
OMMONSWAREC

The Busy Coder's Guide to

Android™
Development

Mark L. Murphy

Version
1.4

Updated for
Android 2.1!

Advanced

The Busy Coder's Guide to Advanced Android
Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Busy Coder's Guide to Advanced Android Development
by Mark L. Murphy

Copyright © 2009-10 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Mar 2010: Version 1.4 ISBN: 978-0-9816780-1-6

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!..xiii

Preface...xv

Welcome to the Book!..xv

Prerequisites..xv

Warescription...xvii

Book Bug Bounty..xvii

Source Code...xviii

Creative Commons and the Four-to-Free (42F) Guarantee...................xix

Lifecycle of a CommonsWare Book..xx

WebView, Inside and Out..1

Friends with Benefits..1

Turnabout is Fair Play..6

Gearing Up..9

Back To The Future..11

Crafting Your Own Views...13

Getting Meta..13

The Widget Layout...14

The Attribute Declarations..14

The Widget Implementation...15

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Widget..19

Change of State..21

Changing Button Backgrounds..21

Changing CheckBox States..25

Creating Drawables...29

Traversing Along a Gradient...29

State Law..33

A Stitch In Time Saves Nine...35

The Name and the Border...36

Padding and the Box..36

Stretch Zones..37

Tooling..38

Using Nine-Patch Images..40

More Fun With ListViews..45

Giant Economy-Size Dividers..45

Choosing What Is Selectable..46

Introducing MergeAdapter...47

Lists via Merges..48

From Head To Toe..51

Control Your Selection...55

Create a Unified Row View..55

Configure the List, Get Control on Selection....................................56

Change the Row...59

Stating Your Selection..60

Home Screen App Widgets..63

East is East, and West is West...64

The Big Picture for a Small App Widget..64

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting App Widgets..65

The Manifest...66

The Metadata..67

The Layout..68

The BroadcastReceiver..69

The Service..70

The Configuration Activity..72

The Result...76

Another and Another...78

App Widgets: Their Life and Times..79

Controlling Your (App Widget's) Destiny..80

Change Your Look...81

Being a Good Host..83

Searching with SearchManager..85

Hunting Season...85

Search Yourself...87

Craft the Search Activity...88

Update the Manifest...91

Searching for Meaning In Randomness..93

May I Make a Suggestion?...95

SearchRecentSuggestionsProvider...96

Custom Suggestion Providers...98

Integrating Suggestion Providers...99

Putting Yourself (Almost) On Par with Google......................................100

Implement a Suggestions Provider..101

Augment the Metadata...101

Convince the User...101

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Results..102

Interactive Maps..107

Get to the Point...108

Getting the Latitude and Longitude...108

Getting the Screen Position...108

Not-So-Tiny Bubbles...110

Options for Pop-up Panels..111

Defining a Panel Layout...111

Creating a PopupPanel Class..113

Showing and Hiding the Panel...113

Tying It Into the Overlay...115

Sign, Sign, Everywhere a Sign...121

Selected States..121

Per-Item Drawables..122

Changing Drawables Dynamically...123

In A New York Minute. Or Hopefully a Bit Faster.................................126

Animating Widgets...131

It's Not Just For Toons Anymore..131

A Quirky Translation...132

Mechanics of Translation...132

Imagining a Sliding Panel...133

The Aftermath...133

Introducing SlidingPanel..134

Using the Animation..136

Fading To Black. Or Some Other Color..136

Alpha Numbers...137

Animations in XML...137

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using XML Animations..138

When It's All Said And Done..138

Loose Fill..139

Hit The Accelerator...140

Animate. Set. Match..141

Active Animations...142

Using the Camera...143

Sneaking a Peek...143

The Permission...144

The Manifest..145

The SurfaceView...145

The Camera...146

Image Is Everything..149

Asking for a Format..149

Connecting the Camera Button...150

Taking a Picture...151

Using AsyncTask...152

Maintaining Your Focus..153

All the Bells and Whistles...154

Playing Media...155

Get Your Media On...155

Making Noise...156

Moving Pictures...161

Pictures in the Stream...165

Rules for Streaming..167

Establishing the Surface...167

Floating Panels..168

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Video..170

Touchable Controls...172

Other Ways to Make Noise...175

SoundPool..175

AudioTrack..176

ToneGenerator..177

The Contacts Content Provider...181

Introducing You to Your Contacts...181

ContentProvider Recap..182

Organizational Structure...182

A Look Back at Android 1.6..183

Pick a Peck of Pickled People...183

Spin Through Your Contacts..187

Contact Permissions...188

Pre-Joined Data...188

The Sample Activity...189

Dealing with API Versions...190

Accessing People...194

Accessing Phone Numbers...195

Accessing Email Addresses..196

Makin' Contacts..196

Sensors..201

The Sixth Sense. Or Possibly the Seventh...201

Orienting Yourself..202

Steering Your Phone...205

Do "The Shake"...207

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events..213

Get Moving, First Thing..213

The Permission..214

The Receiver Element...214

The Receiver Implementation..215

I Sense a Connection Between Us..216

Feeling Drained...219

Sticky Intents and the Battery...223

Other Power Triggers..224

Using System Services..225

Get Alarmed..225

Concept of WakeLocks..226

The WakeLock Problem..227

Scheduling Alarms...228

Arranging for Work From Alarms..230

Staying Awake At Work...232

Setting Expectations...235

Basic Settings..235

Secure Settings...239

Can You Hear Me Now? OK, How About Now?....................................239

Attaching SeekBars to Volume Streams...240

Your Own (Advanced) Services...245

When IPC Attacks!...245

Write the AIDL...246

Implement the Interface..247

A Consumer Economy...248

Bound for Success..248

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Request for Service...249

Getting Unbound...249

Service From Afar...250

Service Names...250

The Service...251

The Client..253

Servicing the Service...255

Callbacks via AIDL...256

Revising the Client...257

Revising the Service...259

The Bind That Fails...261

Introspection and Integration..263

Would You Like to See the Menu?...264

Give Users a Choice..266

Asking Around..267

Middle Management...271

Finding Applications and Packages...271

Finding Resources..272

Finding Components..272

Get In the Loop...273

The Manifest...274

The PreferenceActivity...275

The Main Activity...276

The IntentService...277

The Test Activity..278

The Results...279

Take the Shortcut..281

x

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Registering a Shortcut Provider...281

Implementing a Shortcut Provider...282

Using the Shortcuts..283

Homing Beacons for Intents..287

Device Configuration..289

The Happy Shiny Way...290

Settings.System..290

WifiManager...290

The Dark Arts..291

Settings.Secure..291

System Properties...292

Automation, Both Shiny and Dark..293

Testing..297

You Get What They Give You..297

Erecting More Scaffolding...298

Testing Real Stuff..301

ActivityInstrumentationTestCase..301

AndroidTestCase..303

Other Alternatives..305

Monkeying Around..306

Production Applications...309

Market Theory..309

Making Your Mark..310

Role of Code Signing...310

What Happens In Debug Mode..311

Creating a Production Signing Key..312

Signing with the Production Key...314

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Two Types of Key Security...317

Related Keys..318

Get Ready To Go To Market...318

Versioning..318

Package Name...319

Icon and Label...319

Logging..320

Testing..321

EULA..322

To Market, To Market..323

Google Checkout..323

Terms and Conditions...324

Data Collection...325

Pulling Distribution...330

Market Filters..331

Going Wide..331

Click Here To Download..332

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this digital book and its updates – keep tabs on the
Warescription feed off the CommonsWare site to learn when new editions
of this book, or other books in your Warescription, are available.

Each Warescription digital book is licensed for the exclusive use of its
subscriber and is tagged with the subscribers name. We ask that you not
distribute these books. If you work for a firm and wish to have several
employees have access, enterprise Warescriptions are available. Just contact
us at enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license – more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and
your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

Some notes for first-generation Kindle users:

• You may wish to drop your font size to level 2 for easier reading

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.pdfsam.org/
mailto:enterprise@commonsware.com

• Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Preface

Welcome to the Book!

If you come to this book after having read its companion volume, The Busy
Coder's Guide to Android Development, thanks for sticking with the series!
CommonsWare aims to have the most comprehensive set of Android
development resources (outside of the Open Handset Alliance itself), and
we appreciate your interest.

If you come to this book having learned about Android from other sources,
thanks for joining the CommonsWare community! Android, while aimed at
small devices, is a surprisingly vast platform, making it difficult for any
given book, training, wiki, or other source to completely cover everything
one needs to know. This book will hopefully augment your knowledge of
the ins and outs of Android-dom and make it easier for you to create "killer
apps" that use the Android platform.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

This book assumes you have experience in Android development, whether
from a CommonsWare resource or someplace else. In other words, you
should have:

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/
http://commonsware.com/Android/

• A working Android development environment, whether it is based
on Eclipse, another IDE, or just the command-line tools that
accompany the Android SDK

• A strong understanding of how to create activities and the various
stock widgets available in Android

• A working knowledge of the Intent system, how it serves as a
message bus, and how to use it to launch other activities

• Experience in creating, or at least using, content providers and
services

If you picked this book up expecting to learn those topics, you really need
another source first, since this book focuses on other topics. While we are
fans of The Busy Coder's Guide to Android Development, there are plenty of
other books available covering the Android basics, blog posts, wikis, and, of
course, the main Android site itself. A list of currently-available Android
books can be found on the Android Programming knol.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance. Many chapters will
reference material in The Busy Coder's Guide to Android Development,
sometimes via the shorthand BCG to Android moniker.

In order to make effective use of this book, you will want to download the
source code for it off of the book's page on the CommonsWare site.

You can find out when new releases of this book are available via:

• The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

• The commonsguy Twitter feed

• The Warescription newsletter, which you can subscribe to off of
your Warescription page

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://wares.commonsware.com/
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/AdvAndroid/
http://knol.google.com/k/-/android-programming
http://code.google.com/android/

Warescription

This book will be published both in print and in digital form. The digital
versions of all CommonsWare titles are available via an annual subscription
– the Warescription.

The Warescription entitles you, for the duration of your subscription, to
digital forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other digital formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in digital form. That way, your digital books are never out of date
for long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, including not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
free four-month Warescription.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/warescription.html
http://commonsware.com/trade-in.html

coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample applications that do not work as advertised, in the
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

NOTE: Books with version numbers lower than 0.9 are ineligible for the
bounty program, as they are in various stages of completion. We appreciate
bug reports, though, if you choose to share them with us.

We appreciate hearing about "softer" issues as well, such as:

• Places where you think we are in error, but where we feel our
interpretation is reasonable

• Places where you think we could add sample applications, or
expand upon the existing material

• Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:bounty@commonsware.com

Source Code

The source code samples shown in this book are available for download
from the CommonsWare Web site. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as
of the fourth anniversary of its publication date, or when 4,000 copies of
the edition have been sold, whichever comes first. That means that, once
four years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on March 1, 2014. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://commonsware.com/AdvAndroid/

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Lifecycle of a CommonsWare Book

CommonsWare books generally go through a series of stages.

First are the pre-release editions. These will have version numbers below
0.9 (e.g., 0.2). These editions are incomplete, often times having but a few
chapters to go along with outlines and notes. However, we make them
available to those on the Warescription so they can get early access to the
material.

Release candidates are editions with version numbers ending in ".9" (0.9,
1.9, etc.). These editions should be complete. Once again, they are made
available to those on the Warescription so they get early access to the
material and can file bug reports (and receive bounties in return!).

Major editions are those with version numbers ending in ".0" (1.0, 2.0, etc.).
These will be first published digitally for the Warescription members, but
will shortly thereafter be available in print from booksellers worldwide.

Versions between a major edition and the next release candidate (e.g., 1.1,
1.2) will contain bug fixes plus new material. Each of these editions should
also be complete, in that you will not see any "TBD" (to be done) markers
or the like. However, these editions may have bugs, and so bug reports are
eligible for the bounty program, as with release candidates and major
releases.

A book usually will progress fairly rapidly through the pre-release editions
to the first release candidate and Version 1.0 – often times, only a few
months. Depending on the book's scope, it may go through another cycle of
significant improvement (versions 1.1 through 2.0), though this may take
several months to a year or more. Eventually, though, the book will go into
more of a "maintenance mode", only getting updates to fix bugs and deal

xx

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

with major ecosystem events – for example, a new release of the Android
SDK will necessitate an update to all Android books.

xxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART I – Advanced UI

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 1

WebView, Inside and Out

Android uses the WebKit browser engine as the foundation for both its
Browser application and the WebView embeddable browsing widget. The
Browser application, of course, is something Android users can interact
with directly; the WebView widget is something you can integrate into your
own applications for places where an HTML interface might be useful.

In BCG to Android, we saw a simple integration of a WebView into an Android
activity, with the activity dictating what the browsing widget displayed and
how it responded to links.

Here, we will expand on this theme, and show how to more tightly
integrate the Java environment of an Android application with the
Javascript environment of WebKit.

Friends with Benefits

When you integrate a WebView into your activity, you can control what Web
pages are displayed, whether they are from a local provider or come from
over the Internet, what should happen when a link is clicked, and so forth.
And between WebView, WebViewClient, and WebSettings, you can control a fair
bit about how the embedded browser behaves. Yet, by default, the browser
itself is just a browser, capable of showing Web pages and interacting with
Web sites, but otherwise gaining nothing from being hosted by an Android
application.

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

Except for one thing: addJavascriptInterface().

The addJavascriptInterface() method on WebView allows you to inject a Java
object into the WebView, exposing its methods, so they can be called by
Javascript loaded by the Web content in the WebView itself.

Now you have the power to provide access to a wide range of Android
features and capabilities to your WebView-hosted content. If you can access it
from your activity, and if you can wrap it in something convenient for use
by Javascript, your Web pages can access it as well.

For example, Google's Gears project offers a Geolocation API, so Web pages
loaded in a Gears-enabled browser can find out where the browser is
located. This information could be used for everything from fine-tuning a
search to emphasize local content to serving up locale-tailored advertising.

We can do much of the same thing with Android and
addJavascriptInterface().

In the WebView/GeoWeb1 project, you will find a fairly simple layout
(main.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <WebView android:id="@+id/webkit"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

All this does is host a full-screen WebView widget.

Next, take a look at the GeoWebOne activity class:

public class GeoWebOne extends Activity {
 private static String PROVIDER=LocationManager.GPS_PROVIDER;

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/apis/gears/api_geolocation.html
http://code.google.com/apis/gears/

WebView, Inside and Out

 private WebView browser;
 private LocationManager myLocationManager=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE
);

 browser.getSettings().setJavaScriptEnabled(true);
 browser.addJavascriptInterface(new Locater(), "locater");
 browser.loadUrl("file:///android_asset/geoweb1.html");
 }

 @Override
 public void onResume() {
 super.onResume();
 myLocationManager.requestLocationUpdates(PROVIDER, 10000,
 100.0f,
 onLocationChange);
 }

 @Override
 public void onPause() {
 super.onPause();
 myLocationManager.removeUpdates(onLocationChange);
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 // ignore...for now
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 public class Locater {
 public double getLatitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

 if (loc==null) {
 return(0);
 }

 return(loc.getLatitude());
 }

 public double getLongitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(0);
 }

 return(loc.getLongitude());
 }
 }
}

This looks a bit like some of the WebView examples in the BCG to Android's
chapter on integrating WebKit. However, it adds three key bits of code:

1. It sets up the LocationManager to provide updates when the device
position changes, routing those updates to a do-nothing
LocationListener callback object

2. It has a Locater inner class that provides a convenient API for
accessing the current location, in the form of latitude and longitude
values

3. It uses addJavascriptInterface() to expose a Locater instance under
the name locater to the Web content loaded in the WebView

The Web page itself is referenced in the source code as
file:///android_asset/geoweb1.html, so the GeoWeb1 project has a
corresponding assets/ directory containing geoweb1.html:

<html>
<head>
<title>Android GeoWebOne Demo</title>
<script language="javascript">
 function whereami() {
 document.getElementById("lat").innerHTML=locater.getLatitude();
 document.getElementById("lon").innerHTML=locater.getLongitude();
 }
</script>
</head>

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

<body>
<p>
You are at:
 (unknown) latitude and

(unknown) longitude.
</p>
<p>Update Location</p>
</body>
</html>

When you click the "Update Location" link, the page calls a whereami()
Javascript function, which in turn uses the locater object to update the
latitude and longitude, initially shown as "(unknown)" on the page.

If you run the application, initially, the page is pretty boring:

Figure 1. The GeoWebOne sample application, as initially launched

However, if you wait a bit for a GPS fix, and click the "Update Location"
link...the page is still pretty boring, but it at least knows where you are:

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

Figure 2. The GeoWebOne sample application, after clicking the Update
Location link

Turnabout is Fair Play

Now that we have seen how Javascript can call into Java, it would be nice if
Java could somehow call out to Javascript. In our example, it would be
helpful if we could expose automatic location updates to the Web page, so
it could proactively update the position as the user moves, rather than wait
for a click on the "Update Location" link.

Well, as luck would have it, we can do that too. This is a good thing,
otherwise, this would be a really weak section of the book.

What is unusual is how you call out to Javascript. One might imagine there
would be an executeJavascript() counterpart to addJavascriptInterface(),
where you could supply some Javascript source and have it executed within
the context of the currently-loaded Web page.

Oddly enough, that is not how this is accomplished.

6

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

Instead, given your snippet of Javascript source to execute, you call
loadUrl() on your WebView, as if you were going to load a Web page, but you
put javascript: in front of your code and use that as the "address" to load.

If you have ever created a "bookmarklet" for a desktop Web browser, you
will recognize this technique as being the Android analogue – the
javascript: prefix tells the browser to treat the rest of the address as
Javascript source, injected into the currently-viewed Web page.

So, armed with this capability, let us modify the previous example to
continuously update our position on the Web page.

The layout for this new project (WebView/GeoWeb2) is the same as before. The
Java source for our activity changes a bit:

public class GeoWebTwo extends Activity {
 private static String PROVIDER="gps";
 private WebView browser;
 private LocationManager myLocationManager=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE
);

 browser.getSettings().setJavaScriptEnabled(true);
 browser.addJavascriptInterface(new Locater(), "locater");
 browser.loadUrl("file:///android_asset/geoweb2.html");
 }

 @Override
 public void onResume() {
 super.onResume();
 myLocationManager.requestLocationUpdates(PROVIDER, 0,
 0,
 onLocationChange);
 }

 @Override
 public void onPause() {
 super.onPause();
 myLocationManager.removeUpdates(onLocationChange);
 }

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 StringBuilder buf=new StringBuilder("javascript:whereami(");

 buf.append(String.valueOf(location.getLatitude()));
 buf.append(",");
 buf.append(String.valueOf(location.getLongitude()));
 buf.append(")");

 browser.loadUrl(buf.toString());
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 public class Locater {
 public double getLatitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(0);
 }

 return(loc.getLatitude());
 }

 public double getLongitude() {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(0);
 }

 return(loc.getLongitude());
 }
 }
}

Before, the onLocationChanged() method of our LocationListener callback
did nothing. Now, it builds up a call to a whereami() Javascript function,
providing the latitude and longitude as parameters to that call. So, for

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

example, if our location were 40 degrees latitude and -75 degrees longitude,
the call would be whereami(40,-75). Then, it puts javascript: in front of it
and calls loadUrl() on the WebView. The result is that a whereami() function
in the Web page gets called with the new location.

That Web page, of course, also needed a slight revision, to accommodate
the option of having the position be passed in:

<html>
<head>
<title>Android GeoWebTwo Demo</title>
<script language="javascript">
 function whereami(lat, lon) {
 document.getElementById("lat").innerHTML=lat;
 document.getElementById("lon").innerHTML=lon;
 }
</script>
</head>
<body>
<p>
You are at:
 (unknown) latitude and

(unknown) longitude.
</p>
<p>
Update Location</p>
</body>
</html>

The basics are the same, and we can even keep our "Update Location" link,
albeit with a slightly different onClick attribute.

If you build, install, and run this revised sample on a GPS-equipped
Android device, the page will initially display with "(unknown)" for the
current position. After a fix is ready, though, the page will automatically
update to reflect your actual position. And, as before, you can always click
"Update Location" if you wish.

Gearing Up

In these examples, we demonstrate how WebView can interact with Java code,
code that provides a service a little like one of those from Gears.

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

WebView, Inside and Out

Of course, what would be really slick is if we could use Gears itself.

The good news is that Android is close on that front. Gears is actually
baked into Android. However, it is only exposed by the Browser
application, not via WebView. So, an end user of an Android device can
leverage Gears-enabled Web pages.

For example, you could load the Geolocation sample application in your
Android device's Browser application. Initially, you will get the standard
"can we please use Gears?" security prompt:

Figure 3. The Gears security prompt

Then, Gears will fire up the GPS interface (if enabled) and will fetch your
location:

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/apis/gears/samples/hello_world_geolocation.html

WebView, Inside and Out

Figure 4. The Gears Geolocation sample application

Back To The Future

The core Android team has indicated that these sorts of capabilities will
increase in future editions of the Android operating system. This could
include support for more types of plugins, a richer Java-Javascript bridge,
and so on.

You can also expect some improvements coming from the overall Android
ecosystem. For example, the PhoneGap project is attempting to build a
framework that supports creating Android applications solely out of Web
content, using WebView as the front-end, supporting a range of Gears-like
capabilities and more, such as accelerometer awareness.

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://phonegap.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 2

Crafting Your Own Views

One of the classic forms of code reuse is the GUI widget. Since the advent
of Microsoft Windows – and, to some extent, even earlier – developers have
been creating their own widgets to extend an existing widget set. These
range from 16-bit Windows "custom controls" to 32-bit Windows OCX
components to the innumerable widgets available for Java Swing and SWT,
and beyond. Android lets you craft your own widgets as well, such as
extending an existing widget with a new UI or new behaviors.

Getting Meta

One common way of creating your own widgets is to aggregate other
widgets together into a reusable "meta" widget. Rather than worry about all
the details of measuring the widget sizes and drawing its contents, you
simply worry about creating the public interface for how one interacts with
the widget.

In this section, we will look at the Views/Meter sample project. Here, we
bundle a ProgressBar and two ImageButton widgets into a reusable Meter
widget, allowing one to change a value by clicking "increment" and
"decrement" buttons. In most cases, one would probably be better served
using the built-in SeekBar widget. However, there are times when we only
want people to change the value a certain amount at a time, for which the
Meter is ideally suited. In fact, we will reuse the Meter in a later chapter
when we show how to manipulate the various volume levels in Android.

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

The Widget Layout

The first step towards creating a reusable widget is to lay it out. In some
cases, you may prefer to create your widget contents purely in Java,
particularly if many copies of the widget will be created and you do not
want to inflate them every time. However, otherwise, layout XML is simpler
in many cases than the in-Java alternative.

Here is one such Meter layout (res/layout/meter.xml in Views/Meter):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
>
 <ImageButton android:id="@+id/decr"
 android:layout_height="30px"
 android:layout_width="30px"
 android:src="@drawable/decr"
 />
 <ProgressBar android:id="@+id/bar"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="0px"
 android:layout_weight="1"
 android:layout_height="wrap_content"
 />
 <ImageButton android:id="@+id/incr"
 android:layout_height="30px"
 android:layout_width="30px"
 android:src="@drawable/incr"
 />
</LinearLayout>

All we do is line them up in a row, giving the ProgressBar any excess space
(via android:layout_width = "0px" and android:layout_weight = "1"). We are
using a pair of 16x16 pixel images from the Nuvola icon set for the
increment and decrement button faces.

The Attribute Declarations

Widgets usually have attributes that you can set in the XML file, such as the
android:src attribute we specified on the ImageButton widgets in the layout

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.icon-king.com/projects/nuvola

Crafting Your Own Views

above. You can create your own custom attributes that can be used in your
custom widget, by creating a res/values/attrs.xml file to specify them.

For example, here is the attributes file for Meter:

<resources>
 <declare-styleable name="Meter">
 <attr name="max" format="integer" />
 <attr name="incr" format="integer" />
 <attr name="decr" format="integer" />
 </declare-styleable>
</resources>

The declare-styleable element describes what attributes are available on
the widget class specified in the name attribute – in our case, we will call
the widget Meter. Inside declare-styleable you can have one or more attr
elements, each indicating the name of an attribute (e.g., incr) and what
data type the attribute has (e.g., integer). The data type will help with
compile-time validation and in getting any supplied values for this attribute
parsed into the appropriate type at runtime.

Here, we indicate there are three attributes: max (indicating the highest
value the Meter will go to), incr (indicating how much the value should
increase when the increment button is clicked), and decr (indicating how
much the value should decrease when the decrement button is clicked).

The Widget Implementation

There are many ways to go about actually implementing a widget. This
section outlines one option: using a container class (specifically
LinearLayout) and inflating the contents of your widget layout into the
container.

The Constructor

To be usable inside of layout XML, you need to implement a constructor
that takes two parameters:

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

1. A Context object, typically representing the Activity that is inflating
your widget

2. An AttributeSet, representing the bundle of attributes included in
the element in the layout being inflated that references your widget

In this constructor, after chaining to your superclass, you can do some basic
configuration of your widget. Bear in mind, though, that you are not in
position to configure the widgets that make up your aggregate widget – you
need to wait until onFinishInflate() before you can do anything with those.

One thing you definitely want to do in the constructor, though, is use that
AttributeSet to get the values of whatever attributes you defined in your
attrs.xml file. For example, here is the constructor for Meter:

public Meter(final Context ctxt, AttributeSet attrs) {
 super(ctxt, attrs);

 this.setOrientation(HORIZONTAL);

 TypedArray a=ctxt.obtainStyledAttributes(attrs,
 R.styleable.Meter,
 0, 0);

 max=a.getInt(R.styleable.Meter_max, 100);
 incrAmount=a.getInt(R.styleable.Meter_incr, 1);
 decrAmount=-1*a.getInt(R.styleable.Meter_decr, 1);

 a.recycle();
}

The obtainStyledAttributes() on Context allows us to convert the
AttributeSet into useful values:

• It resolves references to other resources, such as strings

• It handles any styles that might be declared via the style attribute in
the layout element that references your widget

• It finds the resources you declared via attrs.xml and makes them
available to you

In the code shown above, we get our TypedArray via
obtainStyledAttributes(), then call getInt() three times to get our values

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

out of the TypedArray. The TypedArray is keyed by R.styleable identifiers, so
we use the three generated for us by the build tools for max, incr, and decr.

Note that you should call recycle() on the TypedArray when done – this
makes this TypedArray available for immediate reuse, rather than forcing it
to be garbage-collected.

Finishing Inflation

Your widget will also typically override onFinishInflate(). At this point, you
can turn around and add your own contents, via Java code or, as shown
below, by inflating a layout XML resource into yourself as a container:

@Override
protected void onFinishInflate() {
 super.onFinishInflate();

 ((Activity)getContext()).getLayoutInflater().inflate(R.layout.meter, this);

 bar=(ProgressBar)findViewById(R.id.bar);
 bar.setMax(max);

 ImageButton btn=(ImageButton)findViewById(R.id.incr);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 bar.incrementProgressBy(incrAmount);

 if (onIncr!=null) {
 onIncr.onClick(Meter.this);
 }
 }
 });

 btn=(ImageButton)findViewById(R.id.decr);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 bar.incrementProgressBy(decrAmount);

 if (onDecr!=null) {
 onDecr.onClick(Meter.this);
 }
 }
 });
}

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

Of course, once you have constructed or inflated your contents, you can
configure them, particularly using the attributes you declared in attrs.xml
and retrieved in your constructor.

Event Handlers and Other Methods

If you wish to expose events to the outside world – such as Meter exposing
when the increment or decrement buttons are clicked – you need to do a
few things:

• Choose or create an appropriate listener class or classes (e.g.,
View.OnClickListener)

• Hold onto instances of those classes as data members of the widget
class

• Offer setters (and, optionally, getters) to define those listener
objects

• Call those listeners when appropriate

For example, Meter holds onto a pair of View.OnClickListener instances:

private View.OnClickListener onIncr=null;
private View.OnClickListener onDecr=null;

It lets users of Meter define those listeners via getters:

public void setOnIncrListener(View.OnClickListener onIncr) {
 this.onIncr=onIncr;
}

public void setOnDecrListener(View.OnClickListener onDecr) {
 this.onDecr=onDecr;
}

And, as shown in the previous section, it passes along the button clicks to
the listeners:

ImageButton btn=(ImageButton)findViewById(R.id.incr);

btn.setOnClickListener(new View.OnClickListener() {

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

 public void onClick(View v) {
 bar.incrementProgressBy(incrAmount);

 if (onIncr!=null) {
 onIncr.onClick(Meter.this);
 }
 }
});

btn=(ImageButton)findViewById(R.id.decr);

btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 bar.incrementProgressBy(decrAmount);

 if (onDecr!=null) {
 onDecr.onClick(Meter.this);
 }
 }
});

Note that we change the value passed in the onClick() method – our
listener receives the ImageButton, but we pass the Meter widget on the
outbound onClick() call. This is so we do not leak internal implementation
of our widget. The users of Meter should neither know nor care that we have
ImageButton widgets as part of the Meter internals.

Your widget may well require other methods as well, for widget-specific
configuration or functionality, though Meter does not.

Using the Widget

Given all of that, using the Meter widget is not significantly different than
using any other widget provided in the system...with a few minor
exceptions.

In the layout, since your custom widget is not in the android.widget Java
package, you need to fully-qualify the class name for the widget, as seen in
the main.xml layout for the Views/Meter project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/com.commonsware.android.widget"

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="5px"
>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Meter:"
 />
 <com.commonsware.android.widget.Meter
 android:id="@+id/meter"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 app:max="100"
 app:incr="1"
 app:decr="5"
 />
</LinearLayout>

You will also note that we have a new namespace (xmlns:app =

"http://schemas.android.com/apk/res/com.commonsware.android.widget"), and
that our custom attributes from above are in that namespace (e.g., app:max).
The custom namespace is because our attributes are not official Android
ones and so will not be recognized by the build tools in the android:
namespace, so we have to create our own. The value of the namespace
needs to be http://schemas.android.com/apk/res/ plus the name of the
package containing the styleable attributes
(com.commonsware.android.widget).

With just the stock generated activity, we get the following UI:

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

Figure 5. The MeterDemo application

Note that there is a significant shortcut we are taking here: our Meter
implementation and its consumer (MeterDemo) are in the same Java package.
We will expose this shortcut in a later chapter when we use the Meter
widget in another project.

Change of State

Sometimes, we do not need to change the functionality of an existing
widget, but we simply want to change how it looks. Maybe you want an
oddly-shaped Button, or a CheckBox that is much larger, or something. In
these cases, you may be able to tailor instances of the existing widget as you
see fit, rather than have to roll a separate widget yourself.

Changing Button Backgrounds

Suppose you want a Button that looks like the second button shown below:

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

Figure 6. The FancyButton application, showing a normal oval-shaped button

Moreover, it needs to not just sit there, but also be focusable:

Figure 7. The FancyButton application, showing a focused oval-shaped button

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

...and it needs to be clickable:

Figure 8. The FancyButton application, showing a pressed oval-shaped button

If you did not want the look of the Button to change, you could get by just
with a simple android:background attribute on the Button, providing an oval
PNG. However, if you want the Button to change looks based on state, you
need to create another flavor of custom Drawable – the selector.

A selector Drawable is an XML file, akin to shapes with gradients. However,
rather than specifying a shape, it specifies a set of other Drawable resources
and the circumstances under which they should be applied, as described via
a series of states for the widget using the Drawable.

For example, from Views/FancyButton, here is res/drawable/fancybutton.xml,
implementing a selector Drawable:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:state_focused="true"
 android:state_pressed="false"
 android:drawable="@drawable/btn_oval_selected"

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

 />
 <item
 android:state_focused="true"
 android:state_pressed="true"
 android:drawable="@drawable/btn_oval_pressed"
 />
 <item
 android:state_focused="false"
 android:state_pressed="true"
 android:drawable="@drawable/btn_oval_pressed"
 />
 <item
 android:drawable="@drawable/btn_oval_normal"
 />
</selector>

There are four states being described in this selector:

1. Where the button is focused (android:state_focused = "true") but
not pressed (android:state_pressed = "false")

2. Where the button is both focused and pressed

3. Where the button is not focused but is pressed

4. The default, where the button is neither focused nor pressed

In these four states, we specify three Drawable resources, for normal,
focused, and pressed (the latter being used regardless of focus).

If we specify this selector Drawable resource as the android:background of a
Button, Android will use the appropriate PNG based on the status of the
Button itself:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
>
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Click me!"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

 android:text="Click me!"
 android:background="@drawable/fancybutton"
 />
</LinearLayout>

Changing CheckBox States

The same basic concept can be used to change the images used by a
CheckBox.

In this case, the fact that Android is open source helps, as we can extract
files and resources from Android and adjust them to create our own
editions, without worrying about license hassles.

For example, here is a selector Drawable for a fancy CheckBox, showing a
dizzying array of possible states:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- Enabled states -->

 <item android:state_checked="true" android:state_window_focused="false"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_on" />
 <item android:state_checked="false" android:state_window_focused="false"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_off" />

 <item android:state_checked="true" android:state_pressed="true"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_on_pressed" />
 <item android:state_checked="false" android:state_pressed="true"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_off_pressed" />

 <item android:state_checked="true" android:state_focused="true"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_on_selected" />
 <item android:state_checked="false" android:state_focused="true"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_off_selected" />

 <item android:state_checked="false"
 android:state_enabled="true"
 android:drawable="@drawable/btn_check_off" />
 <item android:state_checked="true"

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

 android:state_enabled="true"
 android:drawable="@drawable/btn_check_on" />

 <!-- Disabled states -->

 <item android:state_checked="true" android:state_window_focused="false"
 android:drawable="@drawable/btn_check_on_disable" />
 <item android:state_checked="false" android:state_window_focused="false"
 android:drawable="@drawable/btn_check_off_disable" />

 <item android:state_checked="true" android:state_focused="true"
 android:drawable="@drawable/btn_check_on_disable_focused" />
 <item android:state_checked="false" android:state_focused="true"
 android:drawable="@drawable/btn_check_off_disable_focused" />

 <item android:state_checked="false"
android:drawable="@drawable/btn_check_off_disable" />
 <item android:state_checked="true"
android:drawable="@drawable/btn_check_on_disable" />

</selector>

Each of the referenced PNG images can be extracted from the android.jar
file in your Android SDK, or obtained from various online resources. In the
case of Views/FancyCheck, we zoomed each of the images to 200% of original
size, to make a set of large (albeit fuzzy) checkbox images.

Figure 9. An example of a zoomed CheckBox image

In our layout, we can specify that we want to use our
res/drawable/fancycheck.xml selector Drawable as our background:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
>
 <CheckBox

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Crafting Your Own Views

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="I'm normal!"
 />
 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text=" "
 android:button="@drawable/fancycheck"
 android:background="@drawable/btn_check_label_background"
 />
</LinearLayout>

This gives us a look like this:

Figure 10. The FancyCheck application, showing a focused and checked
CheckBox

Note that our CheckBox text is blank. The reason is that CheckBox is expecting
the graphics to be 38px wide. Since ours are substantially larger, the
CheckBox images overlap the text. Fixing this would require substantial
work. It is simplest to fill the CheckBox text with some whitespace, then use
a separate TextView for our CheckBox caption.

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 3

Creating Drawables

Drawable resources come in all shapes and sizes, and not just in terms of
pixel dimensions. While many Drawable resources will be PNG or JPEG files,
you can easily create other resources that supply other sorts of Drawable
objects to your application. In this chapter, we will examine a few of these
that may prove useful as you try to make your application look its best.

First, we look at using shape XML files to create gradient effects that can be
resized to accommodate different contents. We then examine
StateListDrawable and how it can be used for button backgrounds, tab
icons, map icons, and the like. We wrap by looking at nine-patch bitmaps,
for places where a shape file will not work but that the image still needs to
be resized, such as a Button background.

Traversing Along a Gradient

Gradients have long been used to add "something a little extra" to a user
interface, whether it is Microsoft adding them to Office's title bars in the
late 1990's or the seemingly endless number of gradient buttons adorning
"Web 2.0" sites.

And now, you can have gradients in your Android applications as well.

The easiest way to create a gradient is to use an XML file to describe the
gradient. By placing the file in res/drawable/, it can be referenced as a

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Drawable resource, no different than any other such resource, like a PNG
file.

For example, here is a gradient Drawable resource, active_row.xml, from the
Drawable/Gradient sample project:

<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
 <gradient
 android:startColor="#44FFFF00"
 android:endColor="#FFFFFF00"
 android:angle="270"
 />
 <padding
 android:top="2px"
 android:bottom="2px"
 />
 <corners android:radius="6px" />
</shape>

A gradient is applied to the more general-purpose <shape> element, in this
case, a rectangle. The gradient is defined as having a start and end color – in
this case, the gradient is an increasing amount of yellow, with only the
alpha channel varying to control how much the background blends in. The
color is applied in a direction determined by the number of degrees
specified by the android:angle attribute, with 270 representing "down" (start
color at the top, end color at the bottom).

As with any other XML-defined shape, you can control various aspects of
the way the shape is drawn. In this case, we put some padding around the
drawable and round off the corners of the rectangle.

To use this Drawable in Java code, you can reference it as
R.drawable.active_row. One possible use of a gradient is in custom ListView
row selection, as shown in Drawable/GradientDemo:

package com.commonsware.android.drawable;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.content.res.ColorStateList;
import android.view.View;

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class GradientDemo extends ListActivity {
 private static ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new GradientAdapter(this));
 getListView().setOnItemSelectedListener(listener);
 }

 class GradientAdapter extends ArrayAdapter {
 GradientAdapter(Context ctxt) {
 super(ctxt, R.layout.row, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 GradientWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row,
 parent, false);
 wrapper=new GradientWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(GradientWrapper)convertView.getTag();
 }

 wrapper.getLabel().setText(items[position]);

 return(convertView);
 }
 }

 class GradientWrapper {

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

 View row=null;
 TextView label=null;

 GradientWrapper(View row) {
 this.row=row;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)row.findViewById(R.id.label);
 }

 return(label);
 }
 }

 AdapterView.OnItemSelectedListener listener=new
AdapterView.OnItemSelectedListener() {
 View lastRow=null;

 public void onItemSelected(AdapterView<?> parent,
 View view, int position,
 long id) {
 if (lastRow!=null) {
 lastRow.setBackgroundColor(0x00000000);
 }

 view.setBackgroundResource(R.drawable.active_row);
 lastRow=view;
 }

 public void onNothingSelected(AdapterView<?> parent) {
 if (lastRow!=null) {
 lastRow.setBackgroundColor(0x00000000);
 lastRow=null;
 }
 }
 };
}

In an earlier chapter, we showed how you can get control and customize
how a selected row appears in a ListView. This time, we apply the gradient
rounded rectangle as the background of the row. We could have
accomplished this via appropriate choices for android:listSelector and
android:drawSelectorOnTop as well.

The result is a selection bar implementing the gradient:

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Figure 11. The GradientDemo sample application

Note that because the list background is black, the yellow is mixed with
black on the top end of the gradient. If the list background were white, the
top end of the gradient would be yellow mixed with white, as determined
by the alpha channel specified on the gradient's top color.

State Law

Gradients and other shapes are not the only types of Drawable resource you
can define using XML. One, the StateListDrawable, is key if you want to
have different images when widgets are in different states.

Take for example the humble Button. Somewhere along the line, you have
probably tried setting the background of the Button to a different color,
perhaps via the android:background attribute in layout XML. If you have not
tried this before, give it a shot now.

When you replace the Button background with a color, the Button
becomes...well...flat. There is no defined border. There is no visual response

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

when you click the Button. There is no orange highlight if you select the
Button with the D-pad or trackball.

This is because what makes a Button visually be a Button is its background.
Your new background is a flat color, which will be used no matter what is
going on with the Button itself. The original background, however, was a
StateListDrawable, one that looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_window_focused="false" android:state_enabled="true"
 android:drawable="@drawable/btn_default_normal" />
 <item android:state_window_focused="false" android:state_enabled="false"
 android:drawable="@drawable/btn_default_normal_disable" />
 <item android:state_pressed="true"
 android:drawable="@drawable/btn_default_pressed" />
 <item android:state_focused="true" android:state_enabled="true"
 android:drawable="@drawable/btn_default_selected" />
 <item android:state_enabled="true"
 android:drawable="@drawable/btn_default_normal" />
 <item android:state_focused="true"
 android:drawable="@drawable/btn_default_normal_disable_focused" />
 <item
 android:drawable="@drawable/btn_default_normal_disable" />
</selector>

The XML has a <selector> root element, indicating this is a
StateListDrawable. The <item> elements inside the root describe what
Drawable resource should be used if the StateListDrawable is being used in
some state. For example, if the "window" (think activity or dialog) does not
have the focus (android:state_window_focused="false") and the Button is
enabled (android:state_enabled="true"), then we use the

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

@drawable/btn_default_normal Drawable resource. That resource, as it turns
out, is a nine-patch PNG file, described later in this chapter.

Android applies each rule in turn, top-down, to find the Drawable to use for
a given state of the StateListDrawable. The last rule has no android:state_*
attributes, meaning it is the overall default image to use if none of the other
rules match.

So, if you want to change the background of a Button, you need to:

1. Copy the above resource, found in your Android SDK as
res/drawable/btn_default.xml, into your project

2. Copy each of the Button state nine-patch images into your project

3. Modify whichever of those nine-patch images you want, to affect
the visual change you seek

4. If need be, tweak the states and images defined in the
StateListDrawable XML you copied

5. Reference the local StateListDrawable as the background for your
Button

You can also use this technique for tab icons – the currently-selected tab
will use the image defined as android:state_selected="true", while the
other tabs will use images with android:state_selected="false".

We will see StateListDrawable used later in this book, in the chapter on
maps, showing you how you can have different icons in an overlay for
normal and selected states of an overlay item.

