
OMMONSWAREC

The Busy Coder's Guide to

Android
Development

Mark L. Murphy

Version
3.1

Supports the
Android 2.2
SDK!

The Busy Coder's Guide to Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2010 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
May 2010: Version 3.1 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!...xvii

Preface..xix

Welcome to the Book!...xix

Prerequisites...xix

Warescription...xx

Book Bug Bounty...xxi

Source Code And Its License...xxii

Creative Commons and the Four-to-Free (42F) Guarantee..................xxii

Acknowledgments...xxiii

The Big Picture...1

What Androids Are Made Of...3

Activities...3

Content Providers..4

Services...4

Intents...4

Stuff At Your Disposal..4

Storage..4

Network...5

Multimedia...5

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

GPS..5

Phone Services..5

Projects and Targets..7

Pieces and Parts..7

Creating a Project...8

Project Structure...9

Root Contents..9

The Sweat Off Your Brow...10

And Now, The Rest of the Story..10

What You Get Out Of It..11

Inside the Manifest..11

In The Beginning, There Was the Root, And It Was Good...............12

Permissions, Instrumentations, and Applications (Oh, My!)...........13

Your Application Does Something, Right?...14

Achieving the Minimum..15

Version=Control..17

Emulators and Targets..17

Virtually There..17

Aiming at a Target..19

Creating a Skeleton Application...23

Begin at the Beginning...23

The Activity...24

Dissecting the Activity...25

Building and Running the Activity...26

Using XML-Based Layouts...31

What Is an XML-Based Layout?...31

Why Use XML-Based Layouts?..32

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

OK, So What Does It Look Like?...33

What's With the @ Signs?..34

And We Attach These to the Java...How?...34

The Rest of the Story..35

Employing Basic Widgets..39

Assigning Labels...39

Button, Button, Who's Got the Button?...40

Fleeting Images...41

Fields of Green. Or Other Colors..43

Just Another Box to Check...45

Turn the Radio Up..48

It's Quite a View...50

Useful Properties..50

Useful Methods..50

Colors...51

Working with Containers..53

Thinking Linearly...54

Concepts and Properties..54

Example...58

All Things Are Relative...63

Concepts and Properties..63

Example..66

Tabula Rasa...70

Concepts and Properties..70

Example...73

Scrollwork...74

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets...79

Adapting to the Circumstances...79

Using ArrayAdapter...80

Other Key Adapters..81

Lists of Naughty and Nice..81

Selection Modes...83

Spin Control..85

Grid Your Lions (Or Something Like That...)..89

Fields: Now With 35% Less Typing!..93

Galleries, Give Or Take The Art..97

Getting Fancy With Lists...99

Getting To First Base..99

A Dynamic Presentation...102

A Sidebar About Inflation..103

And Now, Back To Our Story..104

Better. Stronger. Faster...105

Using convertView...106

Using the Holder Pattern...108

Holders Without Custom Classes...111

Making a List..113

...And Checking It Twice...119

Adapting Other Adapters...125

Employing Fancy Widgets and Containers...127

Pick and Choose..127

Time Keeps Flowing Like a River...132

Making Progress..134

Seeking Resolution..135

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting It On My Tab..136

The Pieces..137

The Idiosyncrasies...137

Wiring It Together..138

Adding Them Up...141

Intents and Views...144

Flipping Them Off...144

Getting In Somebody's Drawer..150

Other Good Stuff...154

The Input Method Framework..155

Keyboards, Hard and Soft...155

Tailored To Your Needs..156

Tell Android Where It Can Go...160

Fitting In..162

Jane, Stop This Crazy Thing!..164

Unleash Your Inner Dvorak..165

Applying Menus...167

Flavors of Menu...167

Menus of Options...168

Menus in Context..170

Taking a Peek...171

Yet More Inflation...177

Menu XML Structure..177

Menu Options and XML..178

Inflating the Menu..180

Fonts..181

Love The One You're With..181

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Here a Glyph, There a Glyph..185

Embedding the WebKit Browser...187

A Browser, Writ Small..187

Loading It Up...190

Navigating the Waters...191

Entertaining the Client...192

Settings, Preferences, and Options (Oh, My!)..194

Showing Pop-Up Messages..197

Raising Toasts..197

Alert! Alert!..198

Checking Them Out...199

Dealing with Threads..203

Getting Through the Handlers..203

Messages...204

Runnables...208

Running In Place..208

Where, Oh Where Has My UI Thread Gone?..208

Asyncing Feeling...208

The Theory...209

AsyncTask, Generics, and Varargs...210

The Stages of AsyncTask..210

A Sample Task..211

And Now, The Caveats..216

Handling Activity Lifecycle Events..219

Schroedinger's Activity...219

Life, Death, and Your Activity...220

onCreate() and onDestroy()..220

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

onStart(), onRestart(), and onStop()...221

onPause() and onResume()..221

The Grace of State...222

Creating Intent Filters...225

What's Your Intent?...226

Pieces of Intents...226

Intent Routing..227

Stating Your Intent(ions)...228

Narrow Receivers..230

The Pause Caveat...231

Launching Activities and Sub-Activities...233

Peers and Subs..234

Start 'Em Up..234

Make an Intent..235

Make the Call..235

Tabbed Browsing, Sort Of..239

Handling Rotation...245

A Philosophy of Destruction..245

It's All The Same, Just Different..246

Now With More Savings!...250

DIY Rotation..253

Forcing the Issue...255

Making Sense of it All...258

Spinning a Thread..259

Manual Activity Association...260

Flow of Events...263

Potential Issues..264

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources...267

The Resource Lineup..267

String Theory..268

Plain Strings..268

String Formats..269

Styled Text..269

Styled Text and Formats..270

Got the Picture?..274

XML: The Resource Way..276

Miscellaneous Values...279

Dimensions...279

Colors..280

Arrays...281

Different Strokes for Different Folks..282

Using Preferences..289

Getting What You Want..289

Stating Your Preference...290

And Now, a Word From Our Framework...291

Letting Users Have Their Say..292

Adding a Wee Bit O' Structure..297

The Kind Of Pop-Ups You Like...300

Managing and Accessing Local Databases...305

A Quick SQLite Primer..307

Start at the Beginning..308

Setting the Table..311

Makin' Data...311

What Goes Around, Comes Around..313

x

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Raw Queries...313

Regular Queries...314

Building with Builders..314

Using Cursors..316

Making Your Own Cursors...317

Flash: Sounds Faster Than It Is..317

Data, Data, Everywhere..318

Accessing Files..321

You And The Horse You Rode In On...321

Readin' 'n Writin'..325

Leveraging Java Libraries...331

The Outer Limits...331

Ants and Jars..332

Following the Script..333

...And Not A Drop To Drink...337

Reviewing the Script...338

Communicating via the Internet..339

REST and Relaxation..339

HTTP Operations via Apache HttpClient..340

Parsing Responses..342

Stuff To Consider...344

AndroidHttpClient...345

Using a Content Provider..349

Pieces of Me..349

Getting a Handle...350

Makin' Queries...351

Adapting to the Circumstances...353

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Give and Take..355

Beware of the BLOB!...356

Building a Content Provider...357

First, Some Dissection..358

Next, Some Typing...359

Step #1: Create a Provider Class...359

onCreate()...360

query()...360

insert()...362

update()...363

delete()..364

getType()...365

Step #2: Supply a Uri..366

Step #3: Declare the Properties...366

Step #4: Update the Manifest..367

Notify-On-Change Support...368

Requesting and Requiring Permissions...371

Mother, May I?..372

Halt! Who Goes There?..373

Enforcing Permissions via the Manifest...374

Enforcing Permissions Elsewhere...375

May I See Your Documents?..375

Creating a Service...377

Service with Class...378

There Can Only Be One...379

Manifest Destiny..381

Lobbing One Over the Fence...381

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Callbacks...382

Broadcast Intents..383

Where's the Remote? And the Rest of the Code?..................................384

Invoking a Service..385

The Ties That Bind...386

Catching the Lob..389

Alerting Users Via Notifications..391

Types of Pestering...391

Hardware Notifications...392

Icons..393

Seeing Pestering in Action...393

Staying in the Foreground...397

Accessing Location-Based Services...401

Location Providers: They Know Where You're Hiding.........................402

Finding Yourself...402

On the Move...404

Are We There Yet? Are We There Yet? Are We There Yet?.................405

Testing...Testing...406

Mapping with MapView and MapActivity..409

Terms, Not of Endearment..409

Piling On..410

The Bare Bones..410

Exercising Your Control..412

Zoom..413

Center...413

Rugged Terrain..414

Layers Upon Layers...414

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Overlay Classes..415

Drawing the ItemizedOverlay...415

Handling Screen Taps...417

My, Myself, and MyLocationOverlay..418

The Key To It All...419

Handling Telephone Calls...421

Report To The Manager...422

You Make the Call!...422

No, Really, You Make the Call!..425

Development Tools...427

Hierarchical Management...427

Delightful Dalvik Debugging Detailed, Demoed...................................434

Logging..436

File Push and Pull...437

Screenshots...438

Location Updates...439

Placing Calls and Messages...440

Put It On My Card..444

Creating a Card Image...444

"Inserting" the Card...445

Handling Multiple Screen Sizes...449

Taking the Default..450

Whole in One..451

Don't Think About Positions, Think About Rules..........................452

Consider Physical Dimensions..453

Avoid "Real" Pixels...453

Choose Scalable Drawables...454

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Tailor Made, Just For You (And You, And You, And...)........................454

<supports-screens>..455

Resources and Resource Sets..456

Finding Your Size...457

Ain't Nothing Like the Real Thing..458

Density Differs..459

Adjusting the Density..459

Accessing Actual Devices..460

Ruthlessly Exploiting the Situation...461

Replace Menus with Buttons..462

Replace Tabs with a Simple Activity..462

Consolidate Multiple Activities..463

Example: EU4You...463

The First Cut..464

Fixing the Fonts..470

Fixing the Icons..473

Using the Space..473

What If It Is Not a Browser?..476

What Are a Few Bugs Among Friends?..477

Dealing With Devices..479

This App Contains Explicit...Instructions..479

Button, Button, Who's Got the Button?..481

A Guaranteed Market...481

The Down and Dirty Details..482

ARCHOS 5 Android Internet Tablet..482

Motorola CLIQ/DEXT...483

Motorola DROID/Milestone...484

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Google/HTC Nexus One...484

Motorola BACKFLIP..485

Handling Platform Changes...487

Brand Management..487

More Things That Make You Go "Boom"...488

View Hierarchy..488

Changing Resources..490

Handling API Changes...490

Minimum, Maximum, Target, and Build Versions..........................491

Detecting the Version..493

Wrapping the API..494

Where Do We Go From Here?...501

Questions. Sometimes, With Answers..501

Heading to the Source..502

Getting Your News Fix..503

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates – subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscribers name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license – more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

Some notes for Kindle users:

• You may wish to drop your font size to level 2 for easier reading

• Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.pdfsam.org/

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional" means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new – Android-powered devices appeared on the scene first in late 2008 –
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

If you are interested in programming for Android, you will need at least
basic understanding of how to program in Java. Android programming is
done using Java syntax, plus a class library that resembles a subset of the
Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works
before attempting to dive into programming for Android.

xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The book does not cover in any detail how to download or install the
Android development tools, either the Eclipse IDE flavor or the standalone
flavor. The Android Web site covers this quite nicely. The material in the
book should be relevant whether you use the IDE or not. You should
download, install, and test out the Android development tools from the
Android Web site before trying any of the examples listed in this book.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance. Also, not every
sample shown has the complete source code in the book, lest this book get
too large. If you wish to compile the samples, download the source code
from the CommonsWare Web site.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription – the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.

xx

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/index.html

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

You can find out when new releases of this book are available via:

• The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

• The commonsguy Twitter feed

• The Warescription newsletter, which you can subscribe to off of
your Warescription page

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample applications that do not work as advertised, in the
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

We appreciate hearing about "softer" issues as well, such as:

• Places where you think we are in error, but where we feel our
interpretation is reasonable

xxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://wares.commonsware.com/
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/warescription.html

• Places where you think we could add sample applications, or
expand upon the existing material

• Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as
of the fourth anniversary of its publication date, or when 4,000 copies of
the edition have been sold, whichever comes first. That means that, once
four years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers

xxii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-android
mailto:bounty@commonsware.com

and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on 1 June 2014. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Acknowledgments

I would like to thank the Android team, not only for putting out a good
product, but for invaluable assistance on the Android Google Groups.

Icons used in the sample code were provided by the Nuvola icon set.

xxiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.icon-king.com/?p=15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART I – Core Concepts

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 1

The Big Picture

Android devices, by and large, will be mobile phones. While the Android
technology is being discussed for use in other areas (e.g., car dashboard
"PCs"), for the most part, you can think of Android as being used on
phones.

For developers, this has benefits and drawbacks.

On the plus side, circa 2008, Android-style smartphones are sexy. Offering
Internet services over mobile devices dates back to the mid-1990's and the
Handheld Device Markup Language (HDML). However, only in recent
years have phones capable of Internet access taken off. Now, thanks to
trends like text messaging and to products like Apple's iPhone, phones that
can serve as Internet access devices are rapidly gaining popularity. So,
working on Android applications gives you experience with an interesting
technology (Android) in a fast-moving market segment (Internet-enabled
phones), which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

• Screens are small (you won't get comments like, "is that a 24-inch
LCD in your pocket, or...?")

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

• Keyboards, if they exist, are small

• Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch"
LCDs are not a good mix)

• CPU speed and memory are tight compared to desktops and servers
you may be used to

• You can have any programming language and development
framework you want, so long as it was what the device
manufacturer chose and burned into the phone's silicon

• And so on

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones
don't work, which is why the "can you hear me now?" ad campaign from
Verizon Wireless has been popular for the past few years. Similarly, those
same people will get irritated at you if your program "breaks" their phone:

• ...by tying up the CPU such that calls can't be received

• ...by not working properly with the rest of the phone's OS, such that
your application doesn't quietly fade to the background when a call
comes in or needs to be placed

• ...by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you're used to" limitations on what you can do with
your program.

What Android tries to do is meet you halfway:

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

• You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

• You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows – like
dialog boxes – that are needed. From your standpoint, you are your own
world, leveraging features supported by the operating system, but largely
ignorant of any other program that may be running on the computer at the
same time. If you do interact with other programs, it is typically through an
API, such as using JDBC (or frameworks atop it) to communicate with
MySQL or another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a
desktop application.

While it is possible for activities to not have a user interface, most likely
your "headless" code will be packaged in the form of content providers or
services, described below.

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android
development model encourages you to make your own data available to
other applications, as well as your own – building a content provider lets
you do that, while maintaining complete control over how your data gets
accessed.

Services

Activities, content providers, and intent receivers are all short-lived and can
be shut down at any time. Services, on the other hand, are designed to keep
running, if needed, independent of any activity. You might use a service for
checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to intents, but you can create your
own, to launch other activities, or to let you know when specific situations
arise (e.g., raise such-and-so intent when the user gets within 100 meters of
this-and-such location).

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of
space on the device itself, for databases or files containing user-entered or

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Big Picture

retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the way up
to a built-in WebKit-based Web browser widget you can embed in your
application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the
device to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

Phone Services

And, of course, Android devices are typically phones, allowing your
software to initiate calls, send and receive SMS messages, and everything
else you expect from a modern bit of telephony technology.

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 2

Projects and Targets

As noted in the preface, this book assumes you have downloaded the SDK
(and perhaps the ADT plugin for Eclipse) and have it basically working in
your environment. That being said, this chapter covers what all is involved
in starting and building an Android application.

Pieces and Parts

To create an Android application, you will need to create a corresponding
Android project. This could be an Eclipse project, if you are using Eclipse
for Android development, or not. The project will hold all of your source
code, "resources" (e.g., internationalized strings), third-party Java code
(JARs), and related materials. The Android build tools, whether Eclipse-
integrated or standalone, will then turn the contents of your project into an
APK file, which is the Android application. Those tools will also help you
get your APK onto an Android emulator or an actual Android device for
testing purposes.

One key element of a project is the "manifest" (AndroidManifest.xml). This
file contains the "table of contents" for your application, listing all of the
major application components, permissions, and so on. The manifest is
used by Android at runtime to tie your application into the operating
system. The manifest contents are also used by the Android Market (and
perhaps other independent "app stores"), so applications needing Android
2.0 will not be presented to people with Android 1.5 devices, and so on.

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

To test your application with the emulator, you will need to create an
Android virtual device, or AVD. Most likely, you will create several of these,
as each AVD emulates an Android device with a particular set of hardware.
So you might have different AVDs for different screen sizes, or different
AVDs for different Android versions, and so on.

When creating projects and creating AVDs, you will need to indicate to
Android what "API level" you are working with. The API level is a simple
integer that maps to an Android version, so API level 3 means Android 1.5,
and so on. When creating a project, you will be able to tell Android the
minimum and maximum API levels your application supports. When
creating an AVD, you will tell Android which API level the AVD should
emulate, so you can see how your application runs on different (fake)
devices implementing different versions of Android.

All of these concepts will be described in greater detail later in this chapter.

Creating a Project

To create a project from the command line, for use with the command line
build tools (e.g., ant), you will need to run the android create project
command. This command takes a number of switches to indicate the Java
package that the application's code will reside in, the API level the
application is targeting, and so on. The result of running this command will
be a directory containing all of the files necessary to build a "hello, world"
Android application.

Here is an example of running android create project:

android create project --target 2 --path ./FirstApp --activity FirstApp
--package apt.tutorial

If you are intending on developing for Android using Eclipse, rather than
android create project, you will use the Eclipse new-project wizard to
create a new Android application.

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

The source code that accompanies this book was set up to be built using
the command line build tools. It is possible to create empty Eclipse Android
projects and import the code into those projects, should you wish to build
any of the samples using Eclipse.

We will cover the notion of "targets" and "API levels" – which you will need
to create your projects – later in this chapter.

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android and what it all does to
prepare the actual application that will run on the device or emulator.
Here's a quick primer on the project structure, to help you make sense of it
all, particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project),
you get several items in the project's root directory, including:

• AndroidManifest.xml, which is an XML file describing the application
being built and what components – activities, services, etc. – are
being supplied by that application

• build.xml, which is an Ant script for compiling the application and
installing it on the device

• default.properties and local.properties, property files used by the
Ant build script

• assets/, which hold other static files you wish packaged with the
application for deployment onto the device

• bin/, which holds the application once it is compiled

• gen/, where Android's build tools will place source code that they
generate

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://ant.apache.org/

Projects and Targets

• libs/, which holds any third-party Java JARs your application
requires

• src/, which holds the Java source code for the application

• res/, which holds "resources", such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

• tests/, which holds an entirely separate Android project used for
testing the one you created

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you
supplied the fully-qualified class name of the "main" activity for the
application (e.g., com.commonsware.android.SomeDemo). You will then find that
your project's src/ tree already has the namespace directory tree in place,
plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemo.java). You are welcome to modify
this file and add others to the src/ tree as needed to implement your
application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you
placed out in the res/ directory tree. You should not modify R.java yourself,
letting the Android tools handle it for you. You will see throughout many of
the samples where we reference things in R.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources" – static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

• res/drawable/ for images (PNG, JPEG, etc.)

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

• res/layout/ for XML-based UI layout specifications

• res/menu/ for XML-based menu specifications

• res/raw/ for general-purpose files (e.g,. a CSV file of account
information)

• res/values/ for strings, dimensions, and the like

• res/xml/ for other general-purpose XML files you wish to ship

We will cover all of these, and more, in later chapters of this book.

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

• bin/classes/ holds the compiled Java classes

• bin/classes.dex holds the executable created from those compiled
Java classes

• bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

• bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition
of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/) and the AndroidManifest.xml file. If you build a
debug version of the application – which is the default – you will have
yourapp-debug.apk and yourapp-debug-aligned.apk as two versions of your
APK. The latter has been optimized with the zipalign utility to make it run
faster.

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare
what is inside your application – the activities, the services, and so on. You

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should
appear on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require
a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater
detail in the chapters on their associated Android features. For example, the
service element will be described in greater detail in the chapter on
creating services. For now, we just need to understand what the role of the
manifest is and its general overall construction.

In The Beginning, There Was the Root, And It Was
Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
...
</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., it's manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base"
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

Permissions, Instrumentations, and Applications (Oh,
My!)

Underneath the manifest element, you will find:

• uses-permission elements, to indicate what permissions your
application will need in order to function properly – see the chapter
on permissions for more details

• permission elements, to declare permissions that activities or
services might require other applications hold in order to use your
application's data or logic – again, more details are forthcoming in
the chapter on permissions

• instrumentation elements, to indicate code that should be invoked
on key system events, such as starting up activities, for the purposes
of logging or monitoring

• uses-library elements, to hook in optional Android components,
such as mapping services

• possibly a uses-sdk element, to indicate what version of the Android
SDK the application was built for

• an application element, defining the guts of the application that the
manifest describes

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android">
 <uses-permission
 android:name="android.permission.ACCESS_LOCATION" />
 <uses-permission
 android:name="android.permission.ACCESS_GPS" />
 <uses-permission
 android:name="android.permission.ACCESS_ASSISTED_GPS" />
 <uses-permission
 android:name="android.permission.ACCESS_CELL_ID" />
 <application>
...

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

 </application>
</manifest>

In the preceding example, the manifest has uses-permission elements to
indicate some device capabilities the application will need – in this case,
permissions to allow the application to determine its current location. And,
there is the application element, whose contents will describe the activities,
services, and whatnot that make up the bulk of the application itself.

Permissions will be covered in greater detail later in this book.

One attribute of the application element that you may need in select
circumstances is the android:debuggable attribute. This needs to be set to
true if you are installing the application on an actual device and you are
using Eclipse (or another debugger) and if your device precludes debugging
without this flag. For example, the Nexus One requires android:debuggable
= "true", according to some reports.

Your Application Does Something, Right?

The children of the application element represent the core of the manifest
file.

By default, when you create a new Android project, you get a single activity
element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

intent-filter child element describing under what conditions this activity
will be displayed. The stock activity element sets up your activity to appear
in the launcher, so users can choose to run it. As we'll see later in this book,
you can have several activities in one project, if you so choose.

You may also have one or more receiver elements, indicating non-activities
that should be triggered under certain conditions, such as when an SMS
message comes in. These are called broadcast receivers and are described
mid-way through the book.

You may have one or more provider elements, indicating content providers
– components that supply data to your activities and, with your permission,
other activities in other applications on the device. These wrap up
databases or other data stores into a single API that any application can use.
Later, we'll see how to create content providers and how to use content
providers that you or others create.

Finally, you may have one or more service elements, describing services –
long-running pieces of code that can operate independent of any activity.
The quintessential example is the MP3 player, where you want the music to
keep playing even if the user pops open other activities and the MP3
player's user interface is "misplaced". Two chapters later in the book cover
how to create and use services.

Achieving the Minimum

Android, like most operating systems, goes through various revisions,
versions, and changes. Some of these affect the Android SDK, meaning
there are new classes, methods, or parameters you can use that you could
not in previous versions of the SDK.

If you want to ensure your application is only run on devices that have a
certain version (or higher) of the Android environment, you will want to
add a uses-sdk element, as a child of the root <manifest> element in your
AndroidManifest.xml file. The <uses-sdk> element has one attribute,
minSdkVersion, indicating which SDK version your application requires:

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
 <uses-sdk android:minSdkVersion="2" />
 ...
</manifest>

At the time of this writing, there are many possible minSdkVersion values:

• 1, indicating the original Android 1.0 SDK

• 2, indicating the Android 1.1 SDK

• 3, indicating the Android 1.5 SDK

• 4, indicating the Android 1.6 SDK

• 5, indicating the Android 2.0 SDK

• 6, indicating the Android 2.0.1 SDK

• 7, indicating the Android 2.1 SDK

• 8, indicating the Android 2.2 SDK

If you leave the <uses-sdk> element out entirely, it will behave as though
minSdkVersion is set to 1. Note, however, that the Android Market seems to
insist that you specifically state your minSdkVersion, so be certain to have a
proper <uses-sdk> element if you are going to distribute via that channel.

If you set <uses-sdk>, the application will only install on compatible devices.
You do not have to specify the latest SDK, but if you choose an older one, it
is up to you to ensure your application works on every SDK version you
claim is compatible. For example, if you leave off <uses-sdk>, in effect, you
are stipulating that your application works on every Android SDK version
ever released, and it is up to you to test your application to determine if this
is indeed the case.

Also note that a bug in the Android Market means you should make the
<uses-sdk> element be the first child of your <manifest> element.

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

Version=Control

Particularly if you are going to distribute your application, via the Android
Market or other means, you probably should add a pair of other attributes
to the root <manifest> element: android:versionCode and
android:versionName. These assist in the process of upgrading applications.

The android:versionName attribute is some human-readable label for the
version name or number of your application. So, you can use "3.0" or
"System V" or "5000" or "3.1" as you see fit.

The android:versionCode attribute is a pure integer indication of the version
of the application. This is used by the system to determine if one version of
your application is newer than another – "newer" is defined as "has a higher
android:versionCode value". Whether you attempt to convert your actual
version (as found in android:versionName) to a number, or you simply
increment this value by one for each release, is up to you.

Emulators and Targets

Let's take a moment to discuss the notion of "targets" in Android, since
they can be a bit confusing yet are rather important for your long-term
application development, particularly as it pertains to your use of the
Android emulator for testing your applications.

Virtually There

To use the emulator, you will need to create one or more AVDs. These
virtual devices are designed to mimic real Android devices like the T-
Mobile G1 or the HTC Magic. You tell the emulator what AVD to use, and
the emulator then can pretend it is the device described by that AVD.

When you create an AVD, whether through the android create avd
command, via Eclipse, or via the AVD Manager (below), you need to specify
a target. The target indicates what class of device the AVD will pretend to

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

be. You can find out the available API targets via the android list targets
command. For example, android-6 as a target means Android 2.0.1 but
without Google Maps support, whereas Google Inc.:Google APIs:6 as a
target means Android 2.0.1 with Google Maps support. The number 6
means API level 6, which corresponds to Android 2.0.1.

You can create as many AVDs as you need and that you have disk space for.
Bear in mind, though, that each AVD behaves as a totally distinct device, so
installing your app on one AVD does not affect any other AVDs that you
have created.

Android 1.6 added a GUI interface for maintaining your AVDs, called the
AVD Manager. Simply run the android command without any arguments.
You will be presented with a list of AVDs already created, New... and
Delete... buttons to add and remove AVDs, a Start... button to launch an
emulator using a selected AVD, etc.

Figure 1. The AVD Manager GUI, showing a list of available AVDs

When you add an AVD through the GUI (via the New... button on the main
window), you will be prompted for a name, target, details about an SD card
image, and the size of screen you wish to emulate ("skin").

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

Figure 2. The Add AVD dialog

Aiming at a Target

Similarly, when you create a new project (via android create project or
Eclipse), you will need to indicate what class of device this project targets.
The same values shown above hold, so creating a project with a target of
android-3 indicates Android 1.5. This primarily drives what edition of the
tools you use. You probably also want to later specify, in your
AndroidManifest.xml file, what versions of Android you support in terms of
devices that can run your application (e.g., what is the earliest Android
version you are testing against?). This topic will be covered later in this
book.

Here are some rules of thumb for dealing with targets:

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Projects and Targets

• Only ask for what you really need. If you are sticking with Android
1.5 APIs, you may as well ask to build with Android 1.5 APIs and
maximize the number of devices you can run on.

• Test on as many targets as you can and that are possible. For
example, you may be tempted to target android-1, to reach the
maximum possible range of Android devices. That is fine...but you
need to test on a target android-1 AVD, and a target android-2 AVD,
and so on. Right now, there are very few devices in the world using
Android versions earlier than Android 1.5, so it is probably not
worthwhile to target earlier versions.

• Check out the new target levels with each Android release. There
should be a new value with every Android point-release update
(e.g., 2.0 or 1.6), and possibly even for SDK patchlevels (e.g., 2.0
versus 2.0.1). Be sure to test your application on those new targets
whenever you can, as some people may start getting devices with
the new Android release soon.

• Testing on AVDs, regardless of target, is no substitute for testing on
hardware. AVDs are designed to give you disposable environments
that let you test a wide range of environments, even those that may
not yet exist in hardware. However, you really need to test your
application on at least one actual Android device. If nothing else,
the speed of your emulator may not match the speed of the device –
the emulator may be faster or slower depending on your system.

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART II – Activities

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 3

Creating a Skeleton Application

Every programming language or environment book starts off with the ever-
popular "Hello, World!" demonstration: just enough of a program to prove
you can build things, not so much that you cannot understand what is
going on. However, the typical "Hello, World!" program has no interactivity
(e.g., just dumps the words to a console), and so is really boring.

This chapter demonstrates a simple project, but one using Advanced Push-
Button Technology™ and the current time, to show you how a simple
Android activity works.

Begin at the Beginning

As described in the previous chapter, to work with anything in Android,
you need a project. If you are using tools that are not Android-enabled, you
can use the android create project script, found in the tools/ directory in
your SDK installation. You will need to pass to android create project the
API target (see the previous chapter), the directory where you want the
skeleton generated, the name of the default activity, and the Java package
where all of this should reside:

android create project --target android-4 \
 --path /path/to/my/project/dir --activity Now \
 --package com.commonsware.android.now

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

For the purposes of the samples shown in this book, you can download
their project directories in a ZIP file on the CommonsWare Web site. These
projects are ready for use; you do not need to run android create project on
those unpacked samples.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now.java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

Or, if you download the source files off the Web site, you can just use the
Skeleton/Now project directly.

Dissecting the Activity

Let's examine this piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import
any classes you reference. Most of the Android-specific classes are in the
android package.

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
 Button btn;

Activities are public classes, inheriting from the android.app.Activity base
class. In this case, the activity holds a button (btn). Since, for simplicity, we
want to trap all button clicks just within the activity itself, we also have the
activity class implement OnClickListener.

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
}

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/reference/packages.html
http://commonsware.com/Android/

Creating a Skeleton Application

The onCreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setOnClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
 updateTime();
}

In Swing, a JButton click raises an ActionEvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes
onClick() to be invoked in the OnClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
 btn.setText(new Date().toString());
}

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant in the base directory of your project. Then, to run the activity:

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

• Launch the emulator by running the android command, choosing
an AVD in the AVD Manager, and clicking the Start button. You
should be able to accept the defaults on the Launch Options dialog.
Note that the first time you use an AVD with the emulator, it will
take substantially longer to start than it will subsequent times.

Figure 3. The Android home screen

• Install the package (e.g., run ant install)

• View the list of installed applications in the emulator and find the
"Now" application

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

Figure 4. The Android application "launcher"

• Open that application

You should see an activity screen akin to:

Figure 5. The Now demonstration activity

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Skeleton Application

Clicking the button – in other words, pretty much anywhere on the phone's
screen – will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to
the launcher.

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 4

Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the
more common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other – and to containers – encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project, allowing you to access
layouts and widgets within those layouts directly from your Java code, as
will be demonstrated .

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through
Java code. For example, you could use setTypeface() to have a button
render its text in bold, instead of using a property in an XML layout. Since
XML layouts are yet another file for you to keep track of, we need good
reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits – that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping the generated bits separated out from hand-written code makes it
less likely that somebody's custom-crafted source will get clobbered by
accident when the generated bits get re-generated. XML forms a nice
middle ground between something that is easy for tool-writers to use and
easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace.
Microsoft's XAML, Adobe's Flex, and Mozilla's XUL all take a similar
approach to that of Android: put layout details in an XML file and put
programming smarts in source files (e.g., Javascript for XUL). Many less-
well-known GUI frameworks, such as ZK, also use XML for view definition.
While "following the herd" is not necessarily the best policy, it does have
the advantage of helping to ease the transition into Android from any other
XML-centered view description language.

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.zkoss.org/
http://www.mozilla.org/projects/xul/
http://www.adobe.com/products/flex/
http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://droiddraw.org/

Using XML-Based Layouts

OK, So What Does It Look Like?

Here is the Button from the previous chapter's sample application,
converted into an XML layout file, found in the Layouts/NowRedux sample
project:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

The class name of the widget – Button – forms the name of the XML
element. Since Button is an Android-supplied widget, we can just use the
bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as
well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

All other elements will be children of the root and will inherit that
namespace declaration.

Because we want to reference this button from our Java code, we need to
give it an identifier via the android:id attribute. We will cover this concept
in greater detail later in this chapter.

The remaining attributes are properties of this Button instance:

• android:text indicates the initial text to be displayed on the button
face (in this case, an empty string)

• android:layout_width and android:layout_height tell Android to have
the button's width and height fill the "parent", in this case the entire
screen – these attributes will be covered in greater detail in a later
chapter

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Since this single widget is the only content in our activity's view, we only
need this single element. Complex views will require a whole tree of
elements, representing the widgets and containers that control their
positioning. All the remaining chapters of this book will use the XML layout
form whenever practical, so there are dozens of other examples of more
complex layouts for you to peruse.

What's With the @ Signs?

Many widgets and containers only need to appear in the XML layout file
and do not need to be referenced in your Java code. For example, a static
label (TextView) frequently only needs to be in the layout file to indicate
where it should appear. These sorts of elements in the XML file do not need
to have the android:id attribute to give them a name.

Anything you do want to use in your Java source, though, needs an
android:id.

The convention is to use @+id/... as the id value, where the ... represents
your locally-unique name for the widget in question. In the XML layout
example in the preceding section, @+id/button is the identifier for the Button
widget.

Android provides a few special android:id values, of the form
@android:id/... – we will see some of these in various chapters of this book.

And We Attach These to the Java...How?

Given that you have painstakingly set up the widgets and containers for
your view in an XML layout file named main.xml stored in res/layout, all you
need is one statement in your activity's onCreate() callback to use that
layout:

setContentView(R.layout.main);

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

This is the same setContentView() we used earlier, passing it an instance of a
View subclass (in that case, a Button). The Android-built View, constructed
from our layout, is accessed from that code-generated R class. All of the
layouts are accessible under R.layout, keyed by the base name of the layout
file – res/layout/main.xml results in R.layout.main.

To access our identified widgets, use findViewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated
by Android in the R class as R.id.something (where something is the specific
widget you are seeking). Those widgets are simply subclasses of View, just
like the Button instance we created in the previous chapter.

The Rest of the Story

In the original Now demo, the button's face would show the current time,
which would reflect when the button was last pushed (or when the activity
was first shown, if the button had not yet been pushed).

Most of that logic still works, even in this revised demo (NowRedux).
However, rather than instantiating the Button in our activity's onCreate()
callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
 implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 btn=(Button)findViewById(R.id.button);
 btn.setOnClickListener(this);
 updateTime();

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

The first difference is that rather than setting the content view to be a view
we created in Java code, we set it to reference the XML layout
(setContentView(R.layout.main)). The R.java source file will be updated
when we rebuild this project to include a reference to our layout file (stored
as main.xml in our project's res/layout directory).

The other difference is that we need to get our hands on our Button
instance, for which we use the findViewById() call. Since we identified our
button as @+id/button, we can reference the button's identifier as
R.id.button. Now, with the Button instance in hand, we can set the callback
and set the label as needed.

The results look the same as with the original Now demo:

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML-Based Layouts

Figure 6. The NowRedux sample activity

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 5

Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc.
Android's toolkit is no different in scope, and the basic widgets will provide
a good introduction as to how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. Like
in most GUI toolkits, labels are bits of text not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a "Name:" label
before a field where one fills in a name).

In Java, you can create a label by creating a TextView instance. More
commonly, though, you will create labels in XML layout files by adding a
TextView element to the layout, with an android:text property to set the
value of the label itself. If you need to swap labels based on certain criteria,
such as internationalization, you may wish to use a resource reference in
the XML instead, as will be described later in this book.

TextView has numerous other properties of relevance for labels, such as:

• android:typeface to set the typeface to use for the label (e.g.,
monospace)

• android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

• android:textColor to set the color of the label's text, in RGB hex
format (e.g., #FF0000 for red)

For example, in the Basic/Label project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="You were expecting something profound?"
 />

Just that layout alone, with the stub Java source provided by Android's
project builder (e.g., android create project), gives you:

Figure 7. The LabelDemo sample application

Button, Button, Who's Got the Button?

We've already seen the use of the Button widget in the previous two
chapters. As it turns out, Button is a subclass of TextView, so everything

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

discussed in the preceding section in terms of formatting the face of the
button still holds.

However, Android 1.6 adds a new feature for the declaration of the "on-
click" listener for a Button. In addition to the classic approach of defining
some object (such as the activity) as implementing the
View.OnClickListener interface, you can now take a somewhat simpler
approach:

• Define some method on your Activity that holds the button that
takes a single View parameter, has a void return value, and is public

• In your layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined
in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
 // do something useful here
}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
 android:onClick="someMethod"
 ...
/>

This is enough for Android to "wire together" the Button with the click
handler.

Fleeting Images

Android has two widgets to help you embed images in your activities:
ImageView and ImageButton. As the names suggest, they are image-based
analogues to TextView and Button, respectively.

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Each widget takes an android:src attribute (in an XML layout) to specify
what picture to use. These usually reference a drawable resource, described
in greater detail in the chapter on resources. You can also set the image
content based on a Uri from a content provider via setImageURI().

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors,
for responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView
sample project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/icon"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:adjustViewBounds="true"
 android:src="@drawable/molecule"
 />

The result, just using the code-generated activity, is simply the image:

Figure 8. The ImageViewDemo sample application

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third "anchor" of most GUI
toolkits. In Android, they are implemented via the EditText widget, which
is a subclass of the TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle),
EditText has many others that will be useful for you in constructing fields,
including:

• android:autoText, to control if the field should provide automatic
spelling assistance

• android:capitalize, to control if the field should automatically
capitalize the first letter of entered text (e.g., first name, city)

• android:digits, to configure the field to accept only certain digits

• android:singleLine, to control if the field is for single-line input or
multiple-line input (e.g., does <Enter> move you to the next widget
or add a newline?)

Most of those are also available from the new android:inputType attribute,
added in Android 1.5 as part of adding "soft keyboards" to Android – this
will be discussed in an upcoming chapter.

For example, from the Basic/Field project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 />

Note that android:singleLine is false, so users will be able to enter in several
lines of text.

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

For this project, the FieldDemo.java file populates the input field with some
prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 EditText fld=(EditText)findViewById(R.id.field);
 fld.setText("Licensed under the Apache License, Version 2.0 " +
 "(the \"License\"); you may not use this file " +
 "except in compliance with the License. You may " +
 "obtain a copy of the License at " +
 "http://www.apache.org/licenses/LICENSE-2.0");
 }
}

The result, once built and installed into the emulator, is:

Figure 9. The FieldDemo sample application

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Another flavor of field is one that offers auto-completion, to help users
supply a value without typing in the whole text. That is provided in
Android as the AutoCompleteTextView widget, discussed in greater detail later
in this book.

Just Another Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the
checkbox toggles between those states to indicate a choice (e.g., "Add rush
delivery to my order").

In Android, there is a CheckBox widget to meet this need. It has TextView as
an ancestor, so you can use TextView properties like android:textColor to
format the widget.

Within Java, you can invoke:

• isChecked() to determine if the checkbox has been checked

• setChecked() to force the checkbox into a checked or unchecked
state

• toggle() to toggle the checkbox as if the user checked it

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox
changes.

For example, from the Basic/CheckBox project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/check"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This checkbox is: unchecked" />

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

The corresponding CheckBoxDemo.java retrieves and configures the behavior
of the checkbox:

public class CheckBoxDemo extends Activity
 implements CompoundButton.OnCheckedChangeListener {
 CheckBox cb;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 cb=(CheckBox)findViewById(R.id.check);
 cb.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 cb.setText("This checkbox is: checked");
 }
 else {
 cb.setText("This checkbox is: unchecked");
 }
 }
}

Note that the activity serves as its own listener for checkbox state changes
since it implements the OnCheckedChangeListener interface (via
cb.setOnCheckedChangeListener(this)). The callback for the listener is
onCheckedChanged(), which receives the checkbox whose state has changed
and what the new state is. In this case, we update the text of the checkbox
to reflect what the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown
below:

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Figure 10. The CheckBoxDemo sample application, with the checkbox
unchecked

Figure 11. The same application, now with the checkbox checked

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android's
radio buttons are two-state, like checkboxes, but can be grouped such that
only one radio button in the group can be checked at any time.

Like CheckBox, RadioButton inherits from CompoundButton, which in turn
inherits from TextView. Hence, all the standard TextView properties for font
face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to select it, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a
RadioGroup. The RadioGroup indicates a set of radio buttons whose state is
tied, meaning only one button out of the group can be selected at any time.
If you assign an android:id to your RadioGroup in your XML layout, you can
access the group from your Java code and invoke:

• check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

• clearCheck() to clear all radio buttons, so none in the group are
checked

• getCheckedRadioButtonId() to get the ID of the currently-checked
radio button (or -1 if none are checked)

For example, from the Basic/RadioButton sample application, here is an
XML layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioButton android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Rock" />

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

 <RadioButton android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Scissors" />

 <RadioButton android:id="@+id/radio3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you
get:

Figure 12. The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked
at the outset. To preset one of the radio buttons to be checked, use either
setChecked() on the RadioButton or check() on the RadioGroup from within
your onCreate() callback in your activity.

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

It's Quite a View

All widgets, including the ones shown above, extend View, and as such give
all widgets an array of useful properties and methods beyond those already
described.

Useful Properties

Some of the properties on View most likely to be used include:

• Controls the focus sequence:

• android:nextFocusDown

• android:nextFocusLeft

• android:nextFocusRight

• android:nextFocusUp

• android:visibility, which controls whether the widget is initially
visible

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see
if it is enabled via isEnabled(). One common use pattern for this is to
disable some widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as
mentioned above, to ensure the proper widget has the focus once your
disabling operation is complete.

To help navigate the tree of widgets and containers that make up an
activity's overall view, you can use:

• getParent() to find the parent widget or container

• findViewById() to find a child widget with a certain ID

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Basic Widgets

• getRootView() to get the root of the tree (e.g., what you provided to
the activity via setContentView())

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses)
can take a ColorStateList, including via the Java accessor (in this case,
setTextColor()).

A ColorStateList allows you to specify different colors for different
conditions. For example, when you get to selection widgets in an upcoming
chapter, you will see how a TextView has a different text color when it is the
selected item in a list compared to when it is in the list but not selected.
This is handled via the default ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have
two main choices:

1. Use ColorStateList.valueOf(), which returns a ColorStateList in
which all states are considered to have the same color, which you
supply as the parameter to the valueOf() method. This is the Java
equivalent of the android:textColor approach, to make the TextView
always a specific color regardless of circumstances.

2. Create a ColorStateList with different values for different states,
either via the constructor or via an XML document

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 6

Working with Containers

Containers pour a collection of widgets (and possibly child containers) into
specific structures you like. If you want a form with labels on the left and
fields on the right, you will need a container. If you want OK and Cancel
buttons to be beneath the rest of the form, next to one another, and flush
to right side of the screen, you will need a container. Just from a pure XML
perspective, if you have multiple widgets (beyond RadioButton widgets in a
RadioGroup), you will need a container just to have a root element to place
the widgets inside.

Most GUI toolkits have some notion of layout management, frequently
organized into containers. In Java/Swing, for example, you have layout
managers like BoxLayout and containers that use them (e.g., Box). Some
toolkits stick strictly to the box model, such as XUL and Flex, figuring that
any desired layout can be achieved through the right combination of nested
boxes.

Android, through LinearLayout, also offers a "box" model, but in addition
supports a range of containers providing different layout rules. In this
chapter, we will look at three commonly-used containers: LinearLayout (the
box model), RelativeLayout (a rule-based model), and TableLayout (the grid
model), along with ScrollView, a container designed to assist with
implementing scrolling containers. In the next chapter, we will examine
some more esoteric containers.

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Thinking Linearly

As noted above, LinearLayout is a box model – widgets or child containers
are lined up in a column or row, one after the next. This works similar to
FlowLayout in Java/Swing, vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you
can use LinearLayout in much the same way, eschewing some of the other
containers. Getting the visual representation you want is mostly a matter of
identifying where boxes should nest and what properties those boxes
should have, such as alignment vis a vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have five main areas of control besides the
container's contents: the orientation, the fill model, the weight, the gravity,
and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a
column. Just add the android:orientation property to your LinearLayout
element in your XML layout, setting the value to be horizontal for a row or
vertical for a column.

The orientation can be modified at runtime by invoking setOrientation()
on the LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let's imagine a row of widgets, such as a pair of radio buttons. These
widgets have a "natural" size based on their text. Their combined sizes
probably do not exactly match the width of the Android device's screen –
particularly since screens come in various sizes. We then have the issue of
what to do with the remaining space.

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These
properties' values have three flavors:

• You can provide a specific dimension, such as 125px to indicate the
widget should take up exactly 125 pixels

• You can provide wrap_content, which means the widget should fill
up its natural space, unless that is too big, in which case Android
can use word-wrap as needed to make it fit

• You can provide fill_parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets
are taken care of

The latter two flavors are the most common, as they are independent of
screen size, allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill_parent was renamed to
match_parent, for unknown reasons. You can still use fill_parent, as it will
be supported for the foreseeable future. However, at such point in time as
you are only supporting API level 8 or higher (e.g.,
android:minSdkVersion="8" in your manifest), you should probably switch
over to match_parent.

Weight

But, what happens if we have two widgets that should split the available
free space? For example, suppose we have two multi-line fields in a column,
and we want them to take up the remaining space in the column after all
other widgets have been allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill_parent, you must also set
android:layout_weight. This property indicates what proportion of the free
space should go to that widget. If you set android:layout_weight to be the
same non-zero value for a pair of widgets (e.g., 1), the free space will be
split evenly between them. If you set it to be 1 for one widget and 2 for

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

another widget, the second widget will use up twice the free space that the
first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a
percentage basis. To use this technique for, say, a horizontal layout:

• Set all the android:layout_width values to be 0 for the widgets in the
layout

• Set the android:layout_weight values to be the desired percentage
size for each widget in the layout

• Make sure all those weights add up to 100

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you
create a row of widgets via a horizontal LinearLayout, the row will start flush
on the left side of the screen.

If that is not what you want, you need to specify a gravity. Using
android:layout_gravity on a widget (or calling setGravity() at runtime on
the widget's Java object), you can tell the widget and its container how to
align it vis a vis the screen.

For a column of widgets, common gravity values are left,
center_horizontal, and right for left-aligned, centered, and right-aligned
widgets respectively.

For a row of widgets, the default is for them to be aligned so their texts are
aligned on the baseline (the invisible line that letters seem to "sit on"),
though you may wish to specify a gravity of center_vertical to center the
widgets along the row's vertical midpoint.

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Padding

By default, widgets are tightly packed next to each other. If you want to
increase the whitespace between widgets, you will want to use the
android:padding property (or by calling setPadding() at runtime on the
widget's Java object).

The padding specifies how much space there is between the boundaries of
the widget's "cell" and the actual widget contents.

Figure 13. The relationship between a widget, its cell, and the padding values

The android:padding property allows you to set the same padding on all four
sides of the widget, with the widget's contents itself centered within that
padded-out area. If you want the padding to differ on different sides, use
android:paddingLeft, android:paddingRight, android:paddingTop, and
android:paddingBottom.

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

The value of the padding is a dimension, such as 5px for 5 pixels' worth of
padding.

If you apply a custom background to a widget (e.g., via the
android:background attribute), the background will be behind both the
widget and the padding area. To avoid this, rather than using padding, you
can establish margins, which add whitespace without extending the
intrinsic size of the widget. You can set margins via
android:layout_marginTop and related attributes.

Example

Let's look at an example (Containers/Linear) that shows LinearLayout
properties set both in the XML layout file and at runtime.

Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioGroup android:id="@+id/orientation"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="5px">
 <RadioButton
 android:id="@+id/horizontal"
 android:text="horizontal" />
 <RadioButton
 android:id="@+id/vertical"
 android:text="vertical" />
 </RadioGroup>
 <RadioGroup android:id="@+id/gravity"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5px">
 <RadioButton
 android:id="@+id/left"
 android:text="left" />
 <RadioButton

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:id="@+id/center"
 android:text="center" />
 <RadioButton
 android:id="@+id/right"
 android:text="right" />
 </RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup
is a subclass of LinearLayout, so our example demonstrates nested boxes as
if they were all LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5px of padding on all sides,
separating it from the other RadioGroup. The width and height are both set
to wrap_content, so the radio buttons will only take up the space that they
need.

The bottom RadioGroup is a column (android:orientation = "vertical") of
three RadioButton widgets. Again, we have 5px of padding on all sides and a
"natural" height (android:layout_height = "wrap_content"). However, we
have set android:layout_width to be fill_parent, meaning the column of
radio buttons "claims" the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java
code:

package com.commonsware.android.linear;

import android.app.Activity;
import android.os.Bundle;
import android.view.Gravity;
import android.text.TextWatcher;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
 implements RadioGroup.OnCheckedChangeListener {
 RadioGroup orientation;
 RadioGroup gravity;

 @Override
 public void onCreate(Bundle icicle) {

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 super.onCreate(icicle);
 setContentView(R.layout.main);

 orientation=(RadioGroup)findViewById(R.id.orientation);
 orientation.setOnCheckedChangeListener(this);
 gravity=(RadioGroup)findViewById(R.id.gravity);
 gravity.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.horizontal:
 orientation.setOrientation(LinearLayout.HORIZONTAL);
 break;

 case R.id.vertical:
 orientation.setOrientation(LinearLayout.VERTICAL);
 break;

 case R.id.left:
 gravity.setGravity(Gravity.LEFT);
 break;

 case R.id.center:
 gravity.setGravity(Gravity.CENTER_HORIZONTAL);
 break;

 case R.id.right:
 gravity.setGravity(Gravity.RIGHT);
 break;
 }
 }
}

In onCreate(), we look up our two RadioGroup containers and register a
listener on each, so we are notified when the radio buttons change state
(setOnCheckedChangeListener(this)). Since the activity implements
OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which
RadioButton had a state change. Based on the clicked-upon item, we adjust
either the orientation of the first LinearLayout or the gravity of the second
LinearLayout.

Here is the result when it is first launched inside the emulator:

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 14. The LinearLayoutDemo sample application, as initially launched

If we toggle on the "vertical" radio button, the top RadioGroup adjusts to
match:

Figure 15. The same application, with the vertical radio button selected

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

If we toggle the "center" or "right" radio buttons, the bottom RadioGroup
adjusts to match:

Figure 16. The same application, with the vertical and center radio buttons
selected

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 17. The same application, with the vertical and right radio buttons
selected

All Things Are Relative

RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You
can place Widget X below and to the left of Widget Y, or have Widget Z's
bottom edge align with the bottom of the container, and so on.

This is reminiscent of James Elliot's RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those
widgets.

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Working with Containers

Positions Relative to Container

The easiest relations to set up are tying a widget's position to that of its
container:

• android:layout_alignParentTop says the widget's top should align
with the top of the container

• android:layout_alignParentBottom says the widget's bottom should
align with the bottom of the container

• android:layout_alignParentLeft says the widget's left side should
align with the left side of the container

• android:layout_alignParentRight says the widget's right side should
align with the right side of the container

• android:layout_centerHorizontal says the widget should be
positioned horizontally at the center of the container

• android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

• android:layout_centerInParent says the widget should be positioned
both horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing
these various alignments. The alignments are based on the widget's overall
cell (combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the
identity of a widget in the container. To do this:

1. Put identifiers (android:id attributes) on all elements that you will
need to address, of the form @+id/...

2. Reference other widgets using the same identifier value without the
plus sign (@id/...)

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

For example, if Widget A is identified as @+id/widget_a, Widget B can refer
to Widget A in one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other
widgets:

• android:layout_above indicates that the widget should be placed
above the widget referenced in the property

• android:layout_below indicates that the widget should be placed
below the widget referenced in the property

• android:layout_toLeftOf indicates that the widget should be placed
to the left of the widget referenced in the property

• android:layout_toRightOf indicates that the widget should be placed
to the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one
widget's alignment relative to another:

• android:layout_alignTop indicates that the widget's top should be
aligned with the top of the widget referenced in the property

• android:layout_alignBottom indicates that the widget's bottom
should be aligned with the bottom of the widget referenced in the
property

• android:layout_alignLeft indicates that the widget's left should be
aligned with the left of the widget referenced in the property

• android:layout_alignRight indicates that the widget's right should
be aligned with the right of the widget referenced in the property

• android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the "baseline" is that invisible line
that text appears to sit on)

The last one is useful for aligning labels and fields so that the text appears
"natural". Since fields have a box around them and labels do not,

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

android:layout_alignTop would align the top of the field's box with the top
of the label, which will cause the text of the label to be higher on-screen
than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the
XML element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process
RelativeLayout-defined rules. That meant you could not reference a widget
(e.g., via android:layout_above) until it had been declared in the XML. This
made defining some layouts a bit complicated. Starting in Android 1.6,
Android uses two passes to process the rules, so you can now safely have
forward references to as-yet-undefined widgets.

