see something
like this:

Figure 608: Systrace Output, As Initially Viewed

The left-hand sidebar represents various categories (or “slices” or “tags” or whatever)
of data collected by systrace. The main area shows a timeline for the test, with rows
corresponding to the sidebar entries for what was occurring at the various times for
that particular category. The bottom pane will hold details that will appear when
you click on various little blocks within that timeline.

Mostly, your navigation will use the W, A, S, and D keys, presumably chosen to make
it appear as though you are playing a video game. Specifically:

• W will zoom in the timeline, while S will zoom out
• A and D will pane the timeline left and right

FINDING CPU BOTTLENECKS

2287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/trace.html

Figure 609: Systrace Output, Zoomed In, Showing 3135ms to 3190ms

Unfortunately, most of what is in here is not especially well documented. What we
want are the gfx and view tags for our process. It turns out that those tags are
displayed in a slice towards the bottom of this output (scroll down the top portion of
the HTML using the scrollbar), here labeled “6797: […]”, where 6797 happens to be
our process ID and “[…]” hopefully means something to some Google engineer.

FINDING CPU BOTTLENECKS

2288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 610: Systrace Output, Showing Semi-Relevant Information

In our gfx/view slice, we will see various blocks for different major operations in the
rendering of our UI. Notably, you will see blocks labeled “performTraversals”,
referring to the private performTraversals() method on ViewRootImpl. It turns out
that performTraversals() wraps around all of the work shown in the three columns
of our gfxinfo output: draw, process, and execute. The widths of the
“performTraversals” blocks in the systrace output shows us how long each of those
takes. What we want are nice, short blocks. Instead, panning through our trace, you
will see several that are too long, such as the one running from 3168ms through
3186ms of the timeline. That is 18ms, which exceeds the 16ms of time we have for a
frame, and so a frame will be dropped.

FINDING CPU BOTTLENECKS

2289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: NDK

When Android was first released, many a developer wanted to run C/C++ code on it.
There was little support for this, other than by distributing a binary executable and
running it via a forked process. While this works, it is a bit cumbersome, and the
process-based interface limits how cleanly your C/C++ code could interact with a
Java-based UI. On top of all of that, the use of such binary executables is not well
supported.

In June 2009, the core Android team released the Native Development Kit (NDK).
This allows developers to write C/C++ for Android applications in a supported
fashion, in the form of libraries linked to a hosting Java-based application via the
Java Native Interface (JNI). This offers a wealth of opportunities for Android
development, and this part of the book will explore how you can take advantage of
the NDK to exploit those opportunities.

This chapter explains how to set up the NDK and apply it to your project. What it
does not do is attempt to cover all possible uses of the NDK — game applications in
particular have access to many frameworks, like OpenGL and OpenSL, that are
beyond the scope of this book.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

This chapter also assumes that you know C/C++ programming.

2291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of the NDK
We start by examining Dalvik’s primary limitation — speed. Next, we look at the
reasons one might choose the NDK, speed among them. We wrap up with some
reasons why the NDK may not be the right solution for every Android problem,
despite its benefits.

Dalvik: Secure, Yes; Speedy, Not So Much

Dalvik was written with security as a high priority. Android’s security architecture is
built around Linux’s user model, with each application getting its own user ID. With
each application’s process running under its own user ID, one process cannot readily
affect other processes, helping to contain any single security flaw in an Android
application or subsystem. This requires a fair number of processes. However, phones
have limited RAM, and the Android project wanted to offer Java-based development.
Multiple processes hosting their own Java virtual machines simply could not fit in a
phone. Dalvik’s virtual machine is designed to address this, maximizing the amount
of the virtual machine that can be shared securely between processes (e.g., via “copy-
on-write”).

Of course, it is wonderful that Android has security so woven into the fabric of its
implementation. However, inventing a new virtual machine required tradeoffs, and
most of those are related to speed.

A fair amount of work has gone into making Java fast. Standard Java virtual
machines do a remarkable job of optimizing applications on the fly, such that Java
applications can perform at speeds near their C/C++ counterparts. This borders on
the amazing and is a testament to the many engineers who put countless years into
Java.

Dalvik, by comparison, is very young. Many of Java’s performance optimization
techniques — such as advanced garbage collection algorithms — simply have not
been implemented to nearly the same level in Dalvik. This is not to say they will
never exist, but it will take some time. Even then, though, there may be limits as to
how fast Dalvik can operate, considering that it cannot “throw memory at the
problem” to the extent Java can on the desktop or server.

If you need speed, Dalvik is not the answer today, and may not be the answer
tomorrow, either.

FOCUS ON: NDK

2292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Going Native

Java-based Android development via Dalvik and the Android SDK is far and away
the option with the best support from the core Android team. HTML5 application
development is another option that was brought to you by the core Android
development team. The third leg of the official Android development triad is the
NDK, provided to developers to address some specific problems, outlined below.

Speed

Far and away the biggest reason for using the NDK is speed, pure and simple.
Writing in C/C++ for the device’s CPU will be a major speed improvement over
writing the same algorithms in Java, despite Android’s just-in-time (JIT) compiler.

There is overhead in reaching out to the C/C++ code from a hosting Java application,
and so for the best performance, you will want a coarse interface, without a lot of
calls back and forth between Java and the native opcodes. This may require some
redesign of what might otherwise be the “natural” way of writing the C/C++ code, or
you may just have to settle for less of a speed improvement. Regardless, for many
types of algorithms — from cryptography to game AI to video format conversions —
using C/C++ with the NDK will make your application perform much better, to the
point where it can enable applications to be successful that would be entirely too
slow if written solely in Java.

Bear in mind, though, that much of what you think is Java code in your app really is
native “under the covers”. Many of the built-in Android classes are thin shims over
native implementations. Again, focus on applying the NDK where you are
performing lots of work yourself in Java code that might benefit from the
performance gains.

Porting

You may already have some C/C++ code, written for another environment, that you
would like to use with Android. That might be for a desktop application. That might
be for another mobile platform, such as iOS, where C/C++ is an option. That might
be for mobile platform, such as Symbian, where C/C++ is the conventional solution,
rather than some other language. Regardless, so long as that code is itself relatively
platform-independent, it should be usable on Android.

FOCUS ON: NDK

2293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This may significantly streamline your ability to support multiple platforms for your
application, even if down-to-the-metal speed is not really something you necessarily
need. This may also allow you to reuse existing C/C++ code written by others, for
image processing or scripting languages or anything else.

Knowing Your Limits

Developers love silver bullets. Developers are forevermore seeking The One True
Approach to development that will be problem-free. Sisyphus would approve, of
course, as development always involves tradeoffs. So while the NDK’s speed may
make it tantalizing, it is not a solution for general Android application development,
for several reasons, explored in this section.

Android APIs

The biggest issue with the NDK is that you have very limited access to Android itself.
There are a few libraries bundled with Android that you can leverage, and a few
other APIs offered specifically to the NDK, such as the ability to render OpenGL 3D
graphics. But, generally speaking, the NDK has no access to the Android SDK, except
by way of objects made available to it from the hosting application via JNI.

As such, it is best to view the NDK as a way of speeding up particular pieces of an
SDK application — game physics, audio processing, OCR, and the like. All of those
are algorithms that need to run on Android devices with data obtained from
Android, but otherwise are independent of Android itself.

Cross-Platform Compatibility

While C/C++ can be written for cross-platform use, often it is not.

Sometimes, the disparity is one of APIs. Any time you use an API from a platform
(e.g., iPhone) or a library (e.g., Qt) not available on Android, you introduce an
incompatibility. This means that while a lot of your code — measured in terms of
lines — may be fine for Android, there may be enough platform-specific bits woven
throughout it that you would have a significant rewrite ahead of you to make it truly
cross-platform.

Android itself, though, has a compatibility issue, in terms of CPUs. Android mostly
runs on ARM devices today, since Android’s initial focus was on smartphones, and
ARM-powered smartphones at that. However, the focus on ARM will continue to

FOCUS ON: NDK

2294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

waver, particularly as Android moves into other devices where other CPU
architectures are more prevalent, such as Atom or MIPS for set-top boxes. While
your code may be written in a fashion that works on all those architectures, the
binaries that code produces will be specific to one architecture. The NDK gives you
additional assistance in managing that, so that your application can simultaneously
support multiple architectures.

Right now, the NDK supports ARM, x86, and MIPS CPU architectures. Of these,
ARM CPUs power the vast majority of Android devices. The first generation of
Google TV boxes, and a few other devices, use Intel x86 CPUs (usually Atom-based).
MIPS is a relative newcomer to Android, with few devices using such CPUs at this
time.

NDK Installation and Project Setup
The Android NDK is blissfully easy to install, in some ways even easier than is the
Android SDK. Similarly, setting up an NDK-equipped project is rather
straightforward. However, the documentation for the NDK is mostly a set of text
files (OVERVIEW.TXT prominent among them). These are well-written but suffer from
the limits of the plain-text form factor, plus are focused strictly on the NDK and not
the larger issue of Android projects that use the NDK.

This chapter will fill in some of those gaps.

Installing the NDK

As with the Android SDK, the Android NDK comes in the form of a ZIP or tar.gz
file, containing everything you need to build NDK-enabled Android applications.
Hence, setting up the NDK is fairly trivial, particularly if you are developing on
Linux.

Prerequisites

You will need the GNU make and GNU awk packages installed. These may be part of
your environment already. For example, in Ubuntu, run sudo aptitude installsudo aptitude install
make gawkmake gawk, or use the Synaptic Package Manager, to ensure you have these two
packages.

While you can do NDK development directly on Linux or OS X, NDK development
on Windows can only be done using the Cygwin environment. This gives you a

FOCUS ON: NDK

2295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html
http://www.cygwin.com/

Linux-style shell and Linux-style tools on a Windows PC. In addition to a base
Cygwin 1.7 (or newer) installation, you will need the make and gawk Cygwin packages
installed in Cygwin.

If you encounter difficulties with Cygwin, you may wish to consider whether running
Linux in a virtualization environment (e.g., VirtualBox) might be a better solution
for you.

Download and Unpack

The Android NDK per-platform (Linux/OS X/Windows) ZIP files can be
downloaded from the NDK page on the Android Developers site. These ZIP files are
not small (~50MB each), because they contain the entire toolchain — that is why
there are so few prerequisites.

You are welcome to unpack the ZIP file anywhere it makes sense on your
development machine. However, putting it inside the Android SDK directory may
not be a wise move — a peer directory would be a safer choice. You are welcome to
rename the directory if you choose.

Environment Variables

The NDK documentation will cite an NDK environment variable, set to point to the
directory in which you unpacked the NDK. This is a documentation convention and
does not appear to be required for actual use of the NDK, though it is not a bad idea.
You could also consider adding the NDK directory to your PATH, though that too is
not required.

Bear in mind that you will be using the NDK tools from the command line, and so
being able to conveniently reference this directory is reasonably important.

Setting Up an NDK Project

At its core, an NDK-enhanced Android project is a regular Android project. You still
need a manifest, layouts, Java source code, and all the other trappings of a regular
Android application. The NDK simply enables you to add C/C++ code to that project
and have it included in your builds, referenced from your Java code via the Java
Native Interface (JNI).

FOCUS ON: NDK

2296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.virtualbox.org/
http://developer.android.com/sdk/ndk/index.html

The examples shown in this section are from the JNI/WeakBench sample project,
which implements a pair of benchmarks in Java and C, to help demonstrate the
performance differences between the environments.

Writing Your C/C++ Code

The first step towards adding NDK code to your project is to create a jni/ directory
and place your C/C++ code inside of it. While there are ways to use a different base
directory, it is unclear why you would need to. How you organize the code inside of
jni/ is up to you. C++ code should use .cpp as file extensions, though this too is
configurable.

Your C/C++ code will be made up of two facets:

• The code doing the real work
• The code implementing your JNI interface

If you have never used JNI before, JNI uses naming conventions to tie functions in a
C/C++ library to their corresponding hooks in the Java code.

For example, in the WeakBench project, you will find jni/weakbench.c:

#include <stdlib.h>
#include <math.h>
#include <jni.h>

typedeftypedef unsigned char boolean;

staticstatic void nsieve(int m) {
unsigned int count = 0, i, j;
boolean * flags = (boolean *) malloc(m * sizeofsizeof(boolean));
memset(flags, 1, m);

forfor (i = 2; i < m; ++i)
ifif (flags[i]) {

++count;
forfor (j = i << 1; j < m; j += i)

// if (flags[j])
flags[j] = 0;

}

free(flags);
}

void
Java_com_commonsware_android_tuning_weakbench_WeakBench_nsievenative(JNIEnv*
env,

FOCUS ON: NDK

2297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JNI/WeakBench
http://github.com/commonsguy/cw-omnibus/tree/master/JNI/WeakBench

jobject
thiz)
{

int i=0;
forfor (i = 0; i < 3; i++)

nsieve(10000 << (9-i));
}

double eval_A(int i, int j) { returnreturn 1.0/((i+j)*(i+j+1)/2+i+1); }

void eval_A_times_u(int N, constconst double u[], double Au[])
{

int i,j;
forfor(i=0;i<N;i++)

{
Au[i]=0;
forfor(j=0;j<N;j++) Au[i]+=eval_A(i,j)*u[j];

}
}

void eval_At_times_u(int N, constconst double u[], double Au[])
{

int i,j;
forfor(i=0;i<N;i++)

{
Au[i]=0;
forfor(j=0;j<N;j++) Au[i]+=eval_A(j,i)*u[j];

}
}

void eval_AtA_times_u(int N, constconst double u[], double AtAu[])
{ double v[N]; eval_A_times_u(N,u,v); eval_At_times_u(N,v,AtAu); }

void
Java_com_commonsware_android_tuning_weakbench_WeakBench_specnative(JNIEnv* env,

jobject
thiz)
{

int i;
int N = 1000;
double u[N],v[N],vBv,vv;
forfor(i=0;i<N;i++) u[i]=1;
forfor(i=0;i<10;i++)

{
eval_AtA_times_u(N,u,v);
eval_AtA_times_u(N,v,u);

}
vBv=vv=0;
forfor(i=0;i<N;i++) { vBv+=u[i]*v[i]; vv+=v[i]*v[i]; }

}

FOCUS ON: NDK

2298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Much of the code shown here comes from the Great Language Benchmarks Game,
specifically their nsieve and spectral-norm benchmarks. And, much of the code
looks like normal C code.

Two functions, though, serve as JNI entry points:

• Java_com_commonsware_abj_weakbench_WeakBench_nsievenative
• Java_com_commonsware_abj_weakbench_WeakBench_specnative

As will be seen later in this section, these will map to nsievenative() and
specnative() methods on a com.commonsware.abj.weakbench.WeakBench class. The
Java class (with package) and method names are converted into a function call
name, so JNI can identify the function at runtime.

The implementation of these methods do not make use of any Java objects, nor do
they return anything — they just implement the benchmark.

Writing Your Makefile(s)
To tell the NDK tools how to build your code, you will need one or two makefiles.

Android.mk

This makefile will describe the “module” (library) that you are attempting to add to
your Android project by way of the NDK. In it, you will specify the source files that
should be compiled and linked into the module. This file, by default, resides in the
root of your jni/ directory.

For example, here is jni/Android.mk from the WeakBench project:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := weakbench
LOCAL_SRC_FILES := weakbench.c

include $(BUILD_SHARED_LIBRARY)

Here, we give the module a name (weakbench) and identify the source files that go
into it (weakbench.c).

FOCUS ON: NDK

2299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://shootout.alioth.debian.org/

It is possible for you to have multiple Android.mk files, in multiple subdirectories of
jni/, to create multiple modules. There is an ANDROID-MK.TXT file in the NDK
documentation directory that provides more detail on how you can configure
complex scenarios like this one.

Application.mk

There is a separate, optional, makefile that you can have, Application.mk, in your
jni/ directory. This is where you can provide compile flags for the build process,
which CPU architectures (ARM, x86, etc.) you wish to support, and so on. By
default, if you do not have such a file, the NDK build tools will include all modules
defined in your Android.mk file(s) in your project, compiled for a generic ARM target
with software support for floating-point operations.

For basic NDK applications, skipping Application.mk is a reasonable choice.
Complex projects, or ones specifically aiming to support other CPU architectures
(e.g., ARM-v7 CPUs with hardware floating-point support), will need an
Application.mk file.

The WeakBench project has a one-line Application.mk file:

APP_ABI := all

This tells Android that we want to build the JNI code for all supported CPU
architectures. At the time of this writing, that is ARMv5, ARMv7, and x86.

Building Your Library
Any time you modify your C/C++ code, or the makefiles, you will need to build your
NDK library. To do that, from a command prompt in your project’s root directory,
run the ndk-buildndk-build script found in the NDK’s root directory. In other words, if you
set up an NDK environment variable to point to where you have the NDK installed,
execute $NDK/ndk-build$NDK/ndk-build from your project root.

This will compile and link your C/C++ code into a library (or conceivably several
libraries, if you have a complex set of Android.mk files). These will wind up in your
project’s libs/ directory, in subdirectories based on your CPU architectures
indicated by your Application.mk file.

FOCUS ON: NDK

2300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, if you run $NDK/ndk-build$NDK/ndk-build from the WeakBench project root, you will
wind up with a libs/armeabi/libweakbench.so file. The armeabi portion is because
that is the default CPU architecture that the NDK supports, and WeakBench did not
change the defaults via an Application.mk file. The “weakbench” portion of
libweakbench.so is because our LOCAL_MODULE value in our Android.mk file is
weakbench. The lib prefix is automatically added by the build tools. The .so file
extension is because our Android.mk file indicated that we are building a shared
library (via the BUILD_SHARED_LIBRARY directive), and .so is the standard file
extension for shared libraries in Linux (and, hence, Android).

Note that you will also wind up with similar .so files in libs/armeabi-v7a/ and
libs/x86 for those architectures.

You are welcome to add this to your build process, such as adding it to your Ant
build script, though it is not automatically included in the build process as defined
by Android.

Using Your Library Via JNI
Now that you have your base C/C++ code being successfully compiled by the NDK,
you need to turn your attention towards crafting the bridge between the Dalvik VM
and the C/C++ code, following in the conventions of the Java Native Interface (JNI).

This section, while explaining the various steps involved in using the JNI, is far from
a complete treatise on the subject. If you are going to spend a lot of time working
with JNI, you are encouraged to seek additional resources on this topic, such as Core
Java: Volume II, which has a chapter on JNI.

We created two C functions for accessing benchmarks:

• Java_com_commonsware_abj_weakbench_WeakBench_nsievenative
• Java_com_commonsware_abj_weakbench_WeakBench_specnative

Those, in turn, need to be defined as static methods on a
com.commonsware.abj.weakbench.WeakBench class. Moreover, these methods will
need to have the native keyword, indicating that their implementation is not found
in Java code, but in native C/C++ code. The naming convention of the C functions
allows the Dalvik runtime to identify what function names should be used for those
native method implementations.

FOCUS ON: NDK

2301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.horstmann.com/corejava.html
http://www.horstmann.com/corejava.html

However, that alone will be insufficient — we need to tell Dalvik where it can find
the library in the first place. While naming conventions are good enough for the C
function names, there is no corresponding naming convention for the library itself.

To do this, we use the loadLibrary() static method on the System class. A class
implementing native methods should call loadLibrary() in a static block, so it is
executed when the class is first referenced. For the NDK, all we need to do is supply
the name we gave the library in the Android.mk file.

Here is the portion of the WeakBench class that has the native methods and the
loadLibrary() call:

staticstatic {
System.loadLibrary("weakbench");

}

publicpublic nativenative void nsievenative();
publicpublic nativenative void specnative();

Now, we can call our nsievenative() and specnative() methods on WeakBench, just
as if they were regular Dalvik methods on a regular Dalvik class. The fact that they
are really going off and invoking C functions is purely “implementation detail” that
the consumers of those methods can be blissfully unaware of.

WeakBench itself is an Activity, invoking both Dalvik and native implementations of
these two benchmarks. It uses a series of AsyncTask objects for executing the
benchmarks on background threads, then updates TextView widgets in the UI to
show the results:

packagepackage com.commonsware.android.tuning.weakbench;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass WeakBenchWeakBench extendsextends Activity {
staticstatic {

System.loadLibrary("weakbench");
}

publicpublic nativenative void nsievenative();
publicpublic nativenative void specnative();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

FOCUS ON: NDK

2302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

newnew JavaSieveTask().execute();
}

/*
* Code after this point is adapted from the Great Computer Language
* Shootout. Copyrights are owned by whoever contributed this stuff,
* or possibly the Shootout itself, since there isn't much information
* on ownership there. Licensed under a modified BSD license.
*/

privateprivate classclass JavaSieveTaskJavaSieveTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.nsieve_java);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

int n=9;
int m=(1<<n)*10000;
boolean[] flags=newnew boolean[m+1];

nsieve(m,flags);

m=(1<<n-1)*10000;
nsieve(m,flags);

m=(1<<n-2)*10000;
nsieve(m,flags);

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JavaSpecTask().execute();

}
}

privateprivate classclass JavaSpecTaskJavaSpecTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;

FOCUS ON: NDK

2303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.spec_java);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

Approximate(1000);

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JNISieveTask().execute();

}
}

privateprivate classclass JNISieveTaskJNISieveTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.nsieve_jni);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

nsievenative();

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JNISpecTask().execute();

}

FOCUS ON: NDK

2304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

privateprivate classclass JNISpecTaskJNISpecTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.spec_jni);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

specnative();

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
}

}

privateprivate staticstatic int nsieve(int m, boolean[] isPrime) {
forfor (int i=2; i <= m; i++) isPrime[i] = truetrue;
int count = 0;

forfor (int i=2; i <= m; i++) {
ifif (isPrime[i]) {

forfor (int k=i+i; k <= m; k+=i) isPrime[k] = falsefalse;
count++;

}
}
returnreturn count;

}

privateprivate finalfinal double Approximate(int n) {
// create unit vector
double[] u = newnew double[n];
forfor (int i=0; i<n; i++) u[i] = 1;

// 20 steps of the power method
double[] v = newnew double[n];
forfor (int i=0; i<n; i++) v[i] = 0;

forfor (int i=0; i<10; i++) {
MultiplyAtAv(n,u,v);

FOCUS ON: NDK

2305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MultiplyAtAv(n,v,u);
}

// B=AtA A multiplied by A transposed
// v.Bv /(v.v) eigenvalue of v
double vBv = 0, vv = 0;
forfor (int i=0; i<n; i++) {

vBv += u[i]*v[i];
vv += v[i]*v[i];

}

returnreturn Math.sqrt(vBv/vv);
}

/* return element i,j of infinite matrix A */
privateprivate finalfinal double A(int i, int j){

returnreturn 1.0/((i+j)*(i+j+1)/2 +i+1);
}

/* multiply vector v by matrix A */
privateprivate finalfinal void MultiplyAv(int n, double[] v, double[] Av){

forfor (int i=0; i<n; i++){
Av[i] = 0;
forfor (int j=0; j<n; j++) Av[i] += A(i,j)*v[j];

}
}

/* multiply vector v by matrix A transposed */
privateprivate finalfinal void MultiplyAtv(int n, double[] v, double[] Atv){

forfor (int i=0;i<n;i++){
Atv[i] = 0;
forfor (int j=0; j<n; j++) Atv[i] += A(j,i)*v[j];

}
}

/* multiply vector v by matrix A and then by matrix A transposed */
privateprivate finalfinal void MultiplyAtAv(int n, double[] v, double[] AtAv){

double[] u = newnew double[n];
MultiplyAv(n,v,u);
MultiplyAtv(n,u,AtAv);

}
}

As with our C implementations of the benchmarks, the Java source code is derived
from the Great Language Benchmarks Game.

Building and Deploying Your Project
Given that you have done all of this, the rest is perfectly normal – you build and
deploy your Android project no differently than if you did not have any C/C++ code.

FOCUS ON: NDK

2306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://shootout.alioth.debian.org/

Your native library is embedded in your APK file, so you do not have to worry about
distributing it separately.

However, bear in mind that the more architectures you choose, the more .so files
there are and the bigger your app will be. For tiny bits of C/C++ code, like the code
in this app, this increase in file size will not be very noticeable. However, it is
something to keep in mind for more elaborate NDK applications. Moreover, there
are some ways to help reduce the impact of these extra architectures.

libhoudini and the NDK

libhoudini is a proprietary ARM translation layer for x86-powered Android devices.
It allows an app that has NDK binaries for ARM, but not x86, to still run on x86
hardware, albeit not as quickly as it would with native x86 binaries.

Given ARM’s current dominance in the Android ecosystem, libhoudini is hugely
useful for Intel and hardware vendors interested in using Intel’s mobile CPUs.
Without it, only apps that ship x86 NDK binaries would be compatible with
x86-powered devices like the Samsung Galaxy Tab 3 10.1" tablet. Some developers
probably skip x86 NDK binaries, because they are not aware of popular x86-powered
devices, or lack one for testing, or are concerned over APK size. The Play Store for
x86 would shrink substantially from the million-plus apps available to ARM devices,
to those that do not use the NDK or happen to ship x86 binaries. libhoudini makes
ARM-only NDK binaries usable on x86, giving x86-powered Android devices access
to more of the Play Store catalog.

However, it is slower. A test suite for SQLCipher for Android, run on an ASUS
MeMO Pad FHD 10, ran about three times as long when using the ARM binaries and
libhoudini, when compared to the same test run using x86 binaries. On the other
hand, supporting x86 in addition to ARM adds another 5MB to the app, on top of
the 6.5MB spent for ARM and the platform-neutral pieces. Being able to use
SQLCipher for Android without the x86 binaries might be useful, particularly for
apps bumping up against APK size limits, like the 50MB limit on the Play Store.

You may wish to do your own testing. Testing is easy enough: just temporarily move
the x86/ directory from libs/ somewhere else, then recompile and test on
libhoudini-equipped hardware. If you do not have your own libhoudini-equipped
hardware, you may be able to take advantage of services like Samsung’s Remote Test
Lab, which recently added the Galaxy Tab 3 10.1 to its lineup.

FOCUS ON: NDK

2307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.samsung.com/remotetestlab/rtlDeviceList.action
http://developer.samsung.com/remotetestlab/rtlDeviceList.action

If you have the space for it, include the x86 binaries for your NDK-compiled
libraries. This will give you maximum speed for little incremental engineering cost.
However, if space is at a premium, libhoudini may allow you to reach many of the
same x86 devices, but be sure that your app will run acceptably given the
performance overhead.

Gradle, the NDK, and Architecture Flavors

The new Gradle for Android-based build system also can help here, by making it
easier for you to create dedicated versions of your APK with just the .so files for a
single architecture. If you distribute solely through the Play Store, you can upload
each of those APK files to a single Play Store listing, with the Play Store distributing
the proper APK to the device based on its CPU. This way, you get NDK speed with
less bloat.

The chapter on advanced Gradle for Android techniques has a section covering the
use of Gradle for Android for NDK projects.

FOCUS ON: NDK

2308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Improving CPU Performance in Java

Knowing that you have CPU-related issues in your app is one thing — doing
something about it is the next challenge. In some respects, tuning an Android
application is a “one-off” job, tied to the particulars of the application and what it is
trying to accomplish. That being said, this chapter will outline some general-
purpose ways of boosting performance that may counter issues that you are running
into.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

Reduce CPU Utilization
One class of CPU-related problems come from purely sluggish code. These are the
sorts of things you will see in Traceview, for example – methods or branches of code
that seem to take an inordinately long time. These are also some of the most
difficult to have general solutions for, as often times it comes down to what the
application is trying to accomplish. However, the following sections provide
suggestions for consuming fewer CPU instructions while getting the same work
done.

These are presented in no particular order.

2309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Standard Java Optimizations

Most of your algorithm fixes will be standard Java optimizations, no different than
have been used by Java projects over the past decade and change. This section
outlines a few of them. For more, consider reading Effective Java by Joshua Bloch or
Java Performance Tuning by Jack Shirazi.

Avoid Excessive Synchronization

Few objects in java.* namespaces are intrinsically thread-safe, outside of
java.util.concurrent. Typically, you need to perform your own synchronization if
multiple threads will be accessing non-thread-safe objects. However, sometimes,
Java classes have synchronization that you neither expect nor need. Synchronization
adds unnecessary overhead.

The classic example here is StringBuffer and StringBuilder. StringBuffer was
part of Java from early on, and, for whatever reason, was written to be thread-safe —
two threads that append to the buffer will not cause any problems. However, most of
the time, you are only using the StringBuffer from one thread, meaning all that
synchronization overhead is a waste. Later on, Java added StringBuilder, with the
same basic set of methods as has StringBuffer, but without the synchronization.

Similarly, in your own code, only synchronize where it is really needed. Do not toss
the synchronized keyword around randomly, or use concurrent collections that will
only be used by one thread, etc.

Avoid Floating-Point Math

The first generation of Android devices lacked a floating-point coprocessor on the
ARM CPU package. As a result, floating-point math speed was atrocious. That is why
the Google Maps add-on for Android uses GeoPoint, with latitude and longitude in
integer microdegrees, rather than the standard Android Location class, which uses
Java double variables holding decimal degrees.

While later Android devices do have floating-point coprocessor support, that does
not mean that floating-point math is now as fast as integer math. If you find that
your code is spending lots of time on floating-point calculations, consider whether a
change in units would allow you to replace the floating-point calculations with
integer equivalents. For example, microdegrees for latitude and longitude provide

IMPROVING CPU PERFORMANCE IN JAVA

2310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adequate granularity for most maps, yet allow Google Maps to do all of its
calculations in integers.

Similarly, consider whether the full decimal accuracy of floating-point values is
really needed. While it may be physically possible to perform distance calculations
in meters with accuracy to a few decimal points, for example, in many cases the user
will not need that degree of accuracy. If so, perhaps changing to fixed-point (integer)
math can boost your performance.

Don’t Assume Built-In Algorithms are Best

Years upon years of work has gone into the implementation of various algorithms
that underlie Java methods, like searching for substrings inside of strings.

Somewhat less work has gone into the implementation of the Apache Harmony
versions of those methods, simply because the project is younger, and it is a
modified version of the Harmony implementation that you will find in Android.
While the core Android team has made many improvements to the original
Harmony implementation, those improvements may be for optimizations that do
not fit your needs (e.g., optimizing to reduce memory consumption at the expense
of CPU time).

But beyond that, there are dozens of string-matching algorithms, some of which
may be better for you depending on the string being searched and the string being
searched for. Hence, you may wish to consider applying your own searching
algorithm rather than relying on the built-in one, to boost performance. And, this
same concept may hold for other algorithms as well (e.g., sorting).

Of course, this will also increase the complexity of your application, with long-term
impacts in terms of maintenance cost. Hence, do not assume the built-in algorithms
are the worst, either — optimize those algorithms that Traceview or logging suggest
are where you are spending too much time.

Support Hardware-Accelerated Graphics

An easy “win” is to add android:hardwareAccelerated="true" to your
<application> element in the manifest. This toggles on hardware acceleration for
2D graphics, including much of the stock widget framework. For maximum
backwards compatibility, this hardware acceleration is off, but adding the
aforementioned attribute will enable it for all activities in your application.

IMPROVING CPU PERFORMANCE IN JAVA

2311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.javacodegeeks.com/2010/09/string-performance-exact-string.html

Note that this is only available starting with Android 3.0. It is safe to have the
attribute in the manifest for older Android devices, as they simply will ignore your
request.

You also should test your application thoroughly after enabling hardware
acceleration, to make sure there are no unexpected issues. For ordinary widget-based
applications, you should encounter no problems. Games or other applications that
do their own drawing might have issues. If you find that some of your code runs into
problems, you can override hardware acceleration on a per-activity basis by putting
the android:hardwareAccelerated on <activity> elements in the manifest.

Minimize IPC

Calling a method on an object in your own process is fairly inexpensive. The
overhead of the method invocation is fairly minuscule, and so the time involved is
simply however long it takes for that method to do its work.

Invoking behaviors in another process, via inter-process communication (IPC), is
considerably more expensive. Your request has to be converted into a byte array (e.g.,
via the Parcelable interface), made available to the other process, converted back
into a regular request, then executed. This adds substantial CPU overhead.

There are three basic flavors of IPC in Android:

1. “Directly” invoking a third-party application’s service’s AIDL-published
interface, to which you bound with bindService()

2. Performing operations on a content provider that is not part of your
application (i.e., supplied by the OS or a third-party application)

3. Performing other operations that, under the covers, trigger IPC

Remote Bound Service

Using a remote service is fairly obvious when you do it — it is difficult to mistake
copying the AIDL into your project and such. The proxy object generated from the
AIDL converts all your method calls on the interface into IPC operations, and this is
relatively expensive.

If you are exposing a service via AIDL, design your API to be coarse-grained. Do not
require the client to make 1,000 method invocations to accomplish something that
can be done in 1 via slightly more complex arguments and return values.

IMPROVING CPU PERFORMANCE IN JAVA

2312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are consuming a remote service, try not to get into situations where you have
to make lots of calls in a tight loop, or per row of a scrolled AdapterView, or anything
else where the overhead may become troublesome.

For example, in the CPU-Java/AIDLOverhead sample project, you will find a pair of
projects implementing the same do-nothing method in equivalent services. One
uses AIDL and is bound to remotely from a separate client application; the other is a
local service in the client application itself. The client then calls the do-nothing
method 1 million times for each of the two services. On average, on a Samsung
Galaxy Tab 10.1, 1 million calls takes around 170 seconds for the remote service, while
it takes around 170 milliseconds for the local service. Hence, the overhead of an
individual remote method invocation is small (~170 microseconds), but doing lots of
them in a loop, or as the user flings a ListView, might become noticeable.

Remote Content Provider

Using a content provider can be somewhat less obvious of a problem. Using
ContentResolver or a CursorLoader looks the same whether it is your own content
provider or someone else’s. However, you know what content providers you wrote;
anything else is probably running in another process.

As with remote services, try to aggregate operations with remote content providers,
such as:

1. Use bulkInsert() rather than lots of individual insert() calls
2. Try to avoid calling update() or delete() in a tight loop – instead, if the

content provider supports it, use a more complex “WHERE clause” to update
or delete everything at once

3. Try to get all your data back in few queries, rather than lots of little ones…
though this can then cause you issues in terms of memory consumption

Remote OS Operation

The content provider scenario is really a subset of the broader case where you
request that Android do something for you and winds up performing IPC as part of
that.

Sometimes, this is going to be obvious. If you are sending commands to a third-party
service via startService(), by definition, this will involve IPC, since the third-party

IMPROVING CPU PERFORMANCE IN JAVA

2313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/AIDLOverhead
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/AIDLOverhead

service will run in a third-party process. Try to avoid calling startService() lots of
times in close succession.

However, there are plenty of cases that are less obvious:

1. All requests to startActivity(), startService(), and sendBroadcast()
involve IPC, as it is a separate OS process that does the real work

2. Registering and unregistering a BroadcastReceiver (e.g.,
registerReceiver()) involves IPC

3. All of the “system services”, such as LocationManager, are really rich
interfaces to an AIDL-defined remote service, and so most operations on
these system services require IPC

Once again, your objective should be to minimize calls that involve IPC, particularly
where you are making those calls frequently in close succession, such as in a loop.
For example, frequently calling getLastKnownLocation() will be expensive, as that
involves IPC to a system process.

Android-Specific Java Optimizations

The way that the Dalvik VM was implemented and operates is subtly different than a
traditional Java VM. Therefore, there are some optimizations that are more
important on Android than you might find in regular desktop or server Java.

The Android developer documentation has a roster of such optimizations. Some of
the highlights include:

1. Getters and setters, while perhaps useful for encapsulation, are significantly
slower than direct field access. For simpler cases, such as ViewHolder objects
for optimizing an Adapter, consider skipping the accessor methods and just
use the fields directly.

2. Some popular method calls are replaced by hand-created assembler
instructions rather than code generated via the JIT compiler. indexOf() on
String and arraycopy() on System are two cited examples. These will run
much faster than anything you might create yourself in Java.

Reduce Time on the Main Application Thread
Another class of CPU-related problem is when your code may be efficient, but it is
occurring on the main application thread, causing your UI to react sluggishly. You

IMPROVING CPU PERFORMANCE IN JAVA

2314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/practices/design/performance.html

might have tuned your decryption algorithm as best as is mathematically possible,
but it may be that decrypting data on the main application thread simply takes too
much time. Or, perhaps StrictMode complained about some disk or network I/O
that you are performing on the main application thread.

The following sections recap some commonly-seen patterns for moving work off the
main application thread, plus a few newer options that you may have missed.

Generate Less Garbage

Most developers think of having too many allocations as being solely an issue of
heap space. That certainly has an impact, and depending on the nature of the
allocations (e.g., bitmaps), it may be the dominant issue.

However, garbage has impacts from a CPU standpoint as well. Every object you
create causes its constructor to be executed. Every object that is garbage-collected
requires CPU time both to find the object in the heap and to actually clean it up
(e.g., execute the finalizer, if any).

Worse still, on older versions of Android (e.g., Android 2.2 and down), the garbage
collector interrupts the entire process to do its work, so the more garbage you
generate, the more times you “stop the world”. Game developers have had to deal
with this since Android’s inception. To maintain a 60 FPS refresh rate, you cannot
afford any garbage collections on older devices, as a single GC run could easily take
more than the ~16ms you have per drawing pass.

As a result of all of this, game developers have had to carefully manage their own
object pools, pre-allocating a bunch of objects before game play begins, then using
and recycling those objects themselves, only allowing them to become garbage after
game play ends.

Most non-game Android applications may not have to go to quite that extreme
across the board. However, there are cases where excessive allocation may cause you
difficulty. For example, avoiding creating too much garbage is one aspect of view
recycling with AdapterView, which is covered in greater detail in the next section.

If Traceview indicates that you are spending a lot of time in garbage collection, pay
attention to your loops or things that may be invoked many times in rapid
succession (e.g., accessing data from a custom Cursor implementation that is tied to
a CursorAdapter). These are the most likely places where your own code might be
creating lots of extra objects that are not needed. Examining the heap to see what is

IMPROVING CPU PERFORMANCE IN JAVA

2315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

all being created (and eventually garbage collected) will be covered in an upcoming
chapter of the book.

View Recycling

Perhaps the best-covered Android-specific optimization is view recycling with
AdapterView.

In a nutshell, if you are extending BaseAdapter, or if you are overriding getView() in
another adapter, please make use of the View parameter supplied to getView()
(referred to here as convertView). If convertView is not null, it is one of your
previous View objects you returned from getView() before, being offered to you for
recycling purposes. Using convertView saves you from inflating or manually
constructing a fresh View every time the user scrolls, and both of those operations
are relatively expensive.

If you have been ignoring convertView because you have more than one type of View
that getView() returns, your Adapter should be overriding getViewTypeCount() and
getItemViewType(). These will allow Android to maintain separate object pools for
each type of row from your Adapter, so getView() is guaranteed to be passed a
convertView that matches the row type you are trying to create.

A somewhat more advanced optimization — caching all those findViewById()
lookups — is also possible once your row recycling is in place. Often referred to as
“the holder pattern”, you do the findViewById() calls when you inflate a new row,
then attach the findViewById() results to the row itself via some custom “holder”
object and the setTag() method on View. When you recycle the row, you can get
your “holder” back via getTag() and skip having to do the findViewById() calls
again.

Background Threads

Of course, the backbone of any strategy to move work off the main application
thread is to use background threads, in one form or fashion. You will want to apply
these in places where StrictMode complains about network or disk I/O, or places
where Traceview or logging indicate that you are taking too much time on the main
application thread during GUI processing (e.g., converting downloaded bitmap
images into Bitmap objects via BitmapFactory).

Sometimes, you will manually dictate where work should be done in the
background, either by forking threads yourself or by using AsyncTask. AsyncTask is a

IMPROVING CPU PERFORMANCE IN JAVA

2316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

nice framework, handling all of the inter-thread communication for you and neatly
packaging up the work to be done in readily understood methods. However,
AsyncTask does not fit every scenario — it is mostly designed for “transactional”
work that is known to take a modest amount of time (milliseconds to seconds) then
end. For cases where you need unbounded background processing, such as
monitoring a socket for incoming data, forking your own thread will be the better
approach.

Sometimes, you will use facilities supplied by Android to move work to the
background. For example, many activities are backed by a Cursor obtained from a
database or content provider. Classically, you would manage the cursor (via
startManagingCursor()) or otherwise arrange to refresh that Cursor in onResume(),
so when your activity returns to the foreground after having been gone for a while,
you would have fresh data. However, this pattern tends to lead to database I/O on
the main application thread, triggering complaints from StrictMode. Android 3.0
and the Android Compatibility Library offer a Loader framework designed to try to
solve the core pattern of refreshing the data, while arranging for the work to be done
asynchronously.

Asynchronous BroadcastReceiver Operations

99.44% of the time (approximately) that Android calls your code in some sort of
event handler, you are being called on the main application thread. This includes
manifest-registered BroadcastReceiver components — onReceive() is called on the
main application thread. So any work you do in onReceive() ties up that thread
(possibly impacting an activity of yours in the foreground), and if you take more
than 10 seconds, Android will terminate your BroadcastReceiver with extreme
prejudice.

Classically, manifest-registered BroadcastReceiver components only live as long as
the onReceive() call does, meaning you can do very little work in the
BroadcastReceiver itself. The typical pattern is to have it send a command to a
service via startService(), where the service “does the heavy lifting”.

Android 3.0 added a goAsync() method on BroadcastReceiver that can help a bit
here. While under-documented, it tells Android that you need more time to
complete the broadcast work, but that you can do that work on a background
thread. This does not eliminate the 10-second rule, but it does mean that the
BroadcastReceiver can do some amount of I/O without having to send a command
to a service to do it while still not tying up the main application thread.

IMPROVING CPU PERFORMANCE IN JAVA

2317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CPU-Java/GoAsync sample project demonstrates goAsync() in use, as the project
name might suggest.

Our activity’s layout consists of two Button widgets and an EditText widget:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="match_parent"
android:layout_height="match_parent">>
<EditText<EditText android:id="@+id/editText1" android:layout_width="match_parent"

android:layout_height="wrap_content">>
</EditText></EditText>
<Button<Button android:layout_width="match_parent" android:id="@+id/button1"

android:layout_height="wrap_content" android:text="@string/nonasync"
android:onClick="sendNonAsync"></Button>></Button>

<Button<Button android:layout_width="match_parent" android:id="@+id/button2"
android:layout_height="wrap_content" android:text="@string/async"
android:onClick="sendAsync"></Button>></Button>

</LinearLayout></LinearLayout>

The activity itself simply has sendAsync() and sendNonAsync() methods, each
invoking sendBroadcast() to a different BroadcastReceiver implementation:

packagepackage com.commonsware.android.tuning.goasync;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass GoAsyncActivityGoAsyncActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void sendAsync(View v) {
sendBroadcast(newnew Intent(thisthis, AsyncReceiver.class));

}

publicpublic void sendNonAsync(View v) {
sendBroadcast(newnew Intent(thisthis, NonAsyncReceiver.class));

}
}

The NonAsyncReceiver simulates doing time-consuming work in onReceive() itself:

packagepackage com.commonsware.android.tuning.goasync;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;

IMPROVING CPU PERFORMANCE IN JAVA

2318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/GoAsync
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/GoAsync

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass NonAsyncReceiverNonAsyncReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context arg0, Intent arg1) {

SystemClock.sleep(7000);
}

}

Hence, if you click the “Send Non-Async Broadcast” button, not only will the button
fail to return to its normal state for seven seconds, but the EditText will not respond
to user input either.

The AsyncReceiver, though, uses goAsync():

packagepackage com.commonsware.android.tuning.goasync;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass AsyncReceiverAsyncReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

finalfinal BroadcastReceiver.PendingResult result=goAsync();

(newnew Thread() {
publicpublic void run() {

SystemClock.sleep(7000);
result.finish();

}
}).start();

}
}

The goAsync() method returns a PendingResult, which supports a series of
methods that you might ordinarily fire on the BroadcastReceiver itself (e.g.,
abortBroadcast()) but want to do on a background thread. You need your
background thread to have access to the PendingResult — in this case, via a final
local variable. When you are done with your work, call finish() on the
PendingResult.

If you click the “Send Async Broadcast” button, even though we are still sleeping for
7 seconds, we are doing so on a background thread, and so our user interface is still
responsive.

IMPROVING CPU PERFORMANCE IN JAVA

2319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Saving SharedPreferences

The classic way to save SharedPreferences.Editor changes was via a call to
commit(). This writes the preference information to an XML file on whatever thread
you are on — another hidden source of disk I/O you might be doing on the main
application thread.

If you are on API Level 9, and you are willing to blindly try saving the changes, use
the new apply() method on SharedPreferences.Editor, which works
asynchronously.

If you need to support older versions of Android, or you really want the boolean
return value from commit(), consider doing the commit() call in an AsyncTask or
background thread.

And, of course, to support both of these, you will need to employ tricks like
conditional class loading. You can see that used for saving SharedPreferences in the
CPU-Java/PrefsPersist sample project. The activity reads in a preference, puts the
current value on the screen, then updates the preference with the help of an
AbstractPrefsPersistStrategy class and its persist() method:

packagepackage com.commonsware.android.tuning.prefs;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass PrefsPersistActivityPrefsPersistActivity extendsextends Activity {
privateprivate staticstatic finalfinal String KEY="counter";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(thisthis);

int counter=prefs.getInt(KEY, 0);

((TextView)findViewById(R.id.value)).setText(String.valueOf(counter));

AbstractPrefsPersistStrategy.persist(prefs.edit().putInt(KEY, counter+1));
}

}

IMPROVING CPU PERFORMANCE IN JAVA

2320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/PrefsPersist
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/PrefsPersist

AbstractPrefsPersistStrategy is an abstract base class that will hold a strategy
implementation, depending on Android version. On pre-Honeycomb builds, it uses
an implementation that forks a background thread to perform the commit():

packagepackage com.commonsware.android.tuning.prefs;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Buildandroid.os.Build;

abstractabstract publicpublic classclass AbstractPrefsPersistStrategyAbstractPrefsPersistStrategy {
abstractabstract void persistAsync(SharedPreferences.Editor editor);

privateprivate staticstatic finalfinal AbstractPrefsPersistStrategy INSTANCE=initImpl();

publicpublic staticstatic void persist(SharedPreferences.Editor editor) {
INSTANCE.persistAsync(editor);

}

privateprivate staticstatic AbstractPrefsPersistStrategy initImpl() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<Build.VERSION_CODES.HONEYCOMB) {
returnreturn(newnew CommitAsyncStrategy());

}

returnreturn(newnew ApplyStrategy());
}

staticstatic classclass CommitAsyncStrategyCommitAsyncStrategy extendsextends AbstractPrefsPersistStrategy {
@Override
void persistAsync(finalfinal SharedPreferences.Editor editor) {

(newnew Thread() {
@Override
publicpublic void run() {

editor.commit();
}

}).start();
}

}
}

On Honeycomb and higher, it uses a separate strategy class that uses the new
apply() method:

packagepackage com.commonsware.android.tuning.prefs;

importimport android.content.SharedPreferences.Editorandroid.content.SharedPreferences.Editor;

publicpublic classclass ApplyStrategyApplyStrategy extendsextends AbstractPrefsPersistStrategy {

@Override
void persistAsync(Editor editor) {

IMPROVING CPU PERFORMANCE IN JAVA

2321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

editor.apply();
}

}

By separating the Honeycomb-specific code out into a separate class, we can avoid
loading it on older devices and encountering the dreaded VerifyError.

Whether using the built-in apply() method is worth dealing with multiple
strategies, versus simply calling commit() on a background thread, is up to you.

Improve Throughput and Responsiveness
Being efficient and doing work on the proper thread may still not be enough. It
could be that your work is not consuming excessive CPU time, but is taking too long
in “wall clock time” (e.g., the user sits waiting too long at a ProgressDialog). Or, it
could be that your work, while efficient and in the background, is causing difficulty
for foreground operations.

The following sections outline some common problems and solutions in this area.

Minimize Disk Writes

Earlier in this book, we emphasized moving disk writes off to background threads.

Even better is to get rid of some of the disk writes entirely.

A big culprit here comes in the form of database operations. By default, each
insert(), update(), or delete(), or any execSQL() invocation that modifies data,
will occur in its own transaction. Each transaction involves a set of disk writes. Many
times, this is not a problem. But, if you are doing a lot of these – such as importing
records from a CSV file — hundreds or thousands of transactions will mean
thousands of individual disk writes, and that can take some time. You may wish to
wrap those operations in your own transaction, using methods like
beginTransaction(), simply to reduce the number of transactions and, therefore,
disk writes.

If you are doing your own disk I/O beyond databases, you may encounter similar
sorts of issues. Overall, it is better to do a few larger writes than lots of little ones.

IMPROVING CPU PERFORMANCE IN JAVA

2322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Set Thread Priority

Threads you fork, by default, run at a default priority: THREAD_PRIORITY_DEFAULT as
defined on the Process class. This is a lower priority than the main application
thread (THREAD_PRIORITY_DISPLAY).

Threads you use via AsyncTask run at a lower priority
(THREAD_PRIORITY_BACKGROUND). If you fork your own threads, then, you might wish
to consider moving them to a lower priority as well, to affect how much time they
get compared to the main application thread. You can do this via
setThreadPriority() on the Process class.

The lowest possible priority, THREAD_PRIORITY_LOWEST, is described as “only for
those who really, really don’t want to run if anything else is happening”. You might
use this for “idle-time processing”, but bear in mind that the thread will be paused a
lot to allow other threads to run.

Lower-priority threads will help ensure that your background work does not affect
your foreground UI. Processes themselves are put in a lower-priority class as they
move to the background (e.g., you have no activities visible), which further reduces
the amount of CPU time you will be using at any given moment.

Also, note that IntentService uses a thread at default (not background) priority —
you may wish to drop the priority of this thread to something that will be lower than
your main application thread, to minimize how much CPU time the IntentService
steals from your UI.

Do the Work Some Other Time

Just because you could do the work now does not mean you should do the work
now. Perhaps a better answer is to do the work later, or do part of the work now and
part of the work later.

For example, suppose that you have your own database of points of interest for your
custom map application. Periodically, you publish a new database on your Web site,
which your Android app should download. Odds are decent that the user is not in
desperate need for this new database right away. In fact, the CPU time and disk I/O
time to download and save the database might incrementally interfere with the
foreground application, despite your best efforts.

IMPROVING CPU PERFORMANCE IN JAVA

2323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, not only should you check for and download the database when the
user is unlikely to be using the device (e.g., before dawn), but you should check
whether the screen is on via isScreenOn() on PowerManager, and delay the work to
sometime when the screen is off. For example, you could have AlarmManager set up
to have your code check for updates every 24 hours at 4am. If, at 4am, the screen is
on, your code could skip the download and wait until tomorrow, or skip the
download and add a one-shot alarm to wake you up in 30 minutes, in hopes that the
user will no longer be using the device.

At the same time, you may wish to consider having a “refresh” menu choice
somewhere, for when the user specifically wants you to go get the update (if
available) now, for whatever reason.

IMPROVING CPU PERFORMANCE IN JAVA

2324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding and Eliminating Jank

A user interface is considered “janky” if it stutters or otherwise fails to operate
smoothly, particularly during animated effects like scrolling. Finding and
eliminating the causes of janky behavior (“jank”) is part science, part art, and part
throwing darts at a dartboard.

This chapter will outline some techniques for identifying and removing jank from a
user interface. The steps shown here originated in a blog post by Google’s Romain
Guy, with a few additional twists and turns due to the different nature of the
particular case being studied. Mr. Guy’s blog post is essential reading for all
advanced Android developers, and the author is deeply indebted to Mr. Guy for his
work in this area.

Prerequisites
The only hard prerequisite for this chapter is having read the core chapters and the
chapter on finding CPU bottlenecks.

That being said, having read the chapter on animators would help understand
portions of this chapter a bit better.

The Case: ThreePaneDemoBC
In the chapter on animators, we examined an implementation of the Gmail-style
three-pane layout with animated transitions (a.k.a., “The Three-Fragment
Problem”). The implementation shown there originated with a StackOverflow
question with the solution presented in this book offered as an answer.