A Stitch In Time Saves Nine

As you read through the Android documentation, you no doubt ran into
references to "nine-patch" or "9-patch" and wondered what Android had to
do with quilting. Rest assured, you will not need to take up needlework to
be an effective Android developer.

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.qnm.com/articles/feature64/

Creating Drawables

If, however, you are looking to create backgrounds for resizable widgets,
like a Button, you will probably need to work with nine-patch images.

As the Android documentation states, a nine-patch is "a PNG image in
which you define stretchable sections that Android will resize to fit the
object at display time to accommodate variable sized sections, such as text
strings". By using a specially-created PNG file, Android can avoid trying to
use vector-based formats (e.g., SVG) and their associated overhead when
trying to create a background at runtime. Yet, at the same time, Android
can still resize the background to handle whatever you want to put inside of
it, such as the text of a Button.

In this section, we will cover some of the basics of nine-patch graphics,
including how to customize and apply them to your own Android layouts.

The Name and the Border

Nine-patch graphics are PNG files whose names end in .9.png. This means
they can be edited using normal graphics tools, but Android knows to apply
nine-patch rules to their use.

What makes a nine-patch graphic different than an ordinary PNG is a one-
pixel-wide border surrounding the image. When drawn, Android will
remove that border, showing only the stretched rendition of what lies
inside the border. The border is used as a control channel, providing
instructions to Android for how to deal with stretching the image to fit its
contents.

Padding and the Box

Along the right and bottom sides, you can draw one-pixel-wide black lines
to indicate the "padding box". Android will stretch the image such that the
contents of the widget will fit inside that padding box.

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

For example, suppose we are using a nine-patch as the background of a
Button. When you set the text to appear in the button (e.g., "Hello, world!"),
Android will compute the size of that text, in terms of width and height in
pixels. Then, it will stretch the nine-patch image such that the text will
reside inside the padding box. What lies outside the padding box forms the
border of the button, typically a rounded rectangle of some form.

Figure 12. The padding box, as shown by a set of control lines to the right and
bottom of the stretchable image

Stretch Zones

To tell Android where on the image to actually do the stretching, draw one-
pixel-wide black lines on the top and left sides of the image. Android will
scale the graphic only in those areas – areas outside the stretch zones are
not stretched.

Perhaps the most common pattern is the center-stretch, where the middle
portions of the image on both axes are considered stretchable, but the
edges are not:

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Figure 13. The stretch zones, as shown by a set of control lines to the right
and bottom of the stretchable image

Here, the stretch zones will be stretched just enough for the contents to fit
in the padding box. The edges of the graphic are left unstretched.

Some additional rules to bear in mind:

• If you have multiple discrete stretch zones along an axis (e.g., two
zones separated by whitespace), Android will stretch both of them
but keep them in their current proportions. So, if the first zone is
twice as wide as the second zone in the original graphic, the first
zone will be twice as wide as the second zone in the stretched
graphic.

• If you leave out the control lines for the padding box, it is assumed
that the padding box and the stretch zones are one and the same.

Tooling

To experiment with nine-patch images, you may wish to use the draw9patch
program, found in the tools/ directory of your SDK installation:

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Figure 14. The draw9patch tool

While a regular graphics editor would allow you to draw any color on any
pixel, draw9patch limits you to drawing or erasing pixels in the control area.
If you attempt to draw inside the main image area itself, you will be
blocked.

On the right, you will see samples of the image in various stretched sizes, so
you can see the impact as you change the stretchable zones and padding
box.

While this is convenient for working with the nine-patch nature of the
image, you will still need some other graphics editor to create or modify the
body of the image itself. For example, the image shown above, from the
Drawable/NinePatch project, is a modified version of a nine-patch graphic
from the SDK's ApiDemos, where the GIMP was used to add the neon green
stripe across the bottom portion of the image.

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Using Nine-Patch Images

Nine-patch images are most commonly used as backgrounds, as illustrated
by the following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 >
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Horizontal:"
 />
 <SeekBar android:id="@+id/horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Vertical:"
 />
 <SeekBar android:id="@+id/vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 </TableLayout>
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

 <Button android:id="@+id/resize"
 android:layout_width="48px"
 android:layout_height="48px"
 android:text="Hi!"
 android:background="@drawable/button"
 />
 </LinearLayout>
</LinearLayout>

Here, we have two SeekBar widgets, labeled for the horizontal and vertical
axes, plus a Button set up with our nine-patch graphic as its background
(android:background = "@drawable/button").

The NinePatchDemo activity then uses the two SeekBar widgets to let the user
control how large the button should be drawn on-screen, starting from an
initial size of 48px square:

package com.commonsware.android.drawable;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;
import android.widget.SeekBar;

public class NinePatchDemo extends Activity {
 SeekBar horizontal=null;
 SeekBar vertical=null;
 View thingToResize=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 thingToResize=findViewById(R.id.resize);

 horizontal=(SeekBar)findViewById(R.id.horizontal);
 vertical=(SeekBar)findViewById(R.id.vertical);

 horizontal.setMax(272); // 320 less 48 starting size
 vertical.setMax(272); // keep it square @ max

 horizontal.setOnSeekBarChangeListener(h);
 vertical.setOnSeekBarChangeListener(v);
 }

 SeekBar.OnSeekBarChangeListener h=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(48+progress,
 old.height);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };

 SeekBar.OnSeekBarChangeListener v=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(old.width,
 48+progress);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };
}

The result is an application that can be used much like the right pane of
draw9patch, to see how the nine-patch graphic looks on an actual device or
emulator in various sizes:

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Figure 15. The NinePatch sample project, in its initial state

Figure 16. The NinePatch sample project, after making it bigger horizontally

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Creating Drawables

Figure 17. The NinePatch sample application, after making it bigger in both
dimensions

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 4

More Fun With ListViews

One of the most important widgets in your toolbelt is the ListView. Some
activities are purely a ListView, to allow the user to sift through a few
choices...or perhaps a few thousand. We already saw in The Busy Coder's
Guide to Android Development how to create "fancy ListViews", where you
have complete control over the list rows themselves. In this chapter, we will
cover some additional techniques you can use to make your ListView
widgets be pleasant for your users to work with.

Giant Economy-Size Dividers

You may have noticed that the preference UI has what behaves a lot like a
ListView, but with a curious characteristic: not everything is selectable:

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

Figure 18. A PreferenceScreen UI

You may have thought that this required some custom widget, or some
fancy on-the-fly View handling, to achieve this effect.

If so, you would have been wrong.

It turns out that any ListView can exhibit this behavior. In this section, we
will see how this is achieved and a reusable framework for creating such a
ListView.

Choosing What Is Selectable

There are two methods in the Adapter hierarchy that let you control what is
and is not selectable in a ListView:

• areAllItemsSelectable() should return true for ordinary ListView
widgets and false for ListView widgets where some items in the
Adapter are selectable and others are not

• isEnabled(), given a position, should return true if the item at that
position should be selectable and false otherwise

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

Given these two, it is "merely" a matter of overriding your chosen Adapter
class and implementing these two methods as appropriate to get the visual
effect you desire.

As one might expect, this is not quite as easy as it may sound.

For example, suppose you have a database of books, and you want to
present a list of book titles for the user to choose from. Furthermore,
suppose you have arranged for the books to be in alphabetical order within
each major book style (Fiction, Non-Fiction, etc.), courtesy of a well-crafted
ORDER BY clause on your query. And suppose you want to have headings, like
on the preferences screen, for those book styles.

If you simply take the Cursor from that query and hand it to a
SimpleCursorAdapter, the two methods cited above will be implemented as
the default, saying every row is selectable. And, since every row is a book,
that is what you want...for the books.

To get the headings in place, your Adapter needs to mix the headings in
with the books (so they all appear in the proper sequence), return a custom
View for each (so headings look different than the books), and implement
the two methods that control whether the headings or books are selectable.
There is no easy way to do this from a simple query.

Instead, you need to be a bit more creative, and wrap your
SimpleCursorAdapter in something that can intelligently inject the section
headings.

Introducing MergeAdapter

CommonsWare – the publishers of this book – have released a number of
open source reusable Android libraries, collectively called the
CommonsWare Android Components (CWAC, pronounced "quack").
Several of these will come into play for adding headings to a list, primarily
MergeAdapter.

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

MergeAdapter takes a collection of ListAdapter objects and other View
widgets and consolidates them into a single master ListAdapter that can be
poured into a ListView. You supply the contents – MergeAdapter handles the
ListAdapter interface to make them all appear to be a single contiguous list.

In the case of ListView with section headings, we can use MergeAdapter to
alternate between headings (each a View) and the rows inside each heading
(e.g., a CursorAdapter wrapping content culled from a database).

We will see how MergeAdapter works in greater detail in an upcoming
edition of this book. Here, we will see how you can apply a MergeAdapter to
achieve the desired ListView look and feel.

Lists via Merges

The pattern to use MergeAdapter for sectioned lists is fairly simple:

• Create one Adapter for each section. For example, in the book
scenario described above, you might have one SimpleCursorAdapter
for each book style (one for Fiction, one for Non-Fiction, etc.).

• Create heading Views for each heading (e.g., a custom-styled
TextView)

• Create a MergeAdapter and sequentially add each heading and
content Adapter in turn

• Put the container Adapter in the ListView, and everything flows from
there

You will see this implemented in the ListView/Sections sample project,
which is another riff on the "list of lorem ipsum words" sample you see
scattered throughout the Busy Coder books.

The layout for the screen is just a ListView, because the activity –
SectionedDemo – is just a ListActivity:

<?xml version="1.0" encoding="utf-8"?>
<ListView

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="true"
/>

Our activity's onCreate() method wraps our list of nonsense words in an
ArrayAdapter three times, first with the original list and twice on randomly
shuffled editions of the list. It pops each of those into the MergeAdapter after
a related heading, inflated from a custom layout:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class SectionedDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 adapter.addSection("Original",
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));

 List<String> list=Arrays.asList(items);

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

 Collections.shuffle(list);

 adapter.addSection("Shuffled",
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 list));

 list=Arrays.asList(items);

 Collections.shuffle(list);

 adapter.addSection("Re-shuffled",
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 list));

 setListAdapter(adapter);
 }

 SectionedAdapter adapter=new SectionedAdapter() {
 protected View getHeaderView(String caption, int index,
 View convertView,
 ViewGroup parent) {
 TextView result=(TextView)convertView;

 if (convertView==null) {
 result=(TextView)getLayoutInflater()
 .inflate(R.layout.header,
 null);
 }

 result.setText(caption);

 return(result);
 }
 };
}

he result is much as you might expect:

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

Figure 19. A ListView using a MergeAdapter, showing one header and part of a
list

Here, the headers are simple bits of text with an appropriate style applied.
Your section headers, of course, can be as complex as you like.

From Head To Toe

Perhaps you do not need section headers scattered throughout your list. If
you only need extra "fake rows" at the beginning or end of your list, you can
use header and footer views.

ListView supports addHeaderView() and addFooterView() methods that allow
you to add View objects to the beginning and end of the list, respectively.
These View objects otherwise behave like regular rows, in that they are part
of the scrolled area and will scroll off the screen if the list is long enough. If
you want fixed headers or footers, rather than put them in the ListView
itself, put them outside the ListView, perhaps using a LinearLayout.

To demonstrate header and footer views, take a peek at
ListView/HeaderFooter, particularly the HeaderFooterDemo class:

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.os.Handler;
import android.os.SystemClock;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicBoolean;

public class HeaderFooterDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 private long startTime=SystemClock.uptimeMillis();
 private Handler handler=new Handler();
 private AtomicBoolean areWeDeadYet=new AtomicBoolean(false);

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 getListView().addHeaderView(buildHeader());
 getListView().addFooterView(buildFooter());
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 areWeDeadYet.set(true);
 }

 private View buildHeader() {
 Button btn=new Button(this);

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

 btn.setText("Randomize!");
 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 List<String> list=Arrays.asList(items);

 Collections.shuffle(list);

 setListAdapter(new ArrayAdapter<String>(HeaderFooterDemo.this,
 android.R.layout.simple_list_item_1,
 list));
 }
 });

 return(btn);
 }

 private View buildFooter() {
 TextView txt=new TextView(this);

 updateFooter(txt);

 return(txt);
 }

 private void updateFooter(final TextView txt) {
 long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

 txt.setText(String.valueOf(runtime)+" seconds since activity launched");

 if (!areWeDeadYet.get()) {
 handler.postDelayed(new Runnable() {
 public void run() {

 updateFooter(txt);
 }
 }, 1000);
 }
 }
}

Here, we add a header View built via buildHeader(), returning a Button that,
when clicked, will shuffle the contents of the list. We also add a footer View
built via buildFooter(), returning a TextView that shows how long the
activity has been running, updated every second. The list itself is the ever-
popular list of lorem ipsum words.

When initially displayed, the header is visible but the footer is not, because
the list is too long:

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

Figure 20. A ListView with a header view shown

If you scroll downward, the header will slide off the top, and eventually the
footer will scroll into view:

Figure 21. A ListView with a footer view shown

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

Control Your Selection

The stock Android UI for a selected ListView row is fairly simplistic: it
highlights the row in orange...and nothing more. You can control the
Drawable used for selection via the android:listSelector and
android:drawSelectorOnTop attributes on the ListView element in your
layout. However, even those simply apply some generic look to the selected
row.

It may be you want to do something more elaborate for a selected row, such
as changing the row around to expose more information. Maybe you have
thumbnail photos but only display the photo on the selected row. Or
perhaps you want to show some sort of secondary line of text, like a
person's instant messenger status, only on the selected row. Or, there may
be times you want a more subtle indication of the selected item than having
the whole row show up in some neon color. The stock Android UI for
highlighting a selection will not do any of this for you.

That just means you have to do it yourself. The good news is, it is not very
difficult.

Create a Unified Row View

The simplest way to accomplish this is for each row View to have all of the
widgets you want for the selected-row perspective, but with the "extra stuff"
flagged as invisible at the outset. That way, rows initially look "normal"
when put into the list – all you need to do is toggle the invisible widgets to
visible when a row gets selected and toggle them back to invisible when a
row is de-selected.

For example, in the ListView/Selector project, you will find a row.xml
layout representing a row in a list:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <View
 android:id="@+id/bar"
 android:background="#FFFFFF00"
 android:layout_width="5px"
 android:layout_height="fill_parent"
 android:visibility="invisible"
 />
 <TextView
 android:id="@+id/label"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:textSize="10pt"
 android:paddingTop="2px"
 android:paddingBottom="2px"
 android:paddingLeft="5px"
 />
</LinearLayout>

There is a TextView representing the bulk of the row. Before it, though, on
the left, is a plain View named bar. The background of the View is set to
yellow (android:background = "#FFFFFF00") and the width to 5px. More
importantly, it is set to be invisible (android:visibility = "invisible").
Hence, when the row is put into a ListView, the yellow bar is not seen...until
we make the bar visible.

Configure the List, Get Control on Selection

Next, we need to set up a ListView and arrange to be notified when rows are
selected and de-selected. That is merely a matter of calling
setOnItemSelectedListener() for the ListView, providing a listener to be
notified on a selection change. You can see that in the context of a
ListActivity in our SelectorDemo class:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.content.res.ColorStateList;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

import android.widget.TextView;

public class SelectorDemo extends ListActivity {
 private static ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new SelectorAdapter(this));
 getListView().setOnItemSelectedListener(listener);
 }

 class SelectorAdapter extends ArrayAdapter {
 SelectorAdapter(Context ctxt) {
 super(ctxt, R.layout.row, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 SelectorWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row,
 parent, false);
 wrapper=new SelectorWrapper(convertView);
 wrapper.getLabel().setTextColor(allWhite);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(SelectorWrapper)convertView.getTag();
 }

 wrapper.getLabel().setText(items[position]);

 return(convertView);
 }
 }

 class SelectorWrapper {
 View row=null;
 TextView label=null;
 View bar=null;

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

 SelectorWrapper(View row) {
 this.row=row;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)row.findViewById(R.id.label);
 }

 return(label);
 }

 View getBar() {
 if (bar==null) {
 bar=row.findViewById(R.id.bar);
 }

 return(bar);
 }
 }

 AdapterView.OnItemSelectedListener listener=new
AdapterView.OnItemSelectedListener() {
 View lastRow=null;

 public void onItemSelected(AdapterView<?> parent,
 View view, int position,
 long id) {
 if (lastRow!=null) {
 SelectorWrapper wrapper=(SelectorWrapper)lastRow.getTag();

 wrapper.getBar().setVisibility(View.INVISIBLE);
 }

 SelectorWrapper wrapper=(SelectorWrapper)view.getTag();

 wrapper.getBar().setVisibility(View.VISIBLE);
 lastRow=view;
 }

 public void onNothingSelected(AdapterView<?> parent) {
 if (lastRow!=null) {
 SelectorWrapper wrapper=(SelectorWrapper)lastRow.getTag();

 wrapper.getBar().setVisibility(View.INVISIBLE);
 lastRow=null;
 }
 }
 };
}

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

SelectorDemo sets up a SelectorAdapter, which follow the view-wrapper
pattern established in The Busy Coder's Guide to Android Development.
Each row is created from the layout shown earlier, with a SelectorWrapper
providing access to both the TextView (for setting the text in a row) and the
bar View.

Change the Row

Our AdapterView.OnItemSelectedListener instance keeps track of the last
selected row (lastRow). When the selection changes to another row in
onItemSelected(), we make the bar from the last selected row invisible,
before we make the bar visible on the newly-selected row. In
onNothingSelected(), we make the bar invisible and make our last selected
row be null.

The net effect is that as the selection changes, we toggle the bar off and on
as needed to indicate which is the selected row.

In the layout for the activity's ListView, we turn off the regular highlighting:

<?xml version="1.0" encoding="utf-8"?>
<ListView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:listSelector="#00000000"
/>

The result is we are controlling the highlight, in the form of the yellow bar:

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

Figure 22. A ListView with a custom-drawn selector icon

Obviously, what we do to highlight a row could be much more elaborate
than what is demonstrated here. At the same time, it needs to be fairly
quick to execute, lest the list appear to be too sluggish.

Stating Your Selection

In the previous section, we removed the default ListView selection bar and
implemented our own in Java code. That works, but there is another option:
defining a custom selection bar Drawable resource.

In the chapter on custom Drawable resources, we introduced the
StateListDrawable. This is an XML-defined resource that declares different
Drawable resources to use when the StateListDrawable is in different states.

The standard ListView selector is, itself, a StateListDrawable, one that looks
like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<selector xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:state_window_focused="false"
 android:drawable="@color/transparent" />

 <!-- Even though these two point to the same resource, have two states so the
drawable will invalidate itself when coming out of pressed state. -->
 <item android:state_focused="true" android:state_enabled="false"
 android:state_pressed="true"
 android:drawable="@drawable/list_selector_background_disabled" />
 <item android:state_focused="true" android:state_enabled="false"
 android:drawable="@drawable/list_selector_background_disabled" />

 <item android:state_focused="true" android:state_pressed="true"
 android:drawable="@drawable/list_selector_background_transition" />
 <item android:state_focused="false" android:state_pressed="true"
 android:drawable="@drawable/list_selector_background_transition" />

 <item android:state_focused="true"
 android:drawable="@drawable/list_selector_background_focus" />

</selector>

Now, the most common reason people seem to want to change the selector
is that they hate the orange bar. Perhaps it clashes with their application's
color scheme, or they are allergic to citrus fruits, or something.

The android:state_focused="true" rule at the bottom of that XML is the one
that defines the actual selection bar, in terms of what is seen when the user
navigates with the D-pad or trackball. It points to a nine-patch PNG file,
with different copies for different screen densities (one in res/drawable-
hdpi/, etc.).

Hence, another approach to changing the selection bar is to:

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Fun With ListViews

1. Copy the above XML (found in
res/drawable/list_selector_background.xml in your SDK) into your
project

2. Copy the various other Drawable resources pointed to by that XML
into your project

3. Modify the nine-patch images as needed to change the colors

4. Reference the local copy of the StateListDrawable in the
android:listSelector attribute

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 5

Home Screen App Widgets

One of the oft-requested features added in Android 1.5 is the ability to add
live elements to the home screen. Called "app widgets", these can be added
by users via a long-tap on the home screen and choosing an appropriate
widget from the available roster. Android ships with a few app widgets,
such as a music player, but developers can add their own – in this chapter,
we will see how this is done.

For the purposes of this book, "app widgets" will refer to these items that go
on the home screen. Other uses of the term "widget" will be reserved for
the UI widgets, subclasses of View, usually found in the android.widget Java
package.

In this chapter, we briefly touch on the security ramifications of app
widgets, before continuing on to discuss how Android offers a secure app
widget framework. We then go through all the steps of creating a basic app
widget. Next, we discuss how to deal with multiple instances of your app
widget, the app widget lifecycle, alternative models for updating app
widgets, and how to offer multiple layouts for your app widget (perhaps
based on device characteristics). We wrap with some notes about hosting
your own app widgets in your own home screen implementation.

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

East is East, and West is West...

Part of the reason it took as long as it did for app widgets to become
available is security.

Android's security model is based heavily on Linux user, file, and process
security. Each application is (normally) associated with a unique user ID.
All of its files are owned by that user, and its process(es) run as that user.
This prevents one application from modifying the files of another or
otherwise injecting their own code into another running process.

In particular, the core Android team wanted to find a way that would allow
app widgets to be displayed by the home screen application, yet have their
content come from another application. It would be dangerous for the
home screen to run arbitrary code itself or somehow allow its UI to be
directly manipulated by another process.

The app widget architecture, therefore, is set up to keep the home screen
application independent from any code that puts app widgets on that home
screen, so bugs in one cannot harm the other.

The Big Picture for a Small App Widget

The way Android pulls off this bit of security is through the use of
RemoteViews.

The application component that supplies the UI for an app widget is not an
Activity, but rather a BroadcastReceiver (often in tandem with a Service).
The BroadcastReceiver, in turn, does not inflate a normal View hierarchy,
like an Activity would, but instead inflates a layout into a RemoteViews
object.

RemoteViews encapsulates a limited edition of normal widgets, in such a
fashion that the RemoteViews can be "easily" transported across process
boundaries. You configure the RemoteViews via your BroadcastReceiver and
make those RemoteViews available to Android. Android in turn delivers the

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

RemoteViews to the app widget host (usually the home screen), which
renders them to the screen itself.

This architectural choice has many impacts:

1. You do not have access to the full range of widgets and containers.
You can use FrameLayout, LinearLayout, and RelativeLayout for
containers, and AnalogClock, Button, Chronometer, ImageButton,
ImageView, ProgressBar, and TextView for widgets.

2. The only user input you can get is clicks of the Button and
ImageButton widgets. In particular, there is no EditText for text
input.

3. Because the app widgets are rendered in another process, you
cannot simply register an OnClickListener to get button clicks;
rather, you tell RemoteViews a PendingIntent to invoke when a given
button is clicked.

4. You do not hold onto the RemoteViews and reuse them yourself.
Rather, the pattern appears to be that you create and send out a
brand-new RemoteViews whenever you want to change the contents
of the app widget. This, coupled with having to transport the
RemoteViews across process boundaries, means that updating the app
widget is rather expensive in terms of CPU time, memory, and
battery life.

5. Because the component handling the updates is a
BroadcastReceiver, you have to be quick (lest you take too long and
Android consider you to have timed out), you cannot use
background threads, and your component itself is lost once the
request has been completed. Hence, if your update might take a
while, you will probably want to have the BroadcastReceiver start a
Service and have the Service do the long-running task and eventual
app widget update.

Crafting App Widgets

This will become somewhat easier to understand in the context of some
sample code. In the AppWidget/TwitterWidget project, you will find an app

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

widget that shows the latest tweet in your Twitter timeline. If you have read
Android Programming Tutorials, you will recognize the JTwitter JAR we will
use for accessing the Twitter Web service.

The Manifest

First, we need to register our BroadcastReceiver (and, if relevant, Service)
implementation in our AndroidManifest.xml file, along with a few extra
features:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.appwidget"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk
 android:minSdkVersion="6"
 android:targetSdkVersion="6"
 />
 <uses-permission android:name="android.permission.INTERNET" />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".TWPrefs"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action
android:name="android.appwidget.action.APPWIDGET_CONFIGURE" />
 </intent-filter>
 </activity>
 <receiver android:name=".TwitterWidget"
 android:label="@string/app_name"
 android:icon="@drawable/tw_icon">
 <intent-filter>
 <action
 android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider" />
 </receiver>
 <service android:name=".TwitterWidget$UpdateService" />
 </application>
</manifest>

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://twitter.com/

Home Screen App Widgets

Here we have an <activity>, a <receiver>, and a <service>. Of note:

• Our <receiver> has android:label and android:icon attributes, which
are not normally needed on BroadcastReceiver declarations.
However, in this case, those are used for the entry that goes in the
menu of available widgets to add to the home screen. Hence, you
will probably want to supply values for both of those, and use
appropriate resources in case you want translations for other
languages.

• Our <receiver> has an <intent-filter> for the
android.appwidget.action.APPWIDGET_UPDATE action. This means we
will get control whenever Android wants us to update the content of
our app widget. There may be other actions we want to monitor –
more on this in a later section.

• Our <receiver> also has a <meta-data> element, indicating that its
android.appwidget.provider details can be found in the
res/xml/widget_provider.xml file. This metadata is described in the
next section.

• Our <activity> has two <intent-filter> elements, the normal "put
me in the Launcher" one and one looking for an action of
android.appwidget.action.APPWIDGET_CONFIGURE.

The Metadata

Next, we need to define the app widget provider metadata. This has to
reside at the location indicated in the manifest – in this case, in
res/xml/widget_provider.xml:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="292dip"
 android:minHeight="72dip"
 android:updatePeriodMillis="900000"
 android:configure="com.commonsware.android.appwidget.TWPrefs"
 android:initialLayout="@layout/widget"
/>

Here, we provide four pieces of information:

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

• The minimum width and height of the app widget (android:minWidth
and android:minHeight). These are approximate – the app widget
host (e.g., home screen) will tend to convert these values into "cells"
based upon the overall layout of the UI where the app widgets will
reside. However, they should be no smaller than the minimums
cited here.

• The frequency in which Android should request an update of the
widget's contents (android:updatePeriodMillis). This is expressed in
terms of milliseconds, so a value of 3600000 is a 60-minute update
cycle. Note that the minimum value for this attribute is 30 minutes
– values less than that will be ignored.

• An activity class that will be used to configure the widget when it is
first added to the screen (android:configure). This will be described
in greater detail in a later section.

The configuration activity is optional. However, if you skip the
configuration activity, you do need to tell Android the initial layout to use
for the app widget, via an android:initialLayout attribute.

The Layout

Eventually, you are going to need a layout that describes what the app
widget looks like. So long as you stick to the widget and container classes
noted above, this layout can otherwise look like any other layout in your
project.

For example, here is the layout for the TwitterWidget:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF000088"
 >
 <ImageButton android:id="@+id/refresh"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/refresh"

68

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <ImageButton android:id="@+id/configure"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/configure"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <TextView android:id="@+id/friend"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="left"
 android:textStyle="bold"
 android:singleLine="true"
 android:ellipsize="end"
 />
 <TextView android:id="@+id/status"
 android:layout_below="@id/friend"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:gravity="top"
 android:singleLine="false"
 android:lines="4"
 />
</RelativeLayout>

All we have is a TextView to show the latest tweet, plus another one for the
person issuing the tweet, and a pair of ImageButton widgets to allow the user
to manually refresh the latest tweet and launch the configuration activity.

The BroadcastReceiver

Next, we need a BroadcastReceiver that can get control when Android wants
us to update our RemoteViews for our app widget. To simplify this, Android
supplies an AppWidgetProvider class we can extend, instead of the normal
BroadcastReceiver. This simply looks at the received Intent and calls out to
an appropriate lifecycle method based on the requested action.

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

The one method that invariably needs to be implemented on the provider
is onUpdate(). Other lifecycle methods may be of interest and are discussed
later in this chapter.

For example, here is the onUpdate() implementation of the
AppWidgetProvider for TwitterWidget:

@Override
public void onUpdate(Context ctxt,
 AppWidgetManager mgr,
 int[] appWidgetIds) {
 ctxt.startService(new Intent(ctxt, UpdateService.class));
}

If our RemoteViews could be rapidly constructed, we could do the work right
here. However, in our case, we need to make a Web service call to Twitter,
which might take a while, so we instead call startService() on the Service
we declared in our manifest, to have it make the updates.

The Service

The real work for TwitterWidget is mostly done in an UpdateService inner
class of TwitterWidget.

UpdateService does not extend Service, but rather extends IntentService.
IntentService is designed for patterns like this one, where our service is
started multiple times, with each "start" representing a distinct piece of
work to be accomplished (in this case, updating an app widget from
Twitter). IntentService allows us to implement onHandleIntent() to do this
work, and it arranges for onHandleIntent() to be called on a background
thread. Hence, we do not need to deal with starting or stopping our thread,
or even stopping our service when there is no more work to be done –
Android handles that automatically.

Here is the onHandleIntent() implementation from UpdateService:

@Override
public void onHandleIntent(Intent intent) {
 ComponentName me=new ComponentName(this,

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

 TwitterWidget.class);
 AppWidgetManager mgr=AppWidgetManager.getInstance(this);

 mgr.updateAppWidget(me, buildUpdate(this));
}

To update the RemoteViews for our app widget, we need to build those
RemoteViews (delegated to a buildUpdate() helper method) and tell an
AppWidgetManager to update the widget via updateAppWidget(). In this case,
we use a version of updateAppWidget() that takes a ComponentName as the
identifier of the widget to be updated. Note that this means that we will
update all instances of this app widget presently in use – the concept of
multiple app widget instances is covered in greater detail later in this
chapter.

Working with RemoteViews is a bit like trying to tie your shoes while wearing
mittens – it may be possible, but it is a bit clumsy. In this case, rather than
using methods like findViewById() and then calling methods on individual
widgets, we need to call methods on RemoteViews itself, providing the
identifier of the widget we wish to modify. This is so our requests for
changes can be serialized for transport to the home screen process. It does,
however, mean that our view-updating code looks a fair bit different than it
would if this were the main View of an activity or row of a ListView.

For example, here is the buildUpdate() method from UpdateService, which
builds a RemoteViews containing the latest Twitter information, using
account information pulled from shared preferences:

private RemoteViews buildUpdate(Context context) {
 RemoteViews updateViews=new RemoteViews(context.getPackageName(),
 R.layout.widget);
 String user=prefs.getString("user", null);
 String password=prefs.getString("password", null);

 if (user!=null && password!=null) {
 Twitter client=new Twitter(user, password);
 List<Twitter.Status> timeline=client.getFriendsTimeline();

 if (timeline.size()>0) {
 Twitter.Status s=timeline.get(0);

 updateViews.setTextViewText(R.id.friend,
 s.user.screenName);

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

 updateViews.setTextViewText(R.id.status,
 s.text);

 Intent i=new Intent(this, TwitterWidget.class);
 PendingIntent pi=PendingIntent.getBroadcast(context,
 0 , i,
 0);

 updateViews.setOnClickPendingIntent(R.id.refresh,
 pi);

 i=new Intent(this, TWPrefs.class);
 pi=PendingIntent.getActivity(context, 0 , i, 0);
 updateViews.setOnClickPendingIntent(R.id.configure,
 pi);
 }
 }

 return(updateViews);
}

To create the RemoteViews, we use a constructor that takes our package
name and the identifier of our layout. This gives us a RemoteViews that
contains all of the widgets we declared in that layout, just as if we inflated
the layout using a LayoutInflater. The difference, of course, is that we have
a RemoteViews object, not a View, as the result.

We then use methods like:

• setTextViewText() to set the text on a TextView in the RemoteViews,
given the identifier of the TextView within the layout we wish to
manipulate

• setOnClickPendingIntent() to provide a PendingIntent that should
get fired off when a Button or ImageButton is clicked

Note, of course, that Android does not know anything about Twitter – the
Twitter object comes from a JTwitter JAR located in the libs/ directory of
our project.

The Configuration Activity

Way back in the manifest, we included an <activity> element for a TWPrefs
activity. And, in our widget metadata XML file, we said that TWPrefs was the

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

android:configure attribute value. In our RemoteViews for the widget itself,
we connect a configure button to launch TWPrefs when clicked.

The net of all of this is that TWPrefs is the configuration activity. Specifically:

• It will be launched when we request to add this widget to our home
screen

• It will be re-launched whenever we click the configure button in the
widget itself

For the latter scenario, the activity need be nothing special. In fact, TWPrefs
is mostly just a PreferenceActivity, updating the SharedPreferences for this
application with the user's Twitter screen name and password, used for
logging into Twitter and fetching the latest timeline entry.

The former scenario – defining a configuration activity in the metadata –
requires a bit more work, though.

If we were to leave this out, and not have an android:configure attribute in
the metadata, once the user chose to add our widget to their home screen,
the widget would immediately appear. Behind the scenes, Android would
ask our AppWidgetProvider to supply the RemoteViews for the widget body
right away.

However, when we declare that we want a configuration activity, we must
build the initial RemoteViews ourselves and return them as the activity's
result. Behind the scenes, Android uses startActivityForResult() to launch
our configuration activity, then looks at the result and uses the associated
RemoteViews to create the initial look of the widget.

This approach is prone to code duplication, and it is not completely clear
why Android elected to build the widget framework this way.

That being said, here is the implementation of TWPrefs:

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

package com.commonsware.android.appwidget;

import android.app.Activity;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.Intent;
import android.os.Build;
import android.os.Bundle;
import android.preference.PreferenceActivity;
import android.view.KeyEvent;
import android.widget.RemoteViews;

public class TWPrefs extends PreferenceActivity {
 private static String
CONFIGURE_ACTION="android.appwidget.action.APPWIDGET_CONFIGURE";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode==KeyEvent.KEYCODE_BACK &&
 Integer.parseInt(Build.VERSION.SDK)<5) {
 onBackPressed();
 }

 return(super.onKeyDown(keyCode, event));
 }

 @Override
 public void onBackPressed() {
 if (CONFIGURE_ACTION.equals(getIntent().getAction())) {
 Intent intent=getIntent();
 Bundle extras=intent.getExtras();

 if (extras!=null) {
 int id=extras.getInt(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 AppWidgetManager mgr=AppWidgetManager.getInstance(this);
 RemoteViews views=new RemoteViews(getPackageName(),
 R.layout.widget);

 mgr.updateAppWidget(id, views);

 Intent result=new Intent();

 result.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 id);
 setResult(RESULT_OK, result);
 sendBroadcast(new Intent(this,

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

 TwitterWidget.class));
 }
 }

 super.onBackPressed();
 }
}

We are using the same activity for two cases: for the initial configuration
and for later on-demand reconfiguration via the configure button in the
widget. We need to tell these apart. More importantly, we need to get
control at an appropriate time to set our activity result in the initial
configuration case. Alas, the normal activity lifecycle methods (e.g.,
onDestroy()) are too late, and PreferenceActivity offers no other explicit
hook to find out when the user dismisses the preference screen.

So, we have to cheat a bit.

Specifically, we hook onBackPressed() and watch for the back button. When
the back button is pressed, if we were launched by a widget configuration
Intent (CONFIGURE_ACTION.equals(getIntent().getAction())), then we go
through and:

• Get our widget instance identifier (described in greater detail later
in this chapter)

• Get our AppWidgetManager and create a new RemoteViews inflated from
our widget layout

• Pass the empty RemoteViews to the AppWidgetManager via
updateAppWidget()

• Call setResult() with an Intent wrapping our widget instance
identifier, so Android knows we have properly configured our
widget

• Raise a broadcast Intent to ask our WidgetProvider to do the real
initial version of the widget

This minimizes code duplication, but it does mean there is a slight hiccup,
where the widget initially appears blank, before the first timeline entry
appears. This is largely unavoidable in this case – we cannot wait for Twitter

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

to respond since onBackPressed() is called on the UI thread and we need to
call setResult() now rather than wait for Twitter's response.

Undoubtedly, there are other patterns for handling this situation.

Note that onBackPressed() is new to Android 2.0. For earlier versions of
Android, you will instead want to override onKeyDown() and look for
KeyEvent.KEYCODE_BACK events.

The Result

If you compile and install all of this, you will have a new widget entry
available when you long-tap on the home screen background:

Figure 23. The roster of available widgets

When you choose Twitter Widget, you will initially be presented with the
configuration activity:

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

Figure 24. The TwitterWidget configuration activity

Once you set your Twitter screen name and password, and press the back
button to exit the activity, your widget will appear with no contents:

Figure 25. TwitterWidget, immediately after being added

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

After a moment, though, it will appear with the latest in your Twitter
friends timeline:

Figure 26. TwitterWidget, with a timeline entry

To change your Twitter credentials, you can either tap the configure icon in
the widget or run the Twitter Widget application in your launcher. And,
clicking the refresh button, or waiting 15 minutes, will cause the widget to
update its contents.

Another and Another

As indicated above, you can have multiple instances of the same app widget
outstanding at any one time. For example, one might have multiple picture
frames, or multiple "show-me-the-latest-RSS-entry" app widgets, one per
feed. You will distinguish between these in your code via the identifier
supplied in the relevant AppWidgetProvider callbacks (e.g., onUpdate()).

If you want to support separate app widget instances, you will need to store
your state on a per-app-widget-identifier basis. For example, while
TwitterWidget uses preferences for the Twitter account details, you might

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

need multiple preference files, or use a SQLite database with an app widget
identifier column, or something to distinguish one app widget instance
from another. You will also need to use an appropriate version of
updateAppWidget() on AppWidgetManager when you update the app widgets,
one that takes app widget identifiers as the first parameter, so you update
the proper app widget instances.

Conversely, there is nothing requiring you to support multiple instances as
independent entities. For example, if you add more than one TwitterWidget
to your home screen, nothing blows up – they just show the same tweet. In
the case of TwitterWidget, they might not even show the same tweet all the
time, since they will update on independent cycles, so one will get newer
tweets before another.

App Widgets: Their Life and Times

TwitterWidget overrode two AppWidgetProvider methods:

• onUpdate(), invoked when the android:updatePeriodMillis time has
elapsed

• onReceive(), the standard BroadcastReceiver callback, used to detect
when we are invoked with no action, meaning we want to force an
update due to the refresh button being clicked

There are three other lifecycle methods that AppWidgetProvider offers that
you may be interested in:

• onEnabled() will be called when the first widget instance is created
for this particular widget provider, so if there is anything you need
to do once for all supported widgets, you can implement that logic
here

• onDeleted() will be called when a widget instance is removed from
the home screen, in case there is any data you need to clean up
specific to that instance

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

• onDisabled() will be called when the last widget instance for this
provider is removed from the home screen, so you can clean up
anything related to all such widgets

Note, however, that there is a bug in Android 1.5, where onDeleted() will not
be properly called. You will need to implement onReceive() and watch for
the ACTION_APPWIDGET_DELETED action in the received Intent and call
onDeleted() yourself. This should be fixed in a future edition of Android.

Controlling Your (App Widget's) Destiny

As TwitterWidget illustrates, you are not limited to updating your app
widget only based on the timetable specified in your metadata. That
timetable is useful if you can get by with a fixed schedule. However, there
are cases in which that will not work very well:

• If you want the user to be able to configure the polling period (the
metadata is baked into your APK and therefore cannot be modified
at runtime)

• If you want the app widget to be updated based on external factors,
such as a change in location

The recipe shown in TwitterWidget will let you use AlarmManager (described
in a later chapter) or proximity alerts or whatever to trigger updates. All
you need to do is:

• Arrange for something to broadcast an Intent that will be picked up
by the BroadcastReceiver you are using for your app widget provider

• Have the provider process that Intent directly or pass it along to a
Service (such as an IntentService as shown in TwitterWidget)

Also, note that the updateTimeMillis setting not only tells the app widget to
update every so often, it will even wake up the phone if it is asleep so the
widget can perform its update. On the plus side, this means you can easily
keep your widgets up to date regardless of the state of the device. On the
minus side, this will tend to drain the battery, particularly if the period is
too fast. If you want to avoid this wakeup behavior, set updateTimeMillis to

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

0 and use AlarmManager to control the timing and behavior of your widget
updates.

Change Your Look

If you have been doing most of your development via the Android
emulator, you are used to all "devices" having a common look and feel, in
terms of the home screen, lock screen, and so forth. This is the so-called
"Google Experience" look, and many actual Android devices have it.

However, some devices have their own presentation layers. HTC has
"Sense", seen on the HTC Hero and HTC Tattoo, among other devices.
Motorola has MOTOBLUR, seen on the Motorola CLIQ and DEXT. Other
device manufacturers are sure to follow suit. These presentation layers
replace the home screen and lock screen, among other things. Moreover,
they usually come with their own suite of app widgets with their own look
and feel. Your app widget may look fine on a Google Experience home
screen, but the look might clash when viewed on a Sense or MOTOBLUR
device.

Fortunately, there are ways around this. You can set your app widget's look
on the fly at runtime, to choose the layout that will look the best on that
particular device.

The first step is to create an app widget layout that is initially invisible
(res/layout/invisible.xml):

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:visibility="invisible"
 >
</RelativeLayout>

This layout is then the one you would reference from your app widget
metadata, to be used when the app widget is first created:

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="292dip"
 android:minHeight="72dip"
 android:updatePeriodMillis="900000"
 android:configure="com.commonsware.android.appwidget.TWPrefs"
 android:initialLayout="@layout/invisible"
/>

This ensures that when your app widget is initially added, you do not get
the "Problem loading widget" placeholder, yet you also do not choose one
layout versus another – it is simply invisible for a brief moment.

Then, in your AppWidgetProvider (or attached IntentService), you can make
the choice of what layout to inflate as part of your RemoteViews. Rather than
using the invisible one, you can choose one based on the device or other
characteristics.