The rule is: use the + sign in the android:id value on the first occurrence,
and you can skip it the second and subsequent times it is referenced in the
same layout file.

Example

With all that in mind, let's examine a typical "form" with a field, a label,
plus a pair of buttons labeled "OK" and "Cancel".

Here is the XML layout, pulled from the Containers/Relative sample
project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5px">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:paddingTop="15px"/>
 <EditText
 android:id="@+id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignBaseline="@id/label"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

First, we open up the RelativeLayout. In this case, we want to use the full
width of the screen (android:layout_width = "fill_parent"), only as much
height as we need (android:layout_height = "wrap_content"), and have a 5-
pixel pad between the boundaries of the container and its contents
(android:padding = "5px").

Next, we define the label, which is fairly basic, except for its own 15-pixel
padding (android:paddingTop = "15px"). More on that in a moment.

After that, we add in the field. We want the field to be to the right of the
label, have their texts aligned along the baseline, and for the field to take up
the rest of this "row" in the layout. Those are handled by three properties:

• android:layout_toRightOf = "@id/label"

• android:layout_alignBaseline = "@id/label"

• android:layout_width = "fill_parent"

If we were to skip the 15-pixel padding on the label, we would find that the
top of the field is clipped off. That's because of the 5-pixel padding on the
container itself. The android:layout_alignBaseline = "@id/label" simply
aligns the baselines of the label and field. The label, by default, has its top

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

aligned with the top of the parent. But the label is shorter than the field
because of the field's box. Since the field is dependent on the label's
position, and the label's position is already defined (because it appeared
first in the XML), the field winds up being too high and has the top of its
box clipped off by the container's padding.

You may find yourself running into these sorts of problems as you try to get
your RelativeLayout to behave the way you want it to.

The solution to this conundrum, used in the XML layout shown above, is to
give the label 15 pixels' worth of padding on the top. This pushes the label
down far enough that the field will not get clipped.

Going back to the example, the OK button is set to be below the field
(android:layout_below = "@id/entry") and have its right side align with the
right side of the field (android:layout_alignRight = "@id/entry"). The
Cancel button is set to be to the left of the OK button
(android:layout_toLeft = "@id/ok") and have its top aligned with the OK
button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 18. The RelativeLayoutDemo sample application

A better solution, for Android 1.6 and beyond, is to have the EditText be
anchored to the top of the screen and have the TextView say it is aligned
with the EditText widget's baseline. In Android 1.5 and earlier, this was not
possible, because of the single-pass rule interpretation mentioned above.
Here is a version of the layout that works on the newer Android releases:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5px">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"/>
 <EditText
 android:id="@id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignParentTop="true"/>
 <Button
 android:id="@+id/ok"

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

Tabula Rasa

If you like HTML tables, spreadsheet grids, and the like, you will like
Android's TableLayout – it allows you to position your widgets in a grid to
your specifications. You control the number of rows and columns, which
columns might shrink or stretch to accommodate their contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the
overall behavior of the container, with the widgets themselves poured into
one or more TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and
columns, plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how
many rows appear in the table.

The number of columns are determined by Android; you control the
number of columns in an indirect fashion.

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

First, there will be at least one column per widget in your longest row. So if
you have three rows, one with two widgets, one with three widgets, and one
with four widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget
spans. This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
 <TextView android:text="URL:" />
 <EditText
 android:id="@+id/entry"
 android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above
fragment, the label would go in the first column (column 0, as columns are
counted starting from 0), and the field would go into a spanned set of three
columns (columns 1 through 3). However, you can put a widget into a
different column via the android:layout_column property, specifying the 0-
based column the widget belongs to:

<TableRow>
 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third
column (column 2). The OK button then goes into the next available
column, which is the fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate
children. However, it is possible to put other widgets in between rows. For

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

those widgets, TableLayout behaves a bit like LinearLayout with vertical
orientation. The widgets automatically have their width set to fill_parent,
so they will fill the same space that the longest row does.

One pattern for this is to use a plain View as a divider (e.g., <View
android:layout_height = "2px" android:background = "#0000FF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the "natural" size of the
widest widget in that column (taking spanned columns into account).
Sometimes, though, that does not work out very well, and you need more
control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The
value should be a single column number (again, 0-based) or a comma-
delimited list of column numbers. Those columns will be stretched to take
up any available space yet on the row. This helps if your content is narrower
than the available space.

Conversely, you can place a android:shrinkColumns property on the
TableLayout. Again, this should be a single column number or a comma-
delimited list of column numbers. The columns listed in this property will
try to word-wrap their contents to reduce the effective width of the column
– by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be
pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the
TableLayout, again with a column number or comma-delimited list of
column numbers. These columns will start out "collapsed", meaning they
will be part of the table information but will be invisible. Programmatically,
you can collapse and un-collapse columns by calling setColumnCollapsed()
on the TableLayout. You might use this to allow users to control which

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

columns are of importance to them and should be shown versus which ones
are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a
TableLayout rendition of the "form" we created for RelativeLayout, with the
addition of a divider line between the label/field and the two buttons
(found in the Containers/Table demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>
 <TextView
 android:text="URL:" />
 <EditText android:id="@+id/entry"
 android:layout_span="3"/>
 </TableRow>
 <View
 android:layout_height="2px"
 android:background="#0000FF" />
 <TableRow>
 <Button android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok"
 android:text="OK" />
 </TableRow>
</TableLayout>

When compiled against the generated Java code and run on the emulator,
we get:

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Figure 19. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some
tricks to present a lot of information in the limited available space. One
trick for doing this is to use scrolling, so only part of the information is
visible at one time, the rest available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can
take a layout that might be too big for some screens, wrap it in a ScrollView,
and still use your existing layout logic. It just so happens that the user can
only see part of your layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TableLayout

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="0">
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#000000"/>
 <TextView android:text="#000000"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#440000" />
 <TextView android:text="#440000"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#884400" />
 <TextView android:text="#884400"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#aa8844" />
 <TextView android:text="#aa8844"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#ffaa88" />
 <TextView android:text="#ffaa88"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#ffffaa" />
 <TextView android:text="#ffffaa"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

 android:background="#ffffff" />
 <TextView android:text="#ffffff"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 </TableLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (7 rows
at 80 pixels each, based on the View declarations). There may be some
devices with screens capable of showing that much information, but many
will be smaller. The ScrollView lets us keep the table as-is, but only present
part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Figure 20. The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the
up/down buttons on the directional pad, you can scroll up and down to see
the remaining rows. Also note how the right side of the content gets
clipped by the scrollbar – be sure to put some padding on that side or
otherwise ensure your own content does not get clipped in that fashion.

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Containers

Android 1.5 introduced HorizontalScrollView, which works like
ScrollView...just horizontally. This would be good for forms that might be
too wide rather than too tall. Note that neither ScrollView nor
HorizontalScrollView will give you bi-directional scrolling – you have to
choose vertical or horizontal.

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 7

Using Selection Widgets

Back in the chapter on basic widgets, you saw how fields could have
constraints placed upon them to limit possible input, such as numeric-only
or phone-number-only. These sorts of constraints help users "get it right"
when entering information, particularly on a mobile device with cramped
keyboards.

Of course, the ultimate in constrained input is to select a choice from a set
of items, such as the radio buttons seen earlier. Classic UI toolkits have
listboxes, comboboxes, drop-down lists, and the like for that very purpose.
Android has many of the same sorts of widgets, plus others of particular
interest for mobile devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining what
choices are available in these widgets. Specifically, Android offers a
framework of data adapters that provide a common interface to selection
lists ranging from static arrays to database contents. Selection views –
widgets for presenting lists of choices – are handed an adapter to supply the
actual choices.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate
APIs. More specifically, in Android's case, adapters provide a common
interface to the data model behind a selection-style widget, such as a

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

listbox. This use of Java interfaces is fairly common (e.g., Java/Swing's
model adapters for JTable), and Java is far from the only environment
offering this sort of abstraction (e.g., Flex's XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android's adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data into specific
views to be displayed inside the selection widget. The latter facet of the
adapter system may sound a little odd, but in reality it is not that different
from other GUI toolkits' ways of overriding default display behavior. For
example, in Java/Swing, if you want a JList-backed listbox to actually be a
checklist (where individual rows are a checkbox plus label, and clicks adjust
the state of the checkbox), you inevitably wind up calling setCellRenderer()
to supply your own ListCellRenderer, which in turn converts strings for the
list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter – all you need to do is wrap one of
these around a Java array or java.util.List instance, and you have a fully-
functioning adapter:

String[] items={"this", "is", "a",
 "really", "silly", "list"};
new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, items);

The ArrayAdapter constructor takes three parameters:

• The Context to use (typically this will be your activity instance)

• The resource ID of a view to use (such as a built-in system resource
ID, as shown above)

• The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list
and wrap each of those strings in the view designated by the supplied
resource. android.R.layout.simple_list_item_1 simply turns those strings

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

into TextView objects. Those TextView widgets, in turn, will be shown in the
list or spinner or whatever widget uses this ArrayAdapter.

We will see in a later chapter how to subclass an Adapter and override row
creation, to give you greater control over how rows appear.

Other Key Adapters

Here are some other adapters in Android that you will likely use, some of
which will be covered in greater detail later in this book:

• CursorAdapter converts a Cursor, typically from a content provider,
into something that can be displayed in a selection view

• SimpleAdapter converts data found in XML resources

Lists of Naughty and Nice

The classic listbox widget in Android is known as ListView. Include one of
these in your layout, invoke setAdapter() to supply your data and child
views, and attach a listener via setOnItemSelectedListener() to find out
when the selection has changed. With that, you have a fully-functioning
listbox.

However, if your activity is dominated by a single list, you might well
consider creating your activity as a subclass of ListActivity, rather than the
regular Activity base class. If your main view is just the list, you do not
even need to supply a layout – ListActivity will construct a full-screen list
for you. If you do want to customize the layout, you can, so long as you
identify your ListView as @android:id/list, so ListActivity knows which
widget is the main list for the activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

public class ListViewDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items[position]);
 }
}

With ListActivity, you can set the list adapter via setListAdapter() – in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To
find out when the list selection changes, override onListItemClick() and
take appropriate steps based on the supplied child view and position (in
this case, updating the label with the text for that position).

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

The results?

Figure 21. The ListViewDemo sample application

The second parameter to our ArrayAdapter –
android.R.layout.simple_list_item_1 – controls what the rows look like.
The value used in the preceding example provides the standard Android list
row: big font, lots of padding, white text.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries.
Sometimes, though, you want a list that tracks a user's selection, or possibly
multiple selections. ListView can handle that as well, but it requires a few
changes.

First, you will need to call setChoiceMode() on the ListView in Java code to
set the choice mode, supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your ListView from a
ListActivity via getListView().

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Then, rather than use android.R.layout.simple_list_item_1 as the layout for
the list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

These will give you lists that look like the following:

Figure 22. Single-select mode

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 23. Multiple-select mode

To determine which ones the user checked, call getCheckedItemPositions()
on your ListView.

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you
might find in other toolkits (e.g., JComboBox in Java/Swing). Pressing the
center button on the D-pad pops up a selection dialog for the user to
choose an item from. You basically get the ability to select from a list
without taking up all the screen space of a ListView, at the cost of an extra
click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down
perspective, you need to configure the adapter, not the Spinner widget. Use

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

the setDropDownViewResource() method to supply the resource ID of the view
to use.

For example, culled from the Selection/Spinner sample project, here is an
XML layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
</LinearLayout>

This is the same view as shown in the previous section, just with a Spinner
instead of a ListView. The Spinner property android:drawSelectorOnTop
controls whether the arrows are drawn on the selector button on the right
side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 items);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity
implements the OnItemSelectedListener interface. We configure the adapter
not only with the list of fake words, but also with a specific resource to use
for the drop-down view (via aa.setDropDownViewResource()). Also note the
use of android.R.layout.simple_spinner_item as the built-in View for showing
items in the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 24. The SpinnerDemo sample application, as initially launched

Figure 25. The same application, with the spinner drop-down list displayed

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Grid Your Lions (Or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to
choose from. You have moderate control over the number and size of the
columns; the number of rows is dynamically determined based on the
number of items the supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number
of columns and their sizes:

• android:numColumns spells out how many columns there are, or, if
you supply a value of auto_fit, Android will compute the number of
columns based on available space and the properties listed below.

• android:verticalSpacing and android:horizontalSpacing indicate
how much whitespace there should be between items in the grid.

• android:columnWidth indicates how many pixels wide each column
should be.

• android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing – this should be columnWidth to have
the columns take up available space or spacingWidth to have the
whitespace between columns absorb extra space. For example,
suppose the screen is 320 pixels wide, and we have
android:columnWidth set to 100px and android:horizontalSpacing set
to 5px. Three columns would use 310 pixels (three columns of 100
pixels and two whitespaces of 5 pixels). With android:stretchMode
set to columnWidth, the three columns will each expand by 3-4 pixels
to use up the remaining 10 pixels. With android:stretchMode set to
spacingWidth, the two whitespaces will each grow by 5 pixels to
consume the remaining 10 pixels.

Otherwise, the GridView works much like any other selection widget – use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

For example, here is a XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <GridView
 android:id="@+id/grid"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:verticalSpacing="35px"
 android:horizontalSpacing="5px"
 android:numColumns="auto_fit"
 android:columnWidth="100px"
 android:stretchMode="columnWidth"
 android:gravity="center"
 />
</LinearLayout>

For this grid, we take up the entire screen except for what our selection
label requires. The number of columns is computed by Android
(android:numColumns = "auto_fit") based on 5-pixel horizontal spacing
(android:horizontalSpacing = "5px") and 100-pixel columns
(android:columnWidth = "100px"), with the columns absorbing any "slop"
width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

public class GridDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 GridView g=(GridView) findViewById(R.id.grid);
 g.setAdapter(new FunnyLookingAdapter(this,
 android.R.layout.simple_list_item_1,
 items));
 g.setOnItemSelectedListener(this);
 }

 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }

 private class FunnyLookingAdapter extends ArrayAdapter {
 Context ctxt;

 FunnyLookingAdapter(Context ctxt, int resource,
 String[] items) {
 super(ctxt, resource, items);

 this.ctxt=ctxt;
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 TextView label=(TextView)convertView;

 if (convertView==null) {
 convertView=new TextView(ctxt);
 label=(TextView)convertView;
 }

 label.setText(items[position]);

 return(convertView);
 }
 }
}

For the grid cells, rather than using auto-generated TextView widgets as in
the previous sections, we create our own views, by subclassing ArrayAdapter
and overriding getView(). In this case, we wrap the funny-looking strings in
our own TextView widgets, just to be different. If getView() receives a

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

TextView, we just reset its text; otherwise, we create a new TextView instance
and populate it.

With the 35-pixel vertical spacing from the XML layout
(android:verticalSpacing = "35"), the grid overflows the boundaries of the
emulator's screen:

Figure 26. The GridDemo sample application, as initially launched

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 27. The same application, scrolled to the bottom of the grid

Fields: Now With 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field)
and the Spinner. With auto-completion, as the user types, the text is treated
as a prefix filter, comparing the entered text as a prefix against a list of
candidates. Matches are shown in a selection list that, like with Spinner,
folds down from the field. The user can either type out an entry (e.g.,
something not in the list) or choose an entry from the list to be the value of
the field.

AutoCompleteTextView subclasses EditText, so you can configure all the
standard look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextView has a android:completionThreshold
property, to indicate the minimum number of characters a user must enter
before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of
candidate values via setAdapter(). However, since the user could type

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

something not in the list, AutoCompleteTextView does not support selection
listeners. Instead, you can register a TextWatcher, like you can with any
EditText, to be notified when the text changes. These events will occur
either because of manual typing or from a selection from the drop-down
list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView android:id="@+id/edit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is:

public class AutoCompleteDemo extends Activity
 implements TextWatcher {
 TextView selection;
 AutoCompleteTextView edit;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);
 edit=(AutoCompleteTextView)findViewById(R.id.edit);
 edit.addTextChangedListener(this);

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

 edit.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 items));
 }

 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 selection.setText(edit.getText());
 }

 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // needed for interface, but not used
 }

 public void afterTextChanged(Editable s) {
 // needed for interface, but not used
 }
}

This time, our activity implements TextWatcher, which means our callbacks
are onTextChanged() and beforeTextChanged(). In this case, we are only
interested in the former, and we update the selection label to match the
AutoCompleteTextView's current contents.

Here we have the results:

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 28. The AutoCompleteDemo sample application, as initially launched

Figure 29. The same application, after a few matching letters were entered,
showing the auto-complete drop-down

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

Figure 30. The same application, after the auto-complete value was selected

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in
effect, a horizontally-laid-out listbox. One choice follows the next across
the horizontal plane, with the currently-selected item highlighted. On an
Android device, one rotates through the options through the left and right
D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough).
Compared to the Spinner, the Gallery always shows more than one choice at
a time.

The quintessential example use for the Gallery is image preview – given a
collection of photos or icons, the Gallery lets people preview the pictures in
the process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML
layout, you have a few properties at your disposal:

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Selection Widgets

• android:spacing controls the number of pixels between entries in
the list

• android:spinnerSelector controls what is used to indicate a selection
– this can either be a reference to a Drawable (see the resources
chapter) or an RGB value in #AARRGGBB or similar notation

• android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected
child – if you choose true, be sure that your selector has sufficient
transparency to show the child through the selector, otherwise
users will not be able to read the selection

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 8

Getting Fancy With Lists

The humble ListView is one of the most important widgets in all of
Android, simply because it is used so frequently. Whether choosing a
contact to call or an email message to forward or an ebook to read, ListView
widgets are employed in a wide range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the
limitations of a mobile device's screen, of course. However, making them
fancy takes some work and some features of Android that we will cover in
this chapter.

Getting To First Base

The classic Android ListView is a plain list of text — solid but uninspiring.
This is because all we have handed to the ListView is a bunch of words in an
array, and told Android to use a simple built-in layout for pouring those
words into a list.

However, you can have a list whose rows are made up of icons, or icons and
text, or checkboxes and text, or whatever you want. It is merely a matter of
supplying enough data to the adapter and helping the adapter to create a
richer set of View objects for each row.

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

For example, suppose you want a ListView whose entries are made up of an
icon, followed by some text. You could construct a layout for the row that
looks like this, found in res/layout/row.xml in the FancyLists/Static sample
project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <ImageView
 android:id="@+id/icon"
 android:layout_width="22px"
 android:paddingLeft="2px"
 android:paddingRight="2px"
 android:paddingTop="2px"
 android:layout_height="wrap_content"
 android:src="@drawable/ok"
 />
 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="44sp"
 />
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and
the text (in a nice big font) on the right.

By default, though, Android has no idea that you want to use this layout
with your ListView. To make the connection, you need to supply your
Adapter with the resource ID of the custom layout shown above:

public class StaticDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 setListAdapter(new ArrayAdapter<String>(this,
 R.layout.row, R.id.label,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }
}

This follows the general structure for the previous ListView sample.

The key in this example is that you have told ArrayAdapter that you want to
use your custom layout (R.layout.row) and that the TextView where the
word should go is known as R.id.label within that custom layout.
Remember: to reference a layout (row.xml), use R.layout as a prefix on the
base name of the layout XML file (R.layout.row).

The result is a ListView with icons down the left side. In particular, all the
icons are the same:

Figure 31. The StaticDemo application

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

A Dynamic Presentation

This technique – supplying an alternate layout to use for rows – handles
simple cases very nicely. However, it falls down when you have more
complicated scenarios for your rows, such as:

• Not every row uses the same layout (e.g., some have one line of text,
others have two)

• You need to configure the widgets in the rows (e.g., different icons
for different cases)

In those cases, the better option is to create your own subclass of your
desired Adapter, override getView(), and construct your rows yourself. The
getView() method is responsible for returning a View, representing the row
for the supplied position in the adapter data.

For example, let’s rework the above code to use getView(), so we can have
different icons for different rows – in this case, one icon for short words and
one for long words (from the FancyLists/Dynamic sample project):

public class DynamicDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, items);

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

The theory is that we override getView() and return rows based on which
object is being displayed, where the object is indicated by a position index
into the Adapter. However, if you look at the implementation shown above,
you will see a reference to a LayoutInflater class...and that concept takes a
little bit of an explanation.

A Sidebar About Inflation

In this case, “inflation” means the act of converting an XML layout
specification into the actual tree of View objects the XML represents. This is
undoubtedly a tedious bit of code: take an element, create an instance of
the specified View class, walk the attributes, convert those into property
setter calls, iterate over all child elements, lather, rinse, repeat.

The good news is that the fine folk on the Android team wrapped all that
up into a class called LayoutInflater that we can use ourselves. When it
comes to fancy lists, for example, we will want to inflate Views for each row
shown in the list, so we can use the convenient shorthand of the XML
layout to describe what the rows are supposed to look like.

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

In the sample shown above, we inflate our R.layout.row layout we created
in the previous section. This gives us a View object back which, in reality, is
our LinearLayout with an ImageView and a TextView, just as R.layout.row
specifies. However, rather than having to create all those objects ourselves
and wire them together, the XML and LayoutInflater handle the "heavy
lifting" for us.

And Now, Back To Our Story

So we have used LayoutInflater to give us a View representing the row. This
row is "empty", since the static layout file has no idea what actual data goes
into the row. It is our job to customize and populate the row as we see fit
before returning it. So, we:

• Fill in the text label into our label widget, using the word at the
supplied position

• See if the word is longer than four characters and, if so, we find our
ImageView icon widget and replace the stock resource with a
different one

Now, we have a ListView with different icons based upon context of that
specific entry in the list:

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Figure 32. The DynamicDemo application

Obviously, this was a fairly contrived example, but you can see where this
technique could be used to customize rows based on any sort of criteria,
such as other columns in a returned Cursor.

Better. Stronger. Faster.

The getView() implementation shown above works, but is inefficient. Every
time the user scrolls, we have to create a bunch of new View objects to
accommodate the newly-shown rows.

This is bad.

It might be bad for the immediate user experience, if the list appears to be
sluggish. More likely, though, it will be bad due to battery usage – every bit
of CPU that is used eats up the battery. This is compounded by the extra
work the garbage collector needs to do to get rid of all those extra objects
you create. So the less efficient your code, the more quickly the phone's
battery will be drained, and the less happy the user will be.

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

And you want happy users, right?

So, let us take a look at a few tricks to make your fancy ListView widgets
more efficient.

Using convertView

The getView() method receives, as one of its parameters, a View named, by
convention, convertView. Sometimes, convertView will be null. In those
cases, you have to create a new row View from scratch (e.g., via inflation),
just as we did before.

However, if convertView is not null, then it is actually one of your
previously-created View objects! This will happen primarily when the user
scrolls the ListView – as new rows appear, Android will attempt to recycle
the views of the rows that scrolled off the other end of the list, to save you
having to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use
findViewById() to get at the individual widgets that make up your row and
change their contents, then return convertView from getView(), rather than
create a whole new row.

For example, here is the getView() implementation from last time, now
optimized via convertView (from the FancyLists/Recycling project):

public class RecyclingDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter {
 IconicAdapter() {
 super(RecyclingDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 }

 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Here, we check to see if the convertView is null and, if so, we then inflate our
row – but if it is not-null, we just reuse it. The work to fill in the contents
(icon image, text) is the same in either case. The advantage is that we avoid
the potentially-expensive inflation step. In fact, according to statistics cited
by Google at the 2010 Google I|O conference, a ListView that uses a
recycling ListAdapter will perform 150% faster than one that does not. In
fact, for complex rows, that might understate the benefit.

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Not only is this faster, but it uses much less memory. Each widget or
container – in other words, each subclass of View – holds onto up to 2KB of
data, not counting things like images in ImageView widgets. Each of our
rows, therefore, might be as big as 6KB. For our list of 25 nonsense words,
consuming as much as 150KB for a non-recycling list (25 rows at 6KB each)
would be inefficient but not a huge problem. A list of 1,000 nonsense
words, though, consuming as much as 6MB of RAM, would be a much
bigger issue. Bear in mind that your application may only have 16MB of Java
heap memory to work with. Recycling allows us to handle arbitrary list
lengths with only as much View memory consumed as is needed for the
rows visible on screen.

Using the Holder Pattern

Another somewhat expensive operation we do a lot with fancy views is call
findViewById(). This dives into our inflated row and pulls out widgets by
their assigned identifiers, so we can customize the widget contents (e.g.,
change the text of a TextView, change the icon in an ImageView). Since
findViewById() can find widgets anywhere in the tree of children of the
row’s root View, this could take a fair number of instructions to execute,
particularly if we keep having to re-find widgets we had found once before.

In some GUI toolkits, this problem is avoided by having the composite View
objects, like our rows, be declared totally in program code (in this case,
Java). Then, accessing individual widgets is merely the matter of calling a
getter or accessing a field. And you can certainly do that with Android, but
the code gets rather verbose. What would be nice is a way where we can
still use the layout XML yet cache our row’s key child widgets so we only
have to find them once.

That's where the holder pattern comes into play, in a class we'll call
ViewWrapper.

All View objects have getTag() and setTag() methods. These allow you to
associate an arbitrary object with the widget. What the holder pattern does
is use that "tag" to hold an object that, in turn, holds each of the child

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

widgets of interest. By attaching that holder to the row View, every time we
use the row, we already have access to the child widgets we care about,
without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the
FancyLists/ViewWrapper sample project):

class ViewWrapper {
 View base;
 TextView label=null;
 ImageView icon=null;

 ViewWrapper(View base) {
 this.base=base;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)base.findViewById(R.id.label);
 }

 return(label);
 }

 ImageView getIcon() {
 if (icon==null) {
 icon=(ImageView)base.findViewById(R.id.icon);
 }

 return(icon);
 }
}

ViewWrapper not only holds onto the child widgets, it lazy-finds the child
widgets. If you create a wrapper and never need a specific child, you never
go through the findViewById() operation for it and never have to pay for
those CPU cycles.

The holder pattern also:

• Allows us to consolidate all our per-widget type casting in one
place, rather than having to cast it everywhere we call
findViewById()

• Perhaps track other information about the row, such as state
information we are not yet ready to “flush” to the underlying model

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Using ViewWrapper is a matter of creating an instance whenever we inflate a
row and attaching said instance to the row View via setTag(), as shown in
this rewrite of getView():

public class ViewWrapperDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 private String getModel(int position) {
 return(((IconicAdapter)getListAdapter()).getItem(position));
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(getModel(position));
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(ViewWrapperDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 ViewWrapper wrapper=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 wrapper=new ViewWrapper(row);
 row.setTag(wrapper);
 }
 else {
 wrapper=(ViewWrapper)row.getTag();
 }

 wrapper.getLabel().setText(getModel(position));

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 if (getModel(position).length()>4) {
 wrapper.getIcon().setImageResource(R.drawable.delete);
 }
 else {
 wrapper.getIcon().setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Just as we check convertView to see if it is null in order to create the row
Views as needed, we also pull out (or create) the corresponding row’s
ViewWrapper. Then, accessing the child widgets is merely a matter of calling
their associated methods on the wrapper.

Using a holder helps performance, but the effect is not as dramatic.
Whereas recycling can give you a 150% performance improvement, adding
in a holder increases the improvement to 175%. Hence, while you may wish
to implement recycling up front when you create your adapter, adding in a
holder might be something you deal with later, when you are working
specifically on performance tuning.

Holders Without Custom Classes

Android 1.6 quietly added a pair of new methods to the View class which can
simplify the creation of fancy lists like the ones shown in this chapter.
Specifically, there are two new versions of getTag() and setTag() that take
an identifier along with their object. These let you eliminate the wrapper
class while still reaping much of its benefits.

For example, look at FancyLists/SelfWrapper, in particular the
SelfWrapperDemo activity:

package com.commonsware.android.fancylists.eight;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.view.ViewGroup;

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;

public class SelfWrapperDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 private String getModel(int position) {
 return(((IconicAdapter)getListAdapter()).getItem(position));
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(getModel(position));
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(SelfWrapperDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 row.setTag(R.id.label, row.findViewById(R.id.label));
 row.setTag(R.id.icon, row.findViewById(R.id.icon));
 }

 TextView label=(TextView)row.getTag(R.id.label);
 ImageView icon=(ImageView)row.getTag(R.id.icon);

 label.setText(getModel(position));

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 if (getModel(position).length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Here, we skip ViewWrapper entirely. When we inflate our row, we also pull
out all widgets we might need to modify at runtime (R.id.label and
R.id.icon) and stash those widgets as "tags" under their respective IDs.
Then, regardless of row source, we pull out the widgets from those tags and
update them. We gain the widget-level caching that ViewWrapper provided
us, but we do not need an actual ViewWrapper class.

There are four caveats:

• This technique does not offer any of the other potential benefits of a
ViewWrapper-style class, such as lazy-fetching

• The index provided to getTag() and setTag() must be an identifier –
you cannot just use 0, 1, etc. like you might in an ArrayList

• The indexed versions of getTag() and setTag() were designed for use
by reusable libraries, not by applications, and so you may encounter
performance issues

• This only works on Android 1.6...though in a later chapter, we show
how you can get the same technique to work on Android 1.5.

Making a List...

Lists with pretty icons next to them are all fine and well. But, can we create
ListView widgets whose rows contain interactive child widgets instead of
just passive widgets like TextView and ImageView? For example, there is a
RatingBar widget that allows users to assign a rating by clicking on a set of
star icons. Could we combine the RatingBar with text in order to allow
people to scroll a list of, say, songs and rate them right inside the list?

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad
news is that it is a little tricky, specifically when it comes to taking action
when the interactive widget's state changes (e.g., a value is typed into a
field). We need to store that state somewhere, since our RatingBar widget
will be recycled when the ListView is scrolled. We need to be able to set the
RatingBar state based upon the actual word we are viewing as the RatingBar
is recycled, and we need to save the state when it changes so it can be
restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely
no idea what item in the ArrayAdapter it represents. After all, the RatingBar
is just a widget, used in a row of a ListView. We need to teach the rows
which item in the ArrayAdapter they are currently displaying, so when their
RatingBar is checked, they know which item’s state to modify.

So, let's see how this is done, using the activity in the FancyLists/RateList
sample project. We’ll use the same basic classes as our previous demo –
we’re showing a list of nonsense words, which you can then rate. In
addition, words given a top rating are put in all caps:

public class RateListDemo extends ListActivity {
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 ArrayList<RowModel> list=new ArrayList<RowModel>();

 for (String s : items) {
 list.add(new RowModel(s));
 }

 setListAdapter(new RatingAdapter(list));
 }

 private RowModel getModel(int position) {

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 return(((RatingAdapter)getListAdapter()).getItem(position));
 }

 class RatingAdapter extends ArrayAdapter<RowModel> {
 RatingAdapter(ArrayList<RowModel> list) {
 super(RateListDemo.this, R.layout.row, list);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 ViewWrapper wrapper;
 RatingBar rate;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 wrapper=new ViewWrapper(row);
 row.setTag(wrapper);
 rate=wrapper.getRatingBar();

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 Integer myPosition=(Integer)ratingBar.getTag();
 RowModel model=getModel(myPosition);

 model.rating=rating;

 LinearLayout parent=(LinearLayout)ratingBar.getParent();
 TextView label=(TextView)parent.findViewById(R.id.label);

 label.setText(model.toString());
 }
 };

 rate.setOnRatingBarChangeListener(l);
 }
 else {
 wrapper=(ViewWrapper)row.getTag();
 rate=wrapper.getRatingBar();
 }

 RowModel model=getModel(position);

 wrapper.getLabel().setText(model.toString());
 rate.setTag(new Integer(position));
 rate.setRating(model.rating);

 return(row);
 }

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 }

 class RowModel {
 String label;
 float rating=2.0f;

 RowModel(String label) {
 this.label=label;
 }

 public String toString() {
 if (rating>=3.0) {
 return(label.toUpperCase());
 }

 return(label);
 }
 }
}

Here is what is different in this activity and getView() implementation than
before:

1. While we are still using String[] items as the list of nonsense words,
rather than pour that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model:
it holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a Cursor, and the
properties would have more business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect
the change from a pure-String model to use a RowModel.

3. The ArrayAdapter subclass (CheckAdapter), in getView(), looks to see
if convertView is null. If so, we create a new row by inflating a simple
layout (see below) and also attach a ViewWrapper (also below). For
the row’s RatingBar, we add an anonymous onRatingChanged()
listener that looks at the row’s tag (getTag()) and converts that into
an Integer, representing the position within the ArrayAdapter that
this row is displaying. Using that, the rating bar can get the actual
RowModel for the row and update the model based upon the new
state of the rating bar. It also updates the text adjacent to the
RatingBar when checked to match the rating bar state.

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

4. We always make sure that the RatingBar has the proper contents
and has a tag (via setTag()) pointing to the position in the adapter
the row is displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <RatingBar
 android:id="@+id/rate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="3"
 android:stepSize="1"
 android:rating="2" />
 <TextView
 android:id="@+id/label"
 android:paddingLeft="2px"
 android:paddingRight="2px"
 android:paddingTop="2px"
 android:textSize="40sp"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

The ViewWrapper is similarly simple, just extracting the RatingBar and the
TextView out of the row View:

class ViewWrapper {
 View base;
 RatingBar rate=null;
 TextView label=null;

 ViewWrapper(View base) {
 this.base=base;
 }

 RatingBar getRatingBar() {
 if (rate==null) {
 rate=(RatingBar)base.findViewById(R.id.rate);
 }

 return(rate);
 }

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 TextView getLabel() {
 if (label==null) {
 label=(TextView)base.findViewById(R.id.label);
 }

 return(label);
 }
}

And the result is what you would expect, visually:

Figure 33. The RateListDemo application, as initially launched

This includes the toggled rating bars turning their words into all caps:

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Figure 34. The same application, showing a top-rated word

...And Checking It Twice

The rating list in the previous section works, but implementing it was very
tedious. Worse, much of that tedium would not be reusable except in very
limited circumstances.

We can do better.

What we’d really like is to be able to create a layout like this:

<?xml version="1.0" encoding="utf-8"?>
<com.commonsware.android.fancylists.seven.RateListView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
/>

where, in our code, almost all of the logic that might have referred to a
ListView before “just works” with the RateListView we put in the layout:

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }
}

Where things get a wee bit challenging is when you stop and realize that, in
everything up to this point in this chapter, never were we actually changing
the ListView itself. All our work was with the adapters, overriding getView()
and inflating our own rows.

So if we want RateListView to take in any ordinary ListAdapter and “just
work”, putting rating bars on the rows as needed, we are going to need to
do some fancy footwork. Specifically, we are going to need to wrap the
“raw” ListAdapter in some other ListAdapter that knows how to put the
rating bars on the rows and track the state of those rating bars.

First, we need to establish the pattern of one ListAdapter augmenting
another. Here is the code for AdapterWrapper, which takes a ListAdapter and
delegates all of the interface’s methods to the delegate (from the
FancyLists/RateListView sample project):

public class AdapterWrapper implements ListAdapter {
 ListAdapter delegate=null;

 public AdapterWrapper(ListAdapter delegate) {
 this.delegate=delegate;
 }

 public int getCount() {
 return(delegate.getCount());
 }

 public Object getItem(int position) {

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 return(delegate.getItem(position));
 }

 public long getItemId(int position) {
 return(delegate.getItemId(position));
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 return(delegate.getView(position, convertView, parent));
 }

 public void registerDataSetObserver(DataSetObserver observer) {
 delegate.registerDataSetObserver(observer);
 }

 public boolean hasStableIds() {
 return(delegate.hasStableIds());
 }

 public boolean isEmpty() {
 return(delegate.isEmpty());
 }

 public int getViewTypeCount() {
 return(delegate.getViewTypeCount());
 }

 public int getItemViewType(int position) {
 return(delegate.getItemViewType(position));
 }

 public void unregisterDataSetObserver(DataSetObserver observer) {
 delegate.unregisterDataSetObserver(observer);
 }

 public boolean areAllItemsEnabled() {
 return(delegate.areAllItemsEnabled());
 }

 public boolean isEnabled(int position) {
 return(delegate.isEnabled(position));
 }
}

We can then subclass AdapterWrapper to create RateableWrapper, overriding
the default getView() but otherwise allowing the delegated ListAdapter to
do the “real work”:

public class RateableWrapper extends AdapterWrapper {
 Context ctxt=null;
 float[] rates=null;

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 public RateableWrapper(Context ctxt, ListAdapter delegate) {
 super(delegate);

 this.ctxt=ctxt;
 this.rates=new float[delegate.getCount()];

 for (int i=0;i<delegate.getCount();i++) {
 this.rates[i]=2.0f;
 }
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 ViewWrapper wrap=null;
 View row=convertView;

 if (convertView==null) {
 LinearLayout layout=new LinearLayout(ctxt);
 RatingBar rate=new RatingBar(ctxt);

 rate.setNumStars(3);
 rate.setStepSize(1.0f);

 View guts=delegate.getView(position, null, parent);

 layout.setOrientation(LinearLayout.HORIZONTAL);

 rate.setLayoutParams(new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.WRAP_CONTENT,
 LinearLayout.LayoutParams.FILL_PARENT));
 guts.setLayoutParams(new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.FILL_PARENT,
 LinearLayout.LayoutParams.FILL_PARENT));

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 rates[(Integer)ratingBar.getTag()]=rating;
 }
 };

 rate.setOnRatingBarChangeListener(l);

 layout.addView(rate);
 layout.addView(guts);

 wrap=new ViewWrapper(layout);
 wrap.setGuts(guts);
 layout.setTag(wrap);

 rate.setTag(new Integer(position));

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 rate.setRating(rates[position]);

 row=layout;
 }
 else {
 wrap=(ViewWrapper)convertView.getTag();
 wrap.setGuts(delegate.getView(position, wrap.getGuts(),
 parent));
 wrap.getRatingBar().setTag(new Integer(position));
 wrap.getRatingBar().setRating(rates[position]);
 }

 return(row);
 }
}

The idea is that RateableWrapper is where most of our rate-list logic resides.
It puts the rating bars on the rows and it tracks the rating bars’ states as
they are adjusted by the user. For the states, it has a float[] sized to fit the
number of rows that the delegate says are in the list.

RateableWrapper’s implementation of getView() is reminiscent of the one
from RateListDemo, except that rather than use LayoutInflater, we need to
manually construct a LinearLayout to hold our RatingBar and the “guts”
(a.k.a., whatever view the delegate created that we are decorating with the
rating bar). LayoutInflater is designed to construct a View from raw widgets;
in our case, we don’t know in advance what the rows will look like, other
than that we need to add a rating bar to them. However, the rest is similar
to the one from RateListDemo, including using a ViewWrapper (below),
hooking onRatingBarChanged() to have the rating bar update the state, and
so forth:

class ViewWrapper {
 ViewGroup base;
 View guts=null;
 RatingBar rate=null;

 ViewWrapper(ViewGroup base) {
 this.base=base;
 }

 RatingBar getRatingBar() {
 if (rate==null) {
 rate=(RatingBar)base.getChildAt(0);
 }

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

 return(rate);
 }

 void setRatingBar(RatingBar rate) {
 this.rate=rate;
 }

 View getGuts() {
 if (guts==null) {
 guts=base.getChildAt(1);
 }

 return(guts);
 }

 void setGuts(View guts) {
 this.guts=guts;
 }
}

With all that in place, RateListView is comparatively simple:

public class RateListView extends ListView {
 public RateListView(Context context) {
 super(context);
 }

 public RateListView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public RateListView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 }

 public void setAdapter(ListAdapter adapter) {
 super.setAdapter(new RateableWrapper(getContext(), adapter));
 }
}

We simply subclass ListView and override setAdapter() so we can wrap the
supplied ListAdapter in our own RateableWrapper.

Visually, the results are similar to the RateListDemo, albeit without top-rated
words appearing in all caps:

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

Figure 35. The RateListViewDemo sample application

The difference is in reusability. We could package RateListView in its own
JAR and plop it into any Android project where we need it. So while
RateListView is somewhat complicated to write, we only have to write it
once, and the rest of the application code is blissfully simple.

Of course, this RateListView could use some more features, such as
programmatically changing states (updating both the float[] and the
actual RatingBar itself), allowing other application logic to be invoked when
a RatingBar state is toggled (via some sort of callback), etc. These are left as
exercises for the reader.

Adapting Other Adapters

All adapter classes can follow the ArrayAdapter pattern of overriding
getView() to define the rows.

However, CursorAdapter and its subclasses have a default implementation of
getView(). What getView() does is inspect the supplied View to recycle and,
if it is null, calls newView() then bindView(), or just calls bindView() if it is not

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Fancy With Lists

null. If you are extending CursorAdapter – used for displaying results of a
database or content provider query – you should override newView() and
bindView() instead of getView().

All this does is remove your if() test you would have had in getView() and
putting each branch of that test in an independent method, akin to the
following:

public View newView(Context context, Cursor cursor,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, null);
 ViewWrapper wrapper=new ViewWrapper(row);

 row.setTag(wrapper);

 return(row);
}

public void bindView(View row, Context context, Cursor cursor) {
 ViewWrapper wrapper=(ViewWrapper)row.getTag();

 // actual logic to populate row from Cursor goes here
}

Details of using a Cursor will be covered in the chapter on databases.

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 9

Employing Fancy Widgets and
Containers

The widgets and containers covered to date are not only found in many
GUI toolkits (in one form or fashion), but also are widely used in building
GUI applications, whether Web-based, desktop, or mobile. The widgets and
containers in this chapter are a little less widely used, though you will likely
find many to be quite useful.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are
aware of the type of stuff somebody is supposed to be entering is very
helpful. It minimizes keystrokes and screen taps, plus reduces the chance of
making some sort of error (e.g., entering a letter someplace where only
numbers are expected).

As shown previously, EditText has content-aware flavors for entering in
numbers, phone numbers, etc. Android also supports widgets (DatePicker,
TimePicker) and dialogs (DatePickerDialog, TimePickerDialog) for helping
users enter dates and times.

The DatePicker and DatePickerDialog allow you to set the starting date for
the selection, in the form of a year, month, and day of month value. Note
that the month runs from 0 for January through 11 for December. Most

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

importantly, each let you provide a callback object (OnDateChangedListener
or OnDateSetListener) where you are informed of a new date selected by the
user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen
date later on.

Similarly, TimePicker and TimePickerDialog let you:

• set the initial time the user can adjust, in the form of an hour (0
through 23) and a minute (0 through 59)

• indicate if the selection should be in 12-hour mode with an AM/PM
toggle, or in 24-hour mode (what in the US is thought of as
"military time" and in the rest of the world is thought of as "the way
times are supposed to be")

• provide a callback object (OnTimeChangedListener or
OnTimeSetListener) to be notified of when the user has chosen a new
time, which is supplied to you in the form of an hour and minute

For example, from the Fancy/Chrono sample project, here's a trivial layout
containing a label and two buttons – the buttons will pop up the dialog
flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:id="@+id/dateAndTime"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/dateBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Date"
 />
 <Button android:id="@+id/timeBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Time"
 />
</LinearLayout>

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

The more interesting stuff comes in the Java source:

public class ChronoDemo extends Activity {
 DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
 TextView dateAndTimeLabel;
 Calendar dateAndTime=Calendar.getInstance();
 DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener()
{
 public void onDateSet(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 dateAndTime.set(Calendar.YEAR, year);
 dateAndTime.set(Calendar.MONTH, monthOfYear);
 dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
 updateLabel();
 }
 };
 TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener()
{
 public void onTimeSet(TimePicker view, int hourOfDay,
 int minute) {
 dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
 dateAndTime.set(Calendar.MINUTE, minute);
 updateLabel();
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.dateBtn);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 new DatePickerDialog(ChronoDemo.this,
 d,
 dateAndTime.get(Calendar.YEAR),
 dateAndTime.get(Calendar.MONTH),
 dateAndTime.get(Calendar.DAY_OF_MONTH)).show();
 }
 });

 btn=(Button)findViewById(R.id.timeBtn);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 new TimePickerDialog(ChronoDemo.this,
 t,
 dateAndTime.get(Calendar.HOUR_OF_DAY),
 dateAndTime.get(Calendar.MINUTE),
 true).show();
 }
 });

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

 dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

 updateLabel();
 }

 private void updateLabel() {
 dateAndTimeLabel.setText(fmtDateAndTime
 .format(dateAndTime.getTime()));
 }
}

The "model" for this activity is just a Calendar instance, initially set to be the
current date and time. We pour it into the view via a DateFormat formatter.
In the updateLabel() method, we take the current Calendar, format it, and
put it in the TextView.

Each button is given a OnClickListener callback object. When the button is
clicked, either a DatePickerDialog or a TimePickerDialog is shown. In the case
of the DatePickerDialog, we give it a OnDateSetListener callback that updates
the Calendar with the new date (year, month, day of month). We also give
the dialog the last-selected date, getting the values out of the Calendar. In
the case of the TimePickerDialog, it gets a OnTimeSetListener callback to
update the time portion of the Calendar, the last-selected time, and a true
indicating we want 24-hour mode on the time selector.

With all this wired together, the resulting activity looks like this:

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 36. The ChronoDemo sample application, as initially launched

Figure 37. The same application, showing the date picker dialog

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 38. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter the time, you
may wish to use the DigitalClock or AnalogClock widgets. These are
extremely easy to use, as they automatically update with the passage of
time. All you need to do is put them in your layout and let them do their
thing.

For example, from the Fancy/Clocks sample application, here is an XML
layout containing both DigitalClock and AnalogClock:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <AnalogClock android:id="@+id/analog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_alignParentTop="true"
 />

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

 <DigitalClock android:id="@+id/digital"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_below="@id/analog"
 />
</RelativeLayout>

Without any Java code other than the generated stub, we can build this
project and get the following activity:

Figure 39. The ClocksDemo sample application

If you are looking for more of a timer, Chronometer may be of interest. With
a Chronometer, you can track elapsed time from a starting point. You simply
tell it when to start() and stop(), and possibly override the format string
that displays the text:

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 40. The Views/Chronometer API Demo from the Android 2.0 SDK

Making Progress

If you need to be doing something for a long period of time, you owe it to
your users to do two things:

• Use a background thread, which will be covered in a later chapter

• Keep them apprised of your progress, lest they think your activity
has wandered away and will never come back

The typical approach to keeping users informed of progress is some form of
progress bar or "throbber" (think the animated graphic towards the upper-
right corner of many Web browsers). Android supports this through the
ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0
indicating no progress has been made. You can define the maximum end of
the range – what value indicates progress is complete – via setMax(). By
default, a ProgressBar starts with a progress of 0, though you can start from
some other position via setProgress().

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

If you prefer your progress bar to be indeterminate, use setIndeterminate(),
setting it to true.

In your Java code, you can either positively set the amount of progress that
has been made (via setProgress()) or increment the progress from its
current amount (via incrementProgressBy()). You can find out how much
progress has been made via getProgress().

Since the ProgressBar is tied closely to the use of threads – a background
thread doing work, updating the UI thread with new progress information
– we will hold off demonstrating the use of ProgressBar to a later chapter.

Seeking Resolution

A subclass of ProgressBar is the SeekBar. A ProgressBar is an output widget,
telling the user how much progress has been made. Conversely, the SeekBar
in an input widget, allowing the user to select a value along a range of
possible values:

Figure 41. The Views/SeekBar API Demo from the Android 2.0 SDK

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

The user can either drag the "thumb" or click on either side of it to
reposition the thumb. The thumb then points to a particular value along a
range. That range will be 0 to some maximum value, 100 by default, that
you control via a call to setMax(). You can find out what the current position
is via getProgress(), or find out when the user makes a change to the
thumb's position by registering a listener via setOnSeekBarChangeListener().

We saw another variation on this theme with the RatingBar in the previous
chapter.

Putting It On My Tab

The general Android philosophy is to keep activities short and sweet. If
there is more information than can reasonably fit on one screen, albeit
perhaps with scrolling, then it perhaps belongs in another activity kicked
off via an Intent, as will be described later in this book. However, that can
be complicated to set up. Moreover, sometimes there legitimately is a lot of
information that needs to be collected to be processed as an atomic
operation.

In a traditional UI, you might use tabs to accomplish this end, such as a
JTabbedPane in Java/Swing. In Android, you now have an option of using a
TabHost container in much the same way – a portion of your activity's screen
is taken up with tabs which, when clicked, swap out part of the view and
replace it with something else. For example, you might have an activity with
a tab for entering a location and a second tab for showing a map of that
location.

Some GUI toolkits refer to "tabs" as being just the things a user clicks on to
toggle from one view to another. Some toolkits refer to "tabs" as being the
combination of the clickable button-ish element and the content that
appears when that tab is chosen. Android treats the tab buttons and
contents as discrete entities, so we will call them "tab buttons" and "tab
contents" in this section.

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

The Pieces

There are a few widgets and containers you need to use in order to set up a
tabbed portion of a view:

• TabHost is the overarching container for the tab buttons and tab
contents

• TabWidget implements the row of tab buttons, which contain text
labels and optionally contain icons

• FrameLayout is the container for the tab contents; each tab content is
a child of the FrameLayout

This is similar to the approach that Mozilla's XUL takes. In XUL's case, the
tabbox element corresponds to Android's TabHost, the tabs element
corresponds to TabWidget, and tabpanels corresponds to the FrameLayout.

The Idiosyncrasies

There are a few rules to follow, at least in this milestone edition of the
Android toolkit, in order to make these three work together:

• You must give the TabWidget an android:id of @android:id/tabs

• You must give the FrameLayout that holds the contents an android:id
of @android:id/tabcontent

• If you wish to use the TabActivity, you must give the TabHost an
android:id of @android:id/tabhost

TabActivity, like ListActivity, wraps a common UI pattern (activity made
up entirely of tabs) into a pattern-aware activity subclass. You do not
necessarily have to use TabActivity – a plain activity can use tabs as well.

For example, here is a layout definition for a tabbed activity, from
Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

 android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <AnalogClock android:id="@+id/tab1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_centerHorizontal="true"
 />
 <Button android:id="@+id/tab2"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

Note that the TabWidget and FrameLayout are indirect children of the TabHost,
and the FrameLayout itself has children representing the various tabs. In this
case, there are two tabs: a clock and a button. In a more complicated
scenario, the tabs are probably some form of container (e.g., LinearLayout)
with their own contents.

Wiring It Together

The Java code needs to tell the TabHost what views represent the tab
contents and what the tab buttons should look like. This is all wrapped up
in TabSpec objects. You get a TabSpec instance from the host via newTabSpec(),
fill it out, then add it to the host in the proper sequence.

The two key methods on TabSpec are:

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

• setContent(), where you indicate what goes in the tab content for
this tab, typically the android:id of the view you want shown when
this tab is selected

• setIndicator(), where you provide the caption for the tab button
and, in some flavors of this method, supply a Drawable to represent
the icon for the tab

Note that tab "indicators" can actually be views in their own right, if you
need more control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any
of these TabSpec objects. The call to setup() is not needed if you are using
the TabActivity base class for your activity.

For example, here is the Java code to wire together the tabs from the
preceding layout example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(R.id.tab1);
 spec.setIndicator("Clock");
 tabs.addTab(spec);

 spec=tabs.newTabSpec("tag2");
 spec.setContent(R.id.tab2);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }
}

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

We find our TabHost via the familiar findViewById() method, then have it
setup(). After that, we get a TabSpec via newTabSpec(), supplying a tag whose
purpose is unknown at this time. Given the spec, you call setContent() and
setIndicator(), then call addTab() back on the TabHost to register the tab as
available for use. Finally, you can choose which tab is the one to show via
setCurrentTab(), providing the 0-based index of the tab.

The result?