2325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.curious-creature.org/docs/android-performance-case-study-1.html
http://www.curious-creature.org/docs/android-performance-case-study-1.html
http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://stackoverflow.com/a/12318422/115145

A commenter on that answer pointed out that he detected some stutter, even on
decent hardware.

This chapter reviews the steps that were taken to determine if we really are doing
things incorrectly, what specifically we are doing wrong, and what can be done to fix
it.

Are We Janky?
In the eyes of this book’s author, the three-pane implementation presented in the
chapter on animators was perfectly reasonable on good hardware.

There are two lessons to take from this:

1. It is better to come up with an objective definition for “jank” and test to see
if your code meets that definition at various points

2. The author of this book is very tolerant of janky user interfaces

The results shown in the chapter on CPU measurement for the gfxinfo and
systrace tools comes from the three-pane demo code. The gfxinfo and the
systrace results both point to the three-pane demo spending too much time doing
work and therefore dropping some number of frames. This lines up with the visual
report, and indicates that we have some work to do to try to improve matters.

Finding the Source of the Jank
Just because we know that we are janky does not mean that we have any idea what
to do about it. We need to conduct some further analysis to determine where,
exactly, our jank is coming from.

Traceview

One thing that we can do to help further refine the source of our trouble is to use
Traceview. As outlined in the section on Traceview, Traceview reports how many
calls were made of various methods in our code (and in the framework code) and
how much time was spent there.

Here are some of the results from a Traceview run on the three-pane demo on a
Nexus 7:

FINDING AND ELIMINATING JANK

2326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario#comment20491656_12318422

Figure 611: Traceview of Three-Pane Demo

We see that 88.9% of our CPU time is spent in doFrame() on Choreographer and the
calls triggered from it. doFrame() is a private method which, as the name suggests,
performs the drawing, processing, and executing of a single frame’s worth of
rendering. More importantly, we see that doFrame() was called 68 times during our
test run, meaning that our UI changed 68 times during the ~3 seconds of activity
during our trace.

Further down the table, we see that layout() on ViewGroup was called 26 times
directly (and 248 more times via recursion), contributing about 25% of the time
consumed by doFrame(). Since layout() is called on less than half of the doFrame()
calls, the time consumed by layout() makes up a fairly significant portion of the
doFrame() time during those 26 frames.

More importantly, layout() is something that we trigger. It implies that we have
made some change to our UI content that requires a layout pass of some ViewGroup.

Having a layout pass on occasion is perfectly normal, particularly in response to user
input. A layout() might be triggered by the user tapping on a row in one of our
ListViews, for example. But we are not doing 26 user input events in our test — all
we are doing is tapping one time each on a pair of ListView rows, then pressing the

FINDING AND ELIMINATING JANK

2327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BACK button. This implies that something else in our code is causing layout() to be
needed.

Unfortunately, at this point, Traceview does not help much, because the calls to
layout() are asynchronous with respect to our own code, so it will not be all that
obvious where the extra calls are coming from. This is where we need some expert
help, as we will see later in this chapter.

Overdraw

Another common source of jank is overdraw. Overdraw refers to the act of painting
the same pixel several times, due to overlapping components. For example:

• The activity window itself has a background
• You have a container that fills the activity’s content, such as a ListView,

which has a background
• You have children in that container with backgrounds (row), who have their

own children with backgrounds and, eventually, content (widgets like
ImageView and TextView)

Places where there is overlap, the OS might set the color of a pixel several times per
frame, wasting time.

The easiest way to track down overdraw is to use the “Show GPU overdraw” option
in the Developer Options portion of the Settings app:

FINDING AND ELIMINATING JANK

2328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 612: Nexus 7 Developer Options, with “Show GPU overdraw”

This option is only available on Android 4.2 and higher.

When you enable this option, then restart your app’s process (if it was already
running), Android will shade pixels that are overdrawn:

• Blue for pixels that are drawn twice
• Green for pixels that are drawn three times
• Pink for pixels that are drawn four times
• Red for pixels that are drawn five or more times

In short: pink and red are bad. Green and blue are OK, though if you have large
patches of either shade, you might consider trying to see if there’s a way to get rid of
the overdraw.

Of course, the fact that these are shades applied to existing pixel colors may make it
a bit difficult to tell exactly where the overdraw is occurring. For example, a red
portion of your UI might be red from overdraw… or it might be red because you
made it red. Temporarily changing your color scheme to something else (e.g.,
yellow) will help distinguish what is overdraw and what is just the natural UI
coloration.

FINDING AND ELIMINATING JANK

2329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you enable this option on a Nexus 7 and run the three-pane demo, you will see
very little blue or green (beyond the normal blue of the activated state of our
ListView rows), and virtually no red:

Figure 613: Three-Pane Demo, As Initially Launched, Showing Overdraw

FINDING AND ELIMINATING JANK

2330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 614: Three-Pane Demo, Left and Middle Panes, Showing Overdraw

Figure 615: Three-Pane Demo, Middle and Right Panes, Showing Overdraw

FINDING AND ELIMINATING JANK

2331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 616: Three-Pane Demo, Left and Middle Panes Via BACK, Showing Overdraw

On the other hand, bringing up the Contacts app on the same Nexus 7 shows
significantly more overdraw:

FINDING AND ELIMINATING JANK

2332

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 617: Contacts App, Showing Overdraw

The good news is that our app is not suffering performance problems due to
overdraw.

The bad news is that the Contacts app is.

The good news is that if you are reading this, you are probably not responsible for
maintaining the Contacts app.

The Contacts app’s major problems come from the contact photos, or placeholders
as seen here. Either the ImageView has a background, or the ImageView fills some
container with a background. For example, the ImageView might be in some
container with a background to provide a bevel effect around the image. Making the
portion of the background that is behind the ImageView be transparent will
eliminate the overdraw.

Note: some GPU architectures can automatically fix overdraw in select places, while
others cannot. Notably, the Tegra 3 cannot. Hence, the Tegra 3 is a good test
platform for using this overdraw-detection feature of Android.

FINDING AND ELIMINATING JANK

2333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Extraneous Views

Another related source of jank is having too many extraneous views. Each widget
and container contributes to the cost of drawing the overall UI, so having extraneous
views adds overhead.

Perhaps the most common scenario for extraneous views is the single-child
container. If a container will only ever hold one child, perhaps you can get rid of that
container. Not only will this speed up execution at runtime, but it can help avoid
running out of stack space.

One likely way to find these extraneous views is to bring up your user interface in
Hierarchy View on an emulator (or possibly on a device by using ViewServer). In
particular, single-child containers are fairly obvious — look for bubbles that have
just one child bubble on the right.

There are two such cases in the UI for our three-pane demo, though neither are our
fault.

Figure 618: Single-Child FrameLayout in Three-Pane Demo, from Hierarchy View

Here, we have a FrameLayout holding onto just one child, our ThreePaneLayout
custom view. We set up ThreePaneLayout as being our activity’s content view. The
“content view” of an activity is poured into a FrameLayout, supplied by the Android
framework — that is the FrameLayout seen in Hierarchy View. We have no good way
to get rid of this FrameLayout. Fortunately, FrameLayout is a very cheap container, in
terms of runtime execution speed.

FINDING AND ELIMINATING JANK

2334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 619: More Single-Child Containers in Three-Pane Demo, from Hierarchy View

Here, we see that our left and middle FrameLayout containers, for our left and
middle panes, each contain one child, a NoSaveStateFrameLayout, which in turn
each hold one child, a FrameLayout. These containers are added by ListFragment,
not directly by our code. A ListFragment is surprisingly complex, adding several
widgets and containers beyond the ListView itself:

FINDING AND ELIMINATING JANK

2335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 620: Contents of a ListFragment, from Hierarchy View

Short of writing our own fragment for holding a ListView, there is nothing we can
do about these extraneous views.

Conclusion: Too Many layout() Calls?

Given that overdraw does not seem to be a problem and that we have few extraneous
views under our control, it would seem that perhaps we should return our attention
to the extra layout() calls. While trying to get rid of the ListFragment extraneous
views would make those layout() calls incrementally cheaper, we will get more
value by getting rid of the unnecessary calls in the first place, if indeed they are
unnecessary.

Where Things Went Wrong
Of course, it doesn’t hurt to call in an expert, to try to confirm exactly what is going
on.

Chet Haase — Google engineer on Android, celebrated book author, and part-time
comedian – chimed in with an answer to a StackOverflow question about this three-

FINDING AND ELIMINATING JANK

2336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.amazon.com/When-King-II-ebook/dp/B00AL7780C
http://stackoverflow.com/a/14780019/115145

pane animation, asked by the person who commented about the dropped frames on
the original StackOverflow question.

The key statement from his answer was:

Sliding things around is fine (translationX/Y), fading things in/out is good
(alpha), but actually laying things out on every frame? Just say no.

Specifically, he is referring to our use of ObjectAnimator to change the width of the
middle pane as we show and hide the right pane. Each time we change the width of
the middle pane, we trigger a layout() call, to reposition the child widgets within
that pane as needed. Our animations are adding ~20 layout() calls, introducing
overhead that is pushing us over the per-frame limit on the Nexus 7.

Removing the Jank
To remove the jank, we need to remove the ObjectAnimator changing the width of
the middle pane on the fly. You can see the results of this in the Jank/ThreePaneBC
sample app.

Now, our showLeft() and hideLeft() methods immediately change the width of the
middle pane, rather than arranging its animation:

publicpublic void hideLeft() {
ifif (leftWidth == -1) {

leftWidth=left.getWidth();
middleWidthNormal=middle.getWidth();
resetWidget(left, leftWidth);
resetWidget(middle, middleWidthNormal);
resetWidget(right, middleWidthNormal);
requestLayout();

}

translateWidgets(-1 * leftWidth, left, middle, right);
setMiddleWidth(leftWidth);

}

publicpublic void showLeft() {
translateWidgets(leftWidth, left, middle, right);
setMiddleWidth(middleWidthNormal);

}

privateprivate void setMiddleWidth(int value) {
middle.getLayoutParams().width=value;
requestLayout();

}

FINDING AND ELIMINATING JANK

2337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Jank/ThreePaneBC
http://github.com/commonsguy/cw-omnibus/tree/master/Jank/ThreePaneBC

This does not provide nearly as good of a UI as the original. There are probably ways
to improve upon the revised jank-free implementation. Lacking that, it is up to you
to decide if the amount of jank found in the original implementation is worth the
improved animation or not.

What we can say is that the revised solution does reduce the jank, as seen in this
gfxinfo output:

FINDING AND ELIMINATING JANK

2338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Bandwidth

As anyone who owned an Apple Newton or Palm V PDA back in the 1990’s knows,
handheld devices have been around for quite some time. For a very long time, they
were a niche product, associated with geeks, nerds, and the occasional business
executive.

Internet access changed all of that.

Blackberry for enterprise messaging — an outgrowth of its original two-way paging
approach — blazed part of the trail, but the concept “crossed the chasm” to ordinary
people with the advent of the iPhone, Android devices, and similar equipment.

Therefore, it is not terribly surprising when Android developers want to add Internet
capabilities to their apps. To the contrary, it is almost unusual when you encounter
an app that does not want to use the Internet for something or another.

However, mobile Internet access inherits all of the classic problems of Internet
access (e.g., “server not found”) and adds new and exciting challenges, all of which
can leave a developer with an app that has performance issues.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

2339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You’re Using Too Much of the Slow Stuff
To paraphrase America’s Founding Fathers, “all Internet connections are not created
equal”.

One form of inequality is speed. Different classes of connection have different
theoretical upper bounds. WiMAX and other “4G” connections are theoretically
faster than 3G connections, which are theoretically faster than 2G or EDGE
connections. WiFi — typically 802.11g in today’s devices — is theoretically
ridiculously fast though it is typically limited by the ISP connection, and ISP
connections can run the gamut from really fast to merely good.

However, “theoretical” bounds tend to run afoul of reality. There are plenty of places
where high-speed mobile data connections are non-existent, despite what the
carriers’ coverage maps claim. 2G mobile data works, but is not especially speedy.
This layers on top of the typical Internet congestion issues, along with typically
transitory problems (e.g., trying to get connectivity while attending a technology
conference keynote presentation).

Hence, what runs quickly in the lab may run much more slowly in users’ hands.

If you followed the instructions in previous chapters on CPU bottlenecks, the
limited bandwidth will not cause your UI to become “janky”, in that it will be
responsive to touches and taps. However, poor connectivity will mean that you are
simply slow to respond to user requests. For example, clicking the “check for new
email” menu button has no immediate effect. If you feel that you need a splash
screen or progress indicator to tell the user that “we are really checking for new
email, honest”, then you know that your Internet access is slower than is ideal.

Obviously, some of this is unavoidable. However, the objective of the chapters in this
part of the book is to give you an idea of ways to reduce your bandwidth
consumption, making those delays be that much less annoying for your users.

You’re Using Too Much of the Expensive Stuff
Mobile data tends to come with more strings attached than does WiFi.

In the US, it used to be that mobile data connections included unlimited usage.
Now, at best, a mobile data plan has “unlimited” usage for a curious definition of the
term “unlimited”. More and more carriers are moving towards a hard cap — go above

ISSUES WITH BANDWIDTH

2340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the cap, and you either cannot use more bandwidth, have your speeds curtailed, or
pay significantly for additional bandwidth.

Outside of the US, the “pay significantly for bandwidth” approach is fairly typical.
So-called “metered” data plans simply charge you such-and-so per MB or GB of
bandwidth.

And, to top it off, roaming almost always is a metered plan. So, a US resident
traveling overseas, even with a SIM and phone that supports international usage,
would pay a ridiculous sum for bandwidth. Stories of phone bills in the tens of
thousands of dollars abound, where people simply used their phone as they
normally would when they were outside of their home network.

Hence, if you use a fair bit of bandwidth, it would be really nice if you offered users
means to consume less of it when they are on mobile data compared to WiFi (which
is typically unmetered). You could elect to poll your server less frequently, for
example, giving the users the ability to specify separate polling periods depending
on which type of connection they have.

And, of course, there are other “costs” for using bandwidth besides direct monetary
costs. For example, downloading data over a slower mobile data connection may
consume more power than downloading the same data over WiFi — while the WiFi
radio might consume additional power, the time difference might account for more
power consumption, if the CPU could be powered down for the rest of that time.

These chapters will show you how you can react to changes in connectivity and
approaches for how to use that information to reduce costs for the user.

You’re Using Too Much of Somebody Else’s Stuff
It is easy for developers to think that they alone are using a user’s device. Alas, this is
infrequently the case, particularly when it comes to background Internet access.

While your application is busily downloading stuff, some other application might be
busily downloading stuff. In principle, this should not be an issue, as multiple
applications can access the Internet simultaneously. However, bandwidth can
become an issue. If you are in the background, and the other application is in the
foreground, the user might notice that bandwidth is an issue. For example, users
might be unhappy if your downloads are impeding their ability to watch streaming
video, or play their favorite Android-based MMORPG, or whatever.

ISSUES WITH BANDWIDTH

2341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A polite Android application will test to see whether the foreground application is
heavily using the Internet and will curtail its own Internet use while that is going on.
This chapter will help you learn how to make that determination and how to
respond.

You’re Using Too Much… And There Is None
Not only might location dictate how much bandwidth you have, but whether you
have any bandwidth at all.

While some people think that the entire planet has connectivity, reality once again
dictates otherwise. Major metropolitan areas have connectivity… at least, so long as
the carriers have not melted down due to overuse, as AT&T tended to do during the
early months of the iPhone Invasion. Outlying areas are much more hit-or-miss.
Voice is sometimes a challenge, let alone data. And it only seems as though there is a
Starbucks every 100 meters, which might actually provide blanket WiFi coverage.

Then, of course, there are planes (most do not offer in-flight WiFi at this time),
international travel without an international-capable phone plan, and so on.

Some Android applications have the potential to still offer near-complete
functionality despite this, with a bit of user assistance. For example, Google Maps for
Android now has an offline caching feature, which will download data for a 10-mile
radius from a given point, for use while the device is otherwise offline.

Here, the issue becomes less one of bandwidth (other than detecting that you have
no connection) and more one of caching and storage. The space-related issues that
these techniques can raise will be covered elsewhere in this book.

ISSUES WITH BANDWIDTH

2342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: TrafficStats

To be able to have more intelligent code — code that can adapt to Internet activity
on the device — Android offers the TrafficStats class. This class really is a gateway
to a block of native code that reports on traffic usage for the entire device and per-
application, for both received and transmitted data. This chapter will examine how
you can access TrafficStats and interpret its data.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

TrafficStats Basics
The TrafficStats class is not designed to be instantiated — you will not be
invoking a constructor by calling new
TrafficStats() or something like that. Rather, TrafficStats is merely a collection
of static methods, mapped to native code, that provide access to point-in-time traffic
values. No special permissions are needed to use any of these methods. Most of the
methods were added in API Level 8 and therefore should be callable on most
Android devices in use today.

Device Statistics

If you are interested in overall traffic, you will probably care most about the
getTotalRxBytes() and getTotalTxBytes() on TrafficStats. These methods
return received and transmitted traffic, respectively, measured in bytes.

2343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You also have:

1. getTotalRxPackets() and getTotalTxPackets(), if for your case measuring
IP packets is a better measure than bytes

2. getMobileRxBytes() and getMobileTxBytes(), which return the traffic
going over mobile data (also included in the total)

3. getMobileRxPackets() and getMobileTxPackets(), which are the packet
counts for the mobile data connection

Per-Application Statistics

Technically, TrafficStats does not provide per-application traffic statistics. Rather,
it provides per-UID traffic statistics. In most cases, the UID (user ID) of an
application is unique, and therefore per-UID statistics map to per-application
statistics. However, it is possible for multiple applications to share a single UID (e.g.,
via the android:sharedUserId manifest attribute) — in this case, TrafficStats
would appear to provide traffic data for all applications sharing that UID.

There are per-UID equivalents of the first four methods listed in the previous
section, replacing “Total” with “Uid”. So, to find out overall traffic for an application,
you could use getUidRxBytes() and getUidTxBytes(). However, these are the only
two UID-specific methods that were implemented in API Level 8. Equivalents of the
others (e.g., getUidRxPackets()) were added in API Level 12. API Level 12 also added
some TCP-specific methods (e.g., getUidTcpTxBytes()). Note, though, that the
mobile-only method are only available at the device level; there are no UID-specific
versions of those methods.

Interpreting the Results

You will get one of two types of return value from these methods.

In theory, you will get the value the method calls for (e.g., number of bytes, number
of packets). The documentation does not state the time period for that value, so
while it is possible that it is really “number of bytes since the device was booted”, we
do not know that for certain. Hence, TrafficStats results should be used for
comparison purposes, either comparing the same value over time or comparing
multiple values at the same time. For example, to measure bandwidth consumption,
you will need to record the TrafficStats values at one point in time, then again
later — the difference between them represents the consumed bandwidth during
that period of time.

FOCUS ON: TRAFFICSTATS

2344

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In practice, while the “total” methods seem reliable, the per-UID methods often
return -1. The official explanation for this is that the particular traffic metric is
unavailable on that device, and this does explain some of the -1 values that are
returned. For example, a Nexus One running Android 2.3 returns -1 for all the per-
UID methods, while a Nexus S running Android 2.3 will return a positive value for
some UIDs. It is unclear what the other -1 values mean. Two possible meanings are:

1. There has been no traffic of that type on that UID since boot, or
2. You do not have permission to know the traffic of that type on that UID

Hence, the per-UID values are a bit “hit or miss”, which you will need to take into
account.

Example: TrafficMonitor
To illustrate the use of TrafficStats methods and analysis, let us walk through the
code associated with the Bandwidth/TrafficMonitor sample application. This is a
simple activity that records a snapshot of the current traffic levels on startup, then
again whenever you tap a button. On-screen, it will display the current value,
previous value, and difference (“delta”) between them. In LogCat, it will dump the
same information on a per-UID basis.

TrafficRecord

It would have been nice if TrafficStats were indeed an object that you would
instantiate, that captured the traffic values at that moment in time. Alas, that is not
how it was written, so we need to do that ourselves. In the TrafficMonitor project,
this job is delegated to a TrafficRecord class:

packagepackage com.commonsware.android.tuning.traffic;

importimport android.net.TrafficStatsandroid.net.TrafficStats;

classclass TrafficRecordTrafficRecord {
long tx=0;
long rx=0;
String tag=nullnull;

TrafficRecord() {
tx=TrafficStats.getTotalTxBytes();
rx=TrafficStats.getTotalRxBytes();

}

TrafficRecord(int uid, String tag) {

FOCUS ON: TRAFFICSTATS

2345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Bandwidth/TrafficMonitor
http://github.com/commonsguy/cw-omnibus/tree/master/Bandwidth/TrafficMonitor

tx=TrafficStats.getUidTxBytes(uid);
rx=TrafficStats.getUidRxBytes(uid);
thisthis.tag=tag;

}
}

There are two separate constructors, one for the total case and one for the per-UID
case. The total case just logs getTotalRxBytes() and getTotalTxBytes(), while the
per-UID case uses getUidRxBytes() and getUidTxBytes(). The per-UID case also
stores a “tag”, which is simply a String identifying the UID for this record — as you
will see, TrafficMonitor uses this for a package name.

TrafficSnapshot

An individual TrafficRecord, though, is insufficient to completely capture the
traffic figures at a moment in time. We need a collection of TrafficRecord objects,
one for the device (“total”) and one per running UID. The work to collect all of that
is handled by a TrafficSnapshot class:

packagepackage com.commonsware.android.tuning.traffic;

importimport java.util.HashMapjava.util.HashMap;
importimport android.content.Contextandroid.content.Context;
importimport android.content.pm.ApplicationInfoandroid.content.pm.ApplicationInfo;

classclass TrafficSnapshotTrafficSnapshot {
TrafficRecord device=nullnull;
HashMap<Integer, TrafficRecord> apps=

newnew HashMap<Integer, TrafficRecord>();

TrafficSnapshot(Context ctxt) {
device=newnew TrafficRecord();

HashMap<Integer, String> appNames=newnew HashMap<Integer, String>();

forfor (ApplicationInfo app :
ctxt.getPackageManager().getInstalledApplications(0)) {

appNames.put(app.uid, app.packageName);
}

forfor (Integer uid : appNames.keySet()) {
apps.put(uid, newnew TrafficRecord(uid, appNames.get(uid)));

}
}

}

The constructor uses PackageManager to iterate over all installed applications and
builds up a HashMap, mapping the UID to a TrafficRecord for that UID, tagged with

FOCUS ON: TRAFFICSTATS

2346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the application package name (e.g., com.commonsware.android.tuning.traffic). It
also creates one TrafficRecord for the device as a whole.

TrafficMonitorActivity

TrafficMonitorActivity is what creates and uses TrafficSnapshot objects. This is
a fairly conventional activity with a TableLayout-based UI:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/table"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<Button<Button
android:onClick="takeSnapshot"
android:text="Take Snapshot"/>/>

<TableRow><TableRow>

<TextView<TextView
android:layout_column="1"
android:layout_gravity="right"
android:text="@string/received"
android:textSize="20sp"/>/>

<TextView<TextView
android:layout_gravity="right"
android:text="@string/sent"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/latest"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/latest_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/latest_tx"
android:gravity="right"
android:textSize="20sp"/>/>

FOCUS ON: TRAFFICSTATS

2347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/previous"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/previous_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/previous_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/delta"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/delta_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/delta_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

The activity implementation consists of three methods. There is your typical
onCreate() implementation, where we initialize the UI, get our hands on the
TextView widgets for output, and take the initial snapshot:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

FOCUS ON: TRAFFICSTATS

2348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setContentView(R.layout.main);

latest_rx=(TextView)findViewById(R.id.latest_rx);
latest_tx=(TextView)findViewById(R.id.latest_tx);
previous_rx=(TextView)findViewById(R.id.previous_rx);
previous_tx=(TextView)findViewById(R.id.previous_tx);
delta_rx=(TextView)findViewById(R.id.delta_rx);
delta_tx=(TextView)findViewById(R.id.delta_tx);

takeSnapshot(nullnull);
}

The takeSnapshot() method creates a new TrafficSnapshot (held in a latest data
member) after moving the last TrafficSnapshot to a previous data member. It then
updates the TextView widgets for the latest data and, if the previous data member
is not null, also for the previous snapshot and the difference between them. This
alone is sufficient to update the UI, but we also want to log per-UID data to LogCat:

publicpublic void takeSnapshot(View v) {
previous=latest;
latest=newnew TrafficSnapshot(thisthis);

latest_rx.setText(String.valueOf(latest.device.rx));
latest_tx.setText(String.valueOf(latest.device.tx));

ifif (previous!=nullnull) {
previous_rx.setText(String.valueOf(previous.device.rx));
previous_tx.setText(String.valueOf(previous.device.tx));

delta_rx.setText(String.valueOf(latest.device.rx-previous.device.rx));
delta_tx.setText(String.valueOf(latest.device.tx-previous.device.tx));

}

ArrayList<String> log=newnew ArrayList<String>();
HashSet<Integer> intersection=newnew HashSet<Integer>(latest.apps.keySet());

ifif (previous!=nullnull) {
intersection.retainAll(previous.apps.keySet());

}

forfor (Integer uid : intersection) {
TrafficRecord latest_rec=latest.apps.get(uid);
TrafficRecord previous_rec=

(previous==nullnull ? nullnull : previous.apps.get(uid));

emitLog(latest_rec.tag, latest_rec, previous_rec, log);
}

Collections.sort(log);

forfor (String row : log) {
Log.d("TrafficMonitor", row);

FOCUS ON: TRAFFICSTATS

2349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

One possible problem with the snapshot system is that the process list may change
between snapshots. One simple way to address this is to only log to LogCat data
where the application’s UID exists in both the previous and latest snapshots.
Hence, takeSnapshot() uses a HashSet and retainAll() to determine which UIDs
exist in both snapshots. For each of those, we call an emitLog() method to record
the data to an ArrayList, which is then sorted and dumped to LogCat.

The emitLog() method builds up a line with the package name and bandwidth
consumption information, assuming that there is bandwidth to report (i.e., we have
a value other than -1):

privateprivate void emitLog(CharSequence name, TrafficRecord latest_rec,
TrafficRecord previous_rec,
ArrayList<String> rows) {

ifif (latest_rec.rx>-1 || latest_rec.tx>-1) {
StringBuilder buf=newnew StringBuilder(name);

buf.append("=");
buf.append(String.valueOf(latest_rec.rx));
buf.append(" received");

ifif (previous_rec!=nullnull) {
buf.append(" (delta=");
buf.append(String.valueOf(latest_rec.rx-previous_rec.rx));
buf.append(")");

}

buf.append(", ");
buf.append(String.valueOf(latest_rec.tx));
buf.append(" sent");

ifif (previous_rec!=nullnull) {
buf.append(" (delta=");
buf.append(String.valueOf(latest_rec.tx-previous_rec.tx));
buf.append(")");

}

rows.add(buf.toString());
}

}

Since the lines created by emitLog() start with the package name, and since we are
sorting those before dumping them to LogCat, they appear in LogCat in sorted order
by package name.

FOCUS ON: TRAFFICSTATS

2350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using TrafficMonitor

Running the activity gives you the initial received and sent counts (in bytes):

Figure 621: The TrafficMonitor sample application, as initially launched

Tapping Take Snapshot grabs a second snapshot and compares the two:

FOCUS ON: TRAFFICSTATS

2351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 622: The TrafficMonitor sample application, after Take Snapshot was clicked

Also, LogCat will show how much was used by various apps:

08-15 14:05:10.128: DEBUG/TrafficMonitor(10283):
com.amblingbooks.bookplayerpro=880 received (delta=0), 3200 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.browser=19045241
received (delta=0), 2375847 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283):
com.android.providers.downloads=27884469 received (delta=0), 9126 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283):
com.android.providers.telephony=2328 received (delta=0), 4912 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.vending=3271839
received (delta=0), 260626 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.coair.mobile.android=887425
received (delta=0), 81366 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.commonsware.android.browser1=262553 received (delta=0), 7286 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.dropbox.android=6189833
received (delta=0), 4298 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.evernote=3471398 received
(delta=0), 742178 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.apps.genie.geniewidget=358816 received (delta=0), 17775 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.apps.googlevoice=103255 received (delta=0), 35559 sent
(delta=0)

FOCUS ON: TRAFFICSTATS

2352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.apps.maps=28440829 received (delta=0), 1230867 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.backup=51320
received (delta=0), 49041 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.gm=10915084
received (delta=0), 14428803 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.googlequicksearchbox=37817 received (delta=0), 12554 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.syncadapters.contacts=1955990 received (delta=0), 714893 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.voicesearch=67948 received (delta=0), 121908 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.youtube=3128
received (delta=0), 2792 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.howcast.android.app=2250407
received (delta=0), 26727 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.rememberthemilk.MobileRTM=6836605 received (delta=0), 2902904 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.tripit=109499 received
(delta=0), 50060 sent (delta=0)

Other Ways to Employ TrafficStats
Of course, there are more ways you could use TrafficStats than simply having an
activity to report them on a button click. TrafficMonitor is merely a demonstration
of using the class and providing a lightweight way to get value out of that data.
Depending upon your application’s operations, though, you may wish to consider
using TrafficStats in other ways, in your production code or in your test suites.

In Production

If your app is a bandwidth monitor, the need to use TrafficStats is obvious.
However, even if your app does something else, you may wish to use TrafficStats
to understand what is going on in terms of Internet access within your app or on the
device as a whole.

For example, you might want to consider bandwidth consumption to be a metric
worthy of including in the rest of the “analytics” you generate from your app. If you
are using services like Flurry to monitor which activities get used and so on, you
might consider also logging the amount of bandwidth your application consumes.
This not only gives you much more “real world” data than you will be able to collect
on your own, but it may give you ideas of how users are using your application
beyond what the rest of your metrics are reporting.

FOCUS ON: TRAFFICSTATS

2353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.flurry.com/

Another possibility would be to include your app’s bandwidth consumption in error
logs reported via libraries like ACRA. Just as device particulars can help identify
certain bug report patterns, perhaps certain crashes of your app only occur when
users are using a lot of bandwidth in your app, or using a lot of bandwidth elsewhere
and perhaps choking your own app’s Internet access.

The chapter on bandwidth mitigation strategies will also cover a number of uses of
TrafficStats for real-time adjustment of your application logic.

During Testing

You might consider adding TrafficStats-based bandwidth logging for your
application in your test suites. While individual tests may or may not give you useful
data, you may be able to draw trendlines over time to see if you are consuming more
or less bandwidth than you used to. Take care to factor in that you may have
changed the tests, in addition to changing the code that is being tested.

From a JUnit-based unit test suite, measuring bandwidth consumption is not
especially hard. You can bake it into the setUp() and tearDown() methods of your
test cases, either via inheritance or composition, and log the output to a file or
LogCat.

From an external test engine, like monkeyrunner or NativeDriver, recording
bandwidth usage is more tricky, because your test code is not running on the device
or emulator. You may have to include a BroadcastReceiver in your production code
that will log bandwidth usage and trigger that code via the am broadcastam broadcast shell
command.

FOCUS ON: TRAFFICSTATS

2354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/acra/
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://code.google.com/p/nativedriver/

Measuring Bandwidth Consumption

The first step towards addressing bandwidth concerns is to get a better picture of
how much bandwidth you are actually consuming, when, and under what
conditions. Only then will you be able to determine where your efforts need to be
applied and whether those efforts are actually giving you positive results. This
chapter will examine a handful of ways you can determine how much bandwidth
you are really using in your application.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

On-Device Measurement
Many times, you are best served by measuring your bandwidth consumption right
on the device itself:

1. This is your only option for gathering bandwidth metrics from copies of your
app in end users’ hands, unless they invite you to their home or office and
have you sniff on their personal network, which seems unlikely

2. This is your only option for gathering bandwidth metrics when you are using
mobile data plans (e.g., 3G) instead of WiFi, since you probably do not
control the wireless telecommunications infrastructure in your area

3. This is your simplest option for tying bandwidth metrics to events within
your app or occurring on the device

2355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. This is your only option for using bandwidth metrics to adjust your
application behavior in real time, in addition to using the metrics to learn
how best to adjust your code in future updates to the app

Hence, in addition to perhaps other off-device techniques, you really should
consider one of the on-device approaches outlined in the following sections.

Yourself, via TrafficStats

The preceding chapter outlined how to use the TrafficStats class to collect metrics
on the bandwidth consumed by applications (including yours) and for the device as
a whole. This gives you the most flexibility, because you can write your own code to
collect whatever portion of this data you need. It can address all of the bullets shown
above, for example.

It is not perfect, though:

1. It requires you to write your own code, adding yet more work to your plate
2. Per-UID traffic data may or may not be available, depending upon the device

Existing Android Applications

If you do not want to write code to use TrafficStats, there are various applications
on the Play Store that can report that data to you, much along the lines of how
TrafficMonitor does. Here are some notes about a few free ones tested by the
author:

1. Network Traffic Detail (v. 1.3) works, but does not consider that bandwidth is
only reported per UID, not per application. As a result, it reports the same
traffic multiple times, one for each application sharing a UID.

2. Traffic Monitor (v. 2.4.2) advertises itself as an application, but does not put
an icon in the launcher for it, forcing you to install an app widget instead in
order to get to the actual application. While it reports device-level
bandwidth, and it has a task manager, the task list does not report
bandwidth for those tasks.

3. Bandwidth Monitor (v. 1.0.6) works and is perhaps incrementally easier to
use than the other alternatives, though its touted bar chart of bandwidth
consumption lacks any indicator of the value of the Y axis.

There are certainly others on the Market today and more will show up over time. For
your own use, these sorts of apps may be very helpful. However, since you control

MEASURING BANDWIDTH CONSUMPTION

2356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://market.android.com/details?id=cz.lenert.networkTrafficDetail
https://market.android.com/details?id=com.radioopt.widget
https://market.android.com/details?id=org.network

nothing over what is collected and how (and, in the case of some, even when it is
collected), it may be difficult for you to get a solid grasp on where your code is
consuming bandwidth this way.

There are also various apps that provide more in the way of packet-sniffing
capability. However, these require you to root your phone and run the app with root
privileges.

Off-Device Measurement
The biggest limitation of TrafficStats is that it only gives you gross metrics:
numbers of bytes, packets, and so on. Sometimes, that is not enough to help you
understand why those bytes, packets, and so on are actually being sent or received.
Sometimes, it would be nice to understand the traffic in more detail, from the ports
and IP addresses to perhaps the actual data being transmitted. For obvious security
reasons, this is not something an ordinary Android SDK application can do.
However, there are techniques for accomplishing this, mostly for use over WiFi in
your own home or office network. Some of these are outlined in the following
sections.

Wireshark

Wireshark, formerly known as Ethereal, is perhaps the world’s leading open source
network traffic analyzer and packet inspector. Using it, you can learn in great detail
what is going on with your local network. And, Android provides additional options
for you to leverage Wireshark to make sense of application behavior. Wireshark is
available for Linux, OS X, and Windows.

There is a lightly-documented -tcpdump switch available on the Android emulator. If
you launch the emulator from the command line with that switch (plus -avd to
identify the AVD file you want to use), all network access is dumped to your
specified log file. You can then load that data into Wireshark for analysis, via
File|Open from the main menu.

For example, here is a screenshot of Wireshark examining data from such an
emulator dump file, in which the emulator was used to conduct a Google search:

MEASURING BANDWIDTH CONSUMPTION

2357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.wireshark.org/

Figure 623: Wireshark examining captured emulator packets

This screenshot shows an HTTP request in the highlighted line in the list, with the
hex and ASCII contents of the request shown in the bottom pane.

In terms of using Wireshark to monitor traffic from actual hardware, that is
indubitably possible. However, WiFi packet collection is a tricky process with
Wireshark, being very dependent upon operating system and possibly even the WiFi
adapter chipset. You also get much lower-level information, making it a bit more
challenging to figure out what is going on. Attempting to cover all of this is well
beyond the scope of this book and the author’s Wireshark expertise.

Networking Hardware

Sophisticated firewalls sometimes have packet tracing/sniffing capability. In this
case, “sophisticated” does not necessarily mean “expensive”, as open source router/
firewall distributions, like OpenWrt, can be used for this sort of work. In this case,
the router captures the packets and, in many cases, routes them to Wireshark for
analysis. Some might offer on-board analysis (e.g., Web interface to packet capture
logs).

This is particularly useful on a Windows wireless network. Wireshark has limits,
imposed by Windows, that cause some problems when trying to capture WiFi

MEASURING BANDWIDTH CONSUMPTION

2358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packets. By offloading the packet capture to networking hardware, those limits can
be bypassed.

Tactical Measurement in DDMS
TrafficStats is great for measuring gross bandwidth consumption over some
period of time. However, it requires coding, logging, and your own analysis
mechanism.

Another approach is to use the new Network Statistics view available as part of
DDMS. This view will report, in real time, what your receiving and transmitting
bandwidth usage is, in the form of a line chart. This tool was added to the r17 edition
of the Android tools.

To use this view, you will need a device running Android 4.0.3 or higher. It does not
work with the emulator or older devices, unfortunately.

If you have such a device though, when you run your app on it, you can:

• Open the Network Statistics view in Eclipse (or the equivalent in the
standalone monitormonitor tool)

• Run your app and get it ready for testing
• Click on your debuggable process in the Devices view
• Choose a refresh speed for the line chart (100ms, 250ms, or 500ms) in the

Network Statistics view
• Click the Start button adjacent to the speed drop-down
• Do something in your app to trigger network I/O
• Click the Stop button to freeze the updates to the line chart

What you will get, out of the box, is something like this:

MEASURING BANDWIDTH CONSUMPTION

2359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 624: Network Statistics View

This particular output came from a run of the DownloadItYourself demo app from
earlier in the book. The table at the bottom shows the total amount of bandwidth
consumed during the test run, and the line chart at the top helps to illustrate when
we consumed that bandwidth. Received bandwidth appears above the baseline;
transmitted bandwidth appears below the baseline.

For fairly simple cases, this is all you will need. If, however, you have lots of things
going on, you might want to track individual bits of network I/O. Android supports
a tagging concept that will help with this, allowing you to associate a tag with the
current thread.

In most cases, if you are using higher-level libraries like HttpUrlConnection or
HttpClient, you would use setThreadStatsTag(), a static method added to
TrafficStats in API Level 14. You supply an integer “tag”, which will be associated
with network I/O performed on that tag from those libraries. If you are working with
raw sockets, you will also need to use tagSocket() and untagSocket() to associate
the work for that socket with the tag for the current thread.

This will then give you a much more detailed set of output, showing not only total
network I/O but per-tag network I/O:

MEASURING BANDWIDTH CONSUMPTION

2360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 625: Network Statistics Detailed View (image courtesy of Android Open
Source Project)

Clicking the Reset button, to the right of the Start button, clears the graph and
table, to give you fresh results for your next test.

MEASURING BANDWIDTH CONSUMPTION

2361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Being Smarter About Bandwidth

Given that you are collecting metrics about bandwidth consumption, you can now
start to determine ways to reduce that consumption. You may be able to
permanently reduce that consumption (at least on a per-operation basis). You may
be able to shunt that consumption to times or networks that the user prefers. This
chapter reviews a variety of means of accomplishing these ends.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Internet access.

Bandwidth Savings
The best way to reduce bandwidth consumption is to consume less bandwidth.

(in other breaking news, water is wet)

In recent years, developers have been able to be relatively profligate in their use of
bandwidth, pretty much assuming everyone has an unlimited high-speed Internet
connection to their desktop or notebook and the desktop or Web apps in use on
them. However, those of us who lived through the early days of the Internet
remember far too well the challenges that dial-up modem accounts would present to
users (and perhaps ourselves). Even today, as Web apps try to “scale to the Moon and
back”, bandwidth savings becomes important not so much for the end user, but for
the Web app host, so its own bandwidth is not swamped as its user base grows.

2363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fortunately, widespread development problems tend to bring rise to a variety of
solutions — a variant on the “many eyes make bugs shallow” collaborative
development phenomenon. Hence, there are any number of tried-and-true
techniques for reducing bandwidth consumption that have had use in Web apps and
elsewhere. Many of these are valid for native Android apps as well, and a few of
them are profiled in the following sections.

Classic HTTP Solutions

Trying to get lots of data to fit on a narrow pipe — whether that pipe is on the user’s
end or the provider’s end — has long been a struggle in Web development.
Fortunately, there are a number of ways you can leverage HTTP intelligently to
reduce your bandwidth consumption.

GZip Encoding

By default, HTTP requests and response are uncompressed. However, you can enable
GZip encoding and thereby request that the server compress its response, which is
then decompressed on the client. This trades off CPU for bandwidth savings and
therefore needs to be done judiciously.

Enabling GZip compression is a two-step process:

• Adding the Accept-Encoding: gzip header to the HTTP request
• Determine if the response was compressed and, if so, decompressing it

Bear in mind that the Web server may or may not honor your GZip request, for
whatever reason (e.g., response is too small to make it worthwhile).

For example, using the HttpClient library in Android, you could add the header on
the request:

HttpGet get=newnew HttpGet(url);

get.addHeader("Accept-Encoding", "gzip");

// rest of configuration here, if any

// execute the request given an HttpClient object named client
HttpResponse response=client.execute(get);

Then, you can check the response and get a valid InputStream for either the
compressed or the not-compressed cases:

BEING SMARTER ABOUT BANDWIDTH

2364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// assumes HttpResponse response as in above code snippet

InputStream stream=response.getEntity().getContent();
Header enc=response.getFirstHeader("Content-Encoding");

ifif (enc!=nullnull && enc.getValue().equalsIgnoreCase("gzip")) {
stream=newnew GZIPInputStream(stream);

}

// at this point, stream will work for either encoding

Equivalents exist for using HttpUrlConnection, if you prefer to use that HTTP API in
Android.

If-Modified-Since / If-None-Match

Of course, avoiding a download offers near–100% compression. If you are caching
data, you can take advantage of HTTP headers to try to skip downloads that are the
same content as what you already have, specifically If-Modified-Since and
If-None-Match.

An HTTP response can contain either a Last-Modified header or an ETag header.
The former will contain a timestamp and the latter will contain some opaque value.
You can store this information with the cached copy of the data (e.g., in a database
table). Later on, when you want to ensure you have the latest version of that file,
your HTTP GET request can include an If-Modified-Since header (with the cached
Last-Modified value) or an If-None-Match header (with the cached ETag value). In
either case, the server should return either a 304 response, indicating that your
cached copy is up to date, or a 200 response with the updated data. As a result, you
avoid the download entirely (other than HTTP headers) when you do not need the
updated data.

For example, using HttpClient, you can check for the existence of an ETag header in
an HTTP response:

HttpGet get=newnew HttpGet(url);

// execute the request given an HttpClient object named client
HttpResponse response=client.execute(get);
Header etag=response.getFirstHeader("ETag");

ifif (etag!=nullnull) {
// cache this

}

// process the download

BEING SMARTER ABOUT BANDWIDTH

2365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On subsequent requests, you can add the If-None-Match header and handle both
cases:

HttpGet get=newnew HttpGet(url);

get.addHeader("If-None-Match", etag);

// execute the request given an HttpClient object named client
HttpResponse response=client.execute(get);
int sc=response.getStatusLine().getStatusCode();

ifif (sc!=HttpStatus.SC_NOT_MODIFIED) {
// cache invalid, so process the download and, perhaps, grab fresh
// ETag

}

Using Last-Modified and If-Modified-Since is mostly a matter of switching
headers. And, once again, there are equivalent ways to use these headers with
HttpUrlConnection.

Binary Payloads

While XML and JSON are relatively easy for humans to read, that very characteristic
means they tend to be bloated in terms of bandwidth consumption. There are a
variety of tools, such as Google’s Protocol Buffers and Apache’s Thrift, that allow you
to create and parse binary data structures in a cross-platform fashion. These might
allow you to transfer the same data that you would in XML or JSON in less space. As
a side benefit, parsing the binary responses is likely to be faster than parsing XML or
JSON. Both of these tools involve the creation of an IDL-type file to describe the
data structure, then offer code generators to create Java classes (or equivalents for
other languages) that can read and write such structures, converting them into
platform-neutral on-the-wire byte arrays as needed.

Minification

If you are loading JavaScript or CSS into a WebView, you should consider standard
tricks for compressing those scripts, collectively referred to as “minification”. These
techniques eliminate all unnecessary whitespace and such from the files, rename
variables to be short, and otherwise create a syntactically-identical script that takes
up a fraction of the space. There are services like box.js that can even aggregate
several scripts into one file and minify them, to further reduce HTTP overhead.

BEING SMARTER ABOUT BANDWIDTH

2366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/protobuf/
http://thrift.apache.org/
http://en.wikipedia.org/wiki/Minification_(programming)
http://boxjs.com

Push versus Poll

Another way to consume less bandwidth is to only make the requests when it is
needed. For example, if you are writing an email client, the way to use the least
bandwidth is to download new messages only when they exist, rather than
frequently polling for messages.

Off the cuff, this may seem counter-intuitive. After all, how can we know whether or
not there are any messages if we are not polling for them?

The answer is to use a low-bandwidth push mechanism. The quintessential example
of this is GCM, the Google Cloud Messaging system, available for Android 2.2 and
newer. This service from Google allows your application to subscribe to push
notifications sent out by your server. Those notifications are delivered
asynchronously to the device by way of Google’s own servers, using a long-lived
socket connection. All you do is register a BroadcastReceiver to receive the
notifications and do something with them.

For example, Remember the Milk — a task management Web site and set of mobile
apps — uses GCM to alert the device of task changes you make through the Web
site. Rather than the Remember the Milk app having to constantly poll to see if tasks
were added, changed, or deleted, the app simply waits for GCM events.

You could create your own push mechanism, perhaps using a WebSocket or Comet-
style long-poll technique. The downside is that you will need a service in memory all
of the time to manage the socket and thread that monitors it. If you only need this
while your service is in memory for other reasons, that is fine. However, keeping a
service in memory 24x7 has its own set of issues, not the least of which is that users
will tend to smack it down using a “task killer” or the Manage Services screen in the
Settings app.

Thumbnails and Tiles

A general rule of thumb is: don’t download it until you really need it.

Sometimes, you do not know if you really need a particular item until something
happens in the UI. Take a ListView displaying thumbnails of album covers for a
music app. Assuming the album covers are not stored locally, you will need to
download them for display. However, which covers you need varies based upon
scrolling. Downloading a high-resolution album cover that might get tossed in a

BEING SMARTER ABOUT BANDWIDTH

2367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

matter of milliseconds (after an expensive rescale to fit a thumbnail-sized space) is a
waste of bandwidth.

In this case, either the album covers are something you control on the server side, or
they are not. If they are, you can have the server prepare thumbnails of the covers,
stored at a spot that the app can know about (e.g., .../cover.jpg it is .../
thumbnail.jpg). The app can then download thumbnails on the fly and only grab
the full-resolution cover if needed (e.g., user clicks on the album to bring up a detail
screen). If you do not control the album covers, this option might still be available to
you if you can run your own server for the purposes of generating such thumbnails.

You can see a similar effect with the map tiles in Google Maps. When zooming out,
the existing map tiles are scaled down, with placeholders (the gridlines) for the
remaining spots, until the tiles for those spots are downloaded. When zooming in,
the existing map tiles are scaled up with a slight blurring effect, to give the user
some immediate feedback while the full set of more-detailed tiles is downloaded.
And, if the user pans, you once again get placeholders while the tiles for the newly
uncovered areas are downloaded. In this fashion, Google Maps is able to minimize
bandwidth consumption by giving users partial results immediately and back-filling
in the final results only when needed. This same sort of approach may be useful with
your own imagery.

Collaborative Bandwidth

For some common services, perhaps sharing is the best option to reduce bandwidth
usage.

For example, consider Twitter. It is entirely possible that a user might have multiple
applications all polling and downloading the user’s timeline:

1. A built-in Twitter app that the user does not like, but cannot uninstall
2. A regular Twitter app that the user employs for normal stuff
3. A separate Twitter app widget, because the other Twitter apps on the device

either lack an app widget or the user does not like it
4. Yet another application that uses Twitter as one of several data sources (e.g.,

monitoring for references to certain keywords, such as a company name,
across multiple social networks)

In an ideal world, all of these apps would use one common engine that handles
collecting the tweets and making them available — securely — to the other

BEING SMARTER ABOUT BANDWIDTH

2368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

applications. This would dramatically cut bandwidth by eliminating redundant
polling.

If your data source is used by other applications, consider reaching out to those
developers and creating a common engine, perhaps using a ContentProvider for
data sharing, an IntentService or sync provider for collecting the data, plus
common activities for preferences. Distribute the code to all of the development
teams as an Android library project. Ship these components disabled in your
manifest, enabling them if you cannot find another implementation on the device,
indicating that you are the only one of this “application family” installed. If you do
find another implementation, use that one instead of your own. There are certainly
issues to be dealt with here (e.g., what if the user uninstalls the app that the others
are depending upon), but it is worth considering for shared development costs as
well as shared bandwidth.

Bandwidth Shaping
Sometimes, you have no ability to reduce the bandwidth itself. Perhaps you do not
control both ends of the communications pipeline. Perhaps the data you are trying
to exchange is already compressed (e.g., downloading an MP4 video). Perhaps some
of the techniques in the preceding section were unavailable to you (e.g., cannot
route data through third-party servers like Google’s for GCM).

There still may be ways for you to help your users, by shaping your bandwidth use.
Rather than just blindly doing whatever you want whenever you want, you learn
what the user wants and what other applications want and tailor your bandwidth use
on the fly to match those needs. The following sections outline some ways of
achieving this.

Driven by Preferences

If you are consuming enough bandwidth that this chapter is relevant to you, you
probably are consuming enough bandwidth that you should be asking the user how
best to consume that bandwidth. After all, they are the one paying the price — in
time as well as money – for that consumption.

The following sections present some possible strategies for preference-based
bandwidth shaping.

BEING SMARTER ABOUT BANDWIDTH

2369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Budgets

One strategy is for the user to give you a budget (e.g., 20MB/day) and for you to
stick within that budget.

Collecting the budget is fairly easy — just use SharedPreferences. Either use a
ListPreference with likely budget value or an EditTextPreference and a bit of
validation for a free-form budget amount.

Next, you will need to have some idea how much bandwidth any given network
operation will consume. For some things, this might be an estimate based on your
experiments as a developer, or perhaps it is based on historical averages for this user
and type of operation. For example, a “podcatcher” (feed reader designed to
download podcast episodes) should have some idea how big a given RSS or Atom
feed download should be. In some cases, it might be worthwhile to get a better
estimate — for example, the podcatcher might use an HTTP HEAD request to
determine the size of the MP3 or OGG file before deciding whether to download it.

Then, you need to be keeping track of your budget. This could be a simple flat file
with the initial TrafficStats bandwidth values for your process. Re-initialize that
file on the first network operation of the day (or whatever period you chose for your
budget). Before doing another network operation, compare the current
TrafficStats values with the initial ones and see how close you are to the budget. If
the new network operation will exceed the budget, skip the operation, perhaps
putting it in a work queue to perform in the next budget. You might even hold a
reserve for certain types of operations. For example, the podcatcher might ensure
there is at least 10% of the budget available for downloading the feeds, even if it
means putting a podcast on the queue for download tomorrow. That way, you can
present to the user the latest podcast information, with icons indicating which are
downloaded and which are queued for download — the user might be able to then
request to override the budget and download something on demand.

For devices that lack per-UID TrafficStats support, you will have to “fake it” a bit.
Use your own calculations of how much bandwidth each operation consumes and
track that information, even if you wind up missing out on some bytes here or there.

BEING SMARTER ABOUT BANDWIDTH

2370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Connectivity

If the user might not care how much bandwidth you consume, so long as it is un-
metered bandwidth, you might include a CheckBoxPreference to indicate if large
network operations should be limited to WiFi and avoid mobile data.

You could then use ConnectivityManager and getActiveNetworkInfo() to see what
connection you have before performing a network operation. If it is a background
operation (e.g., the podcatcher checking for new podcasts every hour), if the
network is not the desired one, you can skip the operation or put it on a work queue
for re-trying later. If it is a foreground operation (e.g., the user clicked a “refresh”
menu choice), you could pop up a confirmation AlertDialog to warn the user that
they are on mobile data — perhaps this time they are interested in doing the
operation anyway.