For example, here is a revised version of our app widget layout that uses a
different color background (res/layout/widget_alt.xml):

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF008800"
 >
 <ImageButton android:id="@+id/refresh"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/refresh"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <ImageButton android:id="@+id/configure"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/configure"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <TextView android:id="@+id/friend"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="left"

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

 android:textStyle="bold"
 android:singleLine="true"
 android:ellipsize="end"
 />
 <TextView android:id="@+id/status"
 android:layout_below="@id/friend"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@id/refresh"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:gravity="top"
 android:singleLine="false"
 android:lines="4"
 />
</RelativeLayout>

We can modify our IntentService to choose which layout – widget.xml or
widget_alt.xml – to use. For example, the following code shows how we
could use a specific layout for Android 2.1 devices:

int layout=R.layout.widget;

if (android.os.Build.VERSION.SDK_INT==7) {
 layout=R.layout.widget_alt;
}

RemoteViews updateViews=new RemoteViews(context.getPackageName(),
 layout);

The biggest challenge is that there is no good way to determine what
presentation layer, if any, is in use on a device. For the time being, you will
need to use the various fields in the android.os.Build class to "sniff" on the
device model and make a decision that way.

Being a Good Host

In addition to creating your own app widgets, it is possible to host app
widgets. This is mostly aimed for those creating alternative home screen
applications, so they can take advantage of the same app widget framework
and all the app widgets being built for it.

This is not very well documented at this juncture, but it apparently involves
the AppWidgetHost and AppWidgetHostView classes. The latter is a View and so

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Home Screen App Widgets

should be able to reside in an app widget host's UI like any other ordinary
widget.

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 6

Searching with SearchManager

One of the firms behind the Open Handset Alliance – Google – has a teeny
weeny Web search service, one you might have heard of in passing. Given
that, it's not surprising that Android has some amount of built-in search
capabilities.

Specifically, Android has "baked in" the notion of searching not only on the
device for data, but over the air to Internet sources of data.

Your applications can participate in the search process, by triggering
searches or perhaps by allowing your application's data to be searched.

Hunting Season

There are two types of search in Android: local and global. Local search
searches within the current application; global search searches the Web via
Google's search engine. You can initiate either type of search in a variety of
ways, including:

• You can call onSearchRequested() from a button or menu choice,
which will initiate a local search (unless you override this method in
your activity)

• You can directly call startSearch() to initiate a local or global
search, including optionally supplying a search string to use as a
starting point

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

• You can elect to have keyboard entry kick off a search via
setDefaultKeyMode(), for either local search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL)) or global search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_GLOBAL))

In either case, the search appears as a set of UI components across the top
of the screen, with a suggestion list (where available) and IME (where
needed).

Figure 27. The Android local search popup, showing the IME and a previous
search

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Figure 28. The Android global search popup

Where that search suggestion comes from for your local searches will be
covered later in this chapter.

Search Yourself

Over the long haul, there will be two flavors of search available via the
Android search system:

1. Query-style search, where the user's search string is passed to an
activity which is responsible for conducting the search and
displaying the results

2. Filter-style search, where the user's search string is passed to an
activity on every keypress, and the activity is responsible for
updating a displayed list of matches

Since the latter approach is decidedly under-documented, let's focus on the
first one.

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Craft the Search Activity

The first thing you are going to want to do if you want to support query-
style search in your application is to create a search activity. While it might
be possible to have a single activity be both opened from the launcher and
opened from a search, that might prove somewhat confusing to users.
Certainly, for the purposes of learning the techniques, having a separate
activity is cleaner.

The search activity can have any look you want. In fact, other than
watching for queries, a search activity looks, walks, and talks like any other
activity in your system.

All the search activity needs to do differently is check the intents supplied
to onCreate() (via getIntent()) and onNewIntent() to see if one is a search,
and, if so, to do the search and display the results.

For example, let's look at the Search/Lorem sample application. This starts
off as a clone of the list-of-lorem-ipsum-words application originally
encountered in The Busy Coder's Guide to Android Development. Now, we
update it to support searching the list of words for ones containing the
search string.

The main activity and the search activity both share a common layout: a
ListView plus a TextView showing the selected entry:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

 />
</LinearLayout>

In terms of Java code, most of the guts of the activities are poured into an
abstract LoremBase class:

abstract public class LoremBase extends ListActivity {
 abstract ListAdapter makeMeAnAdapter(Intent intent);

 private static final int LOCAL_SEARCH_ID = Menu.FIRST+1;
 private static final int GLOBAL_SEARCH_ID = Menu.FIRST+2;
 private static final int CLOSE_ID = Menu.FIRST+3;
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 XmlPullParser xpp=getResources().getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 items.add(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), 4000)
 .show();
 }

 setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL);

 onNewIntent(getIntent());
 }

 @Override
 public void onNewIntent(Intent intent) {
 ListAdapter adapter=makeMeAnAdapter(intent);

 if (adapter==null) {
 finish();
 }

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

 else {
 setListAdapter(adapter);
 }
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, LOCAL_SEARCH_ID, Menu.NONE, "Local Search")
 .setIcon(android.R.drawable.ic_search_category_default);
 menu.add(Menu.NONE, GLOBAL_SEARCH_ID, Menu.NONE, "Global Search")
 .setIcon(R.drawable.search)
 .setAlphabeticShortcut(SearchManager.MENU_KEY);
 menu.add(Menu.NONE, CLOSE_ID, Menu.NONE, "Close")
 .setIcon(R.drawable.eject)
 .setAlphabeticShortcut('c');

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case LOCAL_SEARCH_ID:
 onSearchRequested();
 return(true);

 case GLOBAL_SEARCH_ID:
 startSearch(null, false, null, true);
 return(true);

 case CLOSE_ID:
 finish();
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }
}

This activity takes care of everything related to showing a list of words, even
loading the words out of the XML resource. What it does not do is come up
with the ListAdapter to put into the ListView – that is delegated to the
subclasses.

The main activity – LoremDemo – just uses a ListAdapter for the whole word
list:

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

package com.commonsware.android.search;

import android.content.Intent;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;

public class LoremDemo extends LoremBase {
 @Override
 ListAdapter makeMeAnAdapter(Intent intent) {
 return(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }
}

The search activity, though, does things a bit differently.

First, it inspects the Intent supplied to the abstract makeMeAnAdapter()
method. That Intent comes from either onCreate() or onNewIntent(). If the
intent is an ACTION_SEARCH, then we know this is a search. We can get the
search query and, in the case of this silly demo, spin through the loaded list
of words and find only those containing the search string. That list then
gets wrapped in a ListAdapter and returned for display:

ListAdapter makeMeAnAdapter(Intent intent) {
 ListAdapter adapter=null;

 if (intent.getAction().equals(Intent.ACTION_SEARCH)) {
 String query=intent.getStringExtra(SearchManager.QUERY);
 List<String> results=searchItems(query);

 adapter=new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 results);
 setTitle("LoremSearch for: "+query);
 }

 return(adapter);
}

Update the Manifest

While this implements search, it doesn't tie it into the Android search
system. That requires a few changes to the auto-generated
AndroidManifest.xml file:

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"
 />
 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="Lorem Ipsum"
 android:icon="@drawable/cw">
 <activity android:name=".LoremDemo" android:label="LoremDemo">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <meta-data android:name="android.app.default_searchable"
 android:value=".LoremSearch" />
 </activity>
 <activity
 android:name=".LoremSearch"
 android:label="LoremSearch"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />
 </activity>
 <provider android:name=".LoremSuggestionProvider"
 android:authorities="com.commonsware.android.search.LoremSuggestionP
rovider" />
 </application>
</manifest>

The changes that are needed are:

1. The LoremDemo main activity gets a meta-data element, with an
android:name of android.app.default_searchable and a android:value
of the search implementation class (.LoremSearch)

2. The LoremSearch activity gets an intent filter for
android.intent.action.SEARCH, so search intents will be picked up

3. The LoremSearch activity is set to have android:launchMode =

"singleTop", which means at most one instance of this activity will
be open at any time, so we don't wind up with a whole bunch of
little search activities cluttering up the activity stack

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

4. Add android:label and android:icon attributes to the application
element – these will influence how your application appears in the
Quick Search Box among other places

5. The LoremSearch activity gets a meta-data element, with an
android:name of android.app.searchable and a android:value of an
XML resource containing more information about the search
facility offered by this activity (@xml/searchable)

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/searchLabel"
 android:hint="@string/searchHint"
 android:searchSuggestAuthority="com.commonsware.android.search.LoremSuggestion
Provider"
 android:searchSuggestSelection=" ? "
 android:searchSettingsDescription="@string/global"
 android:includeInGlobalSearch="true"
/>

That XML resource provides many bits of information, of which only two
are needed for simple search-enabled applications:

1. What name should appear in the search domain button to the left
of the search field, identifying to the user where she is searching
(android:label)

2. What hint text should appear in the search field, to give the user a
clue as to what they should be typing in (android:hint)

The other attributes found in that file, and the other search-related bits
found in the manifest, will be covered later in this chapter.

Searching for Meaning In Randomness

Given all that, search is now available – Android knows your application is
searchable, what search domain to use when searching from the main
activity, and the activity knows how to do the search.

The options menu for this application has both local and global search
options. In the case of local search, we just call onSearchRequested(); in the

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

case of global search, we call startSearch() with true in the last parameter,
indicating the scope is global.

Figure 29. The Lorem sample application, showing the local search popup

Typing in a letter or two, then clicking Search, will bring up the search
activity and the subset of words containing what you typed, with your
search query in the activity title bar:

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Figure 30. The results of searching for 'co' in the Lorem search sample

You can get the same effect if you just start typing in the main activity, since
it is set up for triggering a local search.

May I Make a Suggestion?

When you do a global search, you are given "suggestions" of search words or
phrases that may be what you are searching for, to save you some typing on
a small keyboard:

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Figure 31. Search suggestions after typing some letters in global search

Your application, if it chooses, can offer similar suggestions. Not only will
this give you the same sort of drop-down effect as you see with the global
search above, but it also ties neatly into the Quick Search Box, as we will
see later in this chapter.

To provide suggestions, you need to implement a ContentProvider and tie
that provider into the search framework. You have two major choices for
implementing a suggestion provider: use the built-in "recent" suggestion
provider, or create your own from scratch.

SearchRecentSuggestionsProvider

The "recent" suggestions provider gives you a quick and easy way to
remember past searches and offer those as suggestions on future searches.

To use this facility, you must first create a custom subclass of
SearchRecentSuggestionsProvider. Your subclass may be very simple, perhaps
just a two-line constructor with no other methods. However, since Android
does not automatically record recent queries for you, you will also need to

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

give your search activity a way to record them such that the recent-
suggestions provider can offer them as suggestions in the future.

Below, we have a LoremSuggestionProvider, extending
SearchRecentSuggestionsProvider, that also supplies a "bridge" for the search
activity to record searches:

package com.commonsware.android.search;

import android.content.Context;
import android.content.SearchRecentSuggestionsProvider;
import android.provider.SearchRecentSuggestions;

public class LoremSuggestionProvider
 extends SearchRecentSuggestionsProvider {
 private static String
AUTH="com.commonsware.android.search.LoremSuggestionProvider";

 static SearchRecentSuggestions getBridge(Context ctxt) {
 return(new SearchRecentSuggestions(ctxt, AUTH,
 DATABASE_MODE_QUERIES));
 }

 public LoremSuggestionProvider() {
 super();

 setupSuggestions(AUTH, DATABASE_MODE_QUERIES);
 }
}

The constructor, besides the obligatory chain to the superclass, simply calls
setupSuggestions(). This takes two parameters:

• The authority under which you will register this provider in the
manifest (see below)

• A flag indicating where the suggestions will come from – in this
case, we supply the required DATABASE_MODE_QUERIES flag

Of course, since this is a ContentProvider, you will need to add it to your
manifest:

android:label="LoremSearch"
android:launchMode="singleTop">

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

The other thing that LoremSuggestionProvider has is a static method that
creates a properly-configured instance of a SearchRecentSuggestions object.
This object knows how to save search queries to the database that the
content provider uses, so they will be served up as future suggestions. It
needs to know the same authority and flag that you provide to
setupSuggestions().

That SearchRecentSuggestions is then used by our LoremSearch class, inside
its searchItems() method that actually examines the list of nonsense words
for matches:

private List<String> searchItems(String query) {
 LoremSuggestionProvider
 .getBridge(this)
 .saveRecentQuery(query, null);

 List<String> results=new ArrayList<String>();

 for (String item : items) {
 if (item.indexOf(query)>-1) {
 results.add(item);
 }
 }

 return(results);
}

In this case, we always record the search, though you can imagine that
some applications might not save searches that are invalid for one reason or
another.

Custom Suggestion Providers

If you want to provide search suggestions based on something else – actual
data, searches conducted by others that you aggregate via a Web service,
etc. – you will need to implement your own ContentProvider that supplies
that information. As with SearchRecentSuggestionsProvider, you will need to
add your ContentProvider to the manifest so that Android knows it exists.

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

The details for doing this will be covered in a future edition of this book.
For now, you are best served with the Android SearchManager
documentation on the topic.

Integrating Suggestion Providers

Before your suggestions will appear, though, you need to tell Android to use
your ContentProvider as the source of suggestions. There are two attributes
on your searchable XML that make this connection:

• android:searchSuggestAuthority indicates the content authority for
your suggestions – this is the same authority you used for your
ContentProvider

• android:searchSuggestSelection is how the suggestion should be
packaged as a query in the ACTION_SEARCH Intent – unless you have
some reason to do otherwise, " ? " is probably a fine value to use

The result is that when we do our local search, we get the drop-down of
past searches as suggestions:

Figure 32. The Android local search popup, showing the IME and a previous
search

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/reference/android/app/SearchManager.html#Suggestions

Searching with SearchManager

There is also a clearHistory() method on SearchRecentSuggestions that you
can use, perhaps from a menu choice, to clear out the search history, in
case it is cluttered beyond usefulness.

Putting Yourself (Almost) On Par with Google

The Quick Search Box is Android's new term for the search widget at the
top of the home screen. This is the same UI that appears when your
application starts a global search. When you start typing, it shows possible
matches culled from both the device and the Internet. If you choose one of
the suggestions, it takes you to that item – choose a contact, and you visit
the contact in the Contacts application. If you choose a Web search term, or
you just submit whatever you typed in, Android will fire up a Browser
instance showing you search results from Google. The order of suggestions
is adaptive, as Android will attempt to show the user the sorts of things the
user typically searches for (e.g., if the user clicks on contacts a lot in prior
searches, it may prioritize suggested contacts in the suggestion list).

Your application can be tied into the Quick Search Box. However, it is
important to understand that being in the Quick Search Box does not mean
that your content will be searched. Instead, your suggestions provider will
be queried based on what the user has typed in, and those suggestions will
be blended into the overall results.

And, your application will not show up in Quick Search Box suggestions
automatically – the user has to "opt in" to have your results included.

And, until the user demonstrates an interest in your results, your
application's suggestions will be buried at the bottom of the list.

This means that integrating with the Quick Search Box, while still perhaps
valuable, is not exactly what some developers will necessarily have in mind.
That being said, here is how to achieve this integration.

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Implement a Suggestions Provider

Your first step is to implement a suggestions provider, as described in the
previous section. Again, Android does not search your application, but
rather queries your suggestions provider. If you do not have a suggestions
provider, you will not be part of the Quick Search Box. As we will see
below, this approach means you will need to think about what sort of
suggestion provider to create.

Augment the Metadata

Next, you need to tell Android to tie your application into the Quick Search
Box suggestion list. To do that, you need to add the
android:includeInGlobalSearch attribute to your searchable XML, setting it
to true. You probably also should consider adding the
android:searchSettingsDescription, as this will be shown in the UI for the
user to configure what suggestions the Quick Search Box shows.

Convince the User

Next, the user needs to activate your application to be included in the
Quick Search Box suggestion roster. To do that, the user needs to go into
Settings > Search > Searchable Items and check the checkbox associated
with your application:

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Figure 33. The Searchable Items settings screen

Your application's label and the value of android:searchSettingsDescription
are what appears to the left of the checkbox.

You have no way of toggling this on yourself – the user has to do it. You may
wish to mention this in the documentation for your application.

The Results

If you and the user do all of the above, now when the user initiates a search,
your suggestions will be poured into the suggestions list, at the bottom:

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Figure 34. The Quick Search Box, showing a placeholder for application-
supplied suggestions

To actually see your suggestions, the user also needs to click the arrow to
"fold open" the actual suggestions:

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Figure 35. The Quick Search Box, showing another placeholder for application-
supplied suggestions

Even here, we do not see the actual suggestion. However, if the user clicks
on that item, your suggestions then take over the list:

Figure 36. The Quick Search Box, showing application-supplied suggestions

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Searching with SearchManager

Again, Android is not showing actual data from your application – our list
of nonsense words does not contain the value "dol". Instead, Android is
showing suggestions from your suggestion provider based on what the user
typed in. In this case, our application's suggestion provider is based on the
built-in SearchRecentSuggestionsProvider class, meaning the suggestions are
past queries, not actual results.

Hence, what you want to have appear in the Quick Search Box suggestion
list will heavily influence what sort of suggestion provider you wish to
create. While a SearchRecentSuggestionsProvider is simple, what you get in
the Quick Search Box suggestions may not be that useful to users. Instead,
you may wish to create your own custom suggestions provider, providing
suggestions from actual data or other more useful sources, perhaps in
addition to saved searches.

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 7

Interactive Maps

You probably have learned about basic operations with Google Maps
elsewhere, perhaps in The Busy Coder's Guide to Android Development. As
you may recall, after going through a fair amount of hassle to obtain and
manage an API key, you need to put a MapView in a layout used by a
MapActivity. Then, between the MapView and its MapController, you can
manage what gets displayed on the map and, to a lesser extent, get user
input from the map. Notably, you can add overlays that display things on
top of the map that are tied to geographic coordinates (GeoPoint objects), so
Android can keep the overlays in sync with the map contents as the user
pans and zooms.

This chapter will get into some more involved topics in the use of MapView,
such as displaying pop-up panels when the user taps on overlay items.

The examples in this chapter are based on the original Maps/NooYawk
example from The Busy Coder's Guide to Android Development. That
example does two things: it displays overlay items for four New York City
landmarks, and it makes a mockery of Brooklyn accents (via the unusual
spelling of the project name). If you have access to The Busy Coder's Guide
to Android Development, you may wish to review that chapter and the
original example before reading further here.

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Get to the Point

By default, it appears that, when the user taps on one of your OverlayItem
icons in an ItemizedOverlay, all you find out is which OverlayItem it is,
courtesy of an index into your collection of items. However, Android does
provide means to find out where that item is, both in real space and on the
screen.

Getting the Latitude and Longitude

You supplied the latitude and longitude – in the form of a GeoPoint – when
you created the OverlayItem in the first place. Not surprisingly, you can get
that back via a getPoint() method on OverlayItem. So, in an onTap() method,
you can do this to get the GeoPoint:

@Override
protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();

 // other good stuff here

 return(true);
}

Getting the Screen Position

If you wanted to find the screen coordinates for that GeoPoint, you might be
tempted to find out where the map is centered (via getCenter() on MapView)
and how big the map is in terms of screen size (getWidth(), getHeight() on
MapView) and geographic area (getLatitudeSpan(), getLongitudeSpan() on
MapView), and do all sorts of calculations.

Good news! You do not have to do any of that.

Instead, you can get a Projection object from the MapView via
getProjection(). This object can do the conversions for you, such as
toPixels() to convert a GeoPoint into a screen Point for the X/Y position.

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

For example, take a look at the onTap() implementation from the NooYawk
class in the Maps/NooYawkRedux sample project:

@Override
protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();
 Point pt=map.getProjection().toPixels(geo, null);

 String message=String.format("Lat: %f | Lon: %f\nX: %d | Y %d",
 geo.getLatitudeE6()/1000000.0,
 geo.getLongitudeE6()/1000000.0,
 pt.x, pt.y);

 Toast.makeText(NooYawk.this,
 message,
 Toast.LENGTH_LONG).show();

 return(true);
}

Here, we get the GeoPoint (as in the previous section), get the Point (via
toPixels()), and use those to customize a message for use with our Toast.

Note that our Toast message has an embedded newline (\n), so it is split
over two lines:

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Figure 37. The NooYawkRedux application, showing the Toast with GeoPoint
and Point data

Not-So-Tiny Bubbles

Of course, just because somebody taps on an item in your ItemizedOverlay,
nothing really happens, other than letting you know of the tap. If you want
something visual to occur – like the Toast displayed in the
Maps/NooYawkRedux project – you have to do it yourself. And while a Toast is
easy to implement, it tends not to be terribly useful in many cases.

A more likely reaction is to pop up some sort of bubble or panel on the
screen, providing more details about the item that was tapped upon. That
bubble might be display-only or fully interactive, perhaps leading to
another activity for information beyond what the panel can hold.

While the techniques in this section will be couched in terms of pop-up
panels over a MapView, the same basic concepts can be used just about
anywhere in Android.

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Options for Pop-up Panels

A pop-up panel is simply a View (typically a ViewGroup with contents, like a
RelativeLayout containing widgets) that appears over the MapView on
demand. To make one View appear over another, you need to use a common
container that supports that sort of "Z-axis" ordering. The best one for that
is RelativeLayout: children later in the roster of children of the
RelativeLayout will appear over top of children that are earlier in the roster.
So, if you have a RelativeLayout parent, with a full-screen MapView child
followed by another ViewGroup child, that latter ViewGroup will appear to
float over the MapView. In fact, with the use of a translucent background, you
can even see the map peeking through the ViewGroup.

Given that, here are two main strategies for implementing pop-up panels.

One approach is to have the panel be part of the activity's layout from the
beginning, but use a visibility of GONE to have it not be visible. In this case,
you would define the panel in the main layout XML file, set
android:visibility="gone", and use setVisibility() on that panel at
runtime to hide and show it. This works well, particularly if the panel itself
is not changing much, just becoming visible and gone.

The other approach is to inflate the panel at runtime and dynamically add
and remove it as a child of the RelativeLayout. This works well if there are
many possible panels, perhaps dependent on the type of thing represented
by an OverlayItem (e.g., restaurant versus hotel versus used car dealership).

In this section, we will examine the latter approach, as shown in the
Maps/EvenNooerYawk sample project.

Defining a Panel Layout

The new version of NooYawk is designed to display panels when the user taps
on items in the map, replacing the original Toast.

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

To do this, first, we need the actual content of a panel, as found in
res/layout/popup.xml:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1,3"
 android:background="@drawable/popup_frame">
 <TableRow>
 <TextView
 android:text="Lat:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/latitude" />
 <TextView
 android:text="Lon:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/longitude" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="X:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/x" />
 <TextView
 android:text="Y:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/y"/>
 </TableRow>
</TableLayout>

Here, we have a TableLayout containing our four pieces of data (latitude,
longitude, X, and Y), with a translucent gray background (courtesy of a
nine-patch graphic image).

The intent is that we will inflate instances of this class when needed. And,
as we will see, we will only need one in this example, though it is possible
that other applications might need more.

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Creating a PopupPanel Class

To manage our panel, NooYawk has an inner class named PopupPanel. It takes
the resource ID of the layout as a parameter, so it could be used to manage
several different types of panels, not just the one we are using here.

Its constructor inflates the layout file (using the map's parent – the
RelativeLayout – as the basis for inflation rules) and also hooks up a click
listener to a hide() method (described below):

PopupPanel(int layout) {
 ViewGroup parent=(ViewGroup)map.getParent();

 popup=getLayoutInflater().inflate(layout, parent, false);

 popup.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 hide();
 }
 });
}

PopupPanel also tracks an isVisible data member, reflecting whether or not
the panel is presently on the screen.

Showing and Hiding the Panel

When it comes time to show the panel, either it is already being shown, or
it is not. The former would occur if the user tapped on one item in the
overlay, then tapped another right away. The latter would occur, for
example, for the first tap.

In either case, we need to determine where to position the panel. Having
the panel obscure what was tapped upon would be poor form. So,
PopupPanel will put the panel either towards the top or bottom of the map,
depending on where the user tapped – if they tapped in the top half of the
map, the panel will go on the bottom. Rather than have the panel abut the
edges of the map directly, PopupPanel also adds some margins – this is also
important for making sure the panel and the Google logo on the map do
not interfere.

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

If the panel is visible, PopupPanel calls hide() to remove it, then adds the
panel's View as a child of the RelativeLayout with a
RelativeLayout.LayoutParams that incorporates the aforementioned rules:

void show(boolean alignTop) {
 RelativeLayout.LayoutParams lp=new RelativeLayout.LayoutParams(
 RelativeLayout.LayoutParams.WRAP_CONTENT,
 RelativeLayout.LayoutParams.WRAP_CONTENT
);

 if (alignTop) {
 lp.addRule(RelativeLayout.ALIGN_PARENT_TOP);
 lp.setMargins(0, 20, 0, 0);
 }
 else {
 lp.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM);
 lp.setMargins(0, 0, 0, 60);
 }

 hide();

 ((ViewGroup)map.getParent()).addView(popup, lp);
 isVisible=true;
}

void hide() {

The hide() method, in turn, removes the panel from the RelativeLayout:

void hide() {
 if (isVisible) {
 isVisible=false;
 ((ViewGroup)popup.getParent()).removeView(popup);
 }
}

PopupPanel also has a getView() method, so the overlay can get at the panel
View in order to fill in the pieces of data at runtime:

View getView() {
 return(popup);
}

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Tying It Into the Overlay

To use the panel, NooYawk creates an instance of one as a data member of the
ItemizedOverlay class:

private PopupPanel panel=new PopupPanel(R.layout.popup);

Then, in the new onTap() method, the overlay gets the View, populates it,
and shows it, indicating whether it should appear towards the top or
bottom of the screen:

@Override
protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();
 Point pt=map.getProjection().toPixels(geo, null);

 View view=panel.getView();

 ((TextView)view.findViewById(R.id.latitude))
 .setText(String.valueOf(geo.getLatitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.longitude))
 .setText(String.valueOf(geo.getLongitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.x))
 .setText(String.valueOf(pt.x));
 ((TextView)view.findViewById(R.id.y))
 .setText(String.valueOf(pt.y));

 panel.show(pt.y*2>map.getHeight());

 return(true);
}

Here is the complete implementation of NooYawk from Maps/EvenNooerYawk,
including the revised overlay class and the new PopupPanel class:

package com.commonsware.android.maps;

import android.app.Activity;
import android.graphics.Canvas;
import android.graphics.Point;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.KeyEvent;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

import android.widget.RelativeLayout;
import android.widget.TextView;
import android.widget.Toast;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.MapView.LayoutParams;
import com.google.android.maps.MyLocationOverlay;
import com.google.android.maps.OverlayItem;
import java.util.ArrayList;
import java.util.List;

public class NooYawk extends MapActivity {
 private MapView map=null;
 private MyLocationOverlay me=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map=(MapView)findViewById(R.id.map);

 map.getController().setCenter(getPoint(40.76793169992044,
 -73.98180484771729));
 map.getController().setZoom(17);
 map.setBuiltInZoomControls(true);

 Drawable marker=getResources().getDrawable(R.drawable.marker);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

 map.getOverlays().add(new SitesOverlay(marker));

 me=new MyLocationOverlay(this, map);
 map.getOverlays().add(me);
 }

 @Override
 public void onResume() {
 super.onResume();

 me.enableCompass();
 }

 @Override
 public void onPause() {
 super.onPause();

 me.disableCompass();
 }

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

 @Override
 protected boolean isRouteDisplayed() {
 return(false);
 }

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

 private GeoPoint getPoint(double lat, double lon) {
 return(new GeoPoint((int)(lat*1000000.0),
 (int)(lon*1000000.0)));
 }

 private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> items=new ArrayList<OverlayItem>();
 private Drawable marker=null;
 private PopupPanel panel=new PopupPanel(R.layout.popup);

 public SitesOverlay(Drawable marker) {
 super(marker);
 this.marker=marker;

 items.add(new OverlayItem(getPoint(40.748963847316034,
 -73.96807193756104),
 "UN", "United Nations"));
 items.add(new OverlayItem(getPoint(40.76866299974387,
 -73.98268461227417),
 "Lincoln Center",
 "Home of Jazz at Lincoln Center"));
 items.add(new OverlayItem(getPoint(40.765136435316755,
 -73.97989511489868),
 "Carnegie Hall",
 "Where you go with practice, practice, practice"));
 items.add(new OverlayItem(getPoint(40.70686417491799,
 -74.01572942733765),
 "The Downtown Club",
 "Original home of the Heisman Trophy"));

 populate();
 }

 @Override

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

 protected OverlayItem createItem(int i) {
 return(items.get(i));
 }

 @Override
 public void draw(Canvas canvas, MapView mapView,
 boolean shadow) {
 super.draw(canvas, mapView, shadow);

 boundCenterBottom(marker);
 }

 @Override
 protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();
 Point pt=map.getProjection().toPixels(geo, null);

 View view=panel.getView();

 ((TextView)view.findViewById(R.id.latitude))
 .setText(String.valueOf(geo.getLatitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.longitude))
 .setText(String.valueOf(geo.getLongitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.x))
 .setText(String.valueOf(pt.x));
 ((TextView)view.findViewById(R.id.y))
 .setText(String.valueOf(pt.y));

 panel.show(pt.y*2>map.getHeight());

 return(true);
 }

 @Override
 public int size() {
 return(items.size());
 }
 }

 class PopupPanel {
 View popup;
 boolean isVisible=false;

 PopupPanel(int layout) {
 ViewGroup parent=(ViewGroup)map.getParent();

 popup=getLayoutInflater().inflate(layout, parent, false);

 popup.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 hide();
 }
 });

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

 }

 View getView() {
 return(popup);
 }

 void show(boolean alignTop) {
 RelativeLayout.LayoutParams lp=new RelativeLayout.LayoutParams(
 RelativeLayout.LayoutParams.WRAP_CONTENT,
 RelativeLayout.LayoutParams.WRAP_CONTENT
);

 if (alignTop) {
 lp.addRule(RelativeLayout.ALIGN_PARENT_TOP);
 lp.setMargins(0, 20, 0, 0);
 }
 else {
 lp.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM);
 lp.setMargins(0, 0, 0, 60);
 }

 hide();

 ((ViewGroup)map.getParent()).addView(popup, lp);
 isVisible=true;
 }

 void hide() {
 if (isVisible) {
 isVisible=false;
 ((ViewGroup)popup.getParent()).removeView(popup);
 }
 }
 }
}

The resulting panel looks like this when it is towards the bottom of the
screen:

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Figure 38. The EvenNooerYawk application, showing the PopupPanel towards
the bottom

...and like this when it is towards the top:

Figure 39. The EvenNooerYawk application, showing the PopupPanel towards
the top

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Sign, Sign, Everywhere a Sign

Our examples for Manhattan have treated each of the four locations as
being the same – they are all represented by the same sort of marker. That
is the natural approach to creating an ItemizedOverlay, since it takes the
marker Drawable as a constructor parameter.

It is not the only option, though.

Selected States

One flaw in our current one-Drawable-for-everyone approach is that you
cannot tell which item was selected by the user, either by tapping on it or
by using the D-pad (or trackball or whatever). A simple PNG icon will look
the same as it will in every other state.

However, back in the chapter on Drawable techniques, we saw the
StateListDrawable and its accompanying XML resource format. We can use
one of those here, to specify a separate icon for selected and regular states.

In the Maps/ILuvNooYawk sample, we change up the icons used for our four
OverlayItem objects. Specifically, in the next section, we will see how to
associate a distinct Drawable for each item. Those Drawable resources will
actually be StateListDrawable objects, using XML such as:

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:state_selected="true"
 android:drawable="@drawable/blue_sel_marker"
 />
 <item
 android:drawable="@drawable/blue_marker"
 />
</selector>

This indicates that we should use one PNG in the default state and a
different PNG (one with a yellow highlight) when the OverlayItem is
selected.

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Per-Item Drawables

To use a different Drawable per OverlayItem, we need to create a custom
OverlayItem class. Normally, you can skip this, and just use OverlayItem
directly. But, OverlayItem has no means to change its Drawable used for the
marker, so we have to extend it and override getMarker() to handle a
custom Drawable.

Here is one possible implementation of a CustomItem class:

class CustomItem extends OverlayItem {
 Drawable marker=null;

 CustomItem(GeoPoint pt, String name, String snippet,
 Drawable marker) {
 super(pt, name, snippet);

 this.marker=marker;
 }

 @Override
 public Drawable getMarker(int stateBitset) {
 setState(marker, stateBitset);

 return(marker);
 }
}

This class takes the Drawable to use as a constructor parameter, holds onto
it, and returns it in the getMarker() method. However, in getMarker(), we
also need to call setState() – if we are using StateListDrawable resources,
the call to setState() will cause the Drawable to adopt the appropriate state
(e.g., selected).

Of course, we need to prep and feed a Drawable to each of the CustomItem
objects. In the case of ILuvNooYawk, when our SitesOverlay creates its items,
it uses a getMarker() method to access each item's Drawable:

private Drawable getMarker(int resource) {
 Drawable marker=getResources().getDrawable(resource);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());
 boundCenter(marker);

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

 return(marker);
}

Here, we get the Drawable resources, set its bounds (for use with hit testing
on taps), and use boundCenter() to control the way the shadow falls. For
icons like the original push pin used by NooYawk, boundCenterBottom() will
cause the icon and its shadow to make it seem like the icon is rising up off
the face of the map. For icons like ILuvNooYawk uses, boundCenter() will cause
the icon and shadow to make it seem like the icon is hovering flat over top
of the map.

Changing Drawables Dynamically

It is also possible to change the Drawable used by a item at runtime, beyond
simply changing it from normal to selected state. For example, ILuvNooYawk
allows you to press the H key and toggle the selected item from its normal
icon to a heart:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_H) {
 sites.toggleHeart();

 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

To make this work, our SitesOverlay needs to implement toggleHeart():

void toggleHeart() {
 CustomItem focus=getFocus();

 if (focus!=null) {

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

 focus.toggleHeart();
 }

 map.invalidate();
}

Here, we just find the selected item and delegate toggleHeart() to it. This,
of course, assumes both that CustomItem has a toggleHeart()
implementation and knows what heart to use.

So, rather than the simple CustomItem shown above, we need a more
elaborate implementation:

class CustomItem extends OverlayItem {
 Drawable marker=null;
 boolean isHeart=false;
 Drawable heart=null;

 CustomItem(GeoPoint pt, String name, String snippet,
 Drawable marker, Drawable heart) {
 super(pt, name, snippet);

 this.marker=marker;
 this.heart=heart;
 }

 @Override
 public Drawable getMarker(int stateBitset) {
 Drawable result=(isHeart ? heart : marker);

 setState(result, stateBitset);

 return(result);
 }

 void toggleHeart() {
 isHeart=!isHeart;
 }
}

Here, the CustomItem gets its own icon and the heart icon in the constructor,
and toggleHeart() just toggles between them. The key is that we
invalidate() the MapView in the SitesOverlay implementation of
toggleHeart() – that causes the map, and its overlay items, to be redrawn,
causing the icon Drawable to change on the screen.

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

This means that while we start with custom icons per item:

Figure 40. The ILuvNooYawk application, showing custom icons per item

...we can change those by clicking on an item and pressing the H key:

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Figure 41. The ILuvNooYawk application, showing one item's icon toggled to a
heart (and selected)

In A New York Minute. Or Hopefully a Bit
Faster.

In the case of NooYawk, we have all our data points for the overlay items up
front – they are hard-wired into the code. This is not going to be the case in
most applications. Instead, the application will need to load the items out
of a database or a Web service.

In the case of a database, assuming a modest number of items, the
difference between having the items hard-wired in code or in the database
is slight. Yes, the actual implementation will be substantially different, but
you can query the database and build up your ItemizedOverlay all in one
shot, when the map is slated to appear on-screen.

Where things get interesting is when you need to use a Web service or
similar slow operation to get the data.

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

Where things get even more interesting is when you want that data to
change after it was already loaded – on a timer, on user input, etc. For
example, it may be that you have hundreds of thousands of data points,
only a tiny fraction of which will be visible on the map at any time. If the
user elects to visit a different portion of the map, you need to dump the old
overlay items and grab a new set.

In either case, you can use an AsyncTask to populate your ItemizedOverlay
and add it to the map once the data is ready. You can see this in
Maps/NooYawkAsync, where we kick off an OverlayTask in the NooYawk
implementation of onCreate():

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map=(MapView)findViewById(R.id.map);

 map.getController().setCenter(getPoint(40.76793169992044,
 -73.98180484771729));
 map.getController().setZoom(17);
 map.setBuiltInZoomControls(true);

 me=new MyLocationOverlay(this, map);
 map.getOverlays().add(me);

 new OverlayTask().execute();
}

...and then use that to load the data in the background, in this case using a
sleep() call to simulate real work:

class OverlayTask extends AsyncTask<Void, Void, Void> {
 @Override
 public void onPreExecute() {
 if (sites!=null) {
 map.getOverlays().remove(sites);
 map.invalidate();
 sites=null;
 }
 }

 @Override
 public Void doInBackground(Void... unused) {
 SystemClock.sleep(5000); // simulated work

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Interactive Maps

 sites=new SitesOverlay();

 return(null);
 }

 @Override
 public void onPostExecute(Void unused) {
 map.getOverlays().add(sites);
 map.invalidate();
 }
}

As with changing an item's Drawable on the fly, you need to invalidate() the
map to make sure it draws the overlay and its items.

In this case, we also hook up the R key to simulate a manual refresh of the
data. This just invokes another OverlayTask, which removes the old overlay
and creates a fresh one:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_H) {
 sites.toggleHeart();

 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_R) {
 new OverlayTask().execute();

 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART II – Advanced Media

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 8

Animating Widgets

Android is full of things that move. You can swipe left and right on the
home screen to view other panels of the desktop. You can drag icons around
on the home screen. You can drag down the notifications area or drag up
the applications drawer. And that is just on one screen!

Of course, it would be nice to employ such animations in your own
application. While this chapter will not cover full-fledged drag-and-drop,
we will cover some of the basic animations and how to apply them to your
existing widgets.

After an overview of the role of the animation framework, we go in-depth
to animate the movement of a widget across the screen. We then look at
alpha animations, for fading widgets in and out. We then see how you can
get control during the lifecycle of an animation, how to control the
acceleration of animations, and how to group animations together for
parallel execution. Finally, we see how the same framework can now be
used to control the animation for the switching of activities.

It's Not Just For Toons Anymore

Android has a package of classes (android.view.animation) dedicated to
animating the movement and behavior of widgets.

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

They center around an Animation base class that describes what is to be
done. Built-in animations exist to move a widget (TranslateAnimation),
change the transparency of a widget (AlphaAnimation), revolving a widget
(RotateAnimation), and resizing a widget (ScaleAnimation). There is even a
way to aggregate animations together into a composite Animation called an
AnimationSet. Later sections in this chapter will examine the use of several
of these animations.

Given that you have an animation, to apply it, you have two main options:

• You may be using a container that supports animating its contents,
such as a ViewFlipper or TextSwitcher. These are typically subclasses
of ViewAnimator and let you define the "in" and "out" animations to
apply. For example, with a ViewFlipper, you can specify how it flips
between Views in terms of what animation is used to animate "out"
the currently-visible View and what animation is used to animate
"in" the replacement View. Examples of this sort of animation can be
found in The Busy Coder's Guide to Android Development.

• You can simply tell any View to startAnimation(), given the Animation
to apply to itself. This is the technique we will be seeing used in the
examples in this chapter.

A Quirky Translation

Animation takes some getting used to. Frequently, it takes a fair bit of
experimentation to get it all working as you wish. This is particularly true of
TranslateAnimation, as not everything about it is intuitive, even to authors
of Android books.

Mechanics of Translation

The simple constructor for TranslateAnimation takes four parameters
describing how the widget should move: the before and after X offsets from
the current position, and the before and after Y offsets from the current
position. The Android documentation refers to these as fromXDelta,
toXDelta, fromYDelta, and toYDelta.

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

In Android's pixel-space, an (X,Y) coordinate of (0,0) represents the upper-
left corner of the screen. Hence, if toXDelta is greater than fromXDelta, the
widget will move to the right, if toYDelta is greater than fromYDelta, the
widget will move down, and so on.

Imagining a Sliding Panel

Some Android applications employ a sliding panel, one that is off-screen
most of the time but can be called up by the user (e.g., via a menu) when
desired. When anchored at the bottom of the screen, the effect is akin to
the Android menu system, with a container that slides up from the bottom
and slides down and out when being removed. However, while menus are
limited to menu choices, Android's animation framework lets one create a
sliding panel containing whatever widgets you might want.

One way to implement such a panel is to have a container (e.g., a
LinearLayout) whose contents are absent (GONE) when the panel is closed
and is present (VISIBLE) when the drawer is open. If we simply toggled
setVisibility() using the aforementioned values, though, the panel would
wink open and closed immediately, without any sort of animation. So,
instead, we want to:

• Make the panel visible and animate it up from the bottom of the
screen when we open the panel

• Animate it down to the bottom of the screen and make the panel
gone when we close the panel

The Aftermath

This brings up a key point with respect to TranslateAnimation: the
animation temporarily moves the widget, but if you want the widget to stay
where it is when the animation is over, you have to handle that yourself.
Otherwise, the widget will snap back to its original position when the
animation completes.

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

In the case of the panel opening, we handle that via the transition from GONE
to VISIBLE. Technically speaking, the panel is always "open", in that we are
not, in the end, changing its position. But when the body of the panel is
GONE, it takes up no space on the screen; when we make it VISIBLE, it takes
up whatever space it is supposed to.

Later in this chapter, we will cover how to use animation listeners to
accomplish this end for closing the panel.

Introducing SlidingPanel

With all that said, turn your attention to the Animation/SlidingPanel project
and, in particular, the SlidingPanel class.

This class implements a layout that works as a panel, anchored to the
bottom of the screen. A toggle() method can be called by the activity to
hide or show the panel. The panel itself is a LinearLayout, so you can put
whatever contents you want in there.

We use two flavors of TranslateAnimation, one for opening the panel and
one for closing it.