Figure 42. The TabDemo sample application, showing the first tab

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 43. The same application, showing the second tab

Adding Them Up

TabWidget is set up to allow you to easily define tabs at compile time.
However, sometimes, you want to add tabs to your activity during runtime.
For example, imagine an email client where individual email messages get
opened in their own tab, for easy toggling between messages. In this case,
you do not know how many tabs or what their contents will be until
runtime, when the user chooses to open a message.

Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs
shown above, except you use a different flavor of setContent(), one that
takes a TabHost.TabContentFactory instance. This is just a callback that will
be invoked – you provide an implementation of createTabContent() and use
it to build and return the View that becomes the content of the tab.

Let us take a look at an example (Fancy/DynamicTab).

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

First, here is some layout XML for an activity that sets up the tabs and
defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button android:id="@+id/buttontab"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

What we want to do is add new tabs whenever the button is clicked. That
can be accomplished in just a few lines of code:

public class DynamicTabDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 final TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("buttontab");
 spec.setContent(R.id.buttontab);
 spec.setIndicator("Button");
 tabs.addTab(spec);

 Button btn=(Button)tabs.getCurrentView().findViewById(R.id.buttontab);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

 spec.setContent(new TabHost.TabContentFactory() {
 public View createTabContent(String tag) {
 return(new AnalogClock(DynamicTabDemo.this));
 }
 });
 spec.setIndicator("Clock");
 tabs.addTab(spec);
 }
 });
 }
}

In our button's setOnClickListener() callback, we create a TabHost.TabSpec
object and give it an anonymous TabHost.TabContentFactory. The factory, in
turn, returns the View to be used for the tab – in this case, just an
AnalogClock. The logic for constructing the tab’s View could be much more
elaborate, such as using LayoutInflater to construct a view from layout
XML.

Initially, when the activity is launched, we just have the one tab:

Figure 44. The DynamicTab application, with the single initial tab

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 45. The DynamicTab application, with three dynamically-created tabs

Intents and Views

In the preceding examples, the contents of each tab were set to be a View,
such as a Button. This is easy and straight-forward, but it is not the only
option. You can also integrate another activity from your application via an
Intent.

Intents are ways of specifying something you want accomplished, then
telling Android to go find something to accomplish it. Frequently, these are
used to cause activities to spawn. For example, whenever you launch an
application from the main Android application launcher, the launcher
creates an Intent and has Android open up the activity associated with that
Intent. This whole concept, and how activities can be placed in tabs, will be
described in greater detail in the chapter on activities.

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some Views visible at a
time), but you do not want the actual UI implementation of tabs. Maybe

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

the tabs take up too much screen space. Maybe you want to switch between
perspectives based on a gesture or a device shake. Or maybe you just like
being different.

The good news is that the guts of the view-flipping logic from tabs can be
found in the ViewFlipper container, which can be used in other ways than
the traditional tab.

ViewFlipper inherits from FrameLayout, just like we used to describe the
innards of a TabWidget. However, initially, it just shows the first child view.
It is up to you to arrange for the views to flip, either manually by user
interaction, or automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a
Button and a ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/flip_me"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Flip Me!"
 />
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FF00FF00"
 android:text="This is the first panel"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFF0000"
 android:text="This is the second panel"
 />
 <TextView

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFFFF00"
 android:text="This is the third panel"
 />
 </ViewFlipper>
</LinearLayout>

Notice that the layout defines three child views for the ViewFlipper, each a
TextView with a simple message. Of course, you could have very
complicated child views, if you so chose.

To manually flip the views, we need to hook into the Button and flip them
ourselves when the button is clicked:

public class FlipperDemo extends Activity {
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 Button btn=(Button)findViewById(R.id.flip_me);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 flipper.showNext();
 }
 });
 }
}

This is just a matter of calling showNext() on the ViewFlipper, like you can on
any ViewAnimator class.

The result is a trivial activity: click the button, and the next TextView in
sequence is displayed, wrapping around to the first after viewing the last:

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 46. The Flipper1 application, showing the first panel

Figure 47. The same application, after switching to the second panel

This, of course, could be handled more simply by having a single TextView
and changing the text and color on each click. However, you can imagine

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

that the ViewFlipper contents could be much more complicated, like the
contents you might put into a TabView.

As with the TabWidget, sometimes, your ViewFlipper contents may not be
known at compile time. As with TabWidget, though, you can add new
contents on the fly with ease.

For example, let us look at another sample activity (Fancy/Flipper2), using
this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 </ViewFlipper>
</LinearLayout>

Notice that the ViewFlipper has no contents at compile time. Also note that
there is no Button for flipping between the contents – more on this in a
moment.

For the ViewFlipper contents, we will create large Button widgets, each
containing one of the random words used in many chapters in this book.
And, we will set up the ViewFlipper to automatically rotate between the
Button widgets, using an animation for transition:

public class FlipperDemo2 extends Activity {
 static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque",
 "augue", "purus"};
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 flipper.setInAnimation(AnimationUtils.loadAnimation(this,
 R.anim.push_left_in));
 flipper.setOutAnimation(AnimationUtils.loadAnimation(this,
 R.anim.push_left_out));

 for (String item : items) {
 Button btn=new Button(this);

 btn.setText(item);

 flipper.addView(btn,
 new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT));
 }

 flipper.setFlipInterval(2000);
 flipper.startFlipping();
 }
}

After getting our ViewFlipper widget from the layout, we first set up the “in”
and “out” animations. In Android terms, an animation is a description of
how a widget leaves (”out”) or enters (”in”) the viewable area. Animations
are a complex beast, eventually worthy of their own chapter. For now,
realize that animations are resources, stored in res/anim/ in your project.
For this example, we are using a pair of animations supplied by the SDK
samples, available under the Apache 2.0 license. As their names suggest,
widgets are “pushed” to the left, either to enter or leave the viewable area.

After iterating over the funky words, turning each into a Button, and adding
the Button as a child of the ViewFlipper, we set up the flipper to
automatically flip between children (flipper.setFlipInterval(2000);) and
to start flipping (flipper.startFlipping();).

The result is an endless series of buttons, each appearing, then sliding out
to the left after 2 seconds, being replaced by the next button in sequence,
wrapping around to the first after the last has been shown:

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 48. The Flipper2 application, showing an animated transition

The auto-flipping ViewFlipper is useful for status panels or other situations
where you have a lot of information to display, but not much room. The
key is that, since it automatically flips between views, expecting users to
interact with individual views is dicey – the view might switch away part-
way through their interaction.

Getting In Somebody's Drawer

For a long time, Android developers yearned for a sliding drawer container
that worked like the one on the home screen, containing the icons for
launching applications. The official implementation was in the open source
code but was not part of the SDK...until Android 1.5, when they released
SlidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching
from a closed to an open position. This puts some restrictions on what
container the SlidingDrawer itself can be in. It needs to be a container that
allows multiple widgets to sit atop each other. RelativeLayout and
FrameLayout satisfy this requirement, where FrameLayout is a container

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

purely for stacking widgets atop one another. On the flip side, LinearLayout
does not allow widgets to stack (they fall one after another in a row or
column), and so you should not have a SlidingDrawer as an immediate child
of a LinearLayout.

Here is a layout, showing a SlidingDrawer in a FrameLayout, from the
Fancy/DrawerDemo project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF4444CC"
 >
 <SlidingDrawer
 android:id="@+id/drawer"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:handle="@+id/handle"
 android:content="@+id/content">
 <ImageView
 android:id="@id/handle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/tray_handle_normal"
 />
 <Button
 android:id="@id/content"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="I'm in here!"
 />
 </SlidingDrawer>
</FrameLayout>

The SlidingDrawer should contain two things:

1. A handle, frequently an ImageView or something along those lines,
such as the one used here, pulled from the Android open source
project

2. The contents of the drawer itself, usually some sort of container,
though in this case we are using a Button

Moreover, SlidingDrawer needs to know the android:id values of the handle
and contents, via the android:handle and android:content attributes,

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

respectively. This tells the drawer how to animate itself as it slides open and
closed.

Here is what the SlidingDrawer looks like closed, using the supplied handle:

Figure 49. A SlidingDrawer, closed

And here it is open, showing its contents:

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

Figure 50. A SlidingDrawer, open

As one might expect, you can open and close the drawer from Java code as
well as via user touch events. However, you have two sets of these methods,
ones that take place instantaneously (open(), close(), and toggle()) and
ones that use the animation (animateOpen(), animateClose(),
animateToggle()). You can also lock() and unlock() the drawer; while locked,
the drawer will not respond to touch events.

You can also register three types of callbacks if you wish:

1. A listener to be invoked when the drawer is opened

2. A listener to be invoked when the drawer is closed

3. A listener to be invoked when the drawer is "scrolled" (i.e., the user
drags or flings the handle)

For example, the Launcher's SlidingDrawer toggles the icon on the handle
from open to closed to "delete" (if you long-tap something on the desktop).
It accomplishes this, in part, through callbacks like these.

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Employing Fancy Widgets and Containers

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its
orientation despite the screen orientation. In other words, if you rotate the
Android device or emulator running DrawerDemo, the drawer always opens
from the bottom – it does not always "stick" to the original side it opened
from. This means that if you want the drawer to always open from the same
side, like the Launcher does, you will need separate layouts for portrait
versus landscape, a topic we discuss in the chapter on resources.

Other Good Stuff

Android offers AbsoluteLayout, where the contents are laid out based on
specific coordinate positions. You tell AbsoluteLayout where to place a child
in precise X,Y coordinates, and Android puts it there, no questions asked.
On the plus side, this gives you precise positioning. On the minus side, it
means your views will only look "right" on screens of a certain dimension,
or it requires you to write a bunch of code to adjust the coordinates based
on screen size. Since Android screens might run the gamut of sizes, plus
have new sizes crop up periodically, using AbsoluteLayout could get quite
annoying. Also, note that AbsoluteLayout is officially deprecated, meaning
that while it is available to you, its use is discouraged.

Android also has the ExpandableListView. This provides a simplified tree
representation, supporting two levels of depth: groups and children.
Groups contain children; children are "leaves" of the tree. This requires a
new set of adapters, since the ListAdapter family does not provide any sort
of group information for the items in the list.

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 10

The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is
commonly referred to as "soft keyboards". However, the "soft keyboard"
term is not necessarily accurate, as IMF could be used for handwriting
recognition or other means of accepting text input via the screen.

Keyboards, Hard and Soft

Some Android devices, like the T-Mobile G1, have a hardware keyboard that
is visible some of the time (when it is slid out). Some Android devices, like
the HTC Magic, have no hardware keyboard at all. It is likely that at some
point in time there will be Android devices that always have a hardware
keyboard available (netbooks, phones with an always-available QWERTY
keyboard beneath the screen, etc.).

The IMF handles all of these scenarios. In short, if there is no hardware
keyboard, an input method editor (IME) will be available to the user when
they tap on an enabled EditText.

This requires no code changes to your application...if the default
functionality of the IME is what you want. Fortunately, Android is fairly
smart about guessing what you want, so it may be you can just test with the
IME but otherwise make no specific code changes.

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Of course, the keyboard may not quite behave how you would like. For
example, in the Basic/Field sample project, the FieldDemo activity has the
IME overlaying the multiple-line EditText:

Figure 51. The input method editor, as seen in the FieldDemo sample
application

It would be nice to have more control over how this appears, and for other
behavior of the IME. Fortunately, the framework as a whole gives you many
options for this, as is described over the bulk of this chapter.

Tailored To Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to
control their style of input, such as android:password to indicate a field
should be for password entry (shrouding the password keystrokes from
prying eyes). Starting in Android 1.5, with the IMF, many of these have been
combined into a single android:inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-
delimited (where | is the pipe character). The class generally describes what

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

the user is allowed to input, and this determines the basic set of keys
available on the soft keyboard. The available classes are:

• text (the default)

• number

• phone

• datetime

• date

• time

Many of these classes offer one or more modifiers, to further refine what
the user will be entering. To help explain those, take a look at the
res/layout/main.xml file from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
</TableLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a
slightly different flavor of EditText:

1. One has no attributes at all on the EditText, meaning you get a plain
text entry field

2. One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

3. One allows for signed decimal numeric input, via android:inputType
= "number|numberSigned|numberDecimal"

4. One is set up to allow for data entry of a date (android:inputType =
"date")

5. The last allows for multi-line input with auto-correction of probable
spelling errors (android:inputType = "text|textMultiLine|

textAutoCorrect")

The class and modifiers tailor the keyboard. So, a plain text entry field
results in a plain soft keyboard:

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Figure 52. A standard input method editor (a.k.a., soft keyboard)

An email address field puts the @ symbol on the soft keyboard, at the cost of
a smaller spacebar:

Figure 53. The input method editor for email addresses

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Numbers and dates restrict the keys to numeric keys, plus a set of symbols
that may or may not be valid on a given field:

Figure 54. The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the first and second
input method editors, beyond the addition of the @ key. If you look in the
lower-right corner of the soft keyboard, the second field's editor has a
"Next" button, while the first field's editor has a newline button.

This points out two things:

1. EditText widgets are multi-line by default if you do not specify
android:inputType

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

2. You can control what goes on with that lower-right-hand button,
called the accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be "Next", moving you to the next EditText in
sequence, or "Done", if you are on the last EditText on the screen. You can
manually stipulate what the accessory button will be labeled via the
android:imeOptions attribute. For example, in the res/layout/main.xml from
InputMethod/IMEDemo2, you will see an augmented version of the previous
example, where two input fields specify what their accessory button should
look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 android:imeOptions="actionSend"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 android:imeOptions="actionDone"
 />
 </TableRow>
 <TableRow>
 <TextView

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
 </TableLayout>
</ScrollView>

Here, we attach a "Send" action to the accessory button for the email
address (android:imeOptions = "actionSend"), and the "Done" action on the
middle field (android:imeOptions = "actionDone").

By default, "Next" will move the focus to the next EditText and "Done" will
close up the input method editor. However, for those, or for any other ones
like "Send", you can use setOnEditorActionListener() on EditText
(technically, on the TextView superclass) to get control when the accessory
button is clicked or the user presses the <Enter> key. You are provided with
a flag indicating the desired action (e.g., IME_ACTION_SEND), and you can then
do something to handle that request (e.g., send an email to the supplied
email address).

Fitting In

You will notice that the IMEDemo2 layout shown above has another difference
from its IMEDemo1 predecessor: the use of a ScrollView container wrapping
the TableLayout. This ties into another level of control you have over the
input method editors: what happens to your activity's own layout when the
input method editor appears?

There are three possibilities, depending on circumstances:

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

• Android can "pan" your activity, effectively sliding the whole layout
up to accommodate the input method editor, or overlaying your
layout, depending on whether the EditText being edited is at the top
or bottom. This has the effect of hiding some portion of your UI.

• Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the input method editor to sit
below the activity itself. This is great when the layout can readily be
shrunk (e.g., it is dominated by a list or multi-line input field that
does not need the whole screen to be functional).

• In landscape mode, Android may display the input method editor
full-screen, obscuring your entire activity. This allows for a bigger
keyboard and generally easier data entry.

Android controls the full-screen option purely on its own. And, by default,
Android will choose between pan and resize modes depending on what
your layout looks like. If you want to specifically choose between pan and
resize, you can do so via an android:windowSoftInputMode attribute on the
<activity> element in your AndroidManifest.xml file. For example, here is
the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.imf.two"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".IMEDemo2"
 android:label="@string/app_name"
 android:windowSoftInputMode="adjustResize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Because we specified resize, Android will shrink our layout to
accommodate the input method editor. With the ScrollView in place, this
means the scroll bar will appear as needed:

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

Figure 55. The shrunken, scrollable layout

Jane, Stop This Crazy Thing!

Sometimes, you need the input method editor to just go away. For example,
if you make the action button be "Search", the user tapping that button will
not automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a
system service that controls these input method editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where fld is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that
there are two ways for a user to have opened that input method editor in
the first place:

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Input Method Framework

1. If their device does not have a hardware keyboard exposed, and
they tap on the EditText, the input method editor should appear

2. If they previously dismissed the editor, or if they are using the
editor for a widget that does not normally pop one up (e.g.,
ListView), and they long-tap on the MENU button, the input
method editor should appear

If you only want to close the input method editor for the first scenario, but
not the second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the
second parameter to your call to hideSoftInputFromWindow(), instead of the 0
shown in the previous example.

Unleash Your Inner Dvorak

You are also welcome to make and distribute your own input method
editor. Perhaps you want to create a Dvorak soft keyboard, or a keyboard
for another language, or one that echoes pressed keys verbally, or
something.

An input method editor is packaged up in the form of a service, an Android
component described in later chapters of this book. Actually creating such
an editor will be covered in a future edition of The Busy Coder's Guide to
Advanced Android Development, to go along with the SoftKeyboard sample
application distributed with the Android SDK and, of course, the Android
source code (search for the LatinIME class).

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 11

Applying Menus

Like applications for the desktop and some mobile operating systems, such
as PalmOS and Windows Mobile, Android supports activities with
"application" menus. Some Android phones will have a dedicated menu key
for popping up the menu; others will offer alternate means for triggering
the menu to appear, such as the on-screen button used by the ARCHOS 5
Android tablet.

Also, as with many GUI toolkits, you can create "context menus". On a
traditional GUI, this might be triggered by the right-mouse button. On
mobile devices, context menus typically appear when the user "taps-and-
holds" over a particular widget. For example, if a TextView had a context
menu, and the device was designed for finger-based touch input, you could
push the TextView with your finger, hold it for a second or two, and a pop-
up menu will appear for the user to choose from.

Flavors of Menu

Android considers the two types of menu described above as being the
"options menu" and "context menu". The options menu is triggered by
pressing the hardware "Menu" button on the device, while the context
menu is raised by a tap-and-hold on the widget sporting the menu.

In addition, the options menu operates in one of two modes: icon and
expanded. When the user first presses the "Menu" button, the icon mode

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

will appear, showing up to the first six menu choices as large, finger-
friendly buttons in a grid at the bottom of the screen. If the menu has more
than six choices, the sixth button will become "More" – clicking that option
will bring up the expanded mode, showing the remaining choices not
visible in the regular menu. The menu is scrollable, so the user can get to
any of the menu choices.

Menus of Options

Rather than building your activity's options menu during onCreate(), the
way you wire up the rest of your UI, you instead need to implement
onCreateOptionsMenu(). This callback receives an instance of Menu.

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in
any menu choices it feels are necessary. Then, you can go about adding
your own options, described below.

If you will need to adjust the menu during your activity's use (e.g., disable a
now-invalid menu choice), just hold onto the Menu instance you receive in
onCreateOptionsMenu(). Or, implement onPrepareOptionsMenu(), which is
called just before displaying the menu each time it is requested.

Given that you have received a Menu object via onCreateOptionsMenu(), you
add menu choices by calling add(). There are many flavors of this method,
which require some combination of the following parameters:

• A group identifier (int), which should be NONE unless you are
creating a specific grouped set of menu choices for use with
setGroupCheckable() (see below)

• A choice identifier (also an int), for use in identifying this choice in
the onOptionsItemSelected() callback when a menu choice is chosen

• An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own – for now, just use NONE

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

• The text of the menu choice, as a String or a resource ID

The add() family of methods all return an instance of MenuItem, where you
can adjust any of the menu item settings you have already set (e.g., the text
of the menu choice). You can also set the shortcuts for the menu choice –
single-character mnemonics that choose that menu choice when the menu
is visible. Android supports both an alphabetic (or "qwerty") set of
shortcuts and a numeric set of shortcuts. These are set individually by
calling setAlphabeticShortcut() and setNumericShortcut() respectively. The
menu is placed into alphabetic shortcut mode by calling setQwertyMode() on
the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu
features, such as:

• Calling MenuItem#setCheckable() with a choice identifier, to control if
the menu choice has a two-state checkbox alongside the title, where
the checkbox value gets toggled when the user chooses that menu
choice

• Calling Menu#setGroupCheckable() with a group identifier, to turn a
set of menu choices into ones with a mutual-exclusion radio button
between them, so one out of the group can be in the "checked" state
at any time

Finally, you can create fly-out sub-menus by calling addSubMenu(), supplying
the same parameters as addMenu(). Android will eventually call
onCreatePanelMenu(), passing it the choice identifier of your sub-menu,
along with another Menu instance representing the sub-menu itself. As with
onCreateOptionsMenu(), you should chain upward to the superclass, then add
menu choices to the sub-menu. One limitation is that you cannot
indefinitely nest sub-menus – a menu can have a sub-menu, but a sub-
menu cannot have a sub-sub-menu.

If the user makes a menu choice, your activity will be notified via the
onOptionsItemSelected() callback that a menu choice was selected. You are
given the MenuItem object corresponding to the selected menu choice. A
typical pattern is to switch() on the menu ID (item.getItemId()) and take

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

appropriate behavior. Note that onOptionsItemSelected() is used regardless
of whether the chosen menu item was in the base menu or in a submenu.

Menus in Context

By and large, context menus use the same guts as option menus. The two
main differences are how you populate the menu and how you are informed
of menu choices.

First, you need to indicate which widget(s) on your activity have context
menus. To do this, call registerForContextMenu() from your activity,
supplying the View that is the widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other
things, is passed the View you supplied in registerForContextMenu(). You can
use that to determine which menu to build, assuming your activity has
more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the
context menu is associated with, and a ContextMenu.ContextMenuInfo, which
tells you which item in the list the user did the tap-and-hold over, in case
you want to customize the context menu based on that information. For
example, you could toggle a checkable menu choice based upon the current
state of the item.

It is also important to note that onCreateContextMenu() gets called for each
time the context menu is requested. Unlike the options menu (which is
only built once per activity), context menus are discarded once they are
used or dismissed. Hence, you do not want to hold onto the supplied
ContextMenu object; just rely on getting the chance to rebuild the menu to
suit your activity's needs on an on-demand basis based on user actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you only get the MenuItem
instance that was chosen in this callback. As a result, if your activity has
two or more context menus, you may want to ensure they have unique

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

menu item identifiers for all their choices, so you can tell them apart in this
callback. Also, you can call getMenuInfo() on the MenuItem to get the
ContextMenu.ContextMenuInfo you received in onCreateContextMenu().
Otherwise, this callback behaves the same as onOptionsItemSelected() as is
described above.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the
ListView sample (List) with an associated menu. Since the menus are
defined in Java code, the XML layout need not change and is not reprinted
here.

However, the Java code has a few new behaviors:

public class MenuDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};
 public static final int EIGHT_ID = Menu.FIRST+1;
 public static final int SIXTEEN_ID = Menu.FIRST+2;
 public static final int TWENTY_FOUR_ID = Menu.FIRST+3;
 public static final int TWO_ID = Menu.FIRST+4;
 public static final int THIRTY_TWO_ID = Menu.FIRST+5;
 public static final int FORTY_ID = Menu.FIRST+6;
 public static final int ONE_ID = Menu.FIRST+7;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, items));
 selection=(TextView)findViewById(R.id.selection);

 registerForContextMenu(getListView());
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 populateMenu(menu);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 populateMenu(menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 return(applyMenuChoice(item) ||
 super.onOptionsItemSelected(item));
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 return(applyMenuChoice(item) ||
 super.onContextItemSelected(item));
 }

 private void populateMenu(Menu menu) {
 menu.add(Menu.NONE, ONE_ID, Menu.NONE, "1 Pixel");
 menu.add(Menu.NONE, TWO_ID, Menu.NONE, "2 Pixels");
 menu.add(Menu.NONE, EIGHT_ID, Menu.NONE, "8 Pixels");
 menu.add(Menu.NONE, SIXTEEN_ID, Menu.NONE, "16 Pixels");
 menu.add(Menu.NONE, TWENTY_FOUR_ID, Menu.NONE, "24 Pixels");
 menu.add(Menu.NONE, THIRTY_TWO_ID, Menu.NONE, "32 Pixels");
 menu.add(Menu.NONE, FORTY_ID, Menu.NONE, "40 Pixels");
 }

 private boolean applyMenuChoice(MenuItem item) {
 switch (item.getItemId()) {
 case ONE_ID:
 getListView().setDividerHeight(1);
 return(true);

 case EIGHT_ID:
 getListView().setDividerHeight(8);
 return(true);

 case SIXTEEN_ID:
 getListView().setDividerHeight(16);
 return(true);

 case TWENTY_FOUR_ID:
 getListView().setDividerHeight(24);
 return(true);

 case TWO_ID:

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 getListView().setDividerHeight(2);
 return(true);

 case THIRTY_TWO_ID:
 getListView().setDividerHeight(32);
 return(true);

 case FORTY_ID:
 getListView().setDividerHeight(40);
 return(true);
 }

 return(false);
 }
}

In onCreate(), we register our list widget as having a context menu, which
we fill in via our populateMenu() private method, by way of
onCreateContextMenu().

We also implement the onCreateOptionsMenu() callback, indicating that our
activity also has an options menu. Once again, we delegate to
populateMenu() to fill in the menu.

Our implementations of onOptionsItemSelected() (for options menu
selections) and onContextItemSelected() (for context menu selections) both
delegate to a private applyMenuChoice() method, plus chaining upwards to
the superclass if none of our menu choices was the one selected by the user.

In populateMenu(), we add seven menu choices, each with a unique
identifier. Being lazy, we eschew the icons.

In applyMenuChoice(), we see if any of our menu choices were chosen; if so,
we set the list's divider size to be the user-selected width.

Initially, the activity looks the same in the emulator as it did for ListDemo:

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Figure 56. The MenuDemo sample application, as initially launched

But, if you press the Menu button, you will get our options menu:

Figure 57. The same application, showing the options menu

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Clicking the More button shows the remaining two menu choices:

Figure 58. The same application, the remaining menu choices

Choosing a height (say, 16 pixels) then changes the divider height of the list
to something garish:

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Figure 59. The same application, made ugly

You can trigger the context menu by doing a tap-and-hold on any item in
the list:

Figure 60. The same application, showing a context menu

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Once again, choosing an option sets the divider height.

Yet More Inflation

We saw earlier in this book that you can describe Views via XML files and
"inflate" them into actual View objects at runtime. Android also allows you
to describe menus via XML files and "inflate" them when a menu is called
for. This helps you keep your menu structure separate from the
implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types
of resources that your project might employ. As with layouts, you can have
several menu XML files in your project, each with their own filename and
the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called
sample.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/close"
 android:title="Close"
 android:orderInCategory="3"
 android:icon="@drawable/eject" />
 <item android:id="@+id/no_icon"
 android:orderInCategory="2"
 android:title="Sans Icon" />
 <item android:id="@+id/disabled"
 android:orderInCategory="4"
 android:enabled="false"
 android:title="Disabled" />
 <group android:id="@+id/other_stuff"
 android:menuCategory="secondary"
 android:visible="false">
 <item android:id="@+id/later"
 android:orderInCategory="0"
 android:title="2nd-To-Last" />
 <item android:id="@+id/last"
 android:orderInCategory="1"
 android:title="Last" />

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

 </group>
 <item android:id="@+id/submenu"
 android:orderInCategory="3"
 android:title="A Submenu">
 <menu>
 <item android:id="@+id/non_ghost"
 android:title="Non-Ghost"
 android:visible="true"
 android:alphabeticShortcut="n" />
 <item android:id="@+id/ghost"
 android:title="A Ghost"
 android:visible="false"
 android:alphabeticShortcut="g" />
 </menu>
 </item>
</menu>

• You must start with a menu root element

• Inside a menu are item elements and group elements, the latter
representing a collection of menu items that can be operated upon
as a group

• Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents
of the submenu

• If you want to detect when an item is chosen, or to reference an
item or group from your Java code, be sure to apply an android:id,
just as you do with View layout XML

Menu Options and XML

Inside the item and group elements you can specify various options,
matching up with corresponding methods on Menu or MenuItem.

Title

The title of a menu item is provided via the android:title attribute on an
item element. This can be either a literal string or a reference to a string
resource (e.g., @string/foo).

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

Icon

Menu items optionally have icons. To provide an icon – in the form of a
reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

Order

By default, the order of the items in the menu is determined by the order
they appear in the menu XML. If you want, you can change that, by
specifying the android:orderInCategory attribute on item element. This is a
0-based index of the order for the items associated with the current
category. There is an implicit default category; groups can provide an
android:menuCategory attribute to specify a different category to use for
items in that group.

Generally, though, it is simplest just to put the items in the XML in the
order you want them to appear.

Enabled

Items and groups can be enabled or disabled, controlled in the XML via the
android:enabled attribute on the item or group element. By default, items
and groups are enabled. Disabled items and groups appear in the menu but
cannot be selected. You can change an item's status at runtime via the
setEnabled() method on MenuItem, or change a group's status via
setGroupEnabled() on Menu.

Visible

Similarly, items and groups can be visible or invisible, controlled in the
XML via the android:visible attribute on the item or group element. By
default, items and groups are visible. Invisible items and groups do not
appear in the menu at all. You can change an item's status at runtime via
the setVisible() method on MenuItem, or change a group's status via
setGroupVisible() on Menu.

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Applying Menus

In the layout XML shown above, the other_stuff group is initially invisible.
If we make it visible in our Java code, the two menu items in the group will
"magically" appear.

Shortcut

Items can have shortcuts – single letters (android:alphabeticShortcut) or
numbers (android:numericShortcut) that can be pressed to choose the item
without having to use the touchscreen, D-pad, or trackball to navigate the
full menu.

Inflating the Menu

Actually using the menu, once defined in XML, is easy. Just create a
MenuInflater and tell it to inflate your menu:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 theMenu=menu;

 new MenuInflater(this).inflate(R.menu.sample, menu);

 return(super.onCreateOptionsMenu(menu));
}

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 12

Fonts

Inevitably, you’ll get the question “hey, can we change this font?” when
doing application development. The answer depends on what fonts come
with the platform, whether you can add other fonts, and how to apply them
to the widget or whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding
new fonts. Though, as with any new environment, there are a few
idiosyncrasies to deal with.

Love The One You're With

Android natively knows three fonts, by the shorthand names of “sans”,
“serif”, and “monospace”. These fonts are actually the Droid series of fonts,
created for the Open Handset Alliance by Ascender.

For those fonts, you can just reference them in your layout XML, if you
choose, such as the following layout from the Fonts/FontSampler sample
project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.ascendercorp.com/oha.html

Fonts

 <TextView
 android:text="sans:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/sans"
 android:text="Hello, world!"
 android:typeface="sans"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="serif:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/serif"
 android:text="Hello, world!"
 android:typeface="serif"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="monospace:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/monospace"
 android:text="Hello, world!"
 android:typeface="monospace"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Custom:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/custom"
 android:text="Hello, world!"
 android:textSize="20sp"
 />
 </TableRow>
</TableLayout>

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

This layout builds a table showing short samples of four fonts. Notice how
the first three have the android:typeface attribute, whose value is one of the
three built-in font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer,
or a manager, or a customer wants a different font than one of those three.
Or perhaps you want to use a font for specialized purposes, such as a
“dingbats” font instead of a series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with
your application. To do this, simply create an assets/ folder in the project
root, and put your TrueType (TTF) fonts in the assets. You might, for
example, create assets/fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can
no longer use layout XML for this, since the XML does not know about any
fonts you may have tucked away as an application asset. Instead, you need
to make the change in Java code:

public class FontSampler extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TextView tv=(TextView)findViewById(R.id.custom);
 Typeface face=Typeface.createFromAsset(getAssets(),
 "fonts/HandmadeTypewriter.ttf");

 tv.setTypeface(face);
 }
}

Here we grab the TextView for our “custom” sample, then create a Typeface
object via the static createFromAsset() builder method. This takes the
application’s AssetManager (from getAssets()) and a path within your
assets/ directory to the font you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing
the Typeface you just created. In this case, we are using the Handmade
Typewriter font.

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm
http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Fonts

The results?

Figure 61. The FontSampler application

Note that Android does not seem to like all TrueType fonts. When Android
dislikes a custom font, rather than raise an Exception, it seems to substitute
Droid Sans (”sans”) quietly. So, if you try to use a different font and it does
not seem to be working, it may be that the font in question is incompatible
with Android, for whatever reason.

Also, you are probably best served by changing the case of your font
filenames to be all lowercase, to match the naming convention used in the
rest of your resources.

Android 1.6 added the ability to create Typeface objects based on TrueType
files in the filesystem, such as on the user's SD card, via the
createFromFile() static method on Typeface.

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an
extensive subset of the available Unicode characters. The Handmade
Typewriter font used above runs over 70KB; the DejaVu free fonts can run
upwards of 500KB apiece. Even compressed, these add bulk to your
application, so be careful not to go overboard with custom fonts, lest your
application take up too much room on your users’ phones.

Conversely, bear in mind that fonts may not have all of the glyphs that you
need. As an example, let us talk about the ellipsis.

Android's TextView class has the built-in ability to "ellipsize" text,
truncating it and adding an ellipsis if the text is longer than the available
space. You can use this via the android:ellipsize attribute, for example.
This works fairly well, at least for single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual
ellipsis character, where the three dots are contained in a single glyph.
Hence, any font that you use that you also use the "ellipsizing" feature will
need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-
screen, such that the length (in characters) is the same before and after
"ellipsizing". To make this work, Android replaces one character with the
ellipsis, and replaces all other removed characters with the Unicode
character 'ZERO WIDTH NO-BREAK SPACE' (U+FEFF). This means the
"extra" characters after the ellipsis do not take up any visible space on
screen, yet they can be part of the string.

However, this means any custom fonts you use for TextView widgets that
you use with android:ellipsize must also support this special Unicode
character. Not all fonts do, and you will get artifacts in the on-screen
representation of your shortened strings if your font lacks this character
(e.g., rogue X's appear at the end of the line).

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Fonts

And, of course, Android's international deployment means your font must
handle any language your users might be looking to enter, perhaps through
a language-specific input method editor.

Hence, while using custom fonts in Android is very possible, there are
many potential problems, and so you must weigh carefully the benefits of
the custom fonts versus their potential costs.

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 13

Embedding the WebKit Browser

Other GUI toolkits let you use HTML for presenting information, from
limited HTML renderers (e.g., Java/Swing, wxWidgets) to embedding
Internet Explorer into .NET applications. Android is much the same, in that
you can embed the built-in Web browser as a widget in your own activities,
for displaying HTML or full-fledged browsing. The Android browser is
based on WebKit, the same engine that powers Apple's Safari Web browser.

The Android browser is sufficiently complex that it gets its own Java
package (android.webkit), though using the WebView widget itself can be
simple or powerful, based upon your requirements.

A Browser, Writ Small

For simple stuff, WebView is not significantly different than any other widget
in Android – pop it into a layout, tell it what URL to navigate to via Java
code, and you're done.

For example (WebKit/Browser1), here is a simple layout with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <WebView android:id="@+id/webkit"

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

As with any other widget, you need to tell it how it should fill up the space
in the layout (in this case, it fills all remaining space).

The Java code is equally simple:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 browser.loadUrl("http://commonsware.com");
 }
}

The only bit unusual with this edition of onCreate() is that we invoke
loadUrl() on the WebView widget, to tell it to load a Web page (in this case,
the home page of some random firm).

However, we also have to make one change to AndroidManifest.xml,
requesting permission to access the Internet:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.browser1">
 <uses-permission android:name="android.permission.INTERNET" />
 <application android:icon="@drawable/cw">
 <activity android:name=".BrowserDemo1" android:label="BrowserDemo1">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

 </application>
</manifest>

If we fail to add this permission, the browser will refuse to load pages.
Permissions will be covered in greater detail in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

Figure 62. The Browser1 sample application

As with the regular Android browser, you can pan around the page by
dragging it, while the directional pad moves you around all the focusable
elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar.

Now, you may be tempted to replace the URL in that source code with
something else, such as Google's home page or something else that relies
upon Javascript. By default Javascript is turned off in WebView widgets. If you
want to enable Javascript, call getSettings().setJavaScriptEnabled(true);

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

on the WebView instance. This notion will be covered in a bit more detail
later in this chapter.

Loading It Up

There are two main ways to get content into the WebView. One, shown
above, is to provide the browser with a URL and have the browser display
that page via loadUrl(). The browser will access the Internet through
whatever means are available to that specific device at the present time
(WiFi, cellular network, Bluetooth-tethered phone, well-trained tiny carrier
pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the
browser to view. You might use this to:

• display a manual that was installed as a file with your application
package

• display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed

• generate a whole user interface using HTML, instead of using the
Android widget set

There are two flavors of loadData(). The simpler one allows you to provide
the content, the MIME type, and the encoding, all as strings. Typically, your
MIME type will be text/html and your encoding will be UTF-8 for ordinary
HTML.

For example, if you replace the loadUrl() invocation in the previous
example with the following:

browser.loadData("<html><body>Hello, world!</body></html>",
 "text/html", "UTF-8");

You get:

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Figure 63. The Browser2 sample application

This is also available as a fully-buildable sample, as WebKit/Browser2.

Navigating the Waters

As was mentioned above, there is no navigation toolbar with the WebView
widget. This allows you to use it in places where such a toolbar would be
pointless and a waste of screen real estate. That being said, if you want to
offer navigational capabilities, you can, but you have to supply the UI.

WebView offers ways to perform garden-variety browser navigation,
including:

• reload() to refresh the currently-viewed Web page

• goBack() to go back one step in the browser history, and canGoBack()
to determine if there is any history to go back to

• goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

• goBackOrForward() to go backwards or forwards in the browser
history, where negative numbers represent a count of steps to go
backwards, and positive numbers represent how many steps to go
forwards

• canGoBackOrForward() to see if the browser can go backwards or
forwards the stated number of steps (following the same
positive/negative convention as goBackOrForward())

• clearCache() to clear the browser resource cache and clearHistory()
to clear the browsing history

Entertaining the Client

Particularly if you are going to use the WebView as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times,
particularly when users click on links. You will want to make sure those
links are handled properly, either by loading your own content back into
the WebView, by submitting an Intent to Android to open the URL in a full
browser, or by some other means (see the chapter on launching activities).

Your hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied
callback object will be notified of a wide range of activities, ranging from
when parts of a page have been retrieved (onPageStarted(), etc.) to when
you, as the host application, need to handle certain user- or circumstance-
initiated events, such as:

• onTooManyRedirects()

• onReceivedHttpAuthRequest()

• etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle
the request or false if you want default handling (e.g., actually fetch the
Web page referenced by the URL). In the case of a feed reader application,
for example, you will probably not have a full browser with navigation built
into your reader, so if the user clicks a URL, you probably want to use an

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Intent to ask Android to load that page in a full browser. But, if you have
inserted a "fake" URL into the HTML, representing a link to some activity-
provided content, you can update the WebView yourself.

For example, let's amend the first browser example to be a browser-based
equivalent of our original example: an application that, upon a click, shows
the current time.

From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);
 browser.setWebViewClient(new Callback());

 loadTime();
 }

 void loadTime() {
 String page="<html><body>"
 +new Date().toString()
 +"</body></html>";

 browser.loadDataWithBaseURL("x-data://base", page,
 "text/html", "UTF-8",
 null);
 }

 private class Callback extends WebViewClient {
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 loadTime();

 return(true);
 }
 }
}

Here, we load a simple Web page into the browser (loadTime()) that
consists of the current time, made into a hyperlink to the /clock URL. We
also attach an instance of a WebViewClient subclass, providing our
implementation of shouldOverrideUrlLoading(). In this case, no matter what
the URL, we want to just reload the WebView via loadTime().

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

Running this activity gives us:

Figure 64. The Browser3 sample application

Selecting the link and clicking the D-pad center button will "click" the link,
causing us to rebuild the page with the new time.

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop Web browser, you have some sort of "settings"
or "preferences" or "options" window. Between that and the toolbar
controls, you can tweak and twiddle the behavior of your browser, from
preferred fonts to the behavior of Javascript.

Similarly, you can adjust the settings of your WebView widget as you see fit,
via the WebSettings instance returned from calling the widget's
getSettings() method.

There are lots of options on WebSettings to play with. Most appear fairly
esoteric (e.g., setFantasyFontFamily()). However, here are some that you
may find more useful:

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Embedding the WebKit Browser

• Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like
LARGER and SMALLEST)

• Control Javascript via setJavaScriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows)

• Control Web site rendering via setUserAgent() – 0 means the WebView
gives the Web site a user-agent string that indicates it is a mobile
browser, while 1 results in a user-agent string that suggests it is a
desktop browser

The settings you change are not persistent, so you should store them
somewhere (such as via the Android preferences engine) if you are allowing
your users to determine the settings, versus hard-wiring the settings in your
application.

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 14

Showing Pop-Up Messages

Sometimes, your activity (or other piece of Android code) will need to
speak up.

Not every interaction with Android users will be neat, tidy, and containable
in activities composed of views. Errors will crop up. Background tasks may
take way longer than expected. Something asynchronous may occur, such
as an incoming message. In these and other cases, you may need to
communicate with the user outside the bounds of the traditional user
interface.

Of course, this is nothing new. Error messages in the form of dialog boxes
have been around for a very long time. More subtle indicators also exist,
from task tray icons to bouncing dock icons to a vibrating cell phone.

Android has quite a few systems for letting you alert your users outside the
bounds of an Activity-based UI. One, notifications, is tied heavily into
intents and services and, as such, is covered in a later chapter. In this
chapter, you will see two means of raising pop-up messages: toasts and
alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on
its own without user interaction. Moreover, it does not take focus away

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

from the currently-active Activity, so if the user is busy writing the next
Great Programming Guide, they will not have keystrokes be "eaten" by the
message.

Since a Toast is transient, you have no way of knowing if the user even
notices it. You get no acknowledgment from them, nor does the message
stick around for a long time to pester the user. Hence, the Toast is mostly
for advisory messages, such as indicating a long-running background task is
completed, the battery has dropped to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() that
accepts a String (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other Context) plus a
duration. The duration is expressed in the form of the LENGTH_SHORT or
LENGTH_LONG constants to indicate, on a relative basis, how long the message
should remain visible.

If you would prefer your Toast be made out of some other View, rather than
be a boring old piece of text, simply create a new Toast instance via the
constructor (which takes a Context), then call setView() to supply it with the
view to use and setDuration() to set the duration.

Once your Toast is configured, call its show() method, and the message will
be displayed.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you
want is an AlertDialog. As with any other modal dialog box, an AlertDialog
pops up, grabs the focus, and stays there until closed by the user. You might
use this for a critical error, a validation message that cannot be effectively
displayed in the base activity UI, or something else where you are sure that
the user needs to see the message and needs to see it now.

The simplest way to construct an AlertDialog is to use the Builder class.
Following in true builder style, Builder offers a series of methods to

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

configure an AlertDialog, each method returning the Builder for easy
chaining. At the end, you call show() on the builder to display the dialog
box.

Commonly-used configuration methods on Builder include:

• setMessage() if you want the "body" of the dialog to be a simple
textual message, from either a supplied String or a supplied string
resource ID

• setTitle() and setIcon(), to configure the text and/or icon to
appear in the title bar of the dialog box

• setPositiveButton(), setNeutralButton(), and setNegativeButton(),
to indicate which button(s) should appear across the bottom of the
dialog, where they should be positioned (left, center, or right,
respectively), what their captions should be, and what logic should
be invoked when the button is clicked (besides dismissing the
dialog).

If you need to configure the AlertDialog beyond what the builder allows,
instead of calling show(), call create() to get the partially-built AlertDialog
instance, configure it the rest of the way, then call one of the flavors of
show() on the AlertDialog itself.

Once show() is called, the dialog box will appear and await user input.

Checking Them Out

To see how these work in practice, take a peek at Messages/Message,
containing the following layout...:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <Button
 android:id="@+id/alert"
 android:text="Raise an alert"

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <Button
 android:id="@+id/toast"
 android:text="Make a toast"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

...and Java code:

public class MessageDemo extends Activity implements View.OnClickListener {
 Button alert;
 Button toast;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 alert=(Button)findViewById(R.id.alert);
 alert.setOnClickListener(this);
 toast=(Button)findViewById(R.id.toast);
 toast.setOnClickListener(this);
 }

 public void onClick(View view) {
 if (view==alert) {
 new AlertDialog.Builder(this)
 .setTitle("MessageDemo")
 .setMessage("eek!")
 .setNeutralButton("Close", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 // do nothing – it will close on its own
 }
 })
 .show();
 }
 else {
 Toast
 .makeText(this, "<clink, clink>", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

The layout is unremarkable – just a pair of buttons to trigger the alert and
the toast.

200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

When you click the alert button, we use a builder (new Builder(this)) to set
the title (setTitle("MessageDemo")), message (setMessage("eek!")), and
"neutral button" (setNeutralButton("Close", new OnClickListener() ...)
before showing the dialog. When the button is clicked, the OnClickListener
callback does nothing – the mere fact the button was pressed causes the
dialog to be dismissed. However, you could update information in your
activity based upon the user action, particularly if you have multiple
buttons for the user to choose from. The result is a typical dialog box:

Figure 65. The MessageDemo sample application, after clicking the "Raise an
alert" button

When you click the toast button, the Toast class makes us a text-based toast
(makeText(this, "<clink, clink>", LENGTH_SHORT)), which we then show().
The result is a short-lived, non-interrupting message:

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Showing Pop-Up Messages

Figure 66. The same application, after clicking the "Make a toast" button

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 15

Dealing with Threads

Ideally, you want your activities to be downright snappy, so your users don't
feel that your application is sluggish. Responding to user input quickly
(e.g., 200ms) is a fine goal. At minimum, though, you need to make sure
you respond within 5 seconds, lest the ActivityManager decide to play the
role of the Grim Reaper and kill off your activity as being non-responsive.

Of course, your activity might have real work to do, which takes non-
negligible amounts of time. This invariably involves the use of a
background thread. Android provides a veritable cornucopia of means to
set up background threads yet allow them to safely interact with the UI on
the UI thread.

The "safely interact" concept is crucial. You cannot modify any part of the
UI from a background thread – that must be done on the UI thread. This
generally means that there will need to be some coordination between
background threads doing the work and the UI thread showing the results
of that work.

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread
is to create an instance of a Handler subclass. You only need one Handler
object per activity, and you do not need to manually register it or anything

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

– merely creating the instance is sufficient to register it with the Android
threading subsystem.

Your background thread can communicate with the Handler, which will do
all of its work on the activity's UI thread. This is important, as UI changes,
such as updating widgets, should only occur on the activity's UI thread.

You have two options for communicating with the Handler: messages and
Runnable objects.

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the
Message object out of the pool. There are a few flavors of obtainMessage(),
allowing you to just create empty Message objects, or ones populated with
message identifiers and arguments. The more complicated your Handler
processing needs to be, the more likely it is you will need to put data into
the Message to help the Handler distinguish different events.

Then, you send the Message to the Handler via its message queue, using one
of the sendMessage...() family of methods, such as:

• sendMessage() puts the message on the queue immediately

• sendMessageAtFrontOfQueue() puts the message on the queue
immediately, and moreover puts it at the front of the message
queue (versus the back, as is the default), so your message takes
priority over all others

• sendMessageAtTime() puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock.uptimeMillis())

• sendMessageDelayed() puts the message on the queue after a delay,
expressed in milliseconds

To process these messages, your Handler needs to implement
handleMessage(), which will be called with each message that appears on the

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

message queue. There, the handler can update the UI as needed. However,
it should still do that work quickly, as other UI work is suspended until the
Handler is done.

For example, let's create a ProgressBar and update it via a Handler. Here is
the layout from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also
employs the style property. This particular style indicates this ProgressBar
should be drawn as the traditional horizontal bar showing the amount of
work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.widget.ProgressBar;
import java.util.concurrent.atomic.AtomicBoolean;

public class HandlerDemo extends Activity {
 ProgressBar bar;
 Handler handler=new Handler() {
 @Override
 public void handleMessage(Message msg) {
 bar.incrementProgressBy(5);
 }
 };
 AtomicBoolean isRunning=new AtomicBoolean(false);

 @Override
 public void onCreate(Bundle icicle) {

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

 super.onCreate(icicle);
 setContentView(R.layout.main);
 bar=(ProgressBar)findViewById(R.id.progress);
 }

 public void onStart() {
 super.onStart();
 bar.setProgress(0);

 Thread background=new Thread(new Runnable() {
 public void run() {
 try {
 for (int i=0;i<20 && isRunning.get();i++) {
 Thread.sleep(1000);
 handler.sendMessage(handler.obtainMessage());
 }
 }
 catch (Throwable t) {
 // just end the background thread
 }
 }
 });

 isRunning.set(true);
 background.start();
 }

 public void onStop() {
 super.onStop();
 isRunning.set(false);
 }
}

As part of constructing the Activity, we create an instance of Handler, with
our implementation of handleMessage(). Basically, for any message received,
we update the ProgressBar by 5 points, then exit the message handler.

We then take advantage of a pair of callback methods we can implement,
named onStart() and onStop(). These are other Activity lifecycle methods.
For now, take it on faith that onStart() is called after onCreate() when the
activity starts up, and onStop() is called as part of the activity going away.
We will go into more details on these two methods in an upcoming chapter.

In onStart(), we set up a background thread. In a real system, this thread
would do something meaningful. Here, we just sleep one second, post a
Message to the Handler, and repeat for a total of 20 passes. This, combined
with the 5-point increase in the ProgressBar position, will march the bar

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

clear across the screen, as the default maximum value for ProgressBar is 100.
You can adjust that maximum via setMax(), such as setting the maximum to
be the number of database rows you are processing, and updating once per
row.

Note that we then leave onStart(). This is crucial. The onStart() method is
invoked on the activity UI thread, so it can update widgets and such.
However, that means we need to get out of onStart(), both to let the
Handler get its work done, and also so Android does not think our activity is
stuck.

The resulting activity is simply a horizontal progress bar:

Figure 67. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code
arranging to update the progress on the UI thread, for this specific widget,
that is not necessary. At least as of Android 1.5, ProgressBar is now "UI
thread safe", in that you can update it from any thread, and it will handle
the details of performing the actual UI update on the UI thread.

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable
objects to the Handler, which will run those Runnable objects on the activity
UI thread. Handler offers a set of post...() methods for passing Runnable
objects in for eventual processing.

Running In Place

Just as Handler supports post() and postDelayed() to add Runnable objects to
the event queue, you can use those same methods on View. This slightly
simplifies your code, in that you can then skip the Handler object. However,
you lose a bit of flexibility, and the Handler has been around longer in the
Android toolkit and may be more tested.

Where, Oh Where Has My UI Thread Gone?

Sometimes, you may not know if you are currently executing on the UI
thread of your application. For example, if you package some of your code
in a JAR for others to reuse, you might not know whether your code is
being executed on the UI thread or from a background thread.

To help combat this problem, Activity offers runOnUiThread(). This works
similar to the post() methods on Handler and View, in that it queues up a
Runnable to run on the UI thread...if you are not on the UI thread right now.
If you already are on the UI thread, it invokes the Runnable immediately.
This gives you the best of both worlds: no delay if you are on the UI thread,
yet safety in case you are not.

Asyncing Feeling

Android 1.5 introduced a new way of thinking about background
operations: AsyncTask. In one (reasonably) convenient class, Android will
handle all of the chores of doing work on the UI thread versus on a
background thread. Moreover, Android itself allocates and removes that

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

background thread. And, it maintains a small work queue, further
accentuating the "fire and forget" feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles: "When a man buys a 1/4"
drill bit at a hardware store, he does not want a 1/4" drill bit – he wants 1/4"
holes". Hardware stores cannot sell holes, so they sell the next-best thing:
devices (drills and drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread
management do not strictly want background threads – they want work to
be done off the UI thread, so users are not stuck waiting and activities do
not get the dreaded "application not responding" (ANR) error. And while
Android cannot magically cause work to not consume UI thread time,
Android can offer things that make such background operations easier and
more transparent. AsyncTask is one such example.

To use AsyncTask, you must:

• Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

• Override one or more AsyncTask methods to accomplish the
background work, plus whatever work associated with the task that
needs to be done on the UI thread (e.g., update progress)

• When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is:

• Create your own background thread

• Terminate that background thread at an appropriate time

• Call all sorts of methods to arrange for bits of processing to be done
on the UI thread

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing
the Runnable interface. AsyncTask uses generics, and so you need to specify
three data types:

• The type of information that is needed to process the task (e.g.,
URLs to download)

• The type of information that is passed within the task to indicate
progress

• The type of information that is passed when the task is completed
to the post-task code

What makes this all the more confusing is that the first two data types are
actually used as varargs, meaning that an array of these types is used within
your AsyncTask subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your
ends.