Another approach for handling the background operations is to register a
BroadcastReceiver for the CONNECTIVITY_ACTION broadcast (defined on
ConnectivityManager). If the connectivity switches to mobile data, cancel your
outstanding AlarmManager alarms; if connectivity switches to WiFi, re-enable those
alarms.

Of course, you should also consider monitoring the background data setting — the
global Settings checkbox indicating whether background network operations are
allowed. On ConnectivityManager, getBackgroundDataSetting() tells you the state
of this checkbox, and ACTION_BACKGROUND_DATA_SETTING_CHANGED allows you to set
up a BroadcastReceiver to watch for changes in its state.

Windows

If your user is less concerned about the bandwidth or the network, but does care
about the time of day (e.g., does not want your application consuming significant
bandwidth when they might be getting a VOIP call), you could offer preferences for
that as well. Cook up a TimePreference and use that to collect start and stop times
for the high-bandwidth window. Then, set up alarms with AlarmManager for those
points in time. The alarm for the start time of the window sets up a third alarm with
your regular polling interval. The alarm for the stop time of the window cancels the
polling interval alarm.

BEING SMARTER ABOUT BANDWIDTH

2371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Driven by Other Usage

If your network I/O is part of a foreground application, one presumes that you are
the most important thing in the user’s life right now. Or, at least, the most
important thing on the user’s phone right now. Hence, what other applications
might want to do with the Internet connection is not a major concern.

If, however, your network I/O is part of a background operation, it might be nice to
try to avoid doing things that might upset the user. If the user is watching streaming
video or is on a VOIP call or otherwise is aware of bandwidth changes, the
bandwidth you use might impact the user in ways that the user will not appreciate
very much. This is unlikely to be a big problem for small operations (e.g.,
downloading a 1KB JSON file), but larger operations (e.g., downloading a 5MB
podcast) might be more noticeable.

You can use TrafficStats to help here. Before doing the actual network I/O, grab
the current traffic data, wait a couple of seconds, and compare the latest to the
previous values. If little to no bandwidth was consumed during that period, assume
it is safe and go ahead and do your work. If, however, a bunch of bandwidth was
consumed, you might want to consider:

1. Skipping this polling cycle and trying again later, or
2. Adding a one-off alarm using set() on AlarmManager to give you control

again in a minute, with the current traffic data packaged as an extra on the
Intent, so you can make a decision after a bigger sample size of bandwidth
consumption, or

3. Adding an entry in a persistent work queue, so you know later on to try
again if bandwidth contention has improved

You could try to get more sophisticated, by using ActivityManager and the per-UID
values from TrafficStats to see if it is a foreground application that is the one
consuming the bandwidth. It is unclear how reliable this will be, both in
determining who is consuming the bandwidth (again, per-UID traffic is not available
on many devices) and in avoid user angst. It may be simpler just to assume the worst
and side-step your I/O until the other apps have quieted down.

Avoiding Metered Connections
Android 4.1 (a.k.a., Jelly Bean) added isActiveNetworkMetered() as a method on
ConnectivityManager. In principle, this will return true if Android thinks that the

BEING SMARTER ABOUT BANDWIDTH

2372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

current data connection may involve bandwidth charges. You can examine this value
and steer your bandwidth consumption accordingly.

BEING SMARTER ABOUT BANDWIDTH

2373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Memory

RAM. Developers nowadays are used to having lots of it, and a virtual machine
capable of using as much of it as exists (and more, given swap files and page files).

“Graybeards” — like the author of this book — distinctly remember a time when we
had 16KB of RAM and were happy for it. Such graybeards would also appreciate it if
you would get off their respective lawns.

Android comes somewhere in the middle. We have orders of magnitude more RAM
than, say, the TRS–80 Model III. We do not have nearly as much RAM as does the
modern notebook, let alone a Web server. As such, it is easy to run out of RAM if
you do not take sufficient care.

This part of the book examines memory-related issues. These are not to be confused
with any memory-related issues inherent to graybeards.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model.

You Are in a Heap of Trouble
When we think of “memory” and Java-style programming, the primary form of
memory is the heap. The heap holds all of our Java objects – from an Activity to a
widget to a String.

2375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Traditional Java applications have an initial heap size determined by the virtual
machine, possibly configured via command-line options when the program was run.
Traditional Java applications can also request additional memory from the OS, up to
some maximum, also configurable.

Android applications have the same basic structure, with very limited configurability
and much lower maximums than you might expect.

Older Android devices, particularly those with HVGA screens like the T-Mobile G1,
tend to have a maximum of 16MB of heap space. Newer Android phones with
higher-resolution screens might have 24MB (Motorola DROID) or 32MB (Nexus
One) of heap space. Tablets might have 48MB of heap space.

This heap limit can be problematic. For example, each widget or layout manager
instance takes around 1KB of heap space. This is why AdapterView provides the
hooks for view recycling — we cannot have a ListView with literally thousands of
row views without potentially running out of heap.

API Level 11+ supports applications requesting a “large heap”. This is for applications
that specifically need tons of RAM, such as an image editor to be used on a tablet.
This is not for applications that run out of heap due to leaks or sloppy programming.
Bear in mind that users will feel effects from large-heap applications, in that their
other applications will be kicked out of memory more quickly, possibly irritating
them. Also, garbage collection on large-heap applications runs more slowly,
consuming more CPU time. To enable the large heap, add
android:largeHeap="true" to the <application> element of your manifest. You can
call getLargeMemoryClass() on ActivityManager to learn how large your “large
heap” actually is.

Warning: Contains Graphic Images
However, the most likely culprit for OutOfMemoryError messages are bitmaps.
Bitmaps take up a remarkable amount of heap space. Developers often look at the
size of a JPEG file and think that “oh, well, that’s only a handful of KB”, without
taking into account:

1. the fact that most image formats, like JPEG and PNG, are compressed, and
Android needs the uncompressed image to know what to draw

2. the fact that each pixel may take up several bytes (2 bytes per pixel for
RGB_565, 3 bytes per pixel for RGB_888)

ISSUES WITH MEMORY

2376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. what matters is the resolution of the bitmap in its original form, as much (if
not more) than the size in which it will be rendered – an 800x480 image
displayed in an 80x48 ImageView still consumes 800x480 worth of pixel data

4. there are an awful lot of pixels in an image — 800 times 480 is 384,000

Android can make some optimizations, such as only loading in one copy of a
Drawable resource no matter how many times you render it. However, in general,
each bitmap you load takes a decent sized chunk of your heap, and too many
bitmaps means not enough heap. It is not unheard of for an application to have
more than half of its heap space tied up in various bitmap images.

Compounding this problem is that bitmap memory, before Honeycomb, was difficult
to measure. In the actual Dalvik heap, a Bitmap would need ~80 bytes or so,
regardless of image size. The actual pixel data was held in “native heap”, the space
that a C/C++ program would obtain via calls to malloc(). While this space was still
subtracted from the available heap space, many diagnostic programs — such as
MAT, to be examined in the next chapter — will not know about it. Android 3.0
(code-named “Honeycomb”) moved the pixel data into the Dalvik heap, which will
improve our ability to find and deal with memory leaks or overuse of bitmaps.

This part of the book will cover techniques to identify where you might be leaking
memory and what is consuming all of your heap space if you are running out of it.
We will also examine ways to avoid such leaks and be more efficient in your memory
consumption, particularly with bitmaps.

Fragments of Memory
The Dalvik garbage collector is a non-compacting implementation, which makes
OutOfMemoryError messages somewhat more likely than you would find on
traditional Java environments.

Here, “non-compacting” means that Dalvik does not try to move objects around in
physical memory to “compact” the use of physical memory, leaving a large
contiguous block of free physical memory for future allocations.

For example, suppose that we allocate three 1K byte arrays, named A, B, and C. As it
turns out, they were allocated using adjacent portions of physical memory, so that
the last byte of A immediately precedes the first byte of B, and so on. Hence, we
consumed 3K of available heap space to create these three 1K blocks.

ISSUES WITH MEMORY

2377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If we release all references to A and B, they can be garbage-collected. Dalvik, like
Java, will see that A and B are adjacent and will free up their physical memory, such
that the memory is available as one contiguous 2K block for future allocations.

If, however, released all references to A and C instead of A and B, Dalvik would be
unable to make their blocks be contiguous, and so our heap would have two free 1K
blocks, in addition to whatever other free memory that the heap already had.

Hence, allocating memory not only ties up that memory while it is in use, but it may
fragment the memory even when it is released, such that our formerly pristine heap
is now comprised of lots of little free blocks of space, separated from other such
blocks by in-use objects. When we try to make a large allocation, such as setting up
a byte array for a large image, it may be that while we have enough total heap
available for the request, there is no single block that would meet our request, and
so we get an OutOfMemoryError.

In Too Deep (on the Stack)
Heap, however, is not the only possible source of memory errors. It is also possible to
get a StackOverflowError, indicating that you have run out of stack space (or
possibly that the leading Android developer support resource is down for
maintenance).

In stack-based programming languages like Java, each time you call a method, some
stack space is consumed. While method parameters are objects that live on the
heap, the parameter references are stored on the stack, as is information about the
method being invoked. References to local data members to the method or blocks
inside of it are also stored on the stack.

Since these references only take up ~4 bytes each, you would think it might take a
minor eternity to run out of stack space. However, the main application thread in
your Android application has an 8KB stack, which means you can run out of stack
space with only a couple of thousand objects on it.

Even still, it would take hundreds and hundreds of nested method invocations to put
a couple of thousand objects onto the stack. In normal programming, you might
only encounter this with a runaway bit of recursion, in which case no amount of
stack would save you.

ISSUES WITH MEMORY

2378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android

However, Android GUIs are fairly stack-driven. You can run out of stack space if your
UI becomes too complex. More specifically, you might run out of stack space if your
view hierarchy — from the root container of the Android window to the widgets
inside of the containers inside of your rows inside of your ListView inside of your
TabHost — gets too deep. A depth of 15 or so makes you very likely to run out of
stack space somewhere along the line. So if you get the stack-space exception and
the stack trace seems to be all in Andoid UI rendering code, your view hierarchy is
probably too complex. In this part of the book, we will examine how to measure
your view hierarchy depth and ways of trying to simplify it.

ISSUES WITH MEMORY

2379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding Memory Leaks with MAT

The Eclipse Memory Analyzer (MAT) is your #1 tool for identifying memory leaks
and the culprits behind running out of heap space. Particularly when used with
Honeycomb or newer versions of Android, MAT can identify:

1. Who are the major sources of memory consumption, both directly (e.g.,
bitmaps) or indirectly (e.g., leaked activities holding onto lots of widgets)

2. What is keeping objects in memory unexpectedly, defying standard garbage
collection — the way that you leak memory in a managed runtime
environment like Dalvik

This chapter will identify how to collect heap data for use with MAT and how to use
MAT to make sense of what the heap is trying to tell us about what is going on
inside of your app.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model. Reading the introductory chapter to this trail might be
nice.

Setting Up MAT
MAT is an official Eclipse project, hosted on the Eclipse Web site. It comes in two
flavors:

2381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/mat/

1. A plug-in for Eclipse itself, providing a new “Memory Analysis” perspective
and related tools

2. A standalone version, running in the Eclipse RCP framework

Some developers may prefer the standalone version, because they run into problems
when their Eclipse workspaces have too many plugins. Some developers may prefer
the integrated version, because two Eclipse-based apps would consume too much
RAM. With MAT, you have your choice.

There is a traditional download link to get the standalone edition. As with other
Eclipse plug-ins, you will need to add the MAT update site to Eclipse — for example,
in Eclipse Galileo:

1. Choose Help|Install New Software… from the main menu
2. Click the Add… button in the upper-right corner of the dialog, fill in

http://download.eclipse.org/mat/1.1/update-site/ as the Location and
whatever name you want, then click OK

3. Choose Memory Analyzer for Eclipse IDE and complete the rest of the new-
software wizard

Getting Heap Dumps
The first step to analyzing what is in your heap is to actually get your hands on what
is in your heap. This is referred to as creating a “heap dump” — what amounts to a
log file containing all your objects and who points to what.

There are multiple ways of obtaining a heap dump, depending on your tools and use
cases. Note that you will find some blog post and the like indicating you can create a
heap dump via the adb shell killadb shell kill command, but this has been disabled in newer
versions of Android.

From DDMS

You can get a heap dump any time you want from DDMS, using either the DDMS
perspective or the standalone DDMS utility.

In the device-and-process tree (the Devices tool in Eclipse), you will find a toolbar
button that looks like a half-empty can with a downward-pointing arrow:

FINDING MEMORY LEAKS WITH MAT

2382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/mat/downloads.php

Figure 626: The icon used for the “Dump HPROF File” toolbar button

Clicking this — after choosing your desired process — DDMS will create a heap
dump for you. However, the process varies at this point, depending on whether you
are using the DDMS perspective in Eclipse or standalone DDMS.

DDMS Perspective

Once you click the toolbar button for the heap dump, DDMS will create the dump
for you, in a file generated in your development machine’s temporary-files directory
(e.g., /tmp). If you wish to save this dump for some reason, you will want to rename
it and move it to some other location.

Standalone DDMS

Once you click the toolbar button for the heap dump, DDMS will create the dump
for you, in a file chosen by you via your platform’s standard file-save dialog.

Then, however, you will need to run the hprof-convhprof-conv utility, from the tools/
directory of your SDK, to convert the heap dump into the format that MAT will use.
This is automatic if you use the DDMS perspective in Eclipse.

From Code

Another possibility is to trigger the heap dump yourself from code. The
dumpHprofData() static method on the Debug class (in the android.os package) will
write out a heap dump to the file you indicate. Since these files can be big, and since
you will need to transfer them off the device or emulator, it will be best to specify a
path to a file on external storage, which means that your project will need the
WRITE_EXTERNAL_STORAGE permission.

FINDING MEMORY LEAKS WITH MAT

2383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To view the results in MAT, you will need to transfer the file to your development
machine (e.g., DDMS File Manager, adb pulladb pull, using MTP-mounted external storage
on Android 3.0+).

Automating Heap Dumps in Testing

One problem with using dumpHprofData() is that there is no logical reason to have
that code in your production app. Fortunately, you can use it from a JUnit test suite
that uses the Android instrumentation framework. However, the main project, not
the test project, is the one that needs WRITE_EXTERNAL_STORAGE — with luck, your
app needs this permission anyway.

The problem then becomes a matter of figuring out where in the JUnit test suite to
call dumpHprofData(). One strategy is simply to add it to specific test methods or
test cases, if you want to have a dump at specific points. If, however, you want a
dump at the end of the complete battery of tests, you will need to create your own
test runner.

For example, in the MAT/Spinners sample project, you will find a near-identical
clone of the same project from elsewhere in this book. It simply runs through a
pathetic little test suite for an app that displays contact data in a ListView, driven by
a Spinner to select what data you want to see.

The augmented version of this project adds an HprofTestRunner that will dump the
heap at the end of the run:

packagepackage com.commonsware.android.contacts.spinners;

importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Debugandroid.os.Debug;
importimport android.os.Environmentandroid.os.Environment;
importimport android.test.InstrumentationTestRunnerandroid.test.InstrumentationTestRunner;

publicpublic classclass HprofTestRunnerHprofTestRunner extendsextends InstrumentationTestRunner {
@Override
publicpublic void finish(int resultCode, Bundle results) {

trytry {
Debug.dumpHprofData(newnew File(Environment.getExternalStorageDirectory(),

"hprof.dmp").getAbsolutePath());
}
catchcatch (IOException e) {

e.printStackTrace();
}

FINDING MEMORY LEAKS WITH MAT

2384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MAT/Spinners
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/Spinners

supersuper.finish(resultCode, results);
}

}

To add code at the end of a test run, simply override the finish() method, do your
work, then chain to the superclass. Here, we create an hprof.dmp file out in the root
of external storage. Note that the runner does not log to LogCat, which is why this
code uses the classic printStackTrace() to dump any exceptions to the test runner’s
own error log.

To use the HprofTestRunner, you need to update the android:name attribute in the
<instrumentation> element in your manifest to reference this runner class:

<?xml version="1.0" encoding="utf-8"?>
<!-- package name must be unique so suffix with "tests" so package loader
doesn't ignore us -->
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.contacts.spinners.tests"
android:versionCode="1"
android:versionName="1.0">>

<!-- We add an application tag here just so that we can indicate that
this package needs to link against the android.test library,
which is needed when building test cases. -->

<application><application>
<uses-library<uses-library android:name="android.test.runner" />/>

</application></application>
<!--
This declares that this application uses the instrumentation test runner

targeting
the package of com.commonsware.android.contacts.spinners. To run the tests

use the command:
"adb shell am instrument -w com.commonsware.android.contacts.spinners.tests/

android.test.InstrumentationTestRunner"
-->
<instrumentation<instrumentation

android:name="com.commonsware.android.contacts.spinners.HprofTestRunner"

android:targetPackage="com.commonsware.android.contacts.spinners"
android:label="Tests for

com.commonsware.android.contacts.spinners"/>/>
</manifest></manifest>

Also, in your build.xml file for Ant, you will need to add the test.runner property,
identifying the same class, before the final <import/> tag:

<?xml version="1.0" encoding="UTF-8"?>
<project<project name="SpinnersTests" default="help">>

<!-- The local.properties file is created and updated by the 'android' tool.
It contains the path to the SDK. It should *NOT* be checked into

FINDING MEMORY LEAKS WITH MAT

2385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Version Control Systems. -->
<property<property file="local.properties" />/>

<!-- The ant.properties file can be created by you. It is only edited by the
'android' tool to add properties to it.
This is the place to change some Ant specific build properties.
Here are some properties you may want to change/update:

source.dir
The name of the source directory. Default is 'src'.

out.dir
The name of the output directory. Default is 'bin'.

For other overridable properties, look at the beginning of the rules
files in the SDK, at tools/ant/build.xml

Properties related to the SDK location or the project target should
be updated using the 'android' tool with the 'update' action.

This file is an integral part of the build system for your
application and should be checked into Version Control Systems.

-->
<property<property file="ant.properties" />/>

<!-- if sdk.dir was not set from one of the property file, then
get it from the ANDROID_HOME env var.
This must be done before we load project.properties since
the proguard config can use sdk.dir -->

<property<property environment="env" />/>
<condition<condition property="sdk.dir" value="${env.ANDROID_HOME}">>

<isset<isset property="env.ANDROID_HOME" />/>
</condition></condition>

<!-- The project.properties file is created and updated by the 'android'
tool, as well as ADT.

This contains project specific properties such as project target, and
library

dependencies. Lower level build properties are stored in ant.properties
(or in .classpath for Eclipse projects).

This file is an integral part of the build system for your
application and should be checked into Version Control Systems. -->

<loadproperties<loadproperties srcFile="project.properties" />/>

<!-- quick check on sdk.dir -->
<fail<fail

message="sdk.dir is missing. Make sure to generate local.properties
using 'android update project' or to inject it through the ANDROID_HOME
environment variable."

unless="sdk.dir"
/>/>

FINDING MEMORY LEAKS WITH MAT

2386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<!--
Import per project custom build rules if present at the root of the

project.
This is the place to put custom intermediary targets such as:

-pre-build
-pre-compile
-post-compile (This is typically used for code obfuscation.

Compiled code location: ${out.classes.absolute.dir}
If this is not done in place, override

${out.dex.input.absolute.dir})
-post-package
-post-build
-pre-clean

-->
<import<import file="custom_rules.xml" optional="true" />/>

<!-- Import the actual build file.

To customize existing targets, there are two options:
- Customize only one target:

- copy/paste the target into this file, *before* the
<import> task.

- customize it to your needs.
- Customize the whole content of build.xml

- copy/paste the content of the rules files (minus the top node)
into this file, replacing the <import> task.

- customize to your needs.

****** IMPORTANT ******

In all cases you must update the value of version-tag below to read

'custom' instead of an integer,
in order to avoid having your file be overridden by tools such as

"android update project"
-->
<!-- version-tag: custom -->
<property<property name="test.runner"

value="com.commonsware.android.contacts.spinners.HprofTestRunner" />/>
<import<import file="${sdk.dir}/tools/ant/build.xml" />/>

</project></project>

Then, running the tests via ant debug install testant debug install test will use your runner and will
dump the HPROF file at the end of the run. You could also elect to automate
retrieving the HPROF file by adding an Ant task that will use adb pulladb pull to retrieve
the file from where it is stored.

If you wish to run your tests through Eclipse, you will need to change the
Instrumentation property of your test projects to point to your custom
InstrumentationTestRunner subclass.

FINDING MEMORY LEAKS WITH MAT

2387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic MAT Operation
Once you have MAT installed and you have obtained a heap dump, you can start
doing some analysis.

Loading Your Dump

If you used the DDMS perspective in Eclipse to create the heap dump, it should
automatically pop you into MAT:

Figure 627: The MAT Eclipse perspective, as initially opened

If you used standalone DDMS or the code-based way of getting a heap dump, after
using hprof-convhprof-conv to create a MAT-compatible version of your dump, you can open it
using the File|Open Heap Dump… menu from the Eclipse (or standalone MAT)
main menu.

The first time you run MAT, you will be presented with the “Getting Started Wizard”
(see above screenshot), which you can use or dismiss as you see fit.

The Overview tool gives you, well, an overview of the contents of the heap dump:

FINDING MEMORY LEAKS WITH MAT

2388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 628: The Overview tool inside the MAT Eclipse perspective

The Overview tool also has links and toolbar buttons to get you to the other major
functional areas within MAT.

Finding Your Objects

If you want to see if instances of your own classes are being kept in memory despite
garbage collection, you can search for objects based upon a regular expression on
the fully-qualified class name.

One way to access this is via the Histogram, reachable via a link in the Overview’s
Actions area or via a toolbar button:

FINDING MEMORY LEAKS WITH MAT

2389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 629: The icon used for the Histogram toolbar button

The histogram initially displays the top culprits in terms of “shallow heap” — the
amount of memory those objects hold onto directly:

Figure 630: The Histogram tab inside the MAT Eclipse perspective

To see what objects of yours might still be in the heap, you can type in a regular
expression (e.g., com.commonsware.*) in the Regex row at the top of the table, then
press [Enter] to view a filtered list of objects based upon that regular expression:

FINDING MEMORY LEAKS WITH MAT

2390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 631: A filtered histogram, showing com.commonsware.* objects

Here, we see one instance of a com.commonsware class is still lurking around a heap
dump.

Getting Back to Your Roots

However, just because we see an object in MAT does not necessarily mean that it has
been leaked. For example, this is an activity – just looking at the above screenshot
does not indicate whether that activity was in the foreground, was in the
background for normal reasons, or is actually leaked.

To help determine what is keeping the object in memory, you will need to trace back
to the “GC roots” — the objects that are preventing our activity from being garbage
collected.

To do this, you will right-click over the object in question and choose the “GC Roots”
context menu choice (in the Histogram, it is “Merge Shortest Paths to GC Roots”).
This will usually bring up a flyout sub-menu where you can further constrain what is
reported as a root:

FINDING MEMORY LEAKS WITH MAT

2391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 632: A filtered histogram, showing com.commonsware.* objects

The big filters are for “soft references” and “weak references”. These refer to the
SoftReference and WeakReference classes in Java, respectively. Both are ways to
hold onto an object yet still allow it to be garbage collected when needed. The big
difference is that an object only referenced by WeakReference objects can be garbage
collected immediately, while an object referenced only by SoftReference objects (or
a mix of SoftReference and WeakReference objects) should be kept around until the
Dalvik VM is low on memory. Usually, you can ignore weak references, as those just
indicate objects that the garbage collector has not quite detected are eligible for
reclamation. Whether you want to also filter out soft references would depend a bit
on the objects in question — for example, if you are using SoftReference with a
cache, you might filter out soft references as well to confirm that nothing other than
your cache is holding onto these objects.

Filtering out weak references (or whatever) brings up another tab containing the GC
roots preventing our activity from being garbage collected:

Figure 633: The GC roots holding onto an activity

FINDING MEMORY LEAKS WITH MAT

2392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is showing that the class for our activity has a data member
(doNotDoThisPlease) that has a View, and that in turn is holding onto our activity
via an mContext data member. Static data members (i.e., data members of class
objects) are classic sources of memory leaks in Java. The Retained Heap column on
the far right shows how much memory that individual object (and everything it
points to) is keeping around — in this case, about 2.5KB.

Identifying What Else is Floating Around

This helps us find where your own objects are being leaked. What happens if you are
leaking other things, though?

One possibility is to examine the rest of the Histogram tab, as it will point out the
classes (and primitives) that have the most outstanding instances or hold the most
aggregate shallow heap. If you applied a regular expression, you can click on the
regular expression and delete it to return to the non-filtered roster. The Histogram
tends to report a lot of primitives (e.g., char array), and it will take some experience
to learn what is standard Android application “noise” and what might represent
problems.

Another way to find leaks is to examine the “dominator tree”. The term “dominator
tree” comes from graph theory — object A “dominates” object B if the only paths to
get to B go through A. In MAT, the dominator tree will bubble up those objects
whose retained heap — the total memory the object is responsible for, including
objects it links to — are high. Or, as MAT describes it, it lists “the biggest objects”.

To get to the dominator tree, you can click its link on the Overview tab, or you can
click the corresponding toolbar button:

Figure 634: The icon used for the Dominator Tree toolbar button

FINDING MEMORY LEAKS WITH MAT

2393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will open up another tab in the same tool, showing “the biggest objects” by
retained heap:

Figure 635: The MAT Dominator Tree tab

You can display more by right-clicking over the Total row at the bottom and
choosing "Next 25”.

Here too, the roster will mostly be system objects (e.g., org.bouncycastle for the
javax.crypto implementation). What you would be looking for are objects that you
might be interacting with more directly that perhaps you are leaking, such as a
Bitmap.

If you find something of interest, right-clicking over the object and choosing “Path
to GC Roots” or “Merge Shortest Paths to GC Roots” will help you track down what is
holding onto the object, akin to the similar feature in the Histogram.

Some Leaks and Their MAT Analysis
Let’s now take a look at some common leak scenarios in Android and see how we
find out whether we have a leak and what is causing it. All of the projects
demonstrated below are in the MAT directory of the book’s source code.

FINDING MEMORY LEAKS WITH MAT

2394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget in Static Data Member

The screen shots from above are mostly taken from the MAT/StaticWidget sample
project, where we do something naughty:

packagepackage com.commonsware.android.tuning.mat;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass StaticWidgetActivityStaticWidgetActivity extendsextends Activity {
@SuppressWarnings("unused")
staticstatic privateprivate View doNotDoThisPlease;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

doNotDoThisPlease=findViewById(R.id.make_me_static);
}

}

We take a widget (specifically the auto-generated TextView) and put it in a static
data member, and never replace it with null.

As a result, even if the user presses BACK to get out of the activity, the static data
member holds onto TextView, which itself has a reference back to our Activity.

Usually, you will pick this sort of leak up by scanning on your own application’s
package, as your activity will appear in there. If you are using multiple packages in
your application (e.g., yours and a third-party activity), you might need to also check
the third-party package to see if any of its objects are being leaked. Whether those
leaks are the fault of your code or the third party’s own code will vary, of course.

Leaked Thread

You can see similar results when you leak a thread, such as in the MAT/LeakedThread
sample project:

packagepackage com.commonsware.android.tuning.mat;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;

FINDING MEMORY LEAKS WITH MAT

2395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MAT/StaticWidget
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/StaticWidget
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/LeakedThread
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/LeakedThread

publicpublic classclass LeakedThreadActivityLeakedThreadActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

newnew Thread() {
publicpublic void run() {

whilewhile(truetrue) {
SystemClock.sleep(100);

}
}

}.start();
}

}

Here, if we filter on com.commonsware in the Histogram, we see two entries:

Figure 636: The LeakedThreadActivity Histogram

As with other places in Java (e.g., stack traces), the $ syntax in a class name refers to
an inner class, and $1 refers to the first anonymous inner class.

If we look at the GC roots for the activity, we see:

Figure 637: The GC roots for LeakedThreadActivity

The root is a thread, as denoted by the “Thread” annotation on the end of the root
entry. We see that the Thread object itself is our $1 inner class instance, and it holds
onto the activity via the implicit reference every non-static inner class has to its
outer class instance (this$0).

Any running thread will cause anything it can reach to remain in the heap and not
get garbage collected. An inner class implementation of the Thread — which most
code examples will use, in one form or fashion — will leak the outer class instance.
Hence, the lessons to be learned here are:

FINDING MEMORY LEAKS WITH MAT

2396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Leaking threads leaks memory
2. Consider using static inner classes, or separate classes, rather than non-static

inner classes, so you do not cause objects to be held onto unnecessarily and
unexpectedly

All Sorts of Bugs

Let’s now examine the MAT/RandomAppOfCrap sample application. This is a variation
on an example from elsewhere in this book, showing using a bound service that
connects to a Web service — in this case, the US National Weather Service. In this
modified version, a number of leak-related bugs were introduced.

Leaks Via Configuration Changes

The WeatherDemo activity implements onRetainNonConfigurationInstance(),
returning a State object. State is an inner class of WeatherDemo, but not a static
inner class.

This is not a good idea.

When you search the Histogram for com.commonsware after loading a weather
forecast (e.g., run the app and use DDMS to push over a location fix) and rotating
the screen, you see that there are two instances of WeatherDemo floating around the
heap:

Figure 638: The com.commonsware objects in the RandomAppOfCrap heap

To figure out what those objects are, you can right-click over a class in the
Histogram and choose “List Objects” from the context menu. The fly-out sub-menu
will let you choose to show incoming references (who points to these objects) or

FINDING MEMORY LEAKS WITH MAT

2397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MAT/RandomAppOfCrap
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/RandomAppOfCrap

outgoing references (what these objects point to). In this case, showing incoming
references will bring up the following:

Figure 639: The incoming references for one WeatherDemo instance

FINDING MEMORY LEAKS WITH MAT

2398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 640: The incoming references for the other WeatherDemo instance

The eight-digit hex numbers shown after the @ sign are the object identifiers for
each of the referred-to objects. You can use this to distinguish which objects are the
same.

What you will notice is that both WeatherDemo instances are pointed to by the State
object. In one, it is referred to by the activity data member. In the other, it is
referred to by this$0 — the implicit reference an inner class instance has on the
outer class instance. Since both WeatherDemo instances hold onto the State via the
state data member, this means that one WeatherDemo instance (the foreground one)
is holding an indirect reference, via the State, to the other now-destroyed
WeatherDemo instance. This is a leak.

The solution for this would be to use a static inner class for State, eliminating the
implicit reference and breaking this connection.

Leaks from Unregistered System Listeners

We also see from our filtered Histogram that we have two retained instances of the
$1 inner class. Displaying incoming references to those objects shows us that those
are the LocationListener objects we are using to get our GPS fixes:

FINDING MEMORY LEAKS WITH MAT

2399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 641: The incoming references for the WeatherDemo$1 instances

Tracing through the incoming references, we see that the ContextImpl class holds a
static reference to the LocationManager system service in our process, and
LocationManager has an mListeners data member which is a list of all registered
LocationListener instances.

Alas, in WeatherDemo, we are registering a LocationListener and never
unregistering it. Since our LocationListener is an inner class, not only is the
LocationListener itself leaked, but it prevents our destroyed WeatherDemo object
from being garbage collected.

This same pattern can be seen for many of the system services — if you register a
listener, you must ensure that you unregister it to prevent leaks.

What MAT Won’t Tell You

MAT is not a universal solution. It may not tell you of all possible leaks.

For example, if you bind to a service, the ServiceConnection object you create is
held onto, indirectly, by the OS itself. That is how you can use the
ServiceConnection to unbind from the service later on. However, if you examine

FINDING MEMORY LEAKS WITH MAT

2400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MAT, you will see no evidence of this, as MAT is limited to examining your own
process and cannot report about references that are triggered by other processes.

MAT also will not report anything that is part of the native heap (i.e., what you get
with a C malloc() call) — it only reports on the Dalvik heap. Hence, MAT will not
reflect the actual memory consumption of bitmap images on Gingerbread and
earlier environments. You may wish to do some testing of your app on Honeycomb,
not just for any tablet support you may offer, but to get more complete results from
MAT.

FINDING MEMORY LEAKS WITH MAT

2401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Battery Life

Most Android devices are powered by batteries — Google TV is the biggest class of
device that is not. Batteries are wonderful gizmos with one major problem: they are
always running out of power.

Hence, users are very sensitive to battery consumption. Their ability to use their
phones as actual phones, let alone for Android apps, depends on having enough
battery power. The more apps drain the battery, the more frequently the user has to
find a way to recharge the phone, and the more frequently the user fails and their
phone shuts down.

The catch is that you may not notice the battery issues in your day-to-day
development. The Android emulator’s emulated battery does not drain based on you
running your app. Your devices are often connected to your development machine
via USB for testing and debugging, meaning they are perpetually being charged.
Unless you are a regular user of your own app, you might not notice any increased
power drain.

This part of the book is focused on helping you understand what is draining power
and what you can do to be kinder and gentler on your users’ batteries.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

2403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You’re Getting Blamed
Users, for better or worse, have limited ability to determine what is responsible for
draining the battery of their phone. Their #1 tool for this is the “Power Usage
Summary” screen in the Settings app, sometimes referred to as the “battery blame
screen”.

Figure 642: Battery Screen from Settings App

This lists both device features (e.g., the display) and applications. Android
incrementally improves the accuracy of this screen with each passing release, trying
to make sure the user understands what specifically is consuming the power.

If your application starts appearing on this screen, and the user does not feel that it
is justified, the user is likely to become irritated with you.

Now, your appearance on this list might be perfectly reasonable. If you have written
a video player app, and the user has just watched a few hours’ worth of video, it is
very likely that you will appear on this list and will be justified in your battery
consumption.

ISSUES WITH BATTERY LIFE

2404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, anything that you can do to not appear on this screen, or appear lower in
the list, will help with user acceptance of your app.

This part of the book will show you how to measure your power usage and ways of
trying to use less of it.

Not All Batteries Are Created Equal
Roughly speaking, battery capacity is proportional to screen size. Larger screens
mean physically larger devices, and since the rest of the components (e.g., CPU)
tend to be the same size, a larger device offers more room for a larger battery. This is
good, as the screen is one of the major power draws on a device, and bigger screens
draw more power.

Conversely, the battery on a “wearable” — whether eyewear like Google Glass, a
smartwatch, or other form factors — tends to be much smaller than average, just
because the wearables are physically smaller. A wearable is likely to have a battery
with less than a third of the capacity of a phone, which in turn may have a battery
with less than a third of the capacity of a large tablet.

Hence, depending upon where your app will be running, the amount of battery
available in total will vary widely. What might be considered acceptable battery
consumption on a tablet would be considered excessive on a wearable.

Stretching Out the Last mWh
Sometimes, what the user wants your app to do in one case is not what the user
wants your app to do in other cases. Serious power-draining might be reserved for
when the device is plugged in, or when the device has at least such-and-so power
remaining. The user may value the last milliwatt-hours (mWh) more than others
and want your application to use less power in those circumstances.

Hence, if your application polls the Internet, you might offer a feature to poll less
frequently, or perhaps not at all, when power is low. If your application uses GPS to
find a location (e.g., automatic “check-ins” to social networks like Foursquare), you
might offer to skip such actions when the battery is low. You might want to signal to
the user when the battery gets low during playback of a video, or during the game
they are in. And so on.

ISSUES WITH BATTERY LIFE

2405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This part of the book will help you identify when the battery is low and strategies for
making use of that information.

ISSUES WITH BATTERY LIFE

2406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Power Measurement Options

As with any situation where you are trying to reduce your use of some system
resource, you need to be able to accurately measure how much you are using that
resource. Otherwise, you will have no idea whether your attempts to reduce usage
are helping. It is possible that what you think will consume less of the resource
actually consumes more, because of unanticipated side-effects. And, if nothing else,
if the change makes your code more complicated and does not help much with
resource consumption, you may be better served sticking with the original, simpler
implementation.

So, when it comes to power usage, it helps to know how much power you are
consuming, to determine if your attempts to use less power actually do help.

Unfortunately, compared to things like RAM and bandwidth, power measurement is
a significant challenge. You really need to have hardware specifically instrumented
to report power consumption for pieces of that hardware (CPU versus screen versus
GPS versus mobile data radio versus …). Even if you cannot get power usage per
component, just having accurate power consumption overall is not something you
can necessarily get from any Android device. Alas, getting that level of power usage
knowledge can be troublesome in its own right, for a variety of reasons.

This chapter will explore a few ways of measuring power usage, along with the pros
and cons of that approach.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

2407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Qualcomm Tool (That Must Not Be Named)
Qualcomm makes the chipsets that drive a substantial percentage of Android
devices. Qualcomm also offers a number of things to further help Android
developers, such as open source libraries like AllJoyn (P2P communications).

Qualcomm makes a tool that can help you measure power consumption. There are
two versions of this tool:

1. The best version is designed to run on the Qualcomm MDP series of
reference hardware, and takes advantage of specific capabilities of that
hardware to provide excellent power consumption data

2. Another version can be used with other Android devices powered by
Qualcomm chipsets, providing information about power usage, though not
quite as much as you get from the first version

Alas, this book does not cover this tool.

The current versions of this tool have a license agreement containing crudely-
implemented non-disclosure terms:

You shall not to disclose or permit the disclosure of the Materials in any
form or any information relating to the Materials (including without
limitation the results of use or testing) to any third party without QTI’s
prior written permission… You further acknowledge and agree that if QTI,
in its sole discretion, chooses to provide any form of support or information
relating to the Materials, such support and information shall be deemed
confidential and proprietary to QTI and shall be protected in accordance
with this Section 4.

In this case, “Materials” refers to the two versions of the tool, plus accompanying
documentation, and QTI is Qualcomm Technologies.

The non-disclosure terms do not come with the normal “you can talk about
anything that has been already publicly disclosed” caveats. Hence, even the
Qualcomm public Web site regarding this tool falls under the “any form of support
or information”.

Regardless, you may be interested in visiting Qualcomm’s developer support site in
hopes that you can find this unnamed tool.

POWER MEASUREMENT OPTIONS

2408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp
https://developer.qualcomm.com

PowerTutor
Perhaps the best-known third-party power analyzer is PowerTutor. PowerTutor is the
outcome of a research project from the University of Michigan, with a bit of
assistance from Google. In principle, PowerTutor is capable of letting you know
power consumption on a device, much along the lines of what Trepn can record on a
Qualcomm MDP. In practice, PowerTutor is significantly less powerful and
sophisticated.

PowerTutor was created with the HTC Dream (T-Mobile G1), HTC Magic (T-Mobile
G2), and Nexus One in mind. Its power output values will be as accurate as they
could make it for those devices. If you run PowerTutor on other hardware, the
results will be less accurate.

You can obtain PowerTutor from the Play Store, or from the PowerTutor Web site, or
you can compile it from source.

PowerTutor is not tied to testing a particular application. As such, you can simply
run PowerTutor whenever you want from its launcher icon, then press “Start Power
Profiler” in the main activity:

POWER MEASUREMENT OPTIONS

2409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ziyang.eecs.umich.edu/projects/powertutor/
https://github.com/msg555/PowerTutor

Figure 643: The PowerTutor main activity

At this point, you can start playing with your application, or running your unit test
suite, or whatever. When you want to get an idea of how much power you have been
consuming, you can switch back to the PowerTutor activity and choose “View
Application Power Usage”. This brings up a list of processes and toggle buttons to
show various power consumption values for each:

POWER MEASUREMENT OPTIONS

2410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 644: The PowerTutor application roster

Tapping the list entry brings up a graph for that particular process, though since this
information is only available while PowerTutor is recording new data, the graph is
usually empty unless you have logic running in the background:

POWER MEASUREMENT OPTIONS

2411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 645: The PowerTutor live charts for a single process current power
consumption

You can also bring up a chart showing what portion of your power consumption
came from various sources for the whole device, such as a pie chart of current
consumption:

POWER MEASUREMENT OPTIONS

2412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 646: The PowerTutor pie chart for current overall power consumption

Given that the source code is available, one might augment PowerTutor to:

1. Saving results, both as data files for offline analysis (akin to Trepn’s CSV
files) or for viewing charts and tables on the device when data is not being
actively collected

2. Allowing one to record application states, akin to Trepn, to better correlate
application functionality to saved power results

Battery Screen in Settings Application
Of course, what developers tend to focus on most with power is the battery
consumption screen in the Settings application, as shown in a previous chapter:

POWER MEASUREMENT OPTIONS

2413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 647: Battery Screen from Settings App

After all, this is what users will tend to focus on — anything showing up in here is a
source of blame for whatever power woes the user believes she is experiencing.
Conversely, if your application does not show up in this screen during normal
operation, then there is no compelling reason for you to do further analysis, as users
will tend to be oblivious to your actual power consumption.

If you do show up in the list, tapping on your entry can give you some more details
of what power you consumed and why:

POWER MEASUREMENT OPTIONS

2414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 648: Battery Details Screen from Settings App

However, the information contained in here is mostly guesswork, using a more
refined version of the same approach that PowerTutor uses. Ordinary Android
hardware simply lacks enough fine-grained power measurement instrumentation to
do an accurate job of apportioning power usage among different processes. So, the
details of how long you kept the CPU powered on may be accurate, but the
percentage of battery consumption associated with your app is just an estimate.

BatteryInfo Dump
Yet another possibility is to use the adb shell dumpsys batteryinfoadb shell dumpsys batteryinfo command
from your command prompt or terminal on your development workstation. This will
emit a fair amount of data that probably means something to somebody, such as
general device information:

Battery History:
-1h00m56s463ms 096 20030002 status=discharging health=good

plug=none temp=191 volt=4060 +screen +wake_lock +sensor
brightness=medium

-1h00m52s490ms 096 22030302 +wifi phone_state=off
-1h00m51s844ms 096 2703d102 +phone_scanning +wifi_running

phone_state=out data_conn=other

POWER MEASUREMENT OPTIONS

2415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

-1h00m49s303ms 096 2743d102 +wifi_scan_lock
-57m48s766ms 095 2743d102
-53m24s627ms 095 2743d100 brightness=dark
-53m17s620ms 095 0741d100 -screen -wake_lock
-53m17s107ms 095 0740d100 -sensor
-38m17s007ms 095 0642d100 -wifi_running +wake_lock
-38m08s998ms 095 0640d100 -wake_lock

-54s781ms 095 4640d100 status=full plug=usb temp=193
volt=4084 +plugged

Per-PID Stats:
PID 96 wake time: +12s75ms
PID 177 wake time: +1s13ms
PID 458 wake time: +1s898ms
PID 326 wake time: +3s925ms
PID 205 wake time: +2s107ms
PID 415 wake time: +843ms
PID 96 wake time: +281ms

Statistics since last charge:
System starts: 0, currently on battery: false
Time on battery: 1h 0m 1s 682ms (0.3%) realtime, 8m 21s 883ms

(0.0%) uptime
Total run time: 16d 11h 13m 34s 654ms realtime, 2h 9m 37s 404ms

uptime,
Screen on: 7m 37s 868ms (12.7%), Input events: 0, Active phone

call: 0ms (0.0%)
Screen brightnesses: dark 7s 7ms (1.5%), medium 7m 30s 861ms (98.5%)
Kernel Wake lock "SMD_DS": 2s 368ms (3 times) realtime
Kernel Wake lock "mmc_delayed_work": 1s 210ms (1 times) realtime
Kernel Wake lock "SMD_RPCCALL": 56ms (435 times) realtime
Kernel Wake lock "power-supply": 575ms (4 times) realtime
Kernel Wake lock "radio-interface": 3s 1ms (3 times) realtime
Kernel Wake lock "ApmCommandThread": 4ms (10 times) realtime
Kernel Wake lock "ds2784-battery": 2s 6ms (21 times) realtime
Kernel Wake lock "msmfb_idle_lock": 14ms (2273 times) realtime
Kernel Wake lock "kgsl": 51s 482ms (613 times) realtime
Kernel Wake lock "rpc_read": 164ms (272 times) realtime
Kernel Wake lock "main": 7m 39s 708ms (0 times) realtime
Total received: 0B, Total sent: 0B
Total full wakelock time: 149ms , Total partial waklock time: 31s

14ms
Signal levels: none 59m 57s 63ms (99.9%) 1x
Signal scanning time: 59m 57s 63ms
Radio types: none 641ms (0.0%) 1x, other 59m 56s 973ms (99.9%) 1x
Radio data uptime when unplugged: 0 ms
Wifi on: 59m 57s 709ms (99.9%), Wifi running: 22m 35s 424ms

(37.6%), Bluetooth on: 0ms (0.0%)

Device battery use since last full charge
Amount discharged (lower bound): 0
Amount discharged (upper bound): 1
Amount discharged while screen on: 1
Amount discharged while screen off: 0

POWER MEASUREMENT OPTIONS

2416

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(... and lots more...)

and per-process information (here, showing power used by PowerTutor itself):

#10058:
Wake lock window: 5s 71ms window (1 times) realtime
Proc edu.umich.PowerTutor:

CPU: 11s 750ms usr + 4s 530ms krn
1 proc starts

Apk edu.umich.PowerTutor:
Service edu.umich.PowerTutor.service.UMLoggerService:

Created for: 4m 4s 750ms uptime
Starts: 1, launches: 1

In principle, one might create tools that use this output — or perhaps steal a peek at
the data used by the Settings application – to create something a bit more
developer-friendly.

POWER MEASUREMENT OPTIONS

2417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sources of Power Drain

If you can measure power drain well yourself, that is the best way for you to
determine precisely where your power consumption is going. Alas, for various
reasons, you may not be able to get good power consumption data.

Which means you may have to guess.

We know the general sorts of things that consume power in a device, such as the
screen and the CPU. We know that if we use these things less, we will use less
power. Eventually, though, we have an app that does nothing, and while this may
result in optimal power usage, we are still likely to get poor reviews, because the
app does nothing.

What we need is some rough idea of how bad certain things are, so we can weigh
our use of those system components appropriately.

This chapter will try to give you some “rule of thumb” heuristics of how to estimate
power usage of various system components, plus some general recommendations of
how to use less of that particular component without necessarily eliminating useful
functionality from your app.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

Also note that:

• mA = milliamps, where the ampere (or “amp”) is the SI unit of current

2419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• mAH = milliamp-hours, which is how battery capacities are measured (e.g.,
2000mAH can power a 200mA draw for 10 hours)

Screen
Screen size and battery size generally trend together. Tablets have bigger batteries
and bigger screens than do phones, which in turn are bigger in both areas than are
wearables.

A rough rule of thumb is to expect to consume ~10% of the device’s battery for every
hour you keep the screen on. Or, to look at it another way, on a phone-sized screen,
expect a power draw of ~100–200mA, depending on variations in screen size and
display technology (e.g., AMOLED).

Normally, the user is in control over how long your app is in the foreground and
therefore is “to blame” for the screen being on. There are a couple of cases where you
can make the screen be more of a problem.

The first is if you acquire() a WakeLock (other than a PARTIAL_WAKE_LOCK)… and
forget to ever release() it. Since the WakeLock will keep the screen on, the screen
will stay on, even if your app is in the background, until such time as your process is
terminated or the device shuts down due to low battery.

In fact, such WakeLock types have been deprecated, with the last of them being
flagged as deprecated in API Level 17. The recommended alternative is to use
android:keepScreenOn or setKeepScreenOn() on some View. This will keep the
screen on, so long as the activity hosting that View is in the foreground. That way,
just moving to the background releases the underlying WakeLock, allowing the
device to return to sleep.

However, in some cases, even that may be insufficient. Suppose that the user is in
your activity, and they get distracted, putting down their device for an extended
period. Unless you somehow detect the inactivity, and manually turn off the keep-
screen-on mode, the screen will stay on indefinitely, until the power is drained.
Hence, if you have a decent way of determining if the user is still using your activity,
consider using that as a way to determine when the device is inactive (e.g., a
postDelayed() that gets canceled and rescheduled when the user does something,
so if the postDelayed() Runnable gets invoked, you know the user has done nothing
for the delay period). Then, if you know the device is inactive, call
setKeepScreenOn(false) to return the screen to its normal operating mode.

SOURCES OF POWER DRAIN

2420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The academic paper “How is Energy Consumed in Smartphone Display
Applications?” has a more extended analysis of screen power draw.

Disk I/O
Disk I/O gets more efficient with bigger operations.

You can see this in something like SQLite, where wrapping a bunch of INSERT
statements into a single transaction can have substantial benefits in terms of how
long the I/O takes.

Not surprisingly, this has a similar impact on power consumption:

• Writing 1GB of data 1,000 bytes at a time is about twice as expensive as is
writing it 10,000,000 bytes at a time

• Writing 1GB of data 100 bytes at a time is about five times as expensive as is
writing it 1,000 bytes at a time

Hence, you want to try to batch up your disk I/O, where possible, to do fewer, bigger
operations, rather than lots of little ones. This includes:

• Batching database I/O in a transaction, as noted above
• Caching data that you intend to log to disk in memory and only writing

when your in-memory buffer reaches a certain size or age (though beware
the dangers of your process being terminated before you get a chance to
write the data)

• Consider using larger buffer sizes with BufferedInputStream and
BufferedOutputStream, if you can afford the heap space, though the 8KB
defaults are not that bad

As a rough model, consider disk I/O to draw ~200mA. The smaller the I/O
operations, the more time it takes you to accomplish the work, and hence the less
efficient those operations are.

While disk I/O is relatively expensive while it is occurring, most apps are not
continuously reading or writing, and therefore the total impact to the battery will
not be that bad. Apps that do continuously use the disk — such as music or video
players — will

SOURCES OF POWER DRAIN

2421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.hotmobile.org/2013/papers/full/17.pdf
http://www.hotmobile.org/2013/papers/full/17.pdf

WiFi and Mobile Data
Internet access via WiFi and mobile data networks are another area that you, the
developer, tend to control. Some apps require continuous Internet access and only
while in the foreground, like a streaming media player. But many more apps wind up
doing Internet access periodically in the background, looking for new information
on some server somewhere. Unfortunately, these are the sorts of “vampire” apps that
can drain the battery without users necessarily being aware of it. Individually, these
apps might not even appear all that bad, but when a device has dozens of them, the
combined impact results in poor battery life.

Moreover, we also have the problem of dealing with multiple ways of getting to the
Internet. Simple solutions will leave us totally oblivious to the differences in
downloading via WiFi versus mobile data, at the potential cost in battery
consumption. Slightly less-simple solutions optimize for mobile data, to try to
minimize power drain in that model. More-elaborate solutions detect what sort of
connection we have (using ConnectivityManager) and choose among different
strategies as connectivity changes.

Here are some things you can do to try to help manage your Internet power
consumption.

Use Less

The simplest, rough-cut way to consume less power for Internet access is to do less
Internet access in the first place. The less time you spend downloading (or
uploading) data, the less power you tend to draw while doing so. In a very coarse
approximation, battery consumption will be proportional to bandwidth
consumption.

And, of course, consuming less bandwidth can have other benefits, particularly for
people on metered mobile data plans.

There are chapters elsewhere in the book that cover ways to deal with bandwidth
consumption for bandwidth’s sake.

Use What You Already Downloaded

For data that is likely to be unchanging, use a disk cache, so you can avoid
downloading the same content again. Such a cache can be used at two levels:

SOURCES OF POWER DRAIN

2422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Simply by having the file in the cache can be a signal to your app that you
already have the data and can avoid any sort of request to fetch it again.

2. For HTTP, by recording some additional details (If-Modified-Since and
ETag headers), you can make a request to the server to download the content
again, where the server can tell you if you already have the current copy of
the content (via a 304 response code).

Many of the Internet libraries discussed earlier in this book offer disk caching as
part of their services.

Use In Batches

As noted earlier in this section, in a very coarse approximation, battery consumption
will be proportional to bandwidth consumption.

Unfortunately, that approximation is pretty coarse.

We as developers tend to think of Internet access as being like a faucet with two
states: on and off. In reality, wireless radios tend to have three states: full power, low
power, and standby mode. Opening a socket will bring the radio to full power. An
idle radio (no packets transferred) will drop to low power after a while, and
eventually back to standby mode. Not surprisingly, the power draw for full power is
substantially more than low power, which in turn is more than standby.

However, this model introduces some problems:

• There is some latency to move from standby or low power to full power. This
slows down data transfer while the radio “warms up”.