Here is the opening animation:

anim=new TranslateAnimation(0.0f, 0.0f,
 getLayoutParams().height,
 0.0f);

Our fromXDelta and toXDelta are both 0, since we are not shifting the panel's
position along the horizontal axis. Our fromYDelta is the panel's height
according to its layout parameters (representing how big we want the panel
to be), because we want the panel to start the animation at the bottom of
the screen; our toYDelta is 0 because we want the panel to be at its "natural"
open position at the end of the animation.

Conversely, here is the closing animation:

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 getLayoutParams().height);

It has the same basic structure, except the Y values are reversed, since we
want the panel to start open and animate to a closed position.

The result is a container that can be closed:

Figure 42. The SlidingPanel sample application, with the panel closed

...or open, in this case toggled via a menu choice in the SlidingPanelDemo
activity:

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

Figure 43. The SlidingPanel sample application, with the panel open

Using the Animation

When setting up an animation, you also need to indicate how long the
animation should take. This is done by calling setDuration() on the
animation, providing the desired length of time in milliseconds.

When we are ready with the animation, we simply call startAnimation() on
the SlidingPanel itself, causing it to move as specified by the
TranslateAnimation instance.

Fading To Black. Or Some Other Color.

AlphaAnimation allows you to fade a widget in or out by making it less or
more transparent. The greater the transparency, the more the widget
appears to be "fading".

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

Alpha Numbers

You may be used to alpha channels, when used in #AARRGGBB color notation,
or perhaps when working with alpha-capable image formats like PNG.

Similarly, AlphaAnimation allows you to change the alpha channel for an
entire widget, from fully-solid to fully-transparent.

In Android, a float value of 1.0 indicates a fully-solid widget, while a value
of 0.0 indicates a fully-transparent widget. Values in between, of course,
represent various amounts of transparency.

Hence, it is common for an AlphaAnimation to either start at 1.0 and
smoothly change the alpha to 0.0 (a fade) or vice versa.

Animations in XML

With TranslateAnimation, we showed how to construct the animation in
Java source code. One can also create animation resources, which define the
animations using XML. This is similar to the process for defining layouts,
albeit much simpler.

For example, there is a second animation project, Animation/SlidingPanelEx,
which demonstrates a panel that fades out as it is closed. In there, you will
find a res/anim/ directory, which is where animation resources should
reside. In there, you will find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromAlpha="1.0"
 android:toAlpha="0.0" />

The name of the root element indicates the type of animation (in this case,
alpha for an AlphaAnimation). The attributes specify the characteristics of
the animation, in this case a fade from 1.0 to 0.0 on the alpha channel.

This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in Java.

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

Using XML Animations

To make use of XML-defined animations, you need to inflate them, much as
you might inflate a View or Menu resource. This is accomplished by using the
loadAnimation() static method on the AnimationUtils class:

fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);

Here, we are loading our fade animation, given a Context. This is being put
into an Animation variable, so we neither know nor care that this particular
XML that we are loading defines an AlphaAnimation instead of, say, a
RotateAnimation.

When It's All Said And Done

Sometimes, you need to take action when an animation completes.

For example, when we close the panel, we want to use a
TranslationAnimation to slide it down from the open position to
closed...then keep it closed. With the system used in SlidingPanel, keeping
the panel closed is a matter of calling setVisibility() on the contents with
GONE.

However, you cannot do that when the animation begins; otherwise, the
panel is gone by the time you try to animate its motion.

Instead, you need to arrange to have it be gone when the animation ends.
To do that, you use a animation listener.

An animation listener is simply an instance of the AnimationListener
interface, provided to an animation via setAnimationListener(). The listener
will be invoked when the animation starts, ends, or repeats (the latter
courtesy of CycleInterpolator, discussed later in this chapter). You can put
logic in the onAnimationEnd() callback in the listener to take action when the
animation finishes.

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

For example, here is the AnimationListener for SlidingPanel:

Animation.AnimationListener collapseListener=new Animation.AnimationListener() {
 public void onAnimationEnd(Animation animation) {
 setVisibility(View.GONE);
 }

 public void onAnimationRepeat(Animation animation) {
 // not needed
 }

 public void onAnimationStart(Animation animation) {
 // not needed
 }
};

All we do is set the ImageButton's image to be the upward-pointing arrow
and setting our content's visibility to be GONE, thereby closing the panel.

Loose Fill

You will see attributes, available on Animation, named android:fillEnabled
and android:fillAfter. Reading those, you may think that you can dispense
with the AnimationListener and just use those to arrange to have your
widget wind up being "permanently" in the state represented by the end of
the animation. All you would have to do is set each of those to true in your
animation XML (or the equivalent in Java), and you would be set.

At least for TranslateAnimation, you would be mistaken.

It actually will look like it works – the animated widgets will be drawn in
their new location. However, if those widgets are clickable, the will not be
clicked in their new location, but rather in their old one. This, of course, is
not terribly useful.

Hence, even though it is annoying, you will want to use the
AnimationListener techniques described in this chapter.

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

Hit The Accelerator

In addition to the Animation classes themselves, Android also provides a set
of Interpolator classes. These provide instructions for how an animation is
supposed to behave during its operating period.

For example, the AccelerateInterpolator indicates that, during the duration
of an animation, the rate of change of the animation should begin slowly
and accelerate until the end. When applied to a TranslateAnimation, for
example, the sliding movement will start out slowly and pick up speed until
the movement is complete.

There are several implementations of the Interpolator interface besides
AccelerateInterpolator, including:

• AccelerateDecelerateInterpolator, which starts slowly, picks up
speed in the middle, and slows down again at the end

• DecelerateInterpolator, which starts quickly and slows down
towards the end

• LinearInterpolator, the default, which indicates the animation
should proceed smoothly from start to finish

• CycleInterpolator, which repeats an animation for a number of
cycles, following the AccelerateDecelerateInterpolator pattern
(slow, then fast, then slow)

To apply an interpolator to an animation, simply call setInterpolator() on
the animation with the Interpolator instance, such as the following line
from SlidingPanel:

anim.setInterpolator(new AccelerateInterpolator(1.0f));

You can also specify one of the stock interpolators via the
android:interpolator attribute in your animation XML file.

Android 1.6 added some new interpolators. Notable are BounceInterpolator
(which gives a bouncing effect as the animation nears the end) and

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

OvershootInterpolator (which goes beyond the end of the animation range,
then returns to the endpoint).

Animate. Set. Match.

For the Animation/SlidingPanelEx project, though, we want the panel to
slide open, but also fade when it slides closed. This implies two animations
working at the same time (a fade and a slide). Android supports this via the
AnimationSet class.

An AnimationSet is itself an Animation implementation. Following the
composite design pattern, it simply cascades the major Animation events to
each of the animations in the set.

To create a set, just create an AnimationSet instance, add the animations,
and configure the set. For example, here is the logic from the SlidingPanel
implementation in Animation/SlidingPanelEx:

public void toggle() {
 TranslateAnimation anim=null;
 AnimationSet set=new AnimationSet(true);

 isOpen=!isOpen;

 if (isOpen) {
 setVisibility(View.VISIBLE);
 anim=new TranslateAnimation(0.0f, 0.0f,
 getLayoutParams().height,
 0.0f);
 }
 else {
 anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 getLayoutParams().height);
 anim.setAnimationListener(collapseListener);
 set.addAnimation(fadeOut);
 }

 set.addAnimation(anim);
 set.setDuration(speed);
 set.setInterpolator(new AccelerateInterpolator(1.0f));
 startAnimation(set);
}

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Animating Widgets

If the panel is to be opened, we make the contents visible (so we can
animate the motion upwards), and create a TranslateAnimation for the
upward movement. If the panel is to be closed, we create a
TranslateAnimation for the downward movement, but also add a pre-defined
AlphaAnimation (fadeOut) to an AnimationSet. In either case, we add the
TranslateAnimation to the set, give the set a duration and interpolator, and
run the animation.

Active Animations

Starting with Android 1.5, users could indicate if they wanted to have inter-
activity animations: a slide-in/slide-out effect as they switched from activity
to activity. However, at that time, they could merely toggle this setting on
or off, and applications had no control over these animations whatsoever.

Starting in Android 2.0, though, developers have a bit more control.
Specifically:

• Developers can call overridePendingTransition() on an Activity,
typically after calling startActivity() to launch another activity or
finish() to close up the current activity. The
overridePendingTransition() indicates an in/out animation pair that
should be applied as control passes from this activity to the next
one, whether that one is being started (startActivity()) or is the
one previous on the stack (finish()).

• Developers can start an activity via an Intent containing the
FLAG_ACTIVITY_NO_ANIMATION flag. As the name suggests, this flag
requests that animations on the transitions involving this activity be
suppressed.

These are prioritized as follows:

1. Any call to overridePendingTransition() is always taken into account

2. Lacking that, FLAG_ACTIVITY_NO_ANIMATION will be taken into account

3. In the normal case, where neither of the two are used, whatever the
user's preference, via the Settings application, is applied

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 9

Using the Camera

Most Android devices will have a camera, since they are fairly
commonplace on mobile devices these days. You, as an Android developer,
can take advantage of the camera, for everything from snapping tourist
photos to scanning barcodes. For simple operations, the APIs needed to use
the camera are fairly straight-forward, requiring a bit of boilerplate code
plus your own unique application logic.

What is a problem is using the camera with the emulator. The emulator
does not emulate a camera, nor is there a convenient way to pretend there
are pictures via DDMS or similar tools. For the purposes of this chapter, it is
assumed you have access to an actual Android-powered hardware device
and can use it for development purposes.

First, we examine how to set up an activity showing a preview of the
camera's output, much like the LCD viewfinder on a dedicated digital
camera. We then extend that example to actually take and store a picture.
After a brief discussion of auto-focus, we wrap with material on other
parameters you may be able to set to control the actual picture being taken.

Sneaking a Peek

First, it is fairly common for a camera-using application to support a
preview mode, to show the user what the camera sees. This will help make

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

sure the camera is lined up on the subject properly, whether there is
sufficient lighting, etc.

So, let us take a look at how to create an application that shows such a live
preview. The code snippets shown in this section are pulled from the
Camera/Preview sample project.

The Permission

First, you need permission to use the camera. That way, when end users
install your application off of the Internet, they will be notified that you
intend to use the camera, so they can determine if they deem that
appropriate for your application.

You simply need the CAMERA permission in your AndroidManifest.xml file,
along with whatever other permissions your application logic might
require. Here is the manifest from the Camera/Preview sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.camera"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"
 />
 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <uses-feature android:name="android.hardware.camera" />
 <uses-permission android:name="android.permission.CAMERA" />
 <application android:label="@string/app_name">
 <activity android:name=".PreviewDemo"
 android:label="@string/app_name"
 android:configChanges="keyboardHidden|orientation"
 android:screenOrientation="landscape"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

 </application>
</manifest>

Also note a few other things about our PreviewDemo activity as registered in
this manifest:

• We use android:configChanges = "keyboardHidden|orientation" to
ensure we control what happens when the keyboard is hidden or
exposed, rather than have Android rotate the screen for us

• We use android:screenOrientation = "landscape" to tell Android we
are always in landscape mode. This is necessary because of a bit of a
bug in the camera preview logic, such that it works best in
landscape mode.

• We use android:theme = "@android:style/Fullscreen" to get rid of
the title bar and status bar, so the preview is truly full-screen (e.g.,
480x320 on a T-Mobile G1).

The Manifest

Starting with Android 1.6, if your application absolutely needs a camera,
you can include a <uses-feature> element in the AndroidManifest.xml file to
declare that requirement, alongside your <uses-permission> element for the
CAMERA permission:

<uses-feature android:name="android.hardware.camera" />

The SurfaceView

Next, you need a layout supporting a SurfaceView. SurfaceView is used as a
raw canvas for displaying all sorts of graphics outside of the realm of your
ordinary widgets. In this case, Android knows how to display a live look at
what the camera sees on a SurfaceView, to serve as a preview pane.

For example, here is a full-screen SurfaceView layout as used by the
PreviewDemo activity:

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

<?xml version="1.0" encoding="utf-8"?>
<android.view.SurfaceView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/preview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
</android.view.SurfaceView>

The Camera

The biggest step, of course, is telling Android to use the camera service and
tie a camera to the SurfaceView to show the actual preview. We will also
eventually need the camera service to take real pictures, as will be
described in the next section.

There are three major components to getting picture preview working:

1. The SurfaceView, as defined in our layout

2. A SurfaceHolder, which is a means of controlling behavior of the
SurfaceView, such as its size, or being notified when the surface
changes, such as when the preview is started

3. A Camera, obtained from the open() static method on the Camera class

To wire these together, we first need to:

• Get the SurfaceHolder for our SurfaceView via getHolder()

• Register a SurfaceHolder.Callback with the SurfaceHolder, so we are
notified when the SurfaceView is ready or changes

• Tell the SurfaceView (via the SurfaceHolder) that it has the
SURFACE_TYPE_PUSH_BUFFERS type (setType()) – this indicates
something in the system will be updating the SurfaceView and
providing the bitmap data to display

This gives us a configured SurfaceView (shown below), but we still need to
tie in the Camera.

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 preview=(SurfaceView)findViewById(R.id.preview);
 previewHolder=preview.getHolder();
 previewHolder.addCallback(surfaceCallback);
 previewHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
}

A Camera object has a setPreviewDisplay() method that takes a SurfaceHolder
and, as you might expect, arranges for the camera preview to be displayed
on the associated SurfaceView. However, the SurfaceView may not be ready
immediately after being changed into SURFACE_TYPE_PUSH_BUFFERS mode. So,
while the previous setup work could be done in onCreate(), you should wait
until the SurfaceHolder.Callback has its surfaceCreated() method called,
then register the Camera:

public void surfaceCreated(SurfaceHolder holder) {
 camera=Camera.open();

 try {
 camera.setPreviewDisplay(previewHolder);
 }
 catch (Throwable t) {
 Log.e("PreviewDemo-surfaceCallback",
 "Exception in setPreviewDisplay()", t);
 Toast
 .makeText(PreviewDemo.this, t.getMessage(), Toast.LENGTH_LONG)
 .show();
 }
}

Next, once the SurfaceView is set up and sized by Android, we need to pass
configuration data to the Camera, so it knows how big to draw the preview.
Since the preview pane is not a fixed size – it might vary based on hardware
– we cannot safely pre-determine the size. It is simplest to wait for our
SurfaceHolder.Callback to have its surfaceChanged() method called, when
we are told the size of the surface. Then, we can pour that information into
a Camera.Parameters object, update the Camera with those parameters, and
have the Camera show the preview images via startPreview():

public void surfaceChanged(SurfaceHolder holder,
 int format, int width,

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

 int height) {
 Camera.Parameters parameters=camera.getParameters();

 parameters.setPreviewSize(width, height);
 camera.setParameters(parameters);
 camera.startPreview();
}

Eventually, the preview needs to stop. In this particular case, that will be as
the activity is being destroyed. It is important to release the Camera at this
time – for many devices, there is only one physical camera, so only one
activity can be using it at a time. Our SurfaceHolder.Callback will be told,
via surfaceDestroyed(), when it is being closed up, and we can stop the
preview (stopPreview()), release the camera (release()), and let go of it
(camera = null) at that point:

public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 camera.release();
 camera=null;
}

If you compile and run the Camera/Preview sample application, you will see,
on-screen, what the camera sees.

Here is the full SurfaceHolder.Callback implementation:

SurfaceHolder.Callback surfaceCallback=new SurfaceHolder.Callback() {
 public void surfaceCreated(SurfaceHolder holder) {
 camera=Camera.open();

 try {
 camera.setPreviewDisplay(previewHolder);
 }
 catch (Throwable t) {
 Log.e("PreviewDemo-surfaceCallback",
 "Exception in setPreviewDisplay()", t);
 Toast
 .makeText(PreviewDemo.this, t.getMessage(), Toast.LENGTH_LONG)
 .show();
 }
 }

 public void surfaceChanged(SurfaceHolder holder,
 int format, int width,
 int height) {
 Camera.Parameters parameters=camera.getParameters();

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

 parameters.setPreviewSize(width, height);
 camera.setParameters(parameters);
 camera.startPreview();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 camera.release();
 camera=null;
 }
};

Image Is Everything

Showing the preview imagery is nice and all, but it is probably more
important to actually take a picture now and again. The previews show the
user what the camera sees, but we still need to let our application know
what the camera sees at particular points in time.

In principle, this is easy. Where things get a bit complicated comes with
ensuring the application (and device as a whole) has decent performance,
not slowing down to process the pictures.

The code snippets shown in this section are pulled from the Camera/Picture
sample project, which builds upon the Camera/Preview sample shown in the
previous section.

Asking for a Format

We need to tell the Camera what sort of picture to take when we decide to
take a picture. The two options are raw and JPEG.

At least, that is the theory.

In practice, Android devices do not support raw output, only JPEG. So, we
need to tell the Camera that we want JPEG output.

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

That is merely a matter of calling setPictureFormat() on the
Camera.Parameters object when we configure our Camera, using the value JPEG
to indicate that we, indeed, want JPEG:

public void surfaceChanged(SurfaceHolder holder,
 int format, int width,
 int height) {
 Camera.Parameters parameters=camera.getParameters();

 parameters.setPreviewSize(width, height);
 parameters.setPictureFormat(PixelFormat.JPEG);

 camera.setParameters(parameters);
 camera.startPreview();
}

Connecting the Camera Button

Somehow, your application will need to indicate when a picture should be
taken. That could be via widgets on the UI, though in our samples here, the
preview is full-screen.

An alternative is to use the camera hardware button. Like every hardware
button other than the Home button, we can find out when the camera
button is clicked via onKeyDown():

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode==KeyEvent.KEYCODE_CAMERA ||
 keyCode==KeyEvent.KEYCODE_SEARCH) {
 takePicture();

 return(true);
 }

 return(super.onKeyDown(keyCode, event));
}

Since the HTC Magic does not have a hardware camera button, we also
watch for KEYCODE_SEARCH for the dedicated search key, which is in the
upper-right portion of the Magic's face when the device is held in landscape
mode. You could similarly watch for a D-pad center button click or
whatever you wish.

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

Taking a Picture

Once it is time to take a picture, all you need to do is tell the Camera to
takePicture():

The takePicture() method takes three parameters, all callback-style objects:

1. A "shutter" callback (Camera.ShutterCallback), which is notified
when the picture has been captured by the hardware but the data is
not yet available – you might use this to play a "camera click" sound

2. Callbacks to receive the image data, either in raw format or JPEG
format

Since Android devices presently only support JPEG output, and because we
do not want to fuss with a shutter click, PictureDemo only passes in the third
parameter to takePicture():

private void takePicture() {
 camera.takePicture(null, null, photoCallback);
}

The Camera.PictureCallback (photoCallback) needs to implement
onPictureTaken(), which provides the picture data as a byte[], plus the
Camera object that took the picture. At this point, it is safe to start up the
preview again.

Plus, of course, it would be nice to do something with that byte array.

The catch is that the byte array is going to be large. Writing that to flash, or
sending it over the network, or doing just about anything with the data, will
be slow. Slow is fine...so long as it is not on the UI thread.

That means we need to do a little more work.

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

Using AsyncTask

In theory, we could just fork a background thread to save off the image data
or do whatever it is we wanted done with it. However, we could wind up
with several such threads, particularly if we are sending the image over the
Internet and do not have a fast connection to our destination server.

Android 1.5 offers a work queue model, in the form of AsyncTask. AsyncTask
manages a thread pool and work queue – all we need to do is hand it the
work to be done.

So, we can create an AsyncTask implementation, called SavePhotoTask, as
follows:

class SavePhotoTask extends AsyncTask<byte[], String, String> {
 @Override
 protected String doInBackground(byte[]... jpeg) {
 File photo=new File(Environment.getExternalStorageDirectory(),
 "photo.jpg");

 if (photo.exists()) {
 photo.delete();
 }

 try {
 FileOutputStream fos=new FileOutputStream(photo.getPath());

 fos.write(jpeg[0]);
 fos.close();
 }
 catch (java.io.IOException e) {
 Log.e("PictureDemo", "Exception in photoCallback", e);
 }

 return(null);
 }
}

Our doInBackground() implementation gets the byte array we received from
Android. The byte array is simply the JPEG itself, so the data could be
written to a file, transformed, sent to a Web service, converted into a
BitmapDrawable for display on the screen or whatever.

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

In the case of PictureDemo, we take the simple approach of writing the JPEG
file as photo.jpg in the root of the SD card. The byte array itself will be
garbage collected once we are done saving it, so there is no explicit "free"
operation we need to do to release that memory.

Finally, we arrange for our PhotoCallback to execute our SavePhotoTask:

Camera.PictureCallback photoCallback=new Camera.PictureCallback() {
 public void onPictureTaken(byte[] data, Camera camera) {
 new SavePhotoTask().execute(data);
 camera.startPreview();
 }
};

Maintaining Your Focus

Android devices may support auto-focus. As with the camera itself, auto-
focus is a device-specific capability and may not be available on all devices.

If you need auto-focus in your application, you will first need to add another
<uses-feature> element to your manifest, to declare your interest in auto-
focus:

<uses-feature android:name="android.hardware.camera.autofocus" />

Next, you need to determine when to apply auto-focus. For devices with a
dedicated camera hardware button, that button might support a "half-
press" that raises a KEYCODE_FOCUS KeyEvent. The T-Mobile G1 offers this, for
example.

Then, to trigger auto-focus itself in your code, call autoFocus() on the Camera
object. You will need to supply a callback object that will be notified when
the focus operation is complete, so you know it is safe to take a picture, for
example. If a device does not support auto-focus, the callback object will be
notified anyway, so you can always rely upon the callback being notified
when the camera is as focused as it will ever be.

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using the Camera

Note that if you can take advantage of auto-focus but do not absolutely
need it, there is an android:required attribute you can add to your <uses-
feature> element – setting that to false means your application can use
auto-focus methods but will still install on devices that lack an auto-focus
camera (e.g., HTC Tattoo). Note that android:required is not presently
documented, though that appears to be a documentation bug. To find out if
auto-focus is available on a given device, call getFocusMode() on your
Camera.Parameters object to see if it returns FOCUS_MODE_FIXED, in which case
auto-focus is unavailable.

All the Bells and Whistles

Starting with Android 2.0, the Camera.Parameters object offers a wide
range of settings that you can control over how a picture gets taken, much
more than merely the size and file type. Settings you can manage include:

• Anti-banding effects

• Color effects (e.g., "negative" or inverse image, sepia-tone image)

• Flash settings (on? off? always on? anti-red-eye mode?)

• Focus mode (fixed? macro? infinity?)

• JPEG quality levels, for both the image and the thumbnail
representation of the image

• White balance levels

For all of these, and others, not only can you get the current setting and
change it, but you can also obtain a list of the available settings, perhaps to
populate a ListView or selection dialog for the user.

You can now also supply GPS data to the camera, which will encode that
information into the EXIF data of the JPEG image.

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 10

Playing Media

Pretty much every phone claiming to be a "smartphone" has the ability to at
least play back music, if not video. Even many more ordinary phones are
full-fledged MP3 players, in addition to offering ringtones and whatnot.

Not surprisingly, Android has multimedia support for you, as a developer,
to build your own games, media players, and so on.

This chapter is focused on audio and video playback; other chapters will
tackle media input, including the camera and audio recording.

Get Your Media On

In Android, you have five different places you can pull media clips from –
one of these will hopefully fit your needs:

1. You can package media clips as raw resources (res/raw in your
project), so they are bundled with your application. The benefit is
that you're guaranteed the clips will be there; the downside is that
they cannot be replaced without upgrading the application.

2. You can package media clips as assets (assets/ in your project) and
reference them via file:///android_asset/ URLs in a Uri. The
benefit over raw resources is that this location works with APIs that
expect Uri parameters instead of resource IDs. The downside –

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

assets are only replaceable when the application is upgraded –
remains.

3. You can store media in an application-local directory, such as
content you download off the Internet. Your media may or may not
be there, and your storage space isn't infinite, but you can replace
the media as needed.

4. You can store media – or make use of media that the user has stored
herself – that is on an SD card. There is likely more storage space on
the card than there is on the device, and you can replace the media
as needed, but other applications have access to the SD card as well.

5. You can, in some cases, stream media off the Internet, bypassing
any local storage, as with the StreamFurious application

For the T-Mobile G1, the recommended approach for anything of significant
size is to put it on the SD card, as there is very little on-board flash memory
for file storage.

Making Noise

If you want to play back music, particularly material in MP3 format, you
will want to use the MediaPlayer class. With it, you can feed it an audio clip,
start/stop/pause playback, and get notified on key events, such as when the
clip is ready to be played or is done playing.

You have three ways to set up a MediaPlayer and tell it what audio clip to
play:

1. If the clip is a raw resource, use MediaPlayer.create() and provide
the resource ID of the clip

2. If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create()

3. If you have a string path to the clip, just create a MediaPlayer using
the default constructor, then call setDataSource() with the path to
the clip

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.streamfurious.com/

Playing Media

Next, you need to call prepare() or prepareAsync(). Both will set up the clip
to be ready to play, such as fetching the first few seconds off the file or
stream. The prepare() method is synchronous; as soon as it returns, the clip
is ready to play. The prepareAsync() method is asynchronous – more on
how to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback
(with start() picking up playback where pause() paused), and stop() ends
playback. One caveat: you cannot simply call start() again on the
MediaPlayer once you have called stop() – we'll cover a workaround a bit
later in this section.

To see this in action, take a look at the Media/Audio sample project. The
layout is pretty trivial, with three buttons and labels for play, pause, and
stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/play"
 android:src="@drawable/play"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 android:enabled="false"
 />
 <TextView
 android:text="Play"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/pause"
 android:src="@drawable/pause"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 />
 <TextView
 android:text="Pause"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/stop"
 android:src="@drawable/stop"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 />
 <TextView
 android:text="Stop"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
</LinearLayout>

The Java, of course, is where things get interesting:

public class AudioDemo extends Activity
 implements MediaPlayer.OnCompletionListener {

 private ImageButton play;
 private ImageButton pause;
 private ImageButton stop;
 private MediaPlayer mp;

 @Override
 public void onCreate(Bundle icicle) {

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 super.onCreate(icicle);
 setContentView(R.layout.main);

 play=(ImageButton)findViewById(R.id.play);
 pause=(ImageButton)findViewById(R.id.pause);
 stop=(ImageButton)findViewById(R.id.stop);

 play.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 play();
 }
 });

 pause.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 pause();
 }
 });

 stop.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 stop();
 }
 });

 setup();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (stop.isEnabled()) {
 stop();
 }
 }

 public void onCompletion(MediaPlayer mp) {
 stop();
 }

 private void play() {
 mp.start();

 play.setEnabled(false);
 pause.setEnabled(true);
 stop.setEnabled(true);
 }

 private void stop() {
 mp.stop();
 pause.setEnabled(false);
 stop.setEnabled(false);

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 try {
 mp.prepare();
 mp.seekTo(0);
 play.setEnabled(true);
 }
 catch (Throwable t) {
 goBlooey(t);
 }
 }

 private void pause() {
 mp.pause();

 play.setEnabled(true);
 pause.setEnabled(false);
 stop.setEnabled(true);
 }

 private void loadClip() {
 try {
 mp=MediaPlayer.create(this, R.raw.clip);
 mp.setOnCompletionListener(this);
 }
 catch (Throwable t) {
 goBlooey(t);
 }
 }

 private void setup() {
 loadClip();
 play.setEnabled(true);
 pause.setEnabled(false);
 stop.setEnabled(false);
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }
}

In onCreate(), we wire up the three buttons to appropriate callbacks, then
call setup(). In setup(), we create our MediaPlayer, set to play a clip we
package in the project as a raw resource. We also configure the activity
itself as the completion listener, so we find out when the clip is over. Note
that, since we use the static create() method on MediaPlayer, we have

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

already implicitly called prepare(), so we do not need to call that separately
ourselves.

The buttons simply work the MediaPlayer and toggle each others' states, via
appropriately-named callbacks. So, play() starts MediaPlayer playback,
pause() pauses playback, and stop() stops playback and resets our
MediaPlayer to play again. The stop() callback is also used for when the
audio clip completes of its own accord.

To reset the MediaPlayer, the stop() callback calls prepare() on the existing
MediaPlayer to enable it to be played again and seekTo() to move the
playback point to the beginning. If we were using an external file as our
media source, it would be better to call prepareAsync().

The UI is nothing special, but we are more interested in the audio in this
sample, anyway:

Figure 44. The AudioDemo sample application

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

Moving Pictures

In addition to perhaps using MediaPlayer, video clips get their own widget,
the VideoView. Put it in a layout, feed it an MP4 video clip, and you get
playback! We will see using MediaPlayer for video in the next section.

For example, take a look at this layout, from the Media/Video sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <VideoView
 android:id="@+id/video"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

The layout is simply a full-screen video player. Whether it will use the full
screen will be dependent on the video clip, its aspect ratio, and whether you
have the device (or emulator) in portrait or landscape mode.

Wiring up the Java is almost as simple:

public class VideoDemo extends Activity {
 private VideoView video;
 private MediaController ctlr;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);

 File clip=new File(Environment.getExternalStorageDirectory(),
 "test.mp4");

 if (clip.exists()) {
 video=(VideoView)findViewById(R.id.video);
 video.setVideoPath(clip.getAbsolutePath());

 ctlr=new MediaController(this);

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 ctlr.setMediaPlayer(video);
 video.setMediaController(ctlr);
 video.requestFocus();
 }
 }
}

The biggest trick with VideoView is getting a video clip onto the device.
While VideoView does support some streaming video, the requirements on
the MP4 file are fairly stringent. If you want to be able to play a wider array
of video clips, you need to have them on the device, preferably on an SD
card.

The crude VideoDemo class assumes there is an MP4 file in /sdcard/test.mp4
on your emulator. To make this a reality:

1. Find a clip, such as Aaron Rosenberg's Documentaries and You from
Duke University's Center for the Study of the Public Domain's
Moving Image Contest, which was used in the creation of this book

2. Use mksdcard (in the Android SDK's tools directory) to create a
suitably-sized SD card image (e.g., mksdcard 128M sd.img)

3. Use the -sdcard switch when launching the emulator, providing the
path to your SD card image, so the SD card is "mounted" when the
emulator starts

4. Use the adb push command (or DDMS or the equivalent in your
IDE) to copy the MP4 file into /sdcard/test.mp4

Once there, the Java code shown above will give you a working video player:

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.law.duke.edu/cspd/contest/finalists/

Playing Media

Figure 45. The VideoDemo sample application, showing a Creative Commons-
licensed video clip

Tapping on the video will pop up the playback controls:

Figure 46. The VideoDemo sample application, with the media controls
displayed

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

The video will scale based on space, as shown in this rotated view of the
emulator (<Ctrl>-<F12>):

Figure 47. The VideoDemo sample application, in landscape mode, with the
video clip scaled to fit

Note that playback may be rather jerky in the emulator, depending on the
power of the PC that is hosting the emulator. For example, on a Pentium-M
1.6GHz PC, playback in the emulator is extremely jerky when it works at all,
while playback on the T-Mobile G1 is very smooth.

Pictures in the Stream

VideoView is nice, but you get a bit more control if you use MediaPlayer. It is
somewhat more involved to set up, though, in part because it involves a
SurfaceView, introduced in the chapter on the camera.

The sample code for this project is released as a separate open source
project, called vidtry, as it allows you to try video clips, with an emphasis
on streaming video. You can find the complete source code to vidtry out on
Github. You may want to have the full source code with you when
reviewing this section, as it is a bit more extensive than most.

NOTE: playing video on the Android emulator may work for you, but it is
not terribly likely. Video playback requires graphic acceleration to work
well, and the emulator does not have graphics acceleration – regardless of

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://github.com/commonsguy/vidtry/tree/master

Playing Media

the capabilities of the actual machine the emulator runs on. Hence, if you
try playing back video in the emulator, expect problems. If you are serious
about doing Android development with video playback, you definitely need
to acquire a piece of Android hardware.

At its core, vidtry simply plays back video, much like the example of
VideoView in the preceding section:

Figure 48. The vidtry sample application, showing a video from the 2009
Google I/O Conference

However, vidtry also supports streaming video and custom pop-up control
panels:

Figure 49. The vidtry sample application, showing pop-up panels overlaying
the video

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

Rules for Streaming

Streaming video with Android is a dicey proposition. If you are in control of
the media being streamed, getting it to work is eminently possible. If you
are trying to stream existing media not designed for use with Android, as
they say in the United States, "your mileage may vary".

This section focuses on HTTP streaming, as that is what most people would
be in position to serve up. RTSP streaming should also be available, but
there are far fewer RTSP servers than Web servers.

Here are some guidelines for serving HTTP streaming video to Android:

1. The media in question needs to be "safe for streaming". For MP4
files, for example, the rule is "the moov atom must appear before
the mdat atom". That may happen as a result of how you create the
MP4 files. If not, you may need to use tools to add "hints" to the
MP4 file to achieve this atom ordering. For example, on Linux, you
can use MP4Box -hint to accomplish this, where MP4Box can be found
in the gpac package for Ubuntu.

2. There used to be a rule that the height and width each had to be
divisible by 16. It is unclear if that is still a rule or merely an
optimization at this point.

3. If you have the space to store multiple editions of the video for
serving, consider creating ones for commonplace sizes, such as one
designed to work on a 480x320 landscape screen. The less work the
device has to do to scale the image, the better battery life will be.

Establishing the Surface

Setting up a SurfaceView for video playback works much the same way as
setting up a SurfaceView for the camera preview. You create the SurfaceView
and get its corresponding SurfaceHolder, then start using the surface once
the surface has been prepared.

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

For example, here is where we set up a SurfaceView in vidtry, in the Player
activity's onCreate() method:

surface=(TappableSurfaceView)findViewById(R.id.surface);
surface.addTapListener(onTap);
holder=surface.getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

Note that we are using a TappableSurfaceView. This is a custom subclass of
SurfaceView that supports touch events – more on this in a later section.
Outside of touch behavior, though, TappableSurfaceView works identically
to a regular SurfaceView.

So, we get the surface out of our layout, add a listener for touch events, get
its SurfaceHolder, tell the SurfaceHolder to keep the Player informed of the
surface's own lifecycle, and set the type of the surface to be
SURFACE_TYPE_PUSH_BUFFERS (meaning lower level code gets to write directly
to the surface). That, plus the regular view creation process, will trigger the
SurfaceView to be constructed and made available for use.

Floating Panels

The SurfaceView is set up to take up whatever space it needs to play back
the video. Typically, this will involve filling one of the two axes, depending
on the aspect ratio of the video and the device's display.

Full-screen video playback is fairly normal for an application like this.
However, what may not be obvious is how to handle pop-up control panels,
where controls for pausing playback and such appear to float over top of
the video.

There are three components of the technique for making that work:

1. In layouts, anything later in the container (e.g., later in the XML
listing of the layout file) appears higher in the Z-axis. That means if
you define the SurfaceView first, and other widgets later, those other
widgets will appear to float over top of the video.

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

2. Since you control the visibility of any widget, you can arrange to
have those floating widgets be invisible (or gone) normally, and
only show up when the user requests, perhaps as a result of a screen
tap.

3. If you have several controls that you want grouped in a translucent
panel, just put them in one container (e.g., RelativeLayout) and set
the background color of that container to be a translucent value
(e.g., #40808080 for a translucent light gray).

For example, here is the layout that drives the Player activity
(res/layout/main.xml):

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.commonsware.android.vidtry.TappableSurfaceView
 android:id="@+id/surface"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center">
 </com.commonsware.android.vidtry.TappableSurfaceView>
 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:id="@+id/top_panel"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:background="#40808080"
 android:visibility="visible"
 android:layout_alignParentTop="true"
 >
 <AutoCompleteTextView android:id="@+id/address"
 android:layout_width="0px"
 android:layout_weight="1"
 android:layout_height="wrap_content"
 android:completionThreshold="1"
 />
 <Button android:id="@+id/go"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/go"
 android:enabled="false"
 />
 </LinearLayout>
 <LinearLayout

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 android:id="@+id/bottom_panel"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:orientation="horizontal"
 android:background="#40808080"
 android:visibility="gone"
 android:layout_alignParentBottom="true"
 >
 <ProgressBar android:id="@+id/timeline"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="0px"
 android:layout_weight="1"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:paddingLeft="2px"
 />
 <ImageButton android:id="@+id/media"
 style="@style/MediaButton"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:src="@drawable/ic_media_pause"
 android:enabled="false"
 />
 </LinearLayout>
 </RelativeLayout>
</FrameLayout>

You will see that, in addition to our TappableSurfaceView, the layout has a
pair of LinearLayout widgets with the aforementioned background color.
One, on the top, contains an AutoCompleteTextView to be used for entering
URLs of videos to watch, plus a button to trigger playback of that video.
The other contains a ProgressBar that will serve as the video playback
timeline, plus a button to pause or resume playback. The bottom panel is
set to have android:visibility = "gone", so only the top panel will be visible
when you first run the application.

Playing Video

When the user types in a URL and clicks the "go" button, we call
playVideo() on our Player:

 private void playVideo(String url) {
 try {
 media.setEnabled(false);

 if (player==null) {

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 player=new MediaPlayer();
 player.setScreenOnWhilePlaying(true);
 }
 else {
 player.stop();
 player.reset();
 }

 player.setDataSource(url);
 player.setDisplay(holder);
 player.setAudioStreamType(AudioManager.STREAM_MUSIC);
 player.setOnPreparedListener(this);
 player.prepareAsync();
// player.setOnBufferingUpdateListener(this);
 player.setOnCompletionListener(this);
 }
 catch (Throwable t) {
 Log.e(TAG, "Exception in media prep", t);
 goBlooey(t);
 }
 }

Here, we do several things of significance:

• We either create a new MediaPlayer (if this is the first video we have
played) or stop() and reset() the existing player

• We tell the MediaPlayer to load the user-supplied URL into our
SurfaceView (via its SurfaceHolder)

• We tell the MediaPlayer to let us know when the video is prepared
and has finished playback

• We tell the MediaPlayer to prepareAsync(), which will begin
streaming down the initial portion of the video file

Note that we also call setScreenOnWhilePlaying() – this will keep the screen
lock from taking over while video is actually playing back.

After a few moments, MediaPlayer should have downloaded enough
information to begin actually playing the video. At that point, it will call us
back via the onPrepared() in the Player, as is required by the
MediaPlayer.OnPreparedListener interface we are implementing and used in
setOnPreparedListener().

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

public void onPrepared(MediaPlayer mediaplayer) {
 width=player.getVideoWidth();
 height=player.getVideoHeight();

 if (width!=0 && height!=0) {
 holder.setFixedSize(width, height);
 timeline.setProgress(0);
 timeline.setMax(player.getDuration());
 player.start();
 }

 media.setEnabled(true);
}

Here, we:

• Get the height and width of the video file from the MediaPlayer

• Tell the SurfaceView to use the same height and width – it will
automatically determine appropriate scaling if the video is larger
than the screen size

• Reset the timeline ProgressBar to 0 and set its maximum to be the
duration of the video clip, as reported by the MediaPlayer

• Start actual playback of the video

Note that Android is very finicky about its streaming video. A video that
might work fine on one device will not work well on another. If you are
going to be developing applications that rely upon streaming video, it is
best if you obtain 2-3 devices, with different screen sizes and from different
manufacturers, and test your videos on those devices to ensure they will
work.

Touchable Controls

We still have not done much about those two panels. One, containing the
URL field and button, is still visible. The other, containing the timeline and
play/pause button, is gone. It would be nice if both would be gone while
the video is playing, yet still be retrievable when the user wants them.

The panels are set to "automatically" hide after a period of inactivity. That is
accomplished by:

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

• Tracking the lastActionTime on any user input event (lastActionTime
= SystemClock.elapsedRealtime()), so we know when the user last
did something

• Use postDelayed() to set up a one-per-second check to see if enough
time has elapsed since lastActionTime, at which point bottom panel
is hidden

• The back button is used to close the top panel, when it is displayed

Bringing the panels up again is handled via touch events on our
SurfaceView, implemented in a TappableSurfaceView class:

package com.commonsware.android.vidtry;

import android.content.Context;
import android.view.GestureDetector;
import android.view.GestureDetector.SimpleOnGestureListener;
import android.view.MotionEvent;
import android.view.SurfaceView;
import android.util.AttributeSet;
import java.util.ArrayList;

public class TappableSurfaceView extends SurfaceView {
 private ArrayList<TapListener> listeners=new ArrayList<TapListener>();
 private GestureDetector gesture=null;

 public TappableSurfaceView(Context context,
 AttributeSet attrs) {
 super(context, attrs);
 }

 public boolean onTouchEvent(MotionEvent event) {
 if (event.getAction()==MotionEvent.ACTION_UP) {
 gestureListener.onSingleTapUp(event);
 }

 return(true);
 }

 public void addTapListener(TapListener l) {
 listeners.add(l);
 }

 public void removeTapListener(TapListener l) {
 listeners.remove(l);
 }

 private GestureDetector.SimpleOnGestureListener gestureListener=
 new GestureDetector.SimpleOnGestureListener() {

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 for (TapListener l : listeners) {
 l.onTap(e);
 }

 return(true);
 }
 };

 public interface TapListener {
 void onTap(MotionEvent event);
 }
}

This crude touch interface watches for single taps on the screen, relaying
those to a roster of supplied "tap listeners", which will do something on
those taps.

The Player activity registers an onTap listener that displays either the top or
bottom panel depending on which half of the screen the user tapped upon:

private TappableSurfaceView.TapListener onTap=
 new TappableSurfaceView.TapListener() {
 public void onTap(MotionEvent event) {
 lastActionTime=SystemClock.elapsedRealtime();

 if (event.getY()<surface.getHeight()/2) {
 topPanel.setVisibility(View.VISIBLE);
 }
 else {
 bottomPanel.setVisibility(View.VISIBLE);
 }
 }
};

More coverage of touch interfaces will be added in another chapter in a
future edition of this book.