The one you must override, for the task class to be useful, is
doInBackground(). This will be called by AsyncTask on a background thread.
It can run as long as it needs to in order to accomplish whatever work needs
to be done for this specific task. Note, though, that tasks are meant to be
finite – using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of
the first of the three data types listed above – the data needed to process
the task. So, if your task's mission is to download a collection of URLs,
doInBackground() will receive those URLs to process.

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

The doInBackground() method must return a value of the third data type
listed above – the result of the background work.

You may wish to override onPreExecute(). This method is called, from the
UI thread, before the background thread executes doInBackground(). Here,
you might initialize a ProgressBar or otherwise indicate that background
work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from
the UI thread, after doInBackground() completes. It receives, as a parameter,
the value returned by doInBackground() (e.g., success or failure flag). Here,
you might dismiss the ProgressBar and make use of the work done in the
background, such as updating the contents of a list.

In addition, you may wish to override onProgressUpdate(). If
doInBackground() calls the task's publishProgress() method, the object(s)
passed to that method are provided to onProgressUpdate(), but in the UI
thread. That way, onProgressUpdate() can alert the user as to the progress
that has been made on the background work, such as updating a
ProgressBar or continuing an animation. The onProgressUpdate() method
will receive a varargs of the second data type from the above list – the data
published by doInBackground() via publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and
varargs, it is not too bad.

For example, below you will find an implementation of a ListActivity that
uses an AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

import android.widget.ArrayAdapter;
import android.widget.Toast;
import java.util.ArrayList;

public class AsyncDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new ArrayList()));

 new AddStringTask().execute();
 }

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
 }

 @Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words
to an ArrayAdapter, we simulate having to work to create these words in the
background using AddStringTask, our AsyncTask implementation.

Let's examine this piece by piece:

The AddStringTask Declaration

class AddStringTask extends AsyncTask<Void, String, Void> {

Here, we use the generics to set up the specific types of data we are going to
leverage in AddStringTask. Specifically:

• We do not need any configuration information in this case, so our
first type is Void

• We want to pass each string "generated" by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

• We do not have any results, strictly speaking (beyond the updates),
so our third type is Void

The doInBackground() Method

@Override
protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
}

The doInBackground() method is invoked in a background thread. Hence,
we can take as long as we like. In a production application, we would be,
perhaps, iterating over a list of URLs and downloading each. Here, we
iterate over our static list of lorem ipsum words, call publishProgress() for
each, and then sleep 200 milliseconds to simulate real work being done.

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says
we need to accept a varargs of the first data type, which is why our method
parameter is Void... unused.

Since we elected to have no results, we should not need to return anything.
Again, though, the contract with AsyncTask says we have to return an object
of the third data type. Since that data type is Void, our returned object is
null.

The onProgressUpdate() Method

@Override
protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
}

The onProgressUpdate() method is called on the UI thread, and we want to
do something to let the user know we are progressing on loading up these
strings. In this case, we simply add the string to the ArrayAdapter, so it gets
appended to the end of the list.

The onProgressUpdate() method receives a String... varargs because that is
the second data type in our class declaration. Since we are only passing one
string per call to publishProgress(), we only need to examine the first entry
in the varargs array.

The onPostExecute() Method

@Override
protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
}

The onPostExecute() method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

system, there may be some ProgressBar to dismiss or some animation to
stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters.
The contract with AsyncTask says we have to accept a single value of the
third data type. Since that data type is Void, our method parameter is Void
unused.

The Activity

new AddStringTask().execute();

To use AddStringsTask, we simply create an instance and call execute() on it.
That starts the chain of events eventually leading to the background thread
doing its work.

If AddStringsTask required configuration parameters, we would have not
used Void as our first data type, and the constructor would accept zero or
more parameters of the defined type. Those values would eventually be
passed to doInBackground().

The Results

If you build, install, and run this project, you will see the list being
populated in "real time" over a few seconds, followed by a Toast indicating
completion.

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

Figure 68. The AsyncDemo, partway through loading the list of words

And Now, The Caveats

Background threads, while eminently possible using the Android Handler
system, are not all happiness and warm puppies. Background threads not
only add complexity, but they have real-world costs in terms of available
memory, CPU, and battery life.

To that end, there are a wide range of scenarios you need to account for
with your background thread, including:

• The possibility that users will interact with your activity's UI while
the background thread is chugging along. If the work that the
background thread is doing is altered or invalidated by the user
input, you will need to communicate this to the background thread.
Android includes many classes in the java.util.concurrent package
that will help you communicate safely with your background
thread.

• The possibility that the activity will be killed off while background
work is going on. For example, after starting your activity, the user

216

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing with Threads

might have a call come in, followed by a text message, followed by a
need to look up a contact...all of which might be sufficient to kick
your activity out of memory. The next chapter will cover the various
events Android will take your activity through; hook the proper
ones and be sure to shut down your background thread cleanly
when you have the chance.

• The possibility that your user will get irritated if you chew up a lot
of CPU time and battery life without giving any payback. Tactically,
this means using ProgressBar or other means of letting the user
know that something is happening. Strategically, this means you
still need to be efficient at what you do – background threads are no
panacea for sluggish or pointless code.

• The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the
Internet, the device might lose connectivity. Alerting the user of the
problem via a Notification and shutting down the background
thread may be your best option.

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 16

Handling Activity Lifecycle
Events

While this may sound like a broken record...please remember that Android
devices, by and large, are phones. As such, some activities are more
important that others – taking a call is probably more important to users
than is playing Sudoku. And, since it is a phone, it probably has less RAM
than does your current desktop or notebook.

As a result, your activity may find itself being killed off because other
activities are going on and the system needs your activity's memory. Think
of it as the Android equivalent of the "circle of life" – your activity dies so
others may live, and so on. You cannot assume that your activity will run
until you think it is complete, or even until the user thinks it is complete.

This is one example – perhaps the most important example – of how an
activity's lifecycle will affect your own application logic. This chapter covers
the various states and callbacks that make up an activity's lifecycle and how
you can hook into them appropriately.

Schroedinger's Activity

An activity, generally speaking, is in one of four states at any point in time:

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

• Active: the activity was started by the user, is running, and is in the
foreground. This is what you're used to thinking of in terms of your
activity's operation.

• Paused: the activity was started by the user, is running, and is
visible, but a notification or something is overlaying part of the
screen. During this time, the user can see your activity but may not
be able to interact with it. For example, if a call comes in, the user
will get the opportunity to take the call or ignore it.

• Stopped: the activity was started by the user, is running, but it is
hidden by other activities that have been launched or switched to.
Your application will not be able to present anything meaningful to
the user directly, only by way of a Notification .

• Dead: either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of
available memory.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the
four states listed above. Some transitions may result in multiple calls to
your activity, and sometimes Android will kill your application without
calling it. This whole area is rather murky and probably subject to change,
so pay close attention to the official Android documentation as well as this
section when deciding which events to pay attention to and which you can
safely ignore.

Note that for all of these, you should chain upward and invoke the
superclass' edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in
all the examples. This will get called in three situations:

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

1. When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

2. If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSaveInstanceState() as a parameter (see below).

3. If the activity had been running and you have set up your activity to
have different resources based on different device states (e.g.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called.

Here is where you initialize your user interface and set up anything that
needs to be done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the
activity is shutting down, either because the activity called finish() (which
"finishes" the activity) or because Android needs RAM and is closing the
activity prematurely. Note that onDestroy() may not get called if the need
for RAM is urgent (e.g., incoming phone call) and that the activity will just
get shut down regardless. Hence, onDestroy() is mostly for cleanly releasing
resources you obtained in onCreate() (if any).

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being
launched, or because it is being brought back to the foreground after
having been hidden (e.g., by another activity, by an incoming phone call).

The onStart() method is called in either of those cases. The onRestart()
method is called in the case where the activity had been stopped and is now
restarting.

Conversely, onStop() is called when the activity is about to be stopped.

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

onPause() and onResume()

The onResume() method is called just before your activity comes to the
foreground, either after being initially launched, being restarted from a
stopped state, or after a pop-up dialog (e.g., incoming call) is cleared. This
is a great place to refresh the UI based on things that may have occurred
since the user last was looking at your activity. For example, if you are
polling a service for changes to some information (e.g., new entries for a
feed), onResume() is a fine time to both refresh the current view and, if
applicable, kick off a background thread to update the view (e.g., via a
Handler).

Conversely, anything that steals your user away from your activity – mostly,
the activation of another activity – will result in your onPause() being called.
Here, you should undo anything you did in onResume(), such as stopping
background threads, releasing any exclusive-access resources you may have
acquired (e.g., camera), and the like.

Once onPause() is called, Android reserves the right to kill off your activity's
process at any point. Hence, you should not be relying upon receiving any
further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the
application-general level (e.g., wiring together the last pieces of your UI in
onCreate(), closing down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of
seamlessness. Activities may come and go as dictated by memory
requirements, but users are, ideally, unaware that this is going on. If, for
example, they were using a calculator, and come back to that calculator
after an absence, they should see whatever number(s) they were working on
originally – unless they themselves took some action to close down the
calculator (e.g., pressed the BACK button to exit it).

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Activity Lifecycle Events

To make all this work, activities need to be able to save their application-
instance state, and to do so quickly and cheaply. Since activities could get
killed off at any time, activities may need to save their state more frequently
than one might expect. Then, when the activity restarts, the activity should
get its former state back, so it can restore the activity to the way it appeared
previously. Think of it as establishing a bookmark, such that when the user
returns to that bookmark, you can return the application to the same state
as when they left it.

Saving instance state is handled by onSaveInstanceState(). This supplies a
Bundle, into which activities can pour whatever data they need (e.g., the
number showing on the calculator's display). This method implementation
needs to be speedy, so do not try to do too much fancy – just put your data
in the Bundle and exit the method.

That instance state is provided to you again in two places:

1. In onCreate()

2. In onRestoreInstanceState()

It is your choice when you wish to re-apply the state data to your activity –
either callback is a reasonable option.

The built-in implementation of onSaveInstanceState() will save likely
mutable state from a subset of widgets. For example, it will save the text in
an EditText, but it will not save whether or not a Button is enabled or
disabled. This works so long as the widgets are uniquely identified via their
android:id attributes.

Hence, if you implement onSaveInstanceState(), you can elect to either
chain upward and leverage the inherited implementation or not and
override the inherited implementation. Similarly, some activities may not
need onSaveInstanceState() to be implemented at all, as the built-in one
handles everything that is needed.

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 17

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by
the user from the device's launcher. This, of course, is the most obvious
case for getting your activity up and visible to the user. And, in many cases
it is the primary way the user will start using your application.

However, remember that the Android system is based upon lots of loosely-
coupled components. What you might accomplish in a desktop GUI via
dialog boxes, child windows, and the like are mostly supposed to be
independent activities. While one activity will be "special", in that it shows
up in the launcher, the other activities all need to be reached...somehow.

The "how" is via intents.

An intent is basically a message that you pass to Android saying, "Yo! I want
to do...er...something! Yeah!" How specific the "something" is depends on
the situation – sometimes you know exactly what you want to do (e.g., open
up one of your other activities), and sometimes you don't.

In the abstract, Android is all about intents and receivers of those intents.
So, now that we are well-versed in creating activities, let's dive into intents,
so we can create more complex applications while simultaneously being
"good Android citizens".

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

What's Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol –
HTTP – he set up a system of verbs plus addresses in the form of URLs. The
address indicated a resource, such as a Web page, graphic, or server-side
program. The verb indicated what should be done: GET to retrieve it, POST
to send form data to it for processing, etc.

Intents are similar, in that they represent an action plus context. There are
more actions and more components to the context with Android intents
than there are with HTTP verbs and resources, but the concept is still the
same.

Just as a Web browser knows how to process a verb+URL pair, Android
knows how to find activities or other application logic that will handle a
given intent.

Pieces of Intents

The two most important pieces of an intent are the action and what
Android refers to as the "data". These are almost exactly analogous to HTTP
verbs and URLs – the action is the verb, and the "data" is a Uri, such as
content://contacts/people/1 representing a contact in the contacts
database. Actions are constants, such as ACTION_VIEW (to bring up a viewer
for the resource), ACTION_EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a Uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android
would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an intent (represented as an
Intent object), besides the action and "data" Uri, such as:

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

• A category. Your "main" activity will be in the LAUNCHER category,
indicating it should show up on the launcher menu. Other activities
will probably be in the DEFAULT or ALTERNATIVE categories.

• A MIME type, indicating the type of resource you want to operate
on, if you don't know a collection Uri.

• A component, which is to say, the class of the activity that is
supposed to receive this intent. Using components this way obviates
the need for the other properties of the intent. However, it does
make the intent more fragile, as it assumes specific
implementations.

• "Extras", which is a Bundle of other information you want to pass
along to the receiver with the intent, that the receiver might want
to take advantage of. What pieces of information a given receiver
can use is up to the receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your intent, Android
has no doubt where the intent is supposed to be routed to – it will launch
the named activity. This might be OK if the target intent is in your
application. It definitely is not recommended for sending intents to other
applications. Component names, by and large, are considered private to the
application and are subject to change. Content Uri templates and MIME
types are the preferred ways of identifying services you wish third-party
code to supply.

If you do not specify the target component, then Android has to figure out
what activities (or other intent receivers) are eligible to receive the intent.
Note the use of the plural "activities", as a broadly-written intent might well
resolve to several activities. That is the...ummm...intent (pardon the pun),
as you will see later in this chapter. This routing approach is referred to as
implicit routing.

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Basically, there are three rules, all of which must be true for a given activity
to be eligible for a given intent:

1. The activity must support the specified action

2. The activity must support the stated MIME type (if supplied)

3. The activity must support all of the categories named in the intent

The upshot is that you want to make your intents specific enough to find
the right receiver(s), and no more specific than that.

This will become clearer as we work through some examples later in this
chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare
intent filters, so Android knows which intents should go to that
component. To do this, you need to add intent-filter elements to your
AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the
Android application-building script (android create project or the IDE
equivalent). They look something like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Note the intent-filter element under the activity element. Here, we
declare that this activity:

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

• Is the main activity for this application

• It is in the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows
this is the component it should launch when somebody chooses the
application from the main menu.

You are welcome to have more than one action or more than one category
in your intent filters. That indicates that the associated component (e.g.,
activity) handles multiple different sorts of intents.

More than likely, you will also want to have your secondary (non-MAIN)
activities specify the MIME type of data they work on. Then, if an intent is
targeted for that MIME type – either directly, or indirectly by the Uri
referencing something of that type – Android will know that the
component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
 </intent-filter>
</activity>

This activity will get launched by an intent requesting to view a Uri
representing a vnd.android.cursor.item/vnd.commonsware.tour piece of
content. That Intent could come from another activity in the same
application (e.g., the MAIN activity for this application) or from another
activity in another Android application that happens to know a Uri that this
activity handles.

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

Narrow Receivers

In the examples shown above, the intent filters were set up on activities.
Sometimes, tying intents to activities is not exactly what we want:

• Some system events might cause us to want to trigger something in
a service rather than an activity

• Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if we get intent X and the database
has a Y, then launch activity M; if the database does not have a Y,
then launch activity N)

For these cases, Android offers the intent receiver, defined as a class
implementing the BroadcastReceiver interface. Intent receivers are
disposable objects designed to receive intents – particularly broadcast
intents – and take action, typically involving launching other intents to
trigger logic in an activity, service, or other component.

The BroadcastReceiver interface has only one method: onReceive(). Intent
receivers implement that method, where they do whatever it is they wish to
do upon an incoming intent. To declare an intent receiver, add a receiver
element to your AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />

An intent receiver is only alive for as long as it takes to process onReceive()
– as soon as that method returns, the receiver instance is subject to garbage
collection and will not be reused. This means intent receivers are somewhat
limited in what they can do, mostly to avoid anything that involves any sort
of callback. For example, they cannot bind to a service, and they cannot
open a dialog box.

The exception is if the BroadcastReceiver is implemented on some longer-
lived component, such as an activity or service – in that case, the intent
receiver lives as long as its "host" does (e.g., until the activity is frozen).
However, in this case, you cannot declare the intent receiver via

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Intent Filters

AndroidManifest.xml. Instead, you need to call registerReceiver() on your
Activity's onResume() callback to declare interest in an intent, then call
unregisterReceiver() from your Activity's onPause() when you no longer
need those intents.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages
around: it only works when the receiver is active. To quote from the
documentation for BroadcastReceiver:

If registering a receiver in your Activity.onResume() imple-
mentation, you should unregister it in Activity.onPause().
(You won't receive intents when paused, and this will cut
down on unnecessary system overhead). Do not unregister in
Activity.onSaveInstanceState(), because this won't be called
if the user moves back in the history stack.

Hence, you can only really use the Intent framework as an arbitrary
message bus if:

• Your receiver does not care if it misses messages because it was not
active, or

• You provide some means of getting the receiver "caught up" on
messages it missed while it was inactive

In the chapters on creating and using services, you will see an example of
the former condition, where the receiver (service client) will use Intent-
based messages when they are available but does not need them if the
client is not active.

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 18

Launching Activities and Sub-
Activities

As discussed previously, the theory behind the Android UI architecture is
that developers should decompose their application into distinct activities,
each implemented as an Activity, each reachable via intents, with one
"main" activity being the one launched by the Android launcher. For
example, a calendar application could have activities for viewing the
calendar, viewing a single event, editing an event (including adding a new
one), and so forth.

This, of course, implies that one of your activities has the means to start up
another activity. For example, if somebody clicks on an event from the
view-calendar activity, you might want to show the view-event activity for
that event. This means that, somehow, you need to be able to cause the
view-event activity to launch and show a specific event (the one the user
clicked upon).

This can be further broken down into two scenarios:

1. You know what activity you want to launch, probably because it is
another activity in your own application

2. You have a content Uri to...something, and you want your users to
be able to do...something with it, but you do not know up front
what the options are

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

This chapter covers the first scenario; the companion advanced Android
book handles the second.

Peers and Subs

One key question you need to answer when you decide to launch an activity
is: does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect
authentication information for some Web service you are connecting to –
maybe you need to authenticate with OpenID in order to use an OAuth
service. In this case, your main activity will need to know when the
authentication is complete so it can start to use the Web service.

On the other hand, imagine an email application in Android. When the
user elects to view an attachment, neither you nor the user necessarily
expect the main activity to know when the user is done viewing that
attachment.

In the first scenario, the launched activity is clearly subordinate to the
launching activity. In that case, you probably want to launch the child as a
sub-activity, which means your activity will be notified when the child
activity is complete.

In the second scenario, the launched activity is more a peer of your activity,
so you probably want to launch the “child” just as a regular activity. Your
activity will not be informed when the “child” is done, but, then again, your
activity really doesn't need to know.

Start 'Em Up

The two pieces for starting an activity are an intent and your choice of how
to start it up.

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://oauth.net/
http://openid.net/
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

Launching Activities and Sub-Activities

Make an Intent

As discussed in a previous chapter, intents encapsulate a request, made to
Android, for some activity or other intent receiver to do something.

If the activity you intend to launch is one of your own, you may find it
simplest to create an explicit intent, naming the component you wish to
launch. For example, from within your activity, you could create an intent
like this:

new Intent(this, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. This
activity would need to be named in your AndroidManifest.xml file, though
not necessarily with any intent filter, since you are trying to request it
directly.

Or, you could put together an intent for some Uri, requesting a particular
action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION_VIEW, uri);

Here, given that we have the latitude and longitude of some position (lat
and lon, respectively) of type Double, we construct a geo scheme Uri and
create an intent requesting to view this Uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child
activity to launch. You have two choices:

1. The simplest option is to call startActivity() with the Intent – this
will cause Android to find the best-match activity and pass the
intent to it for handling. Your activity will not be informed when
the “child” activity is complete.

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

2. You can call startActivityForResult(), passing it the Intent and a
number (unique to the calling activity). Android will find the best-
match activity and pass the intent over to it. However, your activity
will be notified when the child activity is complete via the
onActivityResult() callback (see below).

With startActivityForResult(), as noted, you can implement the
onActivityResult() callback to be notified when the child activity has
completed its work. The callback receives the unique number supplied to
startActivityForResult(), so you can determine which child activity is the
one that has completed. You also get:

• A result code, from the child activity calling setResult(). Typically
this is RESULT_OK or RESULT_CANCELED, though you can create your own
return codes (pick a number starting with RESULT_FIRST_USER)

• An optional String containing some result data, possibly a URL to
some internal or external resource – for example, a ACTION_PICK
intent typically returns the selected bit of content via this data
string

• An optional Bundle containing additional information beyond the
result code and data string

To demonstrate launching a peer activity, take a peek at the
Activities/Launch sample application. The XML layout is fairly
straightforward: two fields for the latitude and longitude, plus a button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1,2"
 >
 <TableRow>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="2dip"

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

 android:paddingRight="4dip"
 android:text="Location:"
 />
 <EditText android:id="@+id/lat"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 android:layout_weight="1"
 />
 <EditText android:id="@+id/lon"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 android:layout_weight="1"
 />
 </TableRow>
 </TableLayout>
 <Button android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Show Me!"
 />
</LinearLayout>

The button's OnClickListener simply takes the latitude and longitude, pours
them into a geo scheme Uri, then starts the activity.

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LaunchDemo extends Activity {
 private EditText lat;
 private EditText lon;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.map);
 lat=(EditText)findViewById(R.id.lat);

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

 lon=(EditText)findViewById(R.id.lon);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String _lat=lat.getText().toString();
 String _lon=lon.getText().toString();
 Uri uri=Uri.parse("geo:"+_lat+","+_lon);

 startActivity(new Intent(Intent.ACTION_VIEW, uri));
 }
 });
 }
}

The activity is not much to look at:

Figure 69. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and
click the button, the resulting map is more interesting. Note that this is the
built-in Android map activity – we did not create our own activity to display
this map.

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Figure 70. The map launched by Launch Demo, showing the Lincoln Memorial
in Washington DC

In a later chapter, you will see how you can create maps in your own
activities, in case you need greater control over how the map is displayed.

NOTE: This sample application may not work on an Android 2.0 AVD in
the emulator, as the AVD appears to lack the Maps application.

Tabbed Browsing, Sort Of

One of the main features of the modern desktop Web browser is tabbed
browsing, where a single browser window can show several pages split
across a series of tabs. On a mobile device, this may not make a lot of sense,
given that you lose screen real estate for the tabs themselves.

In this book, however, we do not let little things like sensibility stop us, so
let us demonstrate a tabbed browser, using TabActivity and Intent objects.

As you may recall from the section on tabbed views from earlier in this
book, a tab can have either a View or an Activity as its contents. If you want

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

to use an Activity as the content of a tab, you provide an Intent that will
launch the desired Activity; Android's tab-management framework will
then pour the Activity's user interface into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo:
Uri in the previous example:

Intent i=new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in Browser application and get all of the
features that it offers.

Alas, this does not work. You cannot host other applications' activities in
your tabs, only your own activities, for security reasons.

So, we dust off our WebView demos from the chapter on WebKit and use
those instead, repackaged as Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

public class IntentTabDemo extends TabActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TabHost host=getTabHost();

 host.addTab(host.newTabSpec("one")
 .setIndicator("CW")
 .setContent(new Intent(this, CWBrowser.class)));
 host.addTab(host.newTabSpec("two")
 .setIndicator("Android")
 .setContent(new Intent(this, AndroidBrowser.class)));
 }
}

As you can see, we are using TabActivity as the base class, and so we do not
need our own layout XML – TabActivity supplies it for us. All we do is get
access to the TabHost and add two tabs, each specifying an Intent that
directly refers to another class. In this case, our two tabs will host a
CWBrowser and an AndroidBrowser, respectively.

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Those activities are simple modifications to the earlier browser demos:

public class CWBrowser extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 browser=new WebView(this);
 setContentView(browser);
 browser.loadUrl("http://commonsware.com");
 }
}

public class AndroidBrowser extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 browser=new WebView(this);
 setContentView(browser);
 browser.loadUrl("http://www.android.com/");
 }
}

They simply load a different URL into the browser: the CommonsWare
home page in one, the Android home page in the other.

The resulting UI shows what tabbed browsing could look like on Android:

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

Figure 71. The IntentTabDemo sample application, showing the first tab

Figure 72. The IntentTabDemo sample application, showing the second tab

Using distinct subclasses for each targeted page is rather wasteful. Instead,
we could have packaged the URL to open as an "extra" in an Intent and
used that Intent to spawn a general-purpose BrowserTab activity, which

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Launching Activities and Sub-Activities

would read the URL out of the Intent "extra" and use this. The proof of this
is left as an exercise for the reader.

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 19

Handling Rotation

Some Android handsets, like the T-Mobile G1, offer a slide-out keyboard
that triggers rotating the screen from portrait to landscape. Other handsets
might use accelerometers to determine screen rotation, like the iPhone
does. As a result, it is reasonable to assume that switching from portrait to
landscape and back again may be something your users will look to do.

Android has a number of ways for you to handle screen rotation, so your
application can properly handle either orientation. All these facilities do is
help you detect and manage the rotation process – you are still required to
make sure you have layouts that look decent on each orientation.

A Philosophy of Destruction

By default, when there is a change in the phone configuration that might
affect resource selection, Android will destroy and re-create any running or
paused activities the next time they are to be viewed. While this could
happen for a variety of different configuration changes (e.g., change of
language selection), it will most likely trip you up mostly for rotations,
since a change in orientation can cause you to load a different set of
resources (e.g., layouts).

The key here is that this is the default behavior. It may even be the
behavior that is best for one or more of your activities. You do have some

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

control over the matter, though, and can tailor how your activities respond
to orientation changes or similar configuration switches.

It's All The Same, Just Different

Since, by default, Android destroys and re-creates your activity on a
rotation, you may only need to hook into the same onSaveInstanceState()
that you would if your activity were destroyed for any other reason (e.g.,
low memory). Implement that method in your activity and fill in the
supplied Bundle with enough information to get you back to your current
state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick
the data out of the Bundle and use it to bring your activity back to the way it
was.

To demonstrate this, let's take a look at the Rotation/RotationOne project. It,
and the other sample projects used in this chapter, use a pair of main.xml
layouts, one in res/layout/ and one in res/layout-land/ for use in landscape
mode. Here is the portrait layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 />
</LinearLayout>

While here is the similar landscape layout:

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 />
</LinearLayout>

Basically, it is a pair of buttons, each taking up half the screen. In portrait
mode, the buttons are stacked; in landscape mode, they are side-by-side.

If you were to simply create a project, put in those two layouts, and compile
it, the application would appear to work just fine – a rotation (<Ctrl>-<F12>
in the emulator) will cause the layout to change. And while buttons lack
state, if you were using other widgets (e.g., EditText), you would even find
that Android hangs onto some of the widget state for you (e.g., the text
entered in the EditText).

What Android cannot automatically help you with is anything held outside
the widgets.

This application lets you pick a contact, then view the contact, via separate
buttons, with the "View" button only enabled when we actually have a
contact.

Let's see how we handle this, using onSaveInstanceState():

public class RotationOneDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });

 viewButton=(Button)findViewById(R.id.view);

 viewButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
 });

 restoreMe(savedInstanceState);

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 if (contact!=null) {
 outState.putString("contact", contact.toString());
 }
 }

 private void restoreMe(Bundle state) {
 contact=null;

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 if (state!=null) {
 String contactUri=state.getString("contact");

 if (contactUri!=null) {
 contact=Uri.parse(contactUri);
 }
 }
 }
}

By and large, it looks like a normal activity...because it is. Initially, the
"model" – a Uri named contact – is null. It is set as the result of spawning
the ACTION_PICK sub-activity. Its string representation is saved in
onSaveInstanceState() and restored in restoreMe() (called from onCreate()).
If the contact is not null, the "View" button is enabled and can be used to
view the chosen contact.

Visually, it looks pretty much as one would expect:

Figure 73. The RotationOne application, in portrait mode

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Figure 74. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system
events beyond mere rotation, such as being closed by Android due to low
memory.

For fun, comment out the restoreMe() call in onCreate() and try running the
application. You will see that the application "forgets" a contact selected in
one orientation when you rotate the emulator or device.

NOTE: The above sample, and all the samples for this chapter, work only
on Android 2.0 and higher, as it uses the newer means of picking a contact
from the Contacts content provider.

Now With More Savings!

The problem with onSaveInstanceState() is that you are limited to a Bundle.
That's because this callback is also used in cases where your whole process
might be terminated (e.g., low memory), so the data to be saved has to be
something that can be serialized and has no dependencies upon your
running process.

For some activities, that limitation is not a problem. For others, though, it
is more annoying. Take an online chat, for example. You have no means of
storing a socket in a Bundle, so by default, you will have to drop your
connection to the chat server and re-establish it. That not only may be a

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

performance hit, but it might also affect the chat itself, such as you
appearing in the chat logs as disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance()
instead of onSaveInstanceState() for "light" changes like a rotation. Your
activity's onRetainNonConfigurationInstance() callback can return an Object,
which you can retrieve later via getLastNonConfigurationInstance(). The
Object can be just about anything you want – typically, it will be some kind
of "context" object holding activity state, such as running threads, open
sockets, and the like. Your activity's onCreate() can call
getLastNonConfigurationInstance() – if you get a non-null response, you
now have your sockets and threads and whatnot. The biggest limitation is
that you do not want to put in the saved context anything that might
reference a resource that will get swapped out, such as a Drawable loaded
from a resource.

Let's take a look at the Rotation/RotationTwo sample project, which uses this
approach to handling rotations. The layouts, and hence the visual
appearance, is the same as with Rotation/RotationOne. Where things differ
slightly is in the Java code:

public class RotationTwoDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });

 viewButton=(Button)findViewById(R.id.view);

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 viewButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
 });

 restoreMe();

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 return(contact);
 }

 private void restoreMe() {
 contact=null;

 if (getLastNonConfigurationInstance()!=null) {
 contact=(Uri)getLastNonConfigurationInstance();
 }
 }
}

In this case, we override onRetainNonConfigurationInstance(), returning the
actual Uri for our contact, rather than a string representation of it. In turn,
restoreMe() calls getLastNonConfigurationInstance(), and if it is not null, we
hold onto it as our contact and enable the "View" button.

The advantage here is that we are passing around the Uri rather than a
string representation. In this case, that is not a big savings. But our state
could be much more complicated, including threads and sockets and other
things we cannot pack into a Bundle.

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

DIY Rotation

Even this, though, may still be too intrusive to your application. Suppose,
for example, you are creating a real-time game, such as a first-person
shooter. The "hiccup" your users experience as your activity is destroyed
and re-created might be enough to get them shot, which they may not
appreciate. While this would be less of an issue on the T-Mobile G1, since a
rotation requires sliding open the keyboard and therefore is unlikely to be
done mid-game, other devices might rotate based solely upon the device's
position as determined by accelerometers.

The third possibility for handling rotations, therefore, is to tell Android
that you will handle them completely yourself and that you do not want
assistance from the framework. To do this:

1. Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus
allowing Android to handle for you

2. Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

Now, for any configuration change you want, you can bypass the whole
activity-destruction process and simply get a callback letting you know of
the change.

To see this in action, turn to the Rotation/RotationThree sample application.
Once again, our layouts are the same, so the application looks the same as
the preceding two samples. However, the Java code is significantly
different, because we are no longer concerned with saving our state, but
rather with updating our UI to deal with the layout.

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.three"
 android:versionCode="1"

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 android:versionName="1.0.0">
 <uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="6"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".RotationThreeDemo"
 android:label="@string/app_name"
 android:configChanges="keyboardHidden|orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Here, we state that we will handle keyboardHidden and orientation
configuration changes ourselves. This covers us for any cause of the
"rotation" – whether it is a sliding keyboard or a physical rotation. Note
that this is set on the activity, not the application – if you have several
activities, you will need to decide for each which of the tactics outlined in
this chapter you wish to use.

The Java code for this project is shown below:

public class RotationThreeDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setupViews();
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 setupViews();
 }

 private void setupViews() {
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });

 viewButton=(Button)findViewById(R.id.view);

 viewButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
 });

 viewButton.setEnabled(contact!=null);
 }
}

The onCreate() implementation delegates most of its logic to a setupViews()
method, which loads the layout and sets up the buttons. The reason this
logic was broken out into its own method is because it is also called from
onConfigurationChanged().

Forcing the Issue

In the previous three sections, we covered ways to deal with rotational
events. There is, of course, a radical alternative: tell Android not to rotate
your activity at all. If the activity does not rotate, you do not have to worry
about writing code to deal with rotations.

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

To block Android from rotating your activity, all you need to do is add
android:screenOrientation = "portrait" (or "landscape", as you prefer) to
your AndroidManifest.xml file, as shown below (from the
Rotation/RotationFour sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.four"
 android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="6"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".RotationFourDemo"
 android:screenOrientation="portrait"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of
your activities may need this turned on.

At this point, your activity is locked into whatever orientation you
specified, regardless of what you do. The following screen shots show the
same activity as in the previous three sections, but using the above manifest
and with the emulator set for both portrait and landscape orientation. Note
that the UI does not move a bit, but remains in portrait mode.

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Figure 75. The RotationFour application, in portrait mode

Figure 76. The RotationFour application, in landscape mode

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

Note that Android will still destroy and recreate your activity, even if you
have the orientation set to a specific value as shown here. If you wish to
avoid that, you will also need to set android:configChanges in the manifest,
as described earlier in this chapter. Or, you can still use
onSaveInstanceState() or onRetainNonConfigurationInstance() to save your
activity's mutable state.

Making Sense of it All

All of these scenarios assume that you rotate the screen by opening up the
keyboard on the device (or pressing <Ctrl>-<F12> in the emulator).
Certainly, this is the norm for Android applications.

However, we haven’t covered the iPhone Scenario.

You may have seen one (or several) commercials for the iPhone, showing
how the screen rotates just by turning the device. Some Android devices,
such as the HTC Magic, will behave the same way. With other devices,
though, you do not get this behavior – instead, the screen rotates based on
whether the keyboard is open or closed.

However, even for those devices, it is very easy for you to change this
behavior, so your screen will rotate based on the position of the phone: just
add android:screenOrientation = "sensor" to your AndroidManifest.xml file
(as seen in the Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.five"
 android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="6"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".RotationFiveDemo"
 android:screenOrientation="sensor"
 android:label="@string/app_name">
 <intent-filter>

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The “sensor”, in this case, tells Android you want the accelerometers to
control the screen orientation, so the physical shift in the device
orientation controls the screen orientation.

At least on the G1, this appears to only work when going from the
traditional upright portrait position to the traditional landscape position –
rotating 90 degrees counter-clockwise. Rotating the device 90 degrees
clockwise results in no change in the screen.

Also note that this setting disables having the keyboard trigger a rotation
event. Leaving the device in the portrait position, if you slide out the
keyboard, in a "normal" Android activity, the screen will rotate; in a
android:screenOrientation = "sensor" activity, the screen will not rotate.

Spinning a Thread

One problem with the default destroy-and-create cycle that activities go
through on an orientation change comes from background threads. If the
activity has started some background work – through an AsyncTask, for
example – and then the activity is destroyed and re-created, somehow the
AsyncTask needs to know about this. Otherwise, the AsyncTask might well
send updates and final results to the old activity, with the new activity none
the wiser. In fact, the new activity might start up the background work
again, wasting resources.

One way to deal with this is to disable the destroy-and-create cycle is to
take over configuration changes, as described in a previous section.
Another alternative is to have a smarter activity and AsyncTask. You can see
an example of that in the Rotation/RotationAsync sample project. This
project uses a ProgressBar, much like the Handler demo from the chapter on

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

threads. It also has a TextView to indicate when the background work is
completed, initially invisible:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView android:id="@+id/completed"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Work completed!"
 android:visibility="invisible"
 />
</LinearLayout>

The "business logic" is for an AsyncTask to do some (fake) work in the
background, updating the ProgressBar along the way, and making the
TextView visible when it is finished. More importantly, it needs to do this in
such a way as to behave properly if the screen is rotated:

• We cannot "lose" our AsyncTask, having it continue doing work and
updating the wrong activity

• We cannot start a second AsyncTask, thereby doubling our workload

• We need to have the UI correctly reflect our work's progress or
completion

Manual Activity Association

In the chapter on threads, we showed the use of an AsyncTask that was
implemented as a regular inner class of the Activity class. That works well
when you are not concerned about rotation. For example, if the AsyncTask is
not affecting the user interface – such as uploading a photo – rotation will
not be an issue for you. Having the AsyncTask as an inner class of the
Activity means you get ready access to the Activity for any place where you
need a Context.

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

However, for the rotation scenario, a regular inner class will work poorly.
The AsyncTask will think it knows the Activity it is supposed to work with,
but in reality it will be holding onto an implicit reference to the old activity,
not one after an orientation change.

So, in RotationAsync, the RotationAwareTask class is a static inner class. This
means RotationAwareTask does not have any implicit reference to any
RotationAsync Activity (old or new):

package com.commonsware.android.rotation.async;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;
import android.util.Log;
import android.view.View;
import android.widget.ProgressBar;

public class RotationAsync extends Activity {
 private ProgressBar bar=null;
 private RotationAwareTask task=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bar=(ProgressBar)findViewById(R.id.progress);

 task=(RotationAwareTask)getLastNonConfigurationInstance();

 if (task==null) {
 task=new RotationAwareTask(this);
 task.execute();
 }
 else {
 task.attach(this);
 updateProgress(task.getProgress());

 if (task.getProgress()>=100) {
 markAsDone();
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 task.detach();

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 return(task);
 }

 void updateProgress(int progress) {
 bar.setProgress(progress);
 }

 void markAsDone() {
 findViewById(R.id.completed).setVisibility(View.VISIBLE);
 }

 static class RotationAwareTask extends AsyncTask<Void, Void, Void> {
 RotationAsync activity=null;
 int progress=0;

 RotationAwareTask(RotationAsync activity) {
 attach(activity);
 }

 @Override
 protected Void doInBackground(Void... unused) {
 for (int i=0;i<20;i++) {
 SystemClock.sleep(500);
 publishProgress();
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(Void... unused) {
 if (activity==null) {
 Log.w("RotationAsync", "onProgressUpdate() skipped – no activity");
 }
 else {
 progress+=5;
 activity.updateProgress(progress);
 }
 }

 @Override
 protected void onPostExecute(Void unused) {
 if (activity==null) {
 Log.w("RotationAsync", "onPostExecute() skipped – no activity");
 }
 else {
 activity.markAsDone();
 }
 }

 void detach() {
 activity=null;
 }

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

 void attach(RotationAsync activity) {
 this.activity=activity;
 }

 int getProgress() {
 return(progress);
 }
 }
}

Since we want RotationAwareTask to update the current RotationAsync
Activity, we supply that Activity when we create the task, via the
constructor. RotationAwareTask also has attach() and detach() methods to
change what Activity the task knows about, as we will see shortly.

Flow of Events

When RotationAsync starts up for the first time, it creates a new instance of
the RotationAwareTask class and executes it. At this point, the task has a
reference to the RotationAsync Activity and can do its (fake) work, telling
RotationAsync to update the progress along the way.

Now, suppose that during the middle of the doInBackground() processing,
the user rotates the screen.

Our Activity will be called with onRetainNonConfigurationInstance(). Here,
we want to do two things:

1. Since this Activity instance is being destroyed, we need to make
sure the task no longer holds onto a reference to it. Hence, we call
detach(), causing the task to set its RotationAsync data member
(activity) to null.

2. We return the RotationAwareTask object, so that our new
RotationAsync instance can get access to it

Eventually, the new RotationAsync instance will be created. In onCreate(),
we try to get access to any current RotationAwareTask instance via
getNonConfigurationInstance(). If that was null, then we know that this is a
newly-created activity, and so we create a new task. If, however,

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Rotation

getNonConfigurationInstance() returned the task object from the old
RotationAsync instance, we hold onto it and update our UI to reflect the
current progress that has been made. We also attach() the new
RotationAsync to the RotationAwareTask, so as further progress is made, the
task can notify the proper activity.

The net result is that our ProgressBar smoothly progresses from 0 to 100,
even while rotations are going on.

Potential Issues

There is a gap in time between when detach() is called on the old activity
instance and attach() is called on the new activity instance. It is possible
that onProgressUpdate() or onPostExecute() will be called during this time.
That may not be likely, since those methods are called on the main
application thread, which may be busy dealing with the orientation change.
However, it is a circumstance you should be aware of. If you find that
onProgressUpdate() or onPostExecute() are being called when you do not
have an activity, you need to determine how best to handle that.

In the RotationAsync case, this is not a problem. The new activity will pick
up the progress information as soon as it get access to the RotationAwareTask
instance.

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART III – Data Stores, Network
Services, and APIs

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 20

Working with Resources

Resources are static bits of information held outside the Java source code.
You have seen one type of resource – the layout – frequently in the
examples in this book. There are many other types of resource, such as
images and strings, that you can take advantage of in your Android
applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android
project layout. With the exception of raw resources (res/raw/), all the other
types of resources are parsed for you, either by the Android packaging
system or by the Android system on the device or emulator. So, for
example, when you lay out an activity's UI via a layout resource
(res/layout/), you do not have to parse the layout XML yourself – Android
handles that for you.

In addition to layout resources (first seen in an earlier chapter) and
animation resources (introduced in another earlier chapter), there are
several other types of resource available to you, including:

• Images (res/drawable/), for putting static icons or other pictures in a
user interface

• Raw (res/raw/), for putting arbitrary files that have meaning to your
application but not necessarily to Android frameworks

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

• Strings, colors, arrays, and dimensions (res/values/), to both give
these sorts of constants symbolic names and to keep them separate
from the rest of the code (e.g., for internationalization and
localization)

• XML (res/xml/), for static XML files containing your own data and
structure

String Theory

Keeping your labels and other bits of text outside the main source code of
your application is generally considered to be a very good idea. In
particular, it helps with internationalization (I18N) and localization (L10N),
covered later in this chapter. Even if you are not going to translate your
strings to other languages, it is easier to make corrections if all the strings
are in one spot instead of scattered throughout your source code.

Android supports regular externalized strings, along with "string formats",
where the string has placeholders for dynamically-inserted information. On
top of that, Android supports simple text formatting, called "styled text", so
you can make your words be bold or italic intermingled with normal text.

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as
a resource. The string element takes a name attribute, which is the unique
name for this string, and a single text element containing the text of the
string:

<resources>
 <string name="quick">The quick brown fox...</string>
 <string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote (") or an
apostrophe ('). In those cases, you will want to escape those values, by

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

preceding them with a backslash (e.g., These are the times that try men\'s
souls). Or, if it is just an apostrophe, you could enclose the value in quotes
(e.g., "These are the times that try men's souls.").

You can then reference this string from a layout file (as @string/..., where
the ellipsis is the unique name – e.g., @string/laughs). Or you can get the
string from your Java code by calling getString() with the resource ID of
the string resource, that being the unique name prefixed with R.string.
(e.g., getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android's Dalvik VM
supports string formats. Here, the string contains placeholders
representing data to be replaced at runtime by variable information (e.g., My
name is %1$s). Plain strings stored as resources can be used as string
formats:

String strFormat=getString(R.string.my_name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

There is also a flavor of getString() that does the String.format() call for
you:

String strResult=getString(R.string.my_name, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

Styled Text

If you want really rich text, you should have raw resources containing
HTML, then pour those into a WebKit widget. However, for light HTML
formatting, using inline elements like , <i>, and <u>, you can just use
them in a string resource:

<resources>
 <string name="b">This has bold in it.</string>

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

 <string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these via getText(), where you will get back an object
supporting the android.text.Spanned interface and therefore has all of the
formatting applied:

((TextView)findViewById(R.id.another_label))
 .setText(getText(R.string.b));

Styled Text and Formats

Where styled text gets tricky is with styled string formats, as
String.format() works on String objects, not Spanned objects with
formatting instructions. If you really want to have styled string formats,
here is the workaround:

1. Entity-escape the angle brackets in the string resource (e.g., this is
%1$s)

2. Retrieve the string resource as normal, though it will not be styled
at this point (e.g., getString(R.string.funky_format))

3. Generate the format results, being sure to escape any string values
you substitute in, in case they contain angle brackets or ampersands

String.format(getString(R.string.funky_format),
 TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via
Html.fromHtml()

someTextView.setText(Html
 .fromHtml(resultFromStringFormat));

To see this in action, let's look at the Resources/Strings demo. Here is the
layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <Button android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_name"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

As you can see, it is just a button, a field, and a label. The intent is for
somebody to enter their name in the field, then click the button to cause
the label to be updated with a formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name),
so we need a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">StringsDemo</string>
 <string name="btn_name">Name:</string>
 <string name="funky_format">My name is %1$s</string>
</resources>

The app_name resource is automatically created by the android create
project command. The btn_name string is the caption of the Button, while
our styled string format is in funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
 EditText name;
 TextView result;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 result=(TextView)findViewById(R.id.result);

 Button btn=(Button)findViewById(R.id.format);

 btn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 applyFormat();
 }
 });
 }

 private void applyFormat() {
 String format=getString(R.string.funky_format);
 String simpleResult=String.format(format,
 TextUtils.htmlEncode(name.getText().toString()));
 result.setText(Html.fromHtml(simpleResult));
 }
}

The string resource manipulation can be found in applyFormat(), which is
called when the button is clicked. First, we get our format via getString() –
something we could have done at onCreate() time for efficiency. Next, we
format the value in the field using this format, getting a String back, since
the string resource is in entity-encoded HTML. Note the use of
TextUtils.htmlEncode() to entity-encode the entered name, in case
somebody decides to use an ampersand or something. Finally, we convert
the simple HTML into a styled text object via Html.fromHtml() and update
our label.

When the activity is first launched, we have an empty label:

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Figure 77. The StringsDemo sample application, as initially launched

but if we fill in a name and click the button, we get:

Figure 78. The same application, after filling in some heroic figure's name

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is
officially discouraged, however; PNG is the overall preferred format. Images
can be used anywhere that requires a Drawable, such as the image and
background of an ImageView.

Using images is simply a matter of putting your image files in res/drawable/
and then referencing them as a resource. Within layout files, images are
referenced as @drawable/... where the ellipsis is the base name of the file
(e.g., for res/drawable/foo.png, the resource name is @drawable/foo). In Java,
where you need an image resource ID, use R.drawable. plus the base name
(e.g., R.drawable.foo).

So, let's update the previous example to use an icon for the button instead
of the string resource. This can be found as Resources/Images. First, we
slightly adjust the layout file, using an ImageButton and referencing a
drawable named @drawable/icon:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <ImageButton android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/icon"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Next, we need to put an image file in res/drawable with a base name of icon.
In this case, we use a 32x32 PNG file from the Nuvola icon set. Finally, we
twiddle the Java source, replacing our Button with an ImageButton:

package com.commonsware.android.images;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.ImageButton;
import android.widget.EditText;
import android.widget.TextView;

public class ImagesDemo extends Activity {
 EditText name;
 TextView result;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 result=(TextView)findViewById(R.id.result);

 ImageButton btn=(ImageButton)findViewById(R.id.format);

 btn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 applyFormat();
 }
 });
 }

 private void applyFormat() {
 String format=getString(R.string.funky_format);
 String simpleResult=String.format(format,
 TextUtils.htmlEncode(name.getText().toString()));
 result.setText(Html.fromHtml(simpleResult));
 }
}

Now, our button has the desired icon:

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/Nuvola

Working with Resources

Figure 79. The ImagesDemo sample application

XML: The Resource Way

If you wish to package static XML with your application, you can use an
XML resource. Simply put the XML file in res/xml/, and you can access it by
getXml() on a Resources object, supplying it a resource ID of R.xml. plus the
base name of your XML file. So, in an activity, with an XML file of words.xml,
you could call getResources().getXml(R.xml.words).

This returns an instance of an XmlPullParser, found in the org.xmlpull.v1
Java namespace. An XML pull parser is event-driven: you keep calling
next() on the parser to get the next event, which could be START_TAG,
END_TAG, END_DOCUMENT, etc. On a START_TAG event, you can access the tag's
name and attributes; a single TEXT event represents the concatenation of all
text nodes that are direct children of this element. By looping, testing, and
invoking per-element logic, you parse the file.

To see this in action, let's rewrite the Java code for the Files/Static sample
project to use an XML resource. This new project, Resources/XML, requires
that you place the words.xml file from Static not in res/raw/, but in

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

res/xml/. The layout stays the same, so all that needs replacing is the Java
source:

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;
import java.io.InputStream;
import java.util.ArrayList;
import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 XmlPullParser xpp=getResources().getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 items.add(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), 4000)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

Now, inside our try...catch block, we get our XmlPullParser and loop until
the end of the document. If the current event is START_TAG and the name of
the element is word (xpp.getName().equals("word")), then we get the one-
and-only attribute and pop that into our list of items for the selection
widget. Since we're in complete control over the XML file, it is safe enough
to assume there is exactly one attribute. But, if you were not as comfortable
that the XML is properly defined, you might consider checking the
attribute count (getAttributeCount()) and the name of the attribute
(getAttributeName()) before blindly assuming the 0-index attribute is what
you think it is.

The result looks the same as before, albeit with a different name in the title
bar:

Figure 80. The XMLResourceDemo sample application

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Miscellaneous Values

In the res/values/ directory, in addition to string resources, you can place
one (or more) XML files describing other simple resources, such as
dimensions, colors, and arrays. We have already seen uses of dimensions
and colors in previous examples, where they were passed as simple strings
(e.g., "10px") as parameters to calls. You can, of course, set these up as Java
static final objects and use their symbolic names...but this only works
inside Java source, not in layout XML files. By putting these values in
resource XML files, you can reference them from both Java and layouts,
plus have them centrally located for easy editing.

Resource XML files have a root element of resources; everything else is a
child of that root.

Dimensions

Dimensions are used in several places in Android to describe distances,
such as a widget's padding. While this book usually uses pixels (e.g., 10px
for ten pixels), there are several different units of measurement available to
you:

• in and mm for inches and millimeters, respectively, based on the
actual size of the screen

• pt for points, which in publishing terms is 1/72nd of an inch (again,
based on the actual physical size of the screen)

• dip and sp for device-independent pixels and scale-independent
pixels – one pixel equals one dip for a 160dpi resolution screen, with
the ratio scaling based on the actual screen pixel density (scale-
independent pixels also take into account the user's preferred font
size)

To encode a dimension as a resource, add a dimen element, with a name
attribute for your unique name for this resource, and a single child text
element representing the value:

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

<resources>
 <dimen name="thin">10px</dimen>
 <dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is
a placeholder for your unique name for the resource (e.g., thin and fat from
the sample above). In Java, you reference dimension resources by the
unique name prefixed with R.dimen. (e.g.,
Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, also optionally specifying
an alpha channel. You have your choice of single-character hex values or
double-character hex values, leaving you with four styles:

• #RGB

• #ARGB

• #RRGGBB

• #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or
layout resources. If you wish to turn them into resources, though, all you
need to do is add color elements to the resources file, with a name attribute
for your unique name for this color, and a single text element containing
the RGB value itself:

<resources>
 <color name="yellow_orange">#FFD555</color>
 <color name="forest_green">#005500</color>
 <color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis
with your unique name for the color (e.g., burnt_umber). In Java, you

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

reference color resources by the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.color.forest_green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of
honorifics (Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a
name attribute for the unique name you are giving the array. Then, add one
or more child item elements, each of which having a single text element
with the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a
String[] of the items in the list. The parameter to getStringArray() is your
unique name for the array, prefixed with R.array. (e.g.,
Resources.getStringArray(R.array.honorifics)).

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may
be used. One obvious area comes with string resources and dealing with
internationalization (I18N) and localization (L10N). Putting strings all in
one language works fine – probably at least for the developer – but only
covers one language.

That is not the only scenario where resources might need to differ, though.
Here are others:

• Screen orientation: is the screen in a portrait orientation?
Landscape? Is the screen square and, therefore, does not really have
an orientation?

• Screen size: how many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

• Touchscreen: does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

• Keyboard: what keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

• Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource
directories, with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and
Spanish. Normally, for a single-language setup, you would put your strings
in a file named res/values/strings.xml. To support both English and
Spanish, you would create two folders, res/values-en/ and res/values-es/,
where the value after the hyphen is the ISO 639-1 two-letter code for the
language you want. Your English-language strings would go in res/values-
en/strings.xml and the Spanish ones in res/values-es/strings.xml. Android
will choose the proper file based on the user's device settings.