• The idle time needed to transition to a lower power state is substantial, with
values in the 5–15 second range well within reason. This means that making a
request has lingering power cost even after our request has completed.

The net is that you want to bring the radio to full power as few times as possible (to
minimize the percentage of time we are slowly dropping back to standby and
consuming power while we do). And, while we are at full power, we want to do all
necessary — or perhaps possibly necessary — data transfers, to avoid having to go
back to full power again any time soon.

In other words, you want to batch your network I/O. This is reminiscent of the
recommendations to batch disk I/O from earlier in this chapter.

SOURCES OF POWER DRAIN

2423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, for example, if you are going to upload data to a server, use that same pulse of
work to download anything that needs downloading, rather than having separate
schedules for uploads and downloads. Doing more in a batch and having fewer
batches will reduce the cost of the power state changes.

Use When the Server Wants You To

One common pattern for Internet access is to poll a server. This is fairly easy to code,
using something like AlarmManager to get control every so often.

However, this approach resembles children in the back seat of a car, frequently
pestering their parents with “Are we there yet?”.

Just as the parents will tell the children “We will get there when we get there, and we
will tell you when we get there”, you can take a similar approach, using Google Cloud
Messaging (GCM). Rather than poll the server periodically, have the server contact
your app on the device when there is data ready to be downloaded. This works well
in cases where polls are likely to result in “yes, we have no data” responses — the
pushes can be far less frequent than the polls would be. This can also reduce load on
your servers, for not having to respond to poll requests across all your users.

Note, though, that the battery benefits are from using GCM itself. From the
standpoint of an app, GCM is “always on”, and the power consumed by GCM is
attributed to Android itself, not to the app. Hence, pushes are almost “free” from the
standpoint of power cost. This will not be the case if you “roll your own” push system
(MQTT, WebSockets, etc.). In this case, you are attempting to keep a long-lived
socket yourself, in addition to the one maintained by GCM. Clearly, there are ways to
do this that minimize the power consumption of the long-lived socket connection,
but that is not easy to accomplish. Hence, you need to weigh the costs of depending
upon the Play Services SDK and routing your communications through Google’s
servers with the costs of trying to do your own separate push mechanism in a
battery-friendly fashion.

Use When Android Wants You To

If server push through GCM is impractical (e.g., you do not control the server), you
can reduce your power use for Internet access by batching across apps, in addition to
batching within your app.

What Google wants you to use for synchronizing data with a server is the
SyncManager. This is an overly-complicated framework that, among other things,

SOURCES OF POWER DRAIN

2424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

gives you control to sync to the server at the same time that other apps needing to
sync get control. That way, we can “warm up” the wireless radio once and handle
several apps’ worth of data transfers at once. SyncManager will be covered in this
book eventually.

Part of the reason why Android moved to make alarms with AlarmManager more
“inexact” in API Level 19+ is for this same sort of batching. While AlarmManager
certainly can be used for a variety of purposes, a lot of apps use it for Internet data
transfer. Allowing Android to control when those alarms occur allows Android to try
to coalesce them, and perhaps even time them to happen when SyncManager-led
transfers occur, with the objective of minimizing the number of times we bring the
wireless radio out of standby mode.

Use Additional Reading

The Android developer documentation has a series of “training” pages on
minimizing power consumption for data transfers. This expands upon Reto Meier’s
Google I|O presentations that touch upon this topic.

GPS
In light testing, GPS seems to draw ~35mA. Additional power will be consumed for
using those results, though, and so the net effect on the battery will be somewhat
higher, depending upon what your app does when it gets a GPS fix.

That figure is corroborated by the academic paper “An Analysis of Power
Consumption in a Smartphone”, though that paper tested rather old devices (HTC
Dream and Nexus One).

Again, different devices will have different components, and some devices’ GPS
modules may be more or less efficient.

Hence, GPS itself is a power drain, but not a massive one… if what you are doing
with the GPS fixes itself is efficient. Keeping the GPS on for several hours will
certainly take a chunk out of the battery charge, but if you are doing lots of work
(e.g., navigation app) in response to those fixes, several hours may be more than the
battery can handle.

If you can get by with the dependency on the Play Services SDK, using
LocationClient can help here, particularly in cases where the user may not be

SOURCES OF POWER DRAIN

2425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/training/efficient-downloads/index.html
https://www.usenix.org/legacy/events/usenix10/tech/full_papers/Carroll.pdf
https://www.usenix.org/legacy/events/usenix10/tech/full_papers/Carroll.pdf

moving much, as Google’s fused location provider uses the accelerometer to help
determine how much they need to use GPS versus other possible means of
determining location.

Camera
The camera will consume power while it is actively receiving input, whether that is
for the preview frames or for taking full-resolution pictures or video. Of course, it
will also consume additional power when recording images to disk, whether those
be still photos or continuous video.

A rough guide is that a camera preview will draw ~200mA plus the power for screen,
CPU, etc. That could easily total over 350mA, even if you are not doing much.
Normally, though, the camera preview is on for short periods of time, and only
under user control.

A corresponding value for recording video, including the disk I/O and camera
preview, would be ~600mA (plus the screen). That is the sort of thing you only want
to do in short bursts, as a couple of hours of video recording can really take a bite
out of battery. However, once again, normally the user is the one controlling when
video is recorded.

Additional Sources
The above sources of power drain are comparatively easy to model and provide a
heuristic for determining your possible power usage.

However, there are plenty of other things that can drain the battery, for which this
chapter does not provide such a heuristic. In many cases, the usage patterns of the
system component will vary so widely that a simple heuristic is unrealistic. In some
cases, the power drain from components from different manufacturers will be very
different. In some cases, the author of this book simply lacks sufficient expertise
with the technology to provide much help (e.g., Bluetooth).

The sections that follow will try to provide some help, though.

SOURCES OF POWER DRAIN

2426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CPU/GPU

Perhaps the biggest source of power drain beyond the components listed above will
be the processors: the CPU and the GPU. These draw a fair bit of power, which is
why processor manufacturers go to great lengths to try to adapt to varying
conditions, turning off cores or switching clock speeds, to try to minimize the power
drain.

Usually, so long as we are in the foreground, any CPU/GPU usage impact on power
will be considered “normal” by the user. Of course, trying to boost performance here
can benefit the user, not only in terms of possibly reduced power consumption, but
less lag or other forms of sluggishness. Hence, trying to optimize processor
utilization is worthwhile.

However, the bigger complaints from the user will come from power drain while
your app is in the background. The biggest source of those complaints will come
from your use of WakeLocks, preventing the device from going into a low-power sleep
state.

There are some apps available on the Play Store that reportedly can give you some
idea of how long you may be holding a WakeLock, however they generally require
root, particularly for Android 4.4+.

Sensors

Sensors, more so that many other device components, seem to get sourced from a
wide range of manufacturers. They also seem to be tied into the devices differently
from device to device. For example, some devices allow sensors to continue
collecting data while the device is otherwise in a sleep mode, while many do not.

As such, it is difficult to give much guidance in terms of power drain tied to your use
of sensors.

That being said, here are a few notes that may help:

1. Generally speaking, the more you use a sensor, the more likely it is that it
will reflect in power drain. However, only some of that power drain will be
from the sensor hardware itself. Your application code processing sensor
events will bear much of the blame. Reducing the periods of time when you
are registered for sensor events, using longer delays between events, and

SOURCES OF POWER DRAIN

2427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

sensor event batching are ways that you can reduce the power drain
associated with the sensors and your associated code.

2. Conversely, in some environments, use of a particular sensor may be “free”,
insofar as the device uses the sensor itself on a continuous basis. For
example, the accelerometer and/or gyroscope is used by devices to detect
orientation changes. Hence, those sensors must be powered on regularly,
and therefore you cannot be “blamed” for the fact that the sensors are
drawing power. Your use of the sensor data may contribute to power drain, of
course.

Audio Input and Output

Playing audio through the earpiece, speaker, wired headset, or Bluetooth, will
consume some amount of power. The amount will vary by how long you are playing
the audio and how the audio is played (e.g., Bluetooth may require more power than
on-device audio output). However, in both cases, usually the user has control over
the audio, particularly if it is to be playing for a lengthy period of time (e.g., music
player), and so the power drain associated with audio playback is less likely to be
considered to be a problem, as users will get annoyed with uncontrolled power drain,
more so than power drain that they they can manage themselves.

Recording audio via the on-board microphone or Bluetooth should also consume
some incremental power. In cases where the user is in control over when recording is
happening, the power drain is unlikely to cause the user much distress.

Where both playback and recording of audio may cause perceived power problem is
in places where the user has less control. For example, an alarm clock app should
have some sort of timeout to stop playing the ringtone (or whatever) after some
period, if the user fails to respond to the alarm. After all, it is possible that the user
is not where the device is and is not in position to stop the alarm. In this case, the
power drain will be from several components, audio playback being just one, but it
is the uncontrolled nature of the power drain that can get you in trouble.

SOURCES OF POWER DRAIN

2428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Addressing Application Size Issues

Sometimes, our apps are just too big, where “too big” can be defined as:

• Bigger than the 50MB limit imposed by the Play Store
• Bigger than some other limit imposed by some other distribution channel
• Big enough that we worry about bandwidth costs, particularly for users on

metered data plans
• Big enough that we hit some internal Dalvik limitations

This chapter will review various techniques for trying to keep the size of your app
down to a reasonable level.

Prerequisites
This chapter assumes that you have read the core chapters of the book.

Java Code, and the 64K Method Limit
In ordinary Java development, there are few limits as to how big your applications
can get. You tend to run into physical limitations, such as available system RAM,
before you run into any limitations of the programming language or runtime
environment.

And, normally, in Android applications, you do not worry about how many classes
or methods you have. However, “normally” is not “always”, and there is a specific
scenario that complex apps need to worry about.

2429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Is It?

Quoting Andy Fadden, Android platform engineer:

The issue is not with the Dalvik runtime nor the DEX file format, but with
the current set of Dalvik instructions.

You can reference a very large number of methods in a DEX file, but you
can only invoke the first 65536, because that’s all the room you have in the
method invocation instruction.

I’d like to point out that the limitation is on the number of methods
referenced, not the number of methods defined. If your DEX file has only a
few methods, but together they call 70,000 different externally-defined
methods, you’re going to exceed the limit.

[An externally-defined method is] a method defined in a separate DEX file.
For most apps this would just be framework and core library / uses-library
stuff.

Specifically, you will crash at compile time, with an error message akin to:

Unable to execute dex: method ID not in [0, 0xffff]: 65536
Conversion to Dalvik format failed: Unable to execute dex: method ID
not in [0, 0xffff]: 65536

64K Seems Like a Lot of Typing…

Well, it is, and it isn’t.

First, it is not merely your own methods. You can reach the 64K method limit
without implementing 64K methods in your application yourself. You can:

• Call lots of methods defined by the framework
• Absorb lots of methods from libraries, particularly larger libraries that offer

many more features than your app uses

This still tends to mean that simpler apps are unlikely to run into this limit, while
more complex apps might.

ADDRESSING APPLICATION SIZE ISSUES

2430

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://stackoverflow.com/a/21492160/115145

Jake Wharton has published a shell script that can provide you with a count of
referenced methods.

Mitigation Tactics

If you are relatively close to the 64K method limit, you may be able to tweak your
project to get back under the limit without having to significantly rework your
project.

Use Better Libraries

One common culprit of hitting the 64K method limit comes from libraries, as their
methods count along with yours. Hence, choosing different libraries can perhaps
reduce your method count.

One specific case of this comes from the code generated by Google’s Protocol
Buffers. If you are using Protocol Buffers heavily, your generated classes may each
be definining hundreds of unused methods. Switching to an alternative
implementation can reduce this significantly. Some such implementations include:

• micro-protobuf
• Square’s Wire

Use ProGuard

If your debug builds are failing due to the 64K method limit, try a release build. If
that works, the reason is ProGuard and its ability to strip out code that is deemed
to be unreachable.

In this case, you can “buy yourself some time” by arranging to build your app in
debug mode with ProGuard, but without ProGuard’s normal code obfuscation work
(e.g., -dontoptimize -dontobfuscate switches in the ProGuard configuration).
Quoting Eric Lafortune, ProGuard’s lead developer:

If you apply ProGuard with shrinking enabled but optimization and
obfuscation disabled (-dontoptimize -dontobfuscate), the code will already
be more compact, and you can still use a debugger. The source files, class
names, method names, line numbers, etc remain unchanged and any
breakpoints in removed unreachable code are irrelevant.

ADDRESSING APPLICATION SIZE ISSUES

2431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/JakeWharton/6002797
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/micro-protobuf/
https://github.com/square/wire
https://groups.google.com/d/msg/android-developers/hngL43i62hc/srudKBjjoyMJ

However, this is not possible with standard Eclipse builds and is difficult to arrange
with Ant. With Gradle-based builds, it should be possible to set this up using
runProguard true and a custom ProGuard configuration file:

android {
buildTypes {

debug {
runProguard truetrue
proguardFile 'proguard-no-obfuscate.txt'

}
}

}

(where proguard-no-obfuscate.txt contains the -dontoptimize -dontobfuscate
switches)

Mitigation Strategies

If the aforementioned tactics are insufficient — or if they help somewhat, but you
are still near the limit with a lot of development yet to be done — you may need to
pursue some more strategic ways of resolving your application size.

Don’t Go Overboard

One source of method explosion comes from too much adherence to server-side
Java coding styles.

For example, if you find yourself defining hundreds of interfaces and/or abstract
classes, with Factory classes (and perhaps FactoryFactory classes), you are more
likely to hit the 64K method limit due to all those separate definitions. Consider
whether the flexibility that you believe that you obtain from this coding style is
worth the risk.

Smaller Apps, Loosely Connected

It may be that you are simply creating an app that is entirely too complicated for
the Android environment. Android’s Intent system is designed to enable apps to
inter-operate, and so you may need to consider splitting your app into pieces, such
as:

• A suite of related apps
• A host app and plugin apps that enable additional functionality

ADDRESSING APPLICATION SIZE ISSUES

2432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An app and an affiliated Web app, where certain functionality is handled by
the Web app in a standard browser

Splitting Into Separate DEX Files

It is also possible — though rather risky — to split your app into multiple DEX files.
The basic technique is outlined by Google in an Android Developers Blog post.

In Google’s formulation, the secondary DEX file is packaged as an application asset
and is unpacked into internal storage on first run of your app. This keeps all of your
code in your one APK file for distribution.

The risk comes in if you decide to not ship the secondary DEX file with the APK,
but rather obtain it by other means, such as downloading it from your own Web
site. If somebody hacks your Web site, or employs a man-in-the-middle attack
when users try downloading the DEX file, your DEX could be replaced by one that
contains malware or otherwise harms the user. If you elect to distribute the
secondary DEX files yourself by this sort of means, please consider the security
ramifications and take appropriate steps to ensure that the DEX you download is
the unmodified DEX file.

Native Code
Native code, implemented as NDK-compiled libraries, represent another source of
app bloat. This will occur regardless of whether the NDK code is yours or if you are
using a third-party library that supplies those binaries (e.g., SQLCipher for
Android).

Native code is not intrinsically large. However, in some cases, native code is a port
from some other environment (or environments) and may contain a lot of stuff that
your app does not need. Worse, ProGuard will not strip out unused native code, as
its algorithms only work with Java-style bytecode. Hence, it is not out of the
question for apps to devote several MB just to the Linux .so files that make up the
NDK-compiled libraries.

Fortunately, there are some workarounds.

ADDRESSING APPLICATION SIZE ISSUES

2433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html

Mitigation via Per-CPU APKs

Some distribution channels, like the Play Store, support publishing multiple
versions of an APK, with different versions for different CPU architectures. Hence,
you could have one APK with x86 binaries and one APK with ARM binaries, as
opposed to having one “fat binary” with both.

While setting this up using the classic build tools would be a major pain, Gradle for
Android makes this fairly straight-forward, using product flavors for the CPU
architectures:

productFlavors {
x86 {

ndk {
abiFilter "x86"

}
}
arm {

ndk {
abiFilter "armeabi-v7a"

}
}
mips {

ndk {
abiFilter "mips"

}
}

}

Using product flavors this way will give you separate commands for compiling each
of the CPU architectures (e.g., gradle assembleArmReleasegradle assembleArmRelease).

More details about using the NDK with Gradle can be found elsewhere in the book.

Mitigation via libhoudini

As is noted in the chapter on the NDK, libhoudini is proprietary Intel code that
allows ARM-compiled NDK binaries to run on x86 CPUs, using the same sort of
opcode translation that is used by the Android emulator. Many, though not all,
x86-powered Android devices have libhoudini. Those that do could run your app
even if you only ship ARM NDK binaries and not x86 ones. This gives you the same
sort of space savings as you would get by publishing separate ARM vs. x86 APKs
(per the previous section), without having to manage multiple APKs yourself. The
cost is speed, as the translation layer adds significant overhead, much as you see
with the Android emulator running ARM emulator images instead of x86 ones.

ADDRESSING APPLICATION SIZE ISSUES

2434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mitigation via Ignoring Non-ARM

Of course, what a lot of developers do is simply only worry about ARM.

While Google does not publish percentages of CPU architectures the way they do
Android OS versions, it is safe to say that, as of early 2014, ~1% of Android devices
are powered by non-ARM CPUs. That percentage may climb, particularly as Intel
pushes more x86 chipsets. But the vast majority of Android devices are powered by
ARM. So, even if some of those x86 environments lack libhoudini (e.g., the
manufacturer did not license libhoudini from Intel), they are so few in number
that developers are prone to ignore x86.

Ironically, what drives x86 for developers is the development environment itself,
not the production environment. The x86 emulator is nicely responsive, compared
to a similarly-configured ARM emulator image. Many developers eschew the ARM
emulator entirely, with it being too slow. Hence, developers may be interested in
having x86 binaries in the APK to allow the app to run on the x86 emulator (which
lacks libhoudini). In this case, it may be worthwhile to have a dedicated release
build process that strips out the x86 binaries, if the space that those binaries take
up is more than you can afford.

Images
Bitmap images are notorious for taking up lots of heap space. However, they can
also swell the size of your APK. While the bitmap PNG or JPEG files will be
compressed on disk, if you have enough of them, they can still consume many MB
of space in the APK, particularly since the APK cannot compress them further.

Mitigation via Resource Aliases

You may have multiple copies of the same image.

The example cited in the Android documentation is where you want to have locale-
specific drawable images. For example, perhaps you want to show a flag, and you
use language resource sets to try to map the right flag to the right language.
However, some flags are going to be used in multiple languages, such as the
Canadian flag being needed for en-rCA and fr-rCA. By default, you would place
your flag icon in each of those resource sets, duplicating your results. This gets
worse if you have a few versions of the same flag icon for different densities.

ADDRESSING APPLICATION SIZE ISSUES

2435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, you can elect to use a resource aliases to handle this differently.

Suppose that your code refers to a flag drawable resource (e.g., @drawable/flag or
R.drawable.flag). For many languages, you would have a unique flag in the
appropriate resource set. For cases where the same flag is used in multiple
situations:

1. Put the flag in a resource set that is not tied to locale (e.g., res/
drawable-hdpi/ instead of res/drawable-en-rCA-hdpi/), for as many
densities as you choose, but under a different name (e.g., flag_canada.png
instead of flag.png)

2. Create a small XML file, flag.xml, in each of the locale-specific directories
(e.g., res/drawable-en-rCA/ and res/drawable-fr-rCA/), pointing to your
flag_canada drawable:

<?xml version="1.0" encoding="utf-8"?>
<bitmap<bitmap

xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/flag_canada" />/>

When you reference R.drawable.flag on an en-rCA or fr-rCA device, Android will
read in the XML resource, then turn around and retrieve the flag_canada
drawable, and use that. Since the two XML files are likely to be smaller than the
sum total of the duplicate copies, you save disk space.

Mitigation via pngquant

In practice, the above technique is just not that commonly used, because it
addresses a fairly narrow scenario. A more general-purpose solution is to try to
tweak the images to be visually nearly identical, yet take up less disk space.

There are a variety of tools for this, mostly aimed at Web development, where
smaller image file sizes means faster-loading Web pages.

One such tool is pngquantpngquant. Given a PNG file as input, it generates a smaller PNG file
as output, one with an optimized color palette, using mathematical techniques to
choose colors that will maintain as much of the original look as possible. Many of
the images in this book were optimized using pngquantpngquant, at a substantial savings in
disk size, without materially sacrificing image quality.

ADDRESSING APPLICATION SIZE ISSUES

2436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://pngquant.org/
http://pngquant.org/

APK Expansion Files
The ultimate solution to disk space concerns, for distribution through the Play
Store, is to get stuff out of your app entirely and distribute that stuff by other
means. The Play Store offers APK expansion files with this in mind. You can publish
one or two expansion files, each containing up to 2GB of files. While these will not
be treated as resources or assets, you do have access to the file contents at runtime.
Game developers will use these for sound effects, additional artwork, and so on.
The biggest limitation is that these files may not be supported by all distribution
channels.

ADDRESSING APPLICATION SIZE ISSUES

2437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/google/play/expansion-files.html

Trail: Alternatives for App
Development

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of Alternative Environments

You might think that Android is all about Java. The official Android Software
Development Kit (SDK) is for Java development, the build tools are for Java
development, the discussion groups and blog posts and, yes, most books are for Java
development. Heck, most of this book is about Java.

However (and with apologies to William Goldman), it just so happens that Android
is only mostly Java. There’s a big difference between mostly Java and all Java. Mostly
Java is slightly not Java.

So, while Android’s “sweet spot” will remain Java-based applications for the near
term, you can still create applications using other technologies. This part of the
book will take a peek at some of those alternatives.

This chapter starts with an examination of the pros and cons of Android’s Java-
centric strategy. It then enumerates some reasons why you might want to use
something else for your Android applications. The downsides of alternative Android
application environments – lack of support and technical challenges – are also
discussed.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

2439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the Beginning, There Was Java…
The core Android team made a fairly reasonable choice of language when they chose
Java. It is a very popular language, and in the mobile community it had a clear
predecessor in Java Micro Edition (J2ME). Lacking direct access to memory
addresses (so-called “pointers”), a Java-based application will be less prone to
developer errors leading to buffer overruns, resulting in possible hacks. And there is
a fairly robust ecosystem around Java, in terms of educational materials, existing
code bases, integrated development environments (IDEs), and so on.

However, while you can program Android in the Java language, an Android device
does not run a Java application. Instead, your Java code is converted into something
that runs on the “Dalvik virtual machine”. This is akin to the technology used for
regular Java applications, but Dalvik is specifically tuned for Android’s environment.
Moreover, it limits the dependency of Android on Java itself to a handful of
programming tools, important as Java’s stewardship moves from Sun to Oracle to
wherever.

That Dalvik virtual machine is also capable of running code from other
programming languages, a feature that makes possible much of what this book
covers.

… And It Was OK
No mobile development environment is perfect, and so the combination of Java and
Android has its issues.

Java uses garbage collection to save people from having to keep track of all of their
memory allocations. That works for the most part, and it is generally a boon to
developer productivity. However, it is not a cure-all for every memory and resource
allocation problem. You can still have what amounts to “memory leaks” in Java, even
if the precise mechanics of those leaks differ from the classic leaks you get in C, C++,
etc.

Most importantly, though, not everybody likes Java. It could be because they lack
experience with it, or perhaps they have experience with it and did not enjoy that
experience. Certainly, Java is slowly being considered as a language for big enterprise
systems and, therefore, is not necessarily “cool”. Advocates of different languages will
have their own pet peeves with Java as well (e.g., to a Ruby developer, Java is really
verbose).

THE ROLE OF ALTERNATIVE ENVIRONMENTS

2440

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/J2me

So, while Java was not a bad choice for Android, it was not perfect, either.

Bucking the Trend
However, just because Java is the dominant way to build apps for Android, that does
not mean it is the only way, and for you, it may not even be the best way.

Perhaps Java is not in your existing skill set. You might be a Web developer, more
comfortable with HTML, CSS, and JavaScript. There are frameworks to help you with
that. Or, maybe you cut your teeth on server-side scripting languages like Perl or
Python — there are ways to sling that code on Android as well. Or perhaps you
already have a bunch of code in C/C++, such as game physics algorithms, that would
be painful to rewrite in Java — you should be able to reuse that code too.

Even if you would be willing to learn Java, it may be that your inexperience with Java
and the Android APIs will just slow you down. You might be able to get something
built much more quickly with another framework, even if you wind up replacing it
with a Java-based implementation in the future. Rapid development and prototyping
is frequently important, to get early feedback with minimal investment in time.

And, of course, you might just find Java programming to be irritating. You would not
be the first, nor the last, to have that sentiment. Particularly if you are getting into
Android as a hobby, rather than as part of your “day job”, having fun will be
important to you, and you might not find Java to be much fun.

Support, Structure
However, “friendly” and “fully supported” are two different things.

Some alternatives to Java-based development are officially supported by the core
Android team, such as C/C++ development via the Native Development Kit (NDK)
and Web-style development via HTML5.

Some alternatives to Java-based development are supported by companies. Adobe
supports AIR, Nitobi supports PhoneGap, Rhomobile supports Rhodes, and so on.
Other alternatives are supported by standards bodies, like the World Wide Web
Consortium (W3C) supporting HTML5. Still others are just tiny projects with only
the backing of a couple of developers.

THE ROLE OF ALTERNATIVE ENVIRONMENTS

2441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will need to make the decision for yourself which of these levels of support will
meet your requirements. For many things, support is not much of an issue, but there
will always be cases where support becomes paramount (e.g., enterprise application
development).

Caveat Developer
Of course, going outside the traditional Java environment for Android development
has its issues, beyond just how much support might be available.

Some may be less efficient, in terms of processor time, memory, or battery life, than
will development in Java. C/C++, on the whole, is probably better than Java, but
HTML5 may be worse, for example. Depending on what you are writing and how
heavily it will be used will determine how critical that inefficiency will be.

Some may not be available on all devices. Right now, Flash is the best example of
this — some devices offer some amount of Flash support, while other devices have
no Flash at all. Similarly, HTML5 support was only added to Android in Android 2.0,
so devices running older versions of Android do not have HTML5 as a built-in
option.

Every layer between you and officially supported environments makes it that much
more difficult for you to ensure compatibility with new versions of Android, when
they arise. For example, if you create an application using PhoneGap, and a new
Android version becomes available, there may be incompatibilities that only the
PhoneGap team can address. While they will probably address those quickly — and
they may provide some measure of insulation to you from those incompatibilities —
the response time is outside of your control. In some cases, that is not a problem,
but in other cases, that might be bad for your project.

Hence, just because you are developing outside of Java does not mean everything is
perfect. You simply have to trade off between these problems and the ones Java-
based development might cause you. Where the balance lies is up to each individual
developer or firm.

THE ROLE OF ALTERNATIVE ENVIRONMENTS

2442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTML5

Prior to the current wave of interest in mobile applications, the technology du jour
was Web applications. A lot of attention was paid to AJAX, Ruby on Rails, and other
techniques and technologies that made Web applications climb close to the
experience of a desktop application, and sometimes superior.

The explosion of Web applications eventually drove the next round of
enhancements to Web standards, collectively called HTML5. Android 2.0 added the
first round of support for these HTML5 enhancements. Notably, Android supports
offline applications and Web storage, meaning that HTML5 becomes a relevant
technique for creating Android applications, without dealing with Java.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the chapter on
WebView would be a good idea, as would reading the introduction to this trail.

Offline Applications
The linchpin for using HTML5 for offline applications — on Android or elsewhere
— is the ability for those applications to be used when there is no connectivity,
either due to problems on the client side (e.g., on an airplane sans WiFi) or on the
server side (e.g., Web server maintenance).

2443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Does It Mean?

Historically, Web applications have had this annoying tendency to require Web
servers. This led to all sorts of workarounds for offline use, up to and including
shipping a Web server and deploying it to the desktop.

HTML5 solves this problem by allowing Web pages to specify their own caching
rules. A Web app can publish a “cache manifest”, describing which resources:

1. Can be safely cached, such that if the Web server is unavailable, the browser
will just use the cached copy

2. Cannot be safely cached, such that if the Web server is unavailable, the
browser should fail like it normally does

3. Have a “fallback” resource, such that if the Web server is unavailable, the
cached fallback resource should be used instead

For mobile devices, this means that a fully HTML5-capable browser should be able
to load all its assets up front and keep them cached. If the user loses connectivity,
the application will still run. In this respect, the Web app behaves almost identically
to a regular app.

How Do You Use It?

For this chapter, we will use the Checklist “mini app” created by Alex Gibson. While
the most up-to-date version of this app can be found on Mr. Gibson’s Web site, this
chapter will review the copy found in HTML5/Checklist. This copy is also hosted
online on the CommonsWare site, or via a shortened URL: http://bit.ly/
cw-html5.

About the Sample App

Checklist is, as the name suggests, a simple checklist application. When you first
launch it, the list will be empty:

HTML5

2444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://alxgbsn.co.uk/checklist/
http://github.com/commonsguy/cw-omnibus/tree/master/HTML5/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/HTML5/Checklist
http://commonsware.com/ABJ/Checklist/

Figure 649: The Checklist, as initially launched

You can enter some text in the top field and click the Add button to add it to the list:

HTML5

2445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 650: The Checklist, with one item added

You can “check off” individual items, which are then displayed in strike-through:

HTML5

2446

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 651: The Checklist, with one item marked as completed

You can also delete the checked entries (via the Delete Checked button) or all
entries (via the Delete All button), which will pop up a confirmation dialog before
proceeding:

HTML5

2447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 652: The Checklist’s delete confirmation dialog

“Installing” Checklist on Your Phone

To access Checklist on your Android device, visit one of the URLs above for the
hosted edition using the Browser application — the shortened one may be easiest to
enter into the browser on the device. You can then add a bookmark for it (More >
Add bookmark from the browser’s options menu) to come back to it later.

You can even set up a shortcut for the bookmark on your home screen, if you so
choose — just long-tap on the background, choose Bookmark, then choose the
Checklist bookmark you set up before.

Examining the HTML

All of that is accomplished using just a handful of lines of HTML:

<!DOCTYPE html>
<html<html lang="en" manifest="checklist.manifest">>
<head><head>
<meta<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />/>
<title><title>Checklist</title></title>
<meta<meta name="viewport"

HTML5

2448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;" />/>
<meta<meta name="apple-mobile-web-app-capable" content="yes" />/>
<meta<meta name="apple-mobile-web-app-status-bar-style" />/>
<link<link rel="apple-touch-startup-image" href="splashscreen.png" />/>
<link<link rel="stylesheet" href="styles.css" />/>
<link<link rel="apple-touch-icon-precomposed"

href="apple-touch-icon-precomposed.png" />/>
</head></head>
<body><body>
<section><section>

<header><header>
<button<button type="button" id="sendmail">>Mail</button></button>
<h1><h1>Checklist</h1></h1>

</header></header>
<article><article>

<form<form id="inputarea" onsubmit="addNewItem()">>
<input<input type="text" name="name" id="name" maxlength="75"

autocorrect placeholder="Tap to enter a new item…" />/>
<button<button type="button" id="add">>Add</button></button>

</form></form>
<ul<ul id="maillist">>
<li<li class="empty"><a>>Mail remaining items

<p<p id="totals">>Total: <span>0
<span>Remaining: <span>0</p></p>

<ul<ul id="checklist">>
<li<li class="empty">>Loading……

</article></article>
<fieldset><fieldset>

<button<button type="button" id="deletechecked">>Delete Checked</button></button>
<button<button type="button" id="deleteall">>Delete All</button></button>

</fieldset></fieldset>
</section></section>
<script<script src="main.js"></script>></script>
</body></body>
</html></html>

For the purposes of offline applications, though, the key is the manifest attribute of
our html element. Here, we specify the relative path to a manifest file, indicating
what the rules are for caching various portions of this application offline.

Examining the Manifest

So, since the manifest is where all the fun is, here is what Checklist’s manifest looks
like:

CACHE MANIFEST
#version 54
styles.css

HTML5

2449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

main.js
splashscreen.png

The HTML5 manifest format is extremely simple. It starts with a CACHE
MANIFEST line, followed by a list of files (technically, relative URLs) that should be
cached. It also supports comments, which are lines beginning with #.

The manifest can also have a NETWORK: line, followed by relative URLs that should
never be cached. Similarly, the manifest can have a FALLBACK: line, followed by pairs
of relative URLs: the URL to try to fetch off the network, followed by the URL of a
cached resource to use if the network is not available.

In principle, the manifest should request caching for everything that the application
needs to run, though the page that requested the caching (index.html in this case)
is also cached.

Web Storage
Caching the HTML5 application’s assets for offline use is all well and good, but that
will be rather limiting on its own. In an offline situation, the application would not
be able to use AJAX techniques to interact with a Web service. So, if the application
is going to be able to store information, it will need to do so on the browser itself.

Google Gears and related tools pioneered this concept and blazed the trail for what
is now variously called “Web Storage” or “DOM Storage” for HTML5 applications. An
HTML5 app can store data persistently on the client, within client-imposed limits.
That, in conjunction with offline asset caching, means an HTML5 application can
deliver far more value when it lacks an Internet connection, or for data that just
does not make sense to store “in the cloud”.

Note that, technically, Web Storage is not part of HTML5, but is a related
specification. However, it tends to get “lumped in with” HTML5 in common
conversation.

What Does It Mean?

On a Web Storage-enabled browser, your JavaScript code will have access to a
localStorage object, representing your application’s data. More accurately, each
“origin” (i.e., domain) will have a distinct localStorage object on the browser.

HTML5

2450

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The localStorage object is an “associative array”, meaning you can work with it
either via numerical indexes or string-based keys at your discretion. Values typically
are strings. You can:

1. Find out how many entries are in the array via length()
2. Get and set items by key via getItem() and setItem()
3. Get the key for a numerical index via key()
4. Remove individual entries via removeItem() or remove all items via clear()

This means you do not have the full richness of a SQL database, like you might have
with SQLite in a native Android application. But, for many applications, this should
suffice.

How Do You Use It?

Checklist stores the list items as keys in the associative array, with a value of 0 for a
regular item and 1 for a deleted item. Here, we see the code for putting a new item
into the checklist:

trytry {
localStorage.setItem(strippedString, data);

}
catchcatch (e) {

ifif (e == QUOTA_EXCEEDED_ERR) {
alert('Quota exceeded!');

}
}

Here is the code where those items are pulled back out of storage and put into an
array for sorting and, later, display as DOM elements on the Web page itself:

/*get all items from localStorage and push them one by one into an
array.*/
forfor (i = 0; i <= listlength; i++) {

varvar item = localStorage.key(i);
myArray.push(item);

}

/*sort the array into alphabetical order.*/
myArray.sort();

When the user checks the checkmark next to an item, the storage is updated to
toggle the checked setting persistently:

HTML5

2451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

/*toggle the check flag.*/
ifif (target.previousSibling.checked) {

data = 0;
}
elseelse {

data = 1;
}
/*save item in localStorage.*/
trytry {

localStorage.setItem(name, data);
} catchcatch (e) {

ifif (e == QUOTA_EXCEEDED_ERR) {
alert('Quota exceeded!');

}
}

Checklist also has code to delete items from storage, either all those marked as
checked:

/*remove every item from localStorage that has the data flag checked.*/
whilewhile (i <= localStorage.length-1) {

varvar key = localStorage.key(i);
ifif (localStorage.getItem(key) === '1') {

localStorage.removeItem(key);
}
elseelse { i++; }

}

… or all items:

/*deletes all items in the list.*/
deleteAll: functionfunction() {

/*ask for user confirmation.*/
varvar answer = confirm("Delete all items?");

/*if yes.*/
ifif (answer) {

/*remove all items from localStorage.*/
localStorage.clear();
/*update view.*/

checklistApp.getAllItems();
}
/*clear up.*/
deletedelete checklistApp.deleteAll;

},

HTML5

2452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Web SQL Database

Android’s built-in browser also supports a “Web SQL Database” option, one where
you can use SQLite-style databases from JavaScript. This adds a lot more power than
basic Web Storage, albeit at a complexity cost. It is also not part of an active
standard — the WHATWG team working on this standard has set it aside for the
time being.

You might consider evaluating Lawnchair, which is a JavaScript API that allows you
to store arbitrary JSON-encoded objects. It will use whatever storage options are
available, and therefore will help you deal with cross-platform variety. In particular,
it supports the Google Gears facility found in some older versions of Android.

Going To Production
Creating a little test application requires nothing magical. Presumably, though, you
are interested in others using your application – perhaps many others. Classic Java-
based Android applications have to deal with testing, having the application digitally
signed for production, distribution through various channels (such as the Android
Market), and updates to the application by one means or another. Those issues do
not all magically vanish because HTML5 is used as the application environment.
However, HTML5 does change things significantly from what Java developers have to
do.

Testing

Since HTML5 works in other browsers, testing your business logic could easily take
advantage of any number of HTML and JavaScript testing tools, from Selenium to
QUnit to Jasmine.

For testing on Android proper — to ensure there are no issues related to Android’s
browser implementation — you can use Selenium’s Android Driver or Remote
Control modes.

Signing and Distribution

Unlike native Android applications, you do not need to worry about signing your
HTML5 applications.

HTML5

2453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.w3.org/TR/webdatabase/
https://github.com/brianleroux/lawnchair
http://seleniumhq.org/
http://docs.jquery.com/Qunit
http://jasmine.pivotallabs.com/
http://code.google.com/p/selenium/wiki/AndroidDriver
http://www.artofsolving.com/node/48
http://www.artofsolving.com/node/48

The downside of this is that there is no support for distribution of HTML5
applications through the Play Store, which today only supports native Android apps.
Users will have to find your application by one means or another, visit it in the
browser, bookmark the page, and possibly create a home screen shortcut to that
bookmark.

Updates

Unlike native Android applications, which by default must be updated manually,
HTML5 applications will be transparently updated the next time they run the app
while connected to the Internet. The offline caching protocol will check the Web
server for new editions of files before falling back to the cached copies. Hence, there
is nothing more for you to do other than publish the latest Web app assets.

Issues You May Encounter
Unfortunately, nothing is perfect. While HTML5 may make many things easier, it is
not a panacea for all Android development problems.

This section covers some potential areas of concern you will want to consider as you
move forward with HTML5 applications for Android.

Android Device Versions

Not all Android devices support HTML5 — only those running Android 2.x or
higher. Ideally, therefore, you do a bit of “user-agent sniffing” on your Web server
and redirect older Android users to some other page explaining the limitations in
their device.

Here is the user-agent string for a Nexus One device running Android 2.1:

Mozilla/5.0 (Linux; U; Android 2.1-update1; en-us; Nexus One
Build/ERE27) AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile
Safari/530.17

As you can see, it is formatted like a typical modern user-agent string, meaning it is
quite a mess. It does indicate it is running Android 2.1-update1.

Eventually, somebody will create a database of user-agent strings for different device
models, and from there we can derive appropriate regular expressions or similar
algorithms to determine whether a given device can support HTML5 applications.

HTML5

2454

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screen Sizes and Densities

HTML5 applications can be run on a wide range of screen sizes, from QVGA
Android devices to 1080p LCDs and beyond. Similarly, screen densities may vary
quite a bit, so while a 48x48 pixel image on a smartphone may be an appropriate
size, it may be too big for a 1080p television, let alone a 24” LCD desktop monitor.

Other than increasing the possible options on the low end of screen sizes, none of
this is unique to Android. You will need to determine how best to design your
HTML and CSS to work on a range of sizes and densities, even if Android were not
part of the picture.

Limited Platform Integration

HTML5, while offering more platform integration than ever before, does not come
close to covering everything an Android application might want to be able to do. For
example, an ordinary HTML5 application cannot:

1. Launch another application
2. Work with the contacts database
3. Raise a notification
4. Do work truly in the background (though “Web workers” may alleviate this

somewhat someday)
5. Interact with Bluetooth devices
6. Record audio or video
7. Use the standard Android preference system
8. Use speech recognition or text-to-speech
9. And so on

Many applications will not need these capabilities, of course. And, one can expect
that other application environments, like PhoneGap, will evolve into “HTML5 Plus”
for Android. That way, you could create a stock application that works across all
devices and an enhanced Android application that leverages greater platform
integration, at the cost of some additional amount of programming.

Performance and Battery

There has been a nagging concern for some time that HTML-based user interfaces
are inefficient compared to native Android UIs, in terms of processor time, memory,

HTML5

2455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and battery. For example, one of the stated reasons for avoiding BONDI-style Web
widgets for the Android home screen is performance.

Certainly, it is possible to design HTML5 applications that will suck down the
battery. For example, if you have a hunk of JavaScript code running every second
indefinitely, that is going to consume a fair amount of processor time. However,
outside of that, it seems unlikely that an ordinary application would be used so
heavily as to materially impact battery life. Certainly, more testing will need to be
done in this area.

Also, an HTML5 application may be a bit slower to start up than are other
applications, if the Browser has not been used in a while, or if the network
connection is there but has minimal bandwidth to your server.

Look and Feel

HTML5 applications can certainly look very slick and professional – after all, they
are built with Web technologies, and Web apps can look very slick and professional.

However, HTML5 applications will not necessarily look like standard Android
applications, at least not initially. Some enterprising developers will, no doubt,
create some reusable CSS, JavaScript, and images that will, for example, mirror an
Android native Spinner widget (a type of drop-down control). Similarly, HTML5
applications will tend to lack options menus, notifications, or other UI features that
a native Android application may well use.

This is not necessarily bad. Considering the difficulty in creating a very slick-looking
Android application, HTML5 applications may tend to look better than their
Android counterparts. After all, there are many more people skilled in creating slick
Web apps than are skilled in creating slick Android apps.

However, some users may complain about the look-and-feel disparity, just because it
is different.

Distribution

HTML5 applications can be trivially added to a user’s device — browse, bookmark,
and add a shortcut to the home screen.

HTML5

2456

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/BONDI_(OMTP)

However, HTML5 applications will not show up in the Play Store, so users trained to
look at the Market for available applications will not find HTML5 applications, even
ones that may be better than their native counterparts.

It is conceivable that, someday, the Play Store will support HTML5 applications. It is
also conceivable that, someday, Android users will tend to find their apps by means
other than searching the Android Market, and will be able to get their HTML5 apps
that way. However, until one of those becomes true, HTML5 applications may be less
“discoverable” than their native equivalents.

HTML5: The Baseline
HTML5 is likely to become rather popular for conventional application
development. It gives Web developers a route to the desktop. It may be the only
option for Google’s Chrome OS. And, with ever-improving support on popular
mobile devices — Android among them — developers will certainly be enticed by
another round of “write once, run anywhere” promises.

It is fairly likely that, over time, HTML5 will be the #2 option for Android
application development, after the conventional Java application written to the
Android SDK. That will make HTML5 the baseline for comparing alternative
Android development options — not only will those options be compared to using
the SDK, they will be compared to using HTML5.

HTML5

2457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PhoneGap

PhoneGap is perhaps the original alternative application framework for Android,
arriving on the scene in early 2009. PhoneGap is open source, backed by Adobe, who
in 2011 acquired Nitobi, the firm founded by PhoneGap’s creators.

Prerequisites
Understanding this chapter requires that you have read the chapter on WebView and
the chapter on HTML5.

What Is PhoneGap?
As the PhoneGap About page puts it:

Mobile development is a mess. Building applications for each device — iOS,
Android, Windows Phone and more — requires different frameworks and
languages. One day, the big players in mobile may decide to work together
and unify third-party app development processes. Until then, PhoneGap
will use standards-based web technologies to bridge web applications and
mobile devices. Plus, because PhoneGap apps are standards compliant,
they’re future-proofed to work with browsers as they evolve.

PhoneGap, today, focuses on bridging the gap between Web technologies and native
mobile development, with access to more features than HTML5 applications have.

2459

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://phonegap.com/about/

What Do You Write In?

A PhoneGap application is made up of HTML, CSS, and JavaScript, no different than
a mobile Web site or HTML5 application, except that the Web assets are packaged
with the application, rather than downloaded on the fly.

A pre-installed PhoneGap application, therefore, can contain comparatively large
assets, such as complex JavaScript libraries, that might be too slow to download over
slower EDGE connections. However, PhoneGap will still be limited by the speed of
mobile devices and how quickly WebKit can load and process those assets.

Also, development for WebKit-for-mobile has its differences over development for
WebKit-for-desktops, particularly with respect to touch versus mouse events. You
may want to develop using mobile layers of JavaScript frameworks (e.g., jQT versus
plain jQuery) where practical.

What Features Do You Get?

As with an HTML5 application, you get the basic capabilities of a Web browser,
including AJAX support. Beyond that, PhoneGap adds a number of JavaScript APIs
to allow you to get at the underlying features of the Android platform. At the time of
this writing, that includes:

1. Accelerometer access, for detecting movement of the device
2. Audio recording
3. Camera access, for taking still pictures
4. Database access, both to databases of your creation (SQLite) or others built

into Android (e.g., contacts)
5. File system access, such as to the SD card or other external storage
6. Geolocation, for determining where the device is
7. Vibration, for shaking the phone (e.g., force-feedback)

Since some of these are part of the HTML5 specification (e.g., geolocation), you have
your choice of APIs. Also, this list changes over time, so you may have access to more
than what is described here.

What Do Apps Look Like?

They will look like Web pages, more so than native Android apps. You can use CSS
and images to mimic the Android look and feel to some extent, but only for those

PHONEGAP

2460

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://jqtjs.com/
http://jquery.com/

sorts of widgets that are readily able to be created in both Android and HTML. For
example, the Android Spinner widget — which resembles a drop-down list — may
be difficult to mimic in HTML.

Here is a screenshot of a PhoneGap example application:

Figure 653: A PhoneGap example application

How Does Distribution Work?

Distributing a PhoneGap application is pretty much identical to distributing any
other standard Android application. After testing, you will create a standard APK file
with the Android build tools, from an Android project generated for you by
PhoneGap. This project will contain the Java, XML, and other necessary bits to wrap
around your HTML, CSS, and JavaScript to make up your application. Then, you
digitally sign the application and upload it to the Play Store or any other
distribution mechanism you wish to use.

What About Other Platforms?

PhoneGap is not just for Android. You can create PhoneGap applications for iOS,
Blackberry, some flavors of Symbian, and more. In theory, at least, you can create

PHONEGAP

2461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

one application using HTML, CSS, JavaScript, and the PhoneGap JavaScript APIs,
and have it run across many devices.

There are a couple of limitations that will hamper your progress to that goal:

• The Web browsing component used by PhoneGap across all those platforms
is not identical. Even multiple platforms using WebKit will have different
WebKit releases, based upon what was available when WebKit was
integrated into a given device’s firmware. Hence, you will want to test and
ensure your CSS, in particular, works as you would expect on as many
devices as possible.

• Not all PhoneGap JavaScript APIs are available on all devices as yet, due to a
variety of factors (e.g., not exposed in the platform’s native APIs, lack of
engineering time to hoist the capability into the PhoneGap APIs). There is a
table on the PhoneGap site that will keep you apprised of what works and
what does not across the devices. You will want to restrict your feature use to
match your desired platforms, or restrict your platforms to match your
desired features.

How Is It Licensed?

PhoneGap is available under the Apache Software License 2.0. In 2011, Nitobi
contributed PhoneGap to the Apache Software Foundation (ASF) for independent
management, just prior to being acquired by Adobe. This has now turned into
Apache Cordova.

Using PhoneGap
Now, let’s look at more of the mechanics for using PhoneGap.

PhoneGap’s installation and usage, as of the time of this writing, normally requires
an expert in Java-based Android development. You need to install a whole bunch of
tools, edit configuration files by hand, and so forth. If you want to do all of that,
documentation is available on the PhoneGap site.

If you are reading this chapter, there’s a decent chance that you would rather skip all
of that. Hence, for many, the best answer is the PhoneGap/Build service.

PHONEGAP

2462

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://phonegap.com/about/feature/
http://incubator.apache.org/callback/
http://build.phonegap.com

Installation

The PhoneGap Web site will allow you to download the latest PhoneGap tools as a
ZIP archive. You can unpack those wherever it makes sense for your development
machine and platform.

For Android development, that is all of the PhoneGap-specific installation you will
need. However, you will need the Android SDK and related tools (e.g., Eclipse, if you
wish to use Eclipse) for setting up the project.

Creating and Installing Your Project

A PhoneGap Android project is, at its core, a regular Android project, which you can
create following the instructions outlined earlier in this book. To convert the
standard generated “Hello, World” application into a PhoneGap project, you need to
do the following:

• From the Android/ directory of wherever you unZIPped the PhoneGap ZIP
file, copy the PhoneGap JAR file to the libs/ directory of your project. If you
are using Eclipse, you will also need to add it to your build path.

• Create an assets/www/ directory in your project. Then, copy over the
PhoneGap JS file from the Android/ directory of wherever you unZIPped the
PhoneGap ZIP file.

• Adjust the standard “Hello, World” activity to inherit from DroidGap instead
of Activity. This will require you to import com.phonegap.DroidGap.

• In your activity’s onCreate() method, replace setContentView() with
super.loadUrl("file:///android_asset/www/index.html");

• In your manifest, add all of the permissions that PhoneGap requests, listed
later in this chapter.

• Also in your manifest, add a suitable <supports-screens> element based
upon what screen sizes you are willing to test and support.

• Also in your manifest, add
android:configChanges="orientation|keyboardHidden" to your
<activity> element, as DroidGap handles orientation-related configuration
changes

At this point, you can create an assets/www/index.html file in your project and start
creating your PhoneGap application using HTML, CSS, and JavaScript. You will need
to have a reference to the PhoneGap JavaScript file (e.g., <script type="text/
javascript" charset="utf-8"

PHONEGAP

2463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

src="phonegap.0.9.4.js" />). When you want to test the application, you can
build and install it like any other Android application (e.g., ant clean debugant clean debug
installinstall if you are using the command line build process).

For somebody experienced in Android SDK development, setting this up is not a big
challenge.

PhoneGap/Build

PhoneGap/Build is a Tools-as-a-Service (TaaS) hosted approach to creating
PhoneGap projects. This way, all of the Android build process is handled for you by
PhoneGap-supplied servers. You just focus on creating your HTML, CSS, and
JavaScript as you see fit.

When you log into PhoneGap/Build, you are first prompted to create your initial
project, by supplying a name and the Web assets to go into the app:

Figure 654: Creating your first project in PhoneGap/Build

You will be able to add new projects later on via a New App button, which gives you
the same set of options.

PHONEGAP

2464

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your choices for the assets are to upload a ZIP file containing all of them, or to
specify the URL to a public GitHub repository that PhoneGap/Build can pull from.
The latter tends to be more convenient, if you are used to using Git for version
control, and if your project is open source (and therefore has a public repository).

Once you click the Upload button, the PhoneGap/Build server will immediately start
building your application for Android, plus Blackberry, Symbian, and WebOS:

Figure 655: Building your first project in PhoneGap/Build

Each of the targets has its own file extension (e.g., apk for Android). Clicking that
link will let you download that file. Or, click on the name of the project, and you get
QR codes to enable downloads straight to your test device:

PHONEGAP

2465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 656: Your project’s QR codes in PhoneGap/Build

This page also gives you a link to update the app from its GitHub repo (if you chose
that option). Or, click Edit to specify more options, such as the version of your
application or its launcher icon:

PHONEGAP

2466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 657: Your project’s settings in PhoneGap/Build

All in all, if you do not otherwise need the Android SDK and related tools on your
development machine, PhoneGap/Build certainly simplifies the PhoneGap building
process.

PhoneGap/Build is free for open source (public) projects, but there are fees
associated with private use beyond a single app.

PhoneGap and the Checklist Sample
The beauty of PhoneGap is that it wraps around HTML, CSS, and JavaScript. In
other words, you do not have to do much of anything PhoneGap-specific to be able
to take advantage of PhoneGap delivering to you an APK suitable for installation on
an Android device. That being said, PhoneGap does expose more stuff to you than
you can get from the standards, if you need them and are willing to use proprietary
PhoneGap APIs for them.

PHONEGAP

2467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sticking to the Standards

Given an existing HTML5 application, all you need to do to make it be an installable
APK is wrap it in PhoneGap.