The same once-a-second postDelayed() loop also updates our timeline,
reflecting how much of the video has been played back:

private Runnable onEverySecond=new Runnable() {
 public void run() {
 if (lastActionTime>0 &&
 SystemClock.elapsedRealtime()-lastActionTime>3000) {

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

 clearPanels(false);
 }

 if (player!=null) {
 timeline.setProgress(player.getCurrentPosition());
 }

 if (!isPaused) {
 surface.postDelayed(onEverySecond, 1000);
 }
 }
};

Other Ways to Make Noise

While MediaPlayer is the primary audio playback option, particularly for
content along the lines of MP3 files, there are other alternatives if you are
looking to build other sorts of applications, notably games and custom
forms of streaming audio.

SoundPool

The SoundPool class's claim to fame is the ability to overlay multiple sounds,
and do so in a prioritized fashion, so your application can just ask for
sounds to be played and SoundPool deals with each sound starting, stopping,
and blending while playing.

This may make more sense with an example.

Suppose you are creating a first-person shooter. Such a game may have
several sounds going on at any one time:

• The sound of the wind whistling amongst the trees on the
battlefield

• The sound of the surf crashing against the beach in the landing
zone

• The sound of booted feet crunching on the sand

• The sound of the character's own panting as the character runs on
the beach

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

• The sound of orders being barked by a sergeant positioned behind
the character

• The sound of machine gun fire aimed at the character and the
character's squad mates

• The sound of explosions from the gun batteries of the battleship
providing suppression fire

And so on.

In principle, SoundPool can blend all of those together into a single audio
stream for output. Your game might set up the wind and surf as constant
background sounds, toggle the feet and panting on and off based on the
character's movement, randomly add the barked orders, and tie the gunfire
based on actual game play.

In reality, your average smartphone will lack the CPU power to handle all of
that audio without harming the frame rate of the game. So, to keep the
frame rate up, you tell SoundPool to play at most two streams at once. This
means that when nothing else is happening in the game, you will hear the
wind and surf, but during the actual battle, those sounds get dropped out –
the user might never even miss them – so the game speed remains good.

AudioTrack

The lowest-level Java API for playing back audio is AudioTrack. It has two
main roles:

• Its primary role is to support streaming audio, where the streams
come in some format other than what MediaPlayer handles. While
MediaPlayer can handle RTSP, for example, it does not offer SIP. If
you want to create a SIP client (perhaps for a VOIP or Web
conferencing application), you will need to convert the incoming
data stream to PCM format, then hand the stream off to an
AudioTrack instance for playback.

• It can also be used for "static" (versus streamed) bits of sound that
you have pre-decoded to PCM format and want to play back with as

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Playing Media

little latency as possible. For example, you might use this for a game
for in-game sounds (beeps, bullets, or "boing"s). By pre-decoding
the data to PCM and caching that result, then using AudioTrack for
playback, you will use the least amount of overhead, minimizing
CPU impact on game play and on battery life.

ToneGenerator

If you want your phone to sound like...well...a phone, you can use
ToneGenerator to have it play back dual-tone multi-frequency (DTMF)
tones. In other words, you can simulate the sounds played by a regular
"touch-tone" phone in response to button presses. This is used by the
Android dialer, for example, to play back the tones when users dial the
phone using the on-screen keypad, as an audio reinforcement.

Note that these will play through the phone's earpiece, speaker, or attached
headset. They do not play through the outbound call stream. In principle,
you might be able to get ToneGenerator to play tones through the speaker
loud enough to be picked up by the microphone, but this probably is not a
recommended practice.

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://en.wikipedia.org/wiki/Dtmf

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART III – Advanced System

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 11

The Contacts Content Provider

One of the more popular stores of data on your average Android device is
the contact list. This is particularly true with Android 2.0 and newer
versions, which track contacts across multiple different "accounts", or
sources of contacts. Some may come from your Google account, while
others might come from Exchange or other services.

This chapter will walk you through some of the basics for accessing the
contacts on the device. Along the way, we will revisit and expand upon our
knowledge of using a ContentProvider.

First, we will review the contacts APIs, past and present. We will then
demonstrate how you can connect to the contacts engine to let users pick
and view contacts...all without your application needing to know much of
how contacts work. We will then show how you can query the contacts
provider to obtain contacts and some of their details, like email addresses
and phone numbers. We wrap by showing how you can invoke a built-in
activity to let the user add a new contact, possibly including some data
supplied by your application.

Introducing You to Your Contacts

Android makes contacts available to you via a complex ContentProvider
framework, so you can access many facets of a contact's data – not just their
name, but addresses, phone numbers, groups, etc. Working with the

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

contacts ContentProvider set is simple...only if you have an established
pattern to work with. Otherwise, it may prove somewhat daunting.

ContentProvider Recap

As you may recall from The Busy Coder's Guide to Android Development (or
other Android programming books), a ContentProvider is an abstraction
around a data source. Consumers of a ContentProvider can use a
ContentResolver to query, insert, update, or delete data, or use
managedQuery() on an Activity to do a query. In the latter case, the resulting
Cursor is managed, meaning that it will be deactivated when the activity is
stopped, requeried when the activity is later restarted, and closed when the
activity is destroyed.

Content providers use a "projection" to describe the columns to work with.
One ContentProvider may expose many facets of data, which you can think
of as being tables. However, bear in mind that content providers do not
necessarily have to store their content in SQLite, so you will need to
consult the documentation for the content provider to determine query
language syntax, transaction support, and the like.

Organizational Structure

The contacts ContentProvider framework can be found as the set of
ContactsContract classes and interfaces in the android.provider package.
Unfortunately, there is a dizzying array of inner classes to ContactsContract.

Contacts can be broken down into two types: raw and aggregate. Raw
contacts come from a sync provider or are hand-entered by a user.
Aggregate contacts represent the sum of information about an individual
culled from various raw contacts. For example, if your Exchange sync
provider has a contact with an email address of jdoe@foo.com, and your
Facebook sync provider has a contact with an email address of jdoe@foo.com,
Android may recognize that those two raw contacts represent the same
person and therefore combine those in the aggregate contact for the user.

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

The classes relating to raw contacts usually have Raw somewhere in their
name, and these normally would be used only by custom sync providers.

The ContactsContract.Contacts and ContactsContract.Data classes represent
the "entry points" for the ContentProvider, allowing you to query and obtain
information on a wide range of different pieces of information. What is
retrievable from these can be found in the various
ContactsContract.CommonDataKinds series of classes. We will see examples of
these operations later in this chapter.

A Look Back at Android 1.6

Prior to Android 2.0, Android had no contact synchronization built in. As a
result, all contacts were in one large pool, whether they were hand-entered
by users or were added via third-party applications. The API used for this is
the Contacts ContentProvider.

In principle, the Contacts ContentProvider should still work, as it is merely
deprecated in Android 2.0.1, not removed. In practice, you may encounter
some issues, since the emulator may not have the same roster of
synchronization providers as does a device, and so there may be differences
in behavior.

Pick a Peck of Pickled People

Let's start by finding a contact. After all, that's what the contacts system is
for.

Contacts, like anything stored in a ContentProvider, is identified by a Uri.
Hence, we need a Uri we can use in the short term, perhaps to read some
data, or perhaps just to open up the contact detail activity for the user.

We could ask for a raw contact, or we could ask for an aggregate contact.
Since most consumers of the contacts ContentProvider will want the
aggregate contact, we will use that.

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

For example, take a look at Contacts/Pick in the sample applications, as this
shows how to pick a contact from a collection of contacts, then display the
contact detail activity. This application gives you a really big “Gimme!”
button, which when clicked will launch the contact-selection logic:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Gimme a contact!"
 android:layout_weight="1"
/>

Our first step is to determine the Uri to use to reference the collection of
contacts we want to pick from. In the long term, there should be just one
answer for aggregate contacts:
android.provider.ContactsContract.Contacts.CONTENT_URI. However, that
only works for Android 2.0 (SDK level 5) and higher. On older versions of
Android, we need to stick with the original
android.provider.ContactsContract.Contacts.CONTENT_URI. To accomplish
this, we will use a pinch of reflection to determine our Uri via a static
initializer when our activity starts:

private static Uri CONTENT_URI=null;

static {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk>=5) {
 try {
 Class clazz=Class.forName("android.provider.ContactsContract$Contacts");

 CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);
 }
 catch (Throwable t) {
 Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
 }
 }
 else {
 CONTENT_URI=Contacts.People.CONTENT_URI;
 }
}

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Then, you need to create an Intent for the ACTION_PICK on the chosen Uri,
then start a sub activity (via startActivityForResult()) to allow the user to
pick a piece of content of the specified type:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 if (CONTENT_URI==null) {
 Toast
 .makeText(this, "We are experiencing technical difficulties...",
 Toast.LENGTH_LONG)
 .show();
 finish();

 return;
 }

 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK, CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });
}

When that sub-activity completes with RESULT_OK, the ACTION_VIEW is
invoked on the resulting contact Uri, as obtained from the Intent returned
by the pick activity:

@Override
protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 data.getData()));
 }
 }
}

The result: the user chooses a collection, picks a piece of content, and views
it.

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Figure 50. The PickDemo sample application, as initially launched

Figure 51. The same application, after clicking the "Gimme!" button, showing
the list of available people

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Figure 52. A view of a contact, launched by PickDemo after choosing one of the
people from the pick list

Note that the Uri we get from picking the contact is valid in the short term,
but should not be held onto in a persistent fashion (e.g., put in a database).
If you need to try to store a reference to a contact for the long term, you will
need to get a "lookup Uri" on it, to help deal with the fact that the aggregate
contact may shift over time as raw contact information for that person
comes and goes.

Spin Through Your Contacts

The preceding example allows you to work with contacts, yet not actually
have any contact data other than a transient Uri. All else being equal, it is
best to use the contacts system this way, as it means you do not need any
extra permissions that might raise privacy issues.

Of course, all else is rarely equal.

Your alternative, therefore, is to execute queries against the contacts
ContentProvider to get actual contact detail data back, such as names,

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

phone numbers, and email addresses. The Contacts/Spinners sample
application will demonstrate this technique.

Contact Permissions

Since contacts are privileged data, you need certain permissions to work
with them. Specifically, you need the READ_CONTACTS permission to query
and examine the ContactsContract content and WRITE_CONTACTS to add,
modify, or remove contacts from the system.

For example, here is the manifest for the Contacts/Spinners sample
application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.contacts.spinners"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"
 />
 <application android:label="@string/app_name">
 <activity android:name=".ContactSpinners"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Pre-Joined Data

While the database underlying the ContactsContract content provider is
private, one can imagine that it has several tables: one for people, one for
their phone numbers, one for their email addresses, etc. These are tied
together by typical database relations, most likely 1:N, so the phone number
and email address tables would have a foreign key pointing back to the
table containing information about people.

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

To simplify accessing all of this through the content provider interface,
Android pre-joins queries against some of the tables. For example, you can
query for phone numbers and get the contact name and other data along
with the number – you do not have to do this join operation yourself.

The Sample Activity

The ContactsDemo activity is simply a ListActivity, though it sports a Spinner
to go along with the obligatory ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

The activity itself sets up a listener on the Spinner and toggles the list of
information shown in the ListView when the Spinner value changes:

package com.commonsware.android.contacts.spinners;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;
import android.widget.Spinner;

public class ContactSpinners extends ListActivity
 implements AdapterView.OnItemSelectedListener {
 private static String[] options={"Contact Names",
 "Contact Names & Numbers",
 "Contact Names & Email Addresses"};

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

 private ListAdapter[] listAdapters=new ListAdapter[3];

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 initListAdapters();

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 options);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 setListAdapter(listAdapters[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 // ignore
 }

 private void initListAdapters() {
 listAdapters[0]=ContactsAdapterBridge.INSTANCE.buildNameAdapter(this);
 listAdapters[1]=ContactsAdapterBridge.INSTANCE.buildPhonesAdapter(this);
 listAdapters[2]=ContactsAdapterBridge.INSTANCE.buildEmailAdapter(this);
 }

}

When the activity is first opened, it sets up three Adapter objects, one for
each of three perspectives on the contacts data. The Spinner simply resets
the list to use the Adapter associated with the Spinner value selected.

Dealing with API Versions

Of course, once again, we have to ponder different API levels.

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Querying ContactsContract and querying Contacts is similar, yet different,
both in terms of the Uri each uses for the query and in terms of the
available column names for the resulting projection.

Rather than using reflection, this time we ruthlessly exploit a feature of the
VM: classes are only loaded when first referenced. Hence, we can have a
class that refers to new APIs (ContactsContract) on a device that lacks those
APIs, so long as we do not reference that class.

To accomplish this, we define an abstract base class, ContactsAdapterBridge,
that will have a singleton instance capable of running our queries and
building a ListAdapter for each. Then, we create two concrete subclasses,
one for the old API:

package com.commonsware.android.contacts.spinners;

import android.app.Activity;
import android.database.Cursor;
import android.provider.Contacts;
import android.widget.ListAdapter;
import android.widget.SimpleCursorAdapter;

class OldContactsAdapterBridge extends ContactsAdapterBridge {
 ListAdapter buildNameAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.People._ID,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=a.managedQuery(Contacts.People.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.People.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_1,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME
 },
 new int[] {
 android.R.id.text1
 }));
 }

 ListAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.Phones._ID,
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 };
 Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

 PROJECTION, null, null,
 Contacts.Phones.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }

 ListAdapter buildEmailAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.ContactMethods._ID,
 Contacts.ContactMethods.DATA,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=a.managedQuery(Contacts.ContactMethods.CONTENT_EMAIL_URI,
 PROJECTION, null, null,
 Contacts.ContactMethods.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME,
 Contacts.ContactMethods.DATA
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }
}

...and one for the new API:

package com.commonsware.android.contacts.spinners;

import android.app.Activity;
import android.database.Cursor;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.CommonDataKinds.Email;
import android.provider.ContactsContract.CommonDataKinds.Phone;
import android.widget.ListAdapter;
import android.widget.SimpleCursorAdapter;

class NewContactsAdapterBridge extends ContactsAdapterBridge {
 ListAdapter buildNameAdapter(Activity a) {

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 };
 Cursor c=a.managedQuery(Contacts.CONTENT_URI,
 PROJECTION, null, null, null);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_1,
 c,
 new String[] {
 Contacts.DISPLAY_NAME
 },
 new int[] {
 android.R.id.text1
 }));
 }

 ListAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 Phone.NUMBER
 };
 Cursor c=a.managedQuery(Phone.CONTENT_URI,
 PROJECTION, null, null, null);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.DISPLAY_NAME,
 Phone.NUMBER
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }

 ListAdapter buildEmailAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 Email.DATA
 };
 Cursor c=a.managedQuery(Email.CONTENT_URI,
 PROJECTION, null, null, null);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.DISPLAY_NAME,
 Email.DATA
 },
 new int[] {

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

 android.R.id.text1,
 android.R.id.text2
 }));
 }
}

Our ContactsAdapterBridge class then uses the SDK level to determine
which of those two classes to use as the singleton:

package com.commonsware.android.contacts.spinners;

import android.app.Activity;
import android.os.Build;
import android.widget.ListAdapter;

abstract class ContactsAdapterBridge {
 abstract ListAdapter buildNameAdapter(Activity a);
 abstract ListAdapter buildPhonesAdapter(Activity a);
 abstract ListAdapter buildEmailAdapter(Activity a);

 public static final ContactsAdapterBridge INSTANCE=buildBridge();

 private static ContactsAdapterBridge buildBridge() {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk<5) {
 return(new OldContactsAdapterBridge());
 }

 return(new NewContactsAdapterBridge());
 }
}

Accessing People

The first Adapter shows the names of all of the contacts. Since all the
information we seek is in the contact itself, we can use the CONTENT_URI
provider, retrieve all of the contacts in the default sort order, and pour
them into a SimpleCursorAdapter set up to show each person on its own row:

Assuming you have some contacts in the database, they will appear when
you first open the ContactsDemo activity, since that is the default perspective:

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Figure 53. The ContactsDemo sample application, showing all contacts

Accessing Phone Numbers

Figure 54. The ContactsDemo sample application, showing all contacts that
have phone numbers

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Accessing Email Addresses

Similarly, to get a list of all the email addresses, we can use the CONTENT_URI
content provider. Again, the results are displayed via a two-line
SimpleCursorAdapter:

Figure 55. The ContactsDemo sample application, showing all contacts with
email addresses

Makin' Contacts

Let's now take a peek at the reverse direction: adding contacts to the
system. This was never particularly easy and now is...well, different.

First, we need to distinguish between sync providers and other apps. Sync
providers are the guts underpinning the accounts system in Android,
bridging some existing source of contact data to the Android device. Hence,
you can have sync providers for Exchange, Facebook, and so forth. These
will need to create raw contacts for newly-added contacts to their backing
stores that are being sync'd to the device for the first time. Creating sync
providers is outside of the scope of this book for now.

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

It is possible for other applications to create contacts. These, by definition,
will be phone-only contacts, lacking any associated account, no different
than if the user added the contact directly. The recommended approach to
doing this is to collect the data you want, then spawn an activity to let the
user add the contact – this avoids your application needing the
WRITE_CONTACTS permission and all the privacy/data integrity issues that
creates. In this case, we will stick with the new ContactsContract content
provider, to simplify our code, at the expense of requiring Android 2.0 or
newer.

To that end, take a look at the Contacts/Inserter sample project. It defines a
simple activity with a two-field UI, with one field apiece for the person's
first name and phone number:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="First name:"
 />
 <EditText android:id="@+id/name"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Phone:"
 />
 <EditText android:id="@+id/phone"
 android:inputType="phone"
 />
 </TableRow>
 <Button android:id="@+id/insert" android:text="Insert!" />
</TableLayout>

The trivial UI also sports a button to add the contact:

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Figure 56. The ContactInserter sample application

When the user clicks the button, the activity gets the data and creates an
Intent to be used to launch the add-a-contact activity. This uses the
ACTION_INSERT_OR_EDIT action and a couple of extras from the
ContactsContract.Intents.Insert class:

package com.commonsware.android.inserter;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.Intents.Insert;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class ContactsInserter extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.insert);

 btn.setOnClickListener(onInsert);
 }

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

 View.OnClickListener onInsert=new View.OnClickListener() {
 public void onClick(View v) {
 EditText fld=(EditText)findViewById(R.id.name);
 String name=fld.getText().toString();

 fld=(EditText)findViewById(R.id.phone);

 String phone=fld.getText().toString();
 Intent i=new Intent(Intent.ACTION_INSERT_OR_EDIT);

 i.setType(Contacts.CONTENT_ITEM_TYPE);
 i.putExtra(Insert.NAME, name);
 i.putExtra(Insert.PHONE, phone);
 startActivity(i);
 }
 };
}

We also need to set the MIME type on the Intent via setType(), to be
CONTENT_ITEM_TYPE, so Android knows what sort of data we want to actually
insert. Then, we call startActivity() on the resulting Intent. That brings up
an add-or-edit activity:

Figure 57. The add-or-edit-a-contact activity

...where if the user chooses "Create new contact", they are taken to the
ordinary add-a-contact activity, with our data pre-filled in:

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Contacts Content Provider

Figure 58. The edit-contact form, showing the data from the ContactInserter
activity

Note that the user could choose an existing contact, rather than creating a
new contact. If they choose an existing contact, the first name of that
contact will be overwritten with the data supplied by the ContactsInserter
activity, and a new phone number will be added from those Intent extras.

200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 12

Sensors

"Sensors" is Android's overall term for ways that Android can detect
elements of the physical world around it, from magnetic flux to the
movement of the device. Not all devices will have all possible sensors, and
other sensors are likely to be added over time. In this chapter, we will
explore what sensors are theoretically available and how to use a few of
them that work on early Android devices like the T-Mobile G1.

The samples in this chapter assume that you have access to a piece of
sensor-equipped Android hardware, such as a T-Mobile G1. The
OpenIntents.org project has a sensor simulator which you can also use,
though the use of this tool is not covered here.

The author would like to thank Sean Catlin for code samples that helped
clear up confusion surrounding the use of sensors.

The Sixth Sense. Or Possibly the Seventh.

In theory, Android supports the following sensor types:

• An accelerometer, that tells you the motion of the device in space
through all three dimensions

• An ambient light sensor, telling you how bright or dark the
surroundings are

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.openintents.org/en/node/23

Sensors

• A magnetic field sensor, to tell you where magnetic north is (unless
some other magnetic field is nearby, such as from an electrical
motor)

• An orientation sensor, to tell you how the device is positioned in all
three dimensions

• A proximity sensor, to tell you how far the device is from some
other specific object

• A temperature sensor, to tell you the temperature of the
surrounding environment

• A tricorder sensor, to turn the device into "a fully functional
Tricorder"

Clearly, not all of these possible sensors are available today, such as the last
one. What definitely are available today on the T-Mobile G1 are the
accelerometer, the magnetic field sensor, and the orientation sensor.

To access any of these sensors, you need a SensorManager, found in the
android.hardware package. Like other aspects of Android, the SensorManager
is a system service, and as such is obtained via the getSystemService()
method on your Activity or other Context:

mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);

Orienting Yourself

In principle, to find out which direction is north, you would use the
magnetic flux sensor and go through a lovely set of calculations to figure
out the appropriate direction.

Fortunately for us, Android did all that as part of the orientation sensor...so
long as the device is held flat in the horizontal plane (e.g., on a level
tabletop).

Akin to the location services, there is no way to ask the SensorManager what
the current value of a sensor is. Instead, you need to hook up a

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

SensorEventListener and respond to changes in the sensor values. To do
this, simply call registerListener() with your SensorEventListener and the
Sensor you wish to hear from. You can get the Sensor by asking the
SensorManager for the default Sensor for a particular type. For example, from
the Sensor/Compass sample project, here is where we register our listener:

mgr.registerListener(listener,
 mgr.getDefaultSensor(Sensor.TYPE_ORIENTATION),
 SensorManager.SENSOR_DELAY_UI);

Note that you also specify the rate at which sensor updates will be received.
Here, we use SENSOR_DELAY_UI, but you could say SENSOR_DELAY_FASTEST or
various other values.

It is important to unregister the listener when the activity closes down;
otherwise, the application will never really terminate and the listener will
get updates indefinitely. To do this, just call unregisterListener() from a
likely location, such as onDestroy():

@Override
public void onDestroy() {
 super.onDestroy();
 mgr.unregisterListener(listener);
}

Your SensorEventListener implementation will need two methods. The one
you probably will not use that often is onAccuracyChanged(), when you will
be notified as a given sensor's accuracy changes from
SENSOR_STATUS_ACCURACY_HIGH to SENSOR_STATUS_ACCURACY_MEDIUM to
SENSOR_STATUS_ACCURACY_LOW to SENSOR_STATUS_UNRELIABLE.

The one you will use more commonly is onSensorChanged(), where you are
provided a SensorEvent containing a float[] of values for the sensor. The
tricky part is determining what these sensor values mean.

In the case of TYPE_ORIENTATION, the first of the supplied values represents
the orientation of the device in degrees off of magnetic north. 90 degrees
means east, 180 means south, and 270 means west, just like on a regular
compass.

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

In Sensor/Compass, we update a TextView with each reading:

private SensorEventListener listener=new SensorEventListener() {
 public void onSensorChanged(SensorEvent e) {
 if (e.sensor.getType()==Sensor.TYPE_ORIENTATION) {
 degrees.setText(String.valueOf(e.values[0]));
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // unused
 }
};

What you get is a trivial application showing where the top of the phone is
pointing. Note that the sensor seems to take a bit to get initially stabilized,
then will tend to lag actual motion a bit.

Figure 59. The CompassDemo application, showing a T-Mobile G1 pointing
south-by-southeast

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

Steering Your Phone

In television commercials for other mobile devices, you may see them being
used like a steering wheel, often times for playing a driving simulation
game.

Android can do this too. You can see it in the Sensor/Steering sample
application.

In the preceding section, we noted that TYPE_ORIENTATION returns in the first
value of the float[] the orientation of the phone, compared to magnetic
north, if the device is horizontal. When the device is held like a steering
wheel, the second value of the float[] will change as the device is "steered".

This sample application is very similar to the Sensor/Compass one shown in
the previous section. The biggest change comes in the SensorEventListener
implementation:

private SensorEventListener listener=new SensorEventListener() {
 public void onSensorChanged(SensorEvent e) {
 if (e.sensor.getType()==Sensor.TYPE_ORIENTATION) {
 float orientation=e.values[1];

 if (prevOrientation!=orientation) {
 if (prevOrientation<orientation) {
 steerLeft(orientation,
 orientation-prevOrientation);
 }
 else {
 steerRight(orientation,
 prevOrientation-orientation);
 }

 prevOrientation=e.values[1];
 }
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // unused
 }
};

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

Here, we track the previous orientation (prevOrientation) and call a
steerLeft() or steerRight() method based on which direction the "wheel" is
turned. For each, we provide the new current position of the wheel and the
amount the wheel turned, measured in degrees.

The steerLeft() and steerRight() methods, in turn, simply dump their
results to a "transcript": a TextView inside a ScrollView, set up to
automatically keep scrolling to the bottom:

private void steerLeft(float position, float delta) {
 StringBuffer line=new StringBuffer("Steered left by ");

 line.append(String.valueOf(delta));
 line.append(" to ");
 line.append(String.valueOf(position));
 line.append("\n");
 transcript.setText(transcript.getText().toString()+line.toString());
 scroll.fullScroll(View.FOCUS_DOWN);
}

private void steerRight(float position, float delta) {
 StringBuffer line=new StringBuffer("Steered right by ");

 line.append(String.valueOf(delta));
 line.append(" to ");
 line.append(String.valueOf(position));
 line.append("\n");
 transcript.setText(transcript.getText().toString()+line.toString());
 scroll.fullScroll(View.FOCUS_DOWN);
}

The result is a log of the steering "events" as the device is turned like a
steering wheel. Obviously, a real game would translate these events into
game actions, such as changing your perspective of the driving course.

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

Figure 60. The SteeringDemo application

Do "The Shake"

Another demo you often see with certain other mobile devices is shaking
the device to cause some on-screen effect, such as rolling dice or scrambling
puzzle pieces.

Android can do this as well, as you can see in the Sensor/Shaker sample
application, with our data provided by the accelerometer sensor
(TYPE_ACCELEROMETER).

What the accelerometer sensor provides is the accleration in each of three
dimensions. At rest, the acceleration is equal to Earth's gravity (or the
gravity of wherever you are, if you are not on Earth). When shaken, the
acceleration should be higher than Earth's gravity – how much higher is
dependent on how hard the device is being shaken. While the individual
axes of acceleration might tell you, at any point in time, what direction the
device is being shaken in, since a shaking action involves frequent constant
changes in direction, what we really want to know is how fast the device is
moving overall – a slow steady movement is not a shake, but something
more aggressive is.

Once again, our UI output is simply a "transcript" TextView as before. This
time, though, we separate out the actual shake-detection logic into a Shaker
class which our ShakerDemo activity references, as shown below:

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

package com.commonsware.android.sensor;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.ScrollView;
import android.widget.TextView;

public class ShakerDemo extends Activity
 implements Shaker.Callback {
 private Shaker shaker=null;
 private TextView transcript=null;
 private ScrollView scroll=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 transcript=(TextView)findViewById(R.id.transcript);
 scroll=(ScrollView)findViewById(R.id.scroll);

 shaker=new Shaker(this, 1.25d, 500, this);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 shaker.close();
 }

 public void shakingStarted() {
 Log.d("ShakerDemo", "Shaking started!");
 transcript.setText(transcript.getText().toString()+"Shaking started\n");
 scroll.fullScroll(View.FOCUS_DOWN);
 }

 public void shakingStopped() {
 Log.d("ShakerDemo", "Shaking stopped!");
 transcript.setText(transcript.getText().toString()+"Shaking stopped\n");
 scroll.fullScroll(View.FOCUS_DOWN);
 }
}

The Shaker takes four parameters:

• A Context, so we can get access to the SensorManager service

• An indication of how hard a shake should qualify as a shake,
expressed as a ratio applied to Earth's gravity, so a value of 1.25

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

means the shake has to be 25% stronger than gravity to be
considered a shake

• An amount of time with below-threshold acceleration, after which
the shake is considered "done"

• A Shaker.Callback object that will be notified when a shake starts
and stops

While in this case, the callback methods (implemented on the ShakerDemo
activity itself) simply log shake events to the transcript, a "real" application
would, say, start an animation of dice rolling when the shake starts and end
the animation shortly after the shake ends.

The Shaker simply converts the three individual acceleration components
into a combined acceleration value (square root of the sum of the squares),
then compares that value to Earth's gravity. If the ratio is higher than the
supplied threshold, then we consider the device to be presently shaking,
and we call the shakingStarted() callback method if the device was not
shaking before. Once shaking ends, and time elapses, we call
shakingStopped() on the callback object and assume that the shake has
ended. A more robust implementation of Shaker would take into account
the possibility that the sensor will not be updated for a while after the
shake ends, though in reality, normal human movement will ensure that
there are some sensor updates, so we can find out when the shaking ends.

package com.commonsware.android.sensor;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.SystemClock;
import java.util.ArrayList;
import java.util.List;

public class Shaker {
 private SensorManager mgr=null;
 private long lastShakeTimestamp=0;
 private double threshold=1.0d;
 private long gap=0;
 private Shaker.Callback cb=null;

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

 public Shaker(Context ctxt, double threshold, long gap,
 Shaker.Callback cb) {
 this.threshold=threshold*threshold;
 this.threshold=this.threshold
 *SensorManager.GRAVITY_EARTH
 *SensorManager.GRAVITY_EARTH;
 this.gap=gap;
 this.cb=cb;

 mgr=(SensorManager)ctxt.getSystemService(Context.SENSOR_SERVICE);
 mgr.registerListener(listener,
 mgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_UI);
 }

 public void close() {
 mgr.unregisterListener(listener);
 }

 private void isShaking() {
 long now=SystemClock.uptimeMillis();

 if (lastShakeTimestamp==0) {
 lastShakeTimestamp=now;

 if (cb!=null) {
 cb.shakingStarted();
 }
 }
 else {
 lastShakeTimestamp=now;
 }
 }

 private void isNotShaking() {
 long now=SystemClock.uptimeMillis();

 if (lastShakeTimestamp>0) {
 if (now-lastShakeTimestamp>gap) {
 lastShakeTimestamp=0;

 if (cb!=null) {
 cb.shakingStopped();
 }
 }
 }
 }

 public interface Callback {
 void shakingStarted();
 void shakingStopped();
 }

 private SensorEventListener listener=new SensorEventListener() {

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sensors

 public void onSensorChanged(SensorEvent e) {
 if (e.sensor.getType()==Sensor.TYPE_ACCELEROMETER) {
 double netForce=e.values[0]*e.values[0];

 netForce+=e.values[1]*e.values[1];
 netForce+=e.values[2]*e.values[2];

 if (threshold<netForce) {
 isShaking();
 }
 else {
 isNotShaking();
 }
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // unused
 }
 };
}

All the transcript shows, of course, is when shaking starts and stops:

Figure 61. The ShakerDemo application, showing a pair of shakes

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 13

Handling System Events

If you have ever looked at the list of available Intent actions in the SDK
documentation for the Intent class, you will see that there are lots of
possible actions.

There are even actions that are not listed in that spot in the documentation,
but are scattered throughout the rest of the SDK documentation.

The vast majority of these you will never raise yourself. Instead, they are
broadcast by Android, to signify certain system events that have occurred
and that you might want to take note of, if they affect the operation of your
application.

This chapter examines a few of these, to give you the sense of what is
possible and how to make use of these sorts of events.

Get Moving, First Thing

A popular request is to have a service get control when the device is
powered on.

This is doable but somewhat dangerous, in that too many on-boot requests
slow down the device startup and may make things sluggish for the user.
Moreover, the more services that are running all the time, the worse the
device performance will be.

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

A better pattern is to get control on boot to arrange for a service to do
something periodically using the AlarmManager or via other system events. In
this section, we will examine the on-boot portion of the problem – in the
next chapter, we will investigate AlarmManager and how it can keep services
active yet not necessarily resident in memory all the time.

The Permission

In order to be notified when the device has completed is system boot
process, you will need to request the RECEIVE_BOOT_COMPLETED permission.
Without this, even if you arrange to receive the boot broadcast Intent, it
will not be dispatched to your receiver.

As the Android documentation describes it:

Though holding this permission does not have any security
implications, it can have a negative impact on the user expe-
rience by increasing the amount of time it takes the system
to start and allowing applications to have themselves run-
ning without the user being aware of them. As such, you
must explicitly declare your use of this facility to make that
visible to the user.

The Receiver Element

There are two ways you can receive a broadcast Intent. One is to use
registerReceiver() from an existing Activity, Service, or ContentProvider.
The other is to register your interest in the Intent in the manifest in the
form of a <receiver> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sysevents.boot"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk
 android:minSdkVersion="3"

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

 android:targetSdkVersion="6"
 />
 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <application android:label="@string/app_name">
 <receiver android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

The above AndroidManifest.xml, from the SystemEvents/OnBoot sample
project, shows that we have registered a broadcast receiver named
OnBootReceiver, set to be given control when the
android.intent.action.BOOT_COMPLETED Intent is broadcast.

In this case, we have no choice but to implement our receiver this way – by
the time any of our other components (e.g., an Activity) were to get control
and be able to call registerReceiver(), the BOOT_COMPLETED Intent will be
long gone.

The Receiver Implementation

Now that we have told Android that we would like to be notified when the
boot has completed, and given that we have been granted permission to do
so by the user, we now need to actually do something to receive the Intent.
This is a simple matter of creating a BroadcastReceiver, such as seen in the
OnBootCompleted implementation shown below:

package com.commonsware.android.sysevents.boot;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class OnBootReceiver extends BroadcastReceiver {
 @Override

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

 public void onReceive(Context context, Intent intent) {
 Log.d("OnBootReceiver", "Hi, Mom!");
 }
}

A BroadcastReceiver is not a Context, and so it gets passed a suitable Context
object in onReceive() to use for accessing resources and the like. The
onReceive() method also is passed the Intent that caused our
BroadcastReceiver to be created, in case there are "extras" we need to pull
out (none in this case).

In onReceive(), we can do whatever we want, subject to some limitations:

1. We are not a Context, like an Activity, so we cannot modify a UI or
anything such as that

2. If we want to do anything significant, it is better to delegate that
logic to a service that we start from here (e.g., calling startService()
on the supplied Context) rather than actually doing it here, since
BroadcastReceiver implementations need to be fast

3. We cannot start any background threads, directly or indirectly,
since the BroadcastReceiver gets discarded as soon as onReceive()
returns

In this case, we simply log the fact that we got control. In the next chapter,
we will see what else we can do at boot time, to ensure one of our services
gets control later on as needed.

To test this, install it on an emulator (or device), shut down the emulator,
then restart it.

I Sense a Connection Between Us...

Generally speaking, Android applications do not care what sort of Internet
connection is being used – 3G, GPRS, WiFi, lots of trained carrier pigeons,
or whatever. So long as there is an Internet connection, the application is
happy.

216

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.faqs.org/rfcs/rfc1149.html

Handling System Events

Sometimes, though, you may specifically want WiFi. This would be true if
your application is bandwidth-intensive and you want to ensure that,
should WiFi stop being available, you cut back on your work so as not to
consume too much 3G/GPRS bandwidth, which is usually subject to some
sort of cap or metering.

There is an android.net.wifi.WIFI_STATE_CHANGED Intent that will be
broadcast, as the name suggests, whenever the state of the WiFi connection
changes. You can arrange to receive this broadcast and take appropriate
steps within your application.

This Intent requires no special permission, unlike the BOOT_COMPLETED Intent
from the previous section. Hence, all you need to do is register a
BroadcastReceiver for android.net.wifi.WIFI_STATE_CHANGED, either via
registerReceiver(), or via the <receiver> element in AndroidManifest.xml,
such as the one shown below, from the SystemEvents/OnWiFiChange sample
project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sysevents.wifi"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name">
 <receiver android:name=".OnWiFiChangeReceiver">
 <intent-filter>
 <action android:name="android.net.wifi.WIFI_STATE_CHANGED" />
 </intent-filter>
 </receiver>
 </application>
</manifest>

All we do in the manifest is tell Android to create an OnWiFiChangeReceiver
object when a android.net.wifi.WIFI_STATE_CHANGED Intent is broadcast, so
the receiver can do something useful.

In the case of OnWiFiChangeReceiver, it examines the value of the
EXTRA_WIFI_STATE "extra" in the supplied Intent and logs an appropriate
message:

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

package com.commonsware.android.sysevents.wifi;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.net.wifi.WifiManager;
import android.util.Log;

public class OnWiFiChangeReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 int state=intent.getIntExtra(WifiManager.EXTRA_WIFI_STATE, -1);
 String msg=null;

 switch (state) {
 case WifiManager.WIFI_STATE_DISABLED:
 msg="is disabled";
 break;

 case WifiManager.WIFI_STATE_DISABLING:
 msg="is disabling";
 break;

 case WifiManager.WIFI_STATE_ENABLED:
 msg="is enabled";
 break;

 case WifiManager.WIFI_STATE_ENABLING:
 msg="is enabling";
 break;

 case WifiManager.WIFI_STATE_UNKNOWN :
 msg="has an error";
 break;

 default:
 msg="is acting strangely";
 break;
 }

 if (msg!=null) {
 Log.d("OnWiFiChanged", "WiFi "+msg);
 }
 }
}

The EXTRA_WIFI_STATE "extra" tells you what the state has become (e.g., we
are now disabling or are now disabled), so you can take appropriate steps in
your application.

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

Note that, to test this, you will need an actual Android device, as the
emulator does not specifically support simulating WiFi connections.

Feeling Drained

One theme with system events is to use them to help make your users
happier by reducing your impacts on the device while the device is not in a
great state. In the preceding section, we saw how you could find out when
WiFi was disabled, so you might not use as much bandwidth when on
3G/GPRS. However, not every application uses so much bandwidth as to
make this optimization worthwhile.

However, most applications are impacted by battery life. Dead batteries run
no apps.

So whether you are implementing a battery monitor or simply want to
discontinue background operations when the battery gets low, you may
wish to find out how the battery is doing.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging
(e.g., the device is now plugged into AC power). You simply need to register
to receive this Intent when it is broadcast, then take appropriate steps.

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver as shown in the
preceding two sections.

In SystemEvents/OnBattery, you will find a layout containing a ProgressBar, a
TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

 >
 <ProgressBar android:id="@+id/bar"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView android:id="@+id/level"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textSize="16pt"
 />
 <ImageView android:id="@+id/status"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 />
 </LinearLayout>
</LinearLayout>

This layout is used by a BatteryMonitor activity, which registers to receive
the ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in
onPause():

package com.commonsware.android.sysevents.battery;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.os.BatteryManager;
import android.widget.ProgressBar;
import android.widget.ImageView;
import android.widget.TextView;

public class BatteryMonitor extends Activity {
 private ProgressBar bar=null;
 private ImageView status=null;
 private TextView level=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bar=(ProgressBar)findViewById(R.id.bar);

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

 status=(ImageView)findViewById(R.id.status);
 level=(TextView)findViewById(R.id.level);
 }

 @Override
 public void onResume() {
 super.onResume();

 registerReceiver(onBatteryChanged,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 }

 @Override
 public void onPause() {
 super.onPause();

 unregisterReceiver(onBatteryChanged);
 }

 BroadcastReceiver onBatteryChanged=new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 int pct=100*intent.getIntExtra("level", 1)/intent.getIntExtra("scale", 1);

 bar.setProgress(pct);
 level.setText(String.valueOf(pct));

 switch(intent.getIntExtra("status", -1)) {
 case BatteryManager.BATTERY_STATUS_CHARGING:
 status.setImageResource(R.drawable.charging);
 break;

 case BatteryManager.BATTERY_STATUS_FULL:
 int plugged=intent.getIntExtra("plugged", -1);

 if (plugged==BatteryManager.BATTERY_PLUGGED_AC ||
 plugged==BatteryManager.BATTERY_PLUGGED_USB) {
 status.setImageResource(R.drawable.full);
 }
 else {
 status.setImageResource(R.drawable.unplugged);
 }
 break;

 default:
 status.setImageResource(R.drawable.unplugged);
 break;
 }
 }
 };
}

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

The key to ACTION_BATTERY_CHANGED is in the "extras". Many "extras" are
packaged in the Intent, to describe the current state of the battery, such as
the following constants defined on the BatteryManager class:

• EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD

• EXTRA_LEVEL, which is the proportion of battery life remaining as an
integer, specified on the scale described by the scale "extra"

• EXTRA_PLUGGED, which will indicate if the device is plugged into AC
power (BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)

• EXTRA_SCALE, which indicates the maximum possible value of level
(e.g., 100, indicating that level is a percentage of charge remaining)

• EXTRA_STATUS, which will tell you if the battery is charging
(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

• EXTRA_TECHNOLOGY, which indicates what sort of battery is installed
(e.g., "Li-Ion")

• EXTRA_TEMPERATURE, which tells you how warm the battery is, in
tenths of a degree Celsius (e.g., 213 is 21.3 degrees Celsius)

• EXTRA_VOLTAGE, indicating the current voltage being delivered by the
battery, in millivolts

In the case of BatteryMonitor, when we receive an ACTION_BATTERY_CHANGED
Intent, we do three things:

1. We compute the percentage of battery life remaining, by dividing
the level by the scale

2. We update the ProgressBar and TextView to display the battery life as
a percentage

3. We display an icon, with the icon selection depending on whether
we are charging (status is BATTERY_STATUS_CHARGING), full but on the
charger (status is BATTERY_STATUS_FULL and plugged is
BATTERY_PLUGGED_AC or BATTERY_PLUGGED_USB), or are not plugged in

This only really works on a device, where you can plug and unplug it, plus
get a varying charge level:

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

Figure 62. The BatteryMonitor application

Sticky Intents and the Battery

Android has a notion of "sticky broadcast Intents". Normally, a broadcast
Intent will be delivered to interested parties and then discarded. A sticky
broadcast Intent is delivered to interested parties and retained until the
next matching Intent is broadcast. Applications can call registerReceiver()
with an IntentFilter that matches the sticky broadcast, but with a null
BroadcastReceiver, and get the sticky Intent back as a result of the
registerReceiver() call.