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1

Working with Resources

An even better approach is for you to consider some language to be your
default, and put those strings in res/values/strings.xml. Then, create other
resource directories for your translations (e.g., res/values-es/strings.xml
for Spanish). Android will try to match a specific language set of resources;
failing that, it will fall back to the default of res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple
disparate criteria for your resources. For example, let us suppose you want
to develop both for the T-Mobile G1 and two currently-fictitious devices.
One device (the Fictional One) has a VGA ("large") screen normally in a
landscape orientation, an always-open QWERTY keyboard, a directional
pad, but no touch-screen. The other device (the Fictional Two) has a G1-
sized screen ("normal"), a numeric keyboard but no QWERTY, a directional
pad, and no touch-screen.

You may want to have somewhat different layouts for these devices, to take
advantage of different screen real estate and different input options.
Specifically:

• You want different layouts for each combination of resolution and
orientation

• You want different layouts for touch-screen devices versus ones
without touch-screens

• You want different layouts for QWERTY versus non-QWERTY
devices

Once you get into these sorts of situations, though, all sorts of rules come
into play, such as:

• The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that
order. The Android documentation outlines the specific order in
which these options can appear. For the purposes of this example,
screen orientation must precede touchscreen type, which must
precede screen size.

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/devel/resources-i18n.html#AlternateResources

Working with Resources

• There can only be one value of each configuration option category
per directory.

• Options are case sensitive

So, for the scenario described above, in theory, we would need the
following directories:

• res/layout-large-port-notouch-qwerty

• res/layout-normal-port-notouch-qwerty

• res/layout-large-port-notouch-12key

• res/layout-normal-port-notouch-12key

• res/layout-large-port-notouch-nokeys

• res/layout-normal-port-notouch-nokeys

• res/layout-large-port-stylus-qwerty

• res/layout-normal-port-stylus-qwerty

• res/layout-large-port-stylus-12key

• res/layout-normal-port-stylus-12key

• res/layout-large-port-stylus-nokeys

• res/layout-normal-port-stylus-nokeys

• res/layout-large-port-finger-qwerty

• res/layout-normal-port-finger-qwerty

• res/layout-large-port-finger-12key

• res/layout-normal-port-finger-12key

• res/layout-large-port-finger-nokeys

• res/layout-normal-port-finger-nokeys

• res/layout-large-land-notouch-qwerty

• res/layout-normal-land-notouch-qwerty

• res/layout-large-land-notouch-12key

• res/layout-normal-land-notouch-12key

• res/layout-large-land-notouch-nokeys

• res/layout-normal-land-notouch-nokeys

• res/layout-large-land-stylus-qwerty

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

• res/layout-normal-land-stylus-qwerty

• res/layout-large-land-stylus-12key

• res/layout-normal-land-stylus-12key

• res/layout-large-land-stylus-nokeys

• res/layout-normal-land-stylus-nokeys

• res/layout-large-land-finger-qwerty

• res/layout-normal-land-finger-qwerty

• res/layout-large-land-finger-12key

• res/layout-normal-land-finger-12key

• res/layout-large-land-finger-nokeys

• res/layout-normal-land-finger-nokeys

Don't panic! We will shorten this list in just a moment!

Note that for many of these, the actual layout files will be identical. For
example, we only care about touch-screen layouts being different than the
other two, but since we cannot combine those two, we would theoretically
have to have separate directories with identical contents for finger and
stylus.

Also note that there is nothing preventing you from also having a directory
with the unadorned base name (res/layout). In fact, this is probably a good
idea, in case future editions of the Android runtime introduce other
configuration options you did not consider – having a default layout might
make the difference between your application working or failing on that
new device.

Now, we can "cheat" a bit, by decoding the rules Android uses for
determining which, among a set of candidates, is the "right" resource
directory to use:

1. First up, Android tosses out ones that are specifically invalid. So, for
example, if the screen size of the device is "normal", the -large
directories would be dropped as candidates, since they call for some
other size.

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

2. Next, Android counts the number of matches for each folder, and
only pays attention to those with the most matches.

3. Finally, Android goes in the order of precedence of the options – in
other words, it goes from left to right in the directory name.

So we could skate by with only the following configurations:

• res/layout-large-port-notouch-qwerty

• res/layout-port-notouch-qwerty

• res/layout-large-port-notouch

• res/layout-port-notouch

• res/layout-large-port-qwerty

• res/layout-port-qwerty

• res/layout-large-port

• res/layout-port

• res/layout-large-land-notouch-qwerty

• res/layout-land-notouch-qwerty

• res/layout-large-land-notouch

• res/layout-land-notouch

• res/layout-large-land-qwerty

• res/layout-land-qwerty

• res/layout-large-land

• res/layout-land

Here, we take advantage of the fact that specific matches take precedence
over "unspecified" values. So, a device with a QWERTY keyboard will
choose a resource with qwerty in the directory over a resource that does not
specify its keyboard type. Combine that with the "most matches wins" rule,
we see that res/layout-port will only match devices with "normal"-sized
screens, no QWERTY keyboard, and a touch-screen in portrait orientation.

We could refine this even further, to only cover the specific devices we are
targeting (the T-Mobile G1, the Fictional One, and the Fictional Two), plus
take advantage of res/layout being the overall default:

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Working with Resources

• res/layout-large-port-notouch

• res/layout-port-notouch

• res/layout-large-land-notouch

• res/layout-land-notouch

• res/layout-large-land

• res/layout

Here, -large differentiates the Fictional One from the other two devices,
while notouch differentiates the Fictional Two from the T-Mobile G1.

We will see these resource sets again in the chapter on supporting multiple
screen sizes, later in the book.

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 21

Using Preferences

Android has many different ways for you to store data for long-term use by
your activity. The simplest to use is the preferences system.

Android allows activities and applications to keep preferences, in the form
of key/value pairs (akin to a Map), that will hang around between
invocations of an activity. As the name suggests, the primary purpose is for
you to store user-specified configuration details, such as the last feed the
user looked at in your feed reader, or what sort order to use by default on a
list, or whatever. Of course, you can store in the preferences whatever you
like, so long as it is keyed by a String and has a primitive value (boolean,
String, etc.)

Preferences can either be for a single activity or shared among all activities
in an application. Eventually, preferences might be shareable across
applications, but that is not supported as of the time of this writing.

Getting What You Want

To get access to the preferences, you have three APIs to choose from:

1. getPreferences() from within your Activity, to access activity-
specific preferences

2. getSharedPreferences() from within your Activity (or other
application Context), to access application-level preferences

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

3. getDefaultSharedPreferences(), on PreferencesManager, to get the
shared preferences that work in concert with Android's overall
preference framework

The first two take a security mode parameter – for now, pass in 0. The
getSharedPreferences() method also takes a name of a set of preferences –
getPreferences() effectively calls getSharedPreferences() with the activity's
class name as the preference set name. The getDefaultSharedPreferences()
method takes the Context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a
series of getters to access named preferences, returning a suitably-typed
result (e.g., getBoolean() to return a boolean preference). The getters also
take a default value, which is returned if there is no preference set under
the specified key.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an
"editor" for the preferences. This object has a set of setters that mirror the
getters on the parent SharedPreferences object. It also has:

• remove() to get rid of a single named preference

• clear() to get rid of all preferences

• commit() to persist your changes made via the editor

The last one is important – if you modify preferences via the editor and fail
to commit() the changes, those changes will evaporate once the editor goes
out of scope.

Conversely, since the preferences object supports live changes, if one part
of your application (say, an activity) modifies shared preferences, another
part of your application (say, a service) will have access to the changed
value immediately.

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

And Now, a Word From Our Framework

Beginning with the 0.9 SDK, Android has introduced a framework for
managing preferences. Ironically, this framework does not change anything
shown above. Instead, the framework is more for presenting a consistent
set of preference-setting options for users, so different applications do not
have to "reinvent the wheel".

The linchpin to the preferences framework is yet another XML data
structure. You can describe your application's preferences in an XML file
stored in your project's res/xml/ directory. Given that, Android can present
a pleasant UI for manipulating those preferences, which are then stored in
the SharedPreferences you get back from getDefaultSharedPreferences().

Below, you will find the preference XML for the Prefs/Simple preferences
sample project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off" />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. We will
explain why it is named that later in this chapter; for now, take it on faith
that it is a sensible name.

One of the things you can have inside a PreferenceScreen element, not
surprisingly, are preference definitions. These are subclasses of Preference,
such as CheckBoxPreference or RingtonePreference, as shown above. As one
might expect, these allow you to check a checkbox or choose a ringtone,
respectively. In the case of RingtonePreference, you have your option of

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

allowing users to choose the system default ringtone, or to choose "silence"
as a ringtone.

Letting Users Have Their Say

Given that you have set up the preference XML, you can use a nearly-built-
in activity for allowing your users to set their preferences. The activity is
nearly "built-in" because you merely need to subclass it and point it to your
preference XML, plus hook the activity into the rest of your application.

So, for example, here is the EditPreferences activity of the Prefs/Simple
project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
}

As you can see, there is not much to see. All you need to do is call
addPreferencesFromResource() and specify the XML resource containing your
preferences.

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.simple">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity
 android:name=".SimplePrefsDemo"
 android:label="@string/app_name">

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".EditPreferences"
 android:label="@string/app_name">
 </activity>
 </application>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu
option, here pulled from SimplePrefsDemo:

 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")
 .setIcon(R.drawable.misc)
 .setAlphabeticShortcut('e');

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case EDIT_ID:
 startActivity(new Intent(this, EditPreferences.class));
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }
}

However, that is all that is needed, and it really is not that much code
outside of the preferences XML. What you get for your effort is an Android-
supplied preference UI:

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 81. The Simple project's preferences UI

The checkbox can be directly checked or unchecked. To change the
ringtone preference, just click on the entry in the preference list to bring up
a selection dialog:

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 82. Choosing a ringtone preference

Note that there is no explicit "save" or "commit" button or menu on the
PreferenceActivity – changes are persisted as soon as they are made.

The SimplePrefsDemo activity, beyond having the aforementioned menu, also
displays the current preferences via a TableLayout:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableRow>
 <TextView
 android:text="Checkbox:"
 android:paddingRight="5px"
 />
 <TextView android:id="@+id/checkbox"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Ringtone:"
 android:paddingRight="5px"
 />
 <TextView android:id="@+id/ringtone"

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 />
 </TableRow>
</TableLayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 checkbox=(TextView)findViewById(R.id.checkbox);
 ringtone=(TextView)findViewById(R.id.ringtone);
}

The fields are updated on each onResume():

public void onResume() {
 super.onResume();

 SharedPreferences prefs=PreferenceManager
 .getDefaultSharedPreferences(this);

 checkbox.setText(new Boolean(prefs
 .getBoolean("checkbox", false))
 .toString());
 ringtone.setText(prefs.getString("ringtone", "<unset>"));
}

This means the fields will be updated when the activity is opened and after
the preferences activity is left (e.g., via the back button):

296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 83. The Simple project's list of saved preferences

Adding a Wee Bit O' Structure

If you have a lot of preferences for users to set, having them all in one big
list may become troublesome. Android's preference framework gives you a
few ways to impose a bit of structure on your bag of preferences, including
categories and screens.

Categories are added via a PreferenceCategory element in your preference
XML and are used to group together related preferences. Rather than have
your preferences all as children of the root PreferenceScreen, you can put a
few PreferenceCategory elements in the PreferenceScreen, and then put your
preferences in their appropriate categories. Visually, this adds a divider
with the category title between groups of preferences.

If you have lots and lots of preferences – more than is convenient for users
to scroll through – you can also put them on separate "screens" by
introducing the PreferenceScreen element.

Yes, that PreferenceScreen element.

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Any children of PreferenceScreen go on their own screen. If you nest
PreferenceScreens, the parent screen displays the screen as a placeholder
entry – tapping that entry brings up the child screen.

For example, from the Prefs/Structured sample project, here is a preference
XML file that contains both PreferenceCategory and nested PreferenceScreen
elements:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"
 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your PreferenceActivity
implementation, is a categorized list of elements:

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 84. The Structured project's preference UI, showing categories and a
screen placeholder

And, if you tap on the Detail Screen entry, you are taken to the child
preference screen:

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 85. The child preference screen of the Structured project's preference
UI

The Kind Of Pop-Ups You Like

Of course, not all preferences are checkboxes and ringtones.

For others, like entry fields and lists, Android uses pop-up dialogs. Users do
not enter their preference directly in the preference UI activity, but rather
tap on a preference, fill in a value, and click OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly
different from other preference types, as seen in this preference XML from
the Prefs/Dialogs sample project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"
 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
 <PreferenceCategory android:title="Other Preferences">
 <EditTextPreference
 android:key="text"
 android:title="Text Entry Dialog"
 android:summary="Click to pop up a field for entry"
 android:dialogTitle="Enter something useful"
 />
 <ListPreference
 android:key="list"
 android:title="Selection Dialog"
 android:summary="Click to pop up a list to choose from"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:dialogTitle="Choose a Pennsylvania city" />
 </PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary
you put on the preference itself, you can also supply the title to use for the
dialog.

With the list (ListPreference), you supply both a dialog title and two string-
array resources: one for the display names, one for the values. These need
to be in the same order – the index of the chosen display name determines
which value is stored as the preference in the SharedPreferences. For
example, here are the arrays for use by the ListPreference shown above:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

When you bring up the preference UI, you start with another category with
another pair of preference entries:

Figure 86. The preference screen of the Dialogs project's preference UI

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Tapping the Text Entry Dialog one brings up...a text entry dialog – in this
case, with the prior preference entry pre-filled-in:

Figure 87. Editing a text preference

Tapping the Selection Dialog one brings up...a selection dialog, showing the
display names from the one array:

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using Preferences

Figure 88. Editing a list preference

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 22

Managing and Accessing Local
Databases

SQLite is a very popular embedded database, as it combines a clean SQL
interface with a very small memory footprint and decent speed. Moreover,
it is public domain, so everyone can use it. Lots of firms (Adobe, Apple,
Google, Sun, Symbian) and open source projects (Mozilla, PHP, Python) all
ship products with SQLite.

For Android, SQLite is "baked into" the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface,
it is fairly straightforward to use for people with experience in other SQL-
based databases. However, its native API is not JDBC, and JDBC might be
too much overhead for a memory-limited device like a phone, anyway.
Hence, Android programmers have a different API to learn – the good news
being is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working
on Android. It by no means is a thorough coverage of SQLite as a whole. If
you want to learn more about SQLite and how to use it in environments
other than Android, a fine book is The Definitive Guide to SQLite by
Michael Owens.

Much of the sample code shown in this chapter comes from the
Database/Constants application. This application presents a list of physical
constants, with names and values culled from Android's SensorManager:

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730
http://www.sqlite.org/

Managing and Accessing Local Databases

Figure 89. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to
fill in the name and value of the constant:

Figure 90. The Constants sample application's add-constant dialog

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

The constant is then added to the list. A long-tap on an existing constant
will bring up a context menu with a "Delete" option – after confirmation,
that will delete the constant.

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT),
data manipulation (INSERT, et. al.), and data definition (CREATE TABLE, et. al.).
SQLite has a few places where it deviates from the SQL-92 standard, no
different than most SQL databases. The good news is that SQLite is so
space-efficient that the Android runtime can include all of SQLite, not
some arbitrary subset to trim it down to size.

The biggest difference from other SQL databases you will encounter is
probably the data typing. While you can specify the data types for columns
in a CREATE TABLE statement, and while SQLite will use those as a hint, that
is as far as it goes. You can put whatever data you want in whatever column
you want. Put a string in an INTEGER column? Sure! No problem! Vice versa?
Works too! SQLite refers to this as "manifest typing", as described in the
documentation:

In manifest typing, the datatype is a property of the value it-
self, not of the column in which the value is stored. SQLite
thus allows the user to store any value of any datatype into
any column regardless of the declared type of that column.

In addition, there are a handful of standard SQL features not supported in
SQLite, notably FOREIGN KEY constraints, nested transactions, RIGHT OUTER
JOIN and FULL OUTER JOIN, and some flavors of ALTER TABLE.

Beyond that, though, you get a full SQL system, complete with triggers,
transactions, and the like. Stock SQL statements, like SELECT, work pretty
much as you might expect.

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/different.html

Managing and Accessing Local Databases

If you are used to working with a major database, like Oracle, you may look
upon SQLite as being a "toy" database. Please bear in mind that Oracle and
SQLite are meant to solve different problems, and that you will not be
seeing a full copy of Oracle on a phone any time soon, in all likelihood.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to
use SQLite, you have to create your own database, then populate it with
your own tables, indexes, and data.

To create and open a database, your best option is to craft a subclass of
SQLiteOpenHelper. This class wraps up the logic to create and upgrade a
database, per your specifications, as needed by your application. Your
subclass of SQLiteOpenHelper will need three methods:

• The constructor, chaining upward to the SQLiteOpenHelper
constructor. This takes the Context (e.g., an Activity), the name of
the database, an optional cursor factory (typically, just pass null),
and an integer representing the version of the database schema you
are using.

• onCreate(), which passes you a SQLiteDatabase object that you need
to populate with tables and initial data, as appropriate.

• onUpgrade(), which passes you a SQLiteDatabase object and the old
and new version numbers, so you can figure out how best to convert
the database from the old schema to the new one. The simplest,
albeit least friendly, approach is to simply drop the old tables and
create new ones.

For example, here is a DatabaseHelper class from Database/Constants that, in
onCreate(), creates a table and adds a number of rows, and in onUpgrade()
"cheats" by dropping the existing table and executing onCreate():

package com.commonsware.android.constants;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="db";
 public static final String TITLE="title";
 public static final String VALUE="value";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(TITLE, "Gravity, Death Star I");
 cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Earth");
 cv.put(VALUE, SensorManager.GRAVITY_EARTH);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Jupiter");
 cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mars");
 cv.put(VALUE, SensorManager.GRAVITY_MARS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mercury");
 cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Moon");
 cv.put(VALUE, SensorManager.GRAVITY_MOON);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Neptune");
 cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Pluto");
 cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Saturn");

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

 cv.put(VALUE, SensorManager.GRAVITY_SATURN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Sun");
 cv.put(VALUE, SensorManager.GRAVITY_SUN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, The Island");
 cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Uranus");
 cv.put(VALUE, SensorManager.GRAVITY_URANUS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Venus");
 cv.put(VALUE, SensorManager.GRAVITY_VENUS);
 db.insert("constants", TITLE, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 android.util.Log.w("Constants", "Upgrading database, which will destroy all
old data");
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

To use your SQLiteOpenHelper subclass, create and hold onto an instance of
it. Then, when you need a SQLiteDatabase object to do queries or data
modifications, ask your SQLiteOpenHelper to getReadableDatabase() or
getWriteableDatabase(), depending upon whether or not you will be
changing its contents. For example, our ConstantsBrowser activity opens the
database in onCreate() as part of doing a query:

constantsCursor=db
 .getReadableDatabase()
 .rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

When you are done with the database (e.g., your activity is being closed),
simply call close() on your SQLiteOpenHelper to release your connection.

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Setting the Table

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the DDL statement you wish to apply against the
database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as
shown in the DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT, value REAL);");

This will create a table, named constants, with a primary key column
named _id that is an auto-incremented integer (i.e., SQLite will assign the
value for you when you insert rows), plus two data columns: title (text)
and value (a float, or "real" in SQLite terms). SQLite will automatically
create an index for you on your primary key column – you could add other
indexes here via some CREATE INDEX statements, if you so chose to.

Most likely, you will create tables and indexes when you first create the
database, or possibly when the database needs upgrading to accommodate
a new release of your application. If you do not change your table schemas,
you might never drop your tables or indexes, but if you do, just use
execSQL() to invoke DROP INDEX and DROP TABLE statements as needed.

Makin' Data

Given that you have a database and one or more tables, you probably want
to put some data in them and such. You have two major approaches for
doing this.

You can always use execSQL(), just like you did for creating the tables. The
execSQL() method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, etc. just fine.

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Your alternative is to use the insert(), update(), and delete() methods on
the SQLiteDatabase object. These are "builder" sorts of methods, in that they
break down the SQL statements into discrete chunks, then take those
chunks as parameters.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put("title", wrapper.getTitle());
 values.put("value", wrapper.getValue());

 db.getWritableDatabase().insert("constants", "title", values);
 constantsCursor.requery();
}

These methods make use of ContentValues objects, which implement a Map-
esque interface, albeit one that has additional methods for working with
SQLite types. For example, in addition to get() to retrieve a value by its key,
you have getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column
as the "null column hack", and a ContentValues with the initial values you
want put into this row. The "null column hack" is for the case where the
ContentValues instance is empty – the column named as the "null column
hack" will be explicitly assigned the value NULL in the SQL INSERT statement
generated by insert().

The update() method takes the name of the table, a ContentValues
representing the columns and replacement values to use, an optional WHERE
clause, and an optional list of parameters to fill into the WHERE clause, to
replace any embedded question marks (?). Since update() only replaces
columns with fixed values, versus ones computed based on other
information, you may need to use execSQL() to accomplish some ends. The
WHERE clause and parameter list works akin to the positional SQL
parameters you may be used to from other SQL APIs.

312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

The delete() method works akin to update(), taking the name of the table,
the optional WHERE clause, and the corresponding parameters to fill into the
WHERE clause. For example, here we delete() a row from our constants table,
given its _ID:

private void processDelete(long rowId) {
 String[] args={String.valueOf(rowId)};

 db.getWritableDatabase().delete("constants", "_ID=?", args);
 constantsCursor.requery();
}

What Goes Around, Comes Around

As with INSERT, UPDATE, and DELETE, you have two main options for retrieving
data from a SQLite database using SELECT:

1. You can use rawQuery() to invoke a SELECT statement directly, or

2. You can use query() to build up a query from its component parts

Confounding matters further is the SQLiteQueryBuilder class and the issue
of cursors and cursor factories. Let's take all of this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery(). Simply call
it with your SQL SELECT statement. The SELECT statement can include
positional parameters; the array of these forms your second parameter to
rawQuery(). So, we wind up with:

constantsCursor=db
 .getReadableDatabase()
 .rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

The return value is a Cursor, which contains methods for iterating over
results (see below).

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

If your queries are pretty much "baked into" your application, this is a very
straightforward way to use them. However, it gets complicated if parts of
the query are dynamic, beyond what positional parameters can really
handle. For example, if the set of columns you need to retrieve is not
known at compile time, puttering around concatenating column names
into a comma-delimited list can be annoying...which is where query()
comes in.

Regular Queries

The query() method takes the discrete pieces of a SELECT statement and
builds the query from them. The pieces, in order that they appear as
parameters to query(), are:

• The name of the table to query against

• The list of columns to retrieve

• The WHERE clause, optionally including positional parameters

• The list of values to substitute in for those positional parameters

• The GROUP BY clause, if any

• The ORDER BY clause, if any

• The HAVING clause, if any

These can be null when they are not needed (except the table name, of
course):

String[] columns={"ID", "inventory"};
String[] parms={"snicklefritz"};
Cursor result=db.query("widgets", columns, "name=?",
 parms, null, null, null);

Building with Builders

Yet another option is to use SQLiteQueryBuilder, which offers much richer
query-building options, particularly for nasty queries involving things like
the union of multiple sub-query results. More importantly, the

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

SQLiteQueryBuilder interface dovetails nicely with the ContentProvider
interface for executing queries. Hence, a common pattern for your content
provider's query() implementation is to create a SQLiteQueryBuilder, fill in
some defaults, then allow it to build up (and optionally execute) the full
query combining the defaults with what is provided to the content provider
on the query request.

For example, here is a snippet of code from a content provider using
SQLiteQueryBuilder:

@Override
public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

 qb.setTables(getTableName());

 if (isCollectionUri(url)) {
 qb.setProjectionMap(getDefaultProjection());
 }
 else {
 qb.appendWhere(getIdColumnName()+"="+url.getPathSegments().get(1));
 }

 String orderBy;

 if (TextUtils.isEmpty(sort)) {
 orderBy=getDefaultSortOrder();
 } else {
 orderBy=sort;
 }

 Cursor c=qb.query(db, projection, selection, selectionArgs,
 null, null, orderBy);
 c.setNotificationUri(getContext().getContentResolver(), url);
 return c;
}

Content providers are explained in greater detail later in the book, so some
of this you will have to take on faith until then. Here, we see:

• A SQLiteQueryBuilder is constructed

• It is told the table to use for the query (setTables(getTableName()))

• It is either told the default set of columns to return
(setProjectionMap()), or is given a piece of a WHERE clause to identify

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

a particular row in the table by an identifier extracted from the Uri
supplied to the query() call (appendWhere())

• Finally, it is told to execute the query, blending the preset values
with those supplied on the call to query() (qb.query(db, projection,
selection, selectionArgs, null, null, orderBy))

Instead of having the SQLiteQueryBuilder execute the query directly, we
could have called buildQuery() to have it generate and return the SQL
SELECT statement we needed, which we could then execute ourselves.

Using Cursors

No matter how you execute the query, you get a Cursor back. This is the
Android/SQLite edition of the database cursor, a concept used in many
database systems. With the cursor, you can:

• Find out how many rows are in the result set via getCount()

• Iterate over the rows via moveToFirst(), moveToNext(), and
isAfterLast()

• Find out the names of the columns via getColumnNames(), convert
those into column numbers via getColumnIndex(), and get values for
the current row for a given column via methods like getString(),
getInt(), etc.

• Re-execute the query that created the cursor via requery()

• Release the cursor's resources via close()

For example, here we iterate over a widgets table entries:

Cursor result=
 db.rawQuery("SELECT ID, name, inventory FROM widgets", null);

result.moveToFirst();

while (!result.isAfterLast()) {
 int id=result.getInt(0);
 String name=result.getString(1);
 int inventory=result.getInt(2);

 // do something useful with these

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

 result.moveToNext();
}

result.close();

You can also wrap a Cursor in a SimpleCursorAdapter or other
implementation, then hand the resulting adapter to a ListView or other
selection widget. For example, after retrieving the sorted list of constants,
we pop those into the ListView for the ConstantsBrowser activity in just a few
lines of code:

ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,
 new String[] {"title", "value"},
 new int[] {R.id.title, R.id.value});

setListAdapter(adapter);

Making Your Own Cursors

There may be circumstances in which you want to use your own Cursor
subclass, rather than the stock implementation provided by Android. In
those cases, you can use queryWithFactory() and rawQueryWithFactory() that
take a SQLiteDatabase.CursorFactory instance as a parameter. The factory, as
one might expect, is responsible for creating new cursors via its newCursor()
implementation.

Finding and implementing a valid use for this facility is left as an exercise
for the reader. Suffice it to say that you should not need to create your own
cursor classes much, if at all, in ordinary Android development.

Flash: Sounds Faster Than It Is

Your database will be stored on flash memory, normally the on-board flash
for the device.

Reading data off of flash is relatively quick. While the memory is not
especially fast, there is no "seek time" to move hard drive heads around like

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

you find with magnetic media, and so performing a query against a SQLite
database will tend to be speedy.

Writing data to flash is another matter entirely.

Sometimes, this may happen fairly quickly, on the order of a couple of
milliseconds. Sometimes, though, it may take hundreds of milliseconds,
even for writing small amounts of data. Moreover, flash tends to get slower
the more full it is, so the speed your users will see varies even more.

The net result is that you should seriously consider doing all database write
operations off the main application thread, such as via an AsyncTask, as is
described in the chapter on threads. This way, the database write
operations will not slow down your user interface.

Note that the emulator behaves differently, because it is typically using a
file on your hard drive for storing data, rather than flash. While the
emulator tends to be much slower than hardware for CPU and GPU
operations, the emulator will tend to be much faster for writing data to
flash. Hence, just because you are not seeing any UI slowdowns due to
database I/O in the emulator, do not assume that will be the same when
your code is running on a real Android device.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably
used to having tools to inspect and manipulate the contents of the
database, beyond merely the database's API. With Android's emulator, you
have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program
and makes it available from the adb shell command. Once you are in the
emulator's shell, just execute sqlite3, providing it the path to your database
file. Your database file can be found at:

/data/data/your.app.package/databases/your-db-name

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Managing and Accessing Local Databases

Here your.app.package is the Java package for your application (e.g.,
com.commonsware.android) and your-db-name is the name of your database, as
supplied to createDatabase().

The sqlite3 program works, and if you are used to poking around your
tables using a console interface, you are welcome to use it. If you prefer
something a little bit friendlier, you can always copy the SQLite database
off the device onto your development machine, then use a SQLite-aware
client program to putter around. Note, though, that you are working off a
copy of the database; if you want your changes to go back to the device, you
will need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or
the equivalent in your IDE, or the File Manager in DDMS), which takes the
path to the on-device database and the local destination as parameters. To
store a modified database on the device, use adb push, which takes the local
path to the database and the on-device destination as parameters.

One of the most-accessible SQLite clients is the SQLite Manager extension
for Firefox, as it works across all platforms.

Figure 91. the SQLite Manager Firefox extension

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://addons.mozilla.org/en-US/firefox/addon/5817

Managing and Accessing Local Databases

You can find other client tools on the SQLite Web site.

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.sqlite.org/
http://www.sqlite.org/cvstrac/wiki?p=SqliteTools

CHAPTER 23

Accessing Files

While Android offers structured storage, via preferences and databases,
sometimes a simple file will suffice. Android offers two models for accessing
files: one for files pre-packaged with your application, and one for files
created on-device by your application.

You And The Horse You Rode In On

Let's suppose you have some static data you want to ship with the
application, such as a list of words for a spell-checker. The easiest way to
deploy that is to put the file in the res/raw directory, so it gets put in the
Android application .apk file as part of the packaging process as a raw
resource.

To access this file, you need to get yourself a Resources object. From an
activity, that is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than
a path, openRawResource() expects an integer identifier for the file as
packaged. This works just like accessing widgets via findViewById() – if you
put a file named words.xml in res/raw, the identifier is accessible in Java as
R.raw.words.

Since you can only get an InputStream, you have no means of modifying this
file. Hence, it is really only useful for static reference data. Moreover, since
it is unchanging until the user installs an updated version of your

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

application package, either the reference data has to be valid for the
foreseeable future, or you will need to provide some means of updating the
data. The simplest way to handle that is to use the reference data to
bootstrap some other modifiable form of storage (e.g., a database), but this
makes for two copies of the data in storage. An alternative is to keep the
reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For
example, if your application ships a file of URLs, you could have a second
file that tracks URLs added by the user or reference URLs that were deleted
by the user.

In the Files/Static sample project, you will find a reworking of the listbox
example from earlier, this time using a static XML file instead of a
hardwired array in Java. The layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to
show in the list:

<words>
 <word value="lorem" />
 <word value="ipsum" />
 <word value="dolor" />
 <word value="sit" />
 <word value="amet" />
 <word value="consectetuer" />
 <word value="adipiscing" />
 <word value="elit" />

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 <word value="morbi" />
 <word value="vel" />
 <word value="ligula" />
 <word value="vitae" />
 <word value="arcu" />
 <word value="aliquet" />
 <word value="mollis" />
 <word value="etiam" />
 <word value="vel" />
 <word value="erat" />
 <word value="placerat" />
 <word value="ante" />
 <word value="porttitor" />
 <word value="sodales" />
 <word value="pellentesque" />
 <word value="augue" />
 <word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will
suffice for a demo.

The Java code now must read in that XML file, parse out the words, and put
them someplace for the list to pick up:

public class StaticFileDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 InputStream in=getResources().openRawResource(R.raw.words);
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(in, null);
 NodeList words=doc.getElementsByTagName("word");

 for (int i=0;i<words.getLength();i++) {
 items.add(((Element)words.item(i)).getAttribute("value"));
 }

 in.close();
 }
 catch (Throwable t) {
 Toast

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 .makeText(this, "Exception: "+t.toString(), 2000)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

The differences mostly lie within onCreate(). We get an InputStream for the
XML file (getResources().openRawResource(R.raw.words)), then use the built-
in XML parsing logic to parse the file into a DOM Document, pick out the
word elements, then pour the value attributes into an ArrayList for use by
the ArrayAdapter.

The resulting activity looks the same as before, since the list of words is the
same, just relocated:

Figure 92. The StaticFileDemo sample application

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Of course, there are even easier ways to have XML files available to you as
pre-packaged files, such as by using an XML resource. That is covered in
the next chapter. However, while this example used XML, the file could just
as easily have been a simple one-word-per-line list, or in some other format
not handled natively by the Android resource system.

Readin' 'n Writin'

Reading and writing your own, application-specific data files is nearly
identical to what you might do in a desktop Java application. The key is to
use openFileInput() and openFileOutput() on your Activity or other Context
to get an InputStream and OutputStream, respectively. From that point
forward, it is not much different than regular Java I/O logic:

• Wrap those streams as needed, such as using an InputStreamReader
or OutputStreamWriter for text-based I/O

• Read or write the data

• Use close() to release the stream when done

If two applications both try reading a notes.txt file via openFileInput(),
they will each access their own edition of the file. If you need to have one
file accessible from many places, you probably want to create a content
provider, as will be described in an upcoming chapter.

Note that openFileInput() and openFileOutput() do not accept file paths
(e.g., path/to/file.txt), just simple filenames.

Below you will see the layout for the world's most trivial text editor, pulled
from the Files/ReadWrite sample application:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <Button android:id="@+id/close"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 android:text="Close" />
 <EditText
 android:id="@+id/editor"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />
</LinearLayout>

All we have here is a large text-editing widget, with a "Close" button above
it.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
 private final static String NOTES="notes.txt";
 private EditText editor;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 editor=(EditText)findViewById(R.id.editor);

 Button btn=(Button)findViewById(R.id.close);

 btn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 finish();
 }
 });
 }

 public void onResume() {
 super.onResume();

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

 try {
 InputStream in=openFileInput(NOTES);

 if (in!=null) {
 InputStreamReader tmp=new InputStreamReader(in);
 BufferedReader reader=new BufferedReader(tmp);
 String str;
 StringBuilder buf=new StringBuilder();

 while ((str = reader.readLine()) != null) {
 buf.append(str+"\n");
 }

 in.close();
 editor.setText(buf.toString());
 }
 }
 catch (java.io.FileNotFoundException e) {
 // that's OK, we probably haven't created it yet
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), 2000)
 .show();
 }
 }

 public void onPause() {
 super.onPause();

 try {
 OutputStreamWriter out=
 new OutputStreamWriter(openFileOutput(NOTES, 0));

 out.write(editor.getText().toString());
 out.close();
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), 2000)
 .show();
 }
 }
}

First, we wire up the button to close out our activity when clicked by using
setOnClickListener() to invoke finish() on the activity.

Next, we hook into onResume(), so we get control when our editor is coming
back to life, from a fresh launch or after having been frozen. We use

327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

openFileInput() to read in notes.txt and pour the contents into the text
editor. If the file is not found, we assume this is the first time the activity
was run (or the file was deleted by other means), and we just leave the
editor empty.

Finally, we hook into onPause(), so we get control as our activity gets hidden
by another activity or is closed, such as via our "Close" button. Here, we use
openFileOutput() to open notes.txt, into which we pour the contents of the
text editor.

The net result is that we have a persistent notepad: whatever is typed in will
remain until deleted, surviving our activity being closed, the phone being
turned off, or similar situations.

Figure 93. The ReadWriteFileDemo sample application, as initially launched

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

Figure 94. The same application, after entering some text

You are also welcome to read and write files on "external storage" (a.k.a.,
the SD card). Use Environment.getExternalStorageDirectory() to obtain a
File object at the root of the SD card. Starting with Android 1.6, you will
also need to hold permissions to work with external storage (e.g.,
WRITE_EXTERNAL_STORAGE) – the concept of permissions will be covered in a
later chapter.

Bear in mind that external storage is accessible by all applications, whereas
openFileInput() and openFileOutput() are in an application-private area.

Also bear in mind that not all devices will have external storage. For
example, the HTC Incredible has 8GB of on-board flash, readable by
applications in the /emmc directory. However, while it has a micro-SD card
slot, some devices ship without a card installed.
getExternalStorageDirectory() on the Incredible returns the path to the SD
card, even if there is no such card.

If you intend to rely upon external storage, be sure to also
use getExternalStorageState() (a static method on the Environment class) to

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Files

determine if there is an SD card installed and available. Beyond the case of
devices missing a card, it is also possible that the user has the SD card
mounted on her PC or Mac. The SD card can be accessed by the host
computer, or by the device, but not by both at the same time.
getExternalStorageState() will let you know if you can use external storage
at that moment.

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 24

Leveraging Java Libraries

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, "third-party libraries" refer to the
innumerable JARs that you can include in a server or desktop Java
application – the things that the Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and
what it provides in its SDK is not precisely the same as any traditional Java
SDK. That being said, many Java third-party libraries still provide
capabilities that Android lacks natively and therefore may be of use to you
in your project, for the ones you can get working with Android's flavor of
Java.

This chapter explains what it will take for you to leverage such libraries and
the limitations on Android's support for arbitrary third-party code.

The Outer Limits

Not all available Java code, of course, will work well with Android. There are
a number of factors to consider, including:

• Expected Platform APIs: Does the code assume a newer JVM than
the one Android is based on? Or, does the code assume the
existence of Java APIs that ship with J2SE but not with Android,
such as Swing?

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

• Size: Existing Java code designed for use on desktops or servers
need not worry too much about on-disk size, or, to some extent,
even in-RAM size. Android, of course, is short on both. Using third-
party Java code, particularly when pre-packaged as JARs, may
balloon the size of your application.

• Performance: Does the Java code effectively assume a much more
powerful CPU than what you may find on many Android devices?
Just because a desktop can run it without issue doesn't mean your
average mobile phone will handle it well.

• Interface: Does the Java code assume a console interface? Or is it a
pure API that you can wrap your own interface around?

One trick for addressing some of these concerns is to use open source Java
code, and actually work with the code to make it more Android-friendly.
For example, if you're only using 10% of the third-party library, maybe it's
worthwhile to recompile the subset of the project to be only what you need,
or at least removing the unnecessary classes from the JAR. The former
approach is safer, in that you get compiler help to make sure you're not
discarding some essential piece of code, though it may be more tedious to
do.

Ants and Jars

You have two choices for integrating third-party code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your
own source tree (under src/ in your project), so it can sit alongside your
existing code, then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have
the source code, you will need to teach your build chain how to use the
JAR. First, place the JAR in the libs/ directory in your Android project.
Then, if you are using an IDE, you probably need to add the JAR to your
build path (Ant will automatically pick up all JARs found in libs/).

332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Following the Script

Unlike other mobile device operating systems, Android has no restrictions
on what you can run on it, so long as you can do it in Java using the Dalvik
VM. This includes incorporating your own scripting language into your
application, something that is expressly prohibited on some other devices.

One possible Java scripting language is BeanShell. BeanShell gives you Java-
compatible syntax with implicit typing and no compilation required.

So, to add BeanShell scripting, you need to put the BeanShell interpreter's
JAR file in your libs/ directory. The 2.0b4 JAR available for download from
the BeanShell site, unfortunately, does not work out of the box with the
Android 0.9 and newer SDKs, perhaps due to the compiler that was used to
build it. Instead, you should probably check out the source code from
Subversion and execute ant jarcore to build it, then copy the resulting JAR
(in BeanShell's dist/ directory) to your own project's libs/. Or, just use the
BeanShell JAR that accompanies the source code for this book, up on the
CommonsWare site, in the Java/AndShell project.

From there, using BeanShell on Android is no different than using
BeanShell in any other Java environment:

1. Create an instance of the BeanShell Interpreter class

2. Set any “globals” for the script’s use via Interpreter#set()

3. Call Interpreter#eval() to run the script and, optionally, get the
result of the last statement

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/eval"
 android:layout_width="fill_parent"

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/
http://beanshell.org/

Leveraging Java Libraries

 android:layout_height="wrap_content"
 android:text="Go!"
 />
<EditText
 android:id="@+id/script"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />
</LinearLayout>

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

public class MainActivity extends Activity {
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 i.set("context", MainActivity.this);
 i.eval(src);
 }
 catch (bsh.EvalError e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(MainActivity.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

 }
 }
 });
 }
}

Compile and run it (including incorporating the BeanShell JAR as
mentioned above), and install it on the emulator. Fire it up, and you get a
trivial IDE, with a large text area for your script and a big "Go!" button to
execute it:

Figure 95. The AndShell BeanShell IDE

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", 5000).show();

Note the use of context to refer to the activity when making the Toast. That
is the global set by the activity to reference back to itself. You could call this
global variable anything you want, so long as the set() call and the script
code use the same name.

Then, click the Go! button, and you get:

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Figure 96. The AndShell BeanShell IDE, executing some code

And now, some caveats...

First, not all scripting languages will work. For example, those that
implement their own form of just-in-time (JIT) compilation, generating
Java bytecodes on the fly, would probably have to be augmented to
generate Dalvik VM bytecodes instead of those for stock Java
implementations. Simpler languages that execute off of parsed scripts,
calling Java reflection APIs to call back into compiled classes, will likely
work better. Even there, though, not every feature of the language may
work, if it relies upon some facility in a traditional Java API that does not
exist in Dalvik – for example, there could be stuff hidden inside BeanShell
or the add-on JARs that does not work on today’s Android.

Second, scripting languages without JIT will inevitably be slower than
compiled Dalvik applications. Slower may mean users experience
sluggishness. Slower definitely means more battery life is consumed for the
same amount of work. So, building a whole Android application in
BeanShell, simply because you feel it is easier to program in, may cause
your users to be unhappy.

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Third, scripting languages that expose the whole Java API, like BeanShell,
can pretty much do anything the underlying Android security model
allows. So, if your application has the READ_CONTACTS permission, expect any
BeanShell scripts your application runs to have the same permission.

Last, but certainly not least, is that language interpreter JARs tend to
be...portly. The BeanShell JAR used in this example is 200KB. That is not
ridiculous, considering what it does, but it will make applications that use
BeanShell that much bigger to download, take up that much more space on
the device, etc.

...And Not A Drop To Drink

Not all Java code will work on Android and Dalvik. Specifically:

• If the Java code assumes it runs on JavaSE, JavaME, or JavaEE, it may
be missing some APIs that those platforms provide that Android
does not. For example, some charting libraries assume the existence
of Swing or AWT drawing primitives, which are generally
unavailable on Android.

• The Java code might have a dependency on other Java code that, in
turn, might have problems running on Android. For example, you
might want to use a JAR that relies upon an earlier (or newer)
version of the Apache HTTPComponents than the one that is
bundled with Android.

• The Java code may use language capabilities beyond what the
Dalvik engine is capable of using.

In all these cases, if you only have a compiled JAR to work with, you may
not encounter problems at compile time, but only when running the
application. Hence, where possible, it is best to use open source code with
Android, so you can build the third-party code alongside your own and find
out about difficulties sooner.

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Leveraging Java Libraries

Reviewing the Script

Since this chapter covers scripting in Android, you may be interested to
know that you have options beyond embedding BeanShell directly in your
project.

Some experiments have been conducted with other JVM-based
programming languages, such as JRuby and Jython. At present, their
support for Android is incomplete, but progress is being made.

Beyond that, though, there is the Android Scripting Environment (ASE).
ASE, downloadable off the Android Market, allows you to write scripts in
Python and Lua, to go along with BeanShell. These scripts are not full-
fledged applications and, at the time of this writing, are not really
distributable to others. And, ASE is not precisely designed to extend other
applications, though it can be used that way. But, if you want to do on-
device programming, ASE is probably the best answer.

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/p/android-scripting/

CHAPTER 25

Communicating via the Internet

The expectation is that most, if not all, Android devices will have built-in
Internet access. That could be WiFi, cellular data services (EDGE, 3G, etc.),
or possibly something else entirely. Regardless, most people – or at least
those with a data plan or WiFi access – will be able to get to the Internet
from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of
ways to make use of this Internet access. Some offer high-level access, such
as the integrated WebKit browser component we saw in an earlier chapter.
If you want, you can drop all the way down to using raw sockets. Or, in
between, you can leverage APIs – both on-device and from 3rd-party JARs –
that give you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the
WebKit component and Internet-access APIs, as busy coders should be
trying to reuse existing components versus rolling one's own on-the-wire
protocol wherever possible.

REST and Relaxation

Android does not have built-in SOAP or XML-RPC client APIs. However, it
does have the Apache HttpComponents library baked in. You can either
layer a SOAP/XML-RPC layer atop this library, or use it "straight" for
accessing REST-style Web services. For the purposes of this book, "REST-

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

style Web services" is defined as "simple HTTP requests for ordinary URLs
over the full range of HTTP verbs, with formatted payloads (XML, JSON,
etc.) as responses".

More expansive tutorials, FAQs, and HOWTOs can be found at the
HttpClient Web site. Here, we'll cover the basics, while checking the
weather.

HTTP Operations via Apache HttpClient

The first step to using HttpClient is, not surprisingly, to create an
HttpClient object. The client object handles all HTTP requests upon your
behalf. Since HttpClient is an interface, you will need to actually instantiate
some implementation of that interface, such as DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different
HttpRequest implementations for each different HTTP verb (e.g., HttpGet for
HTTP GET requests). You create an HttpRequest implementation instance, fill
in the URL to retrieve and other configuration data (e.g., form values if you
are doing an HTTP POST via HttpPost), then pass the method to the client to
actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want.
You can get an HttpResponse object back, with response code (e.g,. 200 for
OK), HTTP headers, and the like. Or, you can use a flavor of execute() that
takes a ResponseHandler<String> as a parameter – the net result there being
that execute() returns just the String representation of the response body.
In practice, this is not a recommended approach, because you really should
be checking your HTTP response codes for errors. However, for trivial
applications, like book examples, the ResponseHandler<String> approach
works just fine.

For example, let's take a look at the Internet/Weather sample project. This
implements an activity that retrieves weather data for your current location
from the National Weather Service (NOTE: this probably only works for
geographic locations in the US). That data is converted into an HTML page,

340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/

Communicating via the Internet

which is poured into a WebKit widget for display. Rebuilding this demo
using a ListView is left as an exercise for the reader. Also, since this sample
is relatively long, we will only show relevant pieces of the Java code here in
this chapter, though you can always download the full source from the
CommonsWare Web site.

To make this a bit more interesting, we use the Android location services to
figure out where we are...sort of. The full details of how that works is
described in the chapter on location services.

In the onResume() method, we toggle on location updates, so we will be
informed where we are now and when we move a significant distance
(10km). When a location is available – either at the start or based on
movement – we retrieve the National Weather Service data via our
updateForecast() method:

private void updateForecast(Location loc) {
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);

 try {
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod,
 responseHandler);
 buildForecasts(responseBody);

 String page=generatePage();

 browser.loadDataWithBaseURL(null, page, "text/html",
 "UTF-8", null);
 }
 catch (Throwable t) {
 android.util.Log.e("WeatherDemo", "Exception fetching data", t);
 Toast
 .makeText(this, "Request failed: "+t.toString(), 4000)
 .show();
 }
}

The updateForecast() method takes a Location as a parameter, obtained
from the location update process. For now, all you need to know is that
Location sports getLatitude() and getLongitude() methods that return the
latitude and longitude of the device's position, respectively.

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Communicating via the Internet

We hold the URL to the National Weather Service XML in a string resource,
and pour in the latitude and longitude at runtime. Given our HttpClient
object created in onCreate(), we populate an HttpGet with that customized
URL, then execute that method. Given the resulting XML from the REST
service, we build the forecast HTML page (see below) and pour that into
the WebKit widget. If the HttpClient blows up with an exception, we provide
that error as a Toast.

Note that we also shut down the HttpClient object in onDestroy().

Parsing Responses

The response you get will be formatted using some system – HTML, XML,
JSON, whatever. It is up to you, of course, to pick out what information you
need and do something useful with it. In the case of the WeatherDemo, we
need to extract the forecast time, temperature, and icon (indicating sky
conditions and precipitation) and generate an HTML page from it.

Android includes:

• Three XML parsers: the traditional W3C DOM (org.w3c.dom), a SAX
parser (org.xml.sax), and the XML pull parser discussed in the
chapter on resources

• A JSON parser (org.json)

You are also welcome to use third-party Java code, where possible, to
handle other formats, such as a dedicated RSS/Atom parser for a feed
reader. The use of third-party Java code is discussed in a separate chapter.

For WeatherDemo, we use the W3C DOM parser in our buildForecasts()
method:

void buildForecasts(String raw) throws Exception {
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(new InputSource(new StringReader(raw)));
 NodeList times=doc.getElementsByTagName("start-valid-time");

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

 for (int i=0;i<times.getLength();i++) {
 Element time=(Element)times.item(i);
 Forecast forecast=new Forecast();

 forecasts.add(forecast);
 forecast.setTime(time.getFirstChild().getNodeValue());
 }

 NodeList temps=doc.getElementsByTagName("value");

 for (int i=0;i<temps.getLength();i++) {
 Element temp=(Element)temps.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
 }

 NodeList icons=doc.getElementsByTagName("icon-link");

 for (int i=0;i<icons.getLength();i++) {
 Element icon=(Element)icons.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setIcon(icon.getFirstChild().getNodeValue());
 }
}

The National Weather Service XML format is...curiously structured, relying
heavily on sequential position in lists versus the more object-oriented style
you find in formats like RSS or Atom. That being said, we can take a few
liberties and simplify the parsing somewhat, taking advantage of the fact
that the elements we want (start-valid-time for the forecast time, value for
the temperature, and icon-link for the icon URL) are all unique within the
document.

The HTML comes in as an InputStream and is fed into the DOM parser.
From there, we scan for the start-valid-time elements and populate a set of
Forecast models using those start times. Then, we find the temperature
value elements and icon-link URLs and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with
the forecasts:

String generatePage() {
 StringBuilder bufResult=new StringBuilder("<html><body><table>");

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

 bufResult.append("<tr><th width=\"50%\">Time</th>"+
 "<th>Temperature</th><th>Forecast</th></tr>");

 for (Forecast forecast : forecasts) {
 bufResult.append("<tr><td align=\"center\">");
 bufResult.append(forecast.getTime());
 bufResult.append("</td><td align=\"center\">");
 bufResult.append(forecast.getTemp());
 bufResult.append("</td><td><img src=\"");
 bufResult.append(forecast.getIcon());
 bufResult.append("\"></td></tr>");
 }

 bufResult.append("</table></body></html>");

 return(bufResult.toString());
}

The result looks like this:

Figure 97. The WeatherDemo sample application

Stuff To Consider

If you need to use SSL, bear in mind that the default HttpClient setup does
not include SSL support. Mostly, this is because you need to decide how to

344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Communicating via the Internet

handle SSL certificate presentation – do you blindly accept all certificates,
even self-signed or expired ones? Or do you want to ask the user if they
really want to use some strange certificates?

Similarly, HttpClient, by default, is designed for single-threaded use. If you
will be using HttpClient from a service or some other place where multiple
threads might be an issue, you can readily set up HttpClient to support
multiple threads.

For these sorts of topics, you are best served by checking out the HttpClient
Web site for documentation and support.

AndroidHttpClient

Starting in Android 2.2 (API level 8), you can use the AndroidHttpClient
class, found in the android.net.http package. This is an implementation of
the HttpClient interface, like DefaultHttpClient. However, it is pre-
configured with settings that the core Android team feels make sense for
the platform.

What you gain is:

• SSL management

• A direct way to specify the user agent string – this is supplied in
your call to the static newInstance() method to get an instance of
AndroidHttpClient

• Utility methods for working with material compressed via GZIP, for
parsing dates in HTTP headers, etc.

What you lose is automatic cookie storage. A regular DefaultHttpClient will
cache cookies in memory and use them on subsequent requests where they
are needed. AndroidHttpClient does not. There are ways to fix that, by using
an HttpContext object, as is described in the AndroidHttpClient
documentation.

345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/
http://hc.apache.org/

Communicating via the Internet

Since this class is only available in Android 2.2 and beyond, it may not
make sense to do much with it until such time as you are only supporting
API level 8 or higher.

346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART IV – Content Providers and
Services

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 26

Using a Content Provider

Any Uri in Android that begins with the content:// scheme represents a
resource served up by a content provider. Content providers offer data
encapsulation using Uri instances as handles – you neither know nor care
where the data represented by the Uri comes from, so long as it is available
to you when needed. The data could be stored in a SQLite database, or in
flat files, or retrieved off a device, or be stored on some far-off server
accessed over the Internet.