For example, to convert the HTML5 version of Checklist into an APK file, you need
to:

• Follow the steps to create an empty PhoneGap project outlined earlier in this
chapter

• Copy the HTML, CSS, JavaScript, and images from the HTML5 project into
the assets/www/ directory of the PhoneGap project (note that you do not
need things unique to HTML5, such as the cache manifest)

• Make sure that your HTML entry point filename matches the path you used
with the loadUrl() call in your activity (e.g., index.html)

• Add a reference to the PhoneGap JavaScript file from your HTML
• Build and install the project

Here is the DroidGap activity for our app, from the PhoneGap/Checklist project:

packagepackage com.commonsware.pg.checklist;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.phonegap.DroidGapcom.phonegap.DroidGap;

publicpublic classclass ChecklistChecklist extendsextends DroidGap {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
supersuper.loadUrl("file:///android_asset/www/index.html");

}
}

Here is the manifest, with all of the PhoneGap-requested settings added:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.pg.checklist"
xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:configChanges="orientation|keyboardHidden"
android:label="@string/app_name"
android:name="Checklist">>

PHONEGAP

2468

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>
<supports-screens<supports-screens android:anyDensity="true"

android:largeScreens="true"
android:normalScreens="true"
android:resizeable="true"
android:smallScreens="true" />/>

<uses-permission<uses-permission android:name="android.permission.CAMERA" />/>
<uses-permission<uses-permission android:name="android.permission.VIBRATE" />/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />/>
<uses-permission<uses-permission

android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />/>
<uses-permission<uses-permission android:name="android.permission.READ_PHONE_STATE" />/>
<uses-permission<uses-permission android:name="android.permission.INTERNET" />/>
<uses-permission<uses-permission android:name="android.permission.RECEIVE_SMS" />/>
<uses-permission<uses-permission android:name="android.permission.RECORD_AUDIO" />/>
<uses-permission<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />/>
<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS" />/>
<uses-permission<uses-permission android:name="android.permission.WRITE_CONTACTS" />/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />/>

</manifest></manifest>

And here is the HTML — almost identical to the HTML5 original, removing some
HTML5 offline stuff (e.g., iOS icons) and adding in the reference to PhoneGap’s
JavaScript file:

<!DOCTYPE html>
<html<html lang="en" manifest="checklist.manifest">>
<head><head>

<meta<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />/>
<title><title>Checklist</title></title>
<meta<meta name="viewport"

content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;" />/>

<link<link rel="stylesheet" href="styles.css" />/>
<script<script type="text/javascript" charset="utf-8"

src="phonegap.0.9.4.js"></script>></script>
</head></head>
<body><body>

<section><section>
<header><header>

<button<button type="button" id="sendmail">>Mail</button></button>
<h1><h1>Checklist</h1></h1>

</header></header>
<article><article>

<form<form id="inputarea" onsubmit="addNewItem()">>
<input<input type="text" name="name" id="name" maxlength="75"

PHONEGAP

2469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

autocorrect placeholder="Tap to enter a new item…"
/>/>

<button<button type="button" id="add">>Add</button></button>
</form></form>
<ul<ul id="maillist">>
<li<li class="empty"><a>>Mail remaining

items

<p<p id="totals">>Total: <span>0

<span>Remaining: <span>0</p></p>

<ul<ul id="checklist">>
<li<li class="empty">>Loading……

</article></article>
<fieldset><fieldset>

<button<button type="button" id="deletechecked">>Delete Checked</button></button>
<button<button type="button" id="deleteall">>Delete All</button></button>

</fieldset></fieldset>
</section></section>
<script<script src="main.js"></script>></script>

</body></body>
</html></html>

For many applications, this is all you will need — you are simply looking at
PhoneGap to give you something you can distribute on the Play Store, on the iOS
App Store, and so on.

Adding PhoneGap APIs

If you want to take advantage of more device capabilities, you can augment your
HTML5 application to use PhoneGap-specific APIs. These run the gamut from
telling you the device’s model to letting you get compass readings. Hence, their
complexity will vary. For the purposes of this chapter, we will look at some of the
simpler ones.

Set up Device-Ready Event Handler

For various reasons, PhoneGap will not be ready to respond to all of its APIs right
away when your page is loaded. Instead, there is a deviceready event that you will
need to watch for in order to know when it is safe to use PhoneGap-specific
JavaScript globals. The typical recipe is:

• Add an onload attribute to your <body> tag, referencing a global JavaScript
function (e.g., onLoad())

PHONEGAP

2470

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• In onLoad(), use addEventListener() to register another global JavaScript
function (e.g., onDeviceReady()) for the deviceready event

• In onDeviceReady(), start using the PhoneGap APIs

Use What PhoneGap Gives You

PhoneGap makes a number of methods available to you through a series of virtual
JavaScript objects. Here, “virtual” means that you cannot check to see if the objects
exist, but you can call methods and read properties on them. So, for example, there
is a device object that has a handful of useful properties, such as phonegap to return
the PhoneGap version and version to return the OS version. These virtual objects
are ready for use in or after the deviceready event.

For example, here is a JavaScript file (props.js from the PhoneGap/ChecklistEx
project) that implements an onLoad() function (to register for deviceready) and an
onDeviceReady() function (to use the device object’s properties):

// PhoneGap's APIs are not immediately ready, so set up an
// event handler to find out when they are ready

functionfunction onLoad() {
document.addEventListener("deviceready", onDeviceReady, falsefalse);

}

// Now PhoneGap's APIs are ready

functionfunction onDeviceReady() {
varvar element=document.getElementById('props');

element.innerHTML='Model: '+device.name+'' +
'OS and Version: '+device.platform +'

'+device.version+'' +
'PhoneGap Version: '+device.phonegap+'';

}

The onDeviceReady() function needs a list element with an id of props.

The resulting app looks like:

PHONEGAP

2471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 658: The PhoneGap Checklist application with device properties

Obviously, reading a handful of properties is far simpler than, say, taking a picture
with the device’s camera. However, the difference in complexity is mostly in what
PhoneGap’s virtual JavaScript objects give you and how you can use them, more so
than anything peculiar to Android.

Issues You May Encounter
PhoneGap is a fine choice for creating cross-platform applications. However, it is not
without its issues. Some of these issues may be resolved in time; some may be
endemic to the nature of PhoneGap.

Security

Android applications use a permission system to request access to certain system
features, such as making Internet requests or reading the user’s contacts.
Applications must request these permissions at install time, so the user can elect to
abandon the installation if the requested permissions seem suspect.

PHONEGAP

2472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A general rule of thumb is that you should request as few permissions as possible,
and make sure that you can justify why you are requesting the remaining
permissions.

PhoneGap, for a new project, requests quite a few permissions:

1. CAMERA
2. VIBRATE
3. ACCESS_COARSE_LOCATION
4. ACCESS_FINE_LOCATION
5. ACCESS_LOCATION_EXTRA_COMMANDS
6. READ_PHONE_STATE
7. INTERNET
8. RECEIVE_SMS
9. RECORD_AUDIO

10. MODIFY_AUDIO_SETTINGS
11. READ_CONTACTS
12. WRITE_CONTACTS
13. WRITE_EXTERNAL_STORAGE
14. ACCESS_NETWORK_STATE

Leaving this roster intact will give you an application that can use every API
PhoneGap makes available to your JavaScript… and an application that will scare
away many users. After all, it is unlikely that your application will be able to use, let
alone justify, all of these permissions.

It is certainly possible for you to trim down this list, by modifying the
AndroidManifest.xml file in the root of your PhoneGap project. However, you will
then need to thoroughly test your application to make sure you did not get rid of a
permission that you actually need. Also, it may be unclear to you which permissions
you can safely remove.

Eventually, the PhoneGap project may have tools to help guide you in the choice of
permissions, perhaps by statically analyzing your JavaScript code to see which
PhoneGap APIs you are using. In the meantime, though, getting the proper set of
permissions will involve a lot of trial and error.

Screen Sizes and Densities

Normal Web applications primarily focus on screen resolution and window sizes as
their primary variables. However, mobile Web applications will not have to worry

PHONEGAP

2473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

about window sizes, as browsers and apps typically run full-screen. Mobile Web
applications will need to deal with physical size and density, though — issues that
are “off the radar” for traditional Web development.

Netbooks can have screens that are 10” or smaller. Desktops can have screens that
are 24” or larger. On the surface, therefore, physical screen size would seem to be
something Web developers would need to address. However, generally, screen
resolution (in pixels) tracks well with physical size in the netbook/notebook/
desktop realm. That is because screen density is fairly consistent across their LCDs,
and that density is fairly low.

Smartphones, on the other hand, have several different densities, causing the
connection between resolution and size to be broken. Some low-end phones,
particularly with small (e.g., 3”) LCDs, have densities on par with nice monitors.
Mid-range phones have twice the density (240dpi versus 120dpi). Apple’s iPhone 4
has even higher density, and there are some Android devices with similar densities.
Hence, an 800x480 resolution could be on a screen ranging anywhere from 4” to 7”,
for example. Tablets add even more possible sizes to the mix.

This is compounded by the problems caused by touchscreens. A mouse can get
pixel-level precision in its clicks. Fingers are much less precise. Hence, you tend to
need to make your buttons and such that much bigger on a touchscreen, so it can be
“finger-friendly”.

This causes some problems with scaling of assets, particularly images. What might
be “finger-friendly” on a low-density 3” device might be entirely too small for a high-
density 4” device.

Native Android applications have built-in logic for dealing with this issue, in the
form of multiple sets of “resources” (e.g., images) that can be swapped in based upon
device characteristics. Eventually, PhoneGap and similar tools will need to provide
relevant advice for their users for how to create applications that can similarly adapt
to circumstances.

Look and Feel

A Web app never quite looks like a native one. This is not necessarily a bad thing.
However, some users may find it disconcerting, particularly since they will not
understand why their newly-installed app (made with PhoneGap, for example)
would necessarily look substantially different than any other similar app they may
already have.

PHONEGAP

2474

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As HTML5 applications become more prominent on Android, this issue should
decline in importance. However, it is something to keep in mind for the next year or
two.

For More Information
At the moment, the best information on PhoneGap can be found on the PhoneGap
site, including their API documentation.

PHONEGAP

2475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://phonegap.com/
http://phonegap.com/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Alternative Environments

The alternative application environments described in the preceding chapters are
but the tip of the iceberg. Here, we will take a look at a few other alternative
application environments, from the growing flood of such technologies.

Note that this area changes rapidly, and so the material in this chapter may be
somewhat out of date relative to the progress each of these technologies has made.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introduction to
this trail might not be a bad idea.

Rhodes
Spiritually, Rhodes is similar to PhoneGap, in that you develop an Android
application whose user interface is defined via HTML, CSS, and JavaScript. The
difference is that Rhodes bakes in a full Ruby environment, with a Rails-esque
framework. Your Ruby code generates HTML and such to be “served” to an activity
via a WebView widget, much like a server-side Ruby Web app would generate HTML
to be served to a standalone Web browser.

Similar to PhoneGap, you can either build the project on your development machine
or use their hosted build process. The latter is recommended, partly because the
requirements for local builds are higher than those for PhoneGap — notably, Rhodes
requires the Native Development Kit (NDK) for building and linking the Ruby
interpreter to your application.

2477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rhodes winds up creating larger applications than does PhoneGap, due to the
overhead of the Ruby interpreter (~1.5MB). However, if you are used to server-side
Web development, Rhodes may be easier for you to pick up than would PhoneGap.

Flash, Flex, and AIR
Adobe has been hard at work extending their Flash, Flex, and AIR technologies to
the mobile space. You can use Flex (the “Hero” edition) and Flash Builder (the
“Burrito” edition… raising the question of whether the “hero” is hungry) to create
Android APK files that can be distributed on the Play Store and deployed to Android
devices. Those devices will need to have the AIR runtime installed — this is free, but
a large download, and it only works on Android 2.2+ devices. The same projects can
be repackaged for iOS and the Blackberry Playbook tablet, and possibly future
devices down the road.

AIR does not have quite as tight of integration to the platform as does PhoneGap
(e.g., no access to the device’s contacts), though one imagines that this is an area on
which Adobe will devote more resources over time. And, Adobe is a large firm, with
a large ecosystem behind it and many existing Flash, Flex, and AIR developer
resources to tap into.

Note, though, that Adobe is officially discontinuing the Flash plug-in for Android
after the Android 4.0 (Ice Cream Sandwich) release, which casts some doubt as to
their long-term plans in the Flash/AIR space on mobile.

JRuby and Ruboto
One of the most popular languages designed to run on the JVM — besides Java itself
— is JRuby. JRuby was quickly ported to run on Android, but with some
optimizations disabled, since JRuby is really running on the Dalvik virtual machine
that underlies the Android environment, not a classic Java VM.

However, JRuby alone cannot create Android applications. As a scripting language,
there is no way for it to define an activity or other component — those need to be
registered in the application’s manifest as regular Java class files.

This is where Ruboto comes in.

Ruboto is a framework for a generic JRuby/Android application. It provides skeletal
activities via a code generator and allows JRuby scripts to define handlers for all of

OTHER ALTERNATIVE ENVIRONMENTS

2478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the lifecycle methods (e.g., onCreate()), plus define user interfaces using JRuby
code, etc. The result can be packaged up as an APK file using supplied Rake script.
The results can be uploaded to the Play Store or distributed however else you desire.

App Inventor
App Inventor is an Android application development tool originally made available
by Google, but outside of the normal Android developer site. App Inventor was
originally developed for use in education, but they have been inviting others into
their closed beta.

App Inventor is theoretically a Web-based development tool. Here, “theoretically”
means that, in practice, users have to do a fair amount of work outside of the
browser to get everything set up:

1. Have Java installed and functioning in the browser, capable of running Java
Web Start (.jnlp) applications

2. Download and install a large (~55MB) client-side set of tools
3. Have a phone and have it configured to work with App Inventor and the

Android SDK

Once set up, App Inventor gives you a drag-and-drop GUI editor:

OTHER ALTERNATIVE ENVIRONMENTS

2479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 659: The App Inventor “Designer” view

… and a “blocks” editor, where you attach behaviors to events (e.g., button clicks) by
snapping together various “blocks” representing events, methods, and properties:

OTHER ALTERNATIVE ENVIRONMENTS

2480

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 660: The App Inventor “Blocks” view

While working in the GUI editor, you see what you are building live on an attached
phone and can be tested in real time. Later, when you are ready, you can package the
application into a standard APK file.

However, App Inventor is not really set up for production application use today:

1. You cannot distribute App Inventor apps on the Play Store
2. It has more components aimed at “sizzle” (e.g., Twitter integration) and

fewer delivering capabilities that a typical modern app might need (e.g.,
relational databases, lists)

3. Only one developer at a time can work on a project

In 2011, Google discontinued direct support for App Inventor, electing to transfer the
project to MIT’s Media Lab for ongoing development.

Titanium Mobile
Titanium Mobile’s claim to fame is using JavaScript to completely define the user
interface, eschewing HTML entirely. Rather, their JavaScript library — in addition to

OTHER ALTERNATIVE ENVIRONMENTS

2481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

providing access to databases and platform capabilities — also lets you declare user
interface widgets. Its layout capabilities, for positioning said widgets, leaves a bit to
be desired.

As of the time of this writing, Appcelerator — the creators of Titanium Mobile —
does not offer a cloud-based set of tools. Their Titanium tool has a very slick-looking
UI, but it still requires the Java SDK and Android SDK in order to be able to build
Android applications, making the setup a bit daunting for some.

As of the time of this writing, Titanium Mobile supports development for Android
and iOS, with Blackberry support in a private beta.

Other JVM Compiled Languages
If your issue is less with regular Android development, but you just do not like Java,
any language that can generate compatible JVM bytecode should work with
Android. You would have to modify the build chain for that other language to do the
rest of the Android build process (e.g., generate R.java from the resources, create
the APK file in the end).

Scala and Clojure are two such languages, for which their respective communities
have put together instructions for using their languages for Android development.

OTHER ALTERNATIVE ENVIRONMENTS

2482

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Miscellaneous Topics

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Anti-Patterns

Much of this book has been focused on what you should do. In contrast, this chapter
is focused on what you should not do.

All platforms have their anti-patterns: things that are technically possible but are
not in the best interests of the users of that platform. Android is no exception. Some
anti-patterns are simply annoying to users, while other anti-patterns can
significantly infringe upon a user’s use of their Android device, or even the user’s
freedom.

Much as the Hippocratic Oath directs doctors to “first, do no harm”, Android
application developers owe it to the users of their apps to avoid these anti-patterns
to the greatest extent possible.

Prerequisites
This chapter assumes that you have read much of the book, particularly the core
chapters.

Leak Threads… Or Things Attached to Threads
Leaking a thread means that you start a thread and never cause it to stop. For
example, you might start a thread that runs in an infinite loop, doing some work and
then sleeping for a while. The problem with infinite loops is that “infinite” is an
awfully long time.

2485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

All threads should clean up, in a timely fashion, when the component (e.g., activity,
service) that started the thread is destroyed — or, in the case of an activity, perhaps
just moved into the background.

How you ensure that the thread gets cleaned up is up to you. For threads doing
transactional work, such as literally running a database transaction, it may be fine to
just let them run to completion and shut down of their own accord. For “infinite”
loops, there should be some way to tell the thread that it is no longer needed, such
as via an AtomicBoolean flag, or using something more structured than a plain
timing loop, such as a ScheduledExecutorService.

Also, bear in mind that you are responsible for threads that are created, on your
behalf, by other things that you do. The most common leak scenario here comes
with listeners associated with system services, like LocationManager and
SensorManager. If you register a LocationListener via requestLocationUpdates()
and fail to unregister that listener, you will not only be leaking the listener, but the
component associated with that listener, and every system resource tied to that
listener, such as any background threads.

The Costs

Threads are intrinsically static in scope. Hence, any object they can reach, directly or
indirectly, cannot be garbage-collected while the thread is still running. Hence, if an
activity forks a thread, it might do so using an anonymous inner class:

newnew Thread() {
publicpublic void run() {

// do something
}

}).start();

Instances of an inner class — anonymous or otherwise — have an implicit reference
back to the object that created them. Hence, the Thread would hold onto the
Activity that created the thread, which in turn would hold onto all of its widgets
and so forth. None of that can be garbage-collected until after the thread terminates,
even if the activity is destroyed.

The Counter-Arguments

I want the thread to keep running even after the activity is destroyed

ANTI-PATTERNS

2486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, the thread should be created and managed by a service, not simply
leaked. Not only does this give you an opportunity to clean up the thread when
needed, but it also alerts Android that you are still trying to do some work, so
Android will not necessarily terminate your process very quickly.

However, be careful about assuming that you can have a thread — even one
managed by a service — run forever, as you will see in the next couple of sections.

I do not know when the thread is no longer needed

Then you have a serious design problem.

A common variation on this theme is:

The thread is needed so long as I have an activity in the foreground

This is a bit tricky, as Android does not really expose the concept of applications
being in the foreground, just activities.

The safest course of action is to have the thread be managed by a service, then keep
track of whether or not you have an activity in the foreground. For example, in
onPause() of each activity, use postDelayed() to return control to you after a short
delay, and in onResume(), update a timestamp of your last return to the foreground
(held in a static data member). When the Runnable for postDelayed() executes,
check that timestamp — if it is too old, you know that none of your activities are in
the foreground, and you can stop the service, having it stop your thread.

Use Large Heap Unnecessarily
Encountering an OutOfMemoryError certainly sucks. These are caused either by a
memory leak or by trying to use more memory than is practical given the device. For
example, loading up lots of bitmaps can easily chew up your available heap space.

To some, therefore, android:largeHeap seems to be the perfect solution.

Added in API Level 11, android:largeHeap tells Android to give you a much larger
heap size than is normally given to a process. So, instead of having 32MB or 48MB or
so of heap, you might have 256MB of heap.

The right solution, in most cases, is to fix the underlying memory problem, not to
mask it by requesting an over-sized heap.

ANTI-PATTERNS

2487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Costs

To you, having hundreds of megabytes of extra heap may be a blessing. To the user,
it may be a curse. That memory has to come from somewhere, and the “somewhere”
is from other processes. Your app will force other apps’ processes to be terminated
far more quickly than normal, which may slow the user down when she tries to
switch between your app and others. Your app may even materially harm the
functionality of other apps, who have their processes terminated before they can
finish their work, just to satisfy your memory craving.

Bear in mind that Android does not employ swap space (the Linux equivalent of a
Windows pagefile). Hence, whereas Windows can allocate lots of memory and slows
down as it goes, Android is far more limited, in accordance with its mobile roots.

Furthermore, in many cases, adding more heap space does not eliminate the
problem, any more than spraying air freshener gets rid of the dead cat in your living
room that is causing the odor. With a memory leak, for example, all the larger heap
does is increase the time before you eventually run out of memory.

The Counter-Arguments

I really need to be able to manipulate large chunks of memory

There are certainly apps for which android:largeHeap is justified, such as complex
data editors, such as image editors, video editors, etc.

Hence, in practice, the real anti-pattern is not using android:largeHeap, but rather
in doing so for apps where the user would not feel that the resulting effects are
justified. For example, neither a Twitter client, nor a banking app, should need a
large heap, even if the developer is running into memory management issues.

Android makes it too hard to manage memory, so I need a large heap

There is no question that developing mobile applications is challenging, particularly
when it comes to memory management. That is not unique to Android —
embedded systems developers are used to writing apps where the heap size is better
measured in KB instead of MB, for example.

Outside of bitmaps and massive data sets, though, it is a bit difficult to actually run
out of memory. While a TextView may take up 1KB of heap space, it takes a lot of
TextView widgets to chew through a 48MB heap.

ANTI-PATTERNS

2488

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The reason why bitmaps tend to trip up developers is that Android makes using
them too easy. For example, it is simple to set a bitmap as a background of some
container like a LinearLayout, where developers then blindly ignore the fact that if
the bitmap is not precisely the size of the container, Android will need to scale the
image, consuming more heap space.

Misuse the MENU Button
The MENU button on Android devices is designed to display either the options
menu (on Android 1.x/2.x devices that are not using something like
ActionBarSherlock) or the action bar overflow menu.

The MENU button is not designed for any other purpose. Some developers have
taken to using it for arbitrary aims, and that is a mistake.

The Costs

The MENU button does not exist on many Android devices. In particular, devices
designed for Android 3.0 and higher do not need a MENU button. Some will have
them, but most will not. Hence, anything that requires the MENU button will
simply be unavailable on those devices.

And, as of Android 4.4, Google is putting increasing pressure on device
manufacturers to dump the MENU button, making it less likely to appear in the
future.

The Counter-Arguments

Well, if I keep targetSdkVersiontargetSdkVersion below 11, I can have a soft MENU button

This is true, insofar as a menu affordance will be added to the system bar or
navigation bar on devices that lack a dedicated MENU button.

Whether the user is expecting to use this button is another thing entirely.

As more and more users run Android 3.0+ devices, they will use more and more apps
that have android:targetSdkVersion set to 11 or higher. The remaining handful of
apps that do not will be “weird”. In particular, they may not notice the menu
affordance, as they are not looking for one, or they may not know what it does, as
they are not used to needing it.

ANTI-PATTERNS

2489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Moreover, eventually, other things will drive you to want an
android:targetSdkVersion higher than 10, as the menu affordance is not the only
feature driven by this value. The sooner you can remove your dependence on a
menu affordance, the sooner you can upgrade your android:targetSdkVersion to
solve other problems that you are encountering.

I think the action bar is ugly, a waste of space, or otherwise bad

That’s nice. It does not mean that you need a menu affordance and a tie to a MENU
button.

For example, well-written games will have a menu integrated into the game UI itself.
This was often done even before Android 3.0, since the options menu UI would not
look much like the game’s UI, and the developer wanted a consistent look-and-feel.

So long as the user recognizes how to reach the menu (e.g., a three-dots or three-
bars icon), the menu does not have to be driven by Android, but instead could be
handled by your app directly. You can see this in the Google Navigation app, which
avoids an action bar but still displays its own menu from its own on-screen menu
affordance.

Interfere with Navigation
Some developers try to take over the device. They attempt to block the use of
anything not related to their app: the HOME key, the recent tasks list, the
notification drawer, etc.

Android treats such behavior as malware. Android is designed to keep control of the
device in the hands of the user and tries very hard to prevent apps from stealing that
control.

The Costs

While there are certain cases where blocking navigation outside the app may seem
justified (see the counter-arguments, below), there is simply too much opportunity
for malfeasance. Users tend to want to use their devices on their terms, not
necessarily the terms of some random developer. Malware authors, in particular, love
to learn about script-kiddie hacks that allow them to control a device, and by
extension, control the users.

ANTI-PATTERNS

2490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Counter-Arguments

I am writing a lock screen

No, you are not. You are writing something that you think is a lock screen. Really
what you are writing is something that weakens device security… if the app in
question is designed to be downloaded and run on arbitrary devices.

Android devices can be rebooted into “safe mode”. Much like the Windows boot
option that bears the same name, “safe mode” only runs apps that are part of the
system firmware, not any third-party apps.

So, let’s assume that the user installs your “lock screen”. Inevitably, part of the setup
of a third-party “lock screen” is to disable any sort of security that is part of the
native lock screen, so the user does not have to unlock things twice. Even though
your lock screen may implement all sorts of security, all somebody else has to do is
reboot the device in safe mode, and they now have complete access to the device,
including the ability to uninstall your lock screen. By contrast, the native lock screen
is in force even if the device reboots in safe mode.

I am writing a parental control app

Rebooting in safe mode is within the motor-control skills of your average three-
year-old child. Hence, the primary limitation is whether or not the child knows
how to reboot the device in safe mode, which they can learn from the Internet,
friends, etc. And, if the device is really an adult’s device, where the “lock screen”
allows access to a subset of child-friendly apps, the real risk is not from the child
rebooting the device in safe mode, but from the crook who steals the device
rebooting in safe mode.

I am writing a lock screen designed to run on whole-disk-encrypted devices

While whole disk encryption — available on Android 4.0+ — does solve the issue of
rebooting in safe mode, bear in mind that users then cannot disable the required
password security on the native lock screen, as that is tied into the whole disk
encryption process.

I am writing a kiosk app

ANTI-PATTERNS

2491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, the term “kiosk app” refers to an app that represents the functionality of a
single-purpose device. For example, a restaurant might want to distribute menus to
customers in the form of a tablet app; the menu app would be the “kiosk app”.

In this case, the owner of the device is the one trying to lock it down to be single-
purpose. That is completely reasonable… except that it runs counter to the behavior
of standard consumer builds of Android.

The right solution, in this case, is to create custom firmware for the single-purpose
devices. This firmware can set up the kiosk app to be the home screen (thereby
blunting the effectiveness of HOME, BACK, etc.), and modifications to the firmware
can apply access controls to other aspects of the device (e.g., notifications).
Unfortunately, there are few (if any) businesses set up to help create such single-
purpose firmware for single-purpose devices.

Use android:sharedUserId
If you are creating more than one application, where those applications should be
sharing data, you may be tempted to use android:sharedUserId. This attribute,
applied to the root <manifest> element in your manifest, allows two or more apps to
share a Linux user account. That will allow these apps full access to the other apps’
files. The limitations are that you must use the same value for sharedUserId and
that all such apps must be signed with the same signing key.

However, this is a fairly crude and somewhat risky approach to sharing information
between apps. In most cases, you will be better served using any of the structured
IPC options within Android, such as remote services and content providers.

The Costs

First, you must make the decision to use android:sharedUserId before you ever ship
your app in production. Should you change the sharedUserId value — or switch
from no value to a new value — when your change is installed, the new version of
your app will have no rights to access the old version of your app’s files. This is
unlikely to turn out well.

Second, it will be up to you to maintain data integrity of these files in the face of
simultaneous access from multiple apps. SQLite should handle this for you for your
databases, as it is set up to use process-level locking — this is why SQLite can be
used as the out-of-the-box database solution for Web frameworks like Rails.

ANTI-PATTERNS

2492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, any other sort of file, including SharedPreferences, will lack that
coordination, unless you somehow arrange to do it yourself. And even the SQLite-
level coordination has its limits, as one app has no way to know about another app’s
changes to the data, except by re-querying the database.

Third, using android:sharedUserId limits your flexibility. You cannot use it with
third-party apps. You cannot readily sell one of your apps in your suite, as then it
becomes a third-party app and can no longer be signed by the same signing key as
are the rest of your apps. Basically, sharedUserId causes multiple separate APKs to
behave, in some respects, as one larger APK.

The Counter-Arguments

I need the ensure only my apps can share the data, not others

Use a signature-level permission. This gives you the same level of security as does
android:sharedUserId without most of the risks.

Writing IPC code is tedious

So is writing cross-process data integrity code.

Implement a “Quit” Button
Perhaps the most contentious question and answer on StackOverflow’s android tag
is “Quitting an application - is that frowned upon?”. This exchange is nearly three
years old (as of the time of this writing), yet the answer receives both upvotes (and a
few downvotes) with some regularity.

Other Android experts, such as Reto Meier, have weighed in on the issue and have
offered similar recommendations – that is, do not have a “quit” or “exit” button in
your app.

(here, “button” is shorthand for any command-style interface, and includes menu
options, action bar items, and the like by extension)

The reason is simple: whatever your “quit” or “exit” button does should be happening
in other conditions as well, and handling those other conditions should eliminate the
need for the button.

ANTI-PATTERNS

2493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/2034238/115145
http://blog.radioactiveyak.com/2010/05/when-to-include-exit-button-in-android.html

If the app moves into the background for any reason, you need to treat the user and
her device with respect. This means stopping background threads that are not
needed, releasing system resources like the GPS radio (immediately or after a
modest delay), and the like. The user should not need to “quit” your app to
accomplish this, because your app will move to the background for other reasons,
such as incoming phone calls, or the user pressing the HOME button.

The Costs

You might think “well, what’s the harm in having the ‘quit’ button that, say, just calls
finish()?”

First, rarely is it that simple. Calling finish() will return the user to the previous
activity, and so for any multi-activity app, there will be scenarios where finish() is
not really “quit”. The only simple thing you can universally do is have “quit” bring up
the home screen, in which case all you have done is waste screen real estate
duplicating the HOME button functionality. Worse, the developer might say “oh,
well, I will just terminate my process when they press ‘quit’”, and that anti-pattern is
coming up next in this chapter.

Second, the user will start to think that they need to press “quit”, or else bad things
might happen. They will see an explicit “quit” option and start to wonder “well, gee,
when am I supposed to press that, and what happens if I do not?” This, in turn, will
lead to the user going out of their way to make sure to press your “quit” button, even
if doing so does not actually change anything about the behavior of your app,
courtesy of the placebo effect.

The Counter-Arguments

I need to let the user log out of the app, so I need a “quit” button

No, you need a “logout” button that clears your cached authentication credentials
(e.g., sets a static data member to null), then brings up the login activity using
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to wipe out all other
activities in your process. And, probably, you need to have some sort of inactivity-
based “timeout” that also logs out the user (e.g., sets that static data member to
null).

I am running stuff in the background, so I need a “quit” button

ANTI-PATTERNS

2494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.scientificamerican.com/article.cfm?id=placebo-effect-a-cure-in-the-mind

No, you need a “stop that background stuff” button, preferably with a shorter, more
specific label. And, you need that to also be available from the Notification that
you are using with your foreground service, where applicable.

Terminate Your Process
Closely related to the above anti-pattern is to forcibly stop your process, such as via
System.exit(), Runtime.exit(), Process#killProcess(), and so forth. These are
often used in concert with an in-app “quit” button, or sometimes for other reasons
(e.g., could not figure out how to handle an exception gracefully).

The Costs

Simply put, Google has warned, repeatedly, that there may be side effects from
terminating your own process, rather than having Android do proper cleanup first.

• “You should really think about not exiting the application. This is not how
Android apps usually work.” (Romain Guy)

• “To be clear: using System.exit() is strongly recommended against, and can
cause some poor interactions with the system. Please don’t design your app
to need it.” (Dianne Hackborn)

• “There is no reason or need to call [exit()]” (Dianne Hackborn)
• “Nobody has said anything about Process.kill() not doing anything. You want

to kill your own process and cause the user to experience your own
application having weird behavior at times due to it? Have at it. I just want
to be clear that this is not what we recommend doing… and you are likely to
cause bad behavior in your app at least at times due to it… There is no API to
quit an application, because there is no such concept on Android, and trying
to implement such a thing is going to result in fighting against how Android
works.” (Dianne Hackborn)

The Counter-Arguments

I am using a C library that is buggy, so I need to terminate my process

Fix the bugs in the library. For example, C libraries that rely too heavily on global
variables may need to be adjusted to use session handles that get passed around.

Well, it is not my C library, but one from a third party, so I need to terminate
my process

ANTI-PATTERNS

2495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/2043302/115145
https://groups.google.com/group/android-developers/msg/0a6b63d6751dc12b
https://groups.google.com/group/android-developers/msg/7d28a46ec9105626
https://groups.google.com/d/msg/android-developers/_RUduk-cY2Y/Tl9d6ET_hQEJ

Find a library that is Android-compatible, then. It is likely that you will encounter
other problems with this library, if it is not designed to work on Android (e.g., not
set up to work properly on ARM CPUs).

There is a bug in Android for which I have found no workaround short of
terminating my process

This is one of the few legitimate reasons for terminating a process, but it is so rare
that it is difficult to find a citation of a place where such a bug (and workaround)
exists.

I need to do something from my top-level exception handler!

Set relevant static data members to null, then start up your launcher activity, using
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to wipe out all other
activities in your task. This should reset you to your original state, as if the user had
launched the app.

Try to Hide from the User
Some developers view the user as the enemy. These developers try to insulate their
app from the user, to make data inaccessible to the user, to make the app
“unkillable” by the user, etc. In many cases, this is at the behest of some enterprise,
wanting to exert control over the user’s use of the app or even the device.

Android is a consumer operating system. It is designed to put power in the hands of
whoever is holding the device and can authenticate themselves to the device (e.g.,
via a password on the lock screen). Enterprises and malware authors have much the
same interests: they wish to take control away from the user and give the control to
somebody else. Android defends against malware; enterprises get caught in the
crossfire.

Inevitably, the right solution here will be an enterprise remix of Android, designed
to be loaded on enterprise-supplied devices, that put the control in the hands of the
enterprise.

The Costs

Simply put, you are wasting your time, which could be better spent on other
pursuits.

ANTI-PATTERNS

2496

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With respect to data, if your app can access that data, by definition, a sufficiently
talented user can get at the data:

• If you put it on internal storage, the user can root the device
• If you further encrypt the data, the user can find the encryption algorithm

and key in your app, then decrypt the data
• If you try obfuscation or other techniques to mask the encryption algorithm

and key, the user will use cracking tools to find this information anyway, or
will transfer your app to a ROM mod that contains a modified version of the
Android framework that can collect this information when you go to decrypt
the data

• And so on

With respect to the process, the user can force-stop anything installed app via the
Settings app. And, even if you use script-kiddie tricks to try to prevent access to
Settings, the user can nuke your app from orbit via the command line, using the full
Android SDK or third-party tools.

The Counter-Arguments

I am creating an app for an enterprise, and we need to control the app

Then you further need to control the device, which leads to the “enterprise flavor of
Android” solution mentioned earlier in this section.

I am creating a lock screen/parental control app/kiosk app

Please see the counter-arguments for “Interfering with Navigation” from earlier in
this chapter.

Use Multiple Processes
Some Android professionals recommend the use of android:process to have
components run in separate processes from the main one for an application. For
example, you might have all of your activities in the main process but isolate a
service in a separate process. Or, you might have some memory-intensive activity
(e.g., an image editor) run in a separate process.

As with most of these anti-patterns, while the android:process feature is valid, it is
rarely necessary. To some extent, developers get caught up in process isolation from

ANTI-PATTERNS

2497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

its use on servers and forget that mobile devices typically have fewer resources —
RAM and CPU — than do their server counterparts. Few of Google’s apps use
android:process; even complex apps like Gmail or the original Browser avoid it.

The Costs

Each process gets its own heap space, cutting into the heap available for other
applications. As with the large-heap anti-pattern discussed above, this will tend to
force other apps to be ejected from memory sooner than normal, with
commensurate impacts on user experience.

Inter-process communication (IPC) is not cheap, compared with normal method
invocation within a process. Hence, tightly-coupled processes will chew through
more CPU than their single-process counterparts. While it is unlikely that you will
see major performance implications (unless you are doing a preposterous amount of
IPC), this will consume more battery than is otherwise warranted.

The Counter-Arguments

I am using a C library that is buggy, and you told me not to terminate my
process

As noted earlier, fix the bugs in the library.

Hello? It is not my C library, but one from a third party!

Find a library that is Android-compatible, then.

I need more heap space

On Android 3.0 and higher, android:largeHeap is available, though its misuse is
another anti-pattern, discussed above. However, prior to Android 3.0,
android:largeHeap was not an option. One workaround used by some apps is to
fork several processes, thereby getting several “small” heap allocations (e.g., 32MB)
instead of just one.

In cases where android:largeHeap is indeed justified, using multiple processes as a
workaround on older Android versions is justified as well. However, bear in mind
that IPC overhead is non-trivial, so have a plan to dump the multiple processes and
use android:largeHeap once you drop support for Android 1.x/2.x.

ANTI-PATTERNS

2498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

I want my UI not to freeze when doing background work

Use threads, not processes, for this.

Hog System Resources
Some of these anti-patterns, like the multiple-process one just now, are really
concrete sub-types of a more general anti-pattern: assuming yours is the only app
running on the device. While your app may be the only one running in the
foreground (assuming that you actually are in the foreground), there are other apps
in the background, and ones that soon will come to the foreground. You need to
“play nice” and ensure that these other apps will have their fair share of system
resources.

One example is open files on external storage. For some devices — but not all –
there is a limit of 1,024 simultaneously open files. In principle, that should be plenty.
However, if some app — maybe yours? — opens a whole bunch of files, it is possible
that other apps trying to access external storage at that point will crash because the
limit was hit.

The Counter-Arguments

Um, well, I’m just more important than those other developers

::facepalm::

ANTI-PATTERNS

2499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Widget Catalog

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: AdapterViewFlipper

A regular ViewFlipper shows only one child widget or container at a time. So does
an AdapterViewFlipper. The difference is where the children come from. With a
regular ViewFlipper, you add children much like you would any other standard
container class, such as defining the children in your layout XML resource. With
AdapterViewFlipper, the children come from an Adapter.

While AdapterViewFlipper does not inherit from ViewFlipper (or vice versa, for
that matter), their public API is largely the same:

• You can control which child is visible, either by index or via
showNext()/showPrevious() methods to rotate between them.

• You can set up animated effects to control how a child leaves and the next
one enters, such as applying a sliding effect.

• You can set up AdapterViewFlipper to automatically flip between children
on a specified period.

There are two key advantages for AdapterViewFliper:

1. Since it uses an Adapter model, it can be more memory efficient for lots of
children, through child view recycling

2. It is available for use in an app widget

However, AdapterViewFlipper is new to API Level 11 and is unavailable on older
versions of Android. It is not included in the Android Support package backport.

Key Usage Tips
All of the usage tips from ViewFlipper are relevant for AdapterViewFlipper.

2501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Sample Usage
The sample project can be found in WidgetCatalog/AdapterViewFlipper.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<AdapterViewFlipper<AdapterViewFlipper xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/details"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

Activity:

packagepackage com.commonsware.android.avflip;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.AdapterViewFlipperandroid.widget.AdapterViewFlipper;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass FlipperDemo2FlipperDemo2 extendsextends Activity {
staticstatic String[] items= { "lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel", "ligula",
"vitae", "arcu", "aliquet", "mollis", "etiam", "vel", "erat",
"placerat", "ante", "porttitor", "sodales", "pellentesque",
"augue", "purus" };

AdapterViewFlipper flipper;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

flipper=(AdapterViewFlipper)findViewById(R.id.details);
flipper.setAdapter(newnew ArrayAdapter<String>(thisthis, R.layout.big_button,

items));
flipper.setFlipInterval(2000);
flipper.startFlipping();

}
}

Visual Representation
There is no visual representation of an AdapterViewFlipper itself, as it renders no
pixels on its own. Rather, it simply shows the current child.

WIDGET CATALOG: ADAPTERVIEWFLIPPER

2502

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/AdapterViewFlipper
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/AdapterViewFlipper

Widget Catalog: CalendarView

CalendarView, as you might have guessed, displays a calendar to the user, designed
to allow the user to pick a date. You supply a starting date, which the user then
manipulates, triggering event listeners whenever the date is changed.

Note that this is a small calendar – it is not designed to show details within a date,
such as appointments and times.

This view is available standalone and also as an optional adjunct to the DatePicker
widget.

This view was added in API Level 11 and therefore will not be available on older
versions of Android, though a backport is available that works on Android 2.1
onwards.

Key Usage Tips
If you do nothing, the CalendarView will start with today’s date, though you can call
a setDate() method to pass in a Calendar object to use to change the initially-
selected date. You can also call setOnDateChangeListener() to supply an
OnDateChangeListener to learn when the user changes the date in the
CalendarView.

CalendarView works well with Calendar and GregorianCalendar, in terms of setting
and getting the year/month/day-of-month from the CalendarView (as supplied to
the onSelectedDayChange() method of your OnDateChangeListener) and converting
it into something you can use in your code.

2503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.androidviews.net/2013/01/ics-calendarview/

A Sample Usage
The sample project can be found in WidgetCatalog/CalendarView.

Layout:

<CalendarView<CalendarView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/calendar"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

Activity:

packagepackage com.commonsware.android.wc.calendar;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.CalendarViewandroid.widget.CalendarView;
importimport android.widget.CalendarView.OnDateChangeListenerandroid.widget.CalendarView.OnDateChangeListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.GregorianCalendarjava.util.GregorianCalendar;

publicpublic classclass CalendarDemoActivityCalendarDemoActivity extendsextends Activity implementsimplements
OnDateChangeListener {

CalendarView calendar=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

calendar=(CalendarView)findViewById(R.id.calendar);
calendar.setOnDateChangeListener(thisthis);

}

@Override
publicpublic void onSelectedDayChange(CalendarView view, int year,

int monthOfYear, int dayOfMonth) {
Calendar then=newnew GregorianCalendar(year, monthOfYear, dayOfMonth);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_LONG)
.show();

}
}

WIDGET CATALOG: CALENDARVIEW

2504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/CalendarView
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/CalendarView

Visual Representation
This is what a CalendarView looks like in a few different Android versions and
configurations, based upon the sample app shown above.

Figure 661: Android 4.0

WIDGET CATALOG: CALENDARVIEW

2505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 662: Android 4.1

WIDGET CATALOG: CALENDARVIEW

2506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: DatePicker

DatePicker, as the name might suggest, allows the user to pick a date. You supply a
starting date, which the user then manipulates, triggering event listeners whenever
the date is changed.

Key Usage Tips
If you do nothing, the DatePicker will start with today’s date. However, if you want
to set up an OnDateSetListener to find out when the date changes, you will need to
call init() to do so, in which you also need to set the date.

DatePicker works well with Calendar and GregorianCalendar, in terms of setting
and getting the year/month/day-of-month from the DatePicker and converting it
into something you can use in your code.

API Level 11 introduced an optional CalendarView adjunct to the DatePicker,
determined via setCalendarViewShown() or android:calendarViewShown. This
works well on -normal screens in landscape and on -large/-xlarge screens. On
-normal screens in portrait, the year portion of the picker may be chopped off to
save room. Using the CalendarView option on -small screens is probably not a good
idea.

A Sample Usage
The sample project can be found in WidgetCatalog/DatePicker.

Layout:

2507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/DatePicker
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/DatePicker

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center_horizontal">>

<DatePicker<DatePicker
android:id="@+id/picker"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:calendarViewShown="true"/>/>

<CheckBox<CheckBox
android:id="@+id/showCalendar"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/calendar"/>/>

</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.wc.datepick;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;
importimport android.widget.CompoundButton.OnCheckedChangeListenerandroid.widget.CompoundButton.OnCheckedChangeListener;
importimport android.widget.DatePickerandroid.widget.DatePicker;
importimport android.widget.DatePicker.OnDateChangedListenerandroid.widget.DatePicker.OnDateChangedListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.GregorianCalendarjava.util.GregorianCalendar;

publicpublic classclass DatePickerDemoActivityDatePickerDemoActivity extendsextends Activity implementsimplements
OnCheckedChangeListener, OnDateChangedListener {

DatePicker picker=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

CheckBox cb=(CheckBox)findViewById(R.id.showCalendar);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
cb.setOnCheckedChangeListener(thisthis);

}

WIDGET CATALOG: DATEPICKER

2508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
cb.setVisibility(View.GONE);

}

GregorianCalendar now=newnew GregorianCalendar();

picker=(DatePicker)findViewById(R.id.picker);
picker.init(now.get(Calendar.YEAR), now.get(Calendar.MONTH),

now.get(Calendar.DAY_OF_MONTH), thisthis);
}

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
picker.setCalendarViewShown(isChecked);

}

@Override
publicpublic void onDateChanged(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
Calendar then=newnew GregorianCalendar(year, monthOfYear, dayOfMonth);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_LONG)
.show();

}
}

The CheckBox is tied to the visibility of the CalendarView. Since this is only available
on API Level 11 and higher, we simply remove the CheckBox on earlier versions of
Android, so we do not have to worry about whether or not the CheckBox gets
unchecked by the user.

Visual Representation
This is what a DatePicker looks like in a few different Android versions and
configurations, based upon the sample app shown above.

WIDGET CATALOG: DATEPICKER

2509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 663: Android 2.3.3

Figure 664: Android 4.0.3, with CalendarView, Portrait

WIDGET CATALOG: DATEPICKER

2510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 665: Android 4.0.3, without CalendarView, Portrait

Figure 666: Android 4.0.3, with CalendarView, Landscape

WIDGET CATALOG: DATEPICKER

2511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: ExpandableListView

Android does not have a “tree” widget, allowing users to navigate an arbitrary
hierarchy of stuff. In large part, that is because such trees are difficult to navigate on
small touchscreens with comparatively large fingers.

Android does have ExpandableListView, a subclass of ListView that supports a two-
layer hierarchy: groups and children. Groups can be expanded to show their children
or collapsed to hide them, and you can get control on various events for the groups
or the children.

Key Usage Tips
Android offers an ExpandableListActivity as a counterpart to its ListActivity.
However, it does not offer an ExpandableListFragment. This is not a major issue, as
you can work with an ExpandableListView inside a regular Fragment yourself, just as
you would for most other widgets not named ListView.

Rather than use a ListAdapter with ExpandableListView, you will use an
ExpandbleListAdapter, where you can control separate details for groups and
children. These include:

• SimpleExpandableListAdapter, roughly analogous to ArrayAdapter, where
your data resides in a List of Map objects for groups, and a List of a List of
Map objects for the children

• CursorTreeAdapter and SimpleCursorTreeAdapter, roughly analogous to
CursorAdapter and SimpleCursorAdapter, for mapping data in a Cursor to
rows and columns

2513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In many cases, though, the complexity of managing groups and children will steer
you down the path of extending BaseExpandableListAdapter and handling all of the
view construction yourself. There are many methods that you will need to
implement:

• getGroupCount(), to return the number of groups
• getGroup() and getGroupId(), to return an Object and unique int ID for a

group given its position
• getGroupView(), to return the View that should be used to render the group,

perhaps using the built-in
android.R.layout.simple_expandable_list_item_1 that is set up for such
groups and handles rendering the expanded and collapsed states

• getChildrenCount(), to return the number of children for a given group
• getChild() and getChildId(), to return an Object and unique int ID for a

child given its position (and its group’s position)
• getChildView(), to return the View that should be used to render the child,

given its position and its group’s position
• isChildSelectable(), to indicate if the user can select a given child, given

its position and its group’s position
• hasStableIds(), to indicate if the ID values you returned from
getGroupId() and getChildId() will remain constant for the life of this
adapter

There are four major events that you will be able to respond to with respect to the
user’s interaction with an ExpandableListView:

• Clicks on a child (setOnChildClickListener())
• Clicks on a group (setOnGroupClickListener())
• When groups expand (setOnGroupExpandListener()) or collapse

(setOnGroupCollapseListener())

If you use setOnGroupClickListener() to be notified about clicks on a group, be
sure to return false from your implementation of the onGroupClick() method
required by the OnGroupClickListener interface. If you return true, you consume
the click event, which prevents ExpandableListView from using that event to
expand or collapse the group.

A Sample Usage
The sample project can be found in WidgetCatalog/ExpandableListView.

WIDGET CATALOG: EXPANDABLELISTVIEW

2514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ExpandableListView
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ExpandableListView

Layout:

<ExpandableListView<ExpandableListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/elv"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</ExpandableListView></ExpandableListView>

JSON data:

{
"Group A": ["Child A1", "Child A2", "Child A3"],
"Group B": ["Child B1", "Child B2"],
"Group C": ["Child C1"],
"Group D": [],
"Group E": ["Child E1", "Child E2", "Child E3"]

}

Activity:

packagepackage com.commonsware.android.wc.elv;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ExpandableListAdapterandroid.widget.ExpandableListAdapter;
importimport android.widget.ExpandableListViewandroid.widget.ExpandableListView;
importimport android.widget.ExpandableListView.OnChildClickListenerandroid.widget.ExpandableListView.OnChildClickListener;
importimport android.widget.ExpandableListView.OnGroupClickListenerandroid.widget.ExpandableListView.OnGroupClickListener;
importimport android.widget.ExpandableListView.OnGroupCollapseListenerandroid.widget.ExpandableListView.OnGroupCollapseListener;
importimport android.widget.ExpandableListView.OnGroupExpandListenerandroid.widget.ExpandableListView.OnGroupExpandListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
OnChildClickListener, OnGroupClickListener, OnGroupExpandListener,
OnGroupCollapseListener {

privateprivate ExpandableListAdapter adapter=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

InputStream raw=getResources().openRawResource(R.raw.sample);
BufferedReader in=newnew BufferedReader(newnew InputStreamReader(raw));
String str;

WIDGET CATALOG: EXPANDABLELISTVIEW

2515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

StringBuffer buf=newnew StringBuffer();

trytry {
whilewhile ((str=in.readLine()) != nullnull) {

buf.append(str);
buf.append('\n');

}

in.close();

JSONObject model=newnew JSONObject(buf.toString());

ExpandableListView elv=(ExpandableListView)findViewById(R.id.elv);

adapter=newnew JSONExpandableListAdapter(getLayoutInflater(), model);
elv.setAdapter(adapter);

elv.setOnChildClickListener(thisthis);
elv.setOnGroupClickListener(thisthis);
elv.setOnGroupExpandListener(thisthis);
elv.setOnGroupCollapseListener(thisthis);

}
catchcatch (Exception e) {

Log.e(getClass().getName(), "Exception reading JSON", e);
}

}

@Override
publicpublic boolean onChildClick(ExpandableListView parent, View v,

int groupPosition, int childPosition,
long id) {

Toast.makeText(thisthis,
adapter.getChild(groupPosition, childPosition)

.toString(), Toast.LENGTH_SHORT).show();

returnreturn(falsefalse);
}

@Override
publicpublic boolean onGroupClick(ExpandableListView parent, View v,

int groupPosition, long id) {
Toast.makeText(thisthis, adapter.getGroup(groupPosition).toString(),

Toast.LENGTH_SHORT).show();

returnreturn(falsefalse);
}

@Override
publicpublic void onGroupExpand(int groupPosition) {

Toast.makeText(thisthis,
"Expanding: "

+ adapter.getGroup(groupPosition).toString(),
Toast.LENGTH_SHORT).show();

}

WIDGET CATALOG: EXPANDABLELISTVIEW

2516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onGroupCollapse(int groupPosition) {

Toast.makeText(thisthis,
"Collapsing: "

+ adapter.getGroup(groupPosition).toString(),
Toast.LENGTH_SHORT).show();

}
}

This activity loads up a JSON file from a raw resource on the main application
thread in onCreate(), which is not a good idea. It would be better to do that work in
a background thread, perhaps an AsyncTask managed by a retained fragment. The
implementation shown here is designed to keep the sample small, not to
demonstrate the best way to load data from a raw resource.