This may sound confusing. Let's look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to
get information about the battery delivered to you. You can also, though,
get the latest battery information without registering a receiver. Just create
an IntentFilter to match ACTION_BATTERY_CHANGED (as shown above) and call
registerReceiver() with that filter and a null BroadcastReceiver. The Intent
you get back from registerReceiver() is the last ACTION_BATTERY_CHANGED
Intent that was broadcast, with the same extras. Hence, you can use this to

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Handling System Events

get the current (or near-current) battery status, rather than having to
bother registering an actual BroadcastReceiver.

Other Power Triggers

If you are only interested in knowing when the device has been attached to,
or detached from, a source of external power, there are different broadcast
Intent actions you can monitor: ACTION_POWER_CONNECTED and
ACTION_POWER_DISCONNECTED. These are only broadcast when the power source
changes, not just every time the battery changes charge level. Hence, these
will be more efficient, as your code will be invoked less frequently. Better
still, you can use manifest-registered broadcast receivers for these,
bypassing the limits the system puts on ACTION_BATTERY_CHANGED.

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 14

Using System Services

Android offers a number of system services, usually obtained by
getSystemService() from your Activity, Service, or other Context. These are
your gateway to all sorts of capabilities, from settings to volume to WiFi.
Throughout the course of this book and its companion, we have seen
several of these system services. In this chapter, we will take a look at others
that may be of value to you in building compelling Android applications.

Get Alarmed

A common question when doing Android development is "where do I set
up cron jobs?"

The cron utility – popular in Linux – is a way of scheduling work to be done
periodically. You teach cron what to run and when to run it (e.g., weekdays
at noon), and cron takes care of the rest. Since Android has a Linux kernel
at its heart, one might think that cron might literally be available.

While cron itself is not, Android does have a system service named
AlarmManager which fills a similar role. You give it a PendingIntent and a time
(and optionally a period for repeating) and it will fire off the Intent as
needed. By this mechanism, you can get a similar effect to cron.

There is one small catch, though: Android is designed to run on mobile
devices, particularly ones powered by all-too-tiny batteries. If you want

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android/

Using System Services

your periodic tasks to be run even if the device is "asleep", you will need to
take a fair number of extra steps, mostly stemming around the concept of
the WakeLock.

Concept of WakeLocks

Most of the time in Android, you are developing code that will run while
the user is actually using the device. Activities, for example, only really
make sense when the device is fully awake and the user is tapping on the
screen or keyboard.

Particularly with scheduled background tasks, though, you need to bear in
mind that the device will eventually "go to sleep". In full sleep mode, the
display, main CPU, and keyboard are all powered off, to maximize battery
life. Only on a low-level system event, like an incoming phone call, will
anything wake up.

Another thing that will partially wake up the phone is an Intent raised by
the AlarmManager. So long as broadcast receivers are processing that Intent,
the AlarmManager ensures the CPU will be running (though the screen and
keyboard are still off). Once the broadcast receivers are done, the
AlarmManager lets the device go back to sleep.

You can achieve the same effect in your code via a WakeLock, obtained via the
PowerManager system service. When you acquire a "partial WakeLock"
(PARTIAL_WAKE_LOCK), you prevent the CPU from going back to sleep until
you release said WakeLock. By proper use of a partial WakeLock, you can ensure
the CPU will not get shut off while you are trying to do background work,
while still allowing the device to sleep most of the time, in between alarm
events.

However, using a WakeLock is a bit tricky, particularly when responding to
an alarm Intent, as we will see in the next few sections. The good news is
that CommonsWare has packaged up a pattern for dealing with this
situation – an alarm triggering work that needs to keep the device awake –
in a component called the WakefulIntentService.

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

The WakeLock Problem

The AlarmManager will arrange for the device to stay awake, via a WakeLock,
for as long as the BroadcastReceiver's onReceive() method is executing. For
some situations, that may be all that is needed. However, onReceive() is
called on the main application thread, and Android will kill off the receiver
if it takes too long.

Your natural inclination in this case is to have the BroadcastReceiver
arrange for a Service to do the long-running work on a background thread,
since BroadcastReceiver objects should not be starting their own threads.
Perhaps you would use an IntentService, which packages up this "start a
Service to do some work in the background" pattern. And, given the
preceding section, you might try acquiring a partial WakeLock at the
beginning of the work and release it at the end of the work, so the CPU will
keep running while your IntentService does its thing.

This strategy will work...some of the time.

The problem is that there is a gap in WakeLock coverage, as depicted in the
following diagram:

Figure 63. The WakeLock gap

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after onReceive() ends.
As a result, there is a window of time between the end of onReceive() and
when your IntentService can acquire its own WakeLock. During that window,
the device might fall back asleep. Sometimes it will, sometimes it will not.

What you need to do, instead, is arrange for overlapping WakeLock instances.
You need to acquire a WakeLock in your BroadcastReceiver, during the
onReceive() execution, and hold onto that WakeLock until the work is
completed by the IntentService:

Figure 64. The WakeLock overlap

Then you are assured that the device will stay awake as long as the work
remains to be done.

The following sections will show how you can achieve this effect.

Scheduling Alarms

The first step to creating a cron workalike is to arrange to get control when
the device boots. After all, the cron daemon starts on boot as well, and we
have no other way of ensuring that our background tasks start firing after a
phone is reset.

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

We saw how to do that in a previous chapter – set up an
RECEIVE_BOOT_COMPLETED BroadcastReceiver, with appropriate permissions.
Here, for example, is the AndroidManifest.xml from SystemServices/Alarm:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.syssvc.alarm"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"
 />
 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission android:name="android.permission.WAKE_LOCK" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name">
 <receiver android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver">
 </receiver>
 <service android:name=".AppService">
 </service>
 </application>
</manifest>

We ask for an OnBootReceiver to get control when the device starts up, and it
is in OnBootReceiver that we schedule our recurring alarm:

package com.commonsware.android.syssvc.alarm;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;
import android.util.Log;

public class OnBootReceiver extends BroadcastReceiver {
 private static final int PERIOD=300000; // 5 minutes

 @Override

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

 public void onReceive(Context context, Intent intent) {
 AlarmManager
mgr=(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
 Intent i=new Intent(context, OnAlarmReceiver.class);
 PendingIntent pi=PendingIntent.getBroadcast(context, 0,
 i, 0);

 mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()+60000,
 PERIOD,
 pi);
 }
}

We get the AlarmManager via getSystemService(), create an Intent referencing
another BroadcastReceiver (OnAlarmReceiver), wrap that Intent in a
PendingIntent, and tell the AlarmManager to set up a repeating alarm via
setRepeating(). By saying we want a ELAPSED_REALTIME_WAKEUP alarm, we
indicate that we want the alarm to wake up the device (even if it is asleep)
and to express all times using the time base used by
SystemClock.elapsedRealtime(). In this case, our alarm is set to go off every
five minutes.

This will cause the AlarmManager to raise our Intent imminently, and every
five minutes thereafter.

Arranging for Work From Alarms

When an alarm goes off, our OnAlarmReceiver will get control. It needs to
arrange for a service (in this case, named AppService) to do its work in the
background, but then release control quickly – onReceive() cannot take very
much time.

Here is the tiny implementation of OnAlarmReceiver from
SystemServices/Alarm:

package com.commonsware.android.syssvc.alarm;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

public class OnAlarmReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 WakefulIntentService.acquireStaticLock(context);

 context.startService(new Intent(context, AppService.class));
 }
}

While there is very little code in this class, it is merely deceptively simple.

First, we acquire a WakeLock from our AppService's parent class,
WakefulIntentService, via acquireStaticLock(), shown below:

private static PowerManager.WakeLock lockStatic=null;

public static void acquireStaticLock(Context context) {
 getLock(context).acquire();
}

synchronized private static PowerManager.WakeLock getLock(Context context) {
 if (lockStatic==null) {
 PowerManager
mgr=(PowerManager)context.getSystemService(Context.POWER_SERVICE);

 lockStatic=mgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
 LOCK_NAME_STATIC);
 lockStatic.setReferenceCounted(true);
 }

 return(lockStatic);
}

The getLock() implementation lazy-creates our WakeLock by getting the
PowerManager, creating a new partial WakeLock, and setting it to be reference
counted (meaning if it is acquired several times, it takes a corresponding
number of release() calls to truly release the lock). If we have already
retrieved the WakeLock in a previous invocation, we reuse the same lock.

Back in OnAlarmReceiver, up until this point, the CPU was running because
AlarmManager held a partial WakeLock. Now, the CPU is running because both
AlarmManager and WakefulIntentService hold a partial WakeLock.

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

Then, OnAlarmReceiver starts the AppService instance (remember:
acquireStaticLock() was a static method) and exits. Notably,
OnAlarmReceiver does not release the WakeLock it acquired. This is important,
as we need to ensure that the service can get its work done while the CPU is
running. Had we released the WakeLock before returning, it is possible that
the device would fall back asleep before our service had a chance to acquire
a fresh WakeLock. This is one of the keys of using WakeLock successfully – as
needed, use overlapping WakeLock instances to ensure constant coverage as
you pass from component to component.

Now, our service will start up and be able to do something, while the CPU is
running due to our acquired WakeLock.

Staying Awake At Work

So, AppService will now get control, under an active WakeLock. At minimum,
our service will be called via onStart(), and possibly also onCreate() if the
service had been previously stopped. Our mission is to do our work and
release the WakeLock.

Since services should not do long-running tasks in onStart(), we could fork
a Thread, have it do the work in the background, then have it release the
WakeLock. Note that we cannot release the WakeLock in onStart() in this case
– just because we have a background thread does not mean the device will
keep the CPU running.

There are issues with forking a Thread for every incoming request, though:

• If the work needed to be done sometimes takes longer than the
alarm period, we could wind up with many background threads,
which is inefficient. It also means our WakeLock management gets
much trickier, since we will not have released the WakeLock before
the alarm tries to acquire() it again.

• If we also are invoked in onStart() via some foreground activity, we
might wind up with many more bits of work to be done, again

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

causing confusion with our WakeLock and perhaps slowing things
down due to too many background threads.

Android has a class that helps with parts of this, IntentService. It arranges
for a work queue of inbound Intents – rather than overriding onStart(), you
override onHandleIntent(), which is called from a background thread.
Android handles all the details of shutting down your service when there is
no more outstanding work, managing the background thread, and so on.

However, IntentService does not do anything to hold a WakeLock.

Hence, this sample project uses WakefulIntentService as a subclass of
IntentService. WakefulIntentService handles most of the WakeLock logic, so
AppService (inheriting from WakefulIntentService) can just focus on the
work it needs to do. You can find the WakefulIntentService in the
CommonsWare set of github repositories, as it is one of the CommonsWare
Android Components (CWAC), which we will explore in greater detail in a
future edition of this book.

WakefulIntentService handles the WakeLock logic in two components:

1. It offers the public static method acquireStaticLock(), which needs
to be called by whoever is calling startService() on our
WakefulIntentService subclass.

2. In onHandleIntent(), it releases the static WakeLock. Since this
WakeLock is reference-counted, the lock will only fully release once
every Intent enqueued by onStart() has been handled by
onHandleIntent(). It requires subclasses to implement
doWakefulWork() – in there, the subclass can do whatever it might
ordinarily have done in onHandleIntent(), just with the assurance
that the device will stay awake while doing it.

With all that supporting us, AppService need only implement
doWakefulWork() and do its work:

package com.commonsware.android.syssvc.alarm;

import android.content.Intent;

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://github.com/commonsguy/cwac-wakeful

Using System Services

import android.os.Environment;
import android.util.Log;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Date;

public class AppService extends WakefulIntentService {
 public AppService() {
 super("AppService");
 }

 @Override
 protected void doWakefulWork(Intent intent) {
 File log=new File(Environment.getExternalStorageDirectory(),
 "AlarmLog.txt");

 try {
 BufferedWriter out=new BufferedWriter(
 new FileWriter(log.getAbsolutePath(),
 log.exists()));

 out.write(new Date().toString());
 out.write("\n");
 out.close();
 }
 catch (IOException e) {
 Log.e("AppService", "Exception appending to log file", e);
 }
 }
}

The "fake work" being done by this AppService is simply logging the fact
that work needed to be done to a log file on the SD card.

Note that if you attempt to build and run this project that you will need an
SD card in the device (or card image attached to your emulator).

Note that there is another kind of "wake lock": WifiLock. As the name
suggests, this keeps the WiFi radio on even if the device is idle. Ordinarily,
the WiFi radio shuts down after a period of inactivity, to save battery life. If
you are downloading large files or otherwise need continuous WiFi access
while your application is running, consider a WifiLock, but do not overuse
it.

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

Setting Expectations

If you have an Android device, you probably have spent some time in the
Settings application, tweaking your device to work how you want –
ringtones, WiFi settings, USB debugging, etc. Many of those settings are
also available via Settings class (in the android.provider package), and
particularly the Settings.System and Settings.Secure public inner classes.

Basic Settings

Settings.System allows you to get and, with the WRITE_SETTINGS permission,
alter these settings. As one might expect, there are a series of typed getter
and setter methods on Settings.System, each taking a key as a parameter.
The keys are class constants, such as:

• INSTALL_NON_MARKET_APPS to control whether you can install
applications on a device from outside of the Android Market

• LOCK_PATTERN_ENABLED to control whether the user needs to enter a
lock pattern to enable use of the device

• LOCK_PATTERN_VISIBLE to control whether the lock pattern is drawn
on-screen as it is swiped by the user, or if the swipes are "invisible"

The SystemServices/Settings project has a SettingsSetter sample
application that displays a checklist:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

Figure 65. The SettingsSetter application

The checklist itself is filled with a few BooleanSetting objects, which map a
display name with a Settings.System key:

static class BooleanSetting {
 String key;
 String displayName;
 boolean isSecure=false;

 BooleanSetting(String key, String displayName) {
 this(key, displayName, false);
 }

 BooleanSetting(String key, String displayName,
 boolean isSecure) {
 this.key=key;
 this.displayName=displayName;
 this.isSecure=isSecure;
 }

 @Override
 public String toString() {
 return(displayName);
 }

 boolean isChecked(ContentResolver cr) {
 try {
 int value=0;

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

 if (isSecure) {
 value=Settings.Secure.getInt(cr, key);
 }
 else {
 value=Settings.System.getInt(cr, key);
 }

 return(value!=0);
 }
 catch (Settings.SettingNotFoundException e) {
 Log.e("SettingsSetter", e.getMessage());
 }

 return(false);
 }

 void setChecked(ContentResolver cr, boolean value) {
 try {
 if (isSecure) {
 Settings.Secure.putInt(cr, key, (value ? 1 : 0));
 }
 else {
 Settings.System.putInt(cr, key, (value ? 1 : 0));
 }
 }

Three such settings are put in the list, and as the checkboxes are checked
and unchecked, the values are passed along to the settings themselves:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);
 setListAdapter(new ArrayAdapter(this,
 android.R.layout.simple_list_item_multiple_choi
ce,
 settings));

 ContentResolver cr=getContentResolver();

 for (int i=0;i<settings.size();i++) {
 BooleanSetting s=settings.get(i);

 getListView().setItemChecked(i, s.isChecked(cr));
 }
}

@Override
protected void onListItemClick(ListView l, View v,
 int position, long id) {

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

 super.onListItemClick(l, v, position, id);

 BooleanSetting s=settings.get(position);

 s.setChecked(getContentResolver(),
 l.isItemChecked(position));
}

The SettingsSetter activity also has an option menu containing four items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/app"
 android:title="Application"
 android:icon="@drawable/ic_menu_manage" />
 <item android:id="@+id/security"
 android:title="Security"
 android:icon="@drawable/ic_menu_close_clear_cancel" />
 <item android:id="@+id/wireless"
 android:title="Wireless"
 android:icon="@drawable/ic_menu_set_as" />
 <item android:id="@+id/all"
 android:title="All Settings"
 android:icon="@drawable/ic_menu_preferences" />
</menu>

These items correspond to four activity Intent values identified by the
Settings class:

menuActivities.put(R.id.app,
 Settings.ACTION_APPLICATION_SETTINGS);
menuActivities.put(R.id.security,
 Settings.ACTION_SECURITY_SETTINGS);
menuActivities.put(R.id.wireless,
 Settings.ACTION_WIRELESS_SETTINGS);
menuActivities.put(R.id.all,
 Settings.ACTION_SETTINGS);

When an option menu is chosen, the corresponding activity is launched:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 String activity=menuActivities.get(item.getItemId());

 if (activity!=null) {
 startActivity(new Intent(activity));

 return(true);
 }

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

 return(super.onOptionsItemSelected(item));
}

This way, you have your choice of either directly manipulating the settings
or merely making it easier for users to get to the Android-supplied activity
for manipulating those settings.

Secure Settings

You will notice that if you use the above code and try changing the value of
"Allow non-Market app installs", the application blows up.

Once upon a time – Android 1.1 and earlier – you could modify this setting.

Now, though, that setting is one that Android deems "secure". The constant
has been moved from Settings.System to Settings.Secure, though the old
constant is still there, flagged as deprecated.

These so-called "secure" settings are ones that Android does not allow
applications to change. No permission resolves this problem. The only
option is to display the official Settings activity and let the user change the
setting.

Can You Hear Me Now? OK, How About Now?

The fancier the device, the more complicated controlling sound volume
becomes.

On a simple MP3 player, there is usually only one volume control. That is
because there is only one source of sound: the music itself, played through
speakers or headphones.

In Android, though, there are several sources of sounds:

• Ringing, to signify an incoming call

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

• Voice calls

• Alarms, such as those raised by the Alarm Clock application

• System sounds (error beeps, USB connection signal, etc.)

• Music, as might come from the MP3 player

Android allows the user to configure each of these volume levels separately.
Usually, the user does this via the volume rocker buttons on the device, in
the context of whatever sound is being played (e.g., when on a call, the
volume buttons change the voice call volume). Also, there is a screen in the
Android Settings application that allows you to configure various volume
levels.

The AudioService in Android allows you, the developer, to also control these
volume levels, for all five "streams" (i.e., sources of sound). In the
SystemServices/Volume project, we create a Volumizer application that
displays and modifies all five volume levels.

Attaching SeekBars to Volume Streams

The standard widget for allowing choice along a range of integer values is
the SeekBar, a close cousin of the ProgressBar. SeekBar has a thumb that the
user can slide to choose a value between 0 and some maximum that you set.
So, we will use a set of five SeekBar widgets to control our five volume levels.

First, we need to create a layout with a SeekBar per stream:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/com.commonsware.android.syssvc.v
olume"
 android:stretchColumns="1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableRow
 android:paddingTop="10px"
 android:paddingBottom="20px">
 <TextView android:text="Alarm:" />
 <SeekBar

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

 android:id="@+id/alarm"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:paddingBottom="20px">
 <TextView android:text="Music:" />
 <SeekBar
 android:id="@+id/music"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:paddingBottom="20px">
 <TextView android:text="Ring:" />
 <SeekBar
 android:id="@+id/ring"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:paddingBottom="20px">
 <TextView android:text="System:" />
 <SeekBar
 android:id="@+id/system"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Voice:" />
 <SeekBar
 android:id="@+id/voice"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
</TableLayout>

Then, we need to wire up each of those bars in the onCreate() for Volumizer,
calling an initBar() method for each of the five bars:

public class Volumizer extends Activity {
 SeekBar alarm=null;
 SeekBar music=null;
 SeekBar ring=null;
 SeekBar system=null;
 SeekBar voice=null;
 AudioManager mgr=null;

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(AudioManager)getSystemService(Context.AUDIO_SERVICE);

 alarm=(SeekBar)findViewById(R.id.alarm);
 music=(SeekBar)findViewById(R.id.music);
 ring=(SeekBar)findViewById(R.id.ring);
 system=(SeekBar)findViewById(R.id.system);
 voice=(SeekBar)findViewById(R.id.voice);

 initBar(alarm, AudioManager.STREAM_ALARM);
 initBar(music, AudioManager.STREAM_MUSIC);
 initBar(ring, AudioManager.STREAM_RING);
 initBar(system, AudioManager.STREAM_SYSTEM);
 initBar(voice, AudioManager.STREAM_VOICE_CALL);
 }

 private void initBar(SeekBar bar, final int stream) {
 bar.setMax(mgr.getStreamMaxVolume(stream));
 bar.setProgress(mgr.getStreamVolume(stream));

 bar.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener() {

In initBar(), we set the appropriate size for the Meter bar via setMax(), set
the initial value via setProgress(), and hook up an OnSeekBarChangeListener
to find out when the user slides the bar, so we can set the volume on the
stream via the VolumeManager:

 boolean fromUser) {
 mgr.setStreamVolume(stream, progress,
 AudioManager.FLAG_PLAY_SOUND);
 }

 public void onStartTrackingTouch(SeekBar bar) {
 // no-op
 }

 public void onStopTrackingTouch(SeekBar bar) {
 // no-op
 }
 });
 }
}

The net result is that when the user slides a SeekBar, it adjusts the stream to
match:

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Using System Services

Figure 66. The Volumizer application

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 15

Your Own (Advanced) Services

In The Busy Coder's Guide to Android Development, we covered how to
create and consume services. Now, we can get into some more interesting
facets of service implementations, notably remote services, so your service
can serve activities outside of your application.

We start with an explanation of the inter-process communication (IPC)
mechanism offered in Android for allowing services to work with clients in
other applications. Then, we move onto the steps to allow a client to
connect to a remote service, before describing how to turn an ordinary
service into a remote one. We wrap by looking at how one can implement a
callback system to allow services, through IPC, to pass information back to
clients.

When IPC Attacks!

Services will tend to offer IPC as a means of interacting with activities or
other Android components. Each service declares what methods it is
making available over IPC; those methods are then available for other
components to call, with Android handling all the messy details involved
with making method calls across component or process boundaries.

The guts of this, from the standpoint of the developer, is expressed in AIDL:
the Android Interface Description Language. If you have used IPC
mechanisms like COM, CORBA, or the like, you will recognize the notion of

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

IDL. AIDL describes the public IPC interface, and Android supplies tools to
build the client and server side of that interface.

With that in mind, let's take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a "language-neutral" syntax. AIDL, on the
other hand, looks a lot like a Java interface. For example, here is some
AIDL:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

As with a Java interface, you declare a package at the top. As with a Java
interface, the methods are wrapped in an interface declaration (interface
IScript { ... }). And, as with a Java interface, you list the methods you are
making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

• Primitive values (int, float, double, boolean, etc.)

• String and CharSequence

• List and Map (from java.util)

• Any other AIDL-defined interfaces

• Any Java classes that implement the Parcelable interface, which is
Android's flavor of serialization

In the case of the latter two categories, you need to include import
statements referencing the names of the classes or interfaces that you are

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

using (e.g., import com.commonsware.android.ISomething). This is true even if
these classes are in your own package – you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or
inout can be changed by the service and those changes will be propagated
back to the client. Primitives (e.g., int) can only be in; we included in for
the AIDL for enable() just for illustration purposes.

Also, you cannot throw any exceptions. You will need to catch all
exceptions in your code, deal with them, and return failure indications
some other way (e.g., error code return values).

Name your AIDL files with the .aidl extension and place them in the
proper directory based on the package name.

When you build your project, either via an IDE or via Ant, the aidl utility
from the Android SDK will translate your AIDL into a server stub and a
client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the
service, either directly in the stub, or by routing the stub implementation to
other methods you have already written.

The mechanics of this are fairly straightforward:

• Create a private instance of the AIDL-generated .Stub class (e.g.,
IScript.Stub)

• Implement methods matching up with each of the methods you
placed in the AIDL

• Return this private instance from your onBind() method in the
Service subclass

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

Note that AIDL IPC calls are synchronous, and so the caller is blocked until
the IPC method returns. Hence, your services need to be quick about their
work.

We will see examples of service stubs later in this chapter.

A Consumer Economy

Of course, we need to have a client for AIDL-defined services, lest these
services feel lonely.

Bound for Success

To use an AIDL-defined service, you first need to create an instance of your
own ServiceConnection class. ServiceConnection, as the name suggests,
represents your connection to the service for the purposes of making IPC
calls.

Your ServiceConnection subclass needs to implement two methods:

1. onServiceConnected(), which is called once your activity is bound to
the service

2. onServiceDisconnected(), which is called if your connection ends
normally, such as you unbinding your activity from the service

Each of those methods receives a ComponentName, which simply identifies the
service you connected to. More importantly, onServiceConnected() receives
an IBinder instance, which is your gateway to the IPC interface. You will
want to convert the IBinder into an instance of your AIDL interface class, so
you can use IPC as if you were calling regular methods on a regular Java
class (IScript.Stub.asInterface(binder)).

To actually hook your activity to the service, call bindService() on the
activity:

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

bindService(new Intent(IScript.class.getName()),
 svcConn, Context.BIND_AUTO_CREATE);

The bindService() method takes three parameters:

1. An Intent representing the service you wish to invoke

2. Your ServiceConnection instance

3. A set of flags – most times, you will want to pass in
BIND_AUTO_CREATE, which will start up the service if it is not already
running

After your bindService() call, your onServiceConnected() callback in the
ServiceConnection will eventually be invoked, at which time your
connection is ready for use.

Request for Service

Once your service interface object is ready
(IScript.Stub.asInterface(binder)), you can start calling methods on it as
you need to. In fact, if you disabled some widgets awaiting the connection,
now is a fine time to re-enable them.

However, you will want to trap two exceptions. One is DeadObjectException
– if this is raised, your service connection terminated unexpectedly. In this
case, you should unwind your use of the service, perhaps by calling
onServiceDisconnected() manually, as shown above. The other is
RemoteException, which is a more general-purpose exception indicating a
cross-process communications problem. Again, you should probably cease
your use of the service.

Getting Unbound

When you are done with the IPC interface, call unbindService(), passing in
the ServiceConnection. Eventually, your connection's
onServiceDisconnected() callback will be invoked, at which point you should

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

null out your interface object, disable relevant widgets, or otherwise flag
yourself as no longer being able to use the service.

You can always reconnect to the service, via bindService(), if you need to
use it again.

Service From Afar

Everything from the preceding two sections could be used by local services.
In fact, that prose originally appeared in The Busy Coder's Guide to Android
Development specifically in the context of local services. However, AIDL
adds a fair bit of overhead, which is not necessary with local services. After
all, AIDL is designed to marshal its parameters and transport them across
process boundaries, which is why there are so many quirky rules about
what you can and cannot pass as parameters to your AIDL-defined APIs.

So, given our AIDL description, let us examine some implementations,
specifically for remote services.

Our sample applications – shown in the AdvServices/RemoteService and
AdvServices/RemoteClient sample projects – convert our Beanshell demo
from The Busy Coder's Guide to Android Development into a remote service.
If you actually wanted to use scripting in an Android application, with
scripts loaded off of the Internet, isolating their execution into a service
might not be a bad idea. In the service, those scripts are sandboxed, only
able to access files and APIs available to that service. The scripts cannot
access your own application's databases, for example. If the script-executing
service is kept tightly controlled, it minimizes the mischief a rogue script
could possibly do.

Service Names

To bind to a service's AIDL-defined API, you need to craft an Intent that can
identify the service in question. In the case of a local service, that Intent can
use the local approach of directly referencing the service class.

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

Obviously, that is not possible in a remote service case, where the service
class is not in the same process, and may not even be known by name to
the client.

When you define a service to be used by remote, you need to add an intent-
filter element to your service declaration in the manifest, indicating how
you want that service to be referred to by clients. The manifest for
RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.advservice"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"
 />
 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="@string/app_name">
 <service android:name=".BshService">
 <intent-filter>
 <action android:name="com.commonsware.android.advservice.IScript" />
 </intent-filter>
 </service>
 </application>
</manifest>

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IScript. So long as the client uses this
name to identify the service, it can bind to that service's API.

In this case, the name is not an implementation, but the AIDL API, as you
will see below. In effect, this means that so long as some service exists on
the device that implements this API, the client will be able to bind to
something.

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

The Service

Beyond the manifest, the service implementation is not too unusual. There
is the AIDL interface, IScript:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

And there is the actual service class itself, BshService:

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script) {
 executeScriptImpl(script);
 }
 };
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate() {
 super.onCreate();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

 }

 private void executeScriptImpl(String script) {
 try {
 i.eval(script);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }
}

If you have seen the service and Beanshell samples in The Busy Coder's
Guide to Android Development then this implementation will seem familiar.
The biggest thing to note is that the service returns no result and handles
any errors locally. Hence, the client will not get any response back from the
script – the script will just run. In a real implementation, this would be silly,
and we will work to rectify this later in this chapter.

Also note that, in this implementation, the script is executed directly by the
service on the calling thread. One might think this is not a problem, since
the service is in its own process and, therefore, cannot possibly be using the
client's UI thread. However, AIDL IPC calls are synchronous, so the client
will still block waiting for the script to be executed. This too will be
corrected later in this chapter.

The Client

The client – BshServiceDemo out of AdvServices/RemoteClient – is a fairly
straight-forward mashup of the service and Beanshell clients, with two
twists:

package com.commonsware.android.advservice.client;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.view.View;

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

import android.widget.Button;
import android.widget.EditText;
import com.commonsware.android.advservice.IScript;

public class BshServiceDemo extends Activity {
 private IScript service=null;
 private ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder binder) {
 service=IScript.Stub.asInterface(binder);
 }

 public void onServiceDisconnected(ComponentName className) {
 service=null;
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src);
 }
 catch (android.os.RemoteException e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
 });

 bindService(new Intent(IScript.class.getName()),
 svcConn, Context.BIND_AUTO_CREATE);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 unbindService(svcConn);

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

 }
}

One twist is that the client needs its own copy of IScript.aidl. After all, it is
a totally separate application, and therefore does not share source code
with the service. In a production environment, we might craft and
distribute a JAR file that contains the IScript classes, so both client and
service can work off the same definition (see the upcoming chapter on
reusable components). For now, we will just have a copy of the AIDL.

Then, the bindService() call uses a slightly different Intent, one that
references the name of the AIDL interface's class implementation. That
happens to be the name the service is registered under, and that is the glue
that allows the client to find the matching service.

If you compile both applications and upload them to the device, then start
up the client, you can enter in Beanshell code and have it be executed by
the service. Note, though, that you cannot perform UI operations (e.g., raise
a Toast) from the service. If you choose some script that is long-running,
you will see that the Go! button is blocked until the script is complete:

Figure 67. The BshServiceDemo application, running a long script

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

Servicing the Service

The preceding section outlined two flaws in the implementation of the
Beanshell remote service:

1. The client received no results from the script execution

2. The client blocked waiting for the script to complete

If we were not worried about the blocking-call issue, we could simply have
the executeScript() exported API return some sort of result (e.g., toString()
on the result of the Beanshell eval() call). However, that would not solve
the fact that calls to service APIs are synchronous even for remote services.

Another approach would be to pass some sort of callback object with
executeScript(), such that the server could run the script asynchronously
and invoke the callback on success or failure. This, though, implies that
there is some way to have the activity export an API to the service.

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (AdvServices/RemoteServiceEx and
AdvServices/RemoteClientEx).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces and
stub implementations. In the preceding example, we used AIDL to have the
service flesh out the stub implementation and have the client access the
service via the AIDL-defined interface. However, there is nothing magic
about services implementing and clients accessing – it is equally possible to
reverse matters and have the client implement something the service uses
via an interface.

So, for example, we could create an IScriptResult.aidl file:

package com.commonsware.android.advservice;

// Declare the interface.

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

interface IScriptResult {
 void success(String result);
 void failure(String error);
}

Then, we can augment IScript itself, to pass an IScriptResult with
executeScript():

package com.commonsware.android.advservice;

import com.commonsware.android.advservice.IScriptResult;

// Declare the interface.
interface IScript {
 void executeScript(String script, IScriptResult cb);
}

Notice that we need to specifically import IScriptResult, just like we might
import some "regular" Java interface. And, as before, we need to make sure
the client and the server are working off of the same AIDL definitions, so
these two AIDL files need to be replicated across each project.

But other than that one little twist, this is all that is required, at the AIDL
level, to have the client pass a callback object to the service: define the
AIDL for the callback and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to
make use of this callback object.

Revising the Client

On the client, we need to implement an IScriptResult. On success(), we
can do something like raise a Toast; on failure(), we can perhaps show an
AlertDialog.

The catch is that we cannot be certain we are being called on the UI thread
in our callback object.

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

So, the safest way to do that is to make the callback object use something
like runOnUiThread() to ensure the results are displayed on the UI thread:

private final IScriptResult.Stub callback=new IScriptResult.Stub() {
 public void success(final String result) {
 runOnUiThread(new Runnable() {
 public void run() {
 successImpl(result);
 }
 });
 }

 public void failure(final String error) {
 runOnUiThread(new Runnable() {
 public void run() {
 failureImpl(error);
 }
 });
 }
};

private void successImpl(String result) {
 Toast
 .makeText(BshServiceDemo.this, result, Toast.LENGTH_LONG)
 .show();
}

private void failureImpl(String error) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

 builder
 .setTitle("Exception!")
 .setMessage(error)
 .setPositiveButton("OK", null)
 .show();
}

And, of course, we need to update our call to executeScript() to pass the
callback object to the remote service:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

 String src=script.getText().toString();

 try {
 service.executeScript(src, callback);
 }
 catch (android.os.RemoteException e) {
 failureImpl(e.toString());
 }
 }
 });

 bindService(new Intent(IScript.class.getName()),
 svcConn, Context.BIND_AUTO_CREATE);
}

Revising the Service

The service also needs changing, to both execute the scripts asynchronously
and use the supplied callback object for the end results of the script's
execution.

As was demonstrated in the chapter on Camera, BshService from
AdvServices/RemoteServiceEx uses the LinkedBlockingQueue pattern to
manage a background thread. An ExecuteScriptJob wraps up the script and
callback; when the job is eventually processed, it uses the callback to supply
the results of the eval() (on success) or the message of the Exception (on
failure):

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import java.util.concurrent.LinkedBlockingQueue;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script, IScriptResult cb) {
 executeScriptImpl(script, cb);
 }
 };
 private Interpreter i=new Interpreter();
 private LinkedBlockingQueue<Job> q=new LinkedBlockingQueue<Job>();

 @Override

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

 public void onCreate() {
 super.onCreate();

 new Thread(qProcessor).start();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 q.add(new KillJob());
 }

 private void executeScriptImpl(String script,
 IScriptResult cb) {
 q.add(new ExecuteScriptJob(script, cb));
 }

 Runnable qProcessor=new Runnable() {
 public void run() {
 while (true) {
 try {
 Job j=q.take();

 if (j.stopThread()) {
 break;
 }
 else {
 j.process();
 }
 }
 catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 class Job {
 boolean stopThread() {
 return(false);
 }

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

 void process() {
 // no-op
 }
 }

 class KillJob extends Job {
 @Override
 boolean stopThread() {
 return(true);
 }
 }

 class ExecuteScriptJob extends Job {
 IScriptResult cb;
 String script;

 ExecuteScriptJob(String script, IScriptResult cb) {
 this.script=script;
 this.cb=cb;
 }

 void process() {
 try {
 cb.success(i.eval(script).toString());
 }
 catch (Throwable e) {
 Log.e("BshService", "Error executing script", e);

 try {
 cb.failure(e.getMessage());
 }
 catch (Throwable t) {
 Log.e("BshService",
 "Error returning exception to client",
 t);
 }
 }
 }
 }
}

Notice that the service's own API just needs the IScriptResult parameter,
which can be passed around and used like any other Java object. The fact
that it happens to cause calls to be made synchronously back to the remote
client is invisible to the service.

The net result is that the client can call the service and get its results
without tying up the client's UI thread.

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your Own (Advanced) Services

The Bind That Fails

Sometimes, a call to bindService() will fail for some reason. The most
common cause will be an invalid Intent – for example, you might be trying
to bind to a Service that you failed to register in the manifest. The
bindService() method returns a boolean value indicating whether or not
there was an immediate problem, so you can take appropriate steps.

For local services, this is usually just a coding problem. For remote services,
though, it could be that the service you are trying to work with has not
been installed on the device. You have two approaches for dealing with this:

1. You can watch for bindService() to return false and assume that
means the service is not installed

2. You can use introspection to see if the service is indeed installed
before you even try calling bindService()

We will look at introspection techniques later in this book.

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 16

Introspection and Integration

Introspection, from a software development standpoint, refers to
inspecting one's environment at runtime to figure out what is possible and
how to integrate disparate components. In Android, this comes in two
main flavors:

1. Sometimes, the introspection is based on a Uri – you get a Uri from
someplace, and to you it is an opaque handle, and you do not
necessarily know what to do with it

2. Sometimes, the introspection is more at the Intent or package level,
where you are trying to figure out if such-and-so application is
installed, or asking Android to give you choices for who can handle
such-and-so Intent, etc.

Android has a fairly rich, somewhat disheveled, and frequently
misunderstood collection of introspection techniques. This chapter
outlines some of those, so you know how to make use of them to enhance
your own applications.

We start with the ways to inject other activities into your own application's
option menus and how, in theory, you could use that to get your activity in
somebody else's option menu. We then cover ACTION_SEND and
createChooser(), showing how you can hook into capabilities without
knowing exactly what all the options are. We then spend a pair of sections
examining PackageManager and how you can use it to peer inside the device
and see what all is installed. We then see how you can implement

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

ACTION_SEND support in your own application, so you can appear as an
option when some other application allows its users to "send" things. We
wrap up with a discussion of how to create application shortcuts that can
be dropped onto a user's home screen.

Would You Like to See the Menu?

Another way to give the user ways to take actions on a piece of content,
without you knowing what actions are possible, is to inject a set of menu
choices into the options menu via addIntentOptions(). This method,
available on Menu, takes an Intent and other parameters and fills in a set of
menu choices on the Menu instance, each representing one possible action.
Choosing one of those menu choices spawns the associated activity.

The canonical example of using addIntentOptions() illustrates another
flavor of having a piece of content and not knowing the actions that can be
taken. Android applications are perfectly capable of adding new actions to
existing content types, so even though you wrote your application and
know what you expect to be done with your content, there may be other
options you are unaware of that are available to users.

For example, imagine the tagging subsystem mentioned in the introduction
to this chapter. It would be very annoying to users if, every time they
wanted to tag a piece of content, they had to go to a separate tagging tool,
then turn around and pick the content they just had been working on (if
that is even technically possible) before associating tags with it. Instead,
they would probably prefer a menu choice in the content's own “home”
activity where they can indicate they want to tag it, which leads them to the
set-a-tag activity and tells that activity what content should get tagged.

To accomplish this, the tagging subsystem should set up an intent filter,
supporting any piece of content, with their own action (e.g., ACTION_TAG)
and a category of CATEGORY_ALTERNATIVE. The category CATEGORY_ALTERNATIVE
is the convention for one application adding actions to another
application's content.

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

If you want to write activities that are aware of possible add-ons like
tagging, you should use addIntentOptions() to add those add-ons' actions to
your options menu, such as the following:

Intent intent = new Intent(null, myContentUri);

intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.ALTERNATIVE, 0,
 new ComponentName(this,
 MyActivity.class),
 null, intent, 0, null);

Here, myContentUri is the content Uri of whatever is being viewed by the
user in this activity, MyActivity is the name of the activity class, and menu is
the menu being modified.

In this case, the Intent we are using to pick actions from requires that
appropriate intent receivers support the CATEGORY_ALTERNATIVE. Then, we
add the options to the menu with addIntentOptions() and the following
parameters:

• The sort position for this set of menu choices, typically set to 0
(appear in the order added to the menu) or ALTERNATIVE (appear
after other menu choices)

• A unique number for this set of menu choices, or 0 if you do not
need a number

• A ComponentName instance representing the activity that is populating
its menu – this is used to filter out the activity's own actions, so the
activity can handle its own actions as it sees fit

• An array of Intent instances that are the “specific” matches – any
actions matching those intents are shown first in the menu before
any other possible actions

• The Intent for which you want the available actions

• A set of flags. The only one of likely relevance is represented as
MATCH_DEFAULT_ONLY, which means matching actions must also
implement the DEFAULT_CATEGORY category. If you do not need this,
use a value of 0 for the flags.

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

• An array of Menu.Item, which will hold the menu items matching the
array of Intent instances supplied as the “specifics”, or null if you do
not need those items (or are not using “specifics”)

Give Users a Choice

Let's suppose you want to send a message. There are many ways you can do
that in standard Android: email (via the Email or Gmail apps) or a text
message. Third-party apps may also have the notion of "sending", such as
alternative email clients (e.g., K9) or Twitter clients (e.g., Twidroid).

You want to allow the user to choose both the means (i.e., the application)
and the destination (i.e., the contact or address) for this message to be sent.

That can be handled very simply in Android:

void sendIt(String theMessage) {
 Intent i=new Intent(Intent.ACTION_SEND);

 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
 i.putExtra(Intent.EXTRA_TEXT, theMessage);

 startActivity(Intent.createChooser(i,
 getString(R.string.share_title)));
}

The magic is in the ACTION_SEND protocol and createChooser().

ACTION_SEND is an activity action that says, "Hey! I want to
send...ummm...something! To...er...somebody! Yeah!". The documentation
for ACTION_SEND describes a series of Intent extras you can attach to the
Intent that provides the actual content of the message, from the message
body (EXTRA_TEXT and EXTRA_STREAM) to the subject line (EXTRA_SUBJECT). You
can even supply specific addresses (EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC), if you
know them already.