Given a Uri, you can perform basic CRUD (create, read, update, delete)
operations using a content provider. Uri instances can represent either
collections or individual pieces of content. Given a collection Uri, you can
create new pieces of content via insert operations. Given an instance Uri,
you can read data represented by the Uri, update that data, or delete the
instance outright.

Android lets you use existing content providers, plus create your own. This
chapter covers using content providers; the next chapter will explain how
you can serve up your own data using the content provider framework.

Pieces of Me

The simplified model of the construction of a content Uri is the scheme, the
namespace of data, and, optionally, the instance identifier, all separated by

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

slashes in URL-style notation. The scheme of a content Uri is always
content://.

So, a content Uri of content://constants/5 represents the constants instance
with an identifier of 5.

The combination of the scheme and the namespace is known as the “base
Uri” of a content provider, or a set of data supported by a content provider.
In the example above, content://constants is the base Uri for a content
provider that serves up information about “constants” (in this case, physical
constants).

The base Uri can be more complicated. For example, if the base Uri for
contacts were content://contacts/people, the contacts content provider
may serve up other data using other base Uri values.

The base Uri represents a collection of instances. The base Uri combined
with an instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common
discussion, it is simpler to think of them as strings. The Uri.parse() static
method creates a Uri out of the string representation.

Getting a Handle

So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to
work with, is to get the base Uri from the content provider itself in code.
For example, CONTENT_URI is the base Uri for contacts represented as people
– this maps to content://contacts/people. If you just need the collection,
this Uri works as-is; if you need an instance and know its identifier, you can
call addId() on the Uri to inject it, so you have a Uri for the instance.

350

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

You might also get Uri instances handed to you from other sources, such as
getting Uri handles for contacts via sub-activities responding to ACTION_PICK
intents. In this case, the Uri is truly an opaque handle...unless you decide to
pick it apart using the various getters on the Uri class.

You can also hard-wire literal String objects (e.g.,
"content://contacts/people") and convert them into Uri instances via
Uri.parse(). This is not an ideal solution, as the base Uri values could
conceivably change over time. For example, the contacts content provider's
base Uri is no longer content://contacts/people due to an overhaul of that
subsystem.

Makin' Queries

Given a base Uri, you can run a query to return data out of the content
provider related to that Uri. This has much of the feel of SQL: you specify
the “columns” to return, the constraints to determine which “rows” to
return, a sort order, etc. The difference is that this request is being made of
a content provider, not directly of some database (e.g., SQLite).

The nexus of this is the managedQuery() method available to your activity.
This method takes five parameters:

1. The base Uri of the content provider to query, or the instance Uri of
a specific object to query

2. An array of properties of instances from that content provider that
you want returned by the query

3. A constraint statement, functioning like a SQL WHERE clause

4. An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

5. An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data
returned by the query.

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

“Properties” is to content providers as columns are to databases. In other
words, each instance (row) returned by a query consists of a set of
properties (columns), each representing some piece of data.

This will hopefully make more sense given an example.

Our content provider examples come from the
ContentProvider/ConstantsPlus sample application, specifically the
ConstantsBrowser class. Here, we make a call to our ContentProvider via
managedQuery():

constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

In the call to managedQuery(), we provide:

• The Uri passed into the activity by the caller (CONTENT_URI), in this
case representing the collection of physical constants managed by
the content provider

• A list of properties to retrieve (see code below)

• Three null values, indicating that we do not need a constraint clause
(the Uri represents the instance we need), nor parameters for the
constraint, nor a sort order (we should only get one entry back)

private static final String[] PROJECTION = new String[] {
 Provider.Constants._ID, Provider.Constants.TITLE,
 Provider.Constants.VALUE};

The biggest “magic” here is the list of properties. The lineup of what
properties are possible for a given content provider should be provided by
the documentation (or source code) for the content provider itself. In this
case, we define logical values on the Provider content provider
implementation class that represent the various properties (namely, the
unique identifier, the display name or title, and the value of the constant).

352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

Adapting to the Circumstances

Now that we have a Cursor via managedQuery(), we have access to the query
results and can do whatever we want with them. You might, for example,
manually extract data from the Cursor to populate widgets or other objects.

However, if the goal of the query was to return a list from which the user
should choose an item, you probably should consider using
SimpleCursorAdapter. This class bridges between the Cursor and a selection
widget, such as a ListView or Spinner. Pour the Cursor into a
SimpleCursorAdapter, hand the adapter off to the widget, and you're set –
your widget will show the available options.

For example, here is the onCreate() method from ConstantsBrowser, which
gives the user a list of physical constants:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

 ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,
 new String[] {Provider.Constants.TITLE,
 Provider.Constants.VALUE},
 new int[] {R.id.title, R.id.value});

 setListAdapter(adapter);
 registerForContextMenu(getListView());
}

After executing the managedQuery() and getting the Cursor, ConstantsBrowser
creates a SimpleCursorAdapter with the following parameters:

• The activity (or other Context) creating the adapter; in this case, the
ConstantsBrowser itself

• The identifier for a layout to be used for rendering the list entries
(R.layout.row)

• The cursor (constantsCursor)

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

• The properties to pull out of the cursor and use for configuring the
list entry View instances (TITLE and VALUE)

• The corresponding identifiers of TextView widgets in the list entry
layout that those properties should go into (R.id.title and
R.id.value)

After that, we put the adapter into the ListView, and we get:

Figure 98. ConstantsBrowser, showing a list of physical constants

If you need more control over the views than you can reasonably achieve
with the stock view construction logic, subclass SimpleCursorAdapter and
override getView() to create your own widgets to go into the list, as
demonstrated earlier in this book.

And, of course, you can manually manipulate the Cursor (e.g.,
moveToFirst(), getString()), as seen in the chapter on databases.

354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

Give and Take

Of course, content providers would be astonishingly weak if you couldn't
add or remove data from them, only update what is there. Fortunately,
content providers offer these abilities as well.

To insert data into a content provider, you have two options available on
the ContentProvider interface (available through getContentProvider() to
your activity):

1. Use insert() with a collection Uri and a ContentValues structure
describing the initial set of data to put in the row

2. Use bulkInsert() with a collection Uri and an array of ContentValues
structures to populate several rows at once

The insert() method returns a Uri for you to use for future operations on
that new object. The bulkInsert() method returns the number of created
rows; you would need to do a query to get back at the data you just
inserted.

For example, here is a snippet of code from ConstantsBrowser to insert a new
constant into the content provider, given a DialogWrapper that can provide
access to the title and value of the constant:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put(Provider.Constants.TITLE, wrapper.getTitle());
 values.put(Provider.Constants.VALUE, wrapper.getValue());

 getContentResolver().insert(Provider.Constants.CONTENT_URI,
 values);
 constantsCursor.requery();
}

Since we already have an outstanding Cursor for the content provider's
contents, we call requery() on that to update the Cursor's contents. This, in
turn, will update any SimpleCursorAdapter you may have wrapping the
Cursor – and that will update any selection widgets (e.g., ListView) you have
using the adapter.

355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using a Content Provider

To delete one or more rows from the content provider, use the delete()
method on ContentResolver. This works akin to a SQL DELETE statement and
takes three parameters:

1. A Uri representing the collection (or instance) from which you wish
to delete rows

2. A constraint statement, functioning like a SQL WHERE clause, to
determine which rows should be deleted

3. An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

Beware of the BLOB!

Binary large objects – BLOBs – are supported in many databases, including
SQLite. However, the Android model is more aimed at supporting such
hunks of data via their own separate content Uri values. A content provider,
therefore, does not provide direct access to binary data, like photos, via a
Cursor. Rather, a property in the content provider will give you the content
Uri for that particular BLOB. You can use getInputStream() and
getOutputStream() on your ContentProvider to read and write the binary
data.

Quite possibly, the rationale is to minimize unnecessary data copying. For
example, the primary use of a photo in Android is to display it to the user.
The ImageView widget can do just that, via a content Uri to a JPEG. By
storing the photo in a manner that has its own Uri, you do not need to copy
data out of the content provider into some temporary holding area just to
be able to display it – just use the Uri. The expectation, presumably, is that
few Android applications will do much more than upload binary data and
use widgets or built-in activities to display that data.

356

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 27

Building a Content Provider

Building a content provider is probably the most complicated and tedious
task in all of Android development. There are many requirements of a
content provider, in terms of methods to implement and public data
members to supply. And, until you try using it, you have no great way of
telling if you did any of it correctly (versus, say, building an activity and
getting validation errors from the resource compiler).

That being said, building a content provider is of huge importance if your
application wishes to make data available to other applications. If your
application is keeping its data solely to itself, you may be able to avoid
creating a content provider, just accessing the data directly from your
activities. But, if you want your data to possibly be used by others – for
example, you are building a feed reader and you want other programs to be
able to access the feeds you are downloading and caching – then a content
provider is right for you.

This chapter shows some sample bits of code from the
ContentProvider/ConstantsPlus application. This is the same basic
application as was first shown back in the chapter on database access, but
rewritten to pull the database logic into a content provider, which is then
used by the activity.

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

First, Some Dissection

As was discussed in the previous chapter, the content Uri is the linchpin
behind accessing data inside a content provider. When using a content
provider, all you really need to know is the provider's base Uri; from there
you can run queries as needed, or construct a Uri to a specific instance if
you know the instance identifier.

When building a content provider, though, you need to know a bit more
about the innards of the content Uri.

A content Uri has two to four pieces, depending on situation:

• It always has a scheme (content://), indicating it is a content Uri
instead of a Uri to a Web resource (http://).

• It always has an authority, which is the first path segment after the
scheme. The authority is a unique string identifying the content
provider that handles the content associated with this Uri.

• It may have a data type path, which is the list of path segments after
the authority and before the instance identifier (if any). The data
type path can be empty, if the content provider only handles one
type of content. It can be a single path segment (foo) or a chain of
path segments (foo/bar/goo) as needed to handle whatever data
access scenarios the content provider requires.

• It may have an instance identifier, which is an integer identifying a
specific piece of content. A content Uri without an instance
identifier refers to the collection of content represented by the
authority (and, where provided, the data path).

For example, a content Uri could be as simple as content://sekrits, which
would refer to the collection of content held by whatever content provider
was tied to the sekrits authority (e.g., SecretsProvider). Or, it could be as
complex as content://sekrits/card/pin/17, which would refer to a piece of
content (identified as 17) managed by the sekrits content provider that is
of the data type card/pin.

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the
content your content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify
content on the device. A collection content Uri – or, more accurately, the
combination authority and data type path – should map to a pair of MIME
types. One MIME type will represent the collection; the other will represent
an instance. These map to the Uri patterns above for no-identifier and
identifier, respectively. As you saw earlier in this book, you can fill in a
MIME type into an Intent to route the Intent to the proper activity (e.g.,
ACTION_PICK on a collection MIME type to call up a selection activity to pick
an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where
X is the name of your firm, organization, or project, and Y is a dot-delimited
type name. So, for example, you might use
vnd.tlagency.cursor.dir/sekrits.card.pin as the MIME type for your
collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually
for the same values of X and Y as you used for the collection MIME type
(though that is not strictly required).

Step #1: Create a Provider Class

Just as an activity and intent receiver are both Java classes, so is a content
provider. So, the big step in creating a content provider is crafting its Java
class, with a base class of ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing
six methods that, when combined, perform the services that a content
provider is supposed to offer to activities wishing to create, read, update, or
delete content.

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

onCreate()

As with an activity, the main entry point to a content provider is onCreate().
Here, you can do whatever initialization you want. In particular, here is
where you should lazy-initialize your data store. For example, if you plan on
storing your data in such-and-so directory on an SD card, with an XML file
serving as a "table of contents", you should check and see if that directory
and XML file are there and, if not, create them so the rest of your content
provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause
the data store to shift structure, you should check to see what structure you
have now and adjust it if what you have is out of date.

For example, here is the onCreate() method for Provider, from the
ContentProvider/ConstantsPlus sample application:

@Override
public boolean onCreate() {
 db=(new DatabaseHelper(getContext())).getWritableDatabase();

 return (db == null) ? false : true;
}

While that doesn't seem all that special, the "magic" is in the private
DatabaseHelper object, described in the chapter on database access.

query()

As one might expect, the query() method is where your content provider
gets details on a query some activity wants to perform. It is up to you to
actually process said query.

The query method gets, as parameters:

• A Uri representing the collection or instance being queried

• A String[] representing the list of properties that should be
returned

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

• A String representing what amounts to a SQL WHERE clause,
constraining which instances should be considered for the query
results

• A String[] representing values to "pour into" the WHERE clause,
replacing any ? found there

• A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make
sense and returning a Cursor that can be used to iterate over and access the
data.

As you can imagine, these parameters are aimed towards people using a
SQLite database for storage. You are welcome to ignore some of these
parameters (e.g., you elect not to try to roll your own SQL WHERE clause
parser), but you need to document that fact so activities only attempt to
query you by instance Uri and not using parameters you elect not to
handle.

For SQLite-backed storage providers, however, the query() method
implementation should be largely boilerplate. Use a SQLiteQueryBuilder to
convert the various parameters into a single SQL statement, then use
query() on the builder to actually invoke the query and give you a Cursor
back. The Cursor is what your query() method then returns.

For example, here is query() from Provider:

@Override
public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

 qb.setTables(getTableName());

 if (isCollectionUri(url)) {
 qb.setProjectionMap(getDefaultProjection());
 }
 else {
 qb.appendWhere(getIdColumnName()+"="+url.getPathSegments().get(1));
 }

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

 String orderBy;

 if (TextUtils.isEmpty(sort)) {
 orderBy=getDefaultSortOrder();
 } else {
 orderBy=sort;
 }

 Cursor c=qb.query(db, projection, selection, selectionArgs,
 null, null, orderBy);
 c.setNotificationUri(getContext().getContentResolver(), url);
 return c;
}

We create a SQLiteQueryBuilder and pour the query details into the builder.
Note that the query could be based around either a collection or an
instance Uri – in the latter case, we need to add the instance ID to the
query. When done, we use the query() method on the builder to get a
Cursor for the results.

insert()

Your insert() method will receive a Uri representing the collection and a
ContentValues structure with the initial data for the new instance. You are
responsible for creating the new instance, filling in the supplied data, and
returning a Uri to the new instance.

If this is a SQLite-backed content provider, once again, the implementation
is mostly boilerplate: validate that all required values were supplied by the
activity, merge your own notion of default values with the supplied data,
and call insert() on the database to actually create the instance.

For example, here is insert() from Provider:

@Override
public Uri insert(Uri url, ContentValues initialValues) {
 long rowID;
 ContentValues values;

 if (initialValues!=null) {
 values=new ContentValues(initialValues);
 } else {
 values=new ContentValues();

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

 }

 if (!isCollectionUri(url)) {
 throw new IllegalArgumentException("Unknown URL " + url);
 }

 for (String colName : getRequiredColumns()) {
 if (values.containsKey(colName) == false) {
 throw new IllegalArgumentException("Missing column: "+colName);
 }
 }

 populateDefaultValues(values);

 rowID=db.insert(getTableName(), getNullColumnHack(), values);
 if (rowID > 0) {
 Uri uri=ContentUris.withAppendedId(getContentUri(), rowID);
 getContext().getContentResolver().notifyChange(uri, null);
 return uri;
 }

 throw new SQLException("Failed to insert row into " + url);
}

The pattern is the same as before: use the provider particulars plus the data
to be inserted to actually do the insertion. Of note:

• You can only insert into a collection Uri, so we validate that by
calling isCollectionUri()

• The provider also knows what columns are required
(getRequiredColumns()), so we iterate over those and confirm our
supplied values cover the requirements

• The provider is also responsible for filling in any default values
(populateDefaultValues()) for columns not supplied in the insert()
call and not automatically handled by the SQLite table definition

update()

Your update() method gets the Uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL
WHERE clause, and a String[] with parameters to use to replace ? found in the
WHERE clause. Your responsibility is to identify the instance(s) to be modified
(based on the Uri and WHERE clause), then replace those instances' current
property values with the ones supplied.

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

This will be annoying, unless you're using SQLite for storage. Then, you can
pretty much pass all the parameters you received to the update() call to the
database, though the update() call will vary slightly depending on whether
you are updating one instance or several.

For example, here is update() from Provider:

@Override
public int update(Uri url, ContentValues values, String where, String[]
whereArgs) {
 int count;

 if (isCollectionUri(url)) {
 count=db.update(getTableName(), values, where, whereArgs);
 }
 else {
 String segment=url.getPathSegments().get(1);
 count=db
 .update(getTableName(), values, getIdColumnName()+"="
 + segment
 + (!TextUtils.isEmpty(where) ? " AND (" + where
 + ')' : ""), whereArgs);
 }

 getContext().getContentResolver().notifyChange(url, null);
 return count;
}

In this case, updates can either be to a specific instance or applied across
the entire collection, so we check the Uri (isCollectionUri()) and, if it is an
update for the collection, just perform the update. If we are updating a
single instance, we need to add a constraint to the WHERE clause to only
update for the requested row.

delete()

As with update(), delete() receives a Uri representing the instance or
collection to work with and a WHERE clause and parameters. If the activity is
deleting a single instance, the Uri should represent that instance and the
WHERE clause may be null. But, the activity might be requesting to delete an
open-ended set of instances, using the WHERE clause to constrain which ones
to delete.

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

As with update(), though, this is simple if you are using SQLite for database
storage (sense a theme?). You can let it handle the idiosyncrasies of parsing
and applying the WHERE clause – all you have to do is call delete() on the
database.

For example, here is delete() from Provider:

@Override
public int delete(Uri url, String where, String[] whereArgs) {
 int count;
 long rowId=0;

 if (isCollectionUri(url)) {
 count=db.delete(getTableName(), where, whereArgs);
 }
 else {
 String segment=url.getPathSegments().get(1);
 rowId=Long.parseLong(segment);
 count=db
 .delete(getTableName(), getIdColumnName()+"="
 + segment
 + (!TextUtils.isEmpty(where) ? " AND (" + where
 + ')' : ""), whereArgs);
 }

 getContext().getContentResolver().notifyChange(url, null);
 return count;
}

This is almost a clone of the update() implementation described above –
either delete a subset of the entire collection or delete a single instance (if it
also satisfies the supplied WHERE clause).

getType()

The last method you need to implement is getType(). This takes a Uri and
returns the MIME type associated with that Uri. The Uri could be a
collection or an instance Uri; you need to determine which was provided
and return the corresponding MIME type.

For example, here is getType() from Provider:

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

@Override
public String getType(Uri url) {
 if (isCollectionUri(url)) {
 return(getCollectionType());
 }

 return(getSingleType());
}

As you can see, most of the logic delegates to private getCollectionType()
and getSingleType() methods:

private String getCollectionType() {
 return("vnd.android.cursor.dir/vnd.commonsware.constant");
}

private String getSingleType() {
 return("vnd.android.cursor.item/vnd.commonsware.constant");
}

Step #2: Supply a Uri

You also need to add a public static member...somewhere, containing the
Uri for each collection your content provider supports. Typically, this is a
public static final Uri put on the content provider class itself:

public static final Uri CONTENT_URI
 =Uri.parse("content://com.commonsware.android.constants.Provider/constants")
;

You may wish to use the same namespace for the content Uri that you use
for your Java classes, to reduce the chance of collision with others.

Step #3: Declare the Properties

Remember those properties you referenced when you were using a content
provider, in the previous chapter? Well, you need to have those too for your
own content provider.

Specifically, you want a public static class implementing BaseColumns that
contains your property names, such as this example from Provider:

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

public static final class Constants implements BaseColumns {
 public static final Uri CONTENT_URI
 =Uri.parse("content://com.commonsware.android.constants.Provider/constants
");
 public static final String DEFAULT_SORT_ORDER="title";
 public static final String TITLE="title";
 public static final String VALUE="value";
}

If you are using SQLite as a data store, the values for the property name
constants should be the corresponding column name in the table, so you
can just pass the projection (array of properties) to SQLite on a query(), or
pass the ContentValues on an insert() or update().

Note that nothing in here stipulates the types of the properties. They could
be strings, integers, or whatever. The biggest limitation is what a Cursor can
provide access to via its property getters. The fact that there is nothing in
code that enforces type safety means you should document the property
types well, so people attempting to use your content provider know what
they can expect.

Step #4: Update the Manifest

The glue tying the content provider implementation to the rest of your
application resides in your AndroidManifest.xml file. Simply add a <provider>
element as a child of the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.constants">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <provider android:name=".Provider"
 android:authorities="com.commonsware.android.constants.Provider" />
 <activity android:name=".ConstantsBrowser" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

The android:name property is the name of the content provider class, with a
leading dot to indicate it is in the stock namespace for this application's
classes (just like you use with activities).

The android:authorities property should be a semicolon-delimited list of
the authority values supported by the content provider. Recall, from earlier
in this chapter, that each content Uri is made up of a scheme, authority,
data type path, and instance identifier. Each authority from each
CONTENT_URI value should be included in the android:authorities list.

Now, when Android encounters a content Uri, it can sift through the
providers registered through manifests to find a matching authority. That
tells Android which application and class implements the content provider,
and from there Android can bridge between the calling activity and the
content provider being called.

Notify-On-Change Support

A feature that your content provider can to its clients is notify-on-change
support. This means that your content provider will let clients know if the
data for a given content Uri changes.

For example, suppose you have created a content provider that retrieves
RSS and Atom feeds from the Internet based on the user's feed
subscriptions (via OPML, perhaps). The content provider offers read-only
access to the contents of the feeds, with an eye towards several applications
on the phone using those feeds versus everyone implementing their own
feed poll-fetch-and-cache system. You have also implemented a service that
will get updates to those feeds asynchronously, updating the underlying
data store. Your content provider could alert applications using the feeds
that such-and-so feed was updated, so applications using that specific feed
can refresh and get the latest data.

On the content provider side, to do this, call notifyChange() on your
ContentResolver instance (available in your content provider via
getContext().getContentResolver()). This takes two parameters: the Uri of

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Building a Content Provider

the piece of content that changed and the ContentObserver that initiated the
change. In many cases, the latter will be null; a non-null value simply
means that the observer that initiated the change will not be notified of its
own changes.

On the content consumer side, an activity can call
registerContentObserver() on its ContentResolver (via getContentResolver()).
This ties a ContentObserver instance to a supplied Uri – the observer will be
notified whenever notifyChange() is called for that specific Uri. When the
consumer is done with the Uri, unregisterContentObserver() releases the
connection.

369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 28

Requesting and Requiring
Permissions

In the late 1990's, a wave of viruses spread through the Internet, delivered
via email, using contact information culled from Microsoft Outlook. A virus
would simply email copies of itself to each of the Outlook contacts that had
an email address. This was possible because, at the time, Outlook did not
take any steps to protect data from programs using the Outlook API, since
that API was designed for ordinary developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data
by requiring that a user explicitly grant rights for other programs to access
the contact information. Those rights could be granted on a case-by-case
basis or all at once at install time.

Android is no different, in that it requires permissions for applications to
read or write contact data. Android's permission system is useful well
beyond contact data, and for content providers and services beyond those
supplied by the Android framework.

You, as an Android developer, will frequently need to ensure your
applications have the appropriate permissions to do what you want to do
with other applications' data. You may also elect to require permissions for
other applications to use your data or services, if you make those available
to other Android components. This chapter covers how to accomplish both
these ends.

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

Mother, May I?

Requesting the use of other applications' data or services requires the uses-
permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct
children of the root manifest element.

The uses-permission element takes a single attribute, android:name, which is
the name of the permission your application requires:

<uses-permission
 android:name="android.permission.ACCESS_LOCATION" />

The stock system permissions all begin with android.permission and are
listed in the Android SDK documentation for Manifest.permission. Third-
party applications may have their own permissions, which hopefully they
have documented for you. Here are some of the more important built-in
permissions:

• INTERNET, if your application wishes to access the Internet through
any means, from raw Java sockets through the WebView widget

• READ_CALENDAR, READ_CONTACTS, and the like for reading data out of the
built-in content providers

• WRITE_CALENDAR, WRITE_CONTACTS, and the like for modifying data in
the built-in content providers

Permissions are confirmed at the time the application is installed – the user
will be prompted to confirm it is OK for your application to do what the
permission calls for. Hence, it is important for you to ask for as few
permissions as possible and to justify those you ask for, so users do not
elect to skip installing your application because you ask for too many
unnecessary permissions. This prompt is not available in the current
emulator, however.

If you do not have the desired permission and try to do something that
needs it, you may get a SecurityException informing you of the missing
permission, but this is not a guarantee – failures may come in other forms,

372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

depending on if something else is catching and trying to handle that
exception. Note that you will only fail on a permission check if you forgot to
ask for the permission – it is impossible for your application to be running
and not have been granted your requested permissions.

Halt! Who Goes There?

The other side of the coin, of course, is to secure your own application. If
your application is merely activities and intent receivers, security may be
just an “outbound” thing, where you request the right to use resources of
other applications. If, on the other hand, you put content providers or
services in your application, you will want to implement “inbound” security
to control which applications can do what with the data.

Note that the issue here is less about whether other applications might
“mess up” your data, but rather about privacy of the user's information or
use of services that might incur expense. That is where the stock
permissions for built-in Android applications are focused – can you read or
modify contacts, can you send SMS, etc. If your application does not store
information that might be considered private, security is less an issue. If, on
the other hand, your application stores private data, such as medical
information, security is much more important.

The first step to securing your own application using permissions is to
declare said permissions, once again in the AndroidManifest.xml file. In this
case, instead of uses-permission, you add permission elements. Once again,
you can have zero or more permission elements, all as direct children of the
root manifest element.

Declaring a permission is slightly more complicated than using a
permission. There are three pieces of information you need to supply:

1. The symbolic name of the permission. To keep your permissions
from colliding with those from other applications, you should use
your application's Java namespace as a prefix

373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

2. A label for the permission: something short that would be
understandable by users

3. A description for the permission: something a wee bit longer that is
understandable by your users

<permission
 android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
 android:label="@string/see_sekrits_label"
 android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a
possible permission; your application must still flag security violations as
they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating
where and under what circumstances they are required. The easier one is to
indicate in the manifest where permissions are required.

Activities, services, and intent receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is
required to access those items:

<activity
 android:name=".SekritApp"
 android:label="Top Sekrit"
 android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Only applications that have requested your indicated permission will be
able to access the secured component. In this case, “access” means:

• Activities cannot be started without the permission

374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

• Services cannot be started, stopped, or bound to an activity without
the permission

• Intent receivers ignore messages sent via sendBroadcast() unless the
sender has the permission

Content providers offer two distinct attributes: readPermission and
writePermission:

<provider
 android:name=".SekritProvider"
 android:authorities="vnd.tla.sekrits.SekritProvider"
 android:readPermission="vnd.tla.sekrits.SEE_SEKRITS"
 android:writePermission="vnd.tla.sekrits.MOD_SEKRITS" />

In this case, readPermission controls access to querying the content
provider, while writePermission controls access to insert, update, or delete
data in the content provider.

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write
methods, you could get the effect of readPermission and writePermission in
code by checking those methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This
means that eligible receivers must hold that permission; those without the
permission are ineligible to receive it. For example, the Android subsystem
presumably includes the RECEIVE_SMS permission when it broadcasts that an
SMS message has arrived – this will restrict the receivers of that intent to be
only those authorized to receive SMS messages.

375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Requesting and Requiring Permissions

May I See Your Documents?

There is no automatic discovery of permissions at compile time; all
permission failures occur at runtime. Hence, it is important that you
document the permissions required for your public APIs, including content
providers, services, and activities intended for launching from other
activities. Otherwise, the programmers attempting to interface with your
application will have to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be
prompted to confirm any permissions your application says it needs.
Hence, you need to document for your users what they should expect, lest
they get confused by the question posed by the phone and elect to not
install or use your application.

376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 29

Creating a Service

As noted previously, Android services are for long-running processes that
may need to keep running even when decoupled from any activity.
Examples include playing music even if the "player" activity gets garbage-
collected, polling the Internet for RSS/Atom feed updates, and maintaining
an online chat connection even if the chat client loses focus due to an
incoming phone call.

Services are created when manually started (via an API call) or when some
activity tries connecting to the service via inter-process communication
(IPC). Services will live until specifically shut down or until Android is
desperate for RAM and destroys them prematurely. Running for a long time
isn't without its costs, though, so services need to be careful not to use too
much CPU or keep radios active too much of the time, lest the service cause
the device's battery to get used up too quickly.

This chapter covers how you can create your own services; the next chapter
covers how you can use such services from your activities or other contexts.
Both chapters will analyze the Service/WeatherPlus sample application, with
this chapter focusing mostly on the WeatherPlusService implementation.
WeatherPlusService extends the weather-fetching logic of the original
Internet/Weather sample, by bundling it in a service that monitors changes
in location, so the weather is updated as the emulator is "moved".

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

Service with Class

Creating a service implementation shares many characteristics with
building an activity. You inherit from an Android-supplied base class,
override some lifecycle methods, and hook the service into the system via
the manifest.

So, the first step in creating a service is to extend the Service class, in our
case with our own WeatherPlusService subclass.

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations have their own lifecycle methods, such as:

1. onCreate(), which, as with activities, is called when the service
process is created, by any means

2. onStartCommand(), which is called each time the service is started via
startService()

3. onDestroy() which is called as the service is being shut down

For example, here is the onCreate() method for WeatherPlusService:

@Override
public void onCreate() {
 super.onCreate();

 client=new DefaultHttpClient();
 format=getString(R.string.url);

 mgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 10000, 10000.0f, onLocationChange);
}

First, we chain upward to the superclass, so Android can do any setup work
it needs to have done. Then we initialize our HttpClient and format string
as we did in the Weather demo. We then get the LocationManager instance for
our application and request to get updates as our location changes, via the
GPS LocationProvider, which will be discussed in greater detail in the
chapter on location-based services.

378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

The onDestroy() method is much simpler:

@Override
public void onDestroy() {
 super.onDestroy();

 mgr.removeUpdates(onLocationChange);
 client.getConnectionManager().shutdown();
}

Here, we just shut down the location-monitoring logic and HttpClient, in
addition to chaining upward to the superclass for any Android internal
bookkeeping that might be needed.

In addition to those lifecycle methods, though, your service also needs to
implement onBind(). This method returns an IBinder, which is the linchpin
behind the IPC mechanism. We will examine onBind() a bit more closely
later in the next section.

There Can Only Be One

Services, by default, run in the same process as all other components of the
application, such as its activities. Hence, one can call API methods on the
service object...if you can get your hands on it. Ideally, there would be some
means, perhaps even type-safe, to ask Android to give you the local service
object. Unfortunately, at the time of this writing, there is no such API.

Hence, we are forced to cheat.

Any given service can, at most, have one copy running in memory. There
might be zero copies in memory, if the service has not been started, but
even if multiple activities try using the service, only one will actually be
running. This is a fine implementation of the singleton pattern – all we
need to do is expose the singleton itself, so other components can access
the object.

We could expose the singleton via a public static data member, or a public
static getter method. However, then we run into some memory-

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

management risks. Since everything referenced from a static context is
immune to garbage collection, we would need to be very careful to set the
static reference to null in our service's onDestroy(). Otherwise, our service,
while disconnected from Android, would remain in memory indefinitely,
until Android elected to shut down our process.

Fortunately, there is an alternative, and that is using onBind().

Binding allows a service to expose an API to activities (or other services)
that bind to it. Much of this infrastructure is set up to support remote
services, where the bound-to API is available via inter-process
communication (IPC), so one service can expose its API to other
applications. However, the simple act of binding itself can be useful in
situations where the service and its clients are all in the same application –
the "local service" scenario.

To expose the service itself to activities via local binding, you must first
create a public inner class that extends the android.os.Binder class:

public class LocalBinder extends Binder {
 WeatherPlusService getService() {
 return(WeatherPlusService.this);
 }
}

Here, our binder exposes one method: getService(), which returns the
service itself. In a remote service scenario, this would not work – the
limitations of IPC means we cannot pass services between processes.
However, for local services, this is a perfectly fine binder.

Next, we need to return that binder object in our onBind() method:

@Override
public IBinder onBind(Intent intent) {
 return(binder);
}

380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

At this point, any client that binds to our service will be able to access the
service object itself and call methods on it. We will see this in greater detail
in the next chapter.

Manifest Destiny

Finally, you need to add the service to your AndroidManifest.xml file, for it to
be recognized as an available service for use. That is simply a matter of
adding a service element as a child of the application element, providing
android:name to reference your service class.

For example, here is the AndroidManifest.xml file for WeatherPlus:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.service">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".WeatherPlus" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".WeatherPlusService" />
 </application>
</manifest>

Since the service class is in the same Java namespace as everything else in
this application, we can use the shorthand dot-notation
(".WeatherPlusService") to reference our class.

If you wish to require some permission of those who wish to start or bind to
the service, add an android:permission attribute naming the permission you
are mandating – see the chapter on permissions for more details.

381

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

Lobbing One Over the Fence

Sometimes, the service needs to asynchronously alert an activity of some
occurrence.

For example, the theory behind the WeatherPlusService implementation is
that the service gets "tickled" when the device (or emulator) position
changes. At that point, the service calls out to the Web service and
generates a new forecast Web page for the activity to display. Then, the
service needs to let the activity know that a new forecast is available, so the
activity can load and display it.

To interoperate with components this way, there are two major
alternatives: callbacks and broadcast Intents.

Note that if all your service needs to do is alert the user of some event, you
may wish to consider using a Notification, as that is the more normal way
of handle that scenario.

Callbacks

Since an activity can work with a local service directly, an activity could
provide some sort of "listener" object to the service, which the service could
then call when needed. To make this work, you would need to:

1. Define a Java interface for that listener object

2. Give the service a public API to register and retract listeners

3. Have the service use those listeners at appropriate times, to notify
those who registered the listener of some event

4. Have the activity register and retract a listener as needed

5. Have the activity respond to the listener-based events in some
suitable fashion

The biggest catch is to make sure that the activity retracts the listeners
when it is done. Listener objects generally know their activity, explicitly

382

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

(via a data member) or implicitly (by being implemented as an inner class).
If the service is holding onto defunct listener objects, the corresponding
activities will linger in memory, even if the activities are not being used by
Android any more. This represents a big memory leak. You may wish to use
WeakReferences, SoftReferences, or similar constructs to ensure that if an
activity is destroyed, any listeners it registers with your service will not
keep that activity in memory.

Broadcast Intents

An alternative approach, first mentioned in the chapter on Intent filters, is
to have the service send a broadcast Intent that can be picked up by the
activity...assuming the activity is still around and is not paused. We will
examine the client side of this exchange in the next chapter; for now, let us
examine how the service can send a broadcast.

The high-level implementation of the flow is packaged in
FetchForecastTask, an AsyncTask implementation that allows us to move the
Internet access to a background thread:

class FetchForecastTask extends AsyncTask<Location, Void, Void> {
 @Override
 protected Void doInBackground(Location... locs) {
 Location loc=locs[0];
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);

 try {
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod, responseHandler);
 String page=generatePage(buildForecasts(responseBody));

 synchronized(this) {
 forecast=page;
 }

 sendBroadcast(broadcast);
 }
 catch (Throwable t) {
 android.util.Log.e("WeatherPlus",
 "Exception in updateForecast()", t);
 }

383

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

 return(null);
 }

 @Override
 protected void onProgressUpdate(Void... unused) {
 // not needed here
 }

 @Override
 protected void onPostExecute(Void unused) {
 // not needed here
 }
}

Much of this is similar to the equivalent piece of the original Weather demo
– perform the HTTP request, convert that into a set of Forecast objects, and
turn those into a Web page. The first difference, besides the introduction of
the AsyncTask, is that the Web page is simply cached in the service, since the
service cannot directly put the page into the activity's WebView. The second
difference is that we call sendBroadcast(), which takes an Intent and sends it
out to all interested parties. That Intent is declared up front in the class
prologue:

private Intent broadcast=new Intent(BROADCAST_ACTION);

Here, BROADCAST_ACTION is simply a static String with a value that will
distinguish this Intent from all others:

public static final String BROADCAST_ACTION=
 "com.commonsware.android.service.ForecastUpdateEvent";

Where's the Remote? And the Rest of the
Code?

In Android, services can either be local or remote. Local services run in the
same process as the launching activity; remote services run in their own
process. A detailed discussion of remote services can be found in the
companion volume, The Busy Coder's Guide to Advanced Android
Development.

384

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating a Service

We will return to this service in the chapter on location-based services, at
which point we will flesh out how locations are tracked (and, in this case,
mocked up).

385

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 30

Invoking a Service

Services can be used by any application component that "hangs around" for
a reasonable period of time. This includes activities, content providers, and
other services. Notably, it does not include pure broadcast receivers (i.e.,
intent receivers that are not part of an activity), since those will get garbage
collected immediately after each instance processes one incoming Intent.

To use a local service, you need to start the service, get access to the service
object, then call methods on that service. You can then stop the service
when you are done with it, or perhaps let the service stop itself. Using
remote services is somewhat more complex, which is why a discussion of it
is reserved for The Busy Coder's Guide to Advanced Android Development
companion volume.

In this chapter, we will look at the client side of the Service/WeatherPlus
sample application. The WeatherPlus activity looks an awful lot like the
original Weather application – just a Web page showing a weather forecast:

387

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Invoking a Service

Figure 99. The WeatherPlus service client

The Ties That Bind

To start a service, one approach is to simply call startService(), providing
the Intent specifying the service to start (again, the easiest way is probably
to specify the service class, if it is your own service). Conversely, to stop a
service started via startService(), call stopService() with the Intent you
used in the corresponding startService() call.

Once the service is started, you need to communicate with it. It could be
that all the communication you need can be via the "extras" you package in
the Intent. Or, if it is a local service that offers a singleton, you can
reference the singleton.

If, however, you implemented onBind() as shown in the previous chapter,
there is a different way to get at the service – bindService().

When an activity binds to a service, it primarily is requesting to be able to
access the public API exposed by that service via the service's binder, as
returned by the service's onBind() method. When doing this, the activity

388

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Invoking a Service

can also indicate, via the BIND_AUTO_CREATE flag, to have Android
automatically start up the service if it is not already running.

To use this technique with our WeatherPlus and WeatherPlusService, we first
need to make a call to bindService() from onCreate():

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 bindService(new Intent(this, WeatherPlusService.class),
 onService, BIND_AUTO_CREATE);
}

This bindService() call refers to an onService callback object, an instance of
ServiceConnection:

private ServiceConnection onService=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder rawBinder) {
 appService=((WeatherPlusService.LocalBinder)rawBinder).getService();
 }

 public void onServiceDisconnected(ComponentName className) {
 appService=null;
 }
};

Our onService object will be called with onServiceConnected() as soon as the
WeatherPlusService is up and running. We are given an IBinder object,
which is an opaque handle representing the service. We can use that to
obtain the LocalBinder exposed by the WeatherPlusService, and from there
to get the actual WeatherPlusService object itself, held as a private data
member:

private WeatherPlusService appService=null;

We can then call methods on the WeatherPlusService, such as a call to get
the forecast page when needed:

389

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Invoking a Service

private void updateForecast() {
 try {
 String page=appService.getForecastPage();

 browser.loadDataWithBaseURL(null, page, "text/html",
 "UTF-8", null);
 }
 catch (final Throwable t) {
 goBlooey(t);
 }
}

We also need to call unbindService() from onDestroy(), to release our
binding to WeatherPlusService:

@Override
public void onDestroy() {
 super.onDestroy();

 unbindService(onService);
}

If there are no other bound clients to the service, Android will shut down
the service as well, releasing its memory. Hence, we do not need to call
stopService() ourselves – Android handles that, if needed, as a side effect of
unbinding.

This is a fair bit more code than simply using a public static singleton for
the service object. However, this approach is less likely to result in memory
leaks.

So to recap:

• To have a service start running, use bindService() with
BIND_AUTO_CREATE (if you wish to communicate via the binding
mechanism) or startService()

• To have a service stop running, do the inverse of what you did to
start it: unbindService() or stopService()

A third possibility for stopping a service is to have the service call
stopSelf() on itself. You might do this if you use startService() to have a

390

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Invoking a Service

service begin running and doing some work on a background thread, then
having the service stop itself when that background work is completed.

Catching the Lob

In the preceding chapter, we showed how the service sends a broadcast to
let the WeatherPlus activity know a change was made to the forecast based
on movement. Now, we can see how the activity receives and uses that
broadcast.

Here are the implementations of onResume() and onPause() for WeatherPlus:

@Override
public void onResume() {
 super.onResume();

 registerReceiver(receiver,
 new IntentFilter(WeatherPlusService.BROADCAST_ACTION));
}

@Override
public void onPause() {
 super.onPause();

 unregisterReceiver(receiver);
}

In onResume(), we register a static BroadcastReceiver to receive Intents
matching the action declared by the service. In onPause(), we disable that
BroadcastReceiver, since we will not be receiving any such Intents while
paused, anyway.

The BroadcastReceiver, in turn, simply arranges to update the forecast:

private BroadcastReceiver receiver=new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 updateForecast();
 }
};

391

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 31

Alerting Users Via Notifications

Pop-up messages. Tray icons and their associated "bubble" messages.
Bouncing dock icons. You are no doubt used to programs trying to get your
attention, sometimes for good reason.

Your phone also probably chirps at you for more than just incoming calls:
low battery, alarm clocks, appointment notifications, incoming text
message or email, etc.

Not surprisingly, Android has a whole framework for dealing with these
sorts of things, collectively called "notifications".

Types of Pestering

A service, running in the background, needs a way to let users know
something of interest has occurred, such as when email has been received.
Moreover, the service may need some way to steer the user to an activity
where they can act upon the event – reading a received message, for
example. For this, Android supplies status bar icons, flashing lights, and
other indicators collectively known as "notifications".

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android,
applications can add their own status bar icons, with an eye towards having
them appear only when needed (e.g., a message has arrived).

393

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

In Android, you can raise notifications via the NotificationManager. The
NotificationManager is a system service. To use it, you need to get the
service object via getSystemService(NOTIFICATION_SERVICE) from your
activity.

The NotificationManager gives you three methods: one to pester (notify())
and two to stop pestering (cancel() and cancelAll()).

The notify() method takes a Notification, which is a data structure that
spells out what form your pestering should take – the capabilities of this
object are described in the following sections.

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying
the color (as an #ARGB value in ledARGB) and what pattern the light should
blink in (by providing off/on durations in milliseconds for the light via
ledOnMS and ledOffMS). Note, however, that Android devices will apply "best
efforts" to meet your color request, meaning that different devices may give
you different colors, or perhaps no control over color at all. For example,
the Motorola CLIQ only has a white LED, so you can ask for any color you
want, and you will get white. Note that you will have to OR (|) in the
Notification.FLAG_SHOW_LIGHTS value into the public flags field on the
Notification object for flashing the LED to work.

You can play a sound, using a Uri to a piece of content held, perhaps, by a
ContentManager (sound). Think of this as a "ringtone" for your application.

You can vibrate the device, controlled via a long[] indicating the on/off
patterns (in milliseconds) for the vibration (vibrate). You might do this by
default, or you might make it an option the user can choose when
circumstances require a more subtle notification than a ringtone. To use
this, though, you will need to request the VIBRATE permission.

All of these, by default, happen once (e.g., one LED flash, one playback of
the sound). If you want to have them persist until the Notification is

394

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

canceled, you will need to set the flags public field in your Notification to
include FLAG_INSISTENT.

Icons

While the flashing lights, sounds, and vibrations are aimed at getting
somebody to look at the device, icons are designed to take them the next
step and tell them what's so important.

To set up an icon for a Notification, you need to set two public fields: icon,
where you provide the identifier of a Drawable resource representing the
icon, and contentIntent, where you supply a PendingIntent to be raised
when the icon is clicked. A PendingIntent is a wrapper around a regular
Intent that allows the Intent to be invoked later, by another process, to
start an activity or whatever. You should be sure the PendingIntent will be
caught by something, perhaps your own application code, to take
appropriate steps to let the user deal with the event triggering the
notification.

You can also supply a text blurb to appear when the icon is put on the
status bar (tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(),
which wraps all three of those in a single call.

You can also set a value in the number public field of your Notification. This
will cause the number you supply to be drawn over top of the icon in one
corner. This is used, for example, to show the number of unread email
messages, to save you from having to have a bunch of different icons, one
for each possible number of unread messages. By default, the number will be
ignored and not used.

395

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

Seeing Pestering in Action

Let us now take a peek at the Notifications/Notify1 sample project, in
particular the NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Timer;
import java.util.TimerTask;

public class NotifyDemo extends Activity {
 private static final int NOTIFY_ME_ID=1337;
 private Timer timer=new Timer();
 private int count=0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.notify);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 TimerTask task=new TimerTask() {
 public void run() {
 notifyMe();
 }
 };

 timer.schedule(task, 5000);
 }
 });

 btn=(Button)findViewById(R.id.cancel);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 mgr.cancel(NOTIFY_ME_ID);
 }
 });

396

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

 }

 private void notifyMe() {
 final NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 Notification note=new Notification(R.drawable.stat_notify_chat,
 "Status message!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(this, 0,
 new Intent(this, NotifyMessage.class),
 0);

 note.setLatestEventInfo(this, "Notification Title",
 "This is the notification message", i);
 note.number=++count;

 mgr.notify(NOTIFY_ME_ID, note);
 }
}

This activity sports two large buttons, one to kick off a notification after a
five-second delay, and one to cancel that notification (if it is active):

Figure 100. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in five steps:

1. Get access to the NotificationManager instance

397

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

2. Create a Notification object with our icon, a message to flash on the
status bar as the notification is raised, and the time associated with
this event

3. Create a PendingIntent that will trigger the display of another
activity (NotifyMessage)

4. Use setLatestEventInfo() to specify that, when the notification is
clicked on, we are to display a certain title and message, and if that
is clicked on, we launch the PendingIntent

5. Update the "number" associated with the notification

6. Tell the NotificationManager to display the notification

Hence, if we click the top button, after five seconds, our icon will appear in
the status bar, briefly along with our status message. The icon will have our
number (initially 1) superimposed on the lower-right corner – you might
use this to signify the number of unread messages.

Figure 101. Our notification as it appears on the status bar, with our status
message

398

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

If you drag down the icon, a drawer will appear beneath the status bar.
Drag that drawer all the way to the bottom of the screen to show the
outstanding notifications, including our own:

Figure 102. The notifications drawer, fully expanded, with our notification

If you click on the notification entry in the drawer, you'll be taken to a
trivial activity displaying a message – though in a real application, this
activity would do something useful based upon the event that occurred
(e.g., take users to the newly-arrived mail messages).

Clicking on the cancel button, or clicking on the Clear Notifications button
in the drawer, will remove the icon from the status bar.

Staying in the Foreground

Notifications have another use: keeping select services around.

Services do not live forever. Android may terminate your application's
process to free up memory in an emergency situation, or just because it

399

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Alerting Users Via Notifications

seems to have been hanging around memory too long. Ideally, you design
your services to deal with the fact that they may not run indefinitely.

However, some services will be missed by the user if they mysteriously
vanish. For example, the default music player application that ships with
Android uses a service for the actual music playback. That way, the user can
listen to music while continuing to use their phone for other purposes. The
service only stops when the user goes in and presses the stop button in the
music player activity. If that service were to be shut down unexpectedly, the
user might wonder what is wrong.

Services like this can declare themselves as being part of the "foreground".
This will cause their priority to rise and make them less likely to be bumped
out of memory. The trade-off is that the service has to maintain a
Notification, so the user knows that this service is claiming part of the
foreground. And, ideally, that Notification provides an easy path back to
some activity where the user can stop the service.

To do this, on onCreate() of your service (or wherever else in the service's
life it would make sense), call startForeground(). This takes a Notification
and a locally-unique integer, just like the notify() method on
NotificationManager. It causes the Notification to appear and moves the
service into foreground priority. Later on, you can call stopForeground() to
return to normal priority.

Note that this method was added with Android 2.0 (API level 5). There was
an earlier method, setForeground(), that performs a similar function in
earlier versions of Android.

400

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART V – Other Android Capabilities
and Tools

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 32

Accessing Location-Based
Services

A popular feature on current-era mobile devices is GPS capability, so the
device can tell you where you are at any point in time. While the most
popular use of GPS service is mapping and directions, there are other things
you can do if you know your location. For example, you might set up a
dynamic chat application where the people you can chat with are based on
physical location, so you're chatting with those you are nearest. Or, you
could automatically "geotag" posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location.
Alternatives include:

• The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

• Cell tower triangulation, where your position is determined based
on signal strength to nearby cell towers

• Proximity to public WiFi "hotspots" that have known geographic
locations

Android devices may have one or more of these services available to them.
You, as a developer, can ask the device for your location, plus details on
what providers are available. There are even ways for you to simulate your
location in the emulator, for use in testing your location-enabled
applications.

403

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

Location Providers: They Know Where You're
Hiding

Android devices can have access to several different means of determining
your location. Some will have better accuracy than others. Some may be
free, while others may have a cost associated with them. Some may be able
to tell you more than just your current position, such as your elevation over
sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the
device. Providers know not only your location, but their own
characteristics, in terms of accuracy, cost, etc.

You, as a developer, will use a LocationManager, which holds the
LocationProvider set, to figure out which LocationProvider is right for your
particular circumstance. You will also need a permission in your
application, or the various location APIs will fail due to a security violation.
Depending on which location providers you wish to use, you may need
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both.

Finding Yourself

The obvious thing to do with a location service is to figure out where you
are right now.

To do that, you need to get a LocationManager – call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it
to be a LocationManager.

The next step to find out where you are is to get the name of the
LocationProvider you want to use. Here, you have two main options:

1. Ask the user to pick a provider

2. Find the best-match provider based on a set of criteria

404

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then
present to the user for selection.

Or, you can create and populate a Criteria object, stating the particulars of
what you want out of a LocationProvider, such as:

• setAltitudeRequired() to indicate if you need the current altitude or
not

• setAccuracy() to set a minimum level of accuracy, in meters, for the
position

• setCostAllowed() to control if the provider must be free or if it can
incur a cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your
LocationManager, and Android will sift through the criteria and give you the
best answer. Note that not all of your criteria may be met – all but the
monetary cost criterion might be relaxed if nothing matches.

You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownPosition() to find out where you were recently. Note, however,
that "recently" might be fairly out of date (e.g., phone was turned off) or
even null if there has been no location recorded for that provider yet. On
the other hand, getLastKnownPosition() incurs no monetary or power cost,
since the provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude
and longitude of the device in degrees as a Java double. If the particular
location provider offers other data, you can get at that as well:

• For altitude, hasAltitude() will tell you if there is an altitude value,
and getAltitude() will return the altitude in meters.

405

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

• For bearing (i.e., compass-style direction), hasBearing() will tell you
if there is a bearing available, and getBearing() will return it as
degrees east of true north.

• For speed, hasSpeed() will tell you if the speed is known and
getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider,
though, is to register for updates, as described in the next section.

On the Move

Not all location providers are necessarily immediately responsive. GPS, for
example, requires activating a radio and getting a fix from the satellites
before you get a location. That is why Android does not offer a
getMeMyCurrentLocationNow() method. Combine that with the fact that your
users may well want their movements to be reflected in your application,
and you are probably best off registering for location updates and using
that as your means of getting the current location.

The Weather and WeatherPlus sample applications show how to register for
updates – call requestLocationUpdates() on your LocationManager instance.
This takes four parameters:

1. The name of the location provider you wish to use

2. How long, in milliseconds, must have elapsed before we might get a
location update

3. How far, in meters, must the device have moved before we might
get a location update

4. A LocationListener that will be notified of key location-related
events, as shown below:

LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 updateForecast(location);
 }

 public void onProviderDisabled(String provider) {

406

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
};

Here, all we do is call updateForecast() with the Location supplied to the
onLocationChanged() callback method. The updateForecast()
implementation, as shown in the chapter on creating services, builds a Web
page with the current forecast for the location and sends a broadcast so the
activity knows an update is available.

When you no longer need the updates, call removeUpdates() with the
LocationListener you registered. If you fail to do this, your application will
continue receiving location updates even after all activities and such are
closed up, which will also prevent Android from reclaiming your
application's memory.

Are We There Yet? Are We There Yet? Are
We There Yet?

Sometimes, you want to know not where you are now, or even when you
move, but when you get to where you're going. This could be an end
destination, or it could be getting to the next step on a set of directions, so
you can give the user the next turn.