Adapter:

packagepackage com.commonsware.android.wc.elv;

importimport android.util.Logandroid.util.Log;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.BaseExpandableListAdapterandroid.widget.BaseExpandableListAdapter;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.Iteratorjava.util.Iterator;
importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass JSONExpandableListAdapterJSONExpandableListAdapter extendsextends
BaseExpandableListAdapter {

LayoutInflater inflater=nullnull;
JSONObject model=nullnull;

JSONExpandableListAdapter(LayoutInflater inflater, JSONObject model) {
thisthis.inflater=inflater;
thisthis.model=model;

}

@Override
publicpublic int getGroupCount() {

returnreturn(model.length());
}

@Override
publicpublic Object getGroup(int groupPosition) {

@SuppressWarnings("rawtypes")
Iterator i=model.keys();

WIDGET CATALOG: EXPANDABLELISTVIEW

2517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

whilewhile (groupPosition > 0) {
i.next();
groupPosition--;

}

returnreturn(i.next());
}

@Override
publicpublic long getGroupId(int groupPosition) {

returnreturn(groupPosition);
}

@Override
publicpublic View getGroupView(int groupPosition, boolean isExpanded,

View convertView, ViewGroup parent) {
ifif (convertView == nullnull) {

convertView=
inflater.inflate(android.R.layout.simple_expandable_list_item_1,

parent, falsefalse);
}

TextView tv=
((TextView)convertView.findViewById(android.R.id.text1));

tv.setText(getGroup(groupPosition).toString());

returnreturn(convertView);
}

@Override
publicpublic int getChildrenCount(int groupPosition) {

trytry {
JSONArray children=getChildren(groupPosition);

returnreturn(children.length());
}
catchcatch (JSONException e) {

// JSONArray is really annoying
Log.e(getClass().getSimpleName(), "Exception getting children", e);

}

returnreturn(0);
}

@Override
publicpublic Object getChild(int groupPosition, int childPosition) {

trytry {
JSONArray children=getChildren(groupPosition);

returnreturn(children.get(childPosition));
}
catchcatch (JSONException e) {

// JSONArray is really annoying
Log.e(getClass().getSimpleName(),

WIDGET CATALOG: EXPANDABLELISTVIEW

2518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"Exception getting item from JSON array", e);
}

returnreturn(nullnull);
}

@Override
publicpublic long getChildId(int groupPosition, int childPosition) {

returnreturn(groupPosition * 1024 + childPosition);
}

@Override
publicpublic View getChildView(int groupPosition, int childPosition,

boolean isLastChild, View convertView,
ViewGroup parent) {

ifif (convertView == nullnull) {
convertView=

inflater.inflate(android.R.layout.simple_list_item_1, parent,
falsefalse);

}

TextView tv=(TextView)convertView;
tv.setText(getChild(groupPosition, childPosition).toString());

returnreturn(convertView);
}

@Override
publicpublic boolean isChildSelectable(int groupPosition, int childPosition) {

returnreturn(truetrue);
}

@Override
publicpublic boolean hasStableIds() {

returnreturn(truetrue);
}

privateprivate JSONArray getChildren(int groupPosition) throwsthrows JSONException {
String key=getGroup(groupPosition).toString();

returnreturn(model.getJSONArray(key));
}

}

This adapter wraps a JSONObject and assumes that the JSON structure is an object,
keyed by strings, whose values are arrays of strings. The object returned by
getGroup() is the key for that group’s position; the object returned by getChild() is
the string at that child’s array index for it’s group’s array. Since the data structure is
treated as immutable, and since there are no other better IDs in the data structure
itself, the group ID is simply the group’s position, and the child’s ID is simply a
mash-up of the group and child positions.

WIDGET CATALOG: EXPANDABLELISTVIEW

2519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Visual Representation
This is what an ExpandableListView looks like in a few different Android versions
and configurations, based upon the sample app shown above.

Figure 667: Android 2.3.3, Portrait

WIDGET CATALOG: EXPANDABLELISTVIEW

2520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 668: Android 4.0.3, Portrait

Note that while the data in the JSON file has the groups sorted alphabetically,
because JSONObject effectively loads its data into a HashMap, the sorting gets lost in
the data model, which is why the groups appear out of order.

Also note that the visual representation of the “collapsed” and “expanded” states is
controlled by the ExpandableListAdapter and the view used for the groups. In this
sample, we use android.R.layout.simple_expandable_list_item_1 for the groups,
which gives us the caret designation for expanded versus collapsed states in 4.0.3
and the lower-left arrowhead-in-circle icon for 2.3.3. You can create your own rows
with your own indicators as you see fit.

WIDGET CATALOG: EXPANDABLELISTVIEW

2521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: SeekBar

SeekBar allows the user to choose a value along a continuous range by sliding a
“thumb” along a horizontal line. In effect — and in practice, as it turns out –
SeekBar is a user-modifiable ProgressBar.

Key Usage Tips
The value range of a SeekBar runs from 0 to a developer-set maximum value. As
with ProgressBar, the default maximum is 100, but that can be changed via an
android:max attribute or the setMax() method. The minimum value is always 0, so
if you want a range starting elsewhere, just add your starting value to the actual
value (obtained via getProgress()) to slide the range as desired.

You can find out about changes in the SeekBar value by attaching an
OnSeekBarChangeListener implementation. The primary method on that interface
is onProgressChanged(), where you are notified about changes in the progress value
(second parameter) and whether that change was initiated directly by the user
interacting with the widget (third parameter). The interface also has
onStartTrackingTouch() and onStopTrackingTouch(), to indicate when the user is
attempting to change the position of the thumb via the touchscreen, though these
methods are less-commonly used.

A Sample Usage
The sample project can be found in WidgetCatalog/SeekBar.

Layout:

2523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SeekBar
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SeekBar

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
tools:context=".MainActivity">>

<TextView<TextView
android:id="@+id/value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="0"
android:ems="2"
android:gravity="right|center_vertical"
android:layout_marginRight="10dp"
android:textAppearance="@android:style/TextAppearance.Large"/>/>

<SeekBar<SeekBar
android:id="@+id/seek_bar"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:layout_marginRight="10dp"
android:max="50"/>/>

</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.wc.seekbar;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.SeekBarandroid.widget.SeekBar;
importimport android.widget.SeekBar.OnSeekBarChangeListenerandroid.widget.SeekBar.OnSeekBarChangeListener;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
OnSeekBarChangeListener {

TextView value=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

value=(TextView)findViewById(R.id.value);

SeekBar seekBar=(SeekBar)findViewById(R.id.seek_bar);

seekBar.setOnSeekBarChangeListener(thisthis);
}

WIDGET CATALOG: SEEKBAR

2524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
value.setText(String.valueOf(progress));

}

@Override
publicpublic void onStartTrackingTouch(SeekBar seekBar) {

// no-op
}

@Override
publicpublic void onStopTrackingTouch(SeekBar seekBar) {

// no-op
}

}

Visual Representation

Figure 669: Android 2.3.3

WIDGET CATALOG: SEEKBAR

2525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 670: Android 4.1

WIDGET CATALOG: SEEKBAR

2526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: SlidingDrawer

Having some form of means of allowing the user to swipe to show more things is an
important visual pattern. We saw this earlier in the book with the ViewPager
container. And there are other modern techniques for doing this that you will see in
apps like Google+.

SlidingDrawer, while implementing a variation on this pattern, is a bit out of date
at present. Mostly, that’s a question of its UI: tapping a drawer “handle” to open it is
not what you tend to see nowadays. That being said, it works perfectly well,
wrapping around a container to make it appear or disappear based on user input,
complete with a sliding animation effect.

Note that SlidingDrawer was deprecated in API Level 17 (a.k.a., Android 4.2). This
means that Google is steering you in other directions, including forking the AOSP
code for SlidingDrawer and maintaining it yourself. The animator framework offers
other ways of implementing sliding widgets that may be better suited for your UI,
anyway.

Key Usage Tips
The SlidingDrawer itself is transparent, except for the button to trigger the slide
and its accompanying horizontal bar. Hence, if you want the drawer contents to
completely obscure what is outside of the drawer, you will need to use an
appropriate background. Otherwise, the drawer contents and what lies outside the
drawer will be alpha-blended based on their own translucency, as is seen in the
screenshots later in this chapter.

2527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/widget/SlidingDrawer.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/widget/SlidingDrawer.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/widget/SlidingDrawer.java

The SlidingDrawer can be horizontal or vertical; it is vertical by default. However, it
only slides one way (bottom-to-top for vertical, right-to-left for horizontal). There is
no way to reverse the direction of the sliding effect.

You must supply android:content and android:handle attributes in
SlidingDrawer, containing references to the widget that forms the content of the
drawer and the drawer’s handle, respectively. Typically, the drawer’s handle is an
ImageView. Note that you must supply a handle — you cannot skip either of these
attributes.

A Sample Usage
The sample project can be found in WidgetCatalog/SlidingDrawer.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/drawer_closed"/>/>

<SlidingDrawer<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:content="@+id/content"
android:handle="@+id/handle">>

<ImageView<ImageView
android:id="@id/handle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/tray_handle_normal"/>/>

<Button<Button
android:id="@id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/drawer_msg"/>/>

</SlidingDrawer></SlidingDrawer>

</RelativeLayout></RelativeLayout>

WIDGET CATALOG: SLIDINGDRAWER

2528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SlidingDrawer
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SlidingDrawer

Activity:

packagepackage com.commonsware.android.drawer;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass DrawerDemoDrawerDemo extendsextends Activity
{

/** Called when the activity is first created. */
@Override
publicpublic void onCreate(Bundle savedInstanceState)
{

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

Visual Representation
This is what a SlidingDrawer looks like in a few different Android versions and
configurations, based upon the sample app shown above.

Figure 671: Android 2.3.3, with Drawer Closed

WIDGET CATALOG: SLIDINGDRAWER

2529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 672: Android 2.3.3, with Drawer Open

Figure 673: Android 4.0.3, with Drawer Closed

WIDGET CATALOG: SLIDINGDRAWER

2530

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: StackView

StackView is an AdapterView. Whereas ListView uses a horizontal scrolling list as
its UI metaphor, StackView uses a stack of cards as its metaphor. Just as ListView
shows a handful of rows, StackView shows a handful of cards. These cards can be
swiped away via a swipe towards the southwest corner of the screen. The top card is
fully visible; the edges of a few other cards can be seen but are otherwise obscured
by cards “higher in the stack”.

While certainly usable in activities and fragments, StackView was introduced in
support of app widgets. App widgets like bookmarks, Google Books covers, and the
like use StackView to show an item and allow users to navigate to the rest of the
items by flipping these virtual cards.

Key Usage Tips
Generally speaking, working with StackView is not significantly different than is
working with any other AdapterView. You create an Adapter defining the contents
(in this case, defining the cards), you attach the Adapter to the StackView, and put
the StackView somewhere on the screen.

As the cards overlap, however, transparency becomes an issue. If the top card is not
completely opaque, you will see the card beneath it “peeking through” as its
contents are blended in via the alpha channel. In some cases, this is a perfectly
desirable outcome. However, if that is not what you want, make sure that the
backgrounds of your overall container for the card’s contents (e.g., a
RelativeLayout) has an opaque background, such as a color with FF for the alpha
value.

2531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, since the objective is to have the children be visually stacked, the children
cannot be the size of the StackView itself (e.g., the children cannot use
match_parent for a dimension). StackView seems to work best with children that
have explicit sizes (e.g., values in dp).

A Sample Usage
The sample project can be found in WidgetCatalog/StackView.

Activity Layout:

<?xml version="1.0" encoding="utf-8"?>
<StackView<StackView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/details"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

Item Layout:

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="200dp"
android:layout_height="200dp"
android:background="#FFFF0000"
android:gravity="center"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

Activity:

packagepackage com.commonsware.android.wc.stack;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.StackViewandroid.widget.StackView;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
staticstatic String[] items= { "lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel", "ligula",
"vitae", "arcu", "aliquet", "mollis", "etiam", "vel", "erat",
"placerat", "ante", "porttitor", "sodales", "pellentesque",
"augue", "purus" };

StackView stack;

@Override
publicpublic void onCreate(Bundle icicle) {

WIDGET CATALOG: STACKVIEW

2532

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/StackView
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/StackView

supersuper.onCreate(icicle);
setContentView(R.layout.main);

stack=(StackView)findViewById(R.id.details);
stack.setAdapter(newnew ItemAdapter(thisthis, R.layout.item, items));

}

privateprivate staticstatic classclass ItemAdapterItemAdapter extendsextends ArrayAdapter<String> {
publicpublic ItemAdapter(Context context, int textViewResourceId,

String[] objects) {
supersuper(context, textViewResourceId, objects);

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);

result.setBackgroundColor(0xFF330000 + (position * 0x0A0A));

returnreturn(result);
}

}
}

Visual Representation
This is what a StackView looks like in Android 4.0.3, based upon the sample app
shown above:

WIDGET CATALOG: STACKVIEW

2533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 674: Android 4.0.3, As Initially Seen

WIDGET CATALOG: STACKVIEW

2534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: TabHost and
TabWidget

Before we had the action bar and ViewPager, we had TabHost and TabWidget as our
means of displaying tabs. Nowadays, in most cases, using tabs in the action bar
would be preferable, or perhaps using “swipey tabs” with ViewPager. However, there
may be cases where the classic tabs are a better solution, or you may have inherited
legacy code that still uses TabHost.

Deprecation Notes
Just as ListActivity helps one use a ListView, TabActivity helps one use a
TabHost. However, TabActivity is marked as deprecated. That is largely because its
parent class, ActivityGroup, is deprecated. While you can still use TabActivity, it is
no longer recommended. It also is not necessary, as there are ways to use TabHost
and TabWidget without using TabActivity, as will be demonstrated later in this
chapter.

Key Usage Tips
There are a few widgets and containers you need to use in order to set up a tabbed
portion of a view:

• TabHost is the overarching container for the tab buttons and tab contents
• TabWidget implements the row of tab buttons, which contain text labels and

optionally contain icons
• FrameLayout is the container for the tab contents; each tab content is a child

of the FrameLayout

2535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://viewpagerindicator.com
http://viewpagerindicator.com

You load contents into that FrameLayout in one of two ways:

1. You can define the contents simply as child widgets (or containers) of the
FrameLayout in a layout XML file you are using for the whole tab setup

2. You can define the contents at runtime

Curiously, you do not define what goes in the tabs themselves, or how they tie to the
content, in the layout XML file. Instead, you must do that in Java, by creating a
series of TabSpec objects (obtained via newTabSpec() on TabHost), configuring them,
then adding them in sequence to the TabHost via addTab().

The two key methods on TabSpec are:

• setContent(), where you indicate what goes in the tab content for this tab,
typically the android:id of the view you want shown when this tab is
selected

• setIndicator(), where you provide the caption for the tab button and, in
some flavors of this method, supply a Drawable to represent the icon for the
tab

Note that tab “indicators” can actually be views in their own right, if you need more
control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these
TabSpec objects. The call to setup() is not needed if you are using the TabActivity
base class for your activity.

A Sample Usage
The sample project can be found in WidgetCatalog/Tab.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<TabHost<TabHost xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/tabhost"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<LinearLayout<LinearLayout

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<TabWidget<TabWidget android:id="@android:id/tabs"

WIDGET CATALOG: TABHOST AND TABWIDGET

2536

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/Tab
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/Tab

android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
<FrameLayout<FrameLayout android:id="@android:id/tabcontent"

android:layout_width="match_parent"
android:layout_height="match_parent">>
<AnalogClock<AnalogClock android:id="@+id/tab1"

android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
<Button<Button android:id="@+id/tab2"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="A semi-random button"

/>/>
</FrameLayout></FrameLayout>

</LinearLayout></LinearLayout>
</TabHost></TabHost>

Activity:

packagepackage com.commonsware.android.tabhost;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TabHostandroid.widget.TabHost;

publicpublic classclass TabDemoTabDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);

tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("tag1");

spec.setContent(R.id.tab1);
spec.setIndicator("Clock");
tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);

}
}

WIDGET CATALOG: TABHOST AND TABWIDGET

2537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that ordinarily you would use icons with your tabs, and so the second
parameter to setIndicator() would be a reference to a drawable resource. This
particular sample skips the icons.

Visual Representation
This is what a TabHost and TabWidget look like in a few different Android versions
and configurations, based upon the sample app shown above.

Figure 675: Android 2.3.3

WIDGET CATALOG: TABHOST AND TABWIDGET

2538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 676: Android 4.0.3

WIDGET CATALOG: TABHOST AND TABWIDGET

2539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: TimePicker

Just as DatePicker allows the user to pick a date, TimePicker allows the user to pick
a time. This widget is a bit simpler to use, insofar as you do not have the option of
the integrated CalendarView as you do with DatePicker. In other respects,
TimePicker follows the patterns established by DatePicker.

Note that TimePicker only supports hours and minutes, not seconds or finer
granularity.

Key Usage Tips
With DatePicker, the act of supplying an OnDateSetListener also required you to
supply the year/month/day to use as a starting point. TimePicker is more
intelligently designed: setting the OnTimeSetListener is independent from adjusting
the hour or minute.

As with DatePicker, TimePicker works well with Calendar and GregorianCalendar,
in terms of setting and getting the hour/minute/second from the TimePicker and
converting it into something you can use in your code.

There is a bug in Android 4.0/4.0.3 in which your OnTimeSetListener is not invoked
when the user changes between AM and PM when viewing the TimePicker in
12-hour display mode.

A Sample Usage
The sample project can be found in WidgetCatalog/TimePicker.

2541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=24388
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/TimePicker
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/TimePicker

Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center_vertical">>

<TimePicker<TimePicker
android:id="@+id/picker"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.wc.timepick;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TimePickerandroid.widget.TimePicker;
importimport android.widget.TimePicker.OnTimeChangedListenerandroid.widget.TimePicker.OnTimeChangedListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;

publicpublic classclass TimePickerDemoActivityTimePickerDemoActivity extendsextends Activity implementsimplements
OnTimeChangedListener {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

TimePicker picker=(TimePicker)findViewById(R.id.picker);

picker.setOnTimeChangedListener(thisthis);
}

@Override
publicpublic void onTimeChanged(TimePicker view, int hourOfDay, int minute) {

Calendar then=Calendar.getInstance();

then.set(Calendar.HOUR_OF_DAY, hourOfDay);
then.set(Calendar.MINUTE, minute);
then.set(Calendar.SECOND, 0);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_SHORT)
.show();

}
}

WIDGET CATALOG: TIMEPICKER

2542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Visual Representation

Figure 677: Android 2.3.3

WIDGET CATALOG: TIMEPICKER

2543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 678: Android 4.0.3

WIDGET CATALOG: TIMEPICKER

2544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: ViewFlipper

A ViewFlipper behaves a bit like a FrameLayout that is set up such that only one
child can be visible at a time. You can control which of those children is visible,
either by index or via showNext()/showPrevious() methods to rotate between them.

You can also set up animated effects to control how a child leaves and the next one
enters, such as applying a sliding effect.

And, you can set up ViewFlipper to automatically flip between children on a
specified period, without further developer involvement. This, coupled with the
animation, can be used for news tickers, ad banner rotations, or the like where light
animations (e.g., fade out and fade in) can be used positively.

Key Usage Tips
ViewFlipper can have as many children as needed (within memory constraints),
though you will want at least two for it to be meaningful.

By default, the transition between children is an immediate “smash cut” — the old
one vanishes and the new one appears instantaneously. You can call
setInAnimation() and/or setOutAnimation() to supply an Animation object or
resource to use for the transitions instead.

By default, the ViewFlipper will show its first child and stay there. You can manually
flip children via showNext(), showPrevious(), and setDisplayedChild(), the latter
of which taking a position index of which child to display. You can also have
automatic flipping, by one of two means:

2545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. In your layout, android:flipInterval will set up the amount of time to
display each child before moving to the next, and android:autoStart will
indicate if the automated flipping should begin immediately or not

2. In Java, setFlipInterval() serves the same role as android:flipInterval,
and you can control when flipping is enabled via startFlipping() and
stopFlipping()

A Sample Usage
The sample project can be found in WidgetCatalog/ViewFlipper.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<ViewFlipper<ViewFlipper android:id="@+id/details"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

</ViewFlipper></ViewFlipper>
</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.flipper2;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.ViewFlipperandroid.widget.ViewFlipper;

publicpublic classclass FlipperDemo2FlipperDemo2 extendsextends Activity {
staticstatic String[] items={"lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@Override
publicpublic void onCreate(Bundle icicle) {

WIDGET CATALOG: VIEWFLIPPER

2546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ViewFlipper
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ViewFlipper

supersuper.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

forfor (String item : items) {
Button btn=newnew Button(thisthis);

btn.setText(item);

flipper.addView(btn,
newnew ViewGroup.LayoutParams(

ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL_PARENT));

}

flipper.setFlipInterval(2000);
flipper.startFlipping();

}
}

Visual Representation
There is no visual representation of a ViewFlipper itself, as it renders no pixels on
its own. Rather, it simply shows the current child.

WIDGET CATALOG: VIEWFLIPPER

2547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Device Catalog

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: Google TV

As Android increases in popularity, we are seeing a few devices (or device categories)
that become popular but are outside the mainstream, defined here as phones and
tablets that legitimately have the Play Store on them. Of course, there are lots of
devices that fall outside the mainstream that are not popular — most likely, you do
not care about these unless you have a specific need to have your app run on one
(e.g., particular device bought by your firm for its field staff). But the devices
profiled in this part of the book are popular enough that you might want to consider
addressing them, despite the additional “fragmentation” they introduce.

The first such device category is Google TV. At the time of this writing, it has been
about 18 months since Google TV was announced (at the 2010 Google I|O
conference) and over a year since devices started shipping. However, only recently
have we been able to create apps for Google TV devices, let alone users be able to
install them. This chapter outlines what you will need to consider if you want your
apps to be on Google TV… or perhaps if you do not want your apps to be on Google
TV.

At the time of this writing, Google TV runs Android 3.1. Hence, it supports things
like fragments natively, without necessarily having the need for the Android Support
package. Of course, you may be using the Android Support package for other devices
(e.g., Android 2.x phones), and that works perfectly fine on Google TV.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

2549

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Features and Configurations Does It Use?
Android has built into the SDK a fair bit of device flexibility. Most of this comes in
the form of configurations (things that affect resources) and features (other stuff). If
your application can handle a range of configurations and features, or can advertise
that they need certain configurations or features, they can handle Google TV or
arrange to not be available for Google TV on the Market.

Screen Size and Density

Google TV devices are always categorized as large screen size. Hence, you will tend
to put your layouts in res/layout-large/, or possibly res/layout-large-land/
(since Google TV presumably will always consider itself to be landscape).

Densities, however, are a bit more complicated.

Google TV is for use with HDTV, whether Google TV is integrated into the television
or it comes as an external set-top box. There are two predominant HDTV
resolutions, known as 720p (1280x720) and 1080p (1920x1080). A 1080p television will
be categorized as an xhdpi density device. A 720p television will be categorized as a
tvdpi device, where tvdpi was a new resource set qualifier added in API Level 13.
tvdpi is for devices around 213dpi, in between mdpi and hdpi. In practice, you might
elect to skip tvdpi for your drawable resources, allowing Android to resample your
mdpi, hdpi, or xhdpi drawables as needed.

Input Devices

Google TV is not considered to be a touchscreen device. As such, from a resource
standpoint, you can use -notouch to isolate resources that should be used on Google
TV (or, potentially, other future non-touchscreen devices, should they arise). Hence,
if you want a different UI for Google TV than a tablet — to address navigational
differences, for example — you can use res/layout-large-land-notouch for Google
TV and res/layout-large/ and res/layout-large-land/ for other types of large-
screen devices.

Other Hardware

Google TV has no sensors, no camera, no Bluetooth, no microphone, and no
telephony features. As such, any application requiring such features will not run on
Google TV and will not even show up in the Play Store for such devices. The Google

DEVICE CATALOG: GOOGLE TV

2550

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/android/docs/gtv_android_features

TV developer documentation has the roster of specific <uses-feature> names that
must not be referenced.

Bear in mind that some of these will be driven by permissions. If you ask for the
SEND_SMS permission, Android will assume you need android.hardware.telephony
unless you specifically state otherwise, via a <uses-feature> element for
android.hardware.telephony with android:required="false".

What Is Really Different?
Beyond the features and configurations, there are other things about Google TV that
will depart from what you might expect for an Android environment, due to the
nature of the TV set-top box platform and the Android implementation upon it.

The Emulator

The Google TV add-on for the Android SDK offers an emulator. However, it does not
work like the emulator for standard Android. Instead of using a qemuqemu-based
emulator, the Google TV emulator uses KVM, a virtualization environment used by
Linux servers. While you can get KVM to run on a Linux desktop — perhaps with
some tweaking – it is not available for Windows or OS X development machines.
Moreover, KVM cannot itself run in a virtualized environment, so you cannot use
VirtualBox or similar solutions to have a Windows or OS X machine run a copy of
Linux that, in turn, would run a copy of the Google TV emulator.

For Linux developers, the headaches are modest. For Windows and OS X developers,
the options are far from ideal:

1. Use a spare PC that you happen to have lying around for a Linux
environment, bearing in mind that not all CPUs and BIOSes support the
virtualization extensions required by KVM

2. Attempt to create a bootable USB key that contains Linux and the Android
SDK with the emulator, so you can test your app on your existing PC

3. Buy a Google TV device and test exclusively on hardware (downside: unless
you have two televisions, you will not be able to test both 720p and 1080p
display sizes)

4. Switch to Linux for your development needs

DEVICE CATALOG: GOOGLE TV

2551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/android/docs/gtv_android_features

CPU and NDK

Google TV devices will be built on both ARM and Intel chipsets. The devices that
shipped in 2010 and most of 2011 were based on Intel Atom chips, but future Google
TV devices may use ARM as well.

This should not matter much for you right now, simply because you cannot use the
Native Development Kit (NDK) with Google TV at this time. With luck, support for
this will be added in the not-too-distant future, particularly for game development.

Overscan

Television standards have been with us for several decades. Television sets from the
dawn of television had significantly lower and more variable quality than today’s
devices. The delivery of the signal at the outset had significantly lower and more
variable quality than today’s over-the-air HDTV or cable connections. As a result of
these two characteristics, the engineers devising television standards made some
decisions that, while necessary at the time, add some complexity to delivering apps
to televisions, in the form of overscan.

Simply put, not all televisions show exactly the same picture. Depending on device
and signal, a television may show up to 12% less of the picture, as measured
horizontally and vertically. Hence, the theoretical ideal screen size (e.g., 720p = 1280
x 720 pixels) may be achieved in some cases, but you may get less (e.g., 1128 x 634
pixels) in other cases.

Google TV, as part of setup, will determine the safe viewing size for the television, by
having the user calibrate the device based on test images. Hence, Google TV will not
attempt to display something that the television is incapable of displaying (assuming
proper setup). However, this does mean that while you will be thinking of 720p or
1080p resolution, you may not get all that space, and so you need to design your app
to accommodate this.

One common problem encountered here is a background image. Developers have
already been schooled to avoid full-screen backgrounds due to the wide range of
resolutions available on handheld Android devices. Google TV just adds to the mix,
where there are thousands upon thousands of possible actual resolutions, all minute
changes from one another based upon what a particular television can handle. You
will need to take this into account (e.g., put the background image on top of a solid
field of color, where that solid color matches the dominant color from the edges of

DEVICE CATALOG: GOOGLE TV

2552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the image, then keep the background image at a fixed resolution and allow the solid
fills on the edges take care of the overscan area).

Ethernet

While Google TV devices will generally be connected to the Internet, it may not be
via WiFi. Since Google TV devices generally are not portable, some will have
Ethernet jacks, and hence some users will elect to wire in their Google TV as
opposed to using WiFi.

The upshot is that you should not assume that WifiManager will necessarily give you
useful results. Also, ConnectivityManager should report wired Ethernet as
TYPE_ETHERNET, added in API Level 13, when you call methods like
getActiveNetworkInfo().

Location

Generally speaking, Google TV devices will tend not to move, earthquakes and large
dogs notwithstanding.

As such, Google TV devices do not have GPS receivers. Rather, location is
determined in an approximate fashion via address-based lookups, using a postal
code. Hence, asking Android for a GPS fix on a Google TV device will be ineffective.

You can get the approximate location of a Google TV device by using the "static"
location provider (e.g., getLastKnownLocation(“static”)). Unfortunately, there is
no SDK-defined static data member for "static" at this time.

However, since users of Google TV devices tend not to be moving much at the time,
it is a bit more likely than normal that they will want information about some
location other than where they are. If your app is exclusively tied to providing
information about their current location, you may wish to consider how you could
extend your app to help users get information about other places that they may be
interested in.

Media Keys

Handheld Android devices have few buttons, with the number of buttons decreasing
as time goes along. The only ones related to media are volume rockers, and perhaps
a CAMERA button.

DEVICE CATALOG: GOOGLE TV

2553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google TV devices will be manipulated by remote controls. Many of these remotes
will have lots and lots of buttons, akin to the remotes people are already used to. In
addition to perhaps having a QWERTY keyboard, these remotes will have media-
specific buttons for play, pause, etc.

The KeyEvent class has had support for some media buttons since API Level 3,
mostly for use with wired headsets. API Level 11 added a bunch more media buttons.
Your Google TV application may wish to respond to these, via onKeyDown() in a View
or Activity. In particular, a Google TV application should not be using on-screen
controls for play, pause, etc., as they take up screen space that probably could be put
to better use. Rather, use layouts that offer such controls for touchscreen devices
(e.g., phones and tablets) but rely on the media buttons for non-touchscreen
devices.

Channels and Listings

Unlike most handheld Android devices, Google TV is optimized to accompany some
sort of television signal, whether that be cable, satellite, over-the-air HDTV, or
something else. Not surprisingly, Google TV offers some TV-specific capabilities that
you can elect to employ if it makes sense for your app.

Google TV has a ContentProvider for the device’s channel lineup, so you can
present a list of the available channels in a ListView, Spinner, etc. You can query on
content://com.google.android.tv.provider/channel_listing and get back
columns like the channel_name and channel_number. Note that you will need to hold
the com.google.android.tv.permission.READ_CHANNELS permission for this to
work.

Another column you can retrieve from the ContentProvider is channel_uri. This is
a Uri within that ContentProvider, representing a specific channel. You can create
an ACTION_VIEW Intent on that Uri and call startActivity() on it to switch to live
TV and change the channel to that channel. This requires sufficient integration
between the user’s Google TV device and the source of the signal (e.g., using an “IR
blaster” to control an external cable box to change channels), and so this may not
work for all users.

User Base

As Android has evolved, so has the way its devices get used. Phones are still
frequently considered to be very personal, private devices. However, tablets are

DEVICE CATALOG: GOOGLE TV

2554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

becoming more shared — witness the XOOM Family Edition from Motorola
Mobility. Televisions, of course, are also usually shared among household members.
However, Android does not have a system-wide concept of separate user
environments, though there are some enterprise add-ons that are making inroads in
this area.

Depending on the nature of your app, you may wish to consider setting up your own
concept of separate “accounts” for different users of the same device, so they can
keep their content and settings separate. If needed, you might consider adding
authentication of one form or another, to minimize the odds of one person getting
into another person’s stuff. While Android 4.2 has this sort of per-user storage built
in, Google TV is running Android 3.1 at the time of this writing, and so 4.2
capabilities are unavailable to you.

Getting Your Development Environment
Established
If you want to develop for Google TV, you will need to do a bit of work to extend
your development environment, as is outlined in this section.

Installing the SDK Add-On

In the Android SDK Manager, in the “Android 3.1 (API 12)” section, you will find a
“Google TV Addon by Google Inc.” entry, which you will need to install:

Figure 679: The Android SDK Manager, showing the Google TV option

DEVICE CATALOG: GOOGLE TV

2555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting KVM Set Up

Details of installing KVM will vary by Linux distro. For example, to install KVM on
Ubuntu 10.04 or later, you would need to install a few packages:

sudo apt-get install qemu-kvm libvirt-bin bridge-utils

You will also need to log out and log back in, so a change in your account’s group
membership takes effect.

Full Ubuntu KVM installation instructions can be found on the Ubuntu Web site —
similar instructions are (hopefully) available for whatever distro you are running.

Note that tools related to managing KVM virtual machines (e.g., Ubuntu’s
ubuntu-vm-builder and virt-viewer packages) may not be needed, as the Android
SDK will be creating your virtual machines for you.

Creating the Emulator

You will want to create four emulator images. Both should specify "Google TV
Addon (Google Inc.) - API Level 12” as the target. The difference between the four
will be their skins, dictating their resolutions:

1. 1080p
2. 1080p-overscan (which simulates the loss of available pixels due to overscan

effects)
3. 720p
4. 720p-overscan

The rest of the setup should be as normal for your preferred emulator options (e.g.,
an SD card sufficiently large to hold any test media for external storage).

Connecting to Physical Devices

Normally, when developing using Android hardware, you connect your development
machine to the hardware via USB. This is not supported by Google TV, perhaps with
an eye towards not requiring Google TV-powered televisions to sport USB ports.
Instead, you develop for Google TV by TCP/IP. The tools are mostly ignorant of the
difference – only adbadb knows and cares about the USB versus TCP/IP differences.

DEVICE CATALOG: GOOGLE TV

2556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://help.ubuntu.com/community/KVM/Installation

First, you will need the IP address of your Google TV device. You can get this via All
Apps > Settings > Network > Status — “IP Address” will be one of the listed pieces of
information:

Figure 680: IP Address on Google TV

With luck, your network will keep the same IP address assigned to this device, even
if you shut down or reboot the device from time to time.

Then, at the command line, run adb connectadb connect, supplying the IP address of the
Google TV device. If the adbadb command is not in your development machine’s PATH,
you will find it in the platform-tools/ directory of wherever your SDK is installed.
At this point, DDMS and adb devicesadb devices should report the Google TV device. Rather
than the device ID being a serial number or emulator-5554, it will be the IP address
plus :5555.

At this point, all your normal tools should work, for viewing LogCat and so on. The
screenshot shown above, for example, was taken using the DDMS perspective in
Eclipse. Note, though, that the screenshots will only be from what Google TV is
generating, not any underlying picture being supplied by your television signal
input.

DEVICE CATALOG: GOOGLE TV

2557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To disconnect, simply run adb disconnectadb disconnect with the IP address of the Google TV
device.

How Does Distribution Work?
Your app probably falls in one of three buckets: you want it on Google TV (along
with other devices), it only supports Google TV, or it will not work on Google TV.
Whichever of those buckets best fits your device will determine the manifest
settings you will want to ensure that the Play Store (and perhaps other third-party
markets in the future) will honor your request.

Getting Your App on Google TV

The first criterion for getting your app visible to Google TV devices on the Play Store
is to add a <uses-feature> element to your manifest, indicating that you do not
require the android.hardware.touchscreen feature:

<uses-feature<uses-feature android:name="android.hardware.touchscreen"
android:required="false"/>/>

By default, Android assumes that you need a touchscreen, and so without this
clarification in your manifest, you will not appear in the Play Store.

Also, add similar <uses-feature> elements for any hardware that you might like to
use where available but do not absolutely need, particularly hardware that Google
TV may lack. The Google TV developer documentation has the full roster of
unsupported features.

Also:

1. If you have any <uses-configuration> elements in the manifest, double-
check to make sure that they will be possible on Google TV devices . The
configurations that Google TV does not support are ones where you need the
touchscreen (android:reqTouchScreen="stylus" or "finger").

2. Do not have any activities with android:screenOrientation set to portrait,
as Google TV devices always display in landscape

3. Apparently not all OpenGL textures are supported, so if you are using
<supports-gl-texture> elements in your manifest, you will need to ensure
that such textures work on Google TV, presumably via testing

DEVICE CATALOG: GOOGLE TV

2558

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/android/docs/gtv_android_features

Supporting Only Google TV

If your app only supports Google TV, in addition to the above requirements, you
should also add one more <uses-feature> element to your manifest:

<uses-feature<uses-feature android:name="com.google.android.tv" android:required="true"/>/>

This will filter you out of the Market for all non-Google TV environments.

Avoiding Google TV

If your app specifically is untested on Google TV, you need to have something in the
manifest that will keep you off Google TV devices’ views of the Play Store. The
easiest is to say that you need a touchscreen:

<uses-feature<uses-feature android:name="android.hardware.touchscreen"
android:required="true"/>/>

Dealing with Other Televisions

There are other devices that support Android on televisions. While few of these exist
as of the summer of 2012, many are in the works, such as the oft-cited, crowd-funded
OUYA console.

Android 4.1 (a.k.a., Jelly Bean) added a separate feature for televisions:
android.hardware.type.television. Requiring this would limit your application to
devices that are to be displayed on televisions.

However, as of the time of this writing, it is unclear which, if any, devices or markets
honor this particular <uses-feature> element.

Getting Help
The Google TV Developer site has a lot of information on creating Google TV apps,
in terms of design and implementation details.

The primary place to get your questions answered regarding Google TV
development is StackOverflow’s google-tv tag.

DEVICE CATALOG: GOOGLE TV

2559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.kickstarter.com/projects/ouya/ouya-a-new-kind-of-video-game-console
https://developers.google.com/tv/
http://stackoverflow.com/questions/tagged/google-tv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: Kindle Fire

The most aggressive firm in creating a Google-free Android ecosystem is Amazon.
The most visible aspect of that work is Amazon’s Kindle Fire series of devices. From
2011 through 2013, each year has brought forth a new generation of Kindle Fire
models, each with newer versions of Android and more powerful hardware.
However, none support the Play Store or other Google proprietary apps and
technologies. As a result, Amazon has also been building their own replacements,
which developers can elect to use if they need the capabilities but are targeting the
Fire.

This chapter will outline what you should expect as you start working on apps for
the Kindle Fire series of devices.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Introducing the Kindle Fire series
Once upon a time, there was the Kindle Fire. It was a 7” tablet, made by Amazon.

Nowadays, there is a series of devices in the Kindle Fire family:

• The original first-generation Kindle Fire
• The second-generation Kindle Fire, with an updated OS and slightly faster

CPU
• The Kindle Fire HD 7”, with a 720p display

2561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The Kindle Fire HD 8.9” with a 1080p display (available as a WiFi-only device
or with mobile data capability)

• The Kindle Fire HDX 7”, with a 1920x1200 display and optional mobile data
• The Kindle Fire HDX 8.9”, with a 2560x1600 display and optional mobile data

This chapter will attempt to point out which of these devices certain statements
pertain to. The phrase “the original Kindle Fire” refers to the first-generation Kindle
Fire.

What Features and Configurations Does It Use?
Any time you are looking at a device that is known to be a significant departure from
conventional Android devices, you need to consider what capabilities the device has
and how that relates to your code and graphic assets. Android’s flexibility means
that, in many cases, you can work within the limits of the SDK to craft something
that will look well on unusual devices. However, you will need to understand what is
and is not possible for the device in question, in this case the Kindle Fire.

However, there are now several devices in the Kindle Fire family, which makes this
more complicated.

OS Version

Amazon has branded their variation of Android “FireOS”.

The first-generation Kindle Fire runs an Amazon-customized version of Android
2.3.3. The HD models run an Amazon-customized version of Android 4.0.3, while
the HDX models run a FireOS based on Android 4.2.2.

Note that these devices will not show up in Google’s “Device Dashboard” pie chart,
as Google can only count those devices that use the Play Store, which the Kindle Fire
series lacks.

Screen Size and Density

The original Kindle Fire (first and second generation) uses -large, -mdpi resources.
On the surface, this would not be terribly surprising, as the 7” display works out to
around 169dpi, and 7” displays are definitely in the -large resource bucket.

DEVICE CATALOG: KINDLE FIRE

2562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, bear in mind that Android 2.3 did not fully support tablets. The only
Google-endorsed tablet that shipped with Android 2.x was the original Samsung
Galaxy Tab, and that technically was a really large phone that, er, could not place
phone calls.

As such, Android 2.3 did not consider a 1024x600 display to be -large. It considered
such a display to be -xlarge. This was corrected in Android 3.1, in preparation for a
new line of ~7” Honeycomb tablets.

In general, this should not pose an issue when testing your app on hardware. In
practice, it will pose a problem for your emulator, as will be explained later in this
chapter.

The Kindle Fire HD 7” and 8.9” are -large, though they are -hdpi in terms of screen
density.

The Kindle Fire HDX 7” is -large, while the Kindle Fire HDX 8.9” is -xlarge. Both
are xhdpi in terms of screen density.

Hardware Features

All of the Kindle Fire devices support:

1. An accelerometer, both for direct use and for detecting screen orientation
changes

2. Multitouch, but only for two fingers (e.g., pinch-to-zoom)
3. WiFi
4. The USB accessory interface
5. A light/proximity sensor

The Kindle Fire HD devices add:

1. Front-facing camera
2. Network-based location (the Kindle Fire HD 8.9”, with the mobile data

option, also has GPS)
3. Bluetooth
4. Microphone

The Kindle Fire HDX devices add:

1. GPS

DEVICE CATALOG: KINDLE FIRE

2563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Compass

The Kindle Fire HDX 8.9” offers a rear-facing camera in addition to the front-facing
camera.

None of the Kindle Fire series support telephony (voice or SMS).

If your application truly needs any of those missing capabilities, you are out of luck.

If your application could use some of those capabilities but can get by without them,
be sure to add the appropriate <uses-feature> elements to your manifest with
android:required="false" (e.g., <uses-feature
android:name="android.hardware.camera"
android:required="false" />). Otherwise, your app will not be available for the
original Kindle Fire if Android thinks that you really do need the capability (e.g., you
have requested the CAMERA permission).

What Is Really Different?
All of the devices profiled in this part of the book are clearly different than what you
are used to from an Android development standpoint. Some things, like availability
of Bluetooth, will fit within the Android SDK’s framework for optional capabilities.
Other things will represent where a device manufacturer has meandered farther
from the Android device norm, in ways that may not be completely obvious to you,
let alone your code.

The Menu Bar

As was noted previously in this chapter, the Kindle Fire runs Android 2.3, a version
of Android not designed for tablets. Moreover, Android 2.3 was designed for devices
that had dedicated off-screen options for HOME, BACK, and MENU buttons.
However, Amazon apparently wanted to avoid such buttons, yet they lacked source
code access to Honeycomb, where support for the system bar was added.

So, they faked it.

The Kindle Fire supports what Amazon refers to as the “menu bar”. This is akin to
the system bar found on tablets running Android 3.0+, insofar as:

1. It appears at the bottom of the screen

DEVICE CATALOG: KINDLE FIRE

2564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. It contains the HOME, BACK, and MENU buttons, along with a search
button

However, unlike the system bar:

1. The menu bar disappears when not in use, in some cases
2. There is still a status bar at the top containing signal strength, battery level,

time, etc.

Here, for example, is an application running on the original Kindle Fire:

Figure 681: The original Kindle Fire, running a sample application, showing the menu
bar

In this case, this is a normal activity, and the menu bar is always visible.

However, here is the same activity with android:theme="@android:style/
Theme.NoTitleBar.Fullscreen" in the manifest:

DEVICE CATALOG: KINDLE FIRE

2565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 682: The original Kindle Fire, running a sample application, with the menu bar
collapsed

Hence, if you set your activity to be full-screen, the status bar at the top goes away,
and the menu bar shrinks to a smaller bar. Tapping on that bar brings back the
menu bar, but this time overlaying the bottom portion of your activity.

Nothing Googly

The Kindle Fire lacks Google Maps, both the app and the library used for things like
MapView.

The Kindle Fire lacks the Play Store and anything that depends upon it, such as
GCM.

The Kindle Fire lacks Gmail.

The Kindle Fire lacks anything from Google that is not part of the Android Open
Source Project.

If your application depends on one or more of these, your app will not work well on
a Kindle Fire without adjustments.

DEVICE CATALOG: KINDLE FIRE

2566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sideloading Limitations

If you enable the standard Android setting, you can install apps on the Kindle Fire
from alternative sources, such as sideloading via USB. This is how the development
tools deploy apps to a device when you are working on your app, and anyone can use
this technique so long as they have the Android SDK (or at least enough to provide
adbadb access).

However, there is one notable limitation of sideloading: icon quality.

When you submit your app for distribution through the Amazon AppStore, you will
upload what they refer to as the “thumbnail” image. This is a 512x512 pixel rendition
of your icon and is independent from any icons you may have put as resources in the
APK file itself. When your app is installed from the Amazon AppStore, your
thumbnail is downloaded as well and is used for the home screen carousel, among
other things:

Figure 683: The original Kindle Fire home screen, with a high-resolution version of
the QuickOffice icon

However, when you sideload an app, or install it off the Web, there is no
“thumbnail”. The Kindle Fire will use your in-APK icon, no different than any other

DEVICE CATALOG: KINDLE FIRE

2567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

home screen. However, when it blows up your, say, 72x72 pixel icon to the large shelf
in the carousel, it does not look very pretty:

Figure 684: The original Kindle Fire home screen, with a not-so-high-resolution
version of the stock Android launcher icon

Things are somewhat better on the HD series:

DEVICE CATALOG: KINDLE FIRE

2568

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 685: Kindle Fire HD, with CommonsWare App Icon

Getting Your Development Environment
Established
Developing for the Kindle Fire series is best accomplished using an actual Kindle
Fire device. For example, there is no good way to simulate the behavior of the Kindle
Fire menu bar using the standard Android emulator. That being said, having an
emulator that at least resembles the Kindle Fire will be useful for debugging
purposes, since you can do more with an emulator (e.g., run Hierarchy View) than
you can with production devices.

Emulator Configuration

Originally, Amazon did not distribute an emulator image for the Fire, meaning that
developers would have to fake it as best they could using a stock emulator. This was
fairly limiting, as the Fire does not look much like a standard Android emulator.

Fortunately, Amazon is now distributing an SDK add-on that supplies an emulator
image you can use. Full information about this SDK add-on can be found on the
Amazon developer site.

DEVICE CATALOG: KINDLE FIRE

2569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/sdk/fire/emulator-guide.html

To install it:

• Start the SDK Manager, such as via the toolbar button in Eclipse
• Choose Tools > Manage Add-on Sites from the SDK Manager main menu
• Click on the User Defined Sites tab, and click the New… button
• Fill in http://kindle-sdk.s3.amazonaws.com/addon.xml as the URL in the

field in the “Add Add-on Site URL” dialog, then click OK (to close up that
dialog), then click Close (to close up the Manage Add-on Sites dialog)

• Wait for the progress bar at the bottom of the SDK Manager to finish (pro
tip: this is a fine time to get a cup of coffee)

• Check the Kindle Fire entries for various API levels:

Figure 686: Kindle Fire Entry in SDK Manager

This will give you new device definitions in the AVD Manager for the Kindle Fire
series:

DEVICE CATALOG: KINDLE FIRE

2570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 687: Kindle Fire Device Definitions in AVD Manager

These will give you an emulator that reasonably approximates the behavior of a real
Kindle Fire device. On the plus side, the emulator images include Amazon’s changes
to the OS, such as the “menu bar”. However, they only distribute an ARM edition of
the emulator image, resulting in a slow emulator compared to x86 images.

Note that the emulators in portrait mode get a bit tall, in terms of pixels, so be sure
to use the scaling option in the AVD Manager to scale down the emulator so that it
will fit your development machine’s monitor.

DEVICE CATALOG: KINDLE FIRE

2571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 688: Kindle Fire Emulator

The official original Kindle Fire emulator image also overcomes a limitation in the
standard Android emulator image.

As mentioned earlier in this chapter, Gingerbread did not support tablets. More
importantly, it had a snippet of code that assumes that devices running with the
Kindle Fire’s resolution must be -xlarge. In reality, the Kindle Fire (and other 7”
tablets) should use a -large configuration. However, the standard Android emulator
will use -xlarge. However, the official Kindle Fire emulator will correctly report the
emulator as -large, matching the device.

Developing on Hardware

The Kindle Fire is ready for use with your development tools, once you teach your
development machine how to have adbadb connect to the fire.

Linux and OS X users simply need to run android update adbandroid update adb, after having installed
the Kindle Fire SDK components, to have the ADB USB entries added to the
adb_usb.ini file.

DEVICE CATALOG: KINDLE FIRE

2572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On Windows, you will need to do that too, after doing some other things to unpack
a local copy of the device drivers. Details for this process can be found in the Kindle
Fire developer documentation.

Note that the original Kindle Fire automatically switches into USB Mass Storage
mode when you plug it into a PC using the USB cable. This means that apps on the
Kindle Fire do not have access to external storage. You will need to unmount the
Kindle from your development machine’s OS and click the Disconnect button on the
Kindle Fire’s “You can now transfer files from your computer to Kindle” screen to be
both connected via USB and allow apps access to external storage.

How Does Distribution Work?
Unlike the vast majority of Android devices, the Kindle Fire series lacks the Play
Store. It is quite likely the most popular device ever shipped that does not include
the Play Store, though it is far from the first. Hence, if you want your app to be
available to Kindle Fire users, you will need to explore other ways of promoting and
delivering the app.

Amazon AppStore

The primary way to reach Kindle Fire users is through the Amazon AppStore. This is
Amazon’s equivalent to the Play Store. And, unlike the Play Store, which is only
available pre-installed on devices, any Android device can download an app client
for the Amazon AppStore. That, coupled with Amazon’s promotions like the “free
app of the day”, means that your app on the Amazon AppStore has reach beyond just
the Kindle Fire series and future Amazon Android devices.

At a high level, publishing on the Amazon AppStore is not significantly different
than publishing on the Play Store: you supply the APK and descriptive material to
Amazon, and it gets listed. However, the devil, as they say, is in the details:

1. Your app will be reviewed by Amazon before publishing, and it may be
rejected for the same sorts of reasons why apps are rejected from the iOS
App Store, for anything from content concerns to poor programming
practices

2. If you are trying to sell a paid app, Amazon holds final pricing decisions, and
your prices on the Amazon AppStore cannot be higher than on other venues

DEVICE CATALOG: KINDLE FIRE

2573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/sdk/fire/connect-adb.html
https://developer.amazon.com/sdk/fire/connect-adb.html

3. Your app will be wrapped in Amazon-supplied code and re-signed by
Amazon, so that if a non-Kindle Fire user uninstalls the Amazon AppStore
client, your app will no longer run

4. And so on

This is not to say that distributing through the Amazon AppStore is intrinsically a
bad idea. Because of some of these hurdles, plus the AppStore’s much smaller user
base, many developers are skipping it. This results in less competition and greater
visibility for your app. However, you need to review all the Amazon AppStore
developer rules and make decisions for yourself as to whether it makes sense for you
and what you are trying to accomplish with the app.

In April 2013, Amazon also launched Coins, which is their replacement for Google’s
in-app purchasing model for the Play Store.

Alternatives

Because Amazon did not license the Play Store or other commercial components
from Google, you cannot reach Kindle Fire users through the Market (except for
those who install pirated versions of the Play Store client on their devices).

However, all other distribution vectors should work as they would on any other
device. In addition to sideloading via USB, users can install apps off of the Web by
visiting a URL in the device’s browser (by default, Amazon Silk) and tapping on the
link to the APK. This will trigger a download of the app — users can then tap on the
Notification for the download to trigger an install. Similarly, one would imagine
that other apps whose job is to download and install apps (e.g., enterprise app
“markets”) should work normally as well.

Note, though, that all off-AppStore installs will have rough icons, so you will want to
supply your icons in all densities, in hopes that the Kindle Fire will choose a higher-
quality rendition of the icon.

Amazon Equivalents of Google Services
Since Amazon does not license the Google proprietary apps, the Kindle Fire series
lacks common things like Google Maps.

However, Amazon has their own equivalents for some of these:

DEVICE CATALOG: KINDLE FIRE

2574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The Amazon Maps API allows you to embed maps on Kindle Fire devices like
you would embed Google Maps on more traditional Android devices

• The Amazon Device Messaging API is roughly analogous to GCM for
pushing messages to a Kindle Fire device

• The Amazon In-App Purchasing API allows your apps to tie into Amazon
Payments and the like for collecting fees from users inside your app

Getting Help with the Kindle Fire
Amazon maintains a set of documentation related to Kindle Fire development, along
with a set of forums for asking Amazon-specific development questions regarding
the Kindle Fire or their various SDKs.

Amazon is also reported to monitor the kindle-fire tag on StackOverflow.

DEVICE CATALOG: KINDLE FIRE

2575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/sdk/maps.html
https://developer.amazon.com/sdk/admsignup.html
https://developer.amazon.com/sdk/in-app-purchasing.html
https://developer.amazon.com/sdk/fire.html
https://forums.developer.amazon.com/forums/index.jspa
http://stackoverflow.com/questions/tagged/kindle-fire
http://stackoverflow.com/questions/tagged/kindle-fire

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: Barnes & Noble
NOOK Tablet

While Amazon’s Kindle Fire is all the rage in the 7” Android-based tablet space, it
certainly was not the first such tablet.