The createChooser() static method on Intent returns another Intent, one to
a system-provided dialog-themed activity that gives the user a choice of

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

available activities that can support the desired action. This list is
determined on the fly by introspection, seeing what capabilities exist on the
device. So, one user might get just Email and Messaging, while another user
might get K9, Gmail, Messaging, and Twidroid. Your code stays the same –
Android provides the "glue" that connects your application to these
arbitrary other applications that can handle your request to send the
message.

Asking Around

The addIntentOptions() and createChooser() methods in turn use
queryIntentActivityOptions() for the “heavy lifting” of finding possible
actions. The queryIntentActivityOptions() method is implemented on
PackageManager, which is available to your activity via getPackageManager().

The queryIntentActivityOptions() method takes some of the same
parameters as does addIntentOptions(), notably the caller ComponentName, the
“specifics” array of Intent instances, the overall Intent representing the
actions you are seeking, and the set of flags. It returns a List of Intent
instances matching the stated criteria, with the “specifics” ones first.

If you would like to offer alternative actions to users, but by means other
than addIntentOptions(), you could call queryIntentActivityOptions(), get
the Intent instances, then use them to populate some other user interface
(e.g., a toolbar).

A simpler version of this method, queryIntentActivities(), is used by the
Introspection/Launchalot sample application. This presents a "launcher" –
an activity that starts other activities – but uses a ListView rather than a grid
like the Android default home screen uses.

Here is the Java code for Launchalot itself:

package com.commonsware.android.launchalot;

import android.app.ListActivity;
import android.content.ComponentName;

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

import android.content.Intent;
import android.content.pm.ActivityInfo;
import android.content.pm.PackageManager;
import android.content.pm.ResolveInfo;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

public class Launchalot extends ListActivity {
 AppAdapter adapter=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 PackageManager pm=getPackageManager();
 Intent main=new Intent(Intent.ACTION_MAIN, null);

 main.addCategory(Intent.CATEGORY_LAUNCHER);

 List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);

 Collections.sort(launchables,
 new ResolveInfo.DisplayNameComparator(pm));

 adapter=new AppAdapter(pm, launchables);
 setListAdapter(adapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 ResolveInfo launchable=adapter.getItem(position);
 ActivityInfo activity=launchable.activityInfo;
 ComponentName name=new ComponentName(activity.applicationInfo.packageName,
 activity.name);
 Intent i=new Intent(Intent.ACTION_MAIN);

 i.addCategory(Intent.CATEGORY_LAUNCHER);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
 i.setComponent(name);

 startActivity(i);
 }

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

 class AppAdapter extends ArrayAdapter<ResolveInfo> {
 private PackageManager pm=null;

 AppAdapter(PackageManager pm, List<ResolveInfo> apps) {
 super(Launchalot.this, R.layout.row, apps);
 this.pm=pm;
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 if (convertView==null) {
 convertView=newView(parent);
 }

 bindView(position, convertView);

 return(convertView);
 }

 private View newView(ViewGroup parent) {
 return(getLayoutInflater().inflate(R.layout.row, parent, false));
 }

 private void bindView(int position, View row) {
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(getItem(position).loadLabel(pm));

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 icon.setImageDrawable(getItem(position).loadIcon(pm));
 }
 }
}

In onCreate(), we:

• Get a PackageManager object via getPackageManager()

• Create an Intent for ACTION_MAIN in CATEGORY_LAUNCHER, which
identifies activities that wish to be considered "launchable"

• Call queryIntentActivities() to get a List of ResolveInfo objects,
each one representing one launchable activity

• Sort those ResolveInfo objects via a
ResolveInfo.DisplayNameComparator instance

• Pour them into a custom AppAdapter and set that to be the contents
of our ListView

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

AppAdapter is an ArrayAdapter subclass that maps the icon and name of the
launchable Activity to a row in the ListView, using a custom row layout.

Finally, in onListItemClick(), we construct an Intent that will launch the
clicked-upon Activity, given the information from the corresponding
ResolveInfo object. Not only do we need to populate the Intent with
ACTION_MAIN and CATEGORY_LAUNCHER, but we also need to set the component
to be the desired Activity. We also set FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED flags, following Android's own launcher
implementation from the Home sample project. Finally, we call
startActivity() with that Intent, which opens up the activity selected by
the user.

The result is a simple list of launchable activities:

Figure 68. The Launchalot sample application

There is also a resolveActivity() method that takes a template Intent, as do
queryIntentActivities() and queryIntentActivityOptions(). However,
resolveActivity() returns the single best match, rather than a list.

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Middle Management

The PackageManager class offers much more than merely
queryIntentActivities() and queryIntentActivityOptions(). It is your
gateway to all sorts of analysis of what is installed and available on the
device where your application is installed and available. If you want to be
able to intelligently connect to third-party applications based on whether
or not they are around, PackageManager is what you will want.

Finding Applications and Packages

Packages are what get installed on the device – a package is the in-device
representation of an APK. An application is defined within a package's
manifest. Between the two, you can find out all sorts of things about
existing software installed on the device.

Specifically, getInstalledPackages() returns a List of PackageInfo objects,
each of which describes a single package. Here, you can find out:

• The version of the package, in terms of a monotonically increasing
number (versionCode) and the display name (versionName)

• Details about all of the components – activities, services, etc. –
offered by this package

• Details about the permissions the package requires

Similarly, getInstalledApplications() returns a List of ApplicationInfo
objects, each providing data like:

• The user ID that the application will run as

• The path to the application's private data directory

• Whether or not the application is enabled

In addition to those methods, you can call:

• getApplicationIcon() and getApplicationLabel() to get the icon and
display name for an application

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

• getLaunchIntentForPackage() to get an Intent for something
launchable within a named package

• setApplicationEnabledSetting() to enable or disable an application

Finding Resources

You can access resources from another application, apparently without any
security restrictions. This may be useful if you have multiple applications
and wish to share resources for one reason or another.

The getResourcesForActivity() and getResourcesForApplication() methods
on PackageManager return a Resources object. This is just like the one you get
for your own application via getResources() on any Context (e.g., Activity).
However, in this case, you identify what activity or application you wish to
get the Resources from (e.g., supply the application's package name as a
String).

There are also getText() and getXml() methods that dive into the Resources
object for an application and pull out specific String or XmlPullParser
objects. However, these require you to know the resource ID of the
resource to be retrieved, and that may be difficult to manage between
disparate applications.

Finding Components

Not only does Android offer "query" and "resolve" methods to find
activities, but it offers similar methods to find other sorts of Android
components:

• queryBroadcastReceivers()

• queryContentProviders()

• queryIntentServices()

• resolveContentProvider()

• resolveService()

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

For example, you could use resolveService() to determine if a certain
remote service is available, so you can disable certain UI elements if the
service is not on the device. You could achieve the same end by calling
bindService() and watching for a failure, but that may be later in the
application flow than you would like.

There is also a setComponentEnabledSetting() to toggle a component
(activity, service, etc.) on and off. While this may seem esoteric, there are a
number of possible uses for this method, such as:

• Flagging a launchable activity as disabled in your manifest, then
enabling it programmatically after the user has entered a license
key, achieved some level or standing in a game, or any other criteria

• Controlling whether a BroadcastReceiver registered in the manifest
is hooked into the system or not, replicating the level of control you
have with registerReceiver() while still taking advantage of the fact
that a manifest-registered BroadcastReceiver can be started even if
no other component of your application is running

Get In the Loop

Earlier in this chapter, we saw how to request to send a message
somewhere via ACTION_SEND. If you have an application that has an intrinsic
notion of "sending" or "sharing" things, you may wish to advertise that your
application can respond to ACTION_SEND. Then, you automatically integrate
with every Android application ever written that uses ACTION_SEND, without
any additional work on their part.

The key is in the intent filter.

For example, take a look at Introspection/TwitterSender. This uses some of
the guts of the AppWidget/TwitterWidget sample we saw in an earlier chapter.
In that case, we fetched the Twitter timeline for a user. This time, we are
going to support ACTION_SEND, routing a message to Twitter in the form of a
status update. Some Android Twitter applications do this already, of course.

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Our application will have three activities:

1. A PreferenceActivity to collect the screen name and password,
largely cloned from the TwitterWidget sample

2. The main activity (TwitterSender) that supports ACTION_SEND

3. A test activity that sends a message via ACTION_SEND and
createChooser(), so our TwitterSender will be an option

We will also make use of an IntentService to actually send the tweet in the
background, freeing up the activity while avoiding having to deal with
background threads ourselves.

The Manifest

First, let's take a peek at the project's AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.tsender"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET" />
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name="TSPrefs"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="TwitterSenderTest"
 android:label="@string/test_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="TwitterSender"
 android:label="@string/sender_name"
 android:theme="@android:style/Theme.NoDisplay">
 <intent-filter android:label="@string/sender_name">
 <action android:name="android.intent.action.SEND" />
 <data android:mimeType="text/plain" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

 <service android:name=".SenderService" />
 </application>
</manifest>

Two of the activities have normal "please show me in the Launcher"
configurations. The service is simple as well.

The third activity – TwitterSender – has a somewhat more unusual <intent-
filter> element. Here, we state that this activity should respond to any
Intent used to start an activity that:

• References the ACTION_SEND action,

• Has content that is of type text/plain, and

• Appears in the DEFAULT category

That is the "secret sauce" that enables TwitterSender to work with
ACTION_SEND Intent objects of the type we aim to support.

The PreferenceActivity

The TSPrefs activity is just an ordinary PreferenceActivity:

package com.commonsware.android.tsender;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class TSPrefs extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
}

It loads a pair of preferences from res/xml/preferences.xml, to collect the
screen name and password:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

 <PreferenceCategory android:title="User Account">
 <EditTextPreference
 android:key="user"
 android:title="User Name"
 android:summary="Your Twitter screen name"
 android:dialogTitle="Enter your Twitter user name" />
 <EditTextPreference
 android:key="password"
 android:title="Password"
 android:summary="Your Twitter account password"
 android:password="true"
 android:dialogTitle="Enter your Twitter password" />
 </PreferenceCategory>
</PreferenceScreen>

The Main Activity

TwitterSender itself spends most of its time making sure the ACTION_SEND
request makes sense for Twitter:

package com.commonsware.android.tsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.widget.Toast;

public class TwitterSender extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 String tweet=getIntent().getStringExtra(Intent.EXTRA_TEXT);

 if (TextUtils.isEmpty(tweet)) {
 tweet=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);
 }

 if (TextUtils.isEmpty(tweet)) {
 Toast
 .makeText(this, "No message supplied!", Toast.LENGTH_LONG)
 .show();
 }
 else {
 if (tweet.length()>140) {
 tweet=TextUtils.substring(tweet, 0, 139);
 }

 Intent i=new Intent(this, SenderService.class);

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

 i.putExtra(Intent.EXTRA_TEXT, tweet);
 startService(i);

 Toast
 .makeText(this, "Your tweet is on its way!", Toast.LENGTH_LONG)
 .show();
 }

 finish();
 }
}

We check both EXTRA_TEXT and EXTRA_SUBJECT to see if there is a message to
be sent. If not, we raise a Toast to tell the user that something is messed up.
Assuming we have a message, we make sure it fits in 140 characters (the
Twitter limit), wrap that in an Intent for our SenderService (see below), and
start up that service. Then, we display a Toast to indicate the message is en
route.

In either case – valid or invalid input – we finish() the activity, without
showing any actual UI. That is because there is nothing really to show,
having delegated all results to the Toast class. Because there is no UI to be
shown, we use the Theme.NoDisplay them in our AndroidManifest.xml entry
for this activity – this suppresses the otherwise-empty activity window from
displaying.

The IntentService

TwitterSender uses an IntentService so that the work of sending the tweet is
done on a background thread. An IntentService will also automatically shut
down when the tweet is sent (assuming there are no more tweets queued
up to be sent). Hence, for situations like this, where we want something
done in the background but the originating activity will be gone, an
IntentService is a great choice.

All the SenderService does is get the screen name and password from the
default SharedPreferences, feed them into a Twitter object (using the same
JTwitter JAR that TwitterWidget used), pull the message out of the Intent
that TwitterSender used with startService(), and update the user's Twitter
status with that message:

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

package com.commonsware.android.tsender;

import android.app.IntentService;
import android.content.Intent;
import android.content.SharedPreferences;
import android.preference.PreferenceManager;
import winterwell.jtwitter.Twitter;

public class SenderService extends IntentService {
 public SenderService() {
 super("SenderService");
 }

 @Override
 public void onHandleIntent(Intent intent) {
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(this);
 Twitter client=new Twitter(prefs.getString("user", ""),
 prefs.getString("password", ""));

 client.updateStatus(intent.getStringExtra(Intent.EXTRA_TEXT));
 }
}

The Test Activity

Our test activity – TwitterSenderTest – just fires off a pre-defined tweet
using ACTION_SEND, using the createChooser() technique described earlier in
this chapter:

package com.commonsware.android.tsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.widget.Toast;

public class TwitterSenderTest extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 sendIt("This is a test of TwitterSender");

 finish();
 }

 void sendIt(String theMessage) {
 Intent i=new Intent(Intent.ACTION_SEND);

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
 i.putExtra(Intent.EXTRA_TEXT, theMessage);

 startActivity(Intent.createChooser(i,
 getString(R.string.share_title)));
 }
}

The Results

Because we defined two LAUNCHER activities in our manifest, we have two
icons in the Launcher – TS Prefs and TS Test.

Running TS Prefs brings up our preferences, which you will need to set
before trying TS Test:

Figure 69. The TS Prefs activity

Running TS Test will bring up a chooser to pick which means you want to
use to send the message:

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Figure 70. The ACTION_SEND chooser

If you choose TwitterSender, you will get a Toast indicating the tweet is
being sent:

Figure 71. The result of sending via TwitterSender

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

And, of course, if you check the timeline of the user you specified in the
preferences, you will see the message appear there.

Take the Shortcut

Another way to integrate with Android is to offer custom shortcuts.
Shortcuts are available from the home screen. Whereas app widgets allow
you to draw on the home screen, shortcuts allow you to wrap a custom
Intent with an icon and caption and put that on the home screen. You can
use this to drive users not just to your application's "front door", like the
launcher icon, but to some specific capability within your application, like a
bookmark.

In our case, in the Introspection/QuickSender sample, we will allow users to
create shortcuts that use ACTION_SEND to send a pre-defined message, either
to a specific address or anywhere, as we have seen before in this chapter.

Once again, the key is in the intent filter.

Registering a Shortcut Provider

Here is the manifest for QuickSender:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.qsender"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name="QuickSender"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.CREATE_SHORTCUT" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>
</manifest>

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Our single activity does not implement a traditional launcher <intent-
filter>. Rather, it has one that watches for a CREATE_SHORTCUT action. This
does two things:

1. It means that our activity will show up in the list of possible
shortcuts a user can configure

2. It means this activity will be the recipient of a CREATE_SHORTCUT
Intent if the user chooses this application from the shortcuts list

Implementing a Shortcut Provider

The job of a shortcut-providing activity is to:

• Create an Intent that will be what the shortcut launches

• Return that Intent and other data to the activity that started the
shortcut provider

• Finally, finish(), so the caller gets control

You can see all of that in the QuickSender implementation:

package com.commonsware.android.qsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.widget.TextView;

public class QuickSender extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void save(View v) {
 Intent shortcut=new Intent(Intent.ACTION_SEND);
 TextView addr=(TextView)findViewById(R.id.addr);
 TextView subject=(TextView)findViewById(R.id.subject);
 TextView body=(TextView)findViewById(R.id.body);
 TextView name=(TextView)findViewById(R.id.name);

 if (!TextUtils.isEmpty(addr.getText())) {

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

 shortcut.putExtra(Intent.EXTRA_EMAIL, addr.getText().toString());
 }

 if (!TextUtils.isEmpty(subject.getText())) {
 shortcut.putExtra(Intent.EXTRA_SUBJECT, subject.getText().toString());
 }

 if (!TextUtils.isEmpty(body.getText())) {
 shortcut.putExtra(Intent.EXTRA_TEXT, body.getText().toString());
 }

 shortcut.setType("text/plain");

 Intent result=new Intent();

 result.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortcut);
 result.putExtra(Intent.EXTRA_SHORTCUT_NAME,
 name.getText().toString());
 result.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,
 Intent.ShortcutIconResource.fromContext(
 this,
 R.drawable.icon));

 setResult(RESULT_OK, result);
 finish();
 }
}

The shortcut Intent is the one that will be launched when the user taps the
shortcut icon on the home screen. The result Intent packages up shortcut
plus the icon and caption, where the icon is converted into an
Intent.ShortcutIconResource object. That result Intent is then used with the
setResult() call, to pass that back to whatever called
startActivityForResult() to open up QuickSender. Then, we finish().

At this point, all the information about the shortcut is in the hands of
Android (or, more accurately, the home screen application), which can add
the icon to the home screen.

Using the Shortcuts

To create a custom shortcut using QuickSender, long-tap on the background
of the home screen to bring up the customization options:

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Figure 72. The home screen customization options list

Choose Shortcuts, and scroll down to find QuickSender in the list:

Figure 73. The available types of shortcuts

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Click the QuickSender entry, which will bring up our activity with the form
to define what to send:

Figure 74. The QuickSender configuration activity

Fill in the name, either the subject or body, and optionally the address.
Then, click the Create Shortcut button, and you will find your shortcut
sitting on your home screen:

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Figure 75. The QuickSender-defined shortcut, labeled Shortcut

If you launch that shortcut, Android will bring up a special chooser, to
allow you to not only pick how to send the message, but optionally make
that method the default for all future requests:

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Introspection and Integration

Figure 76. The ACTION_SEND request, as triggered by the shortcut

Depending on what you choose, of course, will dictate how the message
actually gets sent.

Homing Beacons for Intents

If you are encountering problems with Intent resolution – you create an
Intent for something and try starting an Activity or Service with it, and it
does not work – you can add the FLAG_DEBUG_LOG_RESOLUTION flag to the
Intent. This will dump information to LogCat about how the Intent
resolution occurred, so you can better diagnose what might be going
wrong.

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 17

Device Configuration

This chapter is a bit esoteric for most developers. It covers various places
where Android has configuration-style data and how one can modify it.
This mostly should be of interest to teams responsible for configuring
devices en masse, such as an enterprise or consulting teams supporting an
enterprise.

Some of what is written here, notably the portions involving root access,
have not been tested by the author. This chapter is the result of a research
project, and so while the techniques have been described online as being
used, the author is not presently able to confirm their accuracy.

Also, note that this material may change significantly between Android
releases, and errors may result in permanent damage to a device (e.g.,
somehow leave it in a state where it cannot boot and cannot reset to factory
settings). If you are concerned about these things, do not bother with this
chapter.

However, the rumor that reading this chapter causes hair loss in men is
completely unsubstantiated.

We start by enumerating various places where ordinary Android
applications can modify the device configuration. Then, we look at some
other places where configuration data gets stored that regular Android
applications cannot access, but that device manufacturer-written apps

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Device Configuration

might. We wrap by a brief discussion of the issues involved in automating
some of this configuration, such as an enterprise deployment of hundreds
or thousands of Android devices.

The Happy Shiny Way

Certainly, some portions of the configuration of a device are available for
applications to manipulate without special privileges or permissions. There
are a few places in the Android SDK where you can modify settings; some of
these are described below.

Settings.System

As described in the chapter on system services, there is a Settings.System
class in the android.provider package that allows you to configure the
device. These range from whether the password is shown when being typed
in on a password-defined EditText to whether "airplane mode" is on (i.e.,
whether all radios are disabled, perhaps in compliance with an airline's
regulations).

You can retrieve these settings via static getter methods on Settings.System
(e.g., getInt(), getFloat()), keyed by public static data members on
Settings.System itself. There are a similar set of setters to modify these
settings. There are methods to get and set a Configuration object, which
allows one to get or set several settings at once, but it does not appear that
Configuration supports the full range of possible settings. Hence, in all
likelih0od, if you wish to automate manipulating these settings, you will
want to create an application to do that...or apply some less public
techniques described below.

WifiManager

It may be that you want to pre-populate a WiFi network on a device, so it is
ready to use with an office wireless network without manual on-screen
configuration. To do that, you can use the WifiManager class, obtained by

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Device Configuration

calling Context.getSystemService(WIFI_SERVICE) and downcasting the result
to WifiManager.

WifiManager has an addNetwork() method that takes a WifiConfiguration
object as a parameter. The WifiConfiguration object has numerous fields for
describing the network, including the SSID, the pre-shared key for WPA-
PSK, and so on. This method returns an integer ID for the network being
added. Initially, the network is marked as disabled, so most likely you will
want to immediately follow the addNetwork() call with an enableNetwork()
call, supplying the network ID from addNetwork() and true to enable the
network.

The Dark Arts

While you have control over a fair number of settings this way, there are
still others that appear to be unreachable through the standard SDK.
Modifying these areas of the device configuration require techniques that
are not recommended if you can at all avoid them. Contributions to the
Android open source project are welcome, so you might consider writing
something that will allow for device configuration without having to use
undocumented risky steps, while maintaining the security that the Android
project has established.

Settings.Secure

As described in the chapter on system services, prior to Android 1.5, there
were more settings in Settings.System. However, due to perceived abuses
by third-party developers, a number of them were moved into
Settings.Secure. While you can read these settings as before (via static
getter methods), attempts to use the setter methods will result in errors.

If you wish to populate the Settings.Secure values, you have two choices:

1. Create an Android application that has the rights to use those setter
methods. While the exact rules here are unclear, it is possible that
an application signed with the same production signing key as the

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Device Configuration

firmware will have such rights. Hardware manufacturers, therefore,
should be in position to create such an application.

2. Modify the underlying SQLite database that holds the data. That
database, as of Android 1.5, is
/data/data/com.android.providers.settings/databases/settings.db,
and the secure settings are stored in a table named secure.
However, to either execute SQL statements against this database, or
to replace the database outright, you would need root permissions.
Many devices can be "rooted", though for the publicly documented
hacks, rooting is a permanent process. Hardware manufacturers
may know if there is a way on their devices to temporarily have root
privileges, long enough to run some scripts.

System Properties

At an even lower level are so-called system properties. You can see these by
running adb shell getprop with a device or emulator attached. This
contains everything from the URLs from which to obtain legal agreements
to display on intial sign-on to the location where application-not-
responding (ANR) traces are dumped.

The only known way to modify these settings is to actually modify the init
script (init.rc) for Android itself, adding in setprop commands to override
the system default values. For example, to hardwire in some DNS resolvers,
rather than rely on DHCP, you could add statements like setprop
net.dns1 ... and setprop net.dns2 ... (where the ... are replaced with
dot-notation IP addresses for the servers).

Bear in mind that init.rc might well be replaced when a device is upgraded
to newer versions of Android, so making changes this way may not be
reliable.

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Device Configuration

Automation, Both Shiny and Dark

If you are trying to modify a single device, and you can stick to SDK-
supported changes, either just use the built-in Settings screens or write a
standard Android application of your own to modify those settings.

Modifying settings on a bunch of devices this way, though, can be tedious.
You would need to install the application, perhaps off of an internet office
Web server, and that would require entering a URL in on the Browser
application to download the APK. After a few installation screens, you
could then run the application, then uninstall it. All of that cannot readily
be automated, and it still does not cover the situations where you wish to
modify settings beyond those supported by the SDK.

For bulk work, it may be simpler, albeit substantially more dangerous, to
automate this process via adb commands. For example, you could create a
SQL script that updates the Settings.System (system table) and
Settings.Secure (secure table) and apply that script to the aforementioned
settings.db via adb shell sqlite3. There should be some similar means to
update the WiFi networks, though where that data is stored is not obvious.
This, of course, requires root access.

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART IV – Advanced Development

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 18

Testing

Presumably, you will want to test your code, beyond just playing around
with it yourself by hand.

To that end, Android includes the JUnit test framework in the SDK, along
with special test classes that will help you build test cases that exercise
Android components, like activities and services. Even better, Android 1.5
has "gone the extra mile" and can pre-generate your test harness for you, to
make it easier for you to add in your own tests.

This chapter assumes you have some familiarity with JUnit, though you
certainly do not need to be an expert. You can learn more about JUnit at the
JUnit site, from various books, and from the JUnit Yahoo forum.

You Get What They Give You

When you create a project in Android 1.5 using android create project,
Android automatically creates a new tests/ directory inside the project
directory. If you look in there, you will see a complete set of Android
project artifacts: manifest, source directories, resources, etc. This is actually
a test project, designed to partner with the main project to create a
complete testing solution.

In fact, that test project is all ready to go, other than not having any tests of
significance. If you build and install your main project (onto an emulator or

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://tech.groups.yahoo.com/group/junit
http://www.junit.org/

Testing

device), then build and install the test project, you will be able to run unit
tests.

Android ships with a very rudimentary JUnit runner, called
InstrumentationTestRunner. Since this class resides in the Android
environment (emulator or device), you need to invoke the runner to run
your tests on the emulator or device itself. To do this, you can run the
following command from a console:

adb shell am instrument -w
com.commonsware.android.contacts.spinners.tests/android.test.InstrumentationTest
Runner

In this case, we are instructing Android to run all the available test cases for
the com.commonsware.android.database package, as this chapter uses some
tests implemented on the Contacts/Spinners sample project.

If you were to run this on your own project, substituting in your package
name, with just the auto-generated test files, you should see results akin to:

com.commonsware.android.database.ContactsDemoTest:.
Test results for InstrumentationTestRunner=.
Time: 0.61

OK (1 test)

The first line will differ, based upon your package and the name of your
project's initial activity, but the rest should be the same, showing that a
single test was run, successfully.

Of course, this is only the beginning.

Erecting More Scaffolding

Here is the source code for the test case that Android automatically
generates for you:

package com.commonsware.android.database;

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

import android.test.ActivityInstrumentationTestCase;

/**
 * This is a simple framework for a test of an Application. See
 * {@link android.test.ApplicationTestCase ApplicationTestCase} for more
information on
 * how to write and extend Application tests.
 * <p/>
 * To run this test, you can type:
 * adb shell am instrument -w \
 * -e class com.commonsware.android.database.ContactsDemoTest \
 * com.commonsware.android.database.tests/android.test.InstrumentationTestRunner
 */
public class ContactsDemoTest extends
ActivityInstrumentationTestCase<ContactsDemo> {

 public ContactsDemoTest() {
 super("com.commonsware.android.database", ContactsDemo.class);
 }

}

As you can see, there are no actual test methods. Instead, we have an
ActivityInstrumentationTestCase implementation named ContactsDemoTest.
The class name was generated by adding Test to the end of the main activity
(ContactsDemo) of the project.

In the next section, we will examine ActivityInstrumentationTestCase more
closely and see how you can use it to, as the name suggests, test your
activities.

However, you are welcome to create ordinary JUnit test cases in Android –
after all, this is just JUnit, merely augmented by Android. So, you can create
classes like this:

package com.commonsware.android.contacts.spinners;

import junit.framework.TestCase;

public class SillyTest extends TestCase {
 protected void setUp() throws Exception {
 super.setUp();

 // do initialization here, run on every test method
 }

 protected void tearDown() throws Exception {

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

 // do termination here, run on every test method

 super.tearDown();
 }

 public void testNonsense() {
 assertTrue(1==1);
 }
}

There is nothing Android-specific in this test case. It is simply standard
JUnit, albeit a bit silly.

You can also create test suites, to bundle up sets of tests for execution.
Here, though, if you want, you can take advantage of a bit of Android
magic: TestSuiteBuilder. TestSuiteBuilder uses reflection to find test cases
that need to be run, as shown below:

package com.commonsware.android.contacts.spinners;

import android.test.suitebuilder.TestSuiteBuilder;
import junit.framework.Test;
import junit.framework.TestSuite;

public class FullSuite extends TestSuite {
 public static Test suite() {
 return(new TestSuiteBuilder(FullSuite.class)
 .includeAllPackagesUnderHere()
 .build());
 }
}

Here, we are telling Android to find all test cases located in FullSuite's
package (com.commonsware.android.database) and all sub-packages, and to
build a TestSuite out of those contents.

A test suite may or may not be necessary for you. The command shown
above to execute tests will execute any test cases it can find for the package
specified on the command line. If you want to limit the scope of a test run,
though, you can use the -e switch to specify a test case or suite to run:

adb shell am instrument -e class
com.commonsware.android.database.ContactsDemoTest -w
com.commonsware.android.database.tests/android.test.InstrumentationTestRunner

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

Here, we indicate we only want to run ContactsDemoTest, not all test cases
found in the package.

Testing Real Stuff

While ordinary JUnit tests are certainly helpful, they are still fairly limited,
since much of your application logic may be tied up in activities, services,
and the like.

To that end, Android has a series of TestCase classes you can extend
designed specifically to assist in testing these sorts of components.

ActivityInstrumentationTestCase

The test case created by Android's SDK tools, ContactsDemoTest in our
example, is an ActivityInstrumentationTestCase. This class will run your
activity for you, giving you access to the Activity object itself. You can then:

• Access your widgets

• Invoke public and package-private methods (more on this below)

• Simulate key events

Of course, the automatically-generated ActivityInstrumentationTestCase
does none of that, since it does not know much about your activity. Below
you will find an augmented version of ContactsDemoTest that does a little bit
more:

package com.commonsware.android.contacts.spinners;

import android.test.ActivityInstrumentationTestCase;
import android.widget.ListView;
import android.widget.Spinner;

public class ContactsDemoTest
 extends ActivityInstrumentationTestCase<ContactSpinners> {
 private ListView list=null;
 private Spinner spinner=null;

 public ContactsDemoTest() {

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

 super("com.commonsware.android.contacts.spinners",
 ContactSpinners.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();

 ContactSpinners activity=getActivity();

 list=(ListView)activity.findViewById(android.R.id.list);
 spinner=(Spinner)activity.findViewById(R.id.spinner);
 }

 public void testSpinnerCount() {
 assertTrue(spinner.getAdapter().getCount()==3);
 }

 public void testListDefaultCount() {
 assertTrue(list.getAdapter().getCount()>0);
 }
}

Here are the steps to making use of ActivityInstrumentationTestCase:

1. Extend the class to create your own implementation. Since
ActivityInstrumentationTestCase is a generic, you need to supply the
name of the activity being tested (e.g.,
ActivityInstrumentationTestCase<ContactsDemo>).

2. In the constructor, when you chain to the superclass, supply the
name of the package of the activity plus the activity class itself. You
can optionally supply a third parameter, a boolean indicating if the
activity should be launched in touch mode or not.

3. In setUp(), use getActivity() to get your hands on your Activity
object, already typecast to the proper type (e.g., ContactsDemo)
courtesy of our generic. You can also at this time access any widgets,
since the activity is up and running by this point.

4. If needed, clean up stuff in tearDown(), no different than with any
other JUnit test case.

5. Implement test methods to exercise your activity. In this case, we
simply confirm that the Spinner has three items in its drop-down
list and there is at least one contact loaded into the ListView by

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

default. You could, however, use sendKeys() and the like to simulate
user input.

If you are looking at your emulator or device while this test is running, you
will actually see the activity launched on-screen.
ActivityInstrumentationTestCase creates a true running copy of the activity.
This means you get access to everything you need; on the other hand, it
does mean that the test case runs slowly, since the activity needs to be
created and destroyed for each test method in the test case. If your activity
does a lot on startup and/or shutdown, this may make running your tests a
bit sluggish.

Note that your ActivityInstrumentationTestCase resides in the same package
as the Activity it is testing – ContactsDemoTest and ContactsDemo are both in
com.commonsware.android.database, for example. This allows
ContactsDemoTest to access both public and package-private methods and
data members. ContactsDemoTest still cannot access private methods,
though. This allows ActivityInstrumentationTestCase to behave in a white-
box (or at least gray-box) fashion, inspecting the insides of the tested
activities in addition to testing the public API.

Now, despite the fact that Android's own tools create an
ActivityInstrumentationTestCase subclass for you, that class is officially
deprecated. They advise using ActivityInstrumentationTestCase2 instead,
which offers the same basic functionality, with a few extras, such as being
able to specify the Intent that is used to launch the activity being tested.
This is good for testing search providers, for example.

AndroidTestCase

For tests that only need access to your application resources, you can skip
some of the overhead of ActivityInstrumentationTestCase and use
AndroidTestCase. In AndroidTestCase, you are given a Context and not much
more, so anything you can reach from a Context is testable, but individual
activities or services are not.

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

While this may seem somewhat useless, bear in mind that a lot of the static
testing of your activities will come in the form of testing the layout: are the
widgets identified properly, are they positioned properly, does the focus
work, etc. As it turns out, none of that actually needs an Activity object –
so long as you can get the inflated View hierarchy, you can perform those
sorts of tests.

For example, here is an AndroidTestCase implementation,
ContactsDemoBaseTest:

package com.commonsware.android.contacts.spinners;

import android.test.AndroidTestCase;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ListView;
import android.widget.Spinner;

public class ContactsDemoBaseTest extends AndroidTestCase {
 private ListView list=null;
 private Spinner spinner=null;
 private ViewGroup root=null;

 @Override
 protected void setUp() throws Exception {
 super.setUp();

 LayoutInflater inflater=LayoutInflater.from(getContext());

 root=(ViewGroup)inflater.inflate(R.layout.main, null);
 root.measure(480, 320);
 root.layout(0, 0, 480, 320);

 list=(ListView)root.findViewById(android.R.id.list);
 spinner=(Spinner)root.findViewById(R.id.spinner);
 }

 public void testExists() {
 assertNotNull(list);
 assertNotNull(spinner);
 }

 public void testRelativePosition() {
 assertTrue(list.getTop()>=spinner.getBottom());
 assertTrue(list.getLeft()==spinner.getLeft());
 assertTrue(list.getRight()==spinner.getRight());
 }
}

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

Most of the complicated work is performed in setUp():

1. Inflate our layout using a LayoutInflater and the Context supplied
by getContext()

2. Measure and lay out the widgets in the inflated View hierarchy – in
this case, we lay them out on a 480x320 screen

3. Access the individual widgets to be tested

At that point, we can test static information on the widgets, but we cannot
cause them to change very easily (e.g., we cannot simulate keypresses). In
the case of ContactsDemoBaseTest, we simply confirm the widgets exist and
are laid out as expected. We could use FocusFinder to test whether focus
changes from one widget to the next should work as expected. We could
ensure our resources exist under their desired names, test to see if our fonts
exist in our assets, or anything else we can accomplish with just a Context.

Since we are not creating and destroying activities with each test case, these
tests should run substantially faster.

Other Alternatives

Android also offers various other test case base classes designed to assist in
testing Android components, such as:

• ServiceTestCase, used for testing services, as you might expect given
the name

• ActivityUnitTestCase, a TestCase that creates the Activity (like
ActivityInstrumentationTestCase), but does not fully connect it to
the environment, so you can supply a mock Context, a mock
Application, and other mock objects to test out various scenarios

• ApplicationTestCase, for testing custom Application subclasses

Monkeying Around

Independent from the JUnit system is the Monkey.

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

The Monkey is a test program that simulates random user input. It is
designed for "bash testing", confirming that no matter what the user does,
the application will not crash. The application may have odd results –
random input entered into a Twitter client may, indeed, post that random
input to Twitter. The Monkey does not test to make sure that results of
random input make sense; it only tests to make sure random input does not
blow up the program.

You can run the Monkey by setting up your initial starting point (e.g., the
main activity in your application) on your device or emulator, then running
a command like this:

adb shell monkey -p com.commonsware.android.database -v --throttle 100 600

Working from right to left, we are asking for 600 simulated events,
throttled to run every 100 milliseconds. We want to see a list of the invoked
events (-v) and we want to throw out any event that might cause the
Monkey to leave our application, as determined by the application's
package (-p com.commonsware.android.database).

The Monkey will simulate keypresses (both QWERTY and specialized
hardware keys, like the volume controls), D-pad/trackball moves, and
sliding the keyboard open or closed. Note that the latter may cause your
emulator some confusion, as the emulator itself does not itself actually
rotate, so you may end up with your screen appearing in landscape while
the emulator is still, itself, portrait. Just rotate the emulator a couple of
times (e.g., <Ctrl>-<F12>) to clear up the problem.

For playing with a Monkey, the above command works fine. However, if
you want to regularly test your application this way, you may need some
measure of repeatability. After all, the particular set of input events that
trigger your crash may not come up all that often, and without that
repeatable scenario, it will be difficult to repair the bug, let alone test that
the repair worked.

To deal with this, the Monkey offers the -s switch, where you provide a seed
for the random number generator. By default, the Monkey creates its own

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Testing

seed, giving totally random results. If you supply the seed, while the
sequence of events is random, it is random for that seed – repeatedly using
the same seed will give you the same events. If you can arrange to detect a
crash and know what seed was used to create that crash, you may well be
able to reproduce the crash.

There are many more Monkey options, to control the mix of event types, to
generate profiling reports as tests are run, and so on. The Monkey
documentation in the SDK's Developer's Guide covers all of that and more.

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/developing/tools/monkey.html
http://developer.android.com/guide/developing/tools/monkey.html

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

CHAPTER 19

Production Applications

Of course, all of this programming you have done will be a bit silly if you
only have debug applications running on an emulator, or perhaps your own
phone. Somewhere along the line, you may want others to run your
applications as well, perhaps by buying them from you.

This chapter focuses on the steps you will need to take to have your
application be distributed in a production form, through the Android
Market and elsewhere. Much of the focus is on the Android Market because
it is the largest and the one people tend to think about. However, along the
way, we will cover other markets, other forms of distribution, and things
you need to do that are relevant for any form of production distribution.

Market Theory

As noted, the Android Market is the largest and most visible marketplace
for Android applications. It, therefore, will tend to set the tone that other
markets either follow or specifically position themselves against.

The biggest of these is the Android Market "lifestream" model.

When somebody buys an application off of the Android Market, they are
not just buying one edition of one application for one device. Rather, they
are buying all editions of that application for any device they purchase and
register to their Google account.

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

For example, the Android Market supports all of the following scenarios
and more:

• The user buys a phone, buys some applications off of the Market,
and then replaces their phone with another Android device

• The user buys two Android devices (a phone and a larger-screen
media player) and registers both devices to the same Google
account, and therefore can download applications purchased from
one device on both devices

• The user buys some applications off of the Market, uninstalls them
to free up space, then reinstalls them later from the Market without
additional fees

• The user buys some applications off of the Market and gets all of
those applications' updates as free downloads, without additional
fees

This "lifestream" model is great for the user. Whether it is great or bad for
you as a developer depends on your revenue model and how you view your
relationship with your customers. Regardless, it is what it is, and this
"lifestream" concept permeates much of the way you will use the Android
Market.

Making Your Mark

Perhaps the most important step in preparing your application for
production distribution is signing it with a production signing key. While
mistakes here may not be immediately apparent, they can have significant
long-term impacts, particularly when it comes time for you to distribute an
update.

Role of Code Signing

There are many reasons why Android wants you to sign your application
with a production key. Here are perhaps the top three:

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

1. It will help distinguish your production applications from debug
versions of the same applications

2. Multiple applications signed with the same key can access each
other's private files, if they are set up to use a shared user ID in their
manifests

3. You can only update an application if it has a signature from the
same digital certificate

The latter one is the most important for you, if you plan on offering updates
of your application. If you sign version 1.0 of your application with one key,
and you sign version 2.0 of your application with another key, version 2.0
will not install over top version 1.0 – it will fail with a certificate-match
error.

What Happens In Debug Mode

Of course, you may be wondering how you got this far in life without
worrying about keys and certificates and signatures (unless you are using
Google Maps, in which case you experienced a bit of this when you got your
API key).

The Android build process, whether through Ant or Eclipse, creates a
debug key for you automatically. That key is automatically applied when
you create a debug version of your application (e.g., ant debug or ant
install). This all happens behind the scenes, so it is very possible for you to
go through weeks and months of development and not encounter this
problem.

In fact, the most likely place where you might encounter this problem is in
a distributed development environment, such as an open source project.
There, you might have encountered problem #3 from the previous section,
where a debug application compiled by one team member cannot install
over the debug application from another team member, since they do not
share a common debug key. You may have run into similar problems just on
your own if you use multiple development machines (e.g., a desktop in the

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

home office and a notebook for when you are on the road delivering
Android developer training).

So, developing in debug mode is easy. It is mostly when you move to
production that things get a bit more interesting.

Creating a Production Signing Key

To create a production signing key, you will need to use keytool. This comes
with the Java SDK, and so it should be available to you already.

The keytool utility manages the contents of a "keystore", which can contain
one or more keys. Each "keystore" has a password for the store itself, and
keys can also have their own individual passwords. You will need to supply
these passwords later on when signing an application with the key.

Here is an example of running keytool:

Figure 77. Running keytool

The parameters used here are:

• -genkey, to indicate we want to create a new key

• -v, to be verbose about the key creation process

• -keystore, to indicate what keystore we are manipulating (cw-
release.keystore), which will be created if it does not already exist

• -alias, to indicate what human-readable name we want to give the
key (cw-release)

• -keyalg, to indicate what public-key encryption algorithm to be
using for this key (RSA)

• -validity, to indicate how long this key should be valid, where
10,000 days or more is recommended

312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

The length of the validity is important. Once your key expires, you can no
longer use it for signing new applications, which means once the key
expires, you cannot update existing Android applications. 10,000 days,
presumably, is beyond the expected lifespan of this signing mechanism.
Also, the Android Market requires your key to be valid beyond October 22,
2033.

If you run the above command, you will be prompted for a number of
pieces of information. If you have ever created an SSL certificate, the
prompts will be familiar:

Figure 78. Results of running keytool

You will note that this is a self-signed certificate – you do not have to
purchase a certificate from Verisign or anyone. These keys are for creating
immutable identity, but are not for creating confirmed identity. In other

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

words, these certificates do not prove you are such-and-so person, but can
prove that the same key signed two different APKs.

In theory, you only need to do the above steps once per business.

Signing with the Production Key

To sign an application with a production key, you must first create an
unsigned version of the APK. By default (e.g., ant debug), you get an APK
signed with the debug key. Instead, specifically build a release version (e.g.,
ant release), which should give you an -unsigned.apk file in your project's
bin/ directory.