To accomplish this, LocationManager offers addProximityAlert(). This
registers an PendingIntent, which will be fired off when the device gets
within a certain distance of a certain location. The addProximityAlert()
method takes, as parameters:

• The latitude and longitude of the position that you are interested in

407

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

• A radius, specifying how close you should be to that position for the
Intent to be raised

• A duration for the registration, in milliseconds – after this period,
the registration automatically lapses. A value of -1 means the
registration lasts until you manually remove it via
removeProximityAlert().

• The PendingIntent to be raised when the device is within the "target
zone" expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent, if
there is an interruption in location services, or if the device is not in the
target zone during the period of time the proximity alert is active. For
example, if the position is off by a bit, and the radius is a little too tight, the
device might only skirt the edge of the target zone, or go by so quickly that
the device's location isn't sampled while in the target zone.

It is up to you to arrange for an activity or intent receiver to respond to the
Intent you register with the proximity alert. What you then do when the
Intent arrives is up to you: set up a notification (e.g., vibrate the device), log
the information to a content provider, post a message to a Web site, etc.
Note that you will receive the Intent whenever the position is sampled and
you are within the target zone – not just upon entering the zone. Hence,
you will get the Intent several times, perhaps quite a few times depending
on the size of the target zone and the speed of the device's movement.

Testing...Testing...

The Android emulator does not have the ability to get a fix from GPS,
triangulate your position from cell towers, or identify your location by some
nearby WiFi signal. So, if you want to simulate a moving device, you will
need to have some means of providing mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes
as Android itself has evolved. It used to be that you could provide mock
location data within your application, which was very handy for

408

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Accessing Location-Based Services

demonstration purposes. Alas, those options have all been removed as of
Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug
Monitor Service (DDMS). This is an external program, separate from the
emulator, where you can feed it single location points or full routes to
traverse, in a few different formats. DDMS is described in greater detail in
the chapter on Android development tools.

409

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 33

Mapping with MapView and
MapActivity

One of Google's most popular services – after search, of course – is Google
Maps, where you can find everything from the nearest pizza parlor to
directions from New York City to San Francisco (only 2,905 miles!) to street
views and satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those
that do, there is a mapping activity available to users straight off the main
Android launcher. More relevant to you, as a developer, are MapView and
MapActivity, which allow you to integrate maps into your own applications.
Not only can you display maps, control the zoom level, and allow people to
pan around, but you can tie in Android's location-based services to show
where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project
is fairly easy. However, there is a fair bit of power available to you, if you
want to get fancy.

Terms, Not of Endearment

Google Maps, particularly when integrated into third party applications,
requires agreeing to a fairly lengthy set of legal terms. These terms include
clauses that you may find unpalatable.

411

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

If you are considering Google Maps, please review these terms closely to
determine if your intended use will not run afoul of any clauses. You are
strongly recommended to seek professional legal counsel if there are any
potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based off of other
sources of map data, such as OpenStreetMap.

Piling On

As of Android 1.5, Google Maps are not strictly part of the Android SDK.
Instead, they are part of the Google APIs Add-On, an extension of the stock
SDK. The Android add-on system provides hooks for other subsystems that
may be part of some devices but not others.

After all, Google Maps is not part of the Android open source project, and
undoubtedly there will be some devices that lack Google Maps due to
licensing issues. For example, at the time of this writing, the ARCHOS 5
Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your
day-to-day development. However, bear in mind:

• You will need to create your project with an appropriate target to
ensure the Google Maps APIs will be available

• To test your Google Maps integration, you will also need an AVD
that uses an appropriate target

The Bare Bones

Far and away the simplest way to get a map into your application is to
create your own subclass of MapActivity. Like ListActivity, which wraps up
some of the smarts behind having an activity dominated by a ListView,
MapActivity handles some of the nuances of setting up an activity
dominated by a MapView.

412

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.openstreetmap.org/

Mapping with MapView and MapActivity

In your layout for the MapActivity subclass, you need to add an element
named, at the time of this writing, com.google.android.maps.MapView. This is
the "longhand" way to spell out the names of widget classes, by including
the full package name along with the class name. This is necessary because
MapView is not in the com.google.android.widget namespace. You can give the
MapView widget whatever android:id attribute value you want, plus handle
all the layout details to have it render properly alongside your other
widgets.

However, you do need to have:

• android:apiKey, which in production will need to be a Google Maps
API key – more on this below

• android:clickable = "true", if you want users to be able to click and
pan through your map

For example, from the Maps/NooYawk sample application, here is the main
layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.google.android.maps.MapView android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="00yHj0k7_7vzHbUFXzY2j94lYYCqW3NAIW8EEEw"
 android:clickable="true" />
</RelativeLayout>

We'll cover that mysterious apiKey in a later section.

In addition, you will need a couple of extra things in your
AndroidManifest.xml file:

• The INTERNET and ACCESS_COARSE_LOCATION permissions (the latter for
use with the MyLocationOverlay class, described later in this chapter)

• Inside your <application>, a <uses-library> element with
android:name = "com.google.android.maps", to indicate you are using
one of the optional Android APIs

413

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.maps">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".NooYawk" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity
from MapActivity. If you were to do nothing else, and built that project and
tossed it in the emulator, you'd get a nice map of the world. Note, however,
that MapActivity is abstract – you need to implement isRouteDisplayed() to
indicate if you are supplying some sort of driving directions or not.

In theory, the user could pan around the map using the directional pad.
However, that's not terribly useful when the user has the whole world in
her hands.

Since a map of the world is not much good by itself, we need to add a few
things...

Exercising Your Control

You can find your MapView widget by findViewById(), no different than any
other widget. The widget itself then offers a getMapController() method.
Between the MapView and MapController, you have a fair bit of capability to
determine what the map shows and how it behaves. Here are some likely
features you will want to use:

414

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Zoom

The map of the world you start with is rather broad. Usually, people
looking at a map on a phone will be expecting something a bit narrower in
scope, such as a few city blocks.

You can control the zoom level directly via the setZoom() method on the
MapController. This takes an integer representing the level of zoom, where 1
is the world view and 21 is the tightest zoom you can get. Each level is a
doubling of the effective resolution: 1 has the equator measuring 256 pixels
wide, while 21 has the equator measuring 268,435,456 pixels wide. Since the
phone's display probably doesn't have 268,435,456 pixels in either
dimension, the user sees a small map focused on one tiny corner of the
globe. A level of 16 will show you several city blocks in each dimension and
is probably a reasonable starting point for you to experiment with.

If you wish to allow users to change the zoom level, call
setBuiltInZoomControls(true);, and the user will be able to zoom in and out
of the map via zoom controls found in the bottom center of the map.

Center

Typically, you will need to control what the map is showing, beyond the
zoom level, such as the user's current location, or a location saved with
some data in your activity. To change the map's position, call setCenter() on
the MapController.

This takes a GeoPoint as a parameter. A GeoPoint represents a location, via
latitude and longitude. The catch is that the GeoPoint stores latitude and
longitude as integers representing the actual latitude and longitude
multiplied by 1E6. This saves a bit of memory versus storing a float or
double, and it greatly speeds up some internal calculations Android needs to
do to convert the GeoPoint into a map position. However, it does mean you
have to remember to multiply the "real world" latitude and longitude by
1E6.

415

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display
satellite imagery, so too can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on
and off this perspective on the area being viewed. You can have the user
trigger these via an options menu or, in the case of NooYawk, via keypresses:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably
used to seeing things overlaid atop the map itself, such as "push-pins"
indicating businesses near the location being searched. In map parlance –
and, for that matter, in many serious graphic editors – the push-pins are on
a separate layer than the map itself, and what you are seeing is the
composition of the push-pin layer atop the map layer.

Android's mapping allows you to create layers as well, so you can mark up
the maps as you need to based on user input and your application's
purpose. For example, NooYawk uses a layer to show where select buildings
are located in the island of Manhattan.

416

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a
subclass of Overlay. There is an ItemizedOverlay subclass available if you are
looking to add push-pins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your
MapView and add() your Overlay instance to it, as we do here with a custom
SitesOverlay:

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will explain that marker in just a bit.

Drawing the ItemizedOverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points
of interest to be displayed on the map – specifically, instances of
OverlayItem. The overlay, then, handles much of the drawing logic for you.
Here are the minimum steps to make this work:

• First, override ItemizedOverlay<OverlayItem> as your own subclass
(in this example, SitesOverlay)

• In the constructor, build your roster of OverlayItem instances, and
call populate() when they are ready for use by the overlay

• Implement size() to return the number of items to be handled by
the overlay

• Override createItem() to return OverlayItem instances given an
index

• When you instantiate your ItemizedOverlay subclass, provide it with
a Drawable that represents the default icon (e.g., push-pin) to display
for each item

417

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

The marker from the NooYawk constructor is the Drawable used for the last
bullet above – it shows a push-pin.

You may also wish to override draw() to do a better job of handling the
shadow for your markers. While the map will handle casting a shadow for
you, it appears you need to provide a bit of assistance for it to know where
the "bottom" of your icon is, so it can draw the shadow appropriately.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> items=new ArrayList<OverlayItem>();
 private Drawable marker=null;

 public SitesOverlay(Drawable marker) {
 super(marker);
 this.marker=marker;

 items.add(new OverlayItem(getPoint(40.748963847316034,
 -73.96807193756104),
 "UN", "United Nations"));
 items.add(new OverlayItem(getPoint(40.76866299974387,
 -73.98268461227417),
 "Lincoln Center",
 "Home of Jazz at Lincoln Center"));
 items.add(new OverlayItem(getPoint(40.765136435316755,
 -73.97989511489868),
 "Carnegie Hall",
 "Where you go with practice, practice, practice"));
 items.add(new OverlayItem(getPoint(40.70686417491799,
 -74.01572942733765),
 "The Downtown Club",
 "Original home of the Heisman Trophy"));

 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return(items.get(i));
 }

 @Override
 public void draw(Canvas canvas, MapView mapView,
 boolean shadow) {
 super.draw(canvas, mapView, shadow);

 boundCenterBottom(marker);
 }

418

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

 @Override
 protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
 }

 @Override
 public int size() {
 return(items.size());
 }
}

Handling Screen Taps

An Overlay subclass can also implement onTap(), to be notified when the
user taps on the map, so the overlay can adjust what it draws. For example,
in full-size Google Maps, clicking on a push-pin pops up a bubble with
information about the business at that pin's location. With onTap(), you can
do much the same in Android.

The onTap() method for ItemizedOverlay receives the index of the
OverlayItem that was clicked. It is up to you to do something worthwhile
with this event.

In the case of SitesOverlay, as shown above, onTap() looks like this:

@Override
protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
}

Here, we just toss up a short Toast with the "snippet" from the OverlayItem,
returning true to indicate we handled the tap.

419

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

My, Myself, and MyLocationOverlay

Android has a built-in overlay to handle two common scenarios:

1. Showing where you are on the map, based on GPS or other location-
providing logic

2. Showing where you are pointed, based on the built-in compass
sensor, where available

All you need to do is create a MyLocationOverlay instance, add it to your
MapView's list of overlays, and enable and disable the desired features at
appropriate times.

The "at appropriate times" notion is for maximizing battery life. There is no
sense in updating locations or directions when the activity is paused, so it is
recommended that you enable these features in onResume() and disable
them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay.
To do this, we first need to create the overlay and add it to the list of
overlays:

me=new MyLocationOverlay(this, map);
map.getOverlays().add(me);

Then, we enable and disable the compass rose as appropriate:

@Override
public void onResume() {
 super.onResume();

 me.enableCompass();
}

@Override
public void onPause() {
 super.onPause();

 me.disableCompass();
}

420

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Mapping with MapView and MapActivity

The Key To It All

If you actually download the source code for the book, compile the
NooYawk project, install it in your emulator, and run it, you will probably
see a screen with a grid and a couple of push-pins, but no actual maps.

That's because the API key in the source code is invalid for your
development machine. Instead, you will need to generate your own API
key(s) for use with your application.

Full instructions for generating API keys, for development and production
use, can be found on the Android Web site. In the interest of brevity, let's
focus on the narrow case of getting NooYawk running in your emulator.
Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Re-read those terms of service and make really really sure you want
to agree to them.

3. Find the MD5 digest of the certificate used for signing your debug-
mode applications (described in detail below)

4. On the API key signup page, paste in that MD5 signature and
submit the form

5. On the resulting page, copy the API key and paste it as the value of
apiKey in your MapView-using layout

The trickiest part is finding the MD5 signature of the certificate used for
signing your debug-mode applications...and much of the complexity is
merely in making sense of the concept.

All Android applications are signed using a digital signature generated from
a certificate. You are automatically given a debug certificate when you set
up the SDK, and there is a separate process for creating a self-signed
certificate for use in your production applications. This signature process
involves the use of the Java keytool and jarsigner utilities. For the purposes
of getting your API key, you only need to worry about keytool.

421

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/add-ons/google-apis/mapkey.html

Mapping with MapView and MapActivity

To get your MD5 digest of your debug certificate, if you are on OS X or
Linux, use the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore
-storepass android -keypass android

On other development platforms, you will need to replace the value of the
-keystore switch with the location for your platform and user account:

• XP: C:\Documents and Settings\<user>\.android\debug.keystore

• Vista: C:\Users\<user>\.android\debug.keystore

(where <user> is your account name)

The second line of the output contains your MD5 digest, as a series of pairs
of hex digits separated by colons.

422

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 34

Handling Telephone Calls

Many, if not most, Android devices will be phones. As such, not only will
users be expecting to place and receive calls using Android, but you will
have the opportunity to help them place calls, if you wish.

Why might you want to?

• Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the
ability to call prospects with a single button click, and without them
having to keep those contacts both in your application and in the
phone's contacts application

• Maybe you are writing a social networking application, and the
roster of phone numbers that you can access shifts constantly, so
rather than try to "sync" the social network contacts with the
phone's contact database, you let people place calls directly from
your application

• Maybe you are creating an alternative interface to the existing
contacts system, perhaps for users with reduced motor control (e.g.,
the elderly), sporting big buttons and the like to make it easier for
them to place calls

Whatever the reason, Android has the means to let you manipulate the
phone just like any other piece of the Android system.

423

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

Report To The Manager

To get at much of the phone API, you use the TelephonyManager. That class
lets you do things like:

• Determine if the phone is in use via getCallState(), with return
values of CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING
(call requested but still being connected), and CALL_STATE_OFFHOOK
(call in progress)

• Find out the SIM ID (IMSI) via getSubscriberId()

• Find out the phone type (e.g., GSM) via getPhoneType() or find out
the data connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!

You can also initiate a call from your application, such as from a phone
number you obtained through your own Web service. To do this, simply
craft an ACTION_DIAL Intent with a Uri of the form tel:NNNNN (where NNNNN is
the phone number to dial) and use that Intent with startActivity(). This
will not actually dial the phone; rather, it activates the dialer activity, from
which the user can then press a button to place the call.

For example, let's look at the Phone/Dialer sample application. Here's the
crude-but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Number to dial:"
 />

424

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

 <EditText android:id="@+id/number"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 />
 </LinearLayout>
 <Button android:id="@+id/dial"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Dial It!"
 />
</LinearLayout>

We have a labeled field for typing in a phone number, plus a button for
dialing said number.

The Java code simply launches the dialer using the phone number from the
field:

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class DialerDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 final EditText number=(EditText)findViewById(R.id.number);
 Button dial=(Button)findViewById(R.id.dial);

 dial.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 String toDial="tel:"+number.getText().toString();

 startActivity(new Intent(Intent.ACTION_DIAL,
 Uri.parse(toDial)));
 }
 });
 }
}

425

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

The activity's own UI is not that impressive:

Figure 103. The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing
you the number you are about to dial:

426

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Telephone Calls

Figure 104. The Android Dialer activity, as launched from DialerDemo

No, Really, You Make the Call!

The good news is that ACTION_DIAL works without any special permissions.
The bad news is that it only takes the user to the Dialer – the user still has
to take action (pressing the green call button) to actually place the phone
call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION_CALL Intent will immediately place the phone
call, without any other UI steps required. However, you need the CALL_PHONE
permission in order to use ACTION_CALL.

427

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 35

Development Tools

The Android SDK is more than a library of Java classes and API calls. It also
includes a number of tools to assist in application development.

Much of the focus has been on the Eclipse plug-in, to integrate Android
development with that IDE. Secondary emphasis has been placed on the
plug-in's equivalents for use in other IDEs or without an IDE, such as adb
for communicating with a running emulator.

This chapter will cover other tools beyond those two groups.

Hierarchical Management

Android comes with a Hierarchy Viewer tool, designed to help you visualize
your layouts as they are seen in a running activity in a running emulator.
So, for example, you can determine how much space a certain widget is
taking up, or try to find where a widget is hiding that does not appear on
the screen.

To use the Hierarchy Viewer, you first need to fire up your emulator, install
your application, launch your activity, and navigate to the spot you wish to
examine. Note that you cannot use HierarchyViewer with a production
Android device (e.g., T-Mobile G1). For illustration purposes, we’ll use the
ReadWrite demo application we introduced back in the chapter on file
access:

429

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 105. ReadWrite demo application

You can launch the Hierarchy Viewer via the hierarchyviewer program,
found in the tools/ directory in your Android SDK installation. This brings
up the main Hierarchy Viewer window:

430

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 106. Hierarchy Viewer main window

The list on the left shows the various emulators you have opened. The
number after the hyphen should line up with the number in parentheses in
your emulator’s title bar.

Clicking on an emulator shows, on the right, the list of “windows” available
for examination:

431

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 107. Hierarchy Viewer list of available windows

Note how there are many other windows besides our open activity,
including the Launcher (i.e., the home screen), the Keyguard (i.e., the
“Press Menu to Unlock” black screen you get when first opening the
emulator), and so on. Your activity will be identified by application package
and class (e.g., com.commonsware.android.files/...).

Where things get interesting, though, is when you choose a window and
click Load View Hierarchy. After a few seconds, the details spring into view,
in a perspective called the Layout View:

432

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 108. Hierarchy Viewer Layout View

The main area of the Layout View shows a tree of the various Views that
make up your activity, starting from the overall system window and driving
down into the individual UI widgets that users are supposed to interact
with. You will see, on the lower-right branch of the tree, the LinearLayout,
Button, and EditText shown in the above code listing. The remaining Views
are all supplied by the system, including the title bar.

Clicking on one of the views adds more information to this perspective:

433

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 109. Hierarchy Viewer View properties

Now, in the upper-right region of the Viewer, we see properties of the
selected widget — in this case, the Button. Alas, these properties do not
appear to be editable.

Also, the widget is highlighted in red in the wireframe of the activity,
shown beneath the properties (by default, views are shown as white
outlines on a black background). This can help you ensure you have
selected the right widget, if, say, you have several buttons and cannot
readily tell from the tree what is what.

434

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

And, if you double-click on a View in the tree, you are given a pop-up pane
showing just that View (and its children), isolated from the rest of your
activity.

Down in the lower-left corner, you will see two toggle buttons, with the
tree button initially selected. Clicking on the grid button changes puts the
Viewer in a whole new perspective, called the Pixel Perfect View:

Figure 110. Hierarchy Viewer Pixel Perfect View

On the left, you see a tree representing the widgets and other Views in your
activity. In the middle, you see your activity (the Normal View), and on the
right, you see a zoomed edition of your activity (the Loupe View).

435

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

What may not be initially obvious is that this imagery is live. Your activity
is polled every so often, controlled by the Refresh Rate slider. Anything you
do in the activity will then be reflected in the Pixel Perfect View’s Normal
and Loupe Views.

The hairlines (cyan) overlaying the activity show the position being
zoomed upon — just click on a new area to change where the Loupe View
is inspecting. And, of course, there is another slider to adjust how much the
Loupe View is zoomed.

Delightful Dalvik Debugging Detailed, De-
moed

Another tool in the Android developer's arsenal is the Dalvik Debug
Monitor Service (DDMS). This is a "Swiss army knife", allowing you to do
everything from browse log files, update the GPS location provided by
emulator, simulate incoming calls and messages, and browse the on-
emulator storage to push and pull files.

Eventually, this section will contain a complete overview of DDMS.
However, DDMS has a wide range of uses, so this section will gradually
expand over time to try to cover them all.

To launch DDMS, run the ddms program inside the tools/ directory in your
Android SDK distribution. It will initially display just a tree of emulators
and running programs on the left:

436

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 111. DDMS initial view

Clicking on an emulator allows you to browse the event log on the bottom
and manipulate the emulator via the tabs on the right:

437

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 112. DDMS, with emulator selected

Logging

Rather than use adb logcat, DDMS lets you view your logging information
in a scrollable table. Just highlight the emulator or device you want to
monitor, and the bottom half of the screen shows the logs.

In addition, you can:

• Filter the Log tab by any of the five logging levels, shown as the V
through E toolbar buttons.

• Create a custom filter, so you can view only those tagged with your
application's tag, by pressing the + toolbar button and completing
the form (shown below). The name you enter in the form will be

438

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

used as the name of another logging output tab in the bottom
portion of the DDMS main window.

• Save the log information to a text file for later perusal, or for
searching.

Figure 113. DDMS logging filter

File Push and Pull

While you can use adb pull and adb push to get files to and from an
emulator or device, DDMS lets you do that visually. Just highlight the
emulator or device you wish to work with, then choose Device|File
Explorer... from the main menu. That will bring up your typical directory
browser:

439

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 114. DDMS File Explorer

Just browse to the file you want and click either the pull (left-most) or push
(middle) toolbar button to transfer the file to/from your development
machine. Or, click the delete (right-most) toolbar button to delete the file.

There are a few caveats to this:

• You cannot create directories through this tool. You will either need
to use adb shell or create them from within your application.

• While you can putter through most of the files on an emulator, you
can access very little outside of /sdcard on an actual device, due to
Android security restrictions.

Screenshots

To take a screenshot of the Android emulator or device, simply press
<Ctrl>-<S> or choose Device| Screen capture... from the main menu. This
will bring up a dialog box containing an image of the current screen:

440

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 115. DDMS screen capture

From here, you can click [Save] to save the image as a PNG file somewhere
on your development machine, [Refresh] to update the image based on the
current state of the emulator or device, or [Done] to close the dialog.

Location Updates

To use DDMS to supply location updates to your application, the first thing
you must do is have your application use the gps LocationProvider, as that is
the one that DDMS is set to update.

Then, click on the Emulator Control tab and scroll down to the Location
Controls section. Here, you will find a smaller tabbed pane with three
options for specifying locations: Manual, GPX, and KML:

441

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 116. DDMS location controls

The Manual tab is fairly self-explanatory: provide a latitude and longitude
and click the Send button to submit that location to the emulator. The
emulator, in turn will notify any location listeners of the new position.

Discussion of the GPX and KML options is reserved for a future edition of
this book.

Placing Calls and Messages

If you want to simulate incoming calls or SMS messages to the Android
emulator, DDMS can handle that as well.

442

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

On the Emulator Control tab, above the Location Controls group, is the
Telephony Actions group:

Figure 117. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice
radio button, and click Call. At that point, the emulator will show the
incoming call, allowing you to accept it (via the green phone button) or
reject it (via the red phone button):

443

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 118. Simulated incoming call

To simulate in an incoming text message, fill in a phone number, choose
the SMS radio button, enter a message in the provided text area, and click
Send. The text message will then appear as a notification:

444

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Figure 119. Simulated text message

And, of course, you can click on the notification to view the message in the
full-fledged Messaging application:

Figure 120. Simulated text message, in Messaging application

445

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

Put It On My Card

The T-Mobile G1 has a microSD card slot. Many other Android devices are
likely to have similar forms of removable storage, which the Android
platform refers to generically as an "SD card".

SD cards are strongly recommended to be used by developers as the
holding pen for large data sets: images, movie clips, audio files, etc. The T-
Mobile G1, in particular, has a relatively paltry amount of on-board flash
memory, so the more you can store on an SD card, the better.

Of course, the challenge is that, while the G1 has an SD card by default, the
emulator does not. To make the emulator work like the G1, you need to
create and "insert" an SD card into the emulator.

Creating a Card Image

Rather than require emulators to somehow have access to an actual SD card
reader and use actual SD cards, Android is set up to use card images. An
image is simply a file that the emulator will treat as if it were an SD card
volume. If you are used to disk images used with virtualization tools (e.g.,
VirtualBox), the concept is the same: Android uses a disk image
representing the SD card contents.

To create such an image, use the mksdcard utility, provided in the tools/
directory of your SDK installation. This takes two main parameters:

1. The size of the image, and hence the size of the resulting "card". If
you just supply a number, it is interpreted as a size in bytes.
Alternatively, you can append K or M to the number to indicate a size
in kilobytes or megabytes, respectively.

2. The filename under which to store the image.

So, for example, to create a 1GB SD card image, to simulate the G1's SD card
in the emulator, you could run:

446

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Development Tools

mksdcard 1024M sdcard.img

"Inserting" the Card

To have your emulator use this SD card image, start the emulator with the
-sdcard switch, containing a fully-qualified path to the image file you
created using mksdcard. While there will be no visible impact – there is no
icon or anything in Android showing that you have a card mounted – the
/sdcard path will now be available for reading and writing.

To put files on the /sdcard, either use the File Explorer in DDMS or adb push
and adb pull from the console.

447

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART VI – The Ever-Evolving Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 36

Handling Multiple Screen Sizes

For the first year or so since Android 1.0 was released, all production
Android devices had the same screen resolution (HVGA, 320x480) and size
(around 3.5" / 9cm). Starting in the fall of 2009, though, devices have been
arriving with widely disparate screen sizes and resolutions, from tiny QVGA
(240x320) screens to much larger WVGA (480x800) screens.

Of course, users will be expecting your application to be functional on all of
these, and perhaps take advantage of larger screen sizes to add greater
value. To that end, Android 1.6 added new capabilities to help better
support these differing screen sizes and resolutions.

The Android documentation has extensive coverage of the mechanics of
handling multiple screen sizes. You are encouraged to read that page along
with this chapter, to get the best understanding of how best to cope with,
and perhaps take advantage of, multiple screen sizes. After a number of
sections discussing the options and theory, the chapter wraps with an in-
depth look at making a fairly simple application handle multiple screen
sizes well.

This chapter, like most in this part of the book, will be revised frequently to
take into account new ideas and patterns.

451

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://d.android.com/guide/practices/screens_support.html

Handling Multiple Screen Sizes

Taking the Default

Let's suppose, though, that you start off by totally ignoring the issue of
screen sizes and resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will
assume your application was designed to look good on the classic screen
size and resolution. Android will then automatically do the following:

• If your application is installed on a device with a larger screen,
Android will run your application in "compatibility mode", scaling
everything based on the actual screen size. So, suppose you have a
24px square PNG file, and Android install and runs your application
on a device with the standard physical size but a WVGA resolution
(a so-called "high-density" screen). Android might scale your PNG
file to be 36px when it displays it, so it will take up the same visible
space on the screen. On the plus side, Android handles this
automatically; on the minus side, bitmap scaling algorithms tend to
make the images a bit fuzzy.

• Android will block your application from running on a device with a
smaller screen. Hence, QVGA devices, like the HTC Tattoo, will be
unable to get your application, even if it is available on the Android
Market.

As an example of how this affects your app, take a peek at the
Containers/Table sample application as viewed on an HTC Tattoo, with its
QVGA screen:

452

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 121. TableLayout sample in QVGA via compatibility mode

If your application is compiled for Android 1.6 or higher, Android assumes
that you are properly handling all screen sizes, and therefore will not run
your application in "compatibility mode". We will see how to tailor this in a
later section.

Whole in One

The simplest approach to handling multiple screen sizes in Android is to
design your user interfaces such that they automatically scale for the screen
size, without any size-specific code or resources. In other words, "it just
works".

This implies, though, that everything you use in your user interface can be
gracefully scaled by Android and that everything will fit, even on a QVGA
screen.

Here are some tips for achieving this "all in one" solution:

453

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Don't Think About Positions, Think About Rules

Some developers, perhaps those coming from the "drag-and-drop" school of
UI development, think first and foremost about the positions of widgets.
They think that they want certain widgets to be certain fixed sizes at certain
fixed locations. They get frustrated with Android layout manager
(containers) and may gravitate to the deprecated AbsoluteLayout as a way to
design UIs they way they used to.

That rarely works well even on desktops, as can be seen by applications that
do not handle window resizing very well. Similarly, it will not work on
mobile devices, particularly Android, with its range of screen sizes and
resolutions.

Instead of thinking about positions, think about rules. You need to teach
Android the "business rules" about where widgets should be sized and
placed, with Android then interpreting those rules based upon what the
device's screen actually supports in terms of resolution.

The simplest rules are the fill_parent and wrap_content values for
android:layout_width and android:layout_height. Those do not specify
specific sizes, but rather adapt to the space available.

The richest environment for easily specifying rules is to use RelativeLayout.
While complicated on the surface, RelativeLayout does an excellent job of
letting you control your layout while still adapting it to other screen sizes.
For example, you can:

• Explicitly anchor widgets to the bottom or right side of the screen,
rather than hoping they will wind up there courtesy of some other
layout

• Control the distances between widgets that are "connected" (e.g., a
label for a field should be to the left of the field) without having to
rely on padding or margins

The greatest control for specifying rules is to create your own layout class.
For example, suppose you are creating a series of applications that

454

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

implement card games. You may want to have a layout class that knows
about playing cards: how they overlap, which are face up versus face down,
how big to be to handle varying number of cards, etc. While you could
achieve the desired look with, say, a RelativeLayout, you may be better
served implementing a PlayingCardLayout or a HandOfCardsLayout or
something that is more explicitly tailored for your application.
Unfortunately, creating custom layout classes is under-documented at this
point in time, though it will eventually be covered in this book's more
advanced companion volume.

Consider Physical Dimensions

Android offers a wide range of available units of measure for dimensions.
The most popular has been the pixel (px), because it is easy to "wrap your
head around" the concept. After all, all Android devices will have screens
with such-and-so number of pixels in each direction.

However, pixels start to become troublesome as screen density changes. As
the number of pixels in a given screen size increases, the pixels effectively
shrink. A 32px icon on a traditional Android device might be finger-friendly,
but on a high-density device (say, WVGA in a mobile phone form factor),
32px may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had
been specifying a size in pixels, you might consider switching to using
millimeters (mm) or inches (in) as the unit of measure. 10mm is 10mm regardless
of the screen resolution or the screen size. This way, you can ensure that
your widget is sized to be finger-friendly, regardless of the number of pixels
that might take.

Avoid "Real" Pixels

In some circumstance using millimeters for dimensions will not make
sense. Then, you may wish to consider using other units of measure while
still avoiding "real" pixels.

455

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid/

Handling Multiple Screen Sizes

Android offers dimensions measured in density-independent pixels (dip).
These map 1:1 to pixels for a 160dpi screen (e.g., a classic HVGA Android
device) and scale from there. For example, on a 240dpi device (e.g., a
phone-sized WVGA device), the ratio is 2:3, so 50dip = 50px at 160dpi = 75px
at 240dpi. The advantage to the user of going with dip is that the actual size
of the dimension stays the same, so visibly there is no difference between
50dip at 160dpi and 50dip at 240dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled
pixels, in theory, are scaled based on the user's choice of font size
(FONT_SCALE value in System.Settings).

Choose Scalable Drawables

Classic bitmaps – PNG, JPG, GIF – are not intrinsically scalable. If you are
not running in "compatibility mode", Android will not even try to scale
them for you based on screen resolution and size. Whatever size of bitmap
you supply is the size it will be, even if that makes the image too large or
too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch
bitmaps and XML-defined drawables (e.g., GradientDrawable) as
alternatives. A nine-patch bitmap is a PNG file specially encoded to have
rules indicating how that image can be stretched to take up more space.
XML-defined drawables use a quasi-SVG XML language to define shapes,
their strokes and fills, and so on.

These techniques are covered in greater detail in another book.

Tailor Made, Just For You (And You, And You,
And...)

There will be times, though, when you want to have different looks or
behaviors based upon screen size or density. Android has ways for you to
switch out resources or code blocks based on the environment in which

456

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid/

Handling Multiple Screen Sizes

your application runs. When properly used in combination with the above
techniques, achieving screen size- and density-independence is eminently
possible, at least for devices running Android 1.6 and newer.

<supports-screens>

The first step to proactively supporting screen sizes is to add the <supports-
screens> element to your AndroidManifest.xml file. This specifies which
screen sizes you explicitly support and which you do not. Those that you do
not will be handled by the automatic "compatibility mode" described
previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Three of these attributes are almost self-explanatory: android:smallScreens,
android:normalScreens, and android:largeScreens each take a boolean value
indicating if your application explicitly supports those screens (true) or
requires "compatibility mode" assistance (false).

457

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

The android:anyDensity attribute indicates whether you are taking density
into account in your calculations (true) or not (false). If false, Android will
pretend as though all of your dimensions (e.g., 4px) are for a normal-density
(160dpi) screen. If your application is running on a screen with lower or
higher density, Android will scale your dimensions accordingly. If you
indicate that android:anyDensity = "true", you are telling Android not to do
that, putting the onus on you to use density-independent units, such as dip,
mm, or in.

Resources and Resource Sets

The primary way to "toggle" different things based on screen size or density
is to create resource sets. By creating resource sets that are specific to
different device characteristics, you teach Android how to render each, with
Android switching among those sets automatically.

Default Scaling

By default, Android will scale all drawable resources. Those that are
intrinsically scalable, as described in the previous section, will scale nicely.
Ordinary bitmaps will be scaled just using a normal scaling algorithm,
which may or may not give you great results. It also may slow things down a
bit. If you wish to avoid this, you will need to set up separate resource sets
containing your non-scalable bitmaps.

Density-Based Sets

If you wish to have different layouts, dimensions, or the like based upon
different screen densities, you can use the -ldpi, -mdpi, and -hdpi resource
set labels. For example, res/values-hdpi/dimens.xml would contain
dimensions used in high-density devices.

Note that there is a bug in Android 1.5 (API level 3) when it comes to
working with these screen density resource sets. Even though all Android
1.5 devices are medium density, Android 1.5 might pick one of the other
densities by accident. So long as you are aiming to support Android 1.5 and

458

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

use screen density resource sets, you will need to clone the contents of your
-mdpi set, with the clone named -mdpi-v3. This "version-based set" is
described in greater detail a bit later in this section.

Size-Based Sets

Similarly, if you wish to have different resource sets based upon screen size,
Android offers -small, -normal, and -large resource set labels. Creating
res/layout-large-land/ would indicate layouts to use on large screens (e.g.,
WVGA) in landscape orientation.

Version-Based Sets

There may be times when earlier versions of Android get confused by newer
resource set labels. To help with that, you can include a version label to
your resource set, of the form -vN, where N is an API level. Hence,
res/drawable-large-v4/ indicates these drawables should be used on large
screens at API level 4 (Android 1.6) and newer.

Apparently, Android has had the ability to filter on version from early on,
and so this technique will work going back to Android 1.5 (and, perhaps,
earlier).

So, if you find that Android 1.5 emulators or devices are grabbing the wrong
resource sets, consider adding -v4 to their resource set names to filter them
out.

Finding Your Size

If you need to take different actions in your Java code based on screen size
or density, you have a few options.

If there is something distinctive in your resource sets, you can "sniff" on
that and branch accordingly in your code. For example, as will be seen in
the code sample at the end of this chapter, you can have extra widgets in

459

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

some layouts (e.g., res/layout-large/main.xml) – simply seeing if an extra
widget exists will tell you if you are running a "large" screen or not.

You can also find out your screen size class via a Configuration object,
typically obtained by an Activity via getResources().getConfiguration(). A
Configuration object has a public field named screenLayout that is a bitmask
indicating the type of screen the application is running on. You can test to
see if your screen is small, normal, or large, or if it is "long" or not (where
"long" indicates a 16:9 or similar aspect ratio, compared to 4:3). For
example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenLayout
 & Configuration.SCREENLAYOUT_SIZE_LARGE)
 ==Configuration.SCREENLAYOUT_SIZE_LARGE) {
 // yes, we are large
}
else {
 // no, we are not
}

There does not appear to be an easy way to find out your screen density in a
similar fashion. If you absolutely need to know that, a "hack" would be to
create res/values-ldpi/, res/values-mdpi/, and res/values-hdpi/ directories
in your project, and add a strings.xml file to each. Put a string resource in
strings.xml that is has a common name across all three resource sets and
has a distinctive value (e.g., name it density, with values of ldpi, mdpi, and
hdpi, respectively). Then, test the value of the string resource at runtime.
This is inelegant but should work.

Ain't Nothing Like the Real Thing

The Android emulators will help you test your application on different
screen sizes. However, that will only get you so far, because mobile device
LCDs have different characteristics than your desktop or notebook, such as:

• Mobile device LCDs may have a much higher density than does
your development machine

• A mouse allows for much more precise "touchscreen" input than
does an actual fingertip

460

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Where possible, you are going to need to either use the emulator in new
and exciting ways, or try to get your hands on actual devices with
alternative screen resolutions.

Density Differs

The Motorola DROID has a 240dpi, 3.7-inch, 480x854 pixel screen.

To emulate a DROID screen, based on pixel count, takes up one third of a
19" 1280x1024 LCD monitor, because the LCD monitor's density is much
lower than that of the DROID – around 96dpi. So, when you fire up your
Android emulator for an FWVGA display like that of the DROID, you will
get a massive emulator window.

This is still perfectly fine for determining the overall look of your
application in an FWVGA environment. Regardless of density, widgets will
still align the same, sizes will have the same relationships (e.g., Widget A
might be twice as tall as Widget B, and that will be true regardless of
density), and so on.

However:

• Things that might appear to be a suitable size when viewed on a 19"
LCD may be entirely too small on a mobile device screen of the
same resolution

• Things that you can easily click upon in the emulator with a mouse
may be much too small to pick out on a physically smaller and
denser screen when used with a finger

Adjusting the Density

By default, the emulator will keep the pixel count accurate at the expense of
density, which is why you get the really big emulator window. You do have
an option, though, of having the emulator keep the density accurate at the
expense of pixel count.

461

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

The easiest way to do this is to use the new Android AVD Manager,
introduced in Android 1.6. The Android 2.0 edition of this tool has a
"Launch Options" dialog that pops up when you go to start an emulator
instance via the Start... button:

Figure 122. The Launch Options dialog

By default, the "Scale display to real size" checkbox is unchecked, and
Android will open the emulator window normally. You can, however, check
that checkbox and then provide two bits of scaling information:

1. The screen size of the device you wish to emulate, in inches (e.g., 3.7
inches for the Motorola DROID)

2. The dpi of your monitor – click the ? button to bring up a calculator
to help you determine what your dpi value is

This will give you an emulator window that more accurately depicts what
your user interface will look like on a physical device, at least in terms of
sizes. However, since the emulator is using far fewer pixels than will a
device, fonts may be difficult to read, images may be blocky, etc.

Accessing Actual Devices

Of course, the best possible way to see what your application looks like on
different devices is to actually test it on different devices. You do not
necessarily have to get every Android device ever made, but you may want

462

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

to have access to ones with distinctive hardware that impacts your
application...and screen size impacts just about everyone.

You can virtually test devices using services like DeviceAnywhere. This is an
improvement over the emulator, but it is not free and certainly cannot test
everything (e.g., changes in location).

You can purchase devices, perhaps through back channels like eBay.
Unlocked GSM phones can readily share a SIM when you need to test
telephony operations or go SIM-less otherwise.

If you live in or near a city, it may be you can set up some form of user
group and use that group for testing applications on your collective set of
hardware.

You can also always take the user-testing route, releasing your application
as a free beta or something, then letting user feedback guide adjustments.
You may wish to distribute this outside of the Android Market, lest beta
test feedback harm your application's market rating.

Ruthlessly Exploiting the Situation

So far, we have focused on how you can ensure your layouts look decent on
other screen sizes. And, for smaller screens than the norm (e.g., QVGA),
that is perhaps all you can ask for.

Once we get into larger screens, though, another possibility emerges: using
different layouts designed to take advantage of the extra screen space. This
is particularly useful when the physical screen size is larger (e.g., a 5" LCD
like on the ARCHOS 5 Android tablet), rather than simply having more
pixels in the same physical space.

Here are some ways you might take advantage of additional space:

463

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.deviceanywhere.com/

Handling Multiple Screen Sizes

Replace Menus with Buttons

An option menu selection requires two physical actions: press the MENU
button, then tap on the appropriate menu choice. A context menu selection
requires two physical actions as well: long-tap on the widget, then tap on
the menu choice. Context menus have the additional problem of being
effectively invisible – users may not realize that your ListView, for example,
has a context menu.

You might consider augmenting your user interface to provide direct on-
screen ways of accomplishing things that might otherwise be hidden away
on a menu. Not only does this reduce the number of steps a user needs to
take to do things, but it makes those options more obvious.

For example, let us suppose you are creating a media player application,
and you want to offer manual playlist management. You have an activity
that displays the songs in a playlist in a ListView. On an option menu, you
have an "add" choice, to add a new song from the ones on the device to the
playlist. On a context menu on the ListView, you have a "remove" choice,
plus "move up" and "move down" choices to reorder the songs in the list.
On a large screen, though, you might consider adding four ImageButton
widgets to your UI for these four options, with the three from the context
menu enabled only when a row is selected by the D-pad or trackball. On
regular or small screens, you would stick with just using the menus.

Replace Tabs with a Simple Activity

You may have introduced a TabHost into your UI to allow you to display
more widgets in the available screen space. So long as the widget space you
"save" by moving them to a separate tab is more than the space taken up by
the tabs themselves, you win. However, having multiple tabs means more
user steps to navigate your UI, particularly if they need to flip back and
forth between tabs frequently.

If you only have two tabs, consider changing your UI to offer a large-screen
layout that removes the tabs and puts all the widgets on one screen. This

464

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

puts everything in front of the user, without having to switch tabs all the
time.

If you have three or more tabs, you probably will lack screen space to put all
those tabs' contents on one activity. However, you might consider going
half-and-half: have popular widgets be on the activity all of the time,
leaving your TabHost to handle the rest on (roughly) half of the screen.

Consolidate Multiple Activities

The most powerful technique is to use a larger screen to get rid of activity
transitions outright. For example, if you have a ListActivity where clicking
on an item brings up that item's details in a separate activity, consider
supporting a large-screen layout where the details are on the same activity
as the ListView (e.g., ListView on the left, details on the right, in a landscape
layout). This eliminates the user having to constantly press the BACK
button to leave one set of details before viewing another.

We will see this technique applied in the sample code presented in the
following section.

Example: EU4You

To examine how to use some of these techniques, let us look at the
ScreenSizes/EU4You sample application. This application has one activity
(EU4You) that contains a ListView with the roster of European Union
members and their respective flags. Clicking on one of the countries brings
up the mobile Wikipedia page for that country.

In the source code to this book, you will find four versions of this
application, as we start with an application that is ignorant of screen size
and slowly add in more screen-related features.

465

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.wpclipart.com/flags/Countries/index.html

Handling Multiple Screen Sizes

The First Cut

First, here is our AndroidManifest.xml file, which looks distinctly like one
shown earlier in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

You will note we have the <supports-screens> element, saying that we
indeed do support all screen sizes. This blocks most of the automatic
scaling that Android would do if we said we did not support certain screen
sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

466

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4px"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="20px"
 />
</LinearLayout>

For example, right now, our font size is set to be 20px, which will not vary
by screen size or density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU
members, and we have to have the smarts to display the flag and the text in
the row:

package com.commonsware.android.eu4you;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class EU4You extends ListActivity {
 static private ArrayList<Country> EU=new ArrayList<Country>();

 static {
 EU.add(new Country(R.string.austria, R.drawable.austria,
 R.string.austria_url));
 EU.add(new Country(R.string.belgium, R.drawable.belgium,
 R.string.belgium_url));
 EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
 R.string.bulgaria_url));

467

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
 R.string.cyprus_url));
 EU.add(new Country(R.string.czech_republic,
 R.drawable.czech_republic,
 R.string.czech_republic_url));
 EU.add(new Country(R.string.denmark, R.drawable.denmark,
 R.string.denmark_url));
 EU.add(new Country(R.string.estonia, R.drawable.estonia,
 R.string.estonia_url));
 EU.add(new Country(R.string.finland, R.drawable.finland,
 R.string.finland_url));
 EU.add(new Country(R.string.france, R.drawable.france,
 R.string.france_url));
 EU.add(new Country(R.string.germany, R.drawable.germany,
 R.string.germany_url));
 EU.add(new Country(R.string.greece, R.drawable.greece,
 R.string.greece_url));
 EU.add(new Country(R.string.hungary, R.drawable.hungary,
 R.string.hungary_url));
 EU.add(new Country(R.string.ireland, R.drawable.ireland,
 R.string.ireland_url));
 EU.add(new Country(R.string.italy, R.drawable.italy,
 R.string.italy_url));
 EU.add(new Country(R.string.latvia, R.drawable.latvia,
 R.string.latvia_url));
 EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
 R.string.lithuania_url));
 EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
 R.string.luxembourg_url));
 EU.add(new Country(R.string.malta, R.drawable.malta,
 R.string.malta_url));
 EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
 R.string.netherlands_url));
 EU.add(new Country(R.string.poland, R.drawable.poland,
 R.string.poland_url));
 EU.add(new Country(R.string.portugal, R.drawable.portugal,
 R.string.portugal_url));
 EU.add(new Country(R.string.romania, R.drawable.romania,
 R.string.romania_url));
 EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
 R.string.slovakia_url));
 EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
 R.string.slovenia_url));
 EU.add(new Country(R.string.spain, R.drawable.spain,
 R.string.spain_url));
 EU.add(new Country(R.string.sweden, R.drawable.sweden,
 R.string.sweden_url));
 EU.add(new Country(R.string.united_kingdom,
 R.drawable.united_kingdom,
 R.string.united_kingdom_url));
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {

468

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setListAdapter(new CountryAdapter());
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(getString(EU.get(position).url))));
 }

 static class Country {
 int name;
 int flag;
 int url;

 Country(int name, int flag, int url) {
 this.name=name;
 this.flag=flag;
 this.url=url;
 }
 }

 class CountryAdapter extends ArrayAdapter<Country> {
 CountryAdapter() {
 super(EU4You.this, R.layout.row, R.id.name, EU);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 CountryWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row, null);
 wrapper=new CountryWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(CountryWrapper)convertView.getTag();
 }

 wrapper.populateFrom(getItem(position));

 return(convertView);
 }
 }

 class CountryWrapper {
 private TextView name=null;
 private ImageView flag=null;
 private View row=null;

469

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 CountryWrapper(View row) {
 this.row=row;
 }

 TextView getName() {
 if (name==null) {
 name=(TextView)row.findViewById(R.id.name);
 }

 return(name);
 }

 ImageView getFlag() {
 if (flag==null) {
 flag=(ImageView)row.findViewById(R.id.flag);
 }

 return(flag);
 }

 void populateFrom(Country nation) {
 getName().setText(nation.name);
 getFlag().setImageResource(nation.flag);
 }
 }
}

Here is what the activity looks like in an ordinary HVGA emulator:

Figure 123. EU4You, original version, HVGA

470

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Here is what the activity looks like in a WVGA emulator:

Figure 124. EU4You, original version, WVGA (800x480 pixels)

And, here is what it looks like in a QVGA screen:

471

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 125. EU4You, original version, QVGA

Fixing the Fonts

The first problem that should be fixed is the font size. As you can see, with
a fixed 20px size, the font ranges from big to tiny, depending on screen size
and density. For a WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have
different versions of that resource based upon screen size or density.
However, it is simpler to just specify a density-independent size, such as
5mm, as seen in the ScreenSizes/EU4You_2 project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4px"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"

472

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="5mm"
 />
</LinearLayout>

Here is what the new activity looks like in HVGA:

Figure 126. EU4You, 5mm font version, HVGA

...and WVGA:

473

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 127. EU4You, 5mm font version, WVGA (800x480 pixels)

....and QVGA:

Figure 128. EU4You, 5mm font version, QVGA

474

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Now our font is a consistent size, and large enough to match the flags.

Fixing the Icons

So, what about those icons? By rights, they should be varying in size as well,
since they are the same for all three emulators.

However, Android automatically scales bitmap resources, even with
<supports-screens> and its attributes set to true. On the plus side, this
means you may not have to do anything with these bitmaps. However, you
are relying upon a device to do the scaling, which definitely costs CPU time
(and, hence battery life). Also, the scaling algorithms that the device uses
may not be optimal, compared to what you can do with graphics tools on
your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-ldpi and
res/drawable-hdpi, putting in smaller and larger renditions of the flags,
respectively. This project also renames res/drawable to res/drawable-mdpi.
Android will use the flags for the appropriate screen density, depending on
what the device or emulator needs.

This effect is subtle in this case and will not really show up well in this
book.

Using the Space

While the activity looks fine on WVGA in portrait mode, it really wastes a
lot of space in landscape mode:

475

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Figure 129. EU4You, landscape WVGA (800x480 pixels)

We can put that to better use by having the Wikipedia content appear right
on the main activity when in large-screen landscape mode, instead of
having to spawn a separate Browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-
land rendition that incorporates a WebView widget, as seen in
ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
 <WebView
 android:id="@+id/browser"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
</LinearLayout>

Then, we need to adjust our activity to look for that WebView and use it when
found, defaulting to launching a Browser activity otherwise:

@Override
public void onCreate(Bundle savedInstanceState) {

476

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.browser);

 setListAdapter(new CountryAdapter());
}

@Override
protected void onListItemClick(ListView l, View v,
 int position, long id) {
 String url=getString(EU.get(position).url);

 if (browser==null) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(url)));
 }
 else {
 browser.loadUrl(url);
 }
}

This gives us a more space-efficient edition of the activity:

Figure 130. EU4You, landscape WVGA (800x480 pixels), set for normal density,
and showing the embedded WebView

Of course, if the user clicks a link in the Wikipedia page, that will open up
the full Browser, for easier surfing.

477

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Multiple Screen Sizes

Note that testing this version of the activity, to see this behavior, requires a
bit of extra emulator work. By default, Android sets up WVGA devices as
being high-density, meaning WVGA is not large in terms of resource sets,
but rather normal. You will need to create a different emulator AVD that is
set for normal (medium) density, which will result in a large screen size.

What If It Is Not a Browser?

Of course, EU4You does cheat a bit. The second activity is a Browser (or
WebView in the embedded form), not some activity of your own creation.
Things get slightly more complicated if the second activity is some activity
of yours, with many widgets in a layout, and you want to use it both as an
activity (for smaller screens) and have it embedded in your main activity UI
(for larger screens).

Here is one pattern to deal with this scenario:

1. Initially develop and test the second activity as an activity

2. Have all of the second activity's lifecycle methods delegate their
logic to an inner class, and move all data members of the activity
that are only needed by the inner class to that inner class, and
ensure that still works

3. Pull the inner class out into a separate public class, and ensure that
still works

4. For your first (or main) activity, create a separate layout for large
screens and use the <include> directive to blend in the contents of
your second activity's layout into the proper spot in the large-screen
first activity's layout

5. In the first activity, if it finds the second activity's layout has been
inflated as part of its own (e.g., by checking for the existence of
some widget via findViewById()), create an instance of the public
class you created in step #3 above and have it deal with all of those
widgets, and adjust your code to reference that class directly rather
than start the second activity as shown in the previous section
above

478

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://android-developers.blogspot.com/2009/02/android-layout-tricks-2-reusing-layouts.html

Handling Multiple Screen Sizes

In short, use a public class and reusable layout to keep your code and
resources in one place, yet use them from both a standalone activity and as
part of a large-screen version of the main activity.

What Are a Few Bugs Among Friends?

The Motorola DROID, which shipped with Android 2.0, has two bugs of
relevance for screen sizes:

1. It has incorrect values for the screen density, both horizontal and
vertical. This means it will incorrectly scale dimensions based on
physical sizes: pt, mm, and in.

2. It thinks Android 2.0 is API level 6 instead of level 5, so version-
specific resource directories need to use the -v6 suffix instead of -v5

Both of these bugs are fixed in Android 2.0.1, and no other devices should
ship with Android 2.0 or be affected by these bugs.

479

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 37

Dealing With Devices

Android is "free as in beer" for device manufacturers, as it is an open source
project. Hence, device manufacturers have carte blanche to do what they
want with Android as they put it on their devices. This means a breadth of
choices for device users, who will be able to have Android devices in all
shapes, sizes, and colors. This also means developers will have some device
differences and idiosyncrasies to take into account.