It was not even the first such tablet sold by a firm known originally for selling
printed books.

Barnes & Noble, a large American bookstore chain, released the NOOK Color in
November 2010 and followed that up with the NOOK Tablet in November 2011. Like
the Kindle Fire, the NOOK series are based on Android but have a substantially
replaced home screen and other built-in apps. Also, like the Kindle Fire, the NOOK
series eschews the Play Store (and any other Google apps) in favor of its own
distribution channel.

This chapter will explore developing for the NOOK series, focusing on the newer
NOOK Tablet.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

2577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Features and Configurations Does It Use?
In some respects, the NOOK series is closer in spirit to traditional Android devices
than is, say, the Kindle Fire. That being said, there are certainly departures from
what you would expect, in many cases to keep the parts count and price low.

Screen Size and Density

Both the NOOK Color and the NOOK Tablet have 1024x600 displays, categorized
correctly as -mdpi from a screen density standpoint. The NOOK Color is correctly
categorized as a -large screen, given its 7” diagonal display.

The NOOK Tablet, on the other hand, claims to be -xlarge, despite the fact that it
too has a 7” diagonal display. This will be a problem if your -xlarge resources (e.g.,
layouts) are really designed for 10” tablets and will not work especially well on a 7”
tablet.

Hardware Features

The NOOK series does not support:

1. Any form of location tracking via LocationManager
2. Recording via a microphone
3. Anything involving a camera
4. Anything involving Bluetooth
5. Gyroscope sensors

In addition, the NOOK devices are not phones and so lack any telephony capability,
including SMS/MMS.

What Is Really Different?
Beyond the mis-categorizing of the NOOK Tablet as an -xlarge device, there are
other places where the NOOK series has departed from standard Android
conventions, even within the flexibility supported by the Android OS.

DEVICE CATALOG: BARNES & NOBLE NOOK TABLET

2578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Status/System Bar and Navigation Norms

If you play around with a NOOK Tablet, you will discover that there are no obvious
BACK and MENU buttons anywhere on the screen. Most of the built-in applications
eschew BACK and MENU, though, preferring iOS-style on-screen backwards
navigation, albeit with inconsistent styling.

If you try your own apps, they should cause BACK and MENU buttons to appear,
very small, in the status bar that exists at the bottom of the screen. Most of the time,
this status bar simply shows the time, battery charge, etc.

Similarly, there is no HOME button. The raised “horseshoe” button towards the
bottom of the device, when pressed, brings up a menu of places to navigate to, one
of which is the home screen. Note that this behavior only appears on hardware; the
NOOK Tablet emulator seems to completely ignore that button and offers no
obvious means of getting back to the home screen directly from your app.

Nothing Googly

As with the Kindle Fire, the NOOK series of devices lack any of the Google apps.
This includes Google Play for installing other apps, Google Maps (and the Maps SDK
add-on), and so on. You will need to find alternatives as needed.

No Side-loading

As will be discussed in greater detail later in this chapter, side-loading of apps is
limited at best on the NOOK series.

Toasts to the Top

Whereas in standard Android, the default positioning of a Toast is towards the
bottom of the screen, on the NOOK Tablet, it is positioned towards the top.

Unsupported APIs

The NOOK devices do not support home screen app widgets or text-to-speech.

DEVICE CATALOG: BARNES & NOBLE NOOK TABLET

2579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Your Development Environment
Established
The NOOK Developer site offers its own SDK for NOOK development. The NOOK
SDK is an add-on for the Android SDK environment, so you will need to start with
the standard Android SDK tools and such before proceeding.

From the Android SDK Manager, choose Tools | Manage Add-on Sites… This will
bring up a dialog box that you can use for adding vendor-supplied add-ons that are
not part of Google’s central add-on registry:

Figure 689: The SDK Manager Add-on Sites dialog

Note that you might need to resize the dialog for the buttons on the right to appear.

In that dialog, click New… and fill in http://su.barnesandnoble.com/nook/sdk/
addon.xml as the URL. Then click OK to close the dialog, and Close to close the
Add-on Sites dialog. You should find a new NOOKcolor entry in the Android 2.2
section of your SDK Manager, which you can then check and install. You can repeat
the process with http://su.barnesandnoble.com/nook/sdk/
Nook_Tablet_addon.xml for installing the NOOK Tablet add-on, which will appear
in the 2.3.3 section of your SDK Manager.

DEVICE CATALOG: BARNES & NOBLE NOOK TABLET

2580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://nookdeveloper.barnesandnoble.com

Emulator Configuration

The primary reason for installing those SDK add-ons is to get access to official
NOOK emulator images. With the add-ons installed, your AVD Manager will allow
you to create NOOK Color and NOOK Tablet emulators, just as you would create
emulators for various Android API levels.

Note that the NOOK emulator has a lot of space-consuming chrome around the
actual display:

Figure 690: The NOOK Tablet emulator

As a result, you may need to scale the emulator down smaller than the physical 7” of
the actual device, simply because the emulator image is too tall.

Also note that the NOOK emulator does not correctly report an OS version to
Eclipse, so you may find that when you try to run your app, Android launches some
other emulator. Right click on the project and choose Run As > Run Configurations,
and change the project to Manual deployment target selection on the Target tab of
the Run Configurations dialog.

DEVICE CATALOG: BARNES & NOBLE NOOK TABLET

2581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Developing on Hardware

The NOOK people make it very annoying to attempt to develop on NOOK
hardware, for unknown reasons.

Officially, you need to file paperwork to become a “qualified NOOK App Developer”.
This is not possible except for US residents (or firms with a US tax ID from a small
list of other supported countries). You also already have to have a production app
released elsewhere, and your request has to be approved by the NOOK team.

While there used to be procedures for getting past this restriction, recent firmware
updates for the NOOK Tablet have blocked those procedures. At the time of this
writing, short of fully rooting the device (and potentially replacing the firmware),
development on the NOOK Tablet does not appear possible short of going through
the official mechanism.

How Does Distribution Work?
Short of rooting and modding, app distribution for the NOOK series is purely
through the Barnes & Noble Storefront. There is no fee to become a “qualified
NOOK App Developer” to submit your apps to the Storefront, and you get 70% of
the list price of paid apps, on par with similar distribution mechanisms.

The limited distribution options for the NOOK series make it an unsuitable device
for use with private apps (e.g., enterprise development), short of rooting and
modding.

DEVICE CATALOG: BARNES & NOBLE NOOK TABLET

2582

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: RIM Blackberry
Playbook

Research In Motion (RIM) are known around the world for their Blackberry line of
phones and messaging services. In 2011, they leapt into the tablet arena with the
Blackberry Playbook. The 2.0 version of the Playbook OS supports running carefully
repackaged Android applications, and you can distribute these applications through
a RIM-supplied marketplace if you so choose.

What Features and Configurations Does It Use?
Android offers a reasonable amount of flexibility to device manufacturers, while
simultaneously allowing developers to dynamically adapt to different device
capabilities. This section outlines what you should expect from the Playbook.

Screen Size and Density

The Playbook has a 7” 1024x600 screen. It correctly advertises itself as a -large
-mdpi device and will try to pull its resources from those sets.

Hardware Features

The Playbook, like most tablets, is not a phone, and so it does not support any
telephony capability, including SMS/MMS.

Beyond that, Android apps on the Playbook cannot access:

1. Some sensors, notably proximity, ambient light, and barometer
2. Bluetooth

2583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. miscellaneous other ill-supported technologies (e.g., NFC)

Also, like most tablets, the Playbook does not have any sort of navigation input
besides the touchscreen — no D-pad, trackball, arrow keys, etc. Hence, if you have
<uses-configuration> elements that require one of these, your app will not work
on the Playbook.

What Is Really Different?
The Playbook is different in part because it is not truly an Android device, but a
Blackberry device that happens to have a “runtime” for Android, much like a Web
browser might have a runtime for Flash. As such, there are going to be a number of
things that will depart from the Android norm that your application might expect.

Navigation

Like most Android tablets, the Playbook offers little in the way of physical or off-
screen navigation buttons. For example, there is no BACK button. However, a
navigation bar will contain a BACK soft button for users. If your app takes over the
full screen, this bar will not be there all the time, but a swipe down from the top of
the screen should expose it. Users can also learn the BACK gesture – a diagonal
swipe from southeast to northwest.

Similarly, your menu will not be accessed via a MENU key, but rather via a
downward swipe to expose the menu. This also means that any special MENU-
button logic of yours may not work.

Nothing Googly

By definition, a non-standard Android device lacks the Google apps, such as Google
Play, Google Maps, and so on. The Playb0ok does support geo: as a scheme for an
Intent when used with startActivity(), but you cannot directly integrate Google
Maps into your application using MapView and MapActivity. RIM recommends using
WebView and the Google Maps Web-based APIs instead.

BARs as Packages

One of the biggest differences, compared to other Android-based devices, is the
application file format. You are used to distributing APK files, whether via Google
Play or by other means. The Playbook, instead, plays BAR files. You will need to go

DEVICE CATALOG: RIM BLACKBERRY PLAYBOOK

2584

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

through a process to “repackage” your APK into a BAR file for local testing or
uploading to Blackberry App World. Fortunately, RIM provides a number of means
for doing this, described later in this chapter.

Unsupported APIs

In addition to the Google app limitations, the Playbook does not support:

1. Home screen app widgets
2. Any app with more than one launcher activity
3. SIP
4. Native code via the NDK
5. Text-to-speech
6. Task management APIs, notably those protected by GET_TASKS and

KILL_BACKGROUND_PROCESSES
7. Some methods on AudioManager and MediaPlayer, mostly targeting

Bluetooth devices and vibration motors
8. The Camera class (though accessing the camera via ACTION_GET_CONTENT

should work)

In addition, the Playbook does not support some media types normally supported
by Android, including Ogg Vorbis, AMR, FLAC, MIDI, H.263, and VP8.

Package Name Length

The Playbook Android runtime only supports package names of 29 characters or
less. The build tools will truncate your package name as needed, though you may
need to give it some assistance to determine how best to do that (e.g., use the first
29 characters? the last 29 characters?).

Getting Your Development Environment
Established
Developing for the Playbook is significantly different than is developing for other
Android devices, simply because the Playbook is not really an Android device. It is a
Blackberry device that happens to have an Android runtime environment in it.

DEVICE CATALOG: RIM BLACKBERRY PLAYBOOK

2585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Checking and Repackaging Your App

You need to convert your APK into a BAR file for test it on the Playbook Simulator or
on an actual Playbook. There are three ways to go about this: use an Eclipse plug-in,
use an online packager, or use some command-line tools.

Eclipse Plugin

RIM publishes an Eclipse plugin that will handle most of the chores for you: test
your app for compatibility, convert it into a BAR, apply signing keys, etc. This plugin
is certified for use on Windows and OS X; RIM does not mention support for Linux.
This plugin also supports the creation of run configurations to deploy your app to a
device or simulator, including supporting IP-based debugging.

Online Repackager

For lightweight use, RIM supplies a Web-based version of the same tools, minus the
Eclipse integration and debugging. This too, though, only supports Windows and
OS X, despite being browser-based. It relies on a Java applet, so your browser will
need to have that enabled as well.

Command-Line Tools

The only option available for Linux are the command-line tools (though these also
support Windows and OS X). There are separate commands for the major steps in
the process:

1. apk2barVerifierapk2barVerifier runs a validation check to see if you obviously use or do
something that makes your app incompatible (e.g., require API Level 11, as
the Playbook runs API Level 10)

2. apk2bar creates a BAR file out of the APK file (optionally running
apk2barVerifierapk2barVerifier first, to save you running that separately)

3. batchbar-deploybatchbar-deploy will upload one or more BAR files to a device or running
copy of the simulator

4. etc.

Playbook Simulator

RIM offers a Playbook simulator in the form of a VMWare image. Because of the
nature of their Android runtime for the Playbook, RIM does not support the

DEVICE CATALOG: RIM BLACKBERRY PLAYBOOK

2586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://bdsc.webapps.blackberry.com/android/bpaa/

standard Android emulation environment. And, given the extensive modifications to
their edition of Android, you are probably better served either trying to use their
VMWare image or developing on actual Playbook hardware. This image is certified
for use on Windows and OS X, though RIM does not mention support for Linux
(even though there is a VMWare player for Linux).

The VMWare image will have its own IP address, which you can obtain from the
Playbook simulator running in the image. You can then deploy your BAR to it using
the Eclipse plugin or the command-line blackberry-deployblackberry-deploy tool.

Developing on Hardware

The Playbook can run either signed or unsigned BAR files. Unsigned BAR files,
though, require a one-time upload of a “debug token”, the creation of which requires
the same credentials as you would use to sign the BAR in the first place. Signing
credentials are available from RIM through a Web form, though they require
agreeing to a fairly lengthy SDK License Agreement.

How Does Distribution Work?
RIM is expecting apps to be distributed to the Playbook primarily through their App
World site, which also has Playbook apps that are native to the device (vs. running
in the Android runtime).

Blackberry App World

Compared to marketplaces for apps for some non-standard Android devices,
Blackberry App World is full-featured and extensive. It not only supports the
Playbook but all app-capable Blackberry devices. At the present time, App World
does not take a percentage of each sale.

Alternatives

Side-loading is possible, using the techniques from development. However, there is
no indication that over-the-air installation is possible other than through Blackberry
App World.

DEVICE CATALOG: RIM BLACKBERRY PLAYBOOK

2587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://bdsc.webapps.blackberry.com/android/signingkey
http://us.blackberry.com/legal/SDKLA_English.pdf

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wrist Wearables

A new growth area in mobile technology is the rise of the “wearable”: a device
designed to be worn on the body in one way or another.

Figure 691: NOTE: Clocks Are Not Normally Considered “Wearables” (image courtesy
of Wikimedia Commons)

While large timepieces are not in the domain of what we think of as “wearables”, the
humble wristwatch has been converted into a new location for computing power.
Major manufacturers, such as Samsung and SONY, have launched forays into wrist
wearables, and Google is still sitting on the technology from WIMM Labs that, in
many ways, presaged current interest in wrist wearables.

2589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this chapter, we will cover some of the players in the wrist wearable space and
what things you may need to think of as you look to start developing apps for such
items.

Prerequisites
Understanding this chapter requires that you have read the core chapters of the
book.

Divvying Up the Wearables Space
For the purposes of this chapter, we will consider wearables along two axes:

• What OS does the wearable run?
• What OS can we use for developing apps for the wearable?

Devices vs. Accessories

For this chapter, a “device” is a wearable that runs a recognized mobile operating
system. Mostly, right now, that is Android, for devices like the Omate TrueSmart and
the I’m Watch. In principle, in the future, other operating systems used on phones
or tablets could make the jump to run directly on the wearable.

In contrast, an “accessory” is a wearable that runs… something else. Usually, this is
some proprietary OS, one we do not work with directly. So, the Pebble smartwatch is
an accessory, as the Pebble runs its own OS, not something like Android that is
popularly used on phones and tablets.

App OS

In the case of devices, usually we will write apps for the OS of the device. Writing an
app for the Omate TrueSmart is reminiscent of writing an app for a small-screen
Android phone, for example.

In the case of accessories, the accessory maker may have provided SDKs to allow for
apps to be created that run on a phone or tablet that the accessory is tethered to.
Basically, the phone or tablet provides the “brains”, while the accessory is simply a
very tiny input/output terminal. Since this book is on Android application

WRIST WEARABLES

2590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

development, either an accessory supports apps that run on Android, or it does not
(e.g., it only supports iOS at the moment).

NOTA (None Of The Above)

Some devices do not fit these buckets, for the simple reason that they do not
support app development of any kind at present. For example, the first-generation
Galaxy Gear from Samsung, and the Qualcomm Toq, are closed environments. In the
case of the Toq, it is unclear if anyone has an SDK for it. In the case of the Galaxy
Gear, Samsung appears to have a private SDK that they have made available to select
partners, eschewing the broader Android development ecosystem for the time being.

Example Wrist Wearables
The following sections outline several wrist wearable devices. This is not meant to be
an exhaustive list. Instead, it is here to give you a sense of what is available, both in
terms of brands and opportunities for app developers.

Fitbit

Fitbit is a wrist wearable, one with only a few LEDs for output, designed almost
exclusively for collecting sensor input (e.g., pedometer). While the Fitbit site offers
an API, it is not an API to the Fitbit wearable, but rather to a Fitbit Web service, for
retrieving Fitbit results. As such, the Fitbit does not qualify as either a device or an
accessory in terms of this chapter’s model.

I’m Watch

The I’m Watch was one of the first wrist wearable devices, running Android. The I’m
Watch runs Android 1.6, which works well in limited hardware, and with only 128MB
of RAM and a ~400MHz CPU, the I’m Watch hardware is limited. From the
standpoint of Android developers, Android 1.6 is “rather long in the tooth”, as most
developers have abandoned Android 1.x development, and many have even stopped
worrying about Android 2.x.

The I’m Watch offers a 1.5", 240x240 pixel screen, 4GB of on-board storage, and a
couple of sensors (accelerometer and magnetic field). Distribution of apps for the
I’m Watch is handled through the manufacturer’s own storefront, though developers
can deploy apps through adbadb.

WRIST WEARABLES

2591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.imsmart.com/en

MetaWatch

MetaWatch was born out of a Kickstarter project. It is an accessory, running some
tiny OS of its own, designed for “widgets” (MetaWatch apps) to be powered by a
tethered device. Alas, momentum seems to have stalled on their app SDKs, and so
there does not appear to be a well-supported way to create apps to run on Android
devices that push content to the MetaWatch.

Omate TrueSmart

Another Kickstarter was for the Omate TrueSmart. This is a wearable device,
powered by Android 4.2. Writing apps for the Omate TrueSmart closely resembles
developing apps for a tiny Android phone.

The hardware specs are more in line with modern devices, when compared with the
I’m Watch:

• Dual-core ARM 1.3GHz CPU
• 512MB or 1GB of system RAM
• 4–8GB of internal storage, plus microSD expansion
• 1.5" 240x240 touchscreen
• WiFi, mobile data, and Bluetooth

As of February 2014, the Omate TrueSmart has shipped to most of its Kickstarter
backers and should be available for sale to others shortly.

Pebble

Of course, the Kickstarter that, um, kick-started the whole “Kickstart-a-wearable”
phenomenon was the Pebble smartwatch. The Pebble is an accessory, where the on-
board OS runs apps written in C that can optionally communicate with Android or
iOS apps running on tethered devices.

Qualcomm Toq

Qualcomm, in late 2013, decided to get into the wearables game directly, via their
Toq smartwatch. This is an accessory, designed to work in conjunction with an
Android device. In February 2014, Qualcomm released an SDK to allow Android
developers to create apps that can work with the Toq.

WRIST WEARABLES

2592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.metawatch.com/
https://www.kickstarter.com/projects/metawatch/metawatch-strata-the-smartwatch-for-the-iphone-4s
http://www.metawatch.org/developers/
https://www.kickstarter.com/projects/omate/omate-truesmart-water-resistant-standalone-smartwa
http://www.omate.com/
https://www.kickstarter.com/projects/597507018/pebble-e-paper-watch-for-iphone-and-android
https://getpebble.com/
https://toq.qualcomm.com/
https://developer.qualcomm.com/mobile-development/create-connected-experiences/smartwatch-toq-sdk

However, the license terms for this SDK contain clauses that should be discussed
with qualified legal counsel, including:

• granting Qualcomm the right to modify and demonstrate your application
to whoever it wants to;

• precluding the development of apps (or libraries) that employ a number of
popular open source licenses;

• prohibiting distribution of an app without Qualcomm’s prior written
permission; and

• giving Qualcomm the right to tell you to uninstall your app, from any device,
at any time, for any reason

Samsung Gear Series

One of the bigger brands to get into wrist wearables has been Samsung, with their
Galaxy Gear device. The Galaxy Gear is a device, running Android. However, at of
February 2014, there is no publicly-available SDK for writing apps for this device, nor
any officially-supported means of installing third-party apps on the device. You can
load apps on it via adbadb, though this is not supported and has substantial limitations
(e.g., no Internet access).

In February 2014, Samsung announced the Gear 2 and Gear 2 Neo. These are
devices, but running Tizen, not Android. Samsung released an SDK for these
devices](http://developer.samsung.com/samsung-gear) in March 2014.

In February 2014, Samsung also announced the Gear Fit. This does have an SDK (as
part of Samsung’s overall mobile SDK package), and qualifies as an accessory.

SONY SmartWatch and SmartWatch 2

SONY is another major brand to get into wrist wearables. In fact, they were the first
major brand to do so, debuting their SONY SmartWatch back in 2012. SONY then
released the SmartWatch 2 in 2013. Both are accessories, where the apps for the
SmartWatch actually run on a tethered Android device, with the SmartWatch
serving as a display surface and input mechanism (via simple taps and gestures on
the touchscreen).

WRIST WEARABLES

2593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://sonymobile.com/smartwatch

That Theorized Apple Watch

Of course, the brand that everyone is waiting for to get into the wearables space is
Apple. There have been rumors of an “iWatch” for quite some time, though with no
actual device having been released as of February 2014.

WIMM One (RIP)

There used to be a firm called WIMM Labs, which made a wrist wearable device
called the WIMM One. The device was much along the lines of the I’m Watch and
Omate TrueSmart, falling roughly in between them in terms of Android OS version
and hardware capability. Their approach was to be more of an OEM, though, looking
to supply branded versions of the WIMM One to firms who might want a wearable
but were not in that technology space, such as clothiers like Nike.

Google acquired WIMM Labs, at which time the WIMM One was pulled from the
market. Some of the WIMM Labs capabilities perhaps moved into the Google Glass
project, though it is certainly possible that Google could offer a “Nexus Watch”
sometime in the future.

Strategic Considerations
Before leaping into extending your app to support wearables of any sort — ones
worn on the wrist or otherwise — you really need to spend some time thinking
about whether or not this is the best thing for you and your users.

Do We Bother?

While wearables are touted as “the next big thing”, there have been plenty of such
“things” that have never gotten to be that big. This is not to suggest that wearables
will go the way of tree-style Web site directories, but they may not become quite as
popular as the phones and tablets they are meant to accompany.

While developing for wearables has a “cool factor”, the time you spend on wearables
is time taken away from other things. For developers, you lose time that you might
have spent on other features of your app. For independent developers, the time
might come out of your time budgets for marketing or product research.

WRIST WEARABLES

2594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.dmoz.org/

While a pure hobbyist might pursue wearables just because it is an interesting area
to get into, many other developers need to weigh whether adding wearable support
will be worth the time investment.

Which Types?

Developing apps for Android wearable devices, like the Omate TrueSmart and the
I’m Watch, is comparatively straight-forward. Device limitations may cause you to
spend some more development time, such as crafting a UI that works well on ~1.5"
displays. And, depending on the device, you may have to use alternative APIs for
some basic operations — the WIMM One, for example, did not have its own WiFi or
mobile data, and so you had to wait until the WIMM One told you it was safe to try
Internet operations, when the device was tethered to a phone that had its own
connectivity. But, at the end of the day, it is still the same Android development that
you have come to love (or at least tolerate, occasionally through gritted teeth).

Accessories, or devices running other mobile operating systems, require custom
development. And, since there are no standards in this area yet, it usually requires
per-device custom development. This may be a graceful extension of logic you
already have, such as repurposing your app widget code to use for a watch. But the
APIs for delivering content to, say, a SONY SmartWatch do not closely resemble app
widget APIs, which will require some restructuring of your code, in addition to the
SONY-specific work. How little or how much work this is will vary by app and,
secondarily, by wearable.

Which Devices?

Once again, developing for Android wearable devices may be a small enough leap
that you could consider them as a matter of course. This is especially true of “pure”
enough devices that your business logic will just work, with only a watch-sized UI
being needed. It may be that one pulse of work can get your app working on
multiple Android wearables that share common capabilities (similar screen sizes,
standard connectivity, etc.).

However, beyond that, you are going to need to consider whether developing for a
specific wearable is worth the specific work. For example, many of these wearables
use their own “market” or “store” for app distribution. Will listing your app in their
market get you enough results to make the work worthwhile? Will the wearable
maker offer any sorts of co-marketing opportunities, to help promote your app?
Does their market offer things that you are used to from more traditional markets,

WRIST WEARABLES

2595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

like in-app purchases, that your app uses? Is your app so tightly tied to the Play
Services Framework (e.g., Maps V2, GCM, LocationClient) that it simply cannot be
distributed by any other means?

So, for example, the I’m Watch has their own store, and you will be limited by the
capabilities of that store. SONY, on the other hand, expects apps for their
SmartWatch line to be distributed however you want, particularly through the Play
Store, which gives you more options.

Tactical Considerations
Given that, for strategic reasons or “just because”, you have decided to go ahead and
work on extending your app to wearables, there are a variety of things you are going
to need to think about as you start in on that work. A lot of the details will vary by
the specific wearable device or accessory you are trying to support, but some
common themes will emerge. Some of those themes are discussed in this section.

The Postage Stamp User Interface

When writing apps to display to televisions — whether for a dedicated box like an
OUYA game console or for an external display attached to a traditional touchscreen
device — you think of the “10-foot user interface”. Here, “10-foot” is not referring to
the size of the television (usually), but the distance between the viewer’s eyes and
the television. Even though you may have a nice 1080p television, you sit so much
farther back from it than you do a 1080p phone or tablet, that the UI needs to take
this into account. Also, input options for a television tend to be different than on a
phone or tablet, as televisions rarely are touchscreens.

Writing apps for wearables has a similar UI distinction, though in a much smaller
dimension. Trying to determine how best to package your content to be accessible
on a ~1.5" screen is tricky.

One approach is to consider your app widget, if you have one. An app widget on a
phone or tablet often times takes up a watch-sized chunk of space on the home
screen. Also, app widgets have constrained forms of user input (simple taps,
scrolling or swiping only on select widgets like ListView), matching the constraints
imposed by some wearable APIs and by the reality of large fingers and small
touchscreens.

WRIST WEARABLES

2596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your UI design for your app widget may be a fine starting point for your UI design
for your wrist wearable. In some cases, the same UI will work, while in other cases,
some tweaks may be required:

• You designed your app widget to be rectangular, rather than square, so a
slight redesign will be needed to take best advantage of a (roughly) square
smartwatch display

• You designed your app widget with ListView at its core, but the particular
wearable you are targeting does not support ListView, so you have to revert
to other UI structures

• You designed your app widget around a rich color screen, but the wearable
that you are supporting offers a more limited color palette, due to its use of
particular types of display technology (e.g., “e-ink”)

• And so on

Connectivity (Or Lack Thereof)

Some wearables have their own WiFi radios. Some have their own mobile data
options, if they are outfitted with a suitable SIM card. If these are devices, writing an
app for the device’s operating system should allow you to connect to the Internet
more or less as you do with an app for a phone or tablet.

Some wearables have apps that run on the device, but the device lacks any native
Internet connectivity. In that case, you may have access to some APIs that allow you
to work with an app on a tethered phone or tablet, and be able to access the Internet
that way.

Wearables where the app itself runs on the phone or tablet return you to regular
connectivity options, as the wearable does not need independent Internet access.

In sum, how well you can get to the Internet is partly determined by the nature of
the wearable, and partly determined by normal mobile development practices (e.g.,
are we connected to WiFi?).

Power (Or Lack Thereof)

The Omate TrueSmart is one of the larger wrist wearable devices. It has a 600mAH
battery, a fraction of the size of batteries in most Android phones, let alone tablets.

On the one hand, a wearable will tend to draw less power, simply because the
wearable manufacturer will have taken steps to minimize power drain. One example

WRIST WEARABLES

2597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

is turning off the LCD more aggressively than you might expect to see on a
corresponding phone or tablet.

That being said, power drain is an issue on phones and tablets already; it will be that
much worse in the world of wearables. In some cases, you have two batteries’ worth
of power to consider: the wearable’s own battery, plus the battery of some phone or
tablet (particularly in the case of an accessory, where the app runs on that phone or
tablet).

Security (Or… Well, You Get the Picture)

Few, if any, wearable devices offer much in the way of on-board security, such as full-
disk encryption, or even a PIN or password for access. That is because a wearable is
designed for rapid access, and such security usually impedes such access. The
assumption is that if the wearable falls into the wrong hands, that anything on the
wearable is subject to inspection.

As such, you need to be a bit careful about what you use the wearable for. Most apps
involving a wearable may have limited security requirements, but not all. Wearable
devices, in particular, have the risk that they offer some amount of on-board storage
that your on-device app can use, making it somewhat more likely that you might try
actually storing something there… something that the user might want to keep
secret.

Similarly, the communications between a wearable and a tethered phone or tablet
may be insufficiently secure. For example, Bluetooth communications may be
secure, or they may not, depending on hardware and circumstances.

This does not prohibit the creation of secure wearable apps, but it make it more
difficult.

What About Android Wear?
Android Wear is an initiative by Google for wearable devices, with a particular
emphasis on wrist wearables. It will include a developer SDK, presently available in
a preview release.

This book will cover Android Wear once Wear-capable devices exist.

WRIST WEARABLES

2598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://security.stackexchange.com/a/36207/18406
https://developer.android.com/wear/index.html
https://developer.android.com/wear/preview/start.html

Trail: Appendices

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CWAC Libraries

CommonsWare — the publisher of this book — has also published a series of open
source libraries, collectively named the CommonsWare Android Components
(CWAC). If you have read through the book, you will have seen many of these
libraries.

This appendix lists all of the CWAC libraries. If the library is covered elsewhere in
the book, the appendix links you to that coverage. Those that are not covered
elsewhere will be described in this appendix, to accompany the online
documentation found at the library’s GitHub repository.

cwac-adapter
The cwac-adapter repository contains a small AdapterWrapper class that wraps a
ListAdapter. The default implementation of all ListAdapter methods is to forward
the request along to the wrapped ListAdapter. However, you can subclass
AdapterWrapper to override that behavior.

cwac-camera
The cwac-camera repository holds the CommonsWare library to assist with the use
of the hardware cameras on Android devices. This library is covered extensively in
the chapter on using the camera.

2601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-adapter
https://github.com/commonsguy/cwac-camera

cwac-colormixer
The cwac-colormixer repository holds a custom ColorMixer View, along with
wrappers for using that View as a dialog, activity, or preference for use with
PreferenceScreen.

ColorMixerDialog and ColorPreference are covered in the chapter on custom
dialogs. The ColorMixer widget is similar to the implementation found in the
chapter on custom views.

This library also contains a ColorMixerActivity, which you can use via
startActivityForResult() to obtain a color, rather than by integrating the widget,
dialog, or preference.

cwac-layouts
The cwac-layouts repository contains a series of custom containers and related
views.

The current contents of this library — AspectLockedFrameLayout,
MirroringFrameLayout, and kin — are covered in the chapter on custom views.

cwac-merge
The cwac-merge repository contains MergeAdapter. It simply stitches together lots of
smaller ListAdapters into one larger ListAdapter to put inside of a ListView or
similar AdapterView. It also allows you to blend individual “row” Views with other
ListAdapters.

One use of this is for section headers, using row Views for the headers and
ListAdapters for the sections.

Another use is where you have multiple disparate data sources (e.g., queries across a
few databases or ContentProviders), each with distinct row formatting, but you
want to present them as one contiguous list.

CWAC LIBRARIES

2602

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer
https://github.com/commonsguy/cwac-layouts
https://github.com/commonsguy/cwac-merge

cwac-pager
The cwac-pager repository includes code written in support of the ViewPager
widget.

ArrayPagerAdapter is covered in the chapter on advanced uses of ViewPager.

cwac-presentation
The cwac-presentation repository contains code in support of the Presentation
system, for sending alternative content to an external display, independent of the
device’s primary screen.

All of the classes in this repository are covered in the chapter on the Presentation
system.

cwac-provider
The cwac-provider repository contains StreamProvider, a riff on Google’s
FileProvider, offering a “canned” implementation of a ContentProvider that can
serve files from a variety of sources, such as assets and raw resources from your
project.

This is discussed briefly in the chapter on ContentProvider implementations.

cwac-richedit
The cwac-richedit repository contains the RichEditText widget, a drop-in
replacement for EditText that supports “rich text” (a.k.a., formatted text) editing,
such as bold and italics. The use of this widget is covered in the chapter on
Android’s rich text handling.

cwac-sacklist
The cwac-sacklist repository contains SackOfViewsAdapter, which implements the
ListAdapter interface for a collection of individual Views that serve as rows. This is
used in support of the MergeAdapter, for example.

CWAC LIBRARIES

2603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager
https://github.com/commonsguy/cwac-presentation
https://github.com/commonsguy/cwac-provider
https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-sacklist

cwac-security
The cwac-security repository contains code to help app developers help their users
defend against attacks. At the moment, this contains the PermissionUtils class,
used to help determine if a custom permission was defined by another app before
yours was installed. This is discussed in the chapter on advanced permission
techniques.

cwac-strictmodeex
The cwac-strictmodeex repository contains classes that serve a similar role to
Android’s StrictMode, yelling at you for problematic code.

Specifically, this repository contains StrictAdapter, which measures the timing of
methods like getView(), logging information about slow adapters that may result in
sluggish ListView scrolling.

cwac-wakeful
The cwac-wakeful repository contains the WakefulIntentService and related
support classes, for doing work and keeping the device awake while that work is
going on. This is covered in the chapter on AlarmManager.

CWAC LIBRARIES

2604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-security
https://github.com/commonsguy/cwac-strictmodeex
https://github.com/commonsguy/cwac-wakeful

	The Busy Coder's Guide to Android Development
	Table of Contents
	Preface
	Welcome to the Book!
	The Book’s Structure
	The Trails
	Advanced UI
	Home Screen Effects
	Data Storage and Retrieval
	Media
	Security
	Hardware and System Services
	Integration and Introspection
	Scripting Languages
	Testing
	Gradle and the New Build System
	Other Tools
	Production
	Tuning Android Applications
	Alternatives for App Development
	Miscellaneous Topics
	Widget Catalog
	Device Catalog
	Appendices

	About the Updates
	Warescription
	Getting Help
	Book Bug Bounty
	Source Code And Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Key Android Concepts
	Android Applications
	Programming Language
	Components
	Activities
	Services
	Content Providers
	Broadcast Receivers
	Widgets, Containers, Resources, and Fragments
	Apps and Packages

	Android Devices
	Types
	The Emulator
	OS Versions and API Levels
	Dalvik
	Processes and Threads

	Don’t Be Scared

	Choosing Your IDE
	Eclipse
	What the ADT Gives You

	Android Studio
	Alternative IDEs
	IDEs… And This Book
	About App Inventor

	Tutorial #1 - Installing the Tools
	Step #1 - Checking Your Hardware Requirements
	Step #2 - Setting Up Java
	Install the JDK

	Step #3 - Install the Android SDK
	Install the Base Tools
	Install the SDKs and Add-Ons

	Step #4 - Install the ADT for Eclipse
	Step #5 - Install Apache Ant
	Step #6 - Set Up the Emulator
	Step #7 - Set Up the Device
	Windows
	Windows Update
	Standard Android Driver
	Manufacturer-Supplied Driver

	OS X and Linux

	In Our Next Episode…

	Tutorial #2 - Creating a Stub Project
	About Our Tutorial Project
	About the Rest of the Tutorials
	About the Eclipse Instructions
	Step #1: Creating the Project
	Eclipse New-Project Wizard
	Eclipse Project Import
	Command Line

	Step #2: Running the Project
	Eclipse
	Command Line

	In Our Next Episode…

	Contents of Android Projects
	Root Contents
	The Sweat Off Your Brow
	Resources
	What You Get Out Of It

	Inside the Manifest
	In The Beginning, There Was the Root, And It Was Good
	An Application For Your Application
	Specifying Versions
	Supporting Multiple Screens
	Other Stuff

	Tutorial #3 - Changing Our Manifest
	Step #1: Updating the Package Name
	Step #2: Supporting Screens
	Eclipse
	Outside of Eclipse

	Step #3: Validating our Minimum and Target SDK Versions
	In Our Next Episode…

	Some Words About Resources
	String Theory
	Plain Strings
	Styled Text
	The Directory Name
	String Resources and Eclipse

	Got the Picture?
	Drawable Resources and Eclipse
	Using Android System Drawables
	Directly Referencing SDK Drawables
	Copying Android System Drawables

	Dimensions
	Dimension Resources and Eclipse

	The Resource That Shall Not Be Named… Yet

	Tutorial #4 - Adjusting Our Resources
	Step #1: Changing the Name
	Eclipse
	Outside of Eclipse

	Step #2: Changing the Icon
	Eclipse
	Outside of Eclipse

	Step #3: Running the Result
	In Our Next Episode…

	The Theory of Widgets
	What Are Widgets?
	Size, Margins, and Padding
	What Are Containers?
	The Absolute Positioning Anti-Pattern

	The Android User Interface
	The Activity
	Dissecting the Activity
	Using XML-Based Layouts
	What Is an XML-Based Layout?
	XML Layouts and Eclipse
	Why Use XML-Based Layouts?
	Using Layouts from Java

	Basic Widgets
	Common Concepts
	Widgets and Attributes
	Referencing Widgets By ID
	Size

	Assigning Labels
	Eclipse Graphical Layout Editor
	Editing the Text
	Editing the ID

	Notable TextView Attributes

	A Commanding Button
	Eclipse Graphical Layout Editor
	Tracking Button Clicks

	Fleeting Images
	Eclipse Graphical Layout Editor

	Fields of Green. Or Other Colors.
	Eclipse Graphical Layout Editor
	Notable EditText Attributes

	More Common Concepts
	Padding
	Margins

	Colors
	Other Useful Attributes
	Useful Methods

	Visit the Trails!

	Debugging Crashes
	Get Thee To a Stack Trace
	The Case of the Confounding Class Cast
	Point Break

	LinearLayout and the Box Model
	Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity

	Eclipse Graphical Layout Editor

	Other Common Widgets and Containers
	Just a Box to Check
	Eclipse Graphical Layout Editor

	Don’t Like Checkboxes? How About Toggles?
	Eclipse Graphical Layout Editor

	Turn the Radio Up
	Eclipse Graphical Layout Editor

	All Things Are Relative
	Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	Example
	Overlap
	Eclipse Graphical Layout Editor

	Tabula Rasa
	Concepts and Properties
	Putting Cells in Rows
	Non-Row Children of TableLayout
	Stretch, Shrink, and Collapse

	Example
	Eclipse Graphical Layout Editor

	Scrollwork
	Eclipse Graphical Layout Editor

	Making Progress with ProgressBars
	Visit the Trails!

	Tutorial #5 - Making Progress
	Step #1: Renaming the Activity Class
	Step #2: Removing The “Hello, World”
	Eclipse
	Outside of Eclipse

	Step #3: Adding a ProgressBar
	Eclipse
	Outside of Eclipse

	Step #4: Seeing the Results
	In Our Next Episode…

	GUI Building, Continued
	Making Your Selection
	Including Includes
	Wrap It Up (In a Container)
	Morphing Widgets
	Preview of Coming Attractions

	AdapterViews and Adapters
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Clicks versus Selections
	Selection Modes
	Clicks versus Selections, Revisited

	Spin Control
	Grid Your Lions (Or Something Like That…)
	Fields: Now With 35% Less Typing!
	Customizing the Adapter
	The Single Layout Pattern
	Step #0: Get Things Set Up Simply
	Step #1: Design Your Row
	Step #2: Extend ArrayAdapter
	Step #3: Override the Constructor and getView()

	Optimizing with the ViewHolder Pattern
	Dealing with Multiple Row Layouts

	Visit the Trails!

	The WebView Widget
	Role of WebView
	WebView and WebKit
	Adding the Widget
	Loading Content Via a URL
	Supporting JavaScript
	Alternatives for Loading Content
	Listening for Events
	WebView and Android 4.4
	Visit the Trails!

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	Where to Apply a Style
	The Available Attributes
	Inheriting a Style
	The Possible Values

	Themes: Would a Style By Any Other Name…

	JARs and Library Projects
	The Dalvik VM
	The Easy Part
	The Outer Limits
	OK, So What is a Library Project?
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects
	The Android Support Package
	What’s In There?
	About the Names
	Getting It
	Attaching It To Your Project

	JAR Dependency Management

	Tutorial #6 - Adding a Library
	Step #1: Downloading and Unpacking ActionBarSherlock
	Step #2: Adding the Library to Your Project
	Eclipse
	Outside of Eclipse

	In Our Next Episode…

	Options Menus and the Action Bar
	Bar Hopping (a.k.a., Terminology)
	Android 1.x/2.x
	Android 3.0–4.1, Tablets
	Android 4.0+, Phones
	Android 4.2, Tablets

	Yet Another History Lesson
	Your Action Bar Options
	Pure Native
	ActionBarSherlock
	Installation
	Base Activity Class
	Theme

	What We Will Be Doing

	Setting the Target
	Minding Narrow
	Defining the Resource
	Action Layouts

	Applying the Resource
	Responding to Events
	Attaching to Action Layouts
	The Rest of the Sample Activity
	Floating Action Bars
	MENU Key, We Hardly Knew Ye
	Visit the Trails!

	Tutorial #7 - Adding the Action Bar
	Step #1: Setting the Theme and Splitting the Bar
	Eclipse
	Outside of Eclipse

	Step #2: Changing to SherlockFragmentActivity
	Step #3: Defining Some Options
	Eclipse
	Outside of Eclipse

	Step #4: Loading and Responding to Our Options
	Step #5: Running the Result
	In Our Next Episode…

	Android’s Process Model
	When Processes Are Created
	BACK, HOME, and Your Process
	Termination
	Foreground Means “I Love You”
	You and Your Heap

	Activities and Their Lifecycles
	Creating Your Second (and Third and…) Activity
	Defining the Class and Resources
	Augmenting the Manifest

	Warning! Contains Explicit Intents!
	Using Implicit Intents
	Extra! Extra!
	Asynchronicity and Results
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()
	Stick to the Pairs

	When Activities Die
	Walking Through the Lifecycle
	Recycling Activities

	Tutorial #8 - Setting Up An Activity
	Step #1: Creating the Stub Activity Class
	Eclipse
	Outside of Eclipse

	Step #2: Adding the Activity to the Manifest
	Eclipse
	Outside of Eclipse

	Step #3: Launching Our Activity
	In Our Next Episode…

	The Tactics of Fragments
	The Six Questions
	What?
	Where??
	Who?!?
	When?!!?
	WHY?!?!?
	OMGOMGOMG, HOW?!?!??

	Your First Fragment
	The Project
	The Fragment Layout
	The Fragment Class
	The Activity Layout
	The Activity Class
	The Result

	The Fragment Lifecycle Methods
	Your First Dynamic Fragment
	The ListFragment Class
	The Activity Class
	The Result

	Fragments and the Action Bar
	Fragments Within Fragments: Just Say “Maybe”
	Fragments and Multiple Activities

	Tutorial #9 - Starting Our Fragments
	Step #1: Copy In WebViewFragment
	Eclipse
	Outside of Eclipse

	Step #2: Examining WebViewFragment
	Step #3: Creating AbstractContentFragment
	Eclipse
	Outside of Eclipse

	Step #4: Examining AbstractContentFragment
	In Our Next Episode…

	Swiping with ViewPager
	Swiping Design Patterns
	Paging Fragments
	The Prerequisites
	The Activity Layout
	The Activity
	The PagerAdapter
	The Fragment
	The Result

	Paging Other Stuff
	Indicators
	PagerTitleStrip and PagerTabStrip
	Third-Party Indicators

	Hosting ViewPager in a Fragment
	Pages and the Action Bar
	ViewPagers and Scrollable Contents

	Tutorial #10 - Rigging Up a ViewPager
	Step #1: Add a ViewPager to the Layout
	Step #2: Obtaining Our ViewPager
	Step #3: Creating a ContentsAdapter
	Eclipse
	Outside of Eclipse

	Step #4: Setting Up the ViewPager
	In Our Next Episode…

	Resource Sets and Configurations
	What’s a Configuration? And How Do They Change?
	Configurations and Resource Sets
	Screen Size and Orientation
	The Original: Android-Defined Buckets
	The Modern: Developer-Defined Buckets
	Mashups: Width and Height Buckets
	About That API Level

	Coping with Complexity
	Choosing The Right Resource
	Scenario #1: Something Simple
	Scenario #2: Disparate Resource Set Categories
	Scenario #3: Multiple Qualifiers
	Scenario #4: Multiple Qualifiers, Revisited
	Scenario #5: Screen Density
	Scenario #6: Screen Sizes

	Default Change Behavior
	Destroy and Recreate the Activity
	Rebuild the Fragments
	Recreate the Views
	Retain Some Widget State

	Your Options for Configuration Changes
	Do Nothing
	Retain Your Fragments
	Model Fragment

	Add to the Bundle
	Fragments and a Bundle
	Retain Other Objects
	DIY

	Blocking Rotations

	Dealing with Threads
	The Main Application Thread
	Getting to the Background
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Quick Note About Toasts
	A Sample Task
	The Fragment and its AsyncTask
	The Activity and the Results

	Threads and Configuration Changes
	Where Not to Use AsyncTask
	About the AsyncTask Thread Pool

	Alternatives to AsyncTask
	And Now, The Caveats

	Requesting Permissions
	Mother, May I?
	New Permissions in Old Applications
	Permissions: Up Front Or Not At All
	Signature Permissions
	Requiring Permissions

	Assets, Files, and Data Parsing
	Packaging Files with Your App
	Raw Resources
	XML Resources
	Assets

	Files and Android
	Internal vs. External
	Standard vs. Cache
	Yours vs. Somebody Else’s

	Working with Internal Storage
	Working with External Storage
	Where to Write
	Relevant Permissions
	When to Write
	Letting the User See Your Files
	Limits on External Storage Open Files

	Multiple User Accounts
	Linux Filesystems: You Sync, You Win
	StrictMode: Avoiding Janky Code
	XML Parsing Options
	JSON Parsing Options
	Visit the Trails!

	Tutorial #11 - Adding Simple Content
	Step #1: Adding Some Content
	Step #2: Create a SimpleContentFragment
	Eclipse
	Outside of Eclipse

	Step #3: Examining SimpleContentFragment
	Step #4: Using SimpleContentFragment
	Step #5: Launching Our Activities, For Real This Time
	In Our Next Episode…

	Tutorial #12 - Displaying the Book
	Step #1: Adding a Book
	Step #2: Defining Our Model
	Eclipse
	Outside of Eclipse

	Step #3: Examining Our Model
	Step #4: Creating a ModelFragment
	Eclipse
	Outside of Eclipse

	Step #5: Examining the ModelFragment
	Step #6: Supplying the Content
	Step #7: Adapting the Content
	Step #8: Going Home, Again
	In Our Next Episode…

	Using Preferences
	Getting What You Want
	Stating Your Preference
	Introducing PreferenceActivity
	What We Are Aiming For
	Defining Your Preferences
	Defining Your Preference Headers
	Creating Your PreferenceFragments
	Creating Your PreferenceActivity

	Types of Preferences
	CheckBoxPreference and SwitchPreference
	EditTextPreference
	RingtonePreference
	ListPreference and MultiSelectListPreference

	Intents for Headers or Preferences
	Conditional Headers
	Option #1: Do Not Define the Headers
	Option #2: Go Directly to the Fragment

	Tutorial #13 - Using Some Preferences
	Step #1: Adding a StockPreferenceFragment
	Eclipse
	Outside of Eclipse

	Step #2: Defining the Preference XML Files
	Eclipse
	Outside of Eclipse

	Step #3: Creating Our PreferenceActivity
	Eclipse
	Outside of Eclipse

	Step #4: Adding To Our Action Bar
	Eclipse
	Outside of Eclipse

	Step #5: Launching the PreferenceActivity
	Step #6: Loading Our Preferences
	Step #7: Saving the Last-Read Position
	Step #8: Restoring the Last-Read Position
	Step #9: Keeping the Screen On
	In Our Next Episode…

	SQLite Databases
	Introducing SQLite
	Thinking About Schemas
	Start with a Helper
	Employing Your Helper
	Where to Hold a Helper

	Getting Data Out
	Your Query Options
	What Is a Cursor?
	Using the Cursor Manually
	Introducing CursorAdapter
	Getting Data Out, Asynchronously

	The Rest of the CRUD
	The Primary Option: execSQL()
	Alternative Options
	Asynchronous CRUD and UI Updates
	Setting Transaction Bounds

	Leveraging ROWID
	Hey, What About Hibernate?
	Visit the Trails!

	Tutorial #14 - Saving Notes
	Step #1: Adding a DatabaseHelper
	Eclipse
	Outside of Eclipse

	Step #2: Examining DatabaseHelper
	Step #3: Creating a NoteFragment
	Eclipse
	Outside of Eclipse

	Step #4: Examining NoteFragment
	Step #5: Creating the NoteActivity
	Eclipse
	Outside of Eclipse

	Step #6: Loading and Saving Notes
	Step #7: Add Notes to the Action Bar
	Step #8: Support Deleting Notes
	In Our Next Episode…

	Internet Access
	DIY HTTP
	Introducing the Sample
	Asking Permission
	A Task for Updating
	Doing the Internet Thing
	Dealing with the Result
	Running the Sample
	What Android Brings to the Table
	Testing with StrictMode
	What About HttpClient?

	HTTP via DownloadManager
	Using Third-Party JARs
	SSL
	Using HTTP Client Libraries
	OkHTTP
	Retrofit
	Downloading and Installing Retrofit
	Creating Your Data Model
	Creating Your Service Interface
	Creating the RestAdapter
	Making Requests
	The Rest of the Story

	Picasso
	Downloading and Installing Picasso
	Updating the Model
	Requesting the Images
	The Rest of the Story

	Ion
	Getting the Questions
	Getting the Avatars

	Other Candidate Libraries
	Hey, What About Volley?

	Visit the Trails

	Intents, Intent Filters, Broadcasts, and Broadcast Receivers
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Responding to Implicit Intents
	Requesting Implicit Intents
	Zero Matches
	One Match
	Many Matches, Default Behavior
	The Chooser Override

	Broadcasts and Receivers
	Sending a Simple Broadcast
	Receiving a Broadcast: In an Activity
	Receiving a Broadcast: Via the Manifest

	Example System Broadcasts
	At Boot Time
	On Battery State Changes
	Sticky Intents and the Battery
	Battery and the Emulator

	Downloading Files
	The Permissions
	The Layout
	Requesting the Download
	Keeping Track of Download Status
	OK, So Why Is This In This Chapter?
	What the User Sees
	Limitations

	The Order of Things
	Keeping It Local

	Tutorial #15 - Sharing Your Notes
	Step #1: Adding a Share Action Bar Item
	Step #2: Sharing the Note
	Step #3: Tying Them Together
	Step #4: Testing the Result
	In Our Next Episode…

	Services and the Command Pattern
	Why Services?
	Setting Up a Service
	The Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating To Services
	Sending Commands with startService()
	Binding to Services

	Scenario: The Music Player
	The Design
	The Service Implementation
	Using the Service

	Communicating From Services
	Broadcast Intents
	Pending Results
	Messenger
	Notifications

	Scenario: The Downloader
	The Design
	Using the Service
	The Service Implementation
	Receiving the Broadcast

	Tutorial #16 - Updating the Book
	Step #1: Adding a Stub DownloadCheckService
	Eclipse
	Outside of Eclipse

	Step #2: Tying the Service Into the Action Bar
	Step #3: Adding a Stub DownloadCompleteReceiver
	Eclipse
	Outside of Eclipse

	Step #4: Completing the DownloadCheckService
	Step #5: Adding a Stub DownloadInstallService
	Eclipse
	Outside of Eclipse

	Step #6: Completing the DownloadCompleteReceiver
	Step #7: Completing the DownloadInstallService
	Step #8: Updating ModelFragment
	Step #9: Adding a BroadcastReceiver to EmPubLiteActivity
	Step #10: Discussing the Flaws
	In Our Next Episode…

	AlarmManager and the Scheduled Service Pattern
	Scenarios
	Options
	Wake Up… Or Not?
	Repeating… Or Not?
	Inexact… Or Not?
	Absolute Time… Or Not?
	What Happens (Or Not???)