Next, to apply the key, you will use the jarsigner tool. Like keytool,
jarsigner comes with the Java SDK, and so you should already have it on
your development machine.

Here is an example of running jarsigner:

Figure 79. Running jarsigner

In this case, the parameters supplied are:

• -verbose, to explain what is going on as the program runs

• -keystore, to indicate where the keystore that contains the
production key resides (~/cw-release.keystore)

• the path to the APK to sign (bin/vidtry-unsigned.apk)

• the alias of the key in the keystore to apply (cw-release)

At this point, jarsigner will prompt you for the keystore's password (and
the key's password if you supplied a distinct password for it to keytool),
then it will apply the signature:

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

Figure 80. Results of running jarsigner

Next, you should test the signature by jarsigner -verify -verbose -certs
on the same APK file, which now has a signature. You will get output akin
to:

 1090 Sat Aug 08 13:56:38 EDT 2009 META-INF/MANIFEST.MF
 1211 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.SF
 946 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.RSA
sm 1683 Sat Aug 08 13:54:46 EDT 2009 res/drawable/btn_media_player.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 743 Sat Aug 08 13:54:46 EDT 2009 res/drawable/btn_media_player_disabled.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1030 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_disabled_selected.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1220 Sat Aug 08 13:54:46 EDT 2009 res/drawable/btn_media_player_pressed.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1471 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_selected.9.png

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 576 Sat Aug 08 13:54:46 EDT 2009 res/drawable/ic_media_pause.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 938 Sat Aug 08 13:54:46 EDT 2009 res/drawable/ic_media_play.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1176 Sat Aug 08 13:54:46 EDT 2009 res/drawable/media_button_background.xml

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2668 Sat Aug 08 13:54:46 EDT 2009 res/layout/main.xml

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1368 Sat Aug 08 13:54:46 EDT 2009 AndroidManifest.xml

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2888 Sat Aug 08 13:54:46 EDT 2009 resources.arsc

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 16860 Sat Aug 08 13:54:46 EDT 2009 classes.dex

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

 s = signature was verified
 m = entry is listed in manifest
 k = at least one certificate was found in keystore
 i = at least one certificate was found in identity scope

jar verified.

In particular, you want to make sure that the name of the key is what you
expect and is not "Android Debug", which would indicate the APK was
signed with the debug key instead of the production key.

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

At this point, you should also rename the APK, at least to remove the now-
erroneous -unsigned portion of the filename.

Now, you have a production-signed APK, ready for distribution...or,
hopefully, ready for more testing, then distribution.

Two Types of Key Security

There are two facets to securing your production key that you need to think
about:

1. You need to make sure nobody steals your production keystore and
its password. If somebody does, they could publish replacement
versions of your applications – since they are signed with the same
key, Android will assume the replacements are legitimate.

2. You need to make sure you do not lose your production keystore
and its password. Otherwise, even you will be unable to publish
replacement versions of your applications.

For solo developers, the latter scenario is more probable. There already
have been cases where developers had to rebuild their development
machine and wound up with new keys, locking themselves out from
updating their own applications. As with everything involving computers,
having a solid backup regimen is highly recommended.

For teams, the former scenario may be more likely. If more than one person
needs to be able to sign the application, the production keystore will need
to be shared, possibly even stored in the revision control system for the
project. The more people who have access to the keystore, the more likely it
is somebody will wind up doing something evil with it. This is particularly
true for projects with public revision control systems, such as open source
projects – developers might not think of the implications of putting the
production keystore out for people to access.

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

Related Keys

Switching from debug to production keys may have additional
ramifications for your application.

For example, if you are integrating Google Maps, you no doubt obtained a
Maps API key to use with your application. As it turns out, you most likely
got an API that corresponds to your debug signing key. For production, you
will need a different Maps API key, one that corresponds to your
production signing key.

This will likely be a significant pain for you, because the Maps API key goes
in the source code, meaning the source code is now dependent upon how it
is being signed. You may wish to apply some automation to this, such as
building custom Ant tasks that switches between debug and production
Maps API keys in your source code depending on how you are building the
project.

In principle, the same concept may extend to other keys for other Android
development add-ons, though none are known at this time.

Get Ready To Go To Market

While being able to sign your application reliably with a production key is
necessary for publishing a production application, it is not sufficient.
Particularly for the Android Market, there are other things you must do, or
should do, as part of getting ready to release your application.

Versioning

As was described in The Busy Coder's Guide to Android Development, you
need to supply android:versionCode and android:versionName attributes in
your <manifest> element in your AndroidManifest.xml file. The value of
android:versionName is what users and prospective users will see in terms of
the label associated with your application version (e.g., "1.0.1", "System V",

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

"Loquacious Llama"). More important, though, is the value of
android:versionCode, which needs to be an integer increasing with each
release – that is how Android tells whether some edition of your APK is an
upgrade over what the user currently has.

You also need to specify the minSdkVersion of your application:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
 <uses-sdk minSdkVersion="2" />
 ...
</manifest>

If you are using Android 1.5 features, or think you might be, the safest value
to choose is 3.

Package Name

You also need to make sure that your package name – as denoted by the
package attribute of the root <manifest> element – is going to be unique. If
somebody tries downloading your application onto their device, and some
other application is already installed with that same package name, your
application will fail to install.

Since the manifest's package name also provides the base Java package for
your project, and since you hopefully named your Java packages with
something based off of a domain name you own or something else
demonstrably unique, this should not cause a huge problem.

Icon and Label

Your <application> element needs to specify android:icon and android:name
attributes, to supply the name and icon that will be associated with the
application in the My Applications list on the device and related screens.
Your activities will inherit the icon if they do not specify icons of their own.

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

If you have graphic design skills, the Android developer site has guidelines
for creating icons that will match other icons in the system. If not, just
supply a 48x48 pixel image with appropriate transparency (if applicable).

Logging

In production, try to minimize unnecessary logging, particularly at low
logging levels (e.g., debug). Remember that even if Android does not
actually log the information, whatever processing is involved in making the
Log.d() call will still be done, unless you arrange to skip the processing
somehow. You could outright delete the extraneous logging calls, or wrap
them in an if() test:

if (!SomeClass.IS_DEVELOPMENT) {
 Log.d(TAG, "This is what happened");
}

Here, IS_DEVELOPMENT is a public static final boolean value, true during
development, false as you work your way to production. Whether you
adjust the definition by hand or by automating the build process is up to
you. But, when IS_DEVELOPMENT is false, any work that would have been
done to build up the actual Log invocation will be skipped, saving CPU
cycles and battery life.

Conversely, error logs become even more important in production.
Sometimes, you have difficult reproducing bugs "in the lab" and only
encounter them on customer devices. Being able to get stack traces from
those devices could make a major difference in your ability to get the bug
fixed rapidly.

First, in addition to your regular exception handlers, consider catching
everything those handlers miss, notably runtime exceptions:

Thread.setDefaultUncaughtExceptionHandler(onBlooey);

This will route all uncaught exceptions to an onBlooey handler:

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Production Applications

private Thread.UncaughtExceptionHandler onBlooey=
 new Thread.UncaughtExceptionHandler() {
 public void uncaughtException(Thread thread, Throwable ex) {
 Log.e(TAG, "Uncaught exception", ex);
 }
};

There, you can log it, raise a dialog if appropriate, etc.

Then, offer some means to get your logs off the device and to you, via email
or a Web service. Some Android analytics firms, like Flurry, offer exception
stack trace collection as part of their service. There are also open source
projects that support this feature, such as android-remote-stacktrace.

Testing

As always, testing, particularly acceptance testing, is important.

Bear in mind that the act of creating the production signed version of your
application could introduce errors, such as having the wrong Google Maps
API key. Hence, it is important to do user-level testing of your application
after you sign, not just before you sign, in case the act of signing messed
things up. After all, what you are shipping to those users is the production
signed edition – you do not want your users tripping over obvious flaws.

As you head towards production, also consider testing in as many distinct
environments as possible, such as:

• Trying more than one device, particularly if you can get devices with
different display sizes

• If you rely on the Internet, try your application with WiFi, with 3G,
with EDGE/2G, and with the Internet unavailable

• If you rely on GPS, try your application with GPS disabled, GPS
enabled and working, and GPS enabled but not available (e.g.,
underground)

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/p/android-remote-stacktrace/
http://flurry.com/

Production Applications

EULA

End-user license agreements – EULAs – are those long bits of legal prose
you are supposed to read and accept before using an application, Web site,
or other protected item. Whether EULAs are enforcible in your jurisdiction
is between you and your qualified legal counsel to determine.

In fact, many developers, particularly of free or open source applications,
specifically elect not to put a EULA in their applications, considering them
annoying, pointless, or otherwise bad.

However, the Android Market developer distribution agreement has one
particular clause that might steer you towards having a EULA:

You agree that if you use the Market to distribute Products,
you will protect the privacy and legal rights of users. If the
users provide you with, or your Product accesses or uses, user
names, passwords, or other login information or personal in-
formation, you must make the users aware that the informa-
tion will be available to your Product, and you must provide
legally adequate privacy notice and protection for those
users...But if the user has opted into a separate agree-
ment with you that allows you or your Product to store
or use personal or sensitive information directly relat-
ed to your Product (not including other products or ap-
plications) then the terms of that separate agreement
will govern your use of such information.

(emphasis added)

Hence, if you are concerned about being bound by what Google thinks
appropriate privacy is, you may wish to consider a EULA just to replace
their terms with your own.

Unfortunately, having a EULA on a mobile device is particularly annoying
to users, because EULAs tend to be long and screens tend to be short.

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

Again, please seek professional legal assistance on issues regarding EULAs.

To Market, To Market

And now, the moment you have been waiting for: putting your application
on the Android Market!

Of course, you may have to wait a little bit longer, depending on where you
live, how much you like reading legal agreements, and so on.

Here is what you need to do to get your application on the Market.

Google Checkout

Google Checkout is Google's answer to PayPal. More importantly for
Android developers, as of the time of this writing, it is the sole option for
charging users from the Android Market. Of course, if you are distributing
your applications for free, this is not an issue.

If you do intend to charge, though, you need to go through the process to
get a merchant account with Google Checkout. Basically, this integrates
Google Checkout with a checking account of yours, so purchases can be
deposited in your account as they occur. It also helps to validate you as a
business.

Note that Google Checkout is only available in certain countries. Both you
(as the developer) and your customer needs to be in Checkout-capable
countries for payment to work. This means, among other things, that if you
do not reside in a country supported by Google Checkout, you cannot
charge for applications in the Android Market.

All of this is not free. 30% is taken off the top as a fee to the mobile carriers
who distribute and support the Android Market. Google Checkout may also
charge additional fees, particularly for cross-border purchases, though it is
unclear if that is happening at present.

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

Terms and Conditions

As the author is fond of saying: "I am not a lawyer, nor do I play one on TV".

That being said, there are a number of aspects of the Android Market terms
and conditions that you should examine closely to see if they will pose a
problem for you, such as:

• "All fees received by Developers for Products distributed via the
Market must be processed by the Market’s Payment Processor."

• "Products that cannot be previewed by the buyer (such as
applications): You authorize Google to give the buyer a full refund
of the Product price if the buyer requests the refund within 48
hours after purchase."

• "Except in cases when multiple disputes are initiated by a user with
abnormal dispute history, billing disputes received by Payment
Processor for Products sold for less than $10 may be automatically
charged back to the Developer, in addition to any handling fees
charged by the Payment Processor."

• "Users are allowed unlimited reinstalls of each application
distributed via the Market."

• "You agree that you will not engage in any activity with the Market,
including the development or distribution of Products, that
interferes with, disrupts, damages, or accesses in an unauthorized
manner the devices, servers, networks, or other properties or
services of any third party including, but not limited to, Android
Users, Google or any mobile network operator."

• "You may not use customer information obtained from the Market
to sell or distribute Products outside of the Market."

• "You may not use the Market to distribute or make available any
Product whose primary purpose is to facilitate the distribution of
Products outside of the Market."

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-distribution-agreement.html

Production Applications

Some of those terms are in support of the "lifestream" model that the
Android Market employs. Others are not. Whether any of them will cause
you difficulty is for you and qualified legal counsel to determine.

Data Collection

Putting your application on the Market is a matter of signing up for the
Market (and incurring a $25 fee to do so), then uploading and describing
the APKs you wish to distribute. It helps, though, if you determine how you
are going to describe those applications before you find yourself confronted
with the Android Market upload form.

Here is what you will need to provide to Google as part of uploading an
Android Market application:

Images

You can supply up to two screenshots of your application, in HVGA
(480x320) or WVGA854 (854x480) portrait size, as PNG or JPEG files. These
will be scaled down by the Market for display on the device as thumbnails,
and the user can tap the thumbnail to see a larger (but not quite 1:1 in terms
of pixel size) rendition of the screenshot.

You can also supply up to two "promotional graphics", as 180x120 PNG or
JPEG files. What exactly a "promotional graphic" is supposed to be is
unclear, but you could use this for a logo, or a zoomed-in fragment of
another screenshot, etc.

Your goal behind the screenshots and graphics should be to demonstrate to
the user the polish of your user interface, and perhaps a bit on how they can
use it – though that is probably only going to be obvious if they tap on the
thumbnail to view the full screenshot.

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

Title

Here, you have 30 characters to name your application. This will be what
prospective customers see in the Android Market application when they
browse for applications, either in a category or via a search.

Since this is your first chance to grab the prospect's attention, try to
maximize your use of these 30 characters. If your application name is short,
consider using a subtitle. For example, if you created an application that
tries to use the vibration motor to create a massager, rather than just
having a title of, say, "Relaxon", consider "Relaxon: Custom Massager" or
"Relaxon: Ease Muscle Tension". Here, you provide the prospect with a
tidbit of additional information beyond a probably opaque name, making it
a bit more likely that they will click your entry and read your description.

Note that you should not put the version number in the title in most cases.
For one, it takes up space you might use for more useful information for
prospects. For another, the application description screen – where the
prospect goes after clicking your title – will already show your version
number as pulled from your application's manifest. It is possible that for a
major release, it would be worth the space to add the version number, but
probably not for incremental updates.

You have the option of supporting multiple languages for your Market
entry. If you go this route, the user will see your entry in their own
language, if you and the Market both support it. If you specified that you
wanted to support multiple languages in the Market, you need to provide a
title in each language. Be careful with this, though – you may not want to
try adding listings in languages that your application itself does not
support, as users may consider that a "bait and switch" tactic (sell it in
German, ship English).

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

Description

In addition to the really short title, you can provide a really short
description. Specifically, you have 325 characters to explain to the prospect
what it is that makes your application worth getting.

Your description has two missions:

1. Help people find your application, by containing likely keywords
that users might search on that pertain to your application. For
example, if you are distributing a "calorie counter" application, you
might try to work in words like "weight", "diet", "exercise", "health",
and such into your application description, so it will come up in
search results for those terms.

2. Help convince those who find your application that it is worth
buying.

While search will be limited to the 355 combined title and description
characters, you can also leverage a Web site to help convince people to
consider your application. Hence, all else being equal, consider
emphasizing keywords more, and include the shortest possible URL that
can point to a Web page about your product. That Web page, of course, is
not subject to Android Market limitations, so you can include screenshots,
demos, testimonials, and the like. However, since users cannot click on the
URL in the description, it needs to be short and simple for them to type
into a Web browser.

Of course, just having a description that is a list of keywords will look silly
and probably cut into sales, so you need to strike a balance between
emphasizing keywords and having a professional-looking description.

One convention that has emerged is to use the tail end of the description to
explain what has been added in an updated version of your application.

As with the title, if you specified that you wanted to support multiple
languages in the Market, you need to provide a description in each
language.

327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

There is also a separate field for "promo text", up to 80 characters. It is
unclear where this prose will appear inside the Android Market.

Application Type and Category

You may choose where you want your program to be listed among the
available Android Market categories. As with the on-device Android Market
application, you first choose "Applications" or "Games", then choose the
specific category. Note that you can only be in one category...at a time.

It appears that you can elect to re-categorize your application after initial
publication. Hence, you might consider running what marketers call "A/B
testing" – after a month or so, start switching your application to other
likely categories, and track sales on each for a while. Eventually, you will
find the category that yields the most sales. This, of course, assumes your
application could reasonably appear in more than one category.

Pricing

You can either stipulate a price for your application, or have it be free. To
have a price, you need to have a Google Checkout merchant account, as
described above, and that may preclude you from setting a price if
merchant accounts are not available in your country.

Note that you cannot switch from free to non-free, so be sure you want a
free application before choosing to make it be free.

Also note that the price you provide will be in your own national currency
and will show up in that currency for prospective buyers. This causes a bit
of confusion, as many people are not used to dealing with other currencies.

Copy Protection

The Android Market offers copy protection, of at least a minor sort. It
attempts to make it difficult for somebody to copy the game off of one

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

device and onto another one owned by somebody else. Its effectiveness is
questionable, considering that "rooting" Android devices is commonplace
and "rooted" Android devices can bypass the copy protection with ease.

If that were not bad enough, the Android Market copy protection:

• Limits distribution, as users of the ADP1 developer phone cannot
obtain copy protected applications off of the Market

• Had a round of problems early on where upgrades of copy-protected
applications seemed to be unreliable, though complaints about this
seem to have subsided

• Is irreversible: once you make the selection for your application
(copy-protected or not), you are stuck with that decision for all
updates

Locations for Distribution

Independent from your selection of languages is a selection of locations
where your application should be distributed. You can either check specific
countries, or check "All Current and Future Locations" for maximum
coverage. By clicking the name of a country, you may also be able to filter
based upon specific carrier (e.g., in the US, you could distribute to T-Mobile
customers but not Verizon customers).

Many developers are safe with the "All Current and Future Locations"
selection. Here are some reasons you may elect to constrain distribution to
only a subset of locations:

• You are concerned that your application may violate some nations'
laws, and so you restrict distribution to known safe venues

• You do not wish to pay the additional fee for international sales that
Google Checkout imposes

• You are concerned about your ability to provide the desired level of
technical support on a global basis

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

• You are concerned that your application may violate some carriers'
terms of service, so you restrict your distribution to carriers you
have relationships with or otherwise deem safe

Just remember that if you do not check "All Current and Future Locations"
that you should check back in your Developer Console periodically to see if
there are new location or carrier options available to you.

Contact Information

You will need to provide a contact name, email address, and phone number.
As the Android Market agreement indicates, this information is made
publicly available. Hence, giving out your home phone number or your
personal email address may not be the best option.

For email addresses, consider getting a dedicated account for your Android
application uses, or at least consider using an alias if your mail provider
offers it.

For phone numbers, consider setting up an inexpensive alternative number,
such as Skype, Google Voice, onSIP, etc. You can either elect to try
answering calls or have them all roll to voicemail, finding out about
messages via email and returning the calls as needed.

Pulling Distribution

If you decide you do not want to have your application published on the
Market, you can unpublish it at any time. Just go to your Android Market
Developer Console, click on the application in question, and click the
Unpublish link at the bottom of the page. Your application will be removed
from distribution within minutes.

Note that your application will still remain in the system, just not in the
public Market. So, if the reason for pulling distribution was temporary (e.g.,
major bug needing a fix), you can republish again later, with a new APK as
needed.

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.google.com/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fwww.onsip.com%2F&ei=qVB_SoLZOMSktgf5iJHdAQ&usg=AFQjCNEGo9jMWwAJr2Kq7EjajNchRLuEGw
http://www.google.com/googlevoice/about.html
http://www.skype.com/allfeatures/onlinenumber/

Production Applications

Market Filters

Not every application will be visible on every device, even if that device has
the Android Market. Here are some known, expected filters that are in
place:

• Applications written using Android 1.5 or earlier SDKs will not
appear in the Market for QVGA devices, such as the HTC Tattoo.

• Applications that require certain hardware (e.g., camera) will not
appear in the Market for devices that lack that hardware

• Paid appilcations will not appear in the Market running on a
developer phone (e.g., ADP1, ADP2)

Going Wide

The Android Market is not the only answer for distributing your
applications. For some people, it may not even be the best one. After all:

1. Not all Android devices will have Android Market, particularly
those whose manufacturers are simply using the Android open
source tree rather than signing any sort of deal with Google to get
proprietary applications like Android Market

2. Not all users can use Android Market. For example, owners of the
ADP1 cannot obtain copy-protected applications from the Android
Market

3. Not all developers can sell via the Android Market, only those in
select locations, in part due to the dependence upon Google
Checkout

4. Android Market's only current payment option is Google Checkout,
which some consumers will not wish to use, or cannot use because
they lack the payment mechanisms (e.g., credit card) that Google
Checkout requires

5. Android Market's terms and conditions may contain terms that
developers are unwilling to accept

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Production Applications

6. Android Market takes 30% off the top from the developer's take,
which some developers may prefer to avoid

7. Some carriers and/or device manufacturers may elect to run their
own markets for control purposes, or to capture more revenue (e.g.,
more than 30%), or to support other languages, or other reasons

8. Considering all the complaints that other firms have gotten with
their one-app-store-to-rule-the-world tactics, it seems to be in
Android's best interests to have a vibrant ecosystem of competing
markets

9. Carriers have already exerted control over the Android Market's
contents, banning tethering applications and such, while
independent markets may not have similar restrictions

As of the time of this writing, the leading alternative Android application
markets – AndAppStore, SlideME, Handango, etc. – are all fairly small and
under-marketed compared to the Android Market. That situation is likely
to shift, as devices start to ship with other markets in addition to, or
perhaps instead, the Android Market.

Keep tabs on Android news, and as new markets arise, consider the
likelihood that they will get visibility. For example, any market application
distributed on devices is liable to get some attention from purchasers of
those devices. You can get a bit of a first-mover advantage if you put a
quality application on a new market early, in hopes of holding onto top
popularity ratings on that market quicker and for longer.

Click Here To Download

Of course, there is nothing to say you have to use any of these markets. You
are welcome to distribute Android applications yourself, through your Web
site. That might be useful for:

• Free applications, in addition to listing them in markets

• Internal distribution within a business, via a company intranet, for
applications not destined for public use

332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.handango.com/catalog/SoftwareCatalogByPlatform.jsp?platformId=80
http://slideme.com/
http://andappstore.com/

Production Applications

• Implementing your own purchasing system that does not line up
with existing models, such as a subscription-based library of
applications

The minimum you need is to have the Android APK MIME type configured
on your Web server. Then, if somebody clicks on a link to your APK on your
site, Android will know to route the download to the installation engine.
The Android application MIME type is application/vnd.android.package-
archive, and you will need to set that up as appropriate for your Web server.
For example, for nginx, you simply need to add the following as another
entry in your mime.types file:

application/vnd.android.package-archive apk;

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

Class...

AccelerateDecelerateInterpolator..................140

AccelerateInterpolator....................................140

Activity.....16, 64, 142, 182, 202, 214-216, 225, 270,
272, 287, 301, 302, 304, 305

ActivityInstrumentationTestCase...299, 301-303,
305

ActivityInstrumentationTestCase2................303

ActivityUnitTestCase......................................305

Adapter...46-48, 190, 194

AdapterView.OnItemSelectedListener............59

AlarmManager..............80, 214, 225-227, 230, 231

AlertDialog..257

AlphaAnimation..........................132, 136-138, 142

AnalogClock..65

AndroidTestCase.....................................303, 304

Animation..132, 138-141

AnimationListener....................................138, 139

AnimationSet......................................132, 141, 142

AnimationUtils..138

AppAdapter...269, 270

Application..305

ApplicationInfo..271

ApplicationTestCase.......................................305

AppService..230-234

AppWidgetHost..83

AppWidgetHostView..83

AppWidgetManager..............................71, 75, 79

AppWidgetProvider............69, 70, 73, 78, 79, 82

ArrayAdapter...49, 270

AsyncTask..127, 152

AttributeSet...16

AudioService...240

AudioTrack..176, 177

AutoCompleteTextView..................................170

BatteryManager...222

BatteryMonitor..220, 222

BitmapDrawable..152

BooleanSetting..236

BounceInterpolator...140

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

BroadcastReceiver......64-67, 69, 79, 80, 215-217,
219, 223, 224, 227-230, 273

BshService..252, 259

BshServiceDemo..253

Button..............21, 23, 24, 29, 33-36, 41, 53, 65, 72

Camera...146-151, 153, 259

Camera.Parameters...........................147, 150, 154

Camera.PictureCallback...................................151

Camera.ShutterCallback..................................151

CharSequence...246

CheckBox..21, 25, 27

Chronometer...65

ComponentName.......................71, 248, 265, 267

Configuration..290

Contacts...183, 191

ContactsAdapterBridge............................191, 194

ContactsContract........................182, 188, 191, 197

ContactsContract.CommonDataKinds..........183

ContactsContract.Contacts.............................183

ContactsContract.Data....................................183

ContactsContract.Intents.Insert.....................198

ContactsDemo..................189, 194, 299, 302, 303

ContactsDemoBaseTest..........................304, 305

ContactsDemoTest...........................299, 301, 303

ContactsInserter...200

ContentProvider..............96-99, 181-183, 187, 214

ContentResolver..182

Context...16, 138, 202, 208, 216, 225, 272, 303-305

Cursor...47, 182

CursorAdapter..48

CustomItem..122, 124

CycleInterpolator.....................................138, 140

DeadObjectException....................................249

DecelerateInterpolator....................................140

Drawable23-26, 29, 30, 33, 35, 55, 60, 62, 121-124,
128

Drawable/GradientDemo.................................30

EditText...65, 290

Exception...259

ExecuteScriptJob...259

FocusFinder...305

FrameLayout...65

FullSuite...300

GeoPoint..107-109

GeoWebOne..2

HeaderFooterDemo...51

IBinder...248

ImageButton...................13, 14, 19, 65, 69, 72, 139

ImageView..65, 219

InstrumentationTestRunner..........................298

Intent.. . .xvi, 69, 75, 80, 91, 99, 142, 185, 198-200,
213-220, 222, 223, 225, 226, 230, 233, 238, 249,
255, 261, 263-267, 269, 270, 272, 275, 277, 282,
283, 287, 303

Intent.ShortcutIconResource.........................283

IntentFilter...223

IntentService...70, 80, 82, 227, 228, 233, 274, 277

Interpolator..140

IScript..251, 254, 257

IScriptResult...257, 261

ItemizedOverlay.............108, 110, 115, 121, 126, 127

KeyEvent...153

Launchalot...267

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

LayoutInflater..72, 305

LinearInterpolator...140

LinearLayout......................15, 51, 65, 133, 134, 170

LinkedBlockingQueue....................................259

List..246, 267, 269, 271

ListActivity...48, 56, 189

ListAdapter......................................48, 90, 91, 191

ListView. .30, 32, 45, 46, 48, 51, 55, 56, 59, 60, 71,
88, 90, 189, 267, 269, 270, 303

Locater...4

LocationListener...4, 8

LocationManager..4

Log...320

LoremBase...89

LoremDemo..90, 92

LoremSearch...92, 93, 98

LoremSuggestionProvider.........................97, 98

Map..246

MapActivity..107

MapController...107

MapView................................107, 108, 110, 111, 124

Media/Audio..157

MediaPlayer....156, 157, 160, 161, 165, 171, 172, 175,
176

MediaPlayer.OnPreparedListener...................171

Menu...138, 264

Menu.Item...266

MergeAdapter..47-49

Meter......................................13-16, 18, 19, 21, 242

MeterDemo..21

MyActivity...265

NinePatchDemo..41

NooYawk...................109, 111, 113, 115, 123, 126, 127

OnAlarmReceiver.....................................230-232

OnBootCompleted...215

OnBootReceiver.......................................215, 229

OnClickListener..65

OnSeekBarChangeListener............................242

OnWiFiChangeReceiver...........................217, 218

OverlayItem..................................108, 111, 121, 122

OverlayTask...127, 128

OvershootInterpolator.....................................141

PackageInfo..271

PackageManager...............263, 267, 269, 271, 272

Parcelable..246

PendingIntent..............................65, 72, 225, 230

PhotoCallback..153

PictureDemo..151, 153

Player...168-171, 174

Point..108, 109

PopupPanel..113-115

PowerManager..226, 231

PreferenceActivity........................73, 75, 274, 275

PreviewDemo...145

ProgressBar........13, 14, 65, 170, 172, 219, 222, 240

Projection...108

QuickSender...281-285

RelativeLayout.........................65, 111, 113, 114, 169

RelativeLayout.LayoutParams.........................114

RemoteException..249

RemoteService..251

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

RemoteViews........................64, 65, 69-73, 75, 82

ResolveInfo..269, 270

ResolveInfo.DisplayNameComparator..........269

Resources...272

RotateAnimation.......................................132, 138

SavePhotoTask..152, 153

ScaleAnimation..132

ScrollView...206

SearchManager...99

SearchRecentSuggestions.........................98, 100

SearchRecentSuggestionsProvider.....96-98, 105

SectionedDemo...48

SeekBar..13, 41, 240, 242

SelectorAdapter..58

SelectorDemo..56, 58

SelectorWrapper...58

SenderService..277

Sensor..203

SensorEvent...203

SensorEventListener...............................203, 205

SensorManager................................202, 203, 208

Service64-66, 70, 80, 214, 225, 227, 247, 262, 287

ServiceConnection..................................248, 249

ServiceTestCase...305

Settings...235, 238

Settings.Secure..........................235, 239, 291, 293

Settings.System.........235, 236, 239, 290, 291, 293

SettingsSetter...235, 238

Shaker...207-209

Shaker.Callback..209

ShakerDemo..207, 209

SharedPreferences.....................................73, 277

SimpleCursorAdapter..................47, 48, 194, 196

SitesOverlay...122-124

SlidingPanel.........................134, 136, 138, 140, 141

SlidingPanelDemo...135

SoundPool...175, 176

Spinner..189, 190, 303

StateListDrawable.........29, 33-35, 60, 62, 121, 122

String..246, 272

SurfaceHolder......................146, 147, 167, 168, 171

SurfaceHolder.Callback............................146-148

SurfaceView.............145-147, 165, 167, 168, 171-173

TableLayout..112

TappableSurfaceView........................168, 170, 173

TestCase..301, 305

TestSuite..300

TestSuiteBuilder..300

TextSwitcher...132

TextView....27, 48, 53, 56, 59, 65, 69, 72, 88, 204,
206, 207, 219, 222

Thread..232

Toast............................109, 110, 255, 257, 277, 280

ToneGenerator...177

TranslateAnimation.....132-134, 136, 137, 139, 140,
142

TranslationAnimation.....................................138

TSPrefs...275

Twitter..277

TwitterSender...................................274-278, 280

TwitterSenderTest...278

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

TwitterWidget..................68, 70, 78-80, 274, 277

TWPrefs...72, 73

TypedArray..16, 17

UpdateService..70, 71

Uri...................155, 156, 183-185, 187, 191, 263, 265

VideoDemo..163

VideoView...................................161, 163, 165, 166

View....46-48, 51, 53, 55, 56, 59, 63, 64, 71, 72, 83,
111, 114, 115, 132, 138, 304, 305

View.OnClickListener.......................................18

ViewAnimator..132

ViewFlipper..132

ViewGroup...111

VolumeManager..242

Volumizer...240, 241

WakefulIntentService.......................226, 231, 233

WakeLock...................................226-228, 231-233

WebSettings...1

WebView..1, 2, 4, 7, 9-11

WebViewClient..1

WidgetProvider...75

WifiConfiguration...291

WifiLock..234

WifiManager..290, 291

XmlPullParser..272

Command......................................

adb push...163

android update project -pxix

ant debug...311, 314

ant install..311

ant release..314

draw9patch..38, 39, 42

jarsigner..314

keytool...312, 314

mksdcard..163

MP4Box -hint...167

nginx...333

pdftk *.pdf cat output combined.pdf.............xiii

Constant...

ACTION_PICK...185

ACTION_SEARCH...91

ACTION_TAG...264

ACTION_VIEW..185

ALTERNATIVE..265

BIND_AUTO_CREATE...................................249

CATEGORY_ALTERNATIVE..................264, 265

DEFAULT_CATEGORY...................................265

MATCH_DEFAULT_ONLY.............................265

RESULT_OK...185

Method...

acquire()...232

acquireStaticLock()...................................231-233

addFooterView()..51

addHeaderView()...51

addIntentOptions()........................264, 265, 267

addJavascriptInterface().............................2, 4, 6

addNetwork()...291

areAllItemsSelectable()....................................46

autoFocus()...153

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

bindService()..............248-250, 255, 261, 262, 273

boundCenter()...123

boundCenterBottom().....................................123

buildFooter()...53

buildHeader()..53

buildUpdate()..71

clearHistory()...100

create()...160

createChooser()...............263, 266, 267, 274, 278

doInBackground()...152

doWakefulWork()...233

enable()..247

enableNetwork()..291

eval()..256, 259

executeScript()...256-258

failure()..257

findViewById()...71

finish().......................................142, 277, 282, 283

getActivity()...302

getApplicationIcon().......................................271

getApplicationLabel()......................................271

getCenter()...108

getContext()..305

getFloat()...290

getFocusMode()...154

getHeight()..108

getHolder()..146

getInstalledApplications()...............................271

getInstalledPackages().....................................271

getInt()...16, 290

getIntent()...88

getLatitudeSpan()..108

getLaunchIntentForPackage().......................272

getLock()..231

getLongitudeSpan()..108

getMarker()..122

getPackageManager().............................267, 269

getPoint()...108

getProjection()...108

getResources()...272

getResourcesForActivity()..............................272

getResourcesForApplication()........................272

getSystemService()..........................202, 225, 230

getText()...272

getView()...114

getWidth()...108

getXml()...272

hide()...113, 114

initBar()..241, 242

invalidate()..124, 128

isEnabled()..46

loadAnimation()..138

loadUrl()..7, 9

makeMeAnAdapter()..91

managedQuery()...182

obtainStyledAttributes()...................................16

onAccuracyChanged()....................................203

onAnimationEnd()..138

onBackPressed()..75, 76

onBind()...247

340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

onClick()..19

onCreate(). 49, 88, 91, 127, 147, 160, 168, 232, 241,
269

onDeleted()...79, 80

onDestroy()..75, 203

onDisabled()...79

onEnabled()...79

onFinishInflate()...16, 17

onHandleIntent()......................................70, 233

onItemSelected()..59

onKeyDown()...76, 150

onListItemClick()..270

onLocationChanged()..8

onNewIntent()...88, 91

onNothingSelected()..59

onPause()...220

onPictureTaken()..151

onPrepared()...171

onReceive()...................79, 80, 216, 227, 228, 230

onResume()...220

onSearchRequested()..................................85, 93

onSensorChanged()..203

onServiceConnected()............................248, 249

onServiceDisconnected().......................248, 249

onStart()...232, 233

onTap()...108, 109, 115

onUpdate()......................................69, 70, 78, 79

open()...146

overridePendingTransition()..........................142

pause()...157, 161

play()...161

playVideo()...170

postDelayed()..173, 174

prepare()...156, 160, 161

prepareAsync().............................156, 157, 161, 171

queryBroadcastReceivers().............................272

queryContentProviders()................................272

queryIntentActivities().....................267, 269-271

queryIntentActivityOptions().........267, 270, 271

queryIntentServices().....................................272

recycle()..17

registerListener()..203

registerReceiver()........214, 215, 217, 219, 223, 273

release()...148, 231

reset()..171

resolveActivity()..270

resolveContentProvider()...............................272

resolveService()..272, 273

runOnUiThread()..257

searchItems()..98

seekTo()...161

sendKeys()...303

setAnimationListener()...................................138

setApplicationEnabledSetting().....................272

setComponentEnabledSetting().....................273

setDataSource()...156

setDefaultKeyMode().......................................86

setDuration()...136

setInterpolator()..140

setMax()...242

setOnClickPendingIntent()..............................72

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

setOnItemSelectedListener()...........................56

setOnPreparedListener().................................171

setPictureFormat()..150

setPreviewDisplay()...147

setProgress()..242

setRepeating()...230

setResult()..75, 283

setScreenOnWhilePlaying()............................171

setState()..122

setTextViewText()...72

setType()...146, 199

setup()..160

setUp()...302, 305

setupSuggestions().....................................97, 98

setVisibility().......................................111, 133, 138

shakingStarted()...209

shakingStopped()..209

sleep()...127

start()..157

startActivity()...................................142, 199, 270

startActivityForResult().....................73, 185, 283

startAnimation().......................................132, 136

startPreview()..147

startSearch()..85, 94

startService().......................70, 216, 228, 233, 278

steerLeft()..206

steerRight()...206

stop()..157, 161, 171

stopPreview()...148

success()...257

surfaceChanged()...147

surfaceCreated()..147

surfaceDestroyed()..148

takePicture()...151

tearDown()..302

toggle()...134

toggleHeart()...123, 124

toPixels()...108, 109

toString()...256

unbindService()..249

unregisterListener()..203

updateAppWidget()...............................71, 75, 79

Property...

android:name..92, 93

android:value..92, 93

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

	The Busy Coder's Guide to Advanced Android Development
	Welcome to the Book!
	Prerequisites
	Warescription
	Book Bug Bounty
	Source Code
	Creative Commons and the Four-to-Free (42F) Guarantee
	Lifecycle of a CommonsWare Book
	WebView, Inside and Out
	Friends with Benefits
	Turnabout is Fair Play
	Gearing Up
	Back To The Future

	Crafting Your Own Views
	Getting Meta
	The Widget Layout
	The Attribute Declarations
	The Widget Implementation
	The Constructor
	Finishing Inflation
	Event Handlers and Other Methods

	Using the Widget

	Change of State
	Changing Button Backgrounds
	Changing CheckBox States

	Creating Drawables
	Traversing Along a Gradient
	State Law
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images

	More Fun With ListViews
	Giant Economy-Size Dividers
	Choosing What Is Selectable
	Introducing MergeAdapter
	Lists via Merges

	From Head To Toe
	Control Your Selection
	Create a Unified Row View
	Configure the List, Get Control on Selection
	Change the Row

	Stating Your Selection

	Home Screen App Widgets
	East is East, and West is West...
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The Metadata
	The Layout
	The BroadcastReceiver
	The Service
	The Configuration Activity
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget's) Destiny
	Change Your Look
	Being a Good Host

	Searching with SearchManager
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness
	May I Make a Suggestion?
	SearchRecentSuggestionsProvider
	Custom Suggestion Providers
	Integrating Suggestion Providers

	Putting Yourself (Almost) On Par with Google
	Implement a Suggestions Provider
	Augment the Metadata
	Convince the User
	The Results

	Interactive Maps
	Get to the Point
	Getting the Latitude and Longitude
	Getting the Screen Position

	Not-So-Tiny Bubbles
	Options for Pop-up Panels
	Defining a Panel Layout
	Creating a PopupPanel Class
	Showing and Hiding the Panel
	Tying It Into the Overlay

	Sign, Sign, Everywhere a Sign
	Selected States
	Per-Item Drawables
	Changing Drawables Dynamically

	In A New York Minute. Or Hopefully a Bit Faster.

	Animating Widgets
	It's Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It's All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Using the Camera
	Sneaking a Peek
	The Permission
	The Manifest
	The SurfaceView
	The Camera

	Image Is Everything
	Asking for a Format
	Connecting the Camera Button
	Taking a Picture
	Using AsyncTask

	Maintaining Your Focus
	All the Bells and Whistles

	Playing Media
	Get Your Media On
	Making Noise
	Moving Pictures
	Pictures in the Stream
	Rules for Streaming
	Establishing the Surface
	Floating Panels
	Playing Video
	Touchable Controls

	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator

	The Contacts Content Provider
	Introducing You to Your Contacts
	ContentProvider Recap
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Dealing with API Versions
	Accessing People
	Accessing Phone Numbers
	Accessing Email Addresses

	Makin' Contacts

	Sensors
	The Sixth Sense. Or Possibly the Seventh.
	Orienting Yourself
	Steering Your Phone
	Do "The Shake"

	Handling System Events
	Get Moving, First Thing
	The Permission
	The Receiver Element
	The Receiver Implementation

	I Sense a Connection Between Us...
	Feeling Drained
	Sticky Intents and the Battery
	Other Power Triggers

	Using System Services
	Get Alarmed
	Concept of WakeLocks
	The WakeLock Problem
	Scheduling Alarms
	Arranging for Work From Alarms
	Staying Awake At Work

	Setting Expectations
	Basic Settings
	Secure Settings

	Can You Hear Me Now? OK, How About Now?
	Attaching SeekBars to Volume Streams

	Your Own (Advanced) Services
	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	A Consumer Economy
	Bound for Success
	Request for Service
	Getting Unbound

	Service From Afar
	Service Names
	The Service
	The Client

	Servicing the Service
	Callbacks via AIDL
	Revising the Client
	Revising the Service

	The Bind That Fails

	Introspection and Integration
	Would You Like to See the Menu?
	Give Users a Choice
	Asking Around
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components

	Get In the Loop
	The Manifest
	The PreferenceActivity
	The Main Activity
	The IntentService
	The Test Activity
	The Results

	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Homing Beacons for Intents

	Device Configuration
	The Happy Shiny Way
	Settings.System
	WifiManager

	The Dark Arts
	Settings.Secure
	System Properties

	Automation, Both Shiny and Dark

	Testing
	You Get What They Give You
	Erecting More Scaffolding
	Testing Real Stuff
	ActivityInstrumentationTestCase
	AndroidTestCase
	Other Alternatives

	Monkeying Around

	Production Applications
	Market Theory
	Making Your Mark
	Role of Code Signing
	What Happens In Debug Mode
	Creating a Production Signing Key
	Signing with the Production Key
	Two Types of Key Security
	Related Keys

	Get Ready To Go To Market
	Versioning
	Package Name
	Icon and Label
	Logging
	Testing
	EULA

	To Market, To Market
	Google Checkout
	Terms and Conditions
	Data Collection
	Images
	Title
	Description
	Application Type and Category
	Pricing
	Copy Protection
	Locations for Distribution
	Contact Information

	Pulling Distribution
	Market Filters

	Going Wide
	Click Here To Download