This chapter will give you some tips and advice for dealing with these
device-specific issues, to go along with the screen size material from the
previous chapter.

This App Contains Explicit...Instructions

Originally, the only Android device was the T-Mobile G1. Hence, if you were
writing an Android application, you could assume the existence of a
hardware QWERTY keyboard, a trackball for navigation, and so on. Now,
though, other devices (e.g., HTC Magic) exist with different hardware
capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various
types of hardware. Some applications, though, will be unusable without
certain hardware characteristics. For example, a full-screen game may rely
upon a hardware keyboard or trackball to indicate player actions – soft
keyboards and touchscreens may be insufficient.

481

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Fortunately, starting with Android 1.5, you can now add explicit
instructions, telling Android what you need, so your application is not
installed on devices lacking such hardware.

In addition to using the target ID system to indicate what level of device
your project is targeting, you can use a new AndroidManifest.xml element to
specify hardware that is required for your application to run properly. You
can add one or more <uses-configuration> elements inside the <manifest>
element. Each <uses-configuration> element specifies one valid
configuration of hardware that your application will work with. At the
present time, there are five possible hardware requirements you can specify
this way:

• android:reqFiveWayNav to indicate you need a 5-way navigation
pointing device of some form (e.g, android:reqFiveWayNav = "true")

• android:reqNavigation to restrict the 5-way navigation pointing
device to a specific type (e.g, android:reqNavigation = "trackball")

• android:reqHardKeyboard to specify if a hardware (physical) keyboard
is required (e.g, android:reqHardKeyboard = "true")

• android:reqKeyboardType, probably used in conjunction with
android:reqHardKeyboard, to indicate a specific type of hardware
keyboard that is required (e.g, android:reqKeyboardType = "qwerty")

• android:reqTouchScreen to indicate what type of touchscreen is
required, if any (e.g, android:reqTouchScreen = "finger")

Starting in Android 1.6, there is a similar manifest element, <uses-feature>,
which is designed to document requirements an application has of other
optional features on Android devices. Specifically, the following attributes
can be placed in a <uses-feature> element:

• android:glEsVersion indicates that your application requires
OpenGL, where the value of the attribute indicates what level of
OpenGL support (e.g., 0x00010002 for OpenGL 1.2 or higher)

• android:name = "android.hardware.camera" indicates that your
application needs a camera, while android:name =

482

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

"android.hardware.camera.autofocus" indicates that your application
specifically needs an auto-focus camera

Button, Button, Who's Got the Button?

There are few, if any, requirements on device manufacturers as to what
buttons are available as physical buttons, versus on-screen "soft keys",
versus simply not being available on a given Android device.

For example, the HTC Dream (a.k.a., T-Mobile G1) has call, end-call, home,
back, menu, and camera buttons, along with a volume control and a
dedicated search button on its QWERTY keyboard. The HTC Magic (a.k.a.,
T-Mobile myTouch 3G) lacks the camera button, putting the search button
in its place. The ARCHOS 5 Android Internet Tablet has no hardware
buttons at all beyond the volume control, with soft keys for home, back,
and menu.

As such, you should be careful about assuming the existence or placement
of hardware buttons. Provide alternative means of performing operations
that you tie to buttons. For example, if you override the volume control to
serve as page-up/page-down keys, make sure there is some other way for
the user to move between pages.

A Guaranteed Market

As mentioned in the introduction to the chapter, Android is open source.
Specifically, it is mostly available under the Apache Software License 2.0.
This license places few restrictions on device manufacturers. Therefore, it is
very possible for a device manufacturer to create a device that, frankly, does
not run Android very well. It might work fine for standard applications
shipped on the device but do a poor job of handling third-party
applications, like the ones you might write.

To help address this, Google has some applications, such as the Android
Market, that it has not released as open source. While these applications
are available to device manufacturers, the devices that run the Android

483

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Market are tested first, to help ensure that a user's experience with the
device will be reasonable.

A Google engineer cited one case where a device manufacturer was
readying a phone that had a QVGA screen, before the release of Android 1.6
where QVGA support was officially added to the platform. While that
manufacturer had arranged for the built-in applications to work acceptably
on the smaller-resolution screen, third party applications were a mess.
Google apparently declined to provide the Android Market to the
manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing
a distribution means for your applications, also serves as a bit of a "seal of
approval" that the device should support well-written third-party
applications.

The Down and Dirty Details

Unfortunately, the Android Market neither guarantees problem-free
deployment on Market-enabled devices, nor does it prevent manufacturers
from shipping Android devices sans the Market. Inevitably, devices will
have some quirks or idiosyncrasies that might impact your applications.
Here is a selection of some Android devices, in the order of their public
availability, and ways that they differ from more standard devices.

ARCHOS 5 Android Internet Tablet

The ARCHOS 5 Android Internet Tablet is the first mainstream device to be
built purely off of the Android open source project. Unlike the phones from
HTC, Motorola, and others, the ARCHOS 5 is not a "Google Experience"
device and does not have the Android Market, Google Maps, or other
proprietary Google applications

The ARCHOS 5 is a WVGA device, but shipped with Android 1.5. Hence, an
original ARCHOS 5 will not honor the new -large resource set designation
as documented previously. Given that this device is not selling in major

484

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

quantities, you may wind up with it simply having an unoptimized UI until
the ARCHOS 5 has Android 1.6 support.

The ARCHOS 5's touchscreen is resistive, not capacitive. This means users
will be using fingernails or styli to manipulate the screen, more so than
fingertips. Bear this in mind when designing "finger-friendly" user
interfaces.

The ARCHOS 5, as of firmware 1.1.01, returned a somewhat invalid value for
ANDROID_ID (a unique ID assigned to each Android device). ANDROID_ID is null
in the emulator and is supposed to be a hex string in devices. On the
ARCHOS 5, ANDROID_ID is a non-null but non-hex string. If all you care
about is null versus non-null, then the ARCHOS 5 is fine; if you need a hex
value for ANDROID_ID, you will experience some problems.

Since the ARCHOS 5 is not a phone, all telephony related features, such as
dialing via ACTION_DIAL, are unavailable. Similarly, since the ARCHOS 5
lacks a camera, all camera-related features are unavailable. Also, the
ARCHOS 5 lacks Google Maps, the Android Market, and other proprietary
Google applications.

Also, the ARCHOS IMEI value is fake, since it is not a phone.

Motorola CLIQ/DEXT

The Motorola CLIQ (or DEXT, as it is known outside of the United States)
is an HVGA device, originally shipping with Android 1.5.

The CLIQ has a directional pad (D-pad) for non-touchscreen navigation.
However, the D-pad is on a side-slider QWERTY keyboard, and as such, the
D-pad is not available to users when the device is in portrait mode, unless
you force portrait mode for your activity via the manifest and force users to
use their CLIQ with the keyboard slid out. Do not write applications that
assume the D-pad is always available!

485

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

The CLIQ also ships with MOTOBLUR, Motorola's social media
presentation layer. This means that the home application, contacts, and
select other features that Android normally ships with have been replaced
by MOTOBLUR-specific replacements. This should not cause too many
problems if you stick to the SDK. The one area that does get a bit
interesting is that not all MOTOBLUR contacts will be available to you via
the Android Contacts content provider. For example, Facebook contacts are
available to MOTOBLUR but not to third-party applications, perhaps for
licensing reasons. This situation may change when the CLIQ is updated to
the new ContactsContract system with Android 2.0.1 and beyond.

Motorola DROID/Milestone

The Motorola DROID (or Milestone, as it is known outside of the United
States) is a WVGA854 device, originally shipping with Android 2.0, though
most of these devices will now be running Android 2.0.1.

The DROID, like the CLIQ, has a D-pad on the side-slider keyboard,
meaning the D-pad is not readily available to users when the device is in
portrait mode.

Because the DROID has a WVGA854 screen on a normal phone-sized
device, Android will consider the DROID to have a high-density screen, so
-hdpi resource sets will be used.

Google/HTC Nexus One

The Nexus One – built by HTC, sold by Google – is a WVGA800 device,
originally shipping with Android 2.1.

Like the DROID, the Nexus One will be a high-density (-hdpi) device.

486

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Dealing With Devices

Motorola BACKFLIP

The not-yet-released Motorola BACKFLIP has yet another take on pointing
devices. Rather than a trackball or a D-pad, the BACKFLIP has two non-
touchscreen navigation options:

1. The QWERTY keyboard has PC-style arrow keys, which should
generate standard DPAD key events

2. The BACKFLIP touchpad on the reverse side of the touchscreen,
which will generate trackball events (or DPAD key events, if the
trackball events are not consumed)

487

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 38

Handling Platform Changes

Android is going to undergo rapid evolution over the next few years.
Perhaps, in time, the rate of change will decline some. However, for the
here and now, you have to assume significant Android releases every 6-12
months, and changes to the lineup of possible Android hardware on an
ongoing basis. So, while right now, the focus of Android is phones, soon
you will see Android netbooks, Android tablets, Android media players,
and so on.

Many of these changes will have little impact on your existing code. Some,
though, will necessitate at least new rounds of testing for your applications,
and perhaps changes to those applications based upon the test results.

In this chapter, we cover a number of the areas which may cause you
trouble in the future as Android evolves, and how to deal with them.

Brand Management

As of the time of this writing, the Android devices that have been released
have been "Google experience" phones. This means they get the standard
Android interface – the things you find in the emulator – along with the
standard roster of add-on applications like Google Maps and GMail. In
turn, manufacturers are allowed to put the "with Google" brand on the
device.

489

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

Not all devices will be this way.

Some manufacturers will take Android as a base and change up what is
included, adding some of their own applications, perhaps even changing
the look-and-feel (menu icons, home screen structure, etc.).

Others may use Android solely from the open source repository, and while
they may ship with the standard look-and-feel, they will lack the
commercial add-on applications.

Even today, some devices have a different mix of applications based upon
where they are distributed. US recipients of the T-Mobile G1 have an
Amazon MP3 store application; not all international recipients do.

If your application is independent of all of this, then it should run
anywhere. However, if your application code or documentation assumes
the existence of Google Maps, GMail, Amazon MP3 store, etc., you may run
into trouble. Be certain to test your application thoroughly in environments
where these applications are not available.

More Things That Make You Go "Boom"

Most of the above was focused on hardware changes. Now, let us examine
some ways in which Android can cause difficulty to you when the operating
system itself changes.

View Hierarchy

Android is not designed to handle arbitrarily-complicated view hierarchies.
Here, "view hierarchy" means containers holding containers holding
containers holding widgets. The hierarchyviewer program, described in an
earlier chapter, depicts such view hierarchies well:

490

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

Figure 131. Hierarchy Viewer Layout View

Here, we see a five-layer-deep hierarchy, because the longest chain of
containers and widgets is five (from PhoneWindow$DecorView through to
Button).

Android has always had limits as to how deep the view hierarchy can be. In
Android 1.5, though, the limit was reduced, so some applications that
worked fine on Android 1.1 would crash with a StackOverflowException in the
newer Android. This, of course, was frustrating to developers who never
realized there was an issue with view hierarchy depth and then got caught
by this change.

491

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

The lessons to take from this:

• Keep your view hierarchies shallow – once you drift into double-
digit depth, you are increasingly likely to run out of stack space

• If you encounter a StackOverflowException, and the stack trace looks
like it is somewhere in the middle of drawing your widgets, your
view hierarchy is probably too complex

Changing Resources

The core Android team may change resources with an Android upgrade,
and those may have unexpected effects in your application. For example, in
Android 1.5, they changed the stock Button background, to allow for smaller
buttons. However, applications that implicitly relied upon the former larger
minimum size wound up "breaking" and needing some UI adjustment.

Similarly, applications can reuse public resources, such as icons, available
inside of Android proper. While doing so saves some storage space, many of
these resources are public by necessity and are not considered part of the
SDK. For example, hardware manufacturers may change the icons to fit
some alternative UI look-and-feel. Relying upon the existing ones to always
look as they do is a bit dangerous. You are better served copying those
resources out of the Android open source project into your own code base.

Handling API Changes

The core Android team has generally done a good job of keeping APIs
stable, and supporting a deprecation model where they change APIs. In
Android, being deprecated does not mean it is going away, just that its
continued use is discouraged. And, of course, new APIs are released with
every new Android update. Changes to the APIs are well-documented with
each release via an API differences report.

Unfortunately, the Android Market – the primary distribution channel for
Android applications – only allows you to upload one APK for each
application. Hence, you need that one APK to deal with as many Android

492

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://source.android.com/

Handling Platform Changes

versions as possible. Many times, your code will "just work" and not require
changing. Other times, though, you will need to make adjustments,
particularly if you want to support new APIs on new versions while not
breaking on old versions. Let us examine some techniques for handling
these cases.

Minimum, Maximum, Target, and Build Versions

Android goes to great lengths to help you deal with the fact that at any
point in time, there will be many Android OS versions out on the market.
Unfortunately, the tools supplied by Android have given us a somewhat
confusing set of overlapping concepts, such as targets and SDK versions.
This section will attempt to explain a bit more about what is all going on
here.

Targets versus SDK Versions versus OS Versions

Way back towards the beginning of this book, we introduced the concept of
targets. Targets are used when defining AVDs, to determine what sort of
device those AVDs support. Targets are also used when creating new
projects, primarily to determine what version of the SDK build tools will be
used to build your project.

A target combines an API version with an indicator of whether or not the
target includes Google APIs (e.g., Google Maps support).

An API version is an integer representing...well...a version of the Android
API. Each Android OS release that makes changes to the Android API
triggers a new API version. So, we have:

• Android 1.5r1, 1.5r2, and 1.5r3 all using API version 3

• Android 1.6r1 and 1.6r2 using API version 4

• Android 2.0 using API version 5

• Android 2.0.1 using API version 6

• Android 2.1 using API version 7

493

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

• Android 2.2 using API version 8

Note that "Android 2.0" was used only on early versions of the Motorola
DROID and Milestone and was replaced by 2.0.1 on those devices by the
end of 2009. Hence, you should not see anything "in the wild" that uses API
version 5 – it will either be 3, 4, or 6.

Google maintains a Web page outlining which versions of Android are in
use today, based on requests made to the Android Market. At the time of
this writing, only Android 1.5, 1.6, and 2.1 are being used significantly,
though Android 2.2 will start to become a bit more prevalent in the next
few months.

Minimum SDK Version

In your AndroidManifest.xml file, you should add a <uses-sdk> element. This
element will describe how your application relates to the various SDK
versions.

The most critical attribute to have in <uses-sdk> is android:minSdkVersion.
This indicates what the lowest API level is that you will support. Devices
running Android OS versions associated with lower API levels will not be
able to install your application. Your application may not even appear to
those devices in the Android Market listings, should you elect to publish via
that distributor.

If you skip this attribute, Android assumes you work on all Android API
versions. That may be true, but it is rather dangerous to assume if you have
not tested it. Hence, set android:minSdkVersion to the lowest level you are
testing and are willing to support.

Target SDK Version

Another <uses-sdk> attribute is android:targetSdkVersion. This represents
the version of the Android API that you are primarily developing for. Any
Android device running a newer version of the OS may elect to apply some

494

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

Handling Platform Changes

"compatibility settings" that will help apps like yours, targeting an older
API, run on the newer version.

Most of the time, you should set this to be the then-current Android API
version, as of the time you are publishing your application.

Maximum SDK Version

The third <uses-sdk> attribute is android:maxSdkVersion. Any Android device
running a newer Android OS than is indicated by this API level will be
prohibited from running your application.

On the plus side, this ensures that your application will not be used on API
levels you have not tested, particularly if you set this to be the then-current
Android API version as of your publication date.

However, bear in mind that your application may be spontaneously
removed from users' devices, once they upgrade their devices to an Android
OS release newer than your max level. Users may be confused and
frustrated if your app vanishes. Hence, if you are going to specify
android:maxSdkVersion, you are effectively committing yourself to quickly
testing and publishing new versions for new API levels, before the newer
Android OS is available to the public at large. Since Android is not known
for giving much warning between SDK update and Android OS upgrade
rollout, this is a dangerous proposition.

The core Android team recommends not using this option and relying upon
Android's intrinsic backwards compatibility – particularly leveraging your
android:targetSdkVersion value – to allow your application to continue to
run on new Android OS versions.

Detecting the Version

If all you need to do is take different branches in your code based upon
version, the easiest thing to do is inspect android.os.Build.VERSION.SDK_INT.
This public static integer value will reflect the same API level as you use

495

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

when creating AVDs and specifying API levels in the manifest. So, you can
compare that value to, say, android.os.Build.VERSION_CODES.DONUT to see
whether you are running on Android 1.6 or newer.

Wrapping the API

So long as the APIs you try to use exist across all Android versions you are
supporting, just branching may be sufficient. Where things get
troublesome is when the APIs change: new parameters to methods, new
methods, or even new classes. You need code that will work regardless of
Android version, yet lets you take advantage of new APIs where available.

However, there is a recommended trick for dealing with this: reflection,
plus a wee bit of caching.

For example, back in the chapter on fancy lists, we used getTag() and
setTag() to associate an arbitrary object with a View. Specifically, we used
this to associate a wrapper object that would lazy-find all necessary
widgets. We also noted the new version of getTag() and setTag() that are
"indexed", taking a resource ID as a parameter.

However, these new indexed methods do not exist on Android 1.5. If you
want to use this new technique, you either need to wait until you are
willing to support only Android 1.6 and beyond...or you will need to use
reflection. Specifically, on Android 1.5, you could associate an
ArrayList<Object> as the "tag" and have your own getTag()/setTag() pair
that takes the index.

This seems straightforward enough, so let us look at APIVersions/Tagger.
Our activity has a simple layout, just a TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/test"

496

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

The source code to our Tagger activity looks at the API version we are
running and routes our getTag() and setTag() operations to either the
native indexed one (for Android 1.6 and above) or to the original non-
indexed getTag() and setTag(), where we use a HashMap to track all of the
individual indexed objects:

package com.commonsware.android.api.tag;

import android.app.Activity;
import android.os.Build;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import java.util.HashMap;
import java.util.Date;

public class Tagger extends Activity {
 private static final String LOG_KEY="Tagger";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView view=(TextView)findViewById(R.id.test);

 setTag(view, R.id.test, new Date());

 view.setText(getTag(view, R.id.test).toString());
 }

 public void setTag(View v, int key, Object value) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.DONUT) {
 v.setTag(key, value);
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 }

 meta.put(key, value);
 }
 }

497

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

 public Object getTag(View v, int key) {
 Object result=null;

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.DONUT) {
 result=v.getTag(key);
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 }

 result=meta.get(key);
 }

 return(result);
 }
}

This looks great, and if we build it and deploy it on a 1.6 or greater emulator
or device, it runs like a champ, showing the current time in the activity.

If we build it and deploy it on an Android 1.5 emulator or device, and try to
run it, it blows up with a VerifyError. VerifyError, in this case, basically
means we are referring to things that do not exist in our version of Android.
Specifically:

• We are referring to SDK_INT, which was not introduced until Android
1.6

• We are referring to the indexed versions of getTag() and setTag() –
even though we will not execute that code, the classloader still
wants to resolve those methods and fails

So, we need to use some reflection.

Take a look at APIVersions/Tagger2. This is the same project with the same
layout, but we have a more elaborate version of the Java source:

package com.commonsware.android.api.tag;

import android.app.Activity;
import android.os.Build;

498

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import java.lang.reflect.Method;
import java.util.HashMap;
import java.util.Date;

public class Tagger extends Activity {
 private static final String LOG_KEY="Tagger";
 private static Method _setTag=null;
 private static Method _getTag=null;

 static {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk>=4) {
 try {
 _setTag=View.class.getMethod("setTag",
 new Class[] {Integer.TYPE,
 Object.class});
 _getTag=View.class.getMethod("getTag",
 new Class[] {Integer.TYPE});
 }
 catch (Throwable t) {
 Log.e(LOG_KEY, "Could not initialize 1.6 accessors", t);
 }
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView view=(TextView)findViewById(R.id.test);

 setTag(view, R.id.test, new Date());

 view.setText(getTag(view, R.id.test).toString());
 }

 public void setTag(View v, int key, Object value) {
 if (_setTag!=null) {
 try {
 _setTag.invoke(v, key, value);
 }
 catch (Throwable t) {
 Log.e(LOG_KEY, "Could not use 1.6 setTag()", t);
 }
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

499

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 v.setTag(meta);
 }

 meta.put(key, value);
 }
 }

 public Object getTag(View v, int key) {
 Object result=null;

 if (_getTag!=null) {
 try {
 result=_getTag.invoke(v, key);
 }
 catch (Throwable t) {
 Log.e(LOG_KEY, "Could not use 1.6 getTag()", t);
 }
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 v.setTag(meta);
 }

 result=meta.get(key);
 }

 return(result);
 }
}

First, when the class is initially loaded, the static initialization routines run.
Here, we see what version of Android we are running, using the old SDK
String instead of the new SDK_INT integer. If we are on Android 1.6 or newer,
we use reflection to attempt to find the indexed getTag() and setTag()
methods, and we cache those results. Since those methods should not
change during the lifetime of our application, it is safe to cache them in
static variables.

Then, when it comes time to actually use getTag() or setTag(), we look to
see if the cached Method objects exist or are null. If they are null, we assume
we need to use the old versions of those methods. If the Method objects exist,
though, we use them instead, to take advantage of the native indexed
versions.

500

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling Platform Changes

This version of the application works fine on Android 1.5 and above –
Android 1.6 and above using the built-in indexed methods, Android 1.5
using our "fake" version of the indexed methods.

There is a little extra overhead for going through the Method-based
reflection, but it may be worth it in some cases to access APIs that exist in
newer versions of Android than all the ones we want running our
application. There are even ways to use this technique for cases where
entire classes are new to newer Android versions.

501

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 39

Where Do We Go From Here?

Obviously, this book does not cover everything. And while your #1 resource
(besides the book) is going to be the Android SDK documentation, you are
likely to need information beyond what's covered in either of those places.

Searching online for "android" and a class name is a good way to turn up
tutorials that reference a given Android class. However, bear in mind that
tutorials written before late August 2008 are probably written for the M5
SDK and, as such, will require considerable adjustment to work properly in
current SDKs.

Beyond randomly hunting around for tutorials, though, this chapter
outlines some other resources to keep in mind.

Questions. Sometimes, With Answers.

The "official" places to get assistance with Android are the Android Google
Groups. With respect to the SDK, there are three to consider following:

• android-beginners, a great place to ask entry-level questions

• android-developers, best suited for more complicated questions or
ones that delve into less-used portions of the SDK

• android-discuss, designed for free-form discussion of anything
Android-related, not necessarily for programming questions and
answers

503

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://groups.google.com/group/android-discuss
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-beginners

Where Do We Go From Here?

You might also consider:

• The Android tutorials and programming forums over at anddev.org

• The AndMob wiki

• The #android IRC channel on freenode

• StackOverflow's android and android-sdk tags

• The Android board on JavaRanch

Heading to the Source

The source code to Android is now available. Mostly this is for people
looking to enhance, improve, or otherwise fuss with the insides of the
Android operating system. But, it is possible that you will find the answers
you seek in that code, particularly if you want to see how some built-in
Android component "does it's thing".

The source code and related resources can be found at
http://source.android.com. Here, you can:

• Download or browse the source code

• File bug reports against the operating system itself

• Submit patches and learn about the process for how such patches
get evaluated and approved

• Join a separate set of Google Groups for Android platform
development

Rather than download the multi-gigabyte Android source code snapshot,
you may wish to use Google Code Search instead. Just add the
android:package constraint to your search query, and it will only search in
Android and related projects.

504

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.google.com/codesearch
http://source.android.com/discuss
http://source.android.com/submit-patches
http://source.android.com/report-bugs
http://git.source.android.com/
http://source.android.com/download
http://source.android.com/
http://www.coderanch.com/forums/f-93/Android
http://stackoverflow.com/questions/tagged/android+android-sdk
http://stackoverflow.com/questions/tagged/android
http://wiki.andmob.org/
http://anddev.org/

Where Do We Go From Here?

Getting Your News Fix

Ed Burnette, a nice guy who happened to write his own Android book, is
also the manager of Planet Android, a feed aggregator for a number of
Android-related blogs. Subscribing to the planet's feed will let you monitor
quite a bit of Android-related blog posts, though not exclusively related to
programming.

To try to focus more on programming-related Android-referencing blog
posts, you can search DZone for "android" and subscribe to a feed based off
that search.

505

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.dzone.com/links/feed/search/android/rss.xml
http://www.planetandroid.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

Class...

AbsoluteLayout..154, 452

ActionEvent...26

ActionListener...26

Activity......10, 41, 81, 197, 198, 206, 208, 220, 231,
233, 239, 240, 253, 260, 261, 263, 289, 290, 308,
325, 458

ActivityManager..203

Adapter..100, 102, 103

AdapterWrapper..120, 121

AddStringsTask..215

AddStringTask..213

AlertDialog...198, 199

AnalogClock..132, 143

android.text.Spanned.....................................270

AndroidBrowser..240

AndroidHttpClient..345

ArrayAdapter 80-83, 91, 101, 114, 116, 125, 213, 214,
324

ArrayList..113, 324

AssetManager...183

AsyncTask.....208-211, 213-215, 259, 260, 318, 383,
384

AutoCompleteTextView........................45, 93-95

BaseColumns...366

Binder..380

Box..53

BoxLayout..53

BroadcastReceiver............................230, 231, 389

BrowserTab..242

Builder..198, 199

Bundle................221, 223, 227, 236, 246, 250, 252

Button......31, 33-36, 40-42, 144-146, 148, 149, 151,
223, 271, 275, 431, 432, 453, 489, 490

Calendar...130

CheckAdapter...116

CheckBox...45, 48, 50

CheckBoxPreference..291

Chronometer..133

ColorStateList..51

CompoundButton...48

Configuration..458

507

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

ConstantsBrowser...............310, 317, 352, 353, 355

ContactsContract..484

ContentManager...392

ContentObserver..369

ContentProvider................314, 352, 355, 356, 359

ContentResolver..............................356, 368, 369

ContentValues...................312, 355, 362, 363, 367

Context........80, 198, 260, 289, 290, 308, 325, 353

ContextMenu...170

ContextMenu.ContextMenuInfo..............170, 171

Criteria...403

Cursor. 81, 105, 116, 126, 313, 316, 317, 351, 353-356,
361, 362, 367

CursorAdapter.....................................81, 125, 126

CWBrowser...240

DatabaseHelper................................308, 311, 360

DateFormat..130

DatePicker..127

DatePickerDialog......................................127, 130

DefaultHttpClient...................................340, 345

DialogWrapper..355

DigitalClock..132

Document..324

Double..235

Drawable...............98, 139, 251, 274, 393, 415, 416

DrawerDemo..154

EditPreferences...292

EditText 43, 69, 93, 94, 127, 155, 156, 158, 160-165,
223, 247, 431

EditTextPreference..301

Environment..329

EU4You..463, 465

Exception...184

ExpandableListView..154

FancyLists/ViewWrapper................................109

FetchForecastTask...383

FieldDemo..156

FlowLayout..54

Forecast..343, 384

FrameLayout.........................137, 138, 145, 150, 151

Gallery..79, 97

GeoPoint...413

GradientDrawable...454

GridView...89, 90, 97

Handler..............................203-208, 216, 222, 259

HandOfCardsLayout.......................................453

HashMap...495

HelpActivity...235

HorizontalScrollView..77

HttpClient.................340, 342, 344, 345, 378, 379

HttpContext..345

HttpGet..340, 342

HttpPost..340

HttpRequest..340

HttpResponse..340

IBinder...379, 387

ImageButton.........................41, 42, 274, 275, 462

ImageView.........41, 42, 104, 108, 113, 151, 274, 356

IMEDemo1..162

IMEDemo2..162, 163

InputMethodManager.....................................164

508

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

InputStream...............................321, 324, 325, 343

InputStreamReader...325

Integer...116

Intent.. .136, 144, 192, 227, 229, 231, 235, 236, 239,
240, 242, 359, 382-386, 389, 393, 406, 422, 425

Interpreter..333

ItemizedOverlay.......................................415, 417

JButton...26

JCheckBox...80

JComboBox..85

JLabel...80

JList..80

JTabbedPane...136

JTable...80

LatinIME..165

LayoutInflater.............................103, 104, 123, 143

LinearLayout. .53-56, 58-60, 72, 100, 104, 117, 123,
138, 151, 431

List...171, 403

ListActivity.......................81-83, 137, 211, 410, 463

ListAdapter...........................107, 120, 121, 124, 154

ListCellRenderer...80

ListDemo..173

ListPreference..301

ListView...81, 83, 85, 86, 97, 99-101, 104, 106, 107,
113, 114, 119, 120, 124, 165, 171, 317, 341, 353-355,
410, 462-464

LocalBinder...387

Location..341, 403-405

LocationListener.....................................404, 405

LocationManager.............................378, 402-405

LocationProvider.....................378, 402-404, 439

Map...289, 312

MapActivity..409-412

MapController..412, 413

MapView......................409-412, 414, 415, 418, 419

Menu...168, 169, 178-180

MenuInflater..180

MenuItem.....................................169-171, 178-180

Message...204, 206, 208

Method..498, 499

MyLocationOverlay..................................411, 418

NooYawk..414, 416, 418

Notification......................382, 392, 393, 395, 398

NotificationManager...............392, 395, 396, 398

NotifyDemo...393

NotifyMessage...395

Now..35, 36

NowRedux..35

Object...251

OnCheckedChangeListener.................45, 46, 60

OnClickListener....................25, 26, 130, 201, 237

OnDateChangedListener................................128

OnDateSetListener...................................128, 130

OnItemSelectedListener...................................87

OnTimeChangedListener................................128

OnTimeSetListener..................................128, 130

OutputStream..325

OutputStreamWriter......................................325

Overlay..415, 417

OverlayItem..415, 417

PendingIntent..................393, 395, 396, 405, 406

509

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

PhoneWindow$DecorView............................489

PlayingCardLayout..453

Preference..291

PreferenceActivity...................................295, 298

PreferenceCategory.................................297, 298

PreferenceScreen.............................291, 297, 298

PreferencesManager.......................................290

ProgressBar....134, 135, 205-207, 211, 215, 217, 259,
260, 264

Provider.............................352, 360-362, 364-366

RadioButton...............................48-50, 53, 59, 60

RadioGroup................................48, 49, 53, 59-62

RateableWrapper................................121, 123, 124

RateListDemo...123

RateListView................................119, 120, 124, 125

RatingBar..................113, 114, 116, 117, 123, 125, 136

ReadWrite..427

RelativeLayout.....53, 63, 64, 66-68, 73, 150, 452,
453

Resources..276, 321

RingtonePreference...291

RotationAsync..................................261, 263, 264

RotationAwareTask..........................261, 263, 264

RowModel...116

Runnable....................................204, 208, 210, 211

ScrollView..........................53, 74, 76, 77, 162, 163

SecretsProvider...358

SecurityException...372

SeekBar...135

SelfWrapperDemo...111

SensorManager..305

Service..378

ServiceConnection..387

SharedPreferences............................290, 291, 301

SimpleAdapter...81

SimpleCursorAdapter........................317, 353-355

SimplePrefsDemo....................................293, 295

SitesOverlay...415-417

SlidingDrawer..150-154

SoftKeyboard..165

SoftReference...382

Spanned...270

Spinner.....................................85, 86, 93, 97, 353

SQLiteDatabase.................................308, 310-312

SQLiteDatabase.CursorFactory.......................317

SQLiteOpenHelper..................................308, 310

SQLiteQueryBuilder...................313-316, 361, 362

StackOverflowException.......................489, 490

Static..277

String...116, 198, 199, 213, 236, 270, 272, 289, 340,
351, 361, 384, 498

System.Settings...454

TabActivity.................................137, 139, 239, 240

TabHost.............................136-140, 240, 462, 463

TabHost.TabContentFactory....................141, 143

TabHost.TabSpec...143

TableLayout......................53, 70-73, 158, 162, 295

TableRow..70, 71

TabSpec...138, 139

TabView..148, 240

TabWidget............................137, 138, 141, 145, 148

Tagger..495

510

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

TelephonyManager...422

TextView...34, 39-41, 43, 45, 48, 51, 69, 81, 91, 92,
101, 104, 108, 113, 117, 130, 146, 147, 162, 167, 183,
185, 259, 260, 354, 494

TextWatcher..94, 95

TimePicker..127, 128

TimePickerDialog..............................127, 128, 130

Toast......................197, 198, 201, 215, 335, 342, 417

Typeface..183, 184

Uri42, 226, 227, 229, 233, 235, 237, 240, 249, 252,
316, 349-352, 355, 356, 358-366, 368, 369, 392,
422

VerifyError...496

View 31, 35, 41, 50, 72, 76, 87, 99, 102-106, 108-111,
117, 123, 125, 141, 143, 144, 170, 177, 178, 198, 208,
239, 431, 433, 494

View.OnClickListener.......................................41

ViewAnimator..146

ViewFlipper.................................145, 146, 148-150

ViewWrapper....................108-111, 113, 116, 117, 123

Void...213-215

WeakReference..382

Weather...404

WeatherDemo...342

WeatherPlus............................385, 387, 389, 404

WeatherPlusService.........377, 378, 382, 387, 388

WebKit..341, 342

WebSettings...194

WebView............187-195, 240, 372, 384, 474, 476

WebViewClient...192, 193

XmlPullParser..276, 278

Command......................................

adb...427

adb logcat..436

adb pull...319, 437, 445

adb push...319, 437, 445

adb shell...318, 438

android...18

android create avd...17

android create project..........8-10, 19, 23, 228, 271

android list targets..18

android update project -pxxii

ant..8, 10, 11

ant install...27

ant jarcore..333

ddms..434

hierarchyviewer......................................428, 488

jarsigner...419

keytool..419

mksdcard...444, 445

pdftk *.pdf cat output combined.pdf............xviii

sqlite3...318

zipalign..11

Constant...

ACCESS_COARSE_LOCATION.....................402

ACCESS_FINE_LOCATION...........................402

ACTION_EDIT..226

ACTION_PICK..........................226, 236, 351, 359

ACTION_VIEW.......................................226, 235

ALTERNATIVE..227

CONTENT_URI...368

511

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

DEFAULT...227

DELETE...311, 313, 356

END_DOCUMENT...276

END_TAG..276

GET..340

HORIZONTAL..54

INSERT..307, 311-313

INTEGER..307

LARGER..195

LAUNCHER...227, 229

LENGTH_LONG..198

LENGTH_SHORT..198

MAIN...229

NULL..312

ORDER BY..351

PERMISSION_DENIED..................................375

PERMISSION_GRANTED...............................375

POST..340

R...35

RECEIVE_SMS...375

RESULT_CANCELED......................................236

RESULT_FIRST_USER....................................236

RESULT_OK..236

SELECT..307, 313, 316

SMALLEST...195

START_TAG...276, 278

TEXT..276

TITLE...354

UPDATE..311, 313

VERTICAL...54

WHERE..................312-315, 351, 356, 361, 363-365

_id..311

Method...

add()..168, 169, 415

addId()...350

addMenu()...169

addPreferencesFromResource().....................292

addProximityAlert().......................................405

addSubMenu()...169

addTab()...140

animateClose()...153

animateOpen()...153

animateToggle()...153

appendWhere()..316

applyFormat()..272

applyMenuChoice()...173

attach()..263, 264

beforeTextChanged()..95

bindService()..386-388

bindView()..125, 126

buildForecasts()...342

buildQuery()..316

bulkInsert()..355

cancel()..392

cancelAll()...392

canGoBack()...191

canGoBackOrForward()..................................192

canGoForward()...191

check()...48, 49

512

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

checkCallingPermission()...............................375

clear()..290

clearCache()...192

clearCheck()..48

clearHistory()...192

close()..153, 310, 316, 325

commit()...290

create()...199

createDatabase()..319

createFromAsset()...183

createFromFile()..184

createItem()...415

createTabContent()..141

delete()...............................312, 313, 356, 364, 365

detach()..263, 264

doInBackground()................210, 211, 213-215, 263

draw()...416

edit()..290

execSQL()...311, 312

execute()...209, 215, 340

findViewById(). 35, 36, 50, 106, 108, 109, 139, 321,
412, 476

finish()...221, 327

generatePage()...343

get()...312

getAltitude()..403

getAsInteger()..312

getAssets()..183

getAsString()..312

getAttributeCount()..278

getAttributeName()..278

getBearing()..404

getBestProvider()..403

getBoolean()..290

getCallState()...422

getCheckedItemPositions()..............................85

getCheckedRadioButtonId()............................48

getCollectionType()..366

getColumnIndex()...316

getColumnNames()...316

getContentProvider()......................................355

getContentResolver().....................................369

getCount()..316

getDefaultSharedPreferences()..............290, 291

getExternalStorageDirectory().......................329

getExternalStorageState().......................329, 330

getInputStream()..356

getInt()...316

getLastKnownPosition().................................403

getLastNonConfigurationInstance()..............252

getLatitude()..341

getListView()...83

getLongitude()...341

getMapController()...412

getMeMyCurrentLocationNow()...................404

getMenuInfo()..171

getNetworkType()...422

getNonConfigurationInstance().....................263

getOutputStream()...356

getOverlays()..415

getParent()..50

513

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

getPhoneType()...422

getPreferences()......................................289, 290

getProgress()...135, 136

getProviders()..403

getReadableDatabase()....................................310

getRequiredColumns()...................................363

getResources()..321

getRootView()..51

getService()...380

getSettings()...194

getSharedPreferences()..........................289, 290

getSingleType()...366

getSpeed()...404

getString().................................269, 272, 316, 354

getStringArray()...281

getSubscriberId()..422

getTag()..................108, 111, 113, 116, 494-496, 498

getText()..270

getType()..365

getView(). . .91, 102, 103, 105, 106, 110, 116, 120, 121,
123, 125, 126, 354

getWriteableDatabase()..................................310

getXml()...276

goBack()..191

goBackOrForward()..................................191, 192

goForward()..191

handleMessage().....................................204, 206

hasAltitude()...403

hasBearing()..404

hasSpeed()...404

hideSoftInputFromWindow().........................165

incrementProgressBy()....................................135

insert()................................312, 355, 362, 363, 367

isAfterLast()...316

isChecked()...45, 48

isCollectionUri()......................................363, 364

isEnabled()..50

isFocused()..50

isRouteDisplayed()..412

loadData()..190

loadTime()..193

loadUrl()...188, 190

lock()...153

makeText()...198

managedQuery().......................................351-353

Menu#setGroupCheckable()..........................169

MenuItem#setCheckable().............................169

moveToFirst()...316, 354

moveToNext()..316

newCursor()...317

newInstance()..345

newTabSpec()..138, 139

newView()...125, 126

next()...276

notify()...392, 398

notifyChange()..368, 369

notifyMe()..395

obtainMessage()..204

onActivityResult()...236

onBind()...379, 380, 386

onCheckedChanged()................................46, 60

514

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

onClick()..26

onConfigurationChanged().....................253, 255

onContextItemSelected().........................170, 173

onCreate()...26, 34, 35, 49, 60, 168, 173, 188, 206,
220-223, 249, 250, 255, 263, 272, 296, 308, 310,
311, 324, 342, 353, 360, 378, 387, 398

onCreateContextMenu()....................170, 171, 173

onCreateOptionsMenu()..................168, 169, 173

onCreatePanelMenu().....................................169

onDestroy().......................221, 342, 378-380, 388

onListItemClick().......................................82, 116

onLocationChanged()....................................405

onOptionsItemSelected()...................168-171, 173

onPageStarted()...192

onPause()...................222, 231, 328, 378, 389, 418

onPostExecute()................................211, 214, 264

onPreExecute()...211

onPrepareOptionsMenu()..............................168

onProgressUpdate()...................211, 213, 214, 264

onRatingBarChanged()....................................123

onRatingChanged()..116

onReceive()..230

onReceivedHttpAuthRequest()......................192

onRestart()...221

onRestoreInstanceState()...............................223

onResume() 221, 222, 231, 296, 327, 341, 378, 389,
418

onRetainNonConfigurationInstance(). .252, 258,
263

onSaveInstanceState()......221, 223, 247, 249, 258

onServiceConnected()....................................387

onStart()...206, 207, 221

onStartCommand()...378

onStop()..206, 221

onTap()...417

onTextChanged()..95

onTooManyRedirects()....................................192

onUpgrade()..308

open()...153

openFileInput()................................325, 328, 329

openFileOutput().............................325, 328, 329

openRawResource()...321

populate()...415

populateDefaultValues().................................363

populateMenu()...173

post()...208

postDelayed()..208

publishProgress()...............................211, 213, 214

query().................................313-316, 360-362, 367

queryWithFactory()...317

rawQuery()...313

rawQueryWithFactory()..................................317

registerContentObserver().............................369

registerForContextMenu()..............................170

registerReceiver()...231

reload()...191

remove()..290

removeProximityAlert().................................406

removeUpdates()..405

requery()...316, 355

requestFocus()...50

requestLocationUpdates().............................404

515

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

restoreMe()......................................249, 250, 252

runOnUiThread()...208

sendBroadcast()...............................374, 375, 384

sendMessage()...204

sendMessageAtFrontOfQueue()....................204

sendMessageAtTime()....................................204

sendMessageDelayed()...................................204

set()..335

setAccuracy()..403

setAdapter()..............................81, 85, 89, 93, 124

setAlphabeticShortcut().................................169

setAltitudeRequired().....................................403

setCellRenderer()..80

setCenter()...413

setChecked()...45, 49

setChoiceMode()...83

setColumnCollapsed()......................................72

setColumnShrinkable()....................................73

setColumnStretchable()....................................73

setContent().......................................138, 139, 141

setContentView()...................................26, 35, 51

setCostAllowed()...403

setCurrentTab()...140

setDefaultFontSize()..195

setDropDownViewResource().........................86

setDuration()...198

setEnabled()...50, 179

setFantasyFontFamily()...................................194

setForeground()..398

setGravity()..56

setGroupCheckable()......................................168

setGroupEnabled()..179

setGroupVisible()..180

setIcon()...199

setImageURI()...42

setIndeterminate()...135

setIndicator()..139, 140

setJavaScriptCanOpenWindowsAutomatically(
)...195

setJavaScriptEnabled()....................................195

setLatestEventInfo()...............................393, 396

setListAdapter()..82

setMax()...134, 136, 207

setMessage()..199

setNegativeButton()..199

setNeutralButton()..199

setNumericShortcut().....................................169

setOnClickListener()..........................26, 143, 327

setOnEditorActionListener()..........................162

setOnItemSelectedListener()...............81, 85, 89

setOnSeekBarChangeListener().....................136

setOrientation()..54

setPadding()..57

setPositiveButton()..199

setProgress()..134, 135

setProjectionMap()..315

setQwertyMode()..169

setResult()..236

setTag()............108, 110, 111, 113, 117, 494-496, 498

setText()...26

setTextColor()..51

516

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

setTextSize()...195

setTitle()...199

setTypeface()..32, 183

setup()..139

setupViews()..255

setUserAgent()...195

setView()..198

setVisible()...179

setWebViewClient()..192

setZoom()...413

shouldOverrideUrlLoading()...................192, 193

show()..198, 199, 201

showNext()...146

size()...415

start()..133

startActivity()...................................235, 422, 425

startActivityForResult()..................................236

startForeground()...398

startService()...................................378, 386, 388

stop()...133

stopForeground()..398

stopSelf()...388

stopService()..386, 388

switch()..169

toggle()...45, 48, 153

toggleSatellite()...414

toString()...80

unbindService()...388

unlock()..153

unregisterContentObserver()........................369

unregisterReceiver()..231

update()...............................312, 313, 363-365, 367

updateForecast()......................................341, 405

updateLabel()...130

updateTime()..26

valueOf()..51

Property...

android:authorities...368

android:autoText...43

android:capitalize...43

android:collapseColumns.................................72

android:columnWidth.....................................89

android:completionThreshold.........................93

android:digits..43

android:drawSelectorOnTop.....................86, 98

android:horizontalSpacing..............................89

android:id..........................33, 34, 48, 64, 137, 138

android:label..14

android:layout_above.......................................65

android:layout_alignBaseline...........................65

android:layout_alignBottom............................65

android:layout_alignLeft..................................65

android:layout_alignParentBottom.................64

android:layout_alignParentLeft.......................64

android:layout_alignParentRight....................64

android:layout_alignParentTop.......................64

android:layout_alignRight...............................65

android:layout_alignTop............................65, 66

android:layout_below.......................................65

517

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

android:layout_centerHorizontal....................64

android:layout_centerInParent.......................64

android:layout_centerVertical.........................64

android:layout_column.....................................71

android:layout_gravity.....................................56

android:layout_height.................................33, 55

android:layout_span..71

android:layout_toLeftOf..................................65

android:layout_toRightOf................................65

android:layout_weight......................................55

android:layout_width............................33, 55, 59

android:manifest..12

android:name..............................14, 368, 372, 381

android:nextFocusDown..................................50

android:nextFocusLeft......................................50

android:nextFocusRight...................................50

android:nextFocusUp.......................................50

android:numColumns......................................89

android:orientation..54

android:padding..57

android:paddingBottom...................................57

android:paddingLeft...57

android:paddingRight.......................................57

android:paddingTop...57

android:permission..................................374, 381

android:shrinkColumns....................................72

android:singleLine..43

android:spacing..98

android:spinnerSelector...................................98

android:src..42

android:stretchColumns...................................72

android:stretchMode..89

android:text...33, 39

android:textColor.......................................40, 45

android:textStyle...39, 43

android:typeface...39

android:verticalSpacing...................................89

android:visibility...50

518

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

	The Busy Coder's Guide to Android Development
	Welcome to the Book!
	Prerequisites
	Warescription
	Book Bug Bounty
	Source Code And Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments
	The Big Picture
	What Androids Are Made Of
	Activities
	Content Providers
	Services
	Intents

	Stuff At Your Disposal
	Storage
	Network
	Multimedia
	GPS
	Phone Services

	Projects and Targets
	Pieces and Parts
	Creating a Project
	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, The Rest of the Story
	What You Get Out Of It

	Inside the Manifest
	In The Beginning, There Was the Root, And It Was Good
	Permissions, Instrumentations, and Applications (Oh, My!)
	Your Application Does Something, Right?
	Achieving the Minimum
	Version=Control

	Emulators and Targets
	Virtually There
	Aiming at a Target

	Creating a Skeleton Application
	Begin at the Beginning
	The Activity
	Dissecting the Activity
	Building and Running the Activity

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What's With the @ Signs?
	And We Attach These to the Java...How?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who's Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It's Quite a View
	Useful Properties
	Useful Methods
	Colors

	Working with Containers
	Thinking Linearly
	Concepts and Properties
	Example

	All Things Are Relative
	Concepts and Properties
	Example

	Tabula Rasa
	Concepts and Properties
	Example

	Scrollwork

	Using Selection Widgets
	Adapting to the Circumstances
	Using ArrayAdapter
	Other Key Adapters

	Lists of Naughty and Nice
	Selection Modes

	Spin Control
	Grid Your Lions (Or Something Like That...)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art

	Getting Fancy With Lists
	Getting To First Base
	A Dynamic Presentation
	A Sidebar About Inflation
	And Now, Back To Our Story

	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern
	Holders Without Custom Classes

	Making a List...
	...And Checking It Twice
	Adapting Other Adapters

	Employing Fancy Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Making Progress
	Seeking Resolution
	Putting It On My Tab
	The Pieces
	The Idiosyncrasies
	Wiring It Together
	Adding Them Up
	Intents and Views

	Flipping Them Off
	Getting In Somebody's Drawer
	Other Good Stuff

	The Input Method Framework
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!
	Unleash Your Inner Dvorak

	Applying Menus
	Flavors of Menu
	Menus of Options
	Menus in Context
	Taking a Peek
	Yet More Inflation
	Menu XML Structure
	Menu Options and XML
	Inflating the Menu

	Fonts
	Love The One You're With
	Here a Glyph, There a Glyph

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh, My!)

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Dealing with Threads
	Getting Through the Handlers
	Messages
	Runnables

	Running In Place
	Where, Oh Where Has My UI Thread Gone?
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task

	And Now, The Caveats

	Handling Activity Lifecycle Events
	Schroedinger's Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Creating Intent Filters
	What's Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Sub-Activities
	Peers and Subs
	Start 'Em Up
	Make an Intent
	Make the Call

	Tabbed Browsing, Sort Of

	Handling Rotation
	A Philosophy of Destruction
	It's All The Same, Just Different
	Now With More Savings!
	DIY Rotation
	Forcing the Issue
	Making Sense of it All
	Spinning a Thread
	Manual Activity Association
	Flow of Events
	Potential Issues

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled Text and Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks

	Using Preferences
	Getting What You Want
	Stating Your Preference
	And Now, a Word From Our Framework
	Letting Users Have Their Say
	Adding a Wee Bit O' Structure
	The Kind Of Pop-Ups You Like

	Managing and Accessing Local Databases
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin' Data
	What Goes Around, Comes Around
	Raw Queries
	Regular Queries
	Building with Builders
	Using Cursors
	Making Your Own Cursors

	Flash: Sounds Faster Than It Is
	Data, Data, Everywhere

	Accessing Files
	You And The Horse You Rode In On
	Readin' 'n Writin'

	Leveraging Java Libraries
	The Outer Limits
	Ants and Jars
	Following the Script
	...And Not A Drop To Drink
	Reviewing the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpClient
	Parsing Responses
	Stuff To Consider
	AndroidHttpClient

	Using a Content Provider
	Pieces of Me
	Getting a Handle
	Makin' Queries
	Adapting to the Circumstances
	Give and Take
	Beware of the BLOB!

	Building a Content Provider
	First, Some Dissection
	Next, Some Typing
	Step #1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step #2: Supply a Uri
	Step #3: Declare the Properties
	Step #4: Update the Manifest
	Notify-On-Change Support

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?

	Creating a Service
	Service with Class
	There Can Only Be One
	Manifest Destiny
	Lobbing One Over the Fence
	Callbacks
	Broadcast Intents

	Where's the Remote? And the Rest of the Code?

	Invoking a Service
	The Ties That Bind
	Catching the Lob

	Alerting Users Via Notifications
	Types of Pestering
	Hardware Notifications
	Icons

	Seeing Pestering in Action
	Staying in the Foreground

	Accessing Location-Based Services
	Location Providers: They Know Where You're Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	Terms, Not of Endearment
	Piling On
	The Bare Bones
	Exercising Your Control
	Zoom
	Center

	Rugged Terrain
	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	The Key To It All

	Handling Telephone Calls
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	Development Tools
	Hierarchical Management
	Delightful Dalvik Debugging Detailed, Demoed
	Logging
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages

	Put It On My Card
	Creating a Card Image
	"Inserting" the Card

	Handling Multiple Screen Sizes
	Taking the Default
	Whole in One
	Don't Think About Positions, Think About Rules
	Consider Physical Dimensions
	Avoid "Real" Pixels
	Choose Scalable Drawables

	Tailor Made, Just For You (And You, And You, And...)
	<supports-screens>
	Resources and Resource Sets
	Finding Your Size

	Ain't Nothing Like the Real Thing
	Density Differs
	Adjusting the Density
	Accessing Actual Devices

	Ruthlessly Exploiting the Situation
	Replace Menus with Buttons
	Replace Tabs with a Simple Activity
	Consolidate Multiple Activities

	Example: EU4You
	The First Cut
	Fixing the Fonts
	Fixing the Icons
	Using the Space
	What If It Is Not a Browser?

	What Are a Few Bugs Among Friends?

	Dealing With Devices
	This App Contains Explicit...Instructions
	Button, Button, Who's Got the Button?
	A Guaranteed Market
	The Down and Dirty Details
	ARCHOS 5 Android Internet Tablet
	Motorola CLIQ/DEXT
	Motorola DROID/Milestone
	Google/HTC Nexus One
	Motorola BACKFLIP

	Handling Platform Changes
	Brand Management
	More Things That Make You Go "Boom"
	View Hierarchy
	Changing Resources

	Handling API Changes
	Minimum, Maximum, Target, and Build Versions
	Detecting the Version
	Wrapping the API

	Where Do We Go From Here?
	Questions. Sometimes, With Answers.
	Heading to the Source
	Getting Your News Fix