	A Simple Example
	The Five set…() Varieties
	The Four Types of Alarms
	When to Schedule Alarms
	When User First Runs Your App
	On Boot
	After a Force-Stop

	Get Moving, First Thing
	The Permission
	The Receiver Element
	The Receiver Implementation
	New Behavior With Android 3.1

	Archetype: Scheduled Service Polling
	The Main Application Thread Strikes Back
	Examining a Sample

	Staying Awake at Work
	Mind the Gap
	The WakefulIntentService
	The Polling Archetype, Revisited
	How the Magic Works

	Warning: Not All Android Devices Play Nice
	Debugging Alarms
	WakefulBroadcastReceiver
	Using WakefulBroadcastReceiver
	Comparing to WakefulIntentService

	Tutorial #17 - Periodic Book Updates
	Step #1: Adding a Stub UpdateReceiver
	Eclipse
	Outside of Eclipse

	Step #2: Scheduling the Alarms
	Step #3: Adding the WakefulIntentService
	Step #4: Using WakefulIntentService
	Step #5: Completing the UpdateReceiver
	In Our Next Episode…

	Notifications
	What’s a Notification?
	Showing a Simple Notification
	Seeking Some Order
	The Activity-Or-Notification Scenario
	Other Scenarios

	Big (and Rich) Notifications
	The Styles
	The Builders
	The Sample
	The Results
	The Target Requirement

	Foreground Services
	Isn’t “Foreground Service” an Oxymoron?
	Putting Your Service in the Foreground
	The Malformed Notification

	Disabled Notifications

	Tutorial #18 - Notifying the User
	Step #1: Adding the InstallReceiver
	Eclipse
	Outside of Eclipse

	Step #2: Completing the InstallReceiver
	In Our Next Episode…

	Large-Screen Strategies and Tactics
	Objective: Maximum Gain, Minimum Pain
	The Fragment Strategy
	Changing Layout
	Changing Fragment Mix
	The Role of the Activity

	Fragment Example: The List-and-Detail Pattern
	Describing the App
	CountriesFragment
	DetailsFragment
	The Activities
	The Results

	Other European Flavors
	Static CountriesFragment
	Going With One Activity
	The Revised Layouts
	The New onCountrySelected()
	The New onCreate()
	The “OMG! Our Fragments Have No Views!” Changes
	The Results
	The Mashup Possibilities

	The SlidingPaneLayout Variant
	The Role of SlidingPaneLayout
	Converting to SlidingPaneLayout
	What SlidingPaneLayout Looks Like

	Showing More Pages
	Columns or Pages

	Fragment FAQs
	Does Everything Have To Be In a Fragment?
	What If Fragments Are Not Right For Me?
	Do Fragments Work on Google TV?

	Screen Size and Density Tactics
	Dimensions and Units
	Layouts and Stretching
	Drawables That Resize
	Drawables By Density

	Other Considerations
	Small-Screen Devices
	Avoid Full-Screen Backgrounds
	Manifest Elements for Screen Sizes
	Considering Newer Densities

	Tutorial #19 - Supporting Large Screens
	Step #1: Creating Our Layouts
	Eclipse
	Outside of Eclipse

	Step #2: Loading Our Sidebar Widgets
	Step #3: Opening the Sidebar
	Step #4: Loading Content Into the Sidebar
	Step #5: Removing Content From the Sidebar

	Backwards Compatibility Strategies and Tactics
	Think Forwards, Not Backwards
	Aim Where You Are Going
	A Target-Rich Environment
	Lint: It’s Not Just For Belly Buttons
	A Little Help From Your Friends
	Avoid the New on the Old
	Java
	@TargetAPI
	Another Example: AsyncTask

	Resources
	Components

	Testing
	Keeping Track of Changes

	Getting Help
	Questions. Sometimes, With Answers.
	Heading to the Source
	Getting Your News Fix

	Introducing GridLayout
	Prerequisites
	Issues with the Classic Containers
	Nested Containers
	Eclipse Drag-and-Drop

	The New Contender: GridLayout
	GridLayout and the Android Support Package
	Eclipse and GridLayout
	Trying to Have Some Rhythm
	Our Test App
	Replacing the Classics
	Horizontal LinearLayout
	Vertical LinearLayout
	TableLayout

	Implicit Rows and Columns
	Row and Column Spans
	Should You Use GridLayout?

	Dialogs and DialogFragments
	Prerequisites
	DatePickerDialog and TimePickerDialog
	Changes (and Bugs) in Jelly Bean

	AlertDialog
	DialogFragments
	DialogFragment: The Other Flavor
	Dialogs: Modal, Not Blocking

	Advanced ListViews
	Prerequisites
	Multiple Row Types, and Self Inflation
	Our Data Model and Planned UI
	The Basic BaseAdapter
	Requesting Multiple Row Types
	Creating and Recycling the Rows

	Choice Modes and the Activated Style
	Custom Mutable Row Contents
	From Head To Toe

	Action Bar Navigation
	Prerequisites
	List Navigation
	Tabs (And Sometimes List) Navigation
	Custom Navigation

	Action Modes and Context Menus
	Prerequisites
	Another Wee Spot O’ History
	Manual Action Modes
	Choosing Your Trigger
	Starting the Action Mode
	Implementing the Action Mode
	onCreateActionMode()
	onPrepareActionMode()
	onActionItemClicked()
	onDestroyActionMode()

	Multiple-Modal-Choice Action Modes
	Long-Click To Initiate an Action Mode
	Setting Up the Listeners
	Handling the Long Click
	Addressing Configuration Changes
	Resetting the Choice Mode
	The Results

	Split Action Modes
	What Came Before: Context Menus
	Creating a Context Menu
	Responding to a Context Menu

	ActionBarCompat: The Official Action Bar Backport
	Prerequisites
	Using the ActionBarCompat
	The Library Project
	Your Theme
	Your Menu Resources
	Your Manifest Metadata
	Your Activity
	Your Fragments
	Your Callback Methods
	Your Results

	Choosing a Backport

	Other Advanced Action Bar Techniques
	Prerequisites
	Action Layouts, Action Views, and Action Providers
	Searching with SearchView
	SearchView… in the Menu Resource
	SearchView… in the Action Bar Configuration
	SearchView… And Filtering a ListView
	onQueryTextChange()
	onQueryTextSubmit()
	onClose()

	SearchView… From the User’s Perspective

	Implementing a Navigation Drawer
	Prerequisites
	What is a Navigation Drawer?
	A Simple Navigation Drawer
	The Activity Layout
	The ActionBarDrawerToggle
	The Actions on Navigation Clicks

	Alternative Row Layouts
	Additional Considerations
	Highlighting the Current Location
	Hiding Context-Specific Action Bar Items
	Interacting with an Action Mode
	Advertising Your Drawer

	What Should Not Be in the Drawer
	Independent Implementations

	Advanced Uses of WebView
	Prerequisites
	Friends with Benefits
	Turnabout is Fair Play
	Navigating the Waters
	Settings, Preferences, and Options (Oh, My!)

	The Input Method Framework
	Prerequisites
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Fonts
	Prerequisites
	Love The One You’re With
	Here a Glyph, There a Glyph

	Rich Text
	Prerequisites
	The Span Concept
	Implementations
	TextView and Spanned
	Available Spans

	Loading Rich Text
	String Resource
	HTML
	From EditText
	Manually

	Editing Rich Text
	RichEditText
	Manually

	Saving Rich Text
	Manipulating Rich Text

	Custom Drawables
	Prerequisites
	ColorDrawable
	AnimationDrawable
	Animated GIF Conversion

	StateListDrawable
	LayerDrawable
	TransitionDrawable
	LevelListDrawable
	ScaleDrawable and ClipDrawable
	Scaling
	Clipping
	Seeing It In Action

	InsetDrawable
	ShapeDrawable
	<shape>
	<solid>
	<gradient>
	<stroke>
	<corners>
	<padding> and <size>
	Put a Ring On It

	BitmapDrawable
	Composite Drawables
	XML Drawables and Eclipse
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images

	Animators
	Prerequisites
	ViewPropertyAnimator
	Native Implementation
	Backport Via NineOldAndroids

	The Foundation: Value and Object Animators
	Animating Custom Types
	Hardware Acceleration
	The Three-Fragment Problem
	The ThreePaneLayout
	Using the ThreePaneLayout
	The Results
	The Backport
	The Problems

	Legacy Animations
	Prerequisites
	It’s Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It’s All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Mapping with Maps V2
	Prerequisites
	A Brief History of Mapping on Android
	Where You Can Use Maps V2
	Licensing Terms for Maps V2
	What You Need to Start
	Your Signing Key Fingerprint(s)
	Your Google Account
	Your API Key
	The Play Services Library

	The Book Samples… And You!
	Setting Up a Basic Map
	The Project Setup
	The Manifest
	The Play Services Detection
	The Fragment and Activity
	The License
	The Result

	Playing with the Map
	Placing Simple Markers
	Seeing All the Markers
	Flattening and Rotating Markers
	Sprucing Up Your “Info Windows”
	Images and Your Info Window
	Setting the Marker Icon
	Responding to Taps
	Dragging Markers
	The “Final” Limitations
	A Bit More About IPC
	Finding the User
	Drawing Lines and Areas
	Gestures and Controls
	Tracking Camera Changes
	Maps in Fragments and Pagers
	Animating Marker Movement
	Problem #1: Animating a LatLng
	Problem #2: The Earth Is Not Flat (Really!)
	Problem #3: 180 Equals –180, At Least For Longitude
	Introducing Some Googly Assistance
	Seeing This in Action
	Honoring Traffic Rules, Like “Drive Only On Streets”

	Maps, of the Indoor Variety
	Taking a Snapshot of a Map
	MapFragment vs. MapView
	Maps and ActionBarSherlock
	About That AbstractMapActivity Class…
	Getting Maps V2 Ready to Go
	Handling the License Terms

	Helper Libraries for Maps V2
	Problems with Maps V2 at Runtime
	Problems with Maps V2 Deployment
	What Non-Compliant Devices Show
	Mapping Alternatives
	News and Getting Help

	Crafting Your Own Views
	Prerequisites
	Pick Your Poison
	Colors, Mixed How You Like Them
	The Layout
	The Attributes
	The Class
	Constructor Flavors
	Using the Attributes
	Saving the State
	The Rest of the Functionality

	Seeing It In Use

	ReverseChronometer: Simply a Custom Subclass
	AspectLockedFrameLayout: A Custom Container
	Mirror and MirroringFrameLayout: Draw It Yourself
	MirroringFrameLayout
	Mirror
	Usage and Results
	Limitations

	Custom Dialogs and Preferences
	Prerequisites
	Your Dialog, Chocolate-Covered
	Basic AlertDialog Setup
	Handling Color Changes
	State Management

	Preferring Your Own Preferences, Preferably
	The Constructor
	Creating the View
	Dealing with Preference Values
	Getting the Default Value
	Setting the Initial Value
	Closing the Dialog

	Using the Preference

	Progress Indicators
	Prerequisites
	Progress Bars
	Circular vs. Horizontal
	Specific vs. Indeterminate
	Primary vs. Secondary

	ProgressBar and Threads
	Tailoring Progress Bars
	Changing the Progress Colors
	Changing the Indeterminate Animation

	Progress Dialogs
	Title Bar and Action Bar Progress Indicators
	Action Bar Refresh-and-Progress Items
	Direct Progress Indication

	Advanced Notifications
	Prerequisites
	Custom Views: or How Those Progress Bars Work
	Custom Content
	Custom Tickers

	Seeing It In Action
	The Activity
	The IntentService
	The Builder
	The ProgressBar
	The Rest of the Story
	The Results

	How You Really Do Progress Notifications
	Life After Delete
	The Mysterious Case of the Missing Number

	More Fun with Pagers
	Prerequisites
	ViewPager with Action Bar Tabs
	Tying Tabs to Pages
	Tying Pages to Tabs
	The Results

	Using ViewPagerIndicator
	Downloading VPI
	Replacing PagerTabStrip with TabPageIndicator
	Styling the Indicator

	Columns for Large, Pages for Small
	The Plume Example
	The Layouts
	The Activity
	The Results
	The Limitations

	Introducing ArrayPagerAdapter
	Adding the JAR
	Choosing the Package
	Creating PageDescriptors
	Creating and Populating the Adapter
	Modifying the Contents
	Other Useful Methods

	Columns for Large Landscape, Pages for the Rest
	Fragments Inside and Outside the ViewPager
	The Revised PagerAdapter
	The Revised Activity

	Adding, Removing, and Moving Pages
	Reviewing the Core Functionality
	Add and Split
	Remove
	Swap

	Inside ArrayPagerAdapter
	PageDescriptor and PageEntry
	RetentionStrategy
	Class Declaration and Generics
	Constructors
	Core PagerAdapter Methods
	getCount()
	getPageTitle()
	instantiateItem() and destroyItem()
	startUpdate() and finishUpdate()
	setPrimaryItem()
	isViewFromObject()

	State Management
	Content Manipulation and Position Management
	Miscellany

	Focus Management and Accessibility
	Prerequisites
	Prepping for Testing
	Controlling the Focus
	Establishing Focus
	Requesting (or Abandoning) Focus
	Focus Ordering
	Scrolling and Focusing Do Not Mix

	Accessibility and Focus
	Accessibility Beyond Focus
	Content Descriptions
	Custom Widgets and Accessibility Events
	Announcing Events
	Font Selection and Size
	Widget Size
	Gestures and Taps
	Enhanced Keyboard Support
	Audio and Haptics
	Color and Color Blindness

	Accessibility Beyond Impairment

	Miscellaneous UI Tricks
	Prerequisites
	Full-Screen and Lights-Out Modes
	Android 1.x/2.x
	Android 4.0+

	Offering a Delayed Timeout

	Event Buses
	Prerequisites
	A Brief Note About the Sample Apps
	What Is an Event Bus?
	Standard Intents as Event Bus
	LocalBroadcastManager as Event Bus
	A Simple LocalBroadcastManager Sample
	A More Elaborate Sample
	The Activity
	The PollReceiver
	ScheduledService and Sending Events
	EventLogFragment and Receiving Events

	Reference, Not Value
	Limitations of Local

	Square’s Otto
	Basic Usage and Sample App
	ScheduledService and Sending Events
	EventLogFragment and Receiving Events
	Handling the “Nobody’s Home” Scenario

	Event Producers

	greenrobot’s EventBus
	Basic Usage and Sample App
	ScheduledService
	EventLogFragment

	Other Notable Capabilities

	Home Screen App Widgets
	Prerequisites
	East is East, and West is West…
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The uses-feature Element
	The Metadata
	The Layout
	The BroadcastReceiver
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget’s) Destiny
	Change Your Look
	One Size May Not Fit All
	Android 1.x/2.x
	Android 3.0+

	Lockscreen Widgets
	Preview Images
	Being a Good Host

	Adapter-Based App Widgets
	Prerequisites
	AdapterViews for App Widgets
	Building Adapter-Based App Widgets
	The AppWidgetProvider
	The RemoteViewsService
	The RemoteViewsFactory
	The Rest of the Story
	The Results

	Content Provider Theory
	Prerequisites
	Using a Content Provider
	Pieces of Me
	Getting a Handle
	The Database-Style API
	Makin’ Queries
	Adapting to the Circumstances
	Give and Take

	The File System-Style API

	Building Content Providers
	First, Some Dissection
	Next, Some Typing
	Implementing the Database-Style API
	Implement onCreate()
	Implement query()
	Implement insert()
	Implement update()
	Implement delete()
	Implement getType()
	Update the Manifest
	Add Notify-On-Change Support

	Implementing the File System-Style API

	Issues with Content Providers

	Content Provider Implementation Patterns
	Prerequisites
	The Single-Table Database-Backed Content Provider
	Step #1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step #2: Supply a Uri
	Step #3: Declare the “Columns”
	Step #4: Update the Manifest

	The Local-File Content Provider
	The FileProvider Class
	onCreate()
	openFile()
	getDataLength()

	The AbstractFileProvider Class
	getType()
	insert(), update(), and delete()
	query() and getFileName()
	copy()

	The Manifest
	Using this Provider

	The Protected Provider
	Step #1: Mark the Provider as Not Exported
	Step #2: Grant Access to the Uri

	The Stream Provider
	The Pipes
	The Revised openFile()
	The Transfer
	The Results

	FileProvider
	The Rationale
	The Sources of Files
	The Manifest Entry
	The Usage

	StreamProvider

	The Loader Framework
	Prerequisites
	Cursors: Issues with Management
	Introducing the Loader Framework
	LoaderManager
	LoaderCallbacks
	Loader

	Honeycomb… Or Not
	Using CursorLoader
	What Else Is Missing?
	Issues, Issues, Issues
	Loaders Beyond Cursors
	What Happens When…?
	… the Data Behind the Loader Changes?
	… the Configuration Changes?
	… the Activity is Destroyed?
	… the Activity is Stopped?

	The ContactsContract Provider
	Prerequisites
	Introducing You to Your Contacts
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Dealing with API Versions
	Accessing Contact Information

	Makin’ Contacts

	The CalendarContract Provider
	Prerequisites
	You Can’t Be a Faker
	Do You Have Room on Your Calendar?
	The Collections
	Calendar Permissions
	Querying for Events

	Penciling In an Event

	The MediaStore Provider
	Prerequisites
	What Is the MediaStore?
	Indexed Media
	Indexed Non-Media

	MediaStore and “Other” External Storage
	How Does My Content Get Indexed?
	How Do I Retrieve Video from the MediaStore?
	Querying for Video
	Showing the Thumbnails
	Attaching the ViewBinder
	Integrating the SmartImageView
	Defining the VideoThumbnailImage
	Populating the SmartImageView

	Playing the Selection
	The Results

	Encrypted Storage
	Prerequisites
	Scenarios for Encryption
	Obtaining SQLCipher
	Employing SQLCipher
	SQLCipher Limitations
	Passwords and Sessions
	About Those Passphrases…
	Upgrading to Encryption
	Changing Encryption Passphrases
	Dealing with the Version 3.0.x Upgrade
	Multi-Factor Authentication
	Detecting Failed Logins
	SQLCipher for Android and Performance

	Encrypted Preferences
	Encryption via Custom SharedPreferences
	Encryption via Custom Preference UI and Accessors

	IOCipher

	Packaging and Distributing Data
	Prerequisites
	Packing a Database To Go
	Create and Pack the Database
	Unpack the Database, With a Little Help(er)
	Upgrading Sans Java
	Limitations

	Audio Playback
	Prerequisites
	Get Your Media On
	MediaPlayer for Audio
	Streaming Limitations

	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator

	Audio Recording
	Prerequisites
	Recording by Intent
	Recording to Files
	Recording to Streams
	Setting Up the Stream
	Changes in Recording Configuration

	Raw Audio Input
	Requesting the Microphone

	Video Playback
	Prerequisites
	Moving Pictures

	Using the Camera via 3rd-Party Apps
	Prerequisites
	Being Specific About Features
	Still Photos: Letting the Camera App Do It
	The Implementation
	The Caveats

	Scanning with ZXing
	Videos: Letting the Camera App Do It
	Directly Working with the Camera

	Working Directly with the Camera
	Prerequisites
	Basic CameraFragment Usage
	Simple Configuration and Usage
	PictureTransaction
	Controlling the Names and Locations of Output Files
	Controlling Which Camera is Used
	Controlling FFC Mirror Correction
	Handling Exceptions
	Supporting “Full-Bleed Preview”
	Wrapping the Preview UI
	Auto-Focus
	Single-Shot Mode
	Zoom Support
	Camera? #FAIL
	Fixing Up Images… And Your Heap

	Core Camera Concepts
	The Permission and the Features
	A Camera is Optional
	A Camera is Required
	Other Camera Features
	What the Demo Uses
	Warning: Do Not Use android.hardware.camera.any Yet

	The Preview Surface
	SurfaceView for the Camera
	TextureView for the Camera
	What CWAC-Camera Does

	Obtaining and Initializing the Camera
	Choosing a Camera
	Opening and Closing the Camera

	Showing the Camera Preview
	Configuring the Preview
	Starting and Stopping the Preview

	Taking a Photo
	The Rest of the Demo

	Recording a Video
	The MediaRecorder Recipe
	Recording in CWAC-Camera

	Advanced CWAC-Camera Features
	Controlling Preview Sizes
	Controlling Picture Sizes
	Arbitrary Preview Configuration
	Arbitrary Photo Configuration
	Arbitrary Video Configuration
	Overriding Photo Saving
	Controlling the Shutter Callback
	Detecting Faces
	Choosing a DeviceProfile
	Working Directly with CameraView
	Using CameraView in a Layout Resource
	Flash Modes

	Media Routes
	Prerequisites
	Terminology
	Media
	Route
	MediaRouter

	A Tale of Three MediaRouters
	android.media
	android.support.v7.media
	CWAC-MediaRouter

	Attaching to MediaRouter
	Getting a MediaRouter Instance
	Working with Routes
	Registering a Callback

	User Route Selection with MediaRouteActionProvider
	The Basic Project and Dependencies
	The Menu Resource
	Initializing the MediaRouter and Selector
	Configuring the ActionProvider
	Registering for Route Changes
	The Results
	Live Audio Routes
	Live Video Routes
	Remote Playback Routes

	The CWAC-MediaRouter Version

	Using Live Audio Routes
	Using Live Video Routes
	Using Remote Playback Routes
	Setting Up MediaRouteActionProvider
	The Rest of the User Interface
	Connecting and Session Management
	What’s a Session?
	Connecting the Client
	Starting a Session
	About the Action Bar
	Session IDs

	Playing
	Stopping, and a Bug
	The stop() Call, and the Bug
	The Workaround: RunnableSessionActionCallback

	Pausing and Resuming
	Disconnecting
	Other Remote Playback Features
	The CWAC-MediaRouter Version

	Supporting External Displays
	Prerequisites
	A History of external displays
	What is a Presentation?
	Playing with External Displays
	Emulated
	HDMI
	MHL
	SlimPort
	Miracast

	Detecting Displays
	A Simple Presentation
	The Presentation Itself
	Detecting the Displays
	Showing and Hiding the Presentation
	The Results

	A Simpler Presentation
	Getting a Little Help
	Help When You Need It

	Presentations and Configuration Changes
	Presentations as Fragments
	The Reuse Reality
	Presentations as Dialogs
	The Context Conundrum
	A PresentationFragment (and Subclasses)
	Using PresentationFragment
	Limits

	Another Sample Project: Slides
	The Slides
	The PagerAdapter
	The PresentationFragment
	The Activity
	Setting Up the Pager
	Setting Up the Presentation
	Controlling the Presentation
	Offering an Action Bar

	Device Support for Presentation
	Hey, What About Chromecast?

	Google Cast and Chromecast
	Prerequisites
	Here a Cast, There a Cast
	What is Chromecast?
	What is Google Cast?

	Common Chromecast Development Notes
	Your API Choices
	Senders and Receivers
	The Sender App
	The Receiver
	Default Receiver
	Styled Receiver
	Custom Receiver

	Supported Media Types
	Cast SDK Dependencies
	Developer Registration
	The Terms of Service
	Device Registration and Development Setup
	The Official Libraries
	The CastCompanionLibrary… Or Not

	Developing Google Cast Apps

	SSL
	Prerequisites
	Basic SSL Operation
	Certificate Verification
	Custom TrustManager
	Wildcard Certificates
	Anti-Pattern: Disabling SSL Certificate Validation

	About That Man in the Middle
	Disabling SSL Certificate Validation
	Ignoring Domain Names
	Hacked CAs

	Certificate Memorizing
	Pinning
	NetCipher

	Advanced Permissions
	Prerequisites
	Securing Yourself
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere
	Requiring Standard System Permissions

	Signature Permissions
	Firmware-Only Permissions
	Your Own Signature Permissions

	The Custom Permission Vulnerability
	Scenarios
	The Application SDK Case (A, Then C)
	The Application SDK Problem Case (C, Then A)
	The Peer Apps Case, Part One (A, Then B)
	The Peer Apps Case, Part Two (B, Then A)
	The Downgraded-Level Malware Case (B, Then A, Again)
	The Peer Apps Case With a Side Order of C

	Behavior Analysis
	Risk Assessment
	Mitigation Using PermissionUtils
	Example: Permission Proxy
	What the Proxy Does
	What the Provider Could Do

	Restricted Profiles and UserManager
	Prerequisites
	Android Tablets and Multiple User Accounts
	Primary User
	Secondary User
	Restricted Profile

	Determining What the User Can Do
	Impacts of Device-Level Restrictions
	Restricting Location Access
	Uninstalling Apps

	Enabling Custom Restrictions
	Stating Your Restrictions
	Option #1: RestrictionEntry List
	Option #2: Custom Restriction Activity

	What the Primary User Sees
	Finding Out the Current Restrictions
	The Uninstall Bug

	Implicit Intents May Go “Boom”
	The Future: App Ops?

	Tapjacking
	Prerequisites
	What is Tapjacking?
	World War Z (Axis)
	Enter the Jackalope
	Thinking Like a Malware Author

	Detecting Potential Tapjackers
	Who Holds a Permission?
	Who is Running?
	Combining the Two: TJDetect

	Defending Against Tapjackers
	Filtering Touch Events
	Implementing the Filter
	The User Experience and the Hoped-For Security
	The Flaws
	Availability

	Detect-and-Warn

	Why Is This Being Discussed?
	What Changed in 4.0.3?

	Miscellaneous Security Techniques
	Prerequisites
	Public Key Validation
	Scenarios
	Checking Yourself
	Checking Arbitrary Other Apps

	Examining Public Keys
	The UI Structure
	Listing the Packages
	Dumping the Key
	Decoding the Key

	Validating a Service’s Public Key
	The Services
	Using the Services
	Validating the Service

	Choosing Your Signing Keysize
	Avoiding Accidental APIs
	Export Only What’s Necessary
	Export Defaults
	The Chooser Bug
	The ContentProvider Behavior Change

	Sanitize Your Input Extras
	Secure Your Output Extras

	Other Ways to Expose Data
	App Widgets
	Notifications
	Clipboard
	ServerSocket and Kin

	Accessing Location-Based Services
	Prerequisites
	Location Providers: They Know Where You’re Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing… Testing…
	Alternative Flavors of Updates
	The Fused Option

	The Fused Location Provider
	Prerequisites
	Why Use the Fused Location Provider?
	Why Not Use the Fused Location Provider?
	Finding Our Location, Once
	Installing Google Play Services
	Attaching Google Play Services
	Checking for Google Play Services
	Permissions
	Clients, Connections, and Callbacks
	Finding the Current Location

	Requesting Location Updates
	Delivery Options
	Request Options
	Frequency
	Priority
	Duration

	Gaps in the Fused Location Provider

	Working with the Clipboard
	Prerequisites
	Using the Clipboard on Android 1.x/2.x
	Advanced Clipboard on Android 3.x and Higher
	Copying Rich Data to the Clipboard
	Pasting Rich Data from the Clipboard
	ClipData and Drag-and-Drop

	Monitoring the Clipboard
	The Android 4.3 Clipboard Bug
	If Your App Monitors the Clipboard…
	If Your App Pastes to the Clipboard…

	Telephony
	Prerequisites
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	Working With SMS
	Prerequisites
	Sending Out an SOS, Give or Take a Letter
	Sending Via the SMS Client
	Sending SMS Directly
	Inside the Sender Sample
	SMS Sending Limitations

	Monitoring and Receiving SMS
	The Undocumented, Unsupported, Pre-Android 4.4 Way
	The Android 4.4+ Way: Monitoring SMS
	The Android 4.4+ Way: Receiving SMS
	Receiving the Broadcasts
	Other Expectations

	Handling Both Receive Options

	The SMS Inbox
	The Undocumented, Unsupported, Pre-Android 4.4 Way
	The Android 4.4+ Way

	Asking to Change the Default
	SMS and the Emulator

	NFC
	Prerequisites
	What Is NFC?
	… Compared to RFID?
	… Compared to QR Codes?

	To NDEF, Or Not to NDEF
	NDEF Modalities
	NDEF Structure and Android’s Translation
	The Reality of NDEF
	Some Tags are Read-Only
	Some Tags Can’t Be Read-Only
	Some Tags Need to be Formatted
	Tags Have Limited Storage
	NDEF Data Structures Are Documented Elsewhere
	Tag and Device Compatibility

	Sources of Tags
	Writing to a Tag
	Getting a URL
	Detecting a Tag
	Reacting to a Tag
	Getting the Shared URL
	Creating the Byte Array
	Creating the NDEF Record and Message

	Writing to a Tag

	Responding to a Tag
	Expected Pattern: Bootstrap
	Mobile Devices are Mobile
	Enabled and Disabled
	Android Beam
	The Fragment
	Requesting the Beam
	Sending the Beam
	Receiving the Beam
	The Scenarios

	Beaming Files
	Another Sample: SecretAgentMan
	Configuration and Initialization
	Writing to the Tag
	Reading from the Tag
	Beaming the Text
	Beaming the File

	Additional Resources

	Device Administration
	Prerequisites
	Objectives and Scope
	Defining and Registering an Admin Component
	The Feature
	The Metadata
	The Manifest
	The Receiver
	The Demand for Device Domination

	Going Into Lockdown
	Passwords and Device Administration
	Mandating Quality of Security
	Establishing Password Requirements
	Password-Related Events

	Getting Along with Others

	PowerManager and WakeLocks
	Prerequisites
	Keeping the Screen On, UI-Style
	The Role of the WakeLock
	What WakefulIntentService Does

	Push Notifications with GCM
	Prerequisites
	The Precursor: C2DM
	The Replacement: GCM
	The Re-Replacement: GCM 2013
	The Pieces of Push
	A Suitable Android Environment
	API Key
	Play Services Framework
	Android App
	Custom Permission
	Additional Permissions
	Your Registration Code
	GCM BroadcastReceiver

	Your Server (a.k.a., the Thing Doing the Pushing)
	Google’s Server and the Google Services Framework

	A Simple Push
	The Client
	The Activity
	GCMRegistrarCompat
	GCMBroadcastReceiverCompat
	GCMBaseIntentServiceCompat
	The Service

	The “Server”

	Message Options and Advanced Features
	Collapse Keys
	Time-To-Live

	Re-Registration
	Pre-Release Features
	Cloud Connection Services
	Upstream Messages
	User Notifications

	Considering Encryption
	Issues with GCM
	Requires Play Services Framework
	Requires API Level 8
	No SLA
	4K Message Limit

	Amazon Simple Notification Service and GCM

	Basic Use of Sensors
	Prerequisites
	The Sensor Abstraction Model
	Considering Rates
	Reading Sensors
	Obtaining a SensorManager
	Identifying a Sensor of Interest
	Getting Sensor Events
	Interpreting Sensor Events
	Wiring Together the Sample
	The Results

	Batching Sensor Readings

	Other System Settings and Services
	Prerequisites
	Setting Expectations
	Basic Settings
	Secure Settings

	Can You Hear Me Now? OK, How About Now?
	Attaching SeekBars to Volume Streams

	The Rest of the Gang

	Dealing with Different Hardware
	Prerequisites
	Filtering Out Devices
	uses-feature
	uses-configuration
	uses-library

	Runtime Capability Detection
	Features
	Other Capabilities

	Dealing with Device Bugs

	Responding to URLs
	Prerequisites
	Manifest Modifications
	Creating a Custom URL
	Reacting to the Link

	Plugin Patterns
	Prerequisites
	Definitions, Scenarios, and Scope
	The Keys to Any Plugin System
	Discovery… By the User
	Discovery… By Your App
	Broadcast-and-Response
	Scanning with PackageManager
	Watching Package-Related Broadcasts

	Discovery and Usage of the IPC Endpoints
	Component IPC Options
	Static Data Options
	Versioning

	Security
	User Safe from Permission Leakage
	Host Safe from Trojans

	Case Study: DashClock
	What is DashClock?
	Discovery… By the User
	Discovery… By Your App
	Discovery and Usage of the IPC Endpoints
	Security

	Other Plugin Examples
	Plugins by Remote
	RemoteViews, Beyond App Widgets
	Thinking About Plugins
	Finding Available Plugins
	Responding to the Call for Plugins
	Requesting RemoteViews
	Responding with RemoteViews
	Dealing with Android 3.1+
	The Permission Scheme
	Other Plugin Features and Issues

	ContentProvider Plugins
	The Problem: Permission Creep
	A Solution: ContentProvider Proxies
	Provider
	Consumer

	Limitations of the Approach

	PackageManager Tricks
	Prerequisites
	Asking Around
	Preferred Activities
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components

	Searching with SearchManager
	Prerequisites
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness
	May I Make a Suggestion?
	SearchRecentSuggestionsProvider
	Custom Suggestion Providers
	Integrating Suggestion Providers

	Putting Yourself (Almost) On Par with Google
	Implement a Suggestions Provider
	Augment the Metadata
	Convince the User
	The Results

	Handling System Events
	Prerequisites
	I Sense a Connection Between Us…
	Feeling Drained
	Sticky Intents and the Battery
	Battery and the Emulator
	Other Power Triggers

	Remote Services and the Binding Pattern
	Prerequisites
	The Binding Pattern
	What the Service Does
	What the Client Does
	A Binding Sample
	Starting and Binding

	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	Service From Afar
	Service Names
	The Service
	The Client

	Servicing the Service
	Callbacks via AIDL
	Revising the Client
	Revising the Service

	Thinking About Security
	The “Everlasting Service” Anti-Pattern

	Advanced Manifest Tips
	Prerequisites
	Just Looking For Some Elbow Room
	Configuring Your App to Reside on External Storage
	What the User Sees
	What the Pirate Sees
	What Your App Sees… When External Storage is Inaccessible
	Choosing Whether to Support External Storage

	Using an Alias
	Getting Meta (Data)

	Miscellaneous Integration Tips
	Prerequisites
	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Homing Beacons for Intents
	ShareActionProvider

	Reusable Components
	Prerequisites
	Where Do I Find Them?
	How Are They Packaged?
	JARs
	Library Projects
	APKs

	How Do I Create Them?
	JARs
	Standard Library Projects
	Binary-Only Library Projects
	APK

	The Future: AAR
	Other Considerations for Publishing Reusable Code
	Licensing
	Your License
	Third-Party License Impacts

	Documenting the Usage
	Naming Conventions

	The Role of Scripting Languages
	Prerequisites
	All Grown Up
	Following the Script
	Your Expertise
	Your Users’ Expertise
	Crowd-Developing

	Going Off-Script
	Security
	Performance
	Cross-Platform Compatibility
	Maturity… On Android

	The Scripting Layer for Android
	Prerequisites
	The Role of SL4A
	On-Device Development

	Getting Started with SL4A
	Installing SL4A
	Installing Interpreters
	Running Supplied Scripts

	Writing SL4A Scripts
	Editing Options
	Calling Into Android
	Browsing the API

	Running SL4A Scripts
	Background
	Shortcuts
	Android 1.x/2.x
	Android 3.0+

	Other Alternatives

	Potential Issues
	Security… From Scripts
	Security… From Other Apps

	JVM Scripting Languages
	Prerequisites
	Languages on Languages
	A Brief History of JVM Scripting
	Limitations
	Android SDK Limits
	Wrong Bytecode
	Age

	SL4A and JVM Languages
	Embedding JVM Languages
	Architecture for Embedding
	Asynchronous
	Security

	Inside the InterpreterService
	The Interpreter Interface
	Loading Interpreters and Executing Scripts
	Delivering Results
	Packaging the InterpreterService
	Using the InterpreterService

	BeanShell on Android
	What is BeanShell?
	Getting BeanShell Working on Android
	Integrating BeanShell

	Rhino on Android
	What is Rhino?
	Getting Rhino Working on Android
	Integrating Rhino

	Other JVM Scripting Languages
	Groovy
	Jython

	JUnit and Android
	Prerequisites
	You Get What They Give You
	Eclipse
	Command Line

	Your Test Cases
	POJTCs (Plain Old JUnit Test Cases)
	ActivityInstrumentationTestCase2
	AndroidTestCase
	Other Test Cases

	Your Test Suite
	Running Your Tests
	Eclipse
	Command Line

	MonkeyRunner and the Test Monkey
	Prerequisites
	MonkeyRunner
	Writing a MonkeyRunner Script
	Executing MonkeyRunner

	Monkeying Around

	Testing with UIAutomator
	Prerequisites
	What Is UIAutomator?
	Why Choose UIAutomator Over Alternatives?
	Creating Some Tests
	Setting Up for Command-Line Builds
	Creating the Test Project
	Creating a Test Case
	Performing Device-Level Actions
	Inspecting and Interacting with the UI
	Finding and Interaction with Widgets
	Dealing with Collections
	Finding Widgets By Type
	Asserting Conditions

	Two Sample Test Methods
	testContents()
	testAdd()

	Cleaning Up

	Running Your Tests
	Building and Pushing the JAR
	Executing uiautomator

	Finding Your Widgets
	Limitations of uiautomator

	Introducing Gradle
	Prerequisites and Warnings
	The Big Questions
	What is Gradle?
	What is Groovy?
	What Does Android Have To Do with Gradle?
	Why Are We Moving to Gradle?
	How Does Gradle Relate to Android Studio?
	How Does Gradle Relate to Eclipse?

	Obtaining Gradle
	Direct Installation
	Linux Packages
	The gradlew Wrapper

	Versions of Gradle and Gradle for Android
	Gradle Environment Variables
	Some Brief Words About Maven
	Learning More About Gradle

	Gradle and Legacy Projects
	Prerequisites and Warnings
	“Legacy”?
	Creating Your Gradle Build File
	Exporting from Eclipse
	Performing the Export
	What Gets Generated

	Hand-Writing

	Running a Gradle Build
	Key Build-Related Tasks
	Results

	Examining the Gradle File
	buildscript
	apply plugin
	dependencies
	android
	sourcesets

	Gradle and the New Project Structure
	Prerequisites and Warnings
	Objectives of the New Project Structure
	Terminology
	Source Sets
	Build Types
	Product Flavors
	Build Variants
	Flavor Groups

	Creating a Project in the New Structure
	What the New Project Structure Looks Like
	The Directory Tree
	The build.gradle File

	Configuring the Stock Build Types
	Source Set
	build.gradle Settings
	Order of Precedence

	Adding Build Types
	Adding Product Flavors and Getting Build Variants
	Revisiting the Legacy Gradle File

	Gradle and Dependencies
	Prerequisites and Warnings
	“Dependencies”?
	The Dependencies Block… and the Other Dependencies Block
	Depending Upon a JAR
	…And Why Some Do Not Like This

	Depending Upon NDK Binaries
	Depending Upon an Android Library Project
	Creating a Library Project
	Depending Upon the Library Project

	Depending Upon Sub-Projects
	Depending Upon Artifacts
	What Is an Artifact?
	What Is a Repository?
	Types of Artifacts and Repositories
	Maven
	Ivy

	General Artifact Dependency Setup
	Depending Upon Maven Central Artifacts
	Depending Upon Googly Artifacts
	Depending Upon Other Artifact Repositories
	Your Very Own Repository
	Publishing Libraries as Artifacts
	Publishing Legacy-Structured Libraries as Artifacts
	About Artifact Updates

	Creating Android JARs from Gradle
	A Property of Transitive (Dependencies)
	Dependencies By Build Type
	Dependencies By Flavor
	Examining Some CWAC Builds
	A Simple CWAC Project: cwac-layouts
	CWAC-Upon-CWAC: cwac-presentation

	Gradle and Testing
	Prerequisites and Warnings
	JUnit/Instrumentation Testing
	Testing Applications
	The androidTest Source Set
	The Gradle Configuration
	The Gradle Tasks
	The Test Results

	Testing Library Projects
	Test Dependencies
	Testing Legacy Project Structures

	Other Types of Testing

	Advanced Gradle for Android Tips
	Prerequisites
	Supporting AIDL
	Supporting the NDK
	Official Support, for Externally-Built Binaries
	Official Support, for Building NDK Binaries
	Unofficial Support for Makefiles

	Gradle, DRY
	It’s build.gradle All The Way Down
	gradle.properties
	Custom Properties Files

	Automating APK Version Information
	Auto-Incrementing the versionCode
	Synchronizing the versionName… with the versionCode
	Synchronizing the versionName… with the APK File Name

	Adding to BuildConfig

	Advanced Emulator Capabilities
	Prerequisites
	x86 Images
	Android 4.0.3
	Android 2.3.3

	Hardware Graphics Acceleration
	Old AVDs
	New AVDs

	Defining New Devices
	Keyboard Behavior
	Headless Operation

	Using Lint
	Prerequisites
	What It Is
	When It Runs
	What to Fix
	What to Configure
	Eclipse
	Command Line

	Using Hierarchy View
	Prerequisites
	Launching Hierarchy View
	Viewing the View Hierarchy
	ViewServer

	Using DDMS
	Prerequisites
	Starting DDMS
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages

	Android Development in IntelliJ IDEA
	Prerequisites
	Creating a New Project
	Importing an Existing Project
	Eclipse
	Command Line

	Attaching a JAR
	Accessing Android Tools
	Run and Debug a Project
	Editing Android-Specific Files
	IDEA-Specific Files
	Using MAT

	Signing Your App
	Prerequisites
	Role of Code Signing
	What Happens In Debug Mode
	Creating a Production Signing Key
	Signing with the Production Key
	Two Types of Key Security

	Distribution
	Prerequisites
	Get Ready To Go To Market
	Versioning
	Package Name
	Icon and Label
	Logging
	Testing
	EULA

	Issues with Speed
	Prerequisites
	Getting Things Done
	Your UI Seems… Janky
	Not Far Enough in the Background
	Playing with Speed

	Finding CPU Bottlenecks
	Prerequisites
	Traceview
	What Is Traceview?
	Collecting Trace Data
	Debug Class
	DDMS
	Performance While Tracing

	Displaying Trace Data
	Eclipse/DDMS
	Standalone Traceview

	Interpreting Trace Data

	Other General CPU Measurement Techniques
	Logging
	FPS Calculations

	UI “Jank” Measurement
	What, Exactly, is Jank?
	Using gfxinfo
	Enabling Developer Options
	Toggling on GPU Profiling
	Collecting Data
	Disabling GPU Profiling
	Analyzing the Results

	Using systrace
	Enabling and Collecting a Trace: Command-Line
	Enabling and Collecting a Trace: Eclipse
	Viewing and Interpreting the Results

	Focus On: NDK
	Prerequisites
	The Role of the NDK
	Dalvik: Secure, Yes; Speedy, Not So Much
	Going Native
	Speed
	Porting

	Knowing Your Limits
	Android APIs
	Cross-Platform Compatibility

	NDK Installation and Project Setup
	Installing the NDK
	Prerequisites
	Download and Unpack
	Environment Variables

	Setting Up an NDK Project
	Writing Your C/C++ Code

	Writing Your Makefile(s)
	Android.mk
	Application.mk

	Building Your Library
	Using Your Library Via JNI
	Building and Deploying Your Project
	libhoudini and the NDK
	Gradle, the NDK, and Architecture Flavors

	Improving CPU Performance in Java
	Prerequisites
	Reduce CPU Utilization
	Standard Java Optimizations
	Avoid Excessive Synchronization
	Avoid Floating-Point Math
	Don’t Assume Built-In Algorithms are Best

	Support Hardware-Accelerated Graphics
	Minimize IPC
	Remote Bound Service
	Remote Content Provider
	Remote OS Operation

	Android-Specific Java Optimizations

	Reduce Time on the Main Application Thread
	Generate Less Garbage
	View Recycling
	Background Threads
	Asynchronous BroadcastReceiver Operations
	Saving SharedPreferences

	Improve Throughput and Responsiveness
	Minimize Disk Writes
	Set Thread Priority
	Do the Work Some Other Time

	Finding and Eliminating Jank
	Prerequisites
	The Case: ThreePaneDemoBC
	Are We Janky?
	Finding the Source of the Jank
	Traceview
	Overdraw
	Extraneous Views
	Conclusion: Too Many layout() Calls?

	Where Things Went Wrong
	Removing the Jank

	Issues with Bandwidth
	Prerequisites
	You’re Using Too Much of the Slow Stuff
	You’re Using Too Much of the Expensive Stuff
	You’re Using Too Much of Somebody Else’s Stuff
	You’re Using Too Much… And There Is None

	Focus On: TrafficStats
	Prerequisites
	TrafficStats Basics
	Device Statistics
	Per-Application Statistics
	Interpreting the Results

	Example: TrafficMonitor
	TrafficRecord
	TrafficSnapshot
	TrafficMonitorActivity
	Using TrafficMonitor

	Other Ways to Employ TrafficStats
	In Production
	During Testing

	Measuring Bandwidth Consumption
	Prerequisites
	On-Device Measurement
	Yourself, via TrafficStats
	Existing Android Applications

	Off-Device Measurement
	Wireshark
	Networking Hardware

	Tactical Measurement in DDMS

	Being Smarter About Bandwidth
	Prerequisites
	Bandwidth Savings
	Classic HTTP Solutions
	GZip Encoding
	If-Modified-Since / If-None-Match
	Binary Payloads
	Minification

	Push versus Poll
	Thumbnails and Tiles
	Collaborative Bandwidth

	Bandwidth Shaping
	Driven by Preferences
	Budgets
	Connectivity
	Windows

	Driven by Other Usage

	Avoiding Metered Connections

	Issues with Memory
	Prerequisites
	You Are in a Heap of Trouble
	Warning: Contains Graphic Images
	Fragments of Memory
	In Too Deep (on the Stack)

	Finding Memory Leaks with MAT
	Prerequisites
	Setting Up MAT
	Getting Heap Dumps
	From DDMS
	DDMS Perspective
	Standalone DDMS

	From Code
	Automating Heap Dumps in Testing

	Basic MAT Operation
	Loading Your Dump
	Finding Your Objects
	Getting Back to Your Roots
	Identifying What Else is Floating Around

	Some Leaks and Their MAT Analysis
	Widget in Static Data Member
	Leaked Thread
	All Sorts of Bugs
	Leaks Via Configuration Changes
	Leaks from Unregistered System Listeners

	What MAT Won’t Tell You

	Issues with Battery Life
	Prerequisites
	You’re Getting Blamed
	Not All Batteries Are Created Equal
	Stretching Out the Last mWh

	Power Measurement Options
	Prerequisites
	The Qualcomm Tool (That Must Not Be Named)
	PowerTutor
	Battery Screen in Settings Application
	BatteryInfo Dump

	Sources of Power Drain
	Prerequisites
	Screen
	Disk I/O
	WiFi and Mobile Data
	Use Less
	Use What You Already Downloaded
	Use In Batches
	Use When the Server Wants You To
	Use When Android Wants You To
	Use Additional Reading

	GPS
	Camera
	Additional Sources
	CPU/GPU
	Sensors
	Audio Input and Output

	Addressing Application Size Issues
	Prerequisites
	Java Code, and the 64K Method Limit
	What Is It?
	64K Seems Like a Lot of Typing…
	Mitigation Tactics
	Use Better Libraries
	Use ProGuard

	Mitigation Strategies
	Don’t Go Overboard
	Smaller Apps, Loosely Connected
	Splitting Into Separate DEX Files

	Native Code
	Mitigation via Per-CPU APKs
	Mitigation via libhoudini
	Mitigation via Ignoring Non-ARM

	Images
	Mitigation via Resource Aliases
	Mitigation via pngquant

	APK Expansion Files

	The Role of Alternative Environments
	Prerequisites
	In the Beginning, There Was Java…
	… And It Was OK
	Bucking the Trend
	Support, Structure
	Caveat Developer

	HTML5
	Prerequisites
	Offline Applications
	What Does It Mean?
	How Do You Use It?
	About the Sample App
	“Installing” Checklist on Your Phone
	Examining the HTML
	Examining the Manifest

	Web Storage
	What Does It Mean?
	How Do You Use It?
	Web SQL Database

	Going To Production
	Testing
	Signing and Distribution
	Updates

	Issues You May Encounter
	Android Device Versions
	Screen Sizes and Densities
	Limited Platform Integration
	Performance and Battery
	Look and Feel
	Distribution

	HTML5: The Baseline

	PhoneGap
	Prerequisites
	What Is PhoneGap?
	What Do You Write In?
	What Features Do You Get?
	What Do Apps Look Like?
	How Does Distribution Work?
	What About Other Platforms?
	How Is It Licensed?

	Using PhoneGap
	Installation
	Creating and Installing Your Project
	PhoneGap/Build

	PhoneGap and the Checklist Sample
	Sticking to the Standards
	Adding PhoneGap APIs
	Set up Device-Ready Event Handler
	Use What PhoneGap Gives You

	Issues You May Encounter
	Security
	Screen Sizes and Densities
	Look and Feel

	For More Information

	Other Alternative Environments
	Prerequisites
	Rhodes
	Flash, Flex, and AIR
	JRuby and Ruboto
	App Inventor
	Titanium Mobile
	Other JVM Compiled Languages

	Anti-Patterns
	Prerequisites
	Leak Threads… Or Things Attached to Threads
	The Costs
	The Counter-Arguments

	Use Large Heap Unnecessarily
	The Costs
	The Counter-Arguments

	Misuse the MENU Button
	The Costs
	The Counter-Arguments

	Interfere with Navigation
	The Costs
	The Counter-Arguments

	Use android:sharedUserId
	The Costs
	The Counter-Arguments

	Implement a “Quit” Button
	The Costs
	The Counter-Arguments

	Terminate Your Process
	The Costs
	The Counter-Arguments

	Try to Hide from the User
	The Costs
	The Counter-Arguments

	Use Multiple Processes
	The Costs
	The Counter-Arguments

	Hog System Resources
	The Counter-Arguments

	Widget Catalog: AdapterViewFlipper
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: CalendarView
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: DatePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: ExpandableListView
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: SeekBar
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: SlidingDrawer
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: StackView
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TabHost and TabWidget
	Deprecation Notes
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TimePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: ViewFlipper
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Device Catalog: Google TV
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Input Devices
	Other Hardware

	What Is Really Different?
	The Emulator
	CPU and NDK
	Overscan
	Ethernet
	Location
	Media Keys
	Channels and Listings
	User Base

	Getting Your Development Environment Established
	Installing the SDK Add-On
	Getting KVM Set Up
	Creating the Emulator
	Connecting to Physical Devices

	How Does Distribution Work?
	Getting Your App on Google TV
	Supporting Only Google TV
	Avoiding Google TV
	Dealing with Other Televisions

	Getting Help

	Device Catalog: Kindle Fire
	Prerequisites
	Introducing the Kindle Fire series
	What Features and Configurations Does It Use?
	OS Version
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	The Menu Bar
	Nothing Googly
	Sideloading Limitations

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?
	Amazon AppStore
	Alternatives

	Amazon Equivalents of Google Services
	Getting Help with the Kindle Fire

	Device Catalog: Barnes & Noble NOOK Tablet
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	Status/System Bar and Navigation Norms
	Nothing Googly
	No Side-loading
	Toasts to the Top
	Unsupported APIs

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?

	Device Catalog: RIM Blackberry Playbook
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	Navigation
	Nothing Googly
	BARs as Packages
	Unsupported APIs
	Package Name Length

	Getting Your Development Environment Established
	Checking and Repackaging Your App
	Eclipse Plugin
	Online Repackager
	Command-Line Tools

	Playbook Simulator
	Developing on Hardware

	How Does Distribution Work?
	Blackberry App World
	Alternatives

	Wrist Wearables
	Prerequisites
	Divvying Up the Wearables Space
	Devices vs. Accessories
	App OS
	NOTA (None Of The Above)

	Example Wrist Wearables
	Fitbit
	I’m Watch
	MetaWatch
	Omate TrueSmart
	Pebble
	Qualcomm Toq
	Samsung Gear Series
	SONY SmartWatch and SmartWatch 2
	That Theorized Apple Watch
	WIMM One (RIP)

	Strategic Considerations
	Do We Bother?
	Which Types?
	Which Devices?

	Tactical Considerations
	The Postage Stamp User Interface
	Connectivity (Or Lack Thereof)
	Power (Or Lack Thereof)
	Security (Or… Well, You Get the Picture)

	What About Android Wear?

	CWAC Libraries
	cwac-adapter
	cwac-camera
	cwac-colormixer
	cwac-layouts
	cwac-merge
	cwac-pager
	cwac-presentation
	cwac-provider
	cwac-richedit
	cwac-sacklist
	cwac-security
	cwac-strictmodeex
	cwac-wakeful

